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Abstract

The c-Myc (Myc) oncoprotein and AMP-activated protein kinase (AMPK) regulate glycolysis
and oxidative phosphorylation (Oxphos) although often for different purposes. Because
Myc over-expression depletes ATP with the resultant activation of AMPK, we explored the
potential co-dependency of and cross-talk between these proteins by comparing the conse-
quences of acute Myc induction in ampk+/+ (WT) and ampk-/- (KO) murine embryo fibro-
blasts (MEFs). KO MEFs showed a higher basal rate of glycolysis than WT MEFs and an
appropriate increase in response to activation of a Myc-estrogen receptor (MycER) fusion
protein. However, KO MEFs had a diminished ability to increase Oxphos, mitochondrial
mass and reactive oxygen species in response to MycER activation. Other differences
between WT and KO MEFs, either in the basal state or following MycER induction, included
abnormalities in electron transport chain function, levels of TCA cycle-related oxidoreduc-
tases and cytoplasmic and mitochondrial redox states. Transcriptional profiling of pathways
pertinent to glycolysis, Oxphos and mitochondrial structure and function also uncovered sig-
nificant differences between WT and KO MEFs and their response to MycER activation.
Finally, an unbiased mass-spectrometry (MS)-based survey capable of quantifying ~40% of
all mitochondrial proteins, showed about 15% of them to be AMPK- and/or Myc-dependent
in their steady state. Significant differences in the activities of the rate-limiting enzymes
pyruvate kinase and pyruvate dehydrogenase, which dictate pyruvate and acetyl coenzyme
A abundance, were also differentially responsive to Myc and AMPK and could account for
some of the differences in basal metabolite levels that were also detected by MS. Thus,
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Myc and AMPK are highly co-dependent and appear to engage in significant cross-talk
across numerous pathways which support metabolic and ATP-generating functions.

Introduction

c-Myc (Myc) oncoprotein de-regulation occurs in a substantial fraction of human cancers and
alters numerous transformation-associated phenotypes [1-4]. Myc over-expression exerts
marked effects on proliferation, survival, differentiation and biomass accumulation as a result
of global changes in the expression of RNAs regulated by all 3 RNA polymerases [1, 5-8].
Together, these changes reflect Myc’s role as a general transcription factor that broadly modu-
lates the levels of most, if not all, genes [9-12]. The molecular mechanisms by which Myc
mediates these effects on transcription are varied and highly dependent upon the degree of
Myc over-expression, the identity of various co-factors and the type of cell in which Myc de-
regulation occurs [6, 11, 13, 14].

Metabolic changes are among the most universal consequences of aberrant Myc expression
[15]. Myc induces the majority of genes encoding glycolytic enzymes and thus is important for
promoting the Warburg effect, defined as the persistence of glycolysis under aerobic conditions
[5, 16]. Rather than being a result of defective mitochondrial function and confined to tumor
cells as originally proposed [17], the Warburg effect also occurs in rapidly proliferating normal
cells [16, 18]. It thus seems likely that the major purpose of the Warburg effect is to supply ana-
bolic precursors such as ribose sugars, nucleotides and select amino acids whose production
must be increased and carefully coordinated with the doubling of biomass that accompanies
replication [16, 19].

In addition to enhancing glycolysis, Myc re-programs oxidative phosphorylation (Oxphos)
and supports the structural and functional integrity of mitochondria and the electron transport
chain (ETC) via the direct up-regulation of certain mitochondrial-specific transcription factors
[20, 21]. This has the effect of increasing the production of ATP needed to support macromo-
lecular synthesis during proliferation [15, 20, 22]. Concurrently, Myc promotes the uptake and
B-oxidation of exogenous fatty acids, which serve as an alternate source of acetyl CoA that is
otherwise provided in lower yield by the re-programmed glycolytic pathway [23-25]. The
transport of glutamine and its conversion to glutamate and o-ketoglutarate are also under
stringent positive Myc control and provide yet another source of TCA cycle intermediates [5,
15, 26]. In support of all the above findings, myc-/- fibroblasts show severe structural and func-
tional ETC defects, low rates of glycolysis and Oxphos and profound ATP depletion [20].

The regulation of both anabolic and catabolic processes is also a property of AMP-activated
protein kinase (AMPK), a Ser/Thr kinase that is activated in response to a decrease in the ATP:
AMP ratio [27-29]. AMPK is a trimeric enzyme whose y-regulatory subunit undergoes a con-
formational change upon binding AMP that allows phosphorylation of the o catalytic subunit’s
Thr, 7, residue by the upstream kinase and putative tumor suppressor LKB [27, 30, 31]. The
consequences of this activating phosphorylation event include a general inhibition of energy-
consuming processes such as protein and fatty acid synthesis and proliferation [27] and an
increase in energy-generating process such as glycolysis and Oxphos [27, 32, 33]. Collectively,
these cooperate to ensure the timely restoration of a positive ATP: AMP balance and allow the
resumption of proliferation. Thus AMPK and Myc appear to enhance energy-generating pro-
cesses while simultaneously exerting opposing effects on energy-consuming processes. How
these are regulated and coordinated remain largely unexplored.
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We have recently observed that the ATP-depleted state of myc-/- fibroblasts is associated
with chronic phosphorylation-dependent AMPK activation whereas Myc re-expression
restores normal ATP levels and suppresses AMPK [23]. These observations suggest that Myc
and AMPK engage in a form of cross-talk, the purpose of which is to optimize proliferation
and energy production while balancing Oxphos and the Warburg effect. In the current work,
we have investigated how and the extent to which such communication occurs as well as how
compromising AMPK function affects Myc’s metabolic phenotype.

Materials and Methods

Cell culture

SV40 T-antigen-immortalized ampk+/+ and ampk-/- MEFs, the latter bearing a double knock-
out of the a1 and 0.2 subunits of AMPK, were a kind gift from Dr. Benoit Viollet (Institut
Cochin, Université Paris Descartes) and Dr. Keith Laderoute (Discovery Technologies, SRI
International) [34, 35] and were generated as described by Laderoute et al. [36]. Both cell lines
were transduced with a pBabePuro retroviral vector encoding a Myc-estrogen receptor
(MycER) fusion protein [37]. Stable clones of each AMPK genotype (hereafter referred to as
WT or KO) were selected in 1 pg/ml of puromycin, pooled, and used for all subsequent experi-
ments. Both WT and KO cells expressed equivalent levels of MycER (S1A Fig). All cell lines
were maintained in puromycin-containing Dulbecco’s-modified Eagle’s minimal essential
medium (D-MEM) supplemented with 10% heat-inactivated fetal bovine serum (FBS), L-glu-
tamine and penicillin/streptomycin as previously described [20]. Unless otherwise stated,
MycER was activated by adding 4-hydroxytamoxifen (4HT) to cells for 7-9 days at a final con-
centration of 250 nM before performing any assessments. All recombinant DNA and retroviral
and lentiviral work was approved by the University of Pittsburgh Recombinant DNA and Insti-
tutional Biosafety Committees and, in the latter cases, was performed under BSL2+ conditions.

Quantification of glycolysis, Oxphos and ATP levels

All experiments were performed on an XF24 Extracellular Flux Analyzer (Seahorse Bioscience,
Billirica, MA) as previously described [20, 23]. O, consumption rate (OCR) and proton pro-
duction, expressed as the extracellular acidification rate (ECAR), were quantified in unbuffered
D-MEM containing 8.3 g of glucose- and pyruvate-free DMEM (Sigma) supplemented with 31
mM NaCl, 2 mM glutamine, 42.3 uM phenol red, and 25 mM glucose, pH 7.4 to obtain base-
line metabolic levels. A mitochondrial stress-test was applied by adding 1 uM oligomycin,

0.3 uM FCCP, 100 mM 2-deoxyglucose (2-DG), and 1 uM rotenone. Each measurement point
was performed in quadruplicate and experiments were repeated at least 3 times with similar
results and normalized to cell number at the conclusion of the experiment. Relative effects
were expressed as areas under the curve measurements that were generated by the manufactur-
er’s software.

ATP assays were performed on 20,000-30,000 cells seeded in 96 well plates the day before
and were performed in quadruplicate wells using the ATPlite Luminescence Assay System
(Perkin Elmer, Waltham, MA) as instructed by the manufacturer. Results were normalized to
total protein levels, which were determined on separate sets of identical wells.

Measurements of mitochondrial mass and reactive oxygen species
(ROS)

Mitochondrial mass was determined as previously described [20, 23]. Monolayers were stained
at 37C for 45 min in fresh D-MEM containing 20 nM of acridine orange 10-nonyl bromide
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(NAO), 0.5 mM of MitoTracker Green, 10 uM of CM-H2-DCFDA or 5 uM of MitoSox (all
from Invitrogen, Carlsbad, CA)) and then analyzed using a FACStar flow cytometer (Becton-
Dickinson Biosciences, San Jose, CA). Analyses were performed using BD FACSDiva Software
as previously described [20].

Blue native gel electrophoresis (BNGE) and electron transport chain
(ETC) enzyme assays

Samples were prepared for BNGE as previously described with some modifications [20]. Cells
were suspended in 0.5 ml of ice cold HB buffer (50 mM KPO,, pH = 7.4; 1mM EDTA; 2.5%
glycerol; 250 mM sucrose) containing protease inhibitor cocktail (Sigma-Aldrich, St. Louis,
MO), disrupted on ice with a dounce homogenizer (Isobiotec, Heidelberg, Germany) and
enriched for mitochondria by differential centrifugation. The pellet was washed twice with HB
buffer and re-suspended in the same buffer at a final protein concentration of 2-5 mg/ml. To
achieve optimal solubility of mitochondrial super-complexes/complexes, the digitonin concen-
tration was optimized so that 8 mg of digitonin was added per mg of protein in HB buffer with-
out EDTA. Following a 20 min incubation on ice, a Coomassie blue solution (5% Coomassie
blue G250 in 750 mM 6-aminocaproic acid) was added (1:30 v/v). The supernatant was then
electrophoresed on a 3-12% Native PAGE Novex Bis-Tris gel (Invitrogen) at 80 V for 4 hours
at 4C in the buffer provided by the supplier. 80 ug of protein for each sample was electropho-
resed to resolve complexes. Following electrophoresis, gels were stained for 30 min with Bio-
Safe Coomassie G250 (Bio-Rad, Hercules, CA). Gels were scanned and the images analyzed for
relative band density using AlphaEaseFC 2200 scanner and AlphaEaseFC software.

In situ gel assays of individual ETC complex activities were performed as previously
described for Complexes I (NADH ubiquinone oxidoreductase) and V (ATPase) [38]. Com-
plex III (CIII) (decylubiquinol cytochrome c oxidoreductase) was assayed by incubating gels
with CIII assay solution [39] overnight with mild agitation. In a separate reaction, Complex IV
(CIV) (cytochrome c oxidase) was measured by incubating the gel in a solution containing 1
nM catalase, 10 mg cytochrome ¢ and 750 mg sucrose in CIII assay buffer with mild agitation
for 30 min. An optional wash in water at room temperature was employed for 24 hours to fur-
ther sharpen the band patterns. Band intensities were quantified using NIH Image J software
and were normalized with their corresponding bands on the Coomassie stained gel.

In situ assays for Complex IT (CII) (succinate dehydrogenase) proved to be relatively insen-
sitive and irreproducible. We therefore measured this activity on mitochondria purified as
described above using a method from Munujos et al. [40] modified for a 96 well plate format.
As a negative control, an inhibitor of CII (0.5 mM thenoyltrifluoro-acetone) was added to a
separate set of samples. Activity was assessed at 500 nm for 1 hour every minute on a BMG
LabTech FLUOstar Omega spectrophotometer. The AAbs;40/min was obtained using the max-
imum linear rate over a period of 20 min.

RNA extraction and real-time gRT-PCR analysis

Total RNA was extracted from logarithmically growing cells and purified using an RNAeasy
Mini kit (Qiagen, Inc., Chatsworth, CA) as previously described [23]. qRT-PCR reactions were
performed with a Power SYBR Green RNA-to-CT 1-Step Kit (Life Technologies/Thermo-
Fisher, Inc.) with a StepOnePlus Real-Time PCR System (Applied Biosystems, Inc. Carlsbad,
CA). All primers were synthesized by International DNA Technologies, Inc. (Coralville, IA).
Reactions were optimized so that single bands of the predicted size were visualized following
gel electrophoresis. The real-time PCR results were calculated as relative expression after nor-
malization to the internal standard B, microglobulin using AACTs compared to WT cells.
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Statistical analyses were performed using Student’s t-test. All primer sequences and amplifica-
tion conditions are listed in S1 Table.

Immunoblotting

Blotting were performed as previously described [20, 23]. All relevant antibodies used are listed
in S2 Table.

Mitochondrial oxidoreductase assays

The assay for malic dehydrogenase (MDH) relied on the conversion of oxaloacetate (OAA) to
malate coupled with NADH to NAD+, which was measured using Protocol SPOXALO1
(Sigma-Aldrich). The AAbs;4o/min was obtained as described above.

o-ketoglutarate dehydrogenase (o-KGDH) was quantified by measuring the conversion of
o-ketoglutaric acid (0-KG) to succinyl-CoA coupled to NAD+ conversion to NADH as
described in Protocol SPKETOO03 (Sigma-Aldrich). The AAz40nm/min was calculated over 15
min using the maximum linear rate.

Isocitrate dehydrogenase (IDH) activity was quantified on 10 pg of mitochondria using an
IDH Activity Assay Kit according to the directions provided by the supplier (Sigma-Aldrich).
Absorbance was measured at 37C at OD 450, €very 5 minutes over 2 hr. with a final reading
taken at the plateau stage.

Glycerol 3-phosphate dehydrogenase (G3PDH) was assayed using a G3PDH Assay Kit
(Abcam, Inc., Burlingame, CA) with 10 pg of mitochondria and quantified as recommended by
the manufacturer. End point absorbance (Abs,s) was corrected for background controls.

All enzyme assays were performed on at least triplicate samples

Enrichment and Tryptic Digestion of MEF Mitochondrial Proteins

16 MEF samples (4 each of WT, KO, WT+Myc and KO+Myc) were separately enriched for
mitochondrial proteins from 10 cells prepared from individual plates as described for BNGE.
Protein concentrations were determined using a BCA assay (Pierce, Inc., Rockford, IL). A
pooled control sample was prepared by combining equal volumes of each individual sample
and was used to monitor sample preparation variation. 22 aliquots (16 samples and 6 controls)
containing 20 pg of total protein were spiked with 4 ul of 125 nM ovalbumin protein. In-solu-
tion trypsin digestion was carried out as described [41]. The resulting tryptic peptides were
desalted with PepClean C-18 Spin Columns (Pierce) according to the manufacturer’s protocol,
vacuum-dried, and resuspended in 20 ul 0.1% formic acid.

LC-MS/MS Analysis

Tryptic digests were analyzed using high resolution liquid chromatography tandem accuracy
mass spectrometer as previously described [42]. In brief, samples were loaded with a nanoAc-
quity autosampler (Waters, Waltham MA) onto a capillary sample trap column, separated
using a reversed phase gradient on a commercial PicoChip nanospray C18 column (PicoChip)
and electrospray ionization source (New Objective, Inc. Woburn MA). Mass analysis was per-
formed on a hybrid electrosprayed into a LTQ/Orbitrap Velos hybrid mass spectrometer
(Thermo Fisher). Data dependent acquisition consisted of cycles of a high resolution full scan
FT mass spectrum followed by 13 MS/MS low resolution tandem mass spectra scans in the lin-
ear ion trap, with dynamic exclusion setting enabled to minimize redundant selection of pre-
cursor ions previously selected for CID. High-resolution liquid chromatography mass
spectrometry was used to measure the mass-to-charge ratio, retention time, and intensity of
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the isotopes for each identified peptide. Custom differential mass spectrometry software (dMS
1.0, University of Pittsburgh and InfoClinika, Seattle WA) was used to align, integrate, and link
the high resolution peak areas data to the protein identification results from a COMET to the
tandem MS sequence database search results [43]. In total, detection of 414,655 isotope distri-
butions, 9,397 peptide sequences, and 1929 protein identifications were obtained from this
data set.

Selection of Mitochondrial Proteotypic Peptides

Intensities of a single representative peptide were used as surrogate markers for relative abun-
dance of each protein. Proteotypic representative peptides were selected based upon their sig-
nal intensities and their correlation with other peptides originating from the same protein.
Proteins with a single identified peptide sequence or with poor concordance among identified
peptides were excluded from further analysis. For the remaining proteins, peptides with the
highest signal intensities (average of all samples) among those with good correlation with other
peptides from the same protein (mean Pearson’s correlation coefficient >0.5) were selected as
representative peptides. A total of 345 peptides belonging to proteins annotated as having evi-
dence of mitochondrial localization in the David (http://david.abcc.ncifcrf.gov/) Bioinformatics
Database and/or mouse MitoCarta Inventory (http://www.broadinstitute.org/pubs/MitoCarta/
mouse.mitocarta.html) were selected and their high resolution peak area extracted using dMS
software were used for statistical analysis.

Statistical Analysis

Two way ANOV A was used to determine the influence of AMPK genotype and Myc over-
expression on the abundance of mitochondrial proteins, and also to determine whether there
was any significant interaction effect between AMPK genotype and Myc over-expression (i.e.
whether a protein’s response to Myc was discordant between WT and KO cells). Features were
selected based on a g value (false discovery rate) cutoff of 0.05. Myc over-expression did not
affect the overall abundance of mitochondrial proteins (p values for student’s t test comparison
of WT vs. WT + Myc and KO vs. KO + Myc were 0.870 and 0.761 respectively). However, we
did observe a 24% higher average intensity of all mitochondrial peptides in KO samples both
with and without Myc over-expression (two-way analysis of variance [ANOVA] p value of
0.002) despite the overall intensities of non-mitochondrial proteins being otherwise identical.
This could be due to a slightly greater overall mitochondrial mass in KO cells although this was
not confirmed by staining with NAO or MitoTracker dyes (Fig 1C). To reduce the potential
effect of bias due to slightly higher amounts of mitochondrial proteins in the KO samples, pro-
teins with greater abundance in KO but with fold change less than 2.6 (twice the fold change of
overall mitochondrial abundance in KO samples) were not considered for the main effect of

genotype.

Expression of roGFP2

roGFP2 was a generous gift from Dr. Michael Palladino (The Univ. of Pittsburgh). Compared
to GFP, roGFP2 contains several amino acid substitutions, including $147C and Q204C, which
allow the molecule to form stable intra-molecular disulfide bonds in reduced environments
[44]. Oxidation of these residues alters the tertiary structure of the protein as well as the inten-
sity of 510 nm light emitted following alternating excitation at 410 nm and 474 nm [45].

We used standard molecular biology techniques to insert roGFP coding sequences into the
pDsRed2-Mito vector (Clontech, Inc., Mountain View, CA) from which the DsRed insert had
been excised. This step placed the roGFP coding sequence downstream from and in-frame
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Fig 1. Energy-generating pathway responses to MycER activation. (4) Baseline glycolysis measurements normalized to cell number at conclusion of the
experiment. WT and KO MEFs were either untreated or exposed to 4HT for 7 days to activate MycER (+Myc). Glycolysis was quantified by measuring
extracellular acidification rates (ECAR). Bars represent the mean of quadruplicate measurements * 1 standard error of the mean (SEM). (B) Baseline Oxphos
measurements. Oxygen consumption rates (OCR) were simultaneously quantified on the same samples described in A. See S2 Fig for additional details
regarding the glycolytic and Oxphos responses of these cells. (C) Changes in mitochondrial mass and ROS production. Untreated or 4HT-treated (7 days)
WT and KO cells were stained with MitoTracker Green or NAO to independently assess mitochondrial mass. In parallel experiments, cells were also stained
with CM-H2-DCFDA to quantify total ROS production or with MitoSOX to specifically quantify the production of mitochondrial-derived superoxide. In all
cases, typical flow diagrams are depicted. The numbers in the upper left portion of each panel indicate the mean ratios of fluorescence intensities between
4HT-treated and control, untreated cells from at least 4 independent experiments + 1 SEM (D) ATP levels in response to MycER activation and inactivation.
ATP levels were measured at baseline (S1B Fig), after the indicated periods of exposure to 4HT (+) and its subsequent removal (-). Each value shown
depicts the mean of quadruplicate samples + 1 SEM. Basal (day 0) ATP levels in untreated KO cells were routinely found to be 30-40% lower than those of
their WT counterparts (S1B Fig) but are normalized here to 100% in both cell types for easier comparison. After taking the day 0 differences into account, KO
MEFs also showed significantly lower ATP levels on days +1-4 compared to their WT counterparts (P < 0.02) (S1B Fig). (E) AMPK response to MycER
activation/inactivation in WT MEFs. WT cells were exposed to 4HT for the indicated times. On day 4, 4HT was removed (-4HT) and cells continued to be
cultured in its absence for an additional 6 days. Total AMPK and pAMPK were assessed by immunoblotting at the time points shown. (F) MitoSox staining as
described in Fig 1C after 2 days of 4HT treatment. In the concurrent presence of 1 mM NAC, no significant change in ROS was observed. (G) AMPK
activation is suppressed by NAC. WT cells were exposed to 4HT in the absence or presence of 1 mM NAC. Total and phospho-AMPK were assessed by
immuno-blotting as described for panel E. (H) Persistence of ROS following MycER inactivation. WT cells were exposed to 4HT for 4 days at which point ROS
were quantified using MitoSox as described in (C). 4HT was then removed with ROS levels again being determined 2 and 4 days later (days 6 and 8).
Numbers in upper left corner indicate the ratio of mean fluorescence intensity of 4HT-treated (red curves) to non-4HT-treated MEFs (black curves).

doi:10.1371/journal.pone.0134049.g001
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with the mitochondrial targeting signal peptide from subunit VIII of the human cytochrome c
oxidase ETC subunit (roGFP-mito). To generate a cytoplasmically-localized roGFP2 vector
(roGFP-cyto), the roGFP-mito vector was digested with Nhel and BamHI to excise the mito-
chondrial signal peptide and the subsequently blunt-ended vector was self-ligated. The coding
region of each vector was then amplified by PCR and cloned directionally into the pLenti6/
V5-TOPO lentiviral vector (Life Technologies, Inc.). After packaging in 293FT cells, WT and
KO MEFs were transduced with each vector and selected in 1 pug/ml of blasticidin. Pooled blas-
ticidin-resistant clones were then further selected by fluorescence-activated cell sorting in
order to purify the brightest population, which were used for all subsequent experiments.

Confocal microscopy and flow cytometry of roGFP-mito- and roGFP-
cyto-targeted cells

WT and KO cells stably expressing roGFP-cyto and roGFP-mito were grown overnight in glass
bottom 6 well plates. Fresh medium lacking or containing 4HT was then added for an addi-
tional 24 hr. Confocal images of live cells were obtained with a confocal laser scanning micro-
scope (LSM710; Zeiss) using a 20x/0.8 M27 Plan-Apochromat objective and a 31 um pinhole
with the following excitation/emission wavelength (Lex/em) settings: Lex/em 405/495-575 for
oxidized roGFP, Aex/em 488/495-575 for reduced roGFP. To quantify changes in the cellular
redox states, analyses were performed by flow cytometry on a BDFACS Aria II SORP using BD
FACSDiva Software and ratios were calculated using Flow]Jo software. Spectra were collected
using a violet laser with 405 nm excitation, emission collected using a 525/50 bandpass filter
and 488 nm excitation was collected using an emission bandpass of 520/50. Control experi-
ments to determine maximal responses to oxidized and reduced environments were performed
by adding H,0, or DTT to final concentrations of 1 mM or 10 mM, respectively for 30 min
prior to flow cytometry. A third sample was treated with H,O, for 30 min followed by the addi-
tion of DTT for an additional 30 min and then analyzed. In all cases, biological triplicates were
assessed for each group and each experiment was repeated at least twice. Results were
expressed as the mean ratio of oxidized: reduced fluorescent roGFP based on changes in emis-
sion spectra.

High performance liquid chromatography-electrospray ionization
tandem mass spectrometry (HPLC-ESI-MS/MS)

Analyses were conducted on a Q Exactive mass spectrometer with on-line separation by Dio-
nex Ultimate 3000 HPLC (both from Thermo Fisher, San Jose, CA). For untargeted quantifica-
tion of polar metabolites, ~10 cells were extracted in 80% methanol at 0°C and then incubated
at -20°C for 1 h. Thermo SIEVE (Thermo Fisher) was used for peak alignment and integration
of MS results to derive the relative abundance of individual metabolites. For ATP analysis,10°
cells were extracted at 0°C in 15% trichloroacetic acid (TCA) containing (["*Cy0,"°N,JATP) as
an internal standard. An aliquot of the clarified sample was then directly injected. Quantifica-
tion was performed by integrating the extracted ion chromatograms of each metabolite, which
were then compared with a standard curve.

For the analysis of polar metabolites, lysates from sub-confluent cell cultures were prepared
as described above, clarified by centrifugation, and the supernatants were placed in autosam-
pler vials. HPLC-ESI-MS/MS was performed on a Q Exactive mass spectrometer (Thermo
Fisher) with on-line separation by Dionex Ultimate 3000 HPLC (Thermo Fisher). HPLC was
performed as described by Paredes et al. [46], with some modification: column, Luna NH,,

3 pm, 2 x 150 mm (Phenomenex, Inc., Torrance, CA); mobile phase A, 5% acetonitrile in water
with 20 mM ammonium acetate and 20 mM ammonium hydroxide, pH 9.45; mobile phase B,
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acetonitrile; flow rate, 300 uL/min; gradient, 85%-1% B over 10 minutes and held at 1% B for
10 minutes. Full scan mass spectra were acquired in the orbitrap using negative ion detection
over a range of m/z 100-800 at 70,000 resolution (m/z 300). Metabolite identification was
based on the metabolite accurate mass (+ 5 ppm), manual interpretation of the MS/MS frag-
ment patterns, and agreement with the HPLC retention time of authentic standards. Thermo
SIEVE was again used to process raw data files in order to quantify metabolites of interest.
Peak alignment and integration were performed and relative abundances of each metabolite
were generated among different samples.

Nucleotides were quantified from cell lysates prepared as described above. Cell pellets were
extracted at 4°C with 15% TCA containing '°C,"”N-ATP as the internal standard, and then neu-
tralized with a mixture of trioctylamine and 1,1,2-trichlorotrifluoroethane. LC-MS analyses
were performed on a Q Exactive mass spectrometer with on-line separation using Dionex Ulti-
mate 3000 HPLC (both from Thermo Fisher). HPLC conditions similar to those detailed in
Zhou et al. [47], with some exceptions: Waters XTerra-MS C18 column (3.5 um, 2.1 x 150mm);
mobile phase A, 5 mM hexylamine and 0.5% diethylamine in water, pH10; mobile phase B, 50%
acetonitrile in water; flow rate, 400 uL/min; gradient, 1%-20% B over 10 minutes and followed
by 20%-30%B over 5 minutes. Full scan mass spectra were acquired in the orbitrap using nega-
tive ion detection over a range of m/z 300-800 at 70,000 resolution (m/z 300). Identification of
metabolites was based on the metabolite accurate mass (+ 5 ppm) and agreement with HPLC
retention times of standards. Quantification was achieved by integrating the extracted ion chro-
matograms of individual metabolites and compared with the appropriate standard curves.

Pyruvate dehydrogenase (PDH), pyruvate kinase (PK) assays, and
acetyl CoA assays

PDH activity was quantified using the PDH Enzyme Activity Microplate Assay Kit according
to the directions provided by the supplier (MitoSciences, Eugene, OR). Triplicate samples were
loaded at 1 mg/well, measured kinetically over 30 min and the rates were determined as
changes in OD (AOD) over time.

PK activity was determined using a modified protocol from Worthington Biochemical Corp
(Lakewood, NJ) in which the conversion of phospho(enol)pyruvate (PEP) to pyruvate by PK is
coupled to the conversion of lactate to pyruvate and the generation of NAD+. 1 plate of semi-
confluent cells was trypsinized and resuspended in 50 mM imidazole HCl buffer, pH 7.6 con-
taining 12 mM KCl and 62 mM MgSO4 at 10° cells/ml. 100 pl of cells were dispensed into indi-
vidual wells of a 96 well plate containing a reaction solution whose final components consisted
of 1.36 mM ADP, 1.36 mM PEP, 0.4 mM NADH and 40-45 U of lactate dehydrogenase in
imidazole buffer to a final volume of 200 pl. NADH conversion to NAD+ was measured at
340 nm for 15 min and the rate was determined by AAbs;4o/min from quadruplicate reactions.

Acetyl CoA was assayed using an Acetyl Coenzyme A assay kit and was performed as rec-
ommended by the supplier (Sigma-Aldrich). Samples were prepared as described by Edmunds
et al. [23]. Triplicate samples were compared to a 1 nmol standard curve using a SpectraMax
M2 fluorescence plate reader and analyzed by Students’s t-test.

Results

AMPK is necessary for Myc-stimulated mitochondrial biogenesis and
function

To investigate the role for AMPK in mediating mitochondrial structure and function in the
basal state and in response to Myc activation, we stably expressed the MycER fusion protein
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[37] in immortalized ampk+/+ (WT) and ampk-/- (KO) MEFs (S1A Fig) [34, 35]. In both
cases, the cells were of identical size and grew at similar rates (not shown). In response to the
estrogen analog 4-hydroxytamoxifen (4HT), both cell types increased their rates of glycolysis
although basal levels were higher in KO cells (Fig 1A and S2A & S2B Fig). Cells had very little
glycolytic reserve when simulated by oligomycin (S2A and S2B Fig), implying that all lines
were operating at near maximal glycolytic capacity. In contrast, KO cells failed to up-regulate
Oxphos in response to MycER activation (Fig 1B and S2C & S2D Fig). Thus, at least in MEFs,
basal levels of glycolysis and Myc’s up-regulation of Oxphos are AMPK-dependent. Very little
oxygen was consumed for non-mitochondrial respiration in any of the cell lines (S2C and S2D
Fig), indicating that no respiration was occurring as a result of side reactions attributable to fac-
tors such as peroxisomal oxidation. The trends of Oxphos and glycolysis recorded for basal res-
piration (Fig 1A and 1B) continued throughout the mitochondrial stress test (S2 Fig).

To determine whether KO cells’ failure to increase Oxphos in response to MycER activation
was indicative of a more global degree of mitochondrial unresponsiveness, we quantified
changes in mitochondrial mass and production of reactive oxygen species (ROS), both of
which are normally increased by Myc over-expression [20, 21, 48]. MycER activation in WT
cells was accompanied by a reproducible 20-30% increase in mitochondrial mass as evidenced
by staining with both MitoTracker Green and Acridine orange 10-nonyl bromide (NAO) as
well as by an increase in ROS [20, 23] (Fig 1C). The likely mitochondrial origin of ROS was
also confirmed by MitoSox staining, which detects superoxide (O,"). The marked attenuation
or absence of these responses in KO cells indicated that, in addition to Oxphos, other Myc-
regulated mitochondrial responses are also AMPK-dependent.

We assessed the bio-energetic consequences of the above differences by measuring ATP lev-
els in WT and KO MEFs during the course of MycER activation and subsequent inactivation.
Basal (day 0) ATP levels in KO MEFs were routinely 30-40% lower than those in WT MEFs
(S1B Fig). In both cases, ATP levels declined within 24 hr. of MycER activation, remained low
throughout the ensuing 4 days and then normalized within 48 hr. of 4HT removal. However,
the degree of ATP depletion in KO MEFs was greater than in WT MEFs, particularly after
accounting for the lower basal levels in the former cells (Fig 1D and S1B Fig). Concurrent
immuno-blotting performed on WT cells showed an inverse relationship between AMPK acti-
vation and ATP levels (Fig 1E) as well as the persistence of AMPK activation for at least 4 addi-
tional days beyond the time at which ATP levels had returned to pre-treatment levels. This
suggested that factors other than adenosine nucleotide levels might also be contributing to
AMPK activation. Because ROS can also activate AMPK [49-52], we repeated the above exper-
iment in the presence of the anti-oxidant N-acetylcysteine (NAC) at a concentration that
reduced ROS in 4HT treated cells (Fig 1F). Under these conditions, AMPK phosphorylation
was markedly attenuated (Fig 1G). AMPK’s activation beyond the point of ATP normalization
also correlated with the persistence of high ROS following 4HT removal (Fig 1H). Thus, in the
face of Myc deregulation in WT cells, the prolonged activation of AMPK is likely to be a conse-
quence of both ATP depletion and the persistence of ROS.

ETC structure and function are highly Myc-responsive in myc-/- rat fibroblasts [20]. To
determine whether these properties were also AMPK-dependent in MEFs, we used blue native
gel electrophoresis (BNGE) to evaluate the integrity of each of the 4 multi-protein components
of the ETC (Complexes I-IV) along with the monomeric and dimeric forms of Complex V
(ATP synthase) termed V,, and Vg, respectively. BNGE can also resolve ETC “supercom-
plexes” (SCs), which are comprised primarily of higher order associations of Complexes I, III
and IV in varying stoichiometries and are believed to promote more efficient ETC function
[53, 54]. Individual BNGE components of Complexes I-V from WT and KO MEFs were simi-
lar in appearance and did not change appreciably following Myc induction (Fig 2A4). In
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Fig 2. Structural and functional properties of ETCs complexes in WT and KO cells. (4) Analysis of ETC complexes by non-denaturing BNGE.
Mitochondria were purified from triplicate cultures of the indicated cell types and resolved by BNGE. At least 5 individual supercomplexes (SC,..) could be
resolved [20]. Note that Complex V (ATP synthase) is composed of both monomers (V,,) and dimers (Vq). (B) In situ enzymatic assays for Complex | (NADH
ubiquinone oxidoreductase) plus supercomplexes, Complex V., and V4 (ATPase), Complex Ill (decylubiquinol cytochrome c oxidoreductase) and Complex
IV (Cytochrome c oxidase). Each assay was performed in triplicate on at least 2 occasions, with representative results being shown here (also see S2 Fig).
(C) Complex Il (succinate dehydrogenase) activity was quantified on lysates prepared from purified mitochondria as its in situ assessment was found to be
unreliable. The results shown in the histogram represent the mean of triplicate enzymatic determinations + 1 SEM. See S3 Fig for quantification of all
enzymatic measurements.

doi:10.1371/journal.pone.0134049.g002

contrast, at least 5 SCs (SC,-SC,) and Complex V4, readily seen in WT MEFs, were reduced or
absent in KO cells (Fig 2A).

Activity assays for individual complexes better emphasized the differences between WT and
KO MEFs both prior to and following MycER activation (Fig 2B and 2C & S3 Fig). For exam-
ple, neither Complex I nor Complex V,,, activity was significantly altered under either condi-
tion whereas Complex V4 was virtually absent in KO cells regardless of MycER status. In
contrast, Complex IIT activity was decreased in KO cells regardless of MycER status whereas
Complex IV decreased only in response to MycER activation. Consistent differences were also
observed in the enzymatic activities of several SC components (Fig 2B and S3 Fig). Specifically,
SC, activity was lower in KO cells, irrespective of Myc’s activation status, whereas changes in
the remaining SCs were detected only in KO cells following MycER activation (S3 Fig). Com-
plex IT activity was slightly higher in KO cells but increased significantly following MycER

PLOS ONE | DOI:10.1371/journal.pone.0134049 July 31,2015 11/29



@‘PLOS | ONE

c-Myc and AMPK Cooperatively Control Cellular Energy Levels

A

= WT
WT+ KO+ 3 WT+Myc
Category Symbol Myc Myo 257 mm KO
Alt1 [ KO+ Myc :ﬂ‘.
Amino acid GOT1 > 209 % P dkk
synthesis Ser-HMT > Hkk f ' o
That Q 154 —
FBP1 < L
Glucont_eo- G6P o il
genesis PEPCK E .
PC & —
PdhE1a 051
Pyruvate PDK1
Z)I/nthe5|_sl PDP2 0.04 || L
ycolysis o SDH MDH IDH3 IDH(1+2)  IDH(1+2+3)
PKM2 C symbot | wr WT* Ko+
aKGDH (OGDH) i Myc Myc
aKGDH (DLD) PPARyY
oKGDH (DLST) PPARa
FH1 PGC1a
G3PDH (cyto) POLRMT
G3PDH (mito) Mterfd1 (Mterf3)
IDH1 (cyto) b Gg;
TCAcycle IDH2 (m|to)_ Mterfd2 (Mterf4)
IDH3 (cyto+mito SIRT3
MDH (cyto) TEAM
MDH (mito) PPARB
SDHa ERRa
SDHb NFE2L2 (NRF2)
SDHc ucpP2
SDHd PRC
oth Cit Synth TFB2M
er ACLY | NRF1
- - NSUN4
Relative Expression Level Mterf1
Il ERRB

0.1

Fig 3. Transcriptional and enzymatic differences between WT and KO MEFs. (A) Transcriptional profiling. Real-time gRT-PCR was performed in

1

2

*

p<0.05
*%*
L
<0.001
T p
*kk
—
*kk
—
o KGDH G3PDH

triplicate for each of the indicated transcripts. The levels of each transcript determined in WT cells were arbitrarily set to 1 as indicated by the white boxes.
See S4 Fig for the actual numerical values and p values for individual determinations. (B) Functional assays for oxidoreductases. Each bar represents the

mean of biological triplicate determinations + 1 SEM performed on purified mitochondrial lysates. Note that the results for SDH are the same as those

presented in Fig 2C. (C) gRT-PCR profiling of transcripts involved in the regulation of mitochondrial DNA replication and maintenance, transcription and
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doi:10.1371/journal.pone.0134049.g003

activation whereas no change was evident in WT cells (Fig 2C). Thus, while MycER activation

had little to no discernible effect on the ETC enzymatic activity of WT cells, it had a pro-

nounced effect in KO cells. This provided further evidence that AMPK is needed to maintain
normal mitochondrial function both in the basal state and in response to Myc deregulation.

Transcriptional and enzymatic profiling reveals co-operativity between
Myc and AMPK in modulating metabolic function

Given AMPK’s influence on both basal and Myc-dependent mitochondrial functions, we per-
formed a small-scale gene expression survey of WT and KO cells. We examined 30 transcripts
whose encoded proteins comprise key elements of glycolysis, the TCA cycle and other path-
ways relevant to energy regulation and mitochondrial function. Significant differences were
noted between WT and KO MEFs with 19 transcripts being relatively under-expressed in the

latter cells, 3 over-expressed and 8 unchanged (Fig 3A and S4 Fig). Following MycER
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activation, WT cells showed significant up-regulation of 19 transcripts and down-regulation
of 9, in a pattern that generally correlated with the increased rates of glycolysis and Oxphos
(Fig 1A and 1B). In contrast, the transcriptional response to MycER activation in KO cells was
markedly different with only 12 transcripts demonstrating any significant change (Fisher’s
Exact test, P < 0.0001). Moreover, 19 of the 28 Myc-responsive transcripts in WT cells were
expressed discordantly in KO cells. Particularly noteworthy examples included transcripts for
glucose 6-phophatase (G6P); the M2 isoform of pyruvate kinase (PKM2); isocitrate dehydroge-
nase 2 (IDH2) and each of the 4 subunits of succinate dehydrogenase (SDHa-d), which com-
prise Complex II of the ETC. Collectively, these studies indicate that AMPK functions to
coordinate the transcriptional activity of the majority of transcripts examined herein both in
their basal state and in response to MycER activation.

The actual enzymatic activities of several mitochondrial oxidoreductases encoded by the
above transcripts were also discordant (Fig 3B). For example, basal activity of NADH-depen-
dent isocitrate dehydrogenase (IDH) was higher in WT cells and increased in response to Myc
activation whereas it declined in KO cells. A different pattern was observed in the case of glyc-
erol 3-phosphate dehydrogenase (G3PDH), which was lower in basal-state KO cells than in
WT cells; it also failed to respond to Myc over-expression in contrast to WT cells where its
activity declined. That not all enzymatic activities were altered as a consequence of the loss of
AMPK was evidenced by malate dehydrogenase (MDH) levels, which were identical in basal-
state WT and KO cells and decreased commensurately in response to Myc over-expression. As
is commonly the case for many transcripts and their encoded proteins and for individual sub-
units of multi-protein complexes [55-61] the measured enzyme activities did not closely corre-
late with the relevant transcript levels shown in Fig 3A. Collectively, these findings are
consistent with those depicted in Fig 2 and S3 Fig and support the notion that some TCA cycle
enzymes rely upon AMPK either for their basal function or their proper response to Myc over-
expression.

The above studies suggested that both AMPK and Myc might be controlling more proximal
determinants of Oxphos. We therefore conducted a qRT-PCR-based survey for 20 known reg-
ulators of mitochondrial structure and function including those involved in DNA replication
and transcriptional maintenance [62-65]. 13 of the tested transcripts were found to be differen-
tially expressed between WT and KO cells, with 10 up-regulated in KO cells and 3 down-
regulated (Fig 3C and S5 Fig). Following MycER activation, significant additional differences
were noted. For example, in contrast to the up-regulation of 6 transcripts and the down regula-
tion of 2 transcripts in WT cells in response to MycER activation, KO cells responded anoma-
lously, with only 3 transcripts up-regulated and 9 down-regulated. Within these subsets of
Myc-responsive transcripts, the largest differences in WT cells included a 2.4-fold increase in
NSUN4 and a 4.6-fold increase in UCP2 whereas in KO cells, Mterfl and UCP2 transcripts
were reduced by 3.4- and 3.9-fold, respectively. These results indicate that AMPK and Myc
cooperate to ensure the proper coordination of numerous factors that supervise mitochondrial-
-specific DNA replication and transcription.

Differences in mitochondrial proteomes of WT and KO MEFs

Aiming to identify changes in the relative abundance of mitochondrial proteins between WT
and KO MEFS both prior to and in response to de-regulated Myc over-expression, we applied
a differential mass spectrometry (dAMS) workflow to a set of enriched mitochondrial samples
isolated from WT and KO cells either prior to or following an 8 day period of Myc activation
[66, 67]. We reliably identified and quantified the relative abundance of 345 mitochondrial
proteins as annotated in the DAVID Bioinformatic Database and/or the Mouse MitoCarta
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Inventory of Mammalian Mitochondrial Genes (S3 Table). High-resolution liquid-chromatog-
raphy Fourier transformed mass spectrometry was used to detect these proteins by comparing
the relative intensity of individual high-resolution isotope distributions across each of the ana-
lyzed samples (S6 Fig). We observed a 24% higher average intensity of all mitochondrial pep-
tides in KO samples both with and without Myc over-expression 2-way analysis of variance
(ANOVA) p value of 0.002] compared to WT samples, despite the overall abundance of non-
mitochondrial proteins being otherwise identical. This may be caused by a slightly higher
purity of mitochondria in the former samples. It could also be due to a slightly greater overall
mitochondrial mass in KO cells, although this was not observed by staining with NAO or Mito-
Tracker dyes (Fig 1C).

Using a conservative q-value cutoff of 0.05, we determined the abundance of 28 proteins to
be significantly different between WT and KO MEFs prior to MycER activation with 22 being
more abundant in WT cells and 6 more abundant in KO cells (Fig 44 and 4C, red circle). Fol-
lowing 8 days of MycER activation, 31 mitochondrial proteins were altered in WT cells, with
17 up-regulated and 14 down-regulated (Fig 4B and 4C, green circle). 8 of these (26%) were
also members of the group depicted in Fig 4A that were thus also AMPK-responsive (Fig 4C,
yellow). In contrast, only 6 proteins were found to be Myc-responsive in KO MEFES (Fig 4D
and 4G, blue circle). Of these, Tamm41, Aldh112, and Clic4 were also influenced by Myc in WT
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Fig 4. Mitochondrial proteomic profiling. LC-MS/MS reliably identified and quantified 345 proteins with mitochondrial localization from representative
peptides in each of the 4 experimental groups (S3 Table). (A) Differential protein expression between WT and KO MEFs prior to MycER activation. (B)
Differential protein expression in WT MEFs prior to or following an 8 day period of MycER activation. (C) Venn diagram of protein overlap between WT and
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doi:10.1371/journal.pone.0134049.g004

PLOS ONE | DOI:10.1371/journal.pone.0134049 July 31,2015

14/29



o e
@ ' PLOS ‘ ONE c-Myc and AMPK Cooperatively Control Cellular Energy Levels

cells (Fig 4C, cyan). The response of 8 proteins to Myc over-expression was also found to be
discordant and having a significant “interaction effect” (Fig 4E), with 5 of them (Prdx4, Sqrdl,
Slcl6al, Clic4 and Ptrf) changing their abundance in opposite directions in WT vs. KO cells,
and the other 3 (Cyb5a, Echsl, and Slc25a13) only being affected by Myc over-expression in
WT cells. Together, these findings indicate that approximately 15% of evaluable mitochondrial
proteins (i.e. 51 of 345) can be conservatively described as being regulated by AMPK and/or
Myc and that much of the long-term mitochondrial proteomic adaptation to Myc deregulation
is AMPK-dependent.

Differential redox states of WT and KO cells

The differential activities of the ETC, mitochondrial dehydrogenases and the glycerol phos-
phate shunt (represented by G3PDH), as well as altered ROS production, might be expected to
exert distinct effects on the redox states of WT and KO cells [68-71]. We tested this directly by
stably targeting a redox-sensitive form of green fluorescent protein (roGFP2) [44, 72] to either
the cytoplasm or mitochondrial matrix of WT or KO cells (Fig 5A). In control experiments,
exposure of roGFP-expressing WT or KO cells to H,O, markedly increased the ratio of oxi-
dized:reduced roGFP, irrespective of its subcellular location (i.e. roGFP-cyto versus roGFP-
mito) whereas treatment of the same cells with DTT alone or with H,O, followed by DTT
shifted the ratio to that of a more reduced state (Fig 5B and 5C and data not shown). The
responses of WT and KO cells to these extreme stresses were indistinguishable (not shown)
and defined the limits within which supra-physiologic changes in the redox state can occur.
Quantification of oxidized and reduced roGFP2 in the mitochondrial and cytoplasm of WT
and KO cells prior to or following MycER activation for 24 hr. showed both compartments to
be relatively reduced (Fig 5C) and in agreement with previous findings in other cell types [44,
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Fig 5. Redox states in cytoplasmic and mitochondrial compartments of WT and KO MEFs. (4) Live cell confocal images of WT MEFs stably expressing
roGFP-mito and roGFP-cyto demonstrating specific mitochondrial and cytoplasmic localization, respectively. Nuclear counter-staining was with Hoechst
3334. (B) Live cell confocal microscopy of KO MEFs expressing roGFP-mito. Cells were untreated or exposed to 1 mM H,O, or 10 mM DTT for 30 min prior to
obtaining images. (C) Quantification of redox differences between WT and KO MEFs. Monolayer cultures were grown for 24 hr. in the absence or presence of
4HT. Flow cytometry was then used to quantify the mean fluorescence ratios of oxidized and reduced roGFP. Each bar represents the average + 1 SEM of
mean fluorescence intensities obtained from 3 independent plates of cells. * = P<0.001. Similar results were independently obtained in 2 repeat experiments
as well as in 2 experiments performed following a longer period of MycER activation (7 days, not shown). The 4 bars on the right represent control
experiments in which WT cells expressing roGFP-cyto were exposed under the conditions described in (B). These values define the maximal possible degree
of oxidation or reduction capable of being achieved under the most extreme conditions.

doi:10.1371/journal.pone.0134049.g005
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45,73, 74] However, in the basal state, KO cells showed a 28% greater degree of cytoplasmic
oxidation (p<0.001) and a 6% greater degree of mitochondrial oxidation than WT cells
(p<0.001). MycER activation in WT cells led to a further 9% increase in cytoplasmic oxidation
(p =0.0004) and an 8% increase in mitochondrial reduction (p<0.0001). Finally, although an
identical 9% increase in oxidation occurred in the cytoplasm of KO cells following MycER acti-
vation (p = 0.002), no change occurred in their mitochondrial redox state (p = 0.2). These
results are consistent with those of our preceding studies indicating that AMPK and Myc coop-
erate to promote mitochondrial biogenesis and function. They further indicate that mitochon-
drial structural and functional alterations mediated by Myc de-regulation are associated with
significant differences in the redox state of the mitochondrial matrix.

AMPK influences Myc-mediated re-programming of steady-state
metabolites

We used high performance liquid chromatography-electrospray ionization tandem mass spec-
trometry (HPLC-ESI-MS/MS) to quantify steady state levels of a select group of metabolites in
WT and KO cells prior to or following MycER activation. The metabolites were chosen to
reflect relevant glycolytic and TCA cycle intermediates, anabolic substrates and determinants
of cellular redox and energy status. Significant differences were seen between WT and KO cells
prior to MycER activation with the most striking being the generally lower levels of glycolytic
substrates and higher levels of TCA cycle substrates in KO cells (Fig 6A). This suggested that
the higher glycolytic rate of KO cells (Fig 1A) might be responsible for depleting some of the
intermediates in this pathway whereas defects in the ETC might allow a buildup of TCA inter-
mediates. Higher levels of nucleosides and deoxynucleosides in KO cells were consistent with
the previously report of AMPK being a negative regulator of the Warburg effect [75], which
could also explain the relative depletion of glycolytic substrates if they were being shunted into
Warburg-related pathways. The modestly higher levels of AMP and ADP in WT cells in
response to MycER activation, together with reduced ATP levels (Fig 1D and S1B Fig), is likely
sufficient to account for any activation of AMPK that is not otherwise attributable to ROS (Fig
1E). In contrast, the even higher levels of AMP in KO cells, both prior to and following MycER
activation, can likely be explained by the inability to normalize ATP and AMP in AMPK’s
absence.

MycER activation was also associated with other distinct metabolite re-distribution patterns.
Most notably WT cells showed an overall reduction of TCA cycle intermediates that most
likely reflected their rapid consumption in response to increased mitochondrial mass and met-
abolic activity (Fig 1B and 1C) and/or a reduction of acetyl CoA entering the TCA pathway,
perhaps as a result of the Warburg effect as noted above. In contrast, changes in TCA cycle
intermediate levels were less pronounced in KO cells following MycER activation, which was
again consistent with their generalized mitochondrial unresponsiveness (Fig 1A and 1C).
Despite differences in the basal glycolytic intermediate content of WT and KO cells, the redis-
tribution of these molecules was somewhat similar in response to MycER activation, with the
exception of fructose-1,6-bisphospate. For example, both cell types showed significant
increases in intracellular glucose content, likely reflecting the known propensity for Myc to
increase glucose transport [5, 16]. Phosphoenolpyruvate (PEP) was also markedly increased in
both cell lines (Fig 6A). Other notable differences included a generalized decrease in the free
amino acid content of WT cells in contrast to either no change or an increase in KO cells. Both
cell types also up-regulated nucleoside and deoxynucleoside pools in response to MycER acti-
vation. Finally, and consistent with their more highly oxidized cytoplasm (Fig 5C), KO cells
contained higher levels of glutathione disulfide (GSSG), which is the oxidized form of
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Fig 6. Metabolite profiling of WT and KO MEFs. (A) HPLC-ESI-MS/MS quantification of select metabolites in MEFs prior to or following MycER activation
for 8 days. Each box represents the average of biological quadruplicate samples. Levels of each depicted metabolite were arbitrarily setto 1in WT cells
(white boxes). (B) Enzymatic and metabolite feedback control of PDH and PK. Note the control of the former by the stimulatory phosphatase PDP2 and the
inhibitory kinase PDK1 as well as additional indirect and direct control of PDH and PK, respectively by ATP and ADP. PDH and PK enzyme activities (C and
D, respectively) and acetyl CoA assays (E) were performed on whole cell extracts as previously described [23].

doi:10.1371/journal.pone.0134049.9006

glutathione (GSH) [76]. Moreover, both cell types increased their GSSG:GSH ratio in response
to Myc activation in a manner that closely mirrored the accompanying changes in cytoplasmic
roGFP fluorescence (Fig 5C).

To investigate potential mechanism(s) underlying some of the differences in metabolite dis-
tribution between WT and KO cells, we next examined pyruvate dehydrogenase (PDH) and
pyruvate kinase (PK). These enzymes are notable for catalyzing 2 of the 3 irreversible steps in
glycolysis (AG = -7.5kcal each) and are subject to complex and multi-factorial positive and neg-
ative regulation (Fig 6B) [77-79]. For example, in addition to modifications such as acetylation
and oxidation and feedback regulation by adenosine nucleotides, PDH is also tightly controlled
post-translationally by the inhibitory Ser/Thr kinase pyruvate dehydrogenase 1 (PDK1) and
the stimulatory phosphatase pyruvate dehydrogenase phosphatase 2 (PDP2) both of which
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regulate the level of Ser,9; phosphorylation of the PDH E1 subunit (PDHE) [80, 81]. PK activ-
ity is typically regulated by changes in the abundance of its PKM1 and PKM2 isoforms, with
the expression of the latter tending to correlate with high rates of proliferation [77, 78]. This,
together with the significantly higher K, of PKM2 is believed to account for the accumulation
of substrates upstream of PEP that drive the Warburg effect and limit the availability of
glycolytically-derived acetyl CoA for usage by the TCA cycle [78, 82]. Additionally, both PK
isoforms are also subject to multiple and non-mutually exclusive types of post-translational
modification; allosteric feedback by metabolites such as ATP, ADP and fructose-1,6,-bi-
phosphate; and changes in enzyme dimer: tetramer ratios [83, 84].

Immunoblotting of WT and KO cell extracts both prior to and after MycER activation
showed minimal changes in protein levels of PDHE, PKM1 and PKM2 (S7 Fig). A reduced
amount of pPDHEI was observed in KO cells although it did not change appreciably in
response to MycER activation. Decreases in PDK1 and increases in PDP2 occurred in WT and
KO cells following MycER activation.

Changes in the enzymatic activities of PDH and PK were more revealing. As seen in Fig 6C,
PDH activity was significantly higher in KO cells but only in the basal state. PK activity was
also higher in KO cells, and increased even further in in KO cells in response to MycER activa-
tion, but decreased in WT cells after MycER activation (Fig 6D). Together, these results are
consistent with the idea that Myc and AMPK cooperatively regulate the switch between glycol-
ysis and Oxphos by coordinating the activities of two critical and irreversible glycolytic steps
that are important for determining the availability of acetyl CoA and its use by the TCA cycle.
Interestingly, despite the above-noted differences in PDH and PK activities between WT and
KO cells, the absolute abundance of acetyl CoA, either in the basal state or in response to
MycER activation was quite similar in WT and KO cells (Fig 6E).

Discussion
Mitochondrial responses to Myc over-expression are AMPK-dependent

Considerable evidence supports the idea that Myc and AMPK influence similar cellular and
biochemical functions although via different pathways and often for different purposes (Fig 7).
For example, both promote glucose uptake, glycolysis, mitochondrial biogenesis and Oxphos
[5,20,21,27-29, 32, 33]. In response to Myc over-expression, these activities are believed to
provide the crucial anabolic precursors and ATP needed to support the highly energy-
consuming process of biomass accumulation [16, 19]. In fact, much of the increased glycolytic
flux mediated by Myc over-expression is currently viewed as being directed towards promoting
the Warburg effect and anabolism while being diverted away from mitochondrial consumption
(Fig 7 and [5, 18, 85]). Similarly, TCA cycle intermediates, some of which originate from extra-
glycolytic sources such as glutaminolysis and fatty acid $-oxidation, may also be directed into
non-mitochondrial biosynthetic pathways in a Myc-dependent manner [5, 22, 23]. Moreover,
Myc’s enhancement of ETC activity increases ATP production and its rate of turnover to sup-
port anabolism and proliferation [20]. In contrast, AMPK activation occurs in response to crit-
ical energy shortages, which suppress energy-consuming processes while activating energy-
generating ones [27]. Thus AMPK activation opposes the Warburg effect thereby reducing the
flow of glycolytic substrates into anabolic pathways and maximizing their eventual conversion
into acetyl CoA for utilization by the TCA cycle [27, 75]. The cross talk between Myc and
AMPK is readily apparent in myc-/- fibroblasts, which constitutively express high levels of
phosphorylated AMPK as a consequence of their being unable to restore their ATP deficit by
up-regulating glycolysis or Oxphos [23].
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Fig 7. Model depicting the relationship between Myc and AMPK (yellow boxes) demonstrating their
influence over common metabolic functions, although sometimes in opposite ways and for different
purposes. Communication between Myc and AMPK may occur via at least 2 distinct and semi-autonomous
routes with different initiating events and consequences. The first involves the activation of AMPK via Myc-
mediated depletion of cellular ATP stores arising as a consequence of energy-consuming anabolic
processes such as proliferation (-ATP, blue box) (Fig 1D and [23]). The second involves AMPK activation via
ROS generated from increases in mitochondrial metabolism or cytoplasmic signaling pathways. It is notable
that, in the first case, AMPK activation is dependent upon ATP depletion whereas, in the second case, AMPK
activation occurs regardless of ATP status. AMPK activation via ROS can thus anticipate impending ATP
depletion and prevent or limit this by down-regulating ATP dependent processes. In the face of a pre-existing
ATP deficit, other functions of AMPK such as the promotion of proliferative arrest might tend to override the
effects of Myc over-expression. In contrast, activation of AMPK by ROS might reinforce an already highly
proliferative and ATP-replete state by promoting pro-anabolic functions such as glycolysis and Oxphos
without necessarily compromising proliferation.

doi:10.1371/journal.pone.0134049.g007

The failure of KO cells to increase Oxphos in response to MycER activation, while retaining
a relatively normal glycolytic response (Fig 1A and 1B), appears to be the result of a more gen-
eralized mitochondrial dysfunction that includes an inability to accrete mass, to generate ROS,
to maintain normal levels of TCA cycle intermediates and to properly regulate ETC function
(Figs 1C, 2, 3 and S3 fig). Perhaps not surprisingly, these abnormalities were collectively associ-
ated with lower levels of ATP and higher levels of AMP, both in the basal state and in response
to MycER activation (Fig 1D and 6A, & S1B Fig). The increased basal glycolytic rate of KO cells
(Fig 1A), may therefore only reflect a partially effective compensatory mechanism aimed at
correcting their relative energy deficit (Fig 1D and S1B Fig). Because Myc’s promotion of the
pro-anabolic and proliferative states is tightly coupled to increased mitochondrial mass and
function [20], it seems possible that the previously reported transformation-resistance of
AMPK-deficient cells is a consequence of their ATP deficit and/or their mitochondrial unre-
sponsiveness, despite their ability to up-regulate aerobic glycolysis (Fig 1A) [36, 75, 86, 87].
This idea has particular appeal given that numerous proliferative signaling pathways converge
upon Myc whose uninterrupted expression is critical for maintaining tumor cell proliferation
in vivo [88-90]. Thus, the seemingly paradoxical finding that AMPK suppression enhances
proliferation yet confers transformation-resistance [36, 86, 87] can perhaps best be explained
by postulating that the relative importance of AMPK on metabolism and proliferation may
vary depending on Myc’s level of expression and/or deregulation. Over-expression of Myc
might therefore cooperate with AMPK’s tendency to enhance glycolysis and Oxphos while
simultaneously overriding its suppression of proliferation and the Warburg effect. This could
be particularly useful under the most highly proliferative conditions where high anabolic
demands could compromise and perhaps outstrip ATP stores (Fig 1E). AMPK activation
might then cooperate with Myc to enhance both glycolysis and Oxphos without exerting dele-
terious effects on proliferation and its reliance on the Warburg effect. The relative resistance of
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AMPK-depleted cells to transformation could therefore reflect the cooperative nature of
AMPK and Myc on these metabolic pathways.

Our transcriptional, proteomic and functional profiling underscores the significant differ-
ences that distinguish WT and KO cells both in the basal state and in response to Myc de-
regulation (Figs 3 and 4). Indeed, we note that more genes serving as regulators of mitochon-
drial-specific functions such as DNA replication, maintenance of genomic integrity and tran-
scription were found to be AMPK-responsive than Myc-responsive (13 of 20 vs. 8 of 20) (Fig
3C). It seems plausible that the widespread abnormalities in mitochondrial protein abundance
and function described here are the ultimate consequence of this aberrant transcriptional regu-
lation. Both the AMPK al and o2 subunits have been noted to localize to the nucleus as well as
to the cytoplasm and a direct role for AMPK in transcriptional regulation has been suggested
[91-93]. Moreover, a number of transcription factors, including PGC-1a and the carbohydrate
response element binding protein, chREBP, which cooperates with Myc to regulate certain glu-
cose-responsive genes [94] have been identified as putative AMPK targets [95-98]. Thus it is
feasible that AMPK also alters many of the genes described here indirectly by virtue of its
effects on key transcription factors many if not all of which are also direct Myc targets. Indeed,
we note that several of the mitochondrial-related transcripts studied in Fig 3C such as PPARy,
POLRMT, SIRT3, and UCP2 are completely discordant with respect to their Myc responsive-
ness in WT and KO cells. The unresponsiveness of KO cell mitochondria appears to reflect a
generalized loss of normal coordination among these various factors that is apparent both in
their basal state and in response to Myc de-regulation. Obvious targets for AMPK-mediated
post-translational modification include any of the large number of members that comprise the
chromatin-modifying and transcriptional-enhancing protein complex that assembles in
response to DNA binding by Myc [99, 100].

Co-operativity between Myc and AMPK in determining cellular redox
state

Maintaining a reduced intracellular environment is believed to protect against excessive oxida-
tion of free thiols and other groups, particularly those residing within the catalytic domains of
critical enzymes [44]. Our finding that both cytoplasmic and mitochondrial compartments,
particularly the former, were more oxidized in KO cells under basal conditions supports the
idea that redox regulation is an important, although likely indirect, AMPK function. The addi-
tional observation that cytoplasmic oxidation increased equivalently in WT and KO cells in
response to MycER activation suggests that AMPK is less important in this compartment for
regulating this balance following sudden oxidative stress. That WT mitochondria became more
reduced following MycER activation further indicates that the cytoplasmic and mitochondrial
compartments are under distinct forms of redox regulation. Multiple, non-mutually exclusive
mechanisms could explain these findings including differences in the levels of various factors
that maintain the reduced state such as thioredoxins, manganese superoxide dismutase, perox-
iredoxins and the NAD+/NADH ratio [101-103]. The failure of mitochondria to significantly
alter their redox state following MycER activation likely reflects their general unresponsiveness
as discussed above.

The inter-membrane space is one source of ROS, which arise primarily as a consequence of
electron leakage across Complexes I and III of the ETC [104, 105]. Myc-mediated enhance-
ment of Oxphos may increase the absolute amount of this leakage without compromising ETC
efficiency or integrity. The mitochondrial matrix is a second source of ROS, which originate
from qualitative defects in ETC function as occurs in patients with respiratory chain mutations
[105-107]. The compartmentalization of ROS from these two sources might well have different
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effects on the redox state, with the former source tending to contribute more to cytoplasmic
oxidation and the latter to mitochondrial. MycER activation likely favors the generation of
ROS via the first mechanism, and such ROS might be less able to oxidize roGFP residing in the
matrix.

Changes in PK and PDH as a potential mechanism for metabolite
differences between WT and KO MEFs

In response to MycER activation, WT cells underwent a redistribution of metabolic substrates
that included the accumulation of selective glycolytic intermediates and a depletion of TCA
cycle intermediates (Fig 6A). One explanation for these findings is an increased reliance on the
Warburg effect, which is often accompanied by a shift from the M1 to the M2 PK isoform. The
latter possesses a lower affinity for PEP thus slowing its conversion to pyruvate and allowing
more time for the accumulation of upstream substrates and their diversion into anabolic path-
ways [16, 77,79, 82, 83]. Although we did not detect significant changes in the PKM1:PKM2
ratio upon MycER activation in WT cells (S7 Fig), we did observe a decrease in total PK activity
(Fig 6D). This by itself could explain the accumulation of substrates upstream of PEP thereby
limiting the conversion of pyruvate to acetyl CoA. It could also account for the observed deple-
tion of TCA cycle intermediates in response to the Myc-mediated increase in Oxphos (Fig 6A).
A second possibility is that the enhanced glycolysis mediated by MycER activation in WT cells
supplies sufficient levels of substrates for both the Warburg effect and Oxphos. This could
explain the increased production of lactate and accompanying extracellular acidification in
response to MycER (Fig 1A). Taken together, increased glycolysis, an overall buildup of inter-
mediates due to reduced PK, combined with increased mitochondrial activity and a depletion
of TCA cycle substrates, could explain many, if not all, of the metabolite shifts detected in WT
cells in response to Myc activation. However, this change is not without its energetic costs as
evidenced by the accompanying chronic ATP depletion, higher levels of AMP and AMPK-acti-
vation (Figs 1D, 1E and 6A).

KO cells in their basal state were relatively depleted of glycolytic substrates and oversupplied
with TCA cycle intermediates compared to WT cells (Fig 6A). Although the activities of PK
and PDH were substantially different between these 2 cell lines (Fig 6C and 6D), the fact that
levels of PEP, pyruvate and AcCoA were actually quite similar (Fig 6A and 6E) argues against
the idea that significant changes in any of these could account for the differential levels and dis-
tribution of downstream TCA cycle substrates. Rather, the accumulation of TCA cycle inter-
mediates most likely reflects the consequences of the loss of AMPK in these cells as manifested
by their inability to properly coordinate the mitochondrial response. The ultimate result is
even lower levels of ATP and higher levels of AMP in KO cells both in the resting state and in
response to MycER activation (Figs 1D and 6A & S1B Fig).

Cross-talk between Myc and AMPK. The wide-ranging differences between WT and KO
cells in response to MycER activation reported here demonstrate that Myc and AMPK likely
engage in a complex cross-talk, the presumed purpose of which is to correctly balance anabolic
and proliferative needs with cellular energy levels (Fig 7). The need for maintaining this bal-
ance is most dramatically illustrated by the rapid and dramatic reduction of ATP levels that fol-
low MycER activation in WT cells and by the even steeper decline in KO cells (Fig 1D and S1B
Fig). This ATP-mediated cross-talk between AMPK and Myc has been previously demon-
strated in myc-/- rat fibroblasts in which AMPK is constitutively activated as a result of the
inability to maintain normal levels of ATP due to the overall failure of Myc-dependent glycoly-
sis and Oxphos [20, 23]. Thus, balancing ATP production and AMPK activation and with ana-
bolic demands is a process that occurs in response to both Myc over- and under-expression.
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Other potential mediators of the cross-talk between Myc and AMPK, that are largely inde-
pendent of but linked to ATP levels, are ROS which, in the examples provided here, contribute
extensively to AMPK activation (Fig 1G). ROS are well-known second messengers that are rap-
idly generated in response to many different growth stimuli and the large increase in ETC func-
tion that accompanies Myc over-expression [20, 48, 108, 109]. Their ability to maintain AMPK
in an active state, even beyond the point at which ATP levels have normalized (Fig 1E-1H) sug-
gests that ROS might serve to limit growth factor-mediated proliferation at a point before
which ATP levels are compromised and might also serve to more rapidly restore ATP levels to
normal following a proliferative signal.

In retrospect, a close relationship between Myc and AMPK might have been anticipated
given their well-known regulation of a variety of similar processes as noted above. A similar
relationship has also been previously suggested by Liu et al. [110] who showed that ARKS, an
upstream regulator of AMPK, could also affect several cellular functions that are relevant to
Myec. These included the ability of ARKS5 to protect against Myc-mediated apoptosis, to
increase oxygen consumption, to negatively regulate cell size and to promote cell cycle progres-
sion. However, many of the consequence of ARK5 suppression in cancer cells were not
observed in the current study. Perhaps most importantly, and unlike the case with AMPK
described here, the depletion of ARKS5 in transformed cells had little influence on the expres-
sion of Myc target genes [110]. Taken together, these observations suggest that, while ARK5
and AMPK operate within the same pathway, their communication with Myc may occur by
distinct mechanisms, may be cell-type specific and may serve distinct purposes.

Supporting Information

S1 Fig. (A) Immunoblots of endogenous c-Myc and MycER in AMPK WT and KO MEFs
before and after MycER transduction and B-actin loading control. Both proteins were detected
with an anti-Myc antibody. (B) Baseline ATP levels in WT and KO cells. The results represent
the data obtained in Fig 1D plotted as absolute rather than relative ATP levels. Several repeat
experiments showed ATP levels in KO cells to be reproducibly lower than WT cells by 30-40%.
(TIF)

S2 Fig. Seahorse Flux Analysis of Extracellular Acidification Rate (ECAR) and Oxygen
Consumption Rate (OCR). Cells were plated and analyzed as described in Materials and
Methods. (A) ECAR normalized to cell number at conclusion of the experiment, which
includes the addition of 1 uM oligomycin (oligo, an inhibitor of Complex V [ATP synthase]),
0.3 uM carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP, an uncoupling agent),
100 mM 2-Deoxy-D-glucose (2-DG, an inhibitor of glycolysis), and 1 uM rotenone (rot, a com-
plex I inhibitor). Note that the addition of oligomycin is associated with a continued higher
level of ECAR by both WT+Myc and KO+Myec cells, which is consistent with their overall rates
of glycolysis being enhanced following MycER activation (B) Representation of basal respira-
tion, glycolytic capacity, non-glycolytic acidification, and glycolytic reserve (differences in res-
piration after addition of oligomycin). (C) OCR normalized to cellular number at the
conclusion of the experiment, including the same set of injections described in (A). (D) Repre-
sentation of OCR basal respiration, ATP-dependent respiration, maximum respiration, non-
mitochondrial respiration, and the spare respiratory capacity.

(TIF)

$3 Fig. Quantification of the results shown in Fig 2. In situ assays for each complex were per-
formed on triplicate samples. Results are expressed as the mean + 1 SEM after normalizing
each sample’s activity to the amount of protein present in the respective complex. This value in
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WT cells was arbitrarily set to 1 in all cases to allow for relative comparisons. Complex II could
not be reliably assayed in situ and was therefore assayed in separate reactions and adjusted to
total input mitochondrial protein content (see Fig 2C). Significance was determined using the
Students’ t-test and all values are compared to WT cells.

(TTF)

$4 Fig. Quantification of real time qRT-PCR data depicted in Fig 3A. The values presented
were compared to average gene expression and normalized to 8, microglobulin gene
expression.”*** P < 0.0001, *** P < 0.001, ** P < 0.01, * P < 0.05.

(TIF)

S5 Fig. Quantification of real time qQRT-PCR data depicted in Fig 3D. The values presented
were compared to average gene expression and normalized to B, microglobulin gene
expression.”*** P < 0.0001, *** P < 0.001, ** P < 0.01, * P < 0.05.

(TIF)

S6 Fig. Isotope distribution. High-resolution dMS chromatogram (top) and mass spectrum
(bottom) showing the isotope distribution for the tryptic peptide ATEMVEVGPEDDEV-
GAERGEATDLLR derived from Polymerase I and transcript release factor (Ptrf) with monoi-
sotopic m/z = 930.103 Da and retention time 43.5 minutes. Colored lines show the average
signal for 4 WT (blue), 4 KO (red), 4 WT+Myc (green), 4 KO+Myc (pink), and 6 pooled con-
trol (tan) samples.

(TIF)

S7 Fig. Immuno-blotting for selected pyruvate metabolizing enzymes. Pyruvate dehydroge-
nase (PHDE) and Ser,o; (activated) phosphorylated PDHE. Pyruvate dehydrogenase kinase
(PDK1), Pyruvate dehydrogenase phosphatase (PDP2), Pyruvate kinase M1 and M2 (PKM1/
2), and B-actin loading control.

(TIF)

S1 Table. qQRT-PCR primers used in the current study.
(DOCX)

$2 Table. Antibodies used in the current study.
(DOCX)

$3 Table. 345 mitochondrial proteins identified by LC-MS/MS analysis. Protein name,
including the organism name (OS), gene name (GN), protein existence (PE, a numerical value
describing the evidence of existence for the protein) and sequence version (SV). Gene name is
how the protein is identified throughout the paper, followed by the primary accession number
for reference. Overall p-value is calculated by a two way ANOVA. p- and g-values<0.05 are
highlighted in red text throughout the table. The mean protein intensities are prepared and

run in 4 individual samples for each cell type. Fold change, p-value and false discovery rate (q-
value) were calculated as described in Statistical Analysis and the selected features are identified
by blue text in the fold change columns. Features were selected by a conservative cut off of
q<0.05, with the exception of the comparison of AMPK WT to KO. KO proteins had an over-
all slightly higher average intensity, so to reduce potential bias, proteins with greater abundance
in KO but with fold change less than 2.6 (twice the fold change of overall mitochondrial abun-
dance in KO samples) were not considered.

(XLSX)

PLOS ONE | DOI:10.1371/journal.pone.0134049 July 31,2015 23/29


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0134049.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0134049.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0134049.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0134049.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0134049.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0134049.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0134049.s010

@’PLOS ‘ ONE

c-Myc and AMPK Cooperatively Control Cellular Energy Levels

Acknowledgments

We thank Drs. Ben van Houten and Robert O’'Doherty for comments on the manuscript and
Dr. van Houten for use of the Seahorse Flux XF24 Flux Analyzer. We also thank Drs. Benoit
Viollet and Keith Laderoute for MEFs and Michael Palladino for roGFP.

Author Contributions

Conceived and designed the experiments: LRE LS STW NY EVP. Performed the experiments:
LRE LS JMD HW AK SD MM JL XG XZ EVP. Analyzed the data: LRE LS XG YD XZ NY EVP.
Contributed reagents/materials/analysis tools: XG STW XZ NY EVP. Wrote the paper: LRE LS
XG STW YD XZ NY EVP.

References

1.

10.

11.

12.

13.

14.

15.

16.

Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nature reviews Cancer. 2008; 8(12):976-90.
doi: 10.1038/nrc2231 PMID: 19029958.

Nesbit CE, Tersak JM, Prochownik EV. MYC oncogenes and human neoplastic disease. Oncogene.
1999; 18(19):3004—-16. doi: 10.1038/sj.onc.1202746 PMID: 10378696.

Petrich AM, Nabhan C, Smith SM. MY C-associated and double-hit ymphomas: A review of pathobiol-
ogy, prognosis, and therapeutic approaches. Cancer. 2014. doi: 10.1002/cncr.28899 PMID:
25060588.

Roussel MF, Robinson GW. Role of MYC in Medulloblastoma. Cold Spring Harbor perspectives in
medicine. 2013; 3(11). doi: 10.1101/cshperspect.a014308 PMID: 24186490.

Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities.
Clinical cancer research: an official journal of the American Association for Cancer Research. 2009;
15(21):6479-83. doi: 10.1158/1078-0432.CCR-09-0889 PMID: 19861459; PubMed Central PMCID:
PMC2783410.

Eilers M, Eisenman RN. Myc's broad reach. Genes & development. 2008; 22(20):2755-66. doi: 10.
1101/gad.1712408 PMID: 18923074; PubMed Central PMCID: PMC2751281.

Gomez-Roman N, Grandori C, Eisenman RN, White RJ. Direct activation of RNA polymerase lll tran-
scription by c-Myc. Nature. 2003; 421(6920):290-4. PMID: 12529648.

Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN, et al. c-
Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase
I. Nature cell biology. 2005; 7(3):311-8. PMID: 15723054.

Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W, et al. c-Myc is a universal amplifier of expressed
genes in lymphocytes and embryonic stem cells. Cell. 2012; 151(1):68—79. doi: 10.1016/j.cell.2012.
08.033 PMID: 23021216; PubMed Central PMCID: PMC3471363.

Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB, Bradner JE, et al. Transcriptional amplification in
tumor cells with elevated c-Myc. Cell. 2012; 151(1):56—67. doi: 10.1016/j.cell.2012.08.026 PMID:
23021215; PubMed Central PMCID: PMC3462372.

Sabo A, Amati B. Genome recognition by MYC. Cold Spring Harbor perspectives in medicine. 2014;
4(2). doi: 10.1101/cshperspect.a014191 PMID: 24492846.

Walz S, Lorenzin F, Morton J, Wiese KE, von Eyss B, Herold S, et al. Activation and repression by
oncogenic MYC shape tumour-specific gene expression profiles. Nature. 2014; 511(7510):483-7.
doi: 10.1038/nature13473 PMID: 25043018.

Hann SR. MYC cofactors: molecular switches controlling diverse biological outcomes. Cold Spring
Harbor perspectives in medicine. 2014; 4(9):a014399. doi: 10.1101/cshperspect.a014399 PMID:
24939054.

Sabo A, Kress TR, Pelizzola M, de Pretis S, Gorski MM, Tesi A, et al. Selective transcriptional regula-
tion by Myc in cellular growth control and lymphomagenesis. Nature. 2014; 511(7510):488-92. doi:
10.1038/nature13537 PMID: 25043028; PubMed Central PMCID: PMC4110711.

Wahlstrom T, Arsenian Henriksson M. Impact of MYC in regulation of tumor cell metabolism. Biochi-
mica et biophysica acta. 2014. doi: 10.1016/j.bbagrm.2014.07.004 PMID: 25038584.

Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not antici-
pate. Cancer cell. 2012; 21(3):297-308. doi: 10.1016/j.ccr.2012.02.014 PMID: 22439925; PubMed
Central PMCID: PMC3311998.

PLOS ONE | DOI:10.1371/journal.pone.0134049 July 31,2015 24/29


http://dx.doi.org/10.1038/nrc2231
http://www.ncbi.nlm.nih.gov/pubmed/19029958
http://dx.doi.org/10.1038/sj.onc.1202746
http://www.ncbi.nlm.nih.gov/pubmed/10378696
http://dx.doi.org/10.1002/cncr.28899
http://www.ncbi.nlm.nih.gov/pubmed/25060588
http://dx.doi.org/10.1101/cshperspect.a014308
http://www.ncbi.nlm.nih.gov/pubmed/24186490
http://dx.doi.org/10.1158/1078-0432.CCR-09-0889
http://www.ncbi.nlm.nih.gov/pubmed/19861459
http://dx.doi.org/10.1101/gad.1712408
http://dx.doi.org/10.1101/gad.1712408
http://www.ncbi.nlm.nih.gov/pubmed/18923074
http://www.ncbi.nlm.nih.gov/pubmed/12529648
http://www.ncbi.nlm.nih.gov/pubmed/15723054
http://dx.doi.org/10.1016/j.cell.2012.08.033
http://dx.doi.org/10.1016/j.cell.2012.08.033
http://www.ncbi.nlm.nih.gov/pubmed/23021216
http://dx.doi.org/10.1016/j.cell.2012.08.026
http://www.ncbi.nlm.nih.gov/pubmed/23021215
http://dx.doi.org/10.1101/cshperspect.a014191
http://www.ncbi.nlm.nih.gov/pubmed/24492846
http://dx.doi.org/10.1038/nature13473
http://www.ncbi.nlm.nih.gov/pubmed/25043018
http://dx.doi.org/10.1101/cshperspect.a014399
http://www.ncbi.nlm.nih.gov/pubmed/24939054
http://dx.doi.org/10.1038/nature13537
http://www.ncbi.nlm.nih.gov/pubmed/25043028
http://dx.doi.org/10.1016/j.bbagrm.2014.07.004
http://www.ncbi.nlm.nih.gov/pubmed/25038584
http://dx.doi.org/10.1016/j.ccr.2012.02.014
http://www.ncbi.nlm.nih.gov/pubmed/22439925

@’PLOS ‘ ONE

c-Myc and AMPK Cooperatively Control Cellular Energy Levels

17.

18.

19.

20.

21,

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Warburg O. On respiratory impairment in cancer cells. Science. 1956; 124(3215):269-70. PMID:
13351639.

Bayley JP, Devilee P. The Warburg effect in 2012. Current opinion in oncology. 2012; 24(1):62-7. doi:
10.1097/CCO.0b013e32834deb9e PMID: 22123234.

Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic
requirements of cell proliferation. Science. 2009; 324(5930):1029-33. doi: 10.1126/science.1160809
PMID: 19460998; PubMed Central PMCID: PMC2849637.

Graves JA, Wang Y, Sims-Lucas S, Cherok E, Rothermund K, Branca MF, et al. Mitochondrial struc-
ture, function and dynamics are temporally controlled by c-Myc. PloS one. 2012; 7(5):€37699. doi: 10.
1371/journal.pone.0037699 PMID: 22629444; PubMed Central PMCID: PMC3357432.

Li F, Wang Y, Zeller Kl, Potter JJ, Wonsey DR, O'Donnell KA, et al. Myc stimulates nuclearly encoded
mitochondrial genes and mitochondrial biogenesis. Molecular and cellular biology. 2005; 25(14):
6225-34. doi: 10.1128/MCB.25.14.6225-6234.2005 PMID: 15988031; PubMed Central PMCID:
PMC1168798.

Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The transcription factor Myc con-
trols metabolic reprogramming upon T lymphocyte activation. Immunity. 2011; 35(6):871-82. doi: 10.
1016/j.immuni.2011.09.021 PMID: 22195744; PubMed Central PMCID: PMC3248798.

Edmunds LR, Sharma L, Kang A, Lu J, Vockley J, Basu S, et al. c-Myc programs fatty acid metabolism
and dictates acetyl-CoA abundance and fate. The Journal of biological chemistry. 2014; 289(36):
25382-92. doi: 10.1074/jbc.M114.580662 PMID: 250534 15; PubMed Central PMCID: PMC4155699.

Olson AK, Ledee D, lwamoto K, Kajimoto M, O'Kelly Priddy C, Isern N, et al. C-Myc induced compen-
sated cardiac hypertrophy increases free fatty acid utilization for the citric acid cycle. Journal of molec-
ular and cellular cardiology. 2013; 55:156—64. doi: 10.1016/j.yjmcc.2012.07.005 PMID: 22828478;
PubMed Central PMCID: PMC3524362.

Pacilli A, Calienni M, Margarucci S, D'Apolito M, Petillo O, Rocchi L, et al. Carnitine-acyltransferase
system inhibition, cancer cell death, and prevention of myc-induced lymphomagenesis. Journal of the
National Cancer Institute. 2013; 105(7):489-98. doi: 10.1093/jnci/djt030 PMID: 23486551.

DeBerardinis RJ, Cheng T. Q's next: the diverse functions of glutamine in metabolism, cell biology
and cancer. Oncogene. 2010; 29(3):313—-24. doi: 10.1038/onc.2009.358 PMID: 19881548; PubMed
Central PMCID: PMC2809806.

Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function.
Genes & development. 2011; 25(18):1895-908. doi: 10.1101/gad.17420111 PMID: 21937710;
PubMed Central PMCID: PMC3185962.

Kim I, He YY. Targeting the AMP-Activated Protein Kinase for Cancer Prevention and Therapy. Fron-
tiers in oncology. 2013; 3:175. doi: 10.3389/fonc.2013.00175 PMID: 23875169; PubMed Central
PMCID: PMC3711071.

Shirwany NA, Zou MH. AMPK: a cellular metabolic and redox sensor. A minireview. Frontiers in bio-
science. 2014; 19:447-74. PMID: 24389195; PubMed Central PMCID: PMC4101001.

Sanz P. AMP-activated protein kinase: structure and regulation. Current protein & peptide science.
2008; 9(5):478-92. PMID: 18855699.

Russo GL, Russo M, Ungaro P. AMP-activated protein kinase: a target for old drugs against diabetes
and cancer. Biochemical pharmacology. 2013; 86(3):339-50. doi: 10.1016/j.bcp.2013.05.023 PMID:
23747347.

O'Neill HM, Holloway GP, Steinberg GR. AMPK regulation of fatty acid metabolism and mitochondrial
biogenesis: implications for obesity. Molecular and cellular endocrinology. 2013; 366(2):135-51. doi:
10.1016/j.mce.2012.06.019 PMID: 22750049.

Reznick RM, Shulman Gl. The role of AMP-activated protein kinase in mitochondrial biogenesis. The
Journal of physiology. 2006; 574(Pt 1):33-9. doi: 10.1113/jphysiol.2006.109512 PMID: 16709637;
PubMed Central PMCID: PMC1817787.

Viollet B, Andreelli F, Jorgensen SB, Perrin C, Flamez D, Mu J, et al. Physiological role of AMP-
activated protein kinase (AMPK): insights from knockout mouse models. Biochemical Society transac-
tions. 2003; 31(Pt 1):216-9. PMID: 12546688.

Jorgensen SB, Viollet B, Andreelli F, Frosig C, Birk JB, Schjerling P, et al. Knockout of the alpha2 but
not alphai 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-
beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. The Journal of
biological chemistry. 2004; 279(2):1070-9. PMID: 14573616.

Laderoute KR, Amin K, Calaoagan JM, Knapp M, Le T, Orduna J, et al. 5-AMP-activated protein
kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor

PLOS ONE | DOI:10.1371/journal.pone.0134049 July 31,2015 25/29


http://www.ncbi.nlm.nih.gov/pubmed/13351639
http://dx.doi.org/10.1097/CCO.0b013e32834deb9e
http://www.ncbi.nlm.nih.gov/pubmed/22123234
http://dx.doi.org/10.1126/science.1160809
http://www.ncbi.nlm.nih.gov/pubmed/19460998
http://dx.doi.org/10.1371/journal.pone.0037699
http://dx.doi.org/10.1371/journal.pone.0037699
http://www.ncbi.nlm.nih.gov/pubmed/22629444
http://dx.doi.org/10.1128/MCB.25.14.6225-6234.2005
http://www.ncbi.nlm.nih.gov/pubmed/15988031
http://dx.doi.org/10.1016/j.immuni.2011.09.021
http://dx.doi.org/10.1016/j.immuni.2011.09.021
http://www.ncbi.nlm.nih.gov/pubmed/22195744
http://dx.doi.org/10.1074/jbc.M114.580662
http://www.ncbi.nlm.nih.gov/pubmed/25053415
http://dx.doi.org/10.1016/j.yjmcc.2012.07.005
http://www.ncbi.nlm.nih.gov/pubmed/22828478
http://dx.doi.org/10.1093/jnci/djt030
http://www.ncbi.nlm.nih.gov/pubmed/23486551
http://dx.doi.org/10.1038/onc.2009.358
http://www.ncbi.nlm.nih.gov/pubmed/19881548
http://dx.doi.org/10.1101/gad.17420111
http://www.ncbi.nlm.nih.gov/pubmed/21937710
http://dx.doi.org/10.3389/fonc.2013.00175
http://www.ncbi.nlm.nih.gov/pubmed/23875169
http://www.ncbi.nlm.nih.gov/pubmed/24389195
http://www.ncbi.nlm.nih.gov/pubmed/18855699
http://dx.doi.org/10.1016/j.bcp.2013.05.023
http://www.ncbi.nlm.nih.gov/pubmed/23747347
http://dx.doi.org/10.1016/j.mce.2012.06.019
http://www.ncbi.nlm.nih.gov/pubmed/22750049
http://dx.doi.org/10.1113/jphysiol.2006.109512
http://www.ncbi.nlm.nih.gov/pubmed/16709637
http://www.ncbi.nlm.nih.gov/pubmed/12546688
http://www.ncbi.nlm.nih.gov/pubmed/14573616

@’PLOS ‘ ONE

c-Myc and AMPK Cooperatively Control Cellular Energy Levels

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

microenvironments. Molecular and cellular biology. 2006; 26(14):5336—-47. PMID: 16809770;
PubMed Central PMCID: PMC1592699.

Eilers M, Picard D, Yamamoto KR, Bishop JM. Chimaeras of myc oncoprotein and steroid receptors
cause hormone-dependent transformation of cells. Nature. 1989; 340(6228):66—8. doi: 10.1038/
34006620 PMID: 2662015.

Van Coster R, Smet J, George E, De Meirleir L, Seneca S, Van Hove J, et al. Blue native polyacryl-
amide gel electrophoresis: a powerful tool in diagnosis of oxidative phosphorylation defects. Pediatric
research. 2001; 50(5):658—-65. doi: 10.1203/00006450-200111000-00020 PMID: 11641463.

Wittig |, Karas M, Schagger H. High resolution clear native electrophoresis for in-gel functional assays
and fluorescence studies of membrane protein complexes. Mol Cell Proteomics. 2007; 6(7):1215-25.
doi: 10.1074/mcp.M700076-MCP200 PMID: 17426019.

Munujos P, Coll-Canti J, Gonzalez-Sastre F, Gella FJ. Assay of succinate dehydrogenase activity by
a colorimetric-continuous method using iodonitrotetrazolium chloride as electron acceptor. Anal Bio-
chem. 1993; 212(2):506—9. PMID: 8214593.

Zeng X, Hood BL, Zhao T, Conrads TP, Sun M, Gopalakrishnan V, et al. Lung cancer serum bio-
marker discovery using label-free liquid chromatography-tandem mass spectrometry. Journal of tho-
racic oncology: official publication of the International Association for the Study of Lung Cancer. 2011;
6(4):725-34. doi: 10.1097/JTO.0b013e31820c312e PMID: 21304412; PubMed Central PMCID:
PMC3104087.

Miedel MT, Zeng X, Yates NA, Silverman GA, Luke CJ. Isolation of serpin-interacting proteins in C.
elegans using protein affinity purification. Methods. 2014; 68(3):536—41. doi: 10.1016/j.ymeth.2014.
04.019 PMID: 24798811; PubMed Central PMCID: PMC4113314.

Eng JK, Jahan TA, Hoopmann MR. Comet: an open-source MS/MS sequence database search tool.
Proteomics. 2013; 13(1):22—4. doi: 10.1002/pmic.201200439 PMID: 23148064.

Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, et al. Investigating mitochon-
drial redox potential with redox-sensitive green fluorescent protein indicators. The Journal of biological
chemistry. 2004; 279(13):13044-53. doi: 10.1074/jbc.M312846200 PMID: 14722062.

Jiang K, Schwarzer C, Lally E, Zhang S, Ruzin S, Machen T, et al. Expression and characterization of
a redox-sensing green fluorescent protein (reduction-oxidation-sensitive green fluorescent protein) in
Arabidopsis. Plant physiology. 2006; 141(2):397—403. PMID: 16760494; PubMed Central PMCID:
PMC1475439.

Paredes RM, Quinones M, Marballi K, Gao X, Valdez C, Ahuja SS, et al. Metabolomic profiling of
schizophrenia patients at risk for metabolic syndrome. The international journal of neuropsychophar-
macology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum.
2014; 17(8):1139-48. doi: 10.1017/S1461145714000157 PMID: 24565079.

Zhou JZ, Riquelme MA, Gao X, Ellies LG, Sun LZ, Jiang JX. Differential impact of adenosine nucleo-
tides released by osteocytes on breast cancer growth and bone metastasis. Oncogene. 2015; 34(14):
1831-42. doi: 10.1038/onc.2014.113 PMID: 24837364; PubMed Central PMCID: PMC4315766.

Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, et al. c-Myc can induce DNA damage,
increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced
genetic instability. Molecular cell. 2002; 9(5):1031-44. PMID: 12049739.

Colombo SL, Moncada S. AMPKalpha1 regulates the antioxidant status of vascular endothelial cells.
The Biochemical journal. 2009; 421(2):163-9. doi: 10.1042/BJ20090613 PMID: 19442239.

Quintero M, Colombo SL, Godfrey A, Moncada S. Mitochondria as signaling organelles in the vascular
endothelium. Proceedings of the National Academy of Sciences of the United States of America.
2006; 103(14):5379-84. doi: 10.1073/pnas.0601026103 PMID: 16565215; PubMed Central PMCID:
PMC1459363.

Sid B, Verrax J, Calderon PB. Role of AMPK activation in oxidative cell damage: Implications for alco-
hol-induced liver disease. Biochemical pharmacology. 2013; 86(2):200—-9. doi: 10.1016/j.bcp.2013.
05.007 PMID: 23688501.

Toyoda T, Hayashi T, Miyamoto L, Yonemitsu S, Nakano M, Tanaka S, et al. Possible involvement of
the alpha1 isoform of 5'AMP-activated protein kinase in oxidative stress-stimulated glucose transport
in skeletal muscle. American journal of physiology Endocrinology and metabolism. 2004; 287(1):
E166-73. PMID: 15026306.

Lenaz G, Baracca A, Barbero G, Bergamini C, Dalmonte ME, Del Sole M, et al. Mitochondrial respira-
tory chain super-complex I-lll in physiology and pathology. Biochimica et biophysica acta. 2010;
1797(6-7):633—40. doi: 10.1016/j.bbabio.2010.01.025 PMID: 20116362.

Genova ML, Baracca A, Biondi A, Casalena G, Faccioli M, Falasca Al, et al. Is supercomplex organi-
zation of the respiratory chain required for optimal electron transfer activity? Biochimica et biophysica
acta. 2008; 1777(7-8):740—6. doi: 10.1016/j.bbabio.2008.04.007 PMID: 18454935.

PLOS ONE | DOI:10.1371/journal.pone.0134049 July 31,2015 26/29


http://www.ncbi.nlm.nih.gov/pubmed/16809770
http://dx.doi.org/10.1038/340066a0
http://dx.doi.org/10.1038/340066a0
http://www.ncbi.nlm.nih.gov/pubmed/2662015
http://dx.doi.org/10.1203/00006450-200111000-00020
http://www.ncbi.nlm.nih.gov/pubmed/11641463
http://dx.doi.org/10.1074/mcp.M700076-MCP200
http://www.ncbi.nlm.nih.gov/pubmed/17426019
http://www.ncbi.nlm.nih.gov/pubmed/8214593
http://dx.doi.org/10.1097/JTO.0b013e31820c312e
http://www.ncbi.nlm.nih.gov/pubmed/21304412
http://dx.doi.org/10.1016/j.ymeth.2014.04.019
http://dx.doi.org/10.1016/j.ymeth.2014.04.019
http://www.ncbi.nlm.nih.gov/pubmed/24798811
http://dx.doi.org/10.1002/pmic.201200439
http://www.ncbi.nlm.nih.gov/pubmed/23148064
http://dx.doi.org/10.1074/jbc.M312846200
http://www.ncbi.nlm.nih.gov/pubmed/14722062
http://www.ncbi.nlm.nih.gov/pubmed/16760494
http://dx.doi.org/10.1017/S1461145714000157
http://www.ncbi.nlm.nih.gov/pubmed/24565079
http://dx.doi.org/10.1038/onc.2014.113
http://www.ncbi.nlm.nih.gov/pubmed/24837364
http://www.ncbi.nlm.nih.gov/pubmed/12049739
http://dx.doi.org/10.1042/BJ20090613
http://www.ncbi.nlm.nih.gov/pubmed/19442239
http://dx.doi.org/10.1073/pnas.0601026103
http://www.ncbi.nlm.nih.gov/pubmed/16565215
http://dx.doi.org/10.1016/j.bcp.2013.05.007
http://dx.doi.org/10.1016/j.bcp.2013.05.007
http://www.ncbi.nlm.nih.gov/pubmed/23688501
http://www.ncbi.nlm.nih.gov/pubmed/15026306
http://dx.doi.org/10.1016/j.bbabio.2010.01.025
http://www.ncbi.nlm.nih.gov/pubmed/20116362
http://dx.doi.org/10.1016/j.bbabio.2008.04.007
http://www.ncbi.nlm.nih.gov/pubmed/18454935

@’PLOS ‘ ONE

c-Myc and AMPK Cooperatively Control Cellular Energy Levels

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Chen G, Gharib TG, Huang CC, Taylor JM, Misek DE, Kardia SL, et al. Discordant protein and mRNA
expression in lung adenocarcinomas. Molecular & cellular proteomics: MCP. 2002; 1(4):304—13.
PMID: 12096112.

de Sousa Abreu R, Penalva LO, Marcotte EM, Vogel C. Global signatures of protein and mRNA
expression levels. Molecular bioSystems. 2009; 5(12):1512-26. doi: 10.1039/b908315d PMID:
20023718; PubMed Central PMCID: PMC4089977.

Ghazalpour A, Bennett B, Petyuk VA, Orozco L, Hagopian R, Mungrue IN, et al. Comparative analysis
of proteome and transcriptome variation in mouse. PLoS genetics. 2011; 7(6):e1001393. doi: 10.
1371/journal.pgen.1001393 PMID: 21695224; PubMed Central PMCID: PMC3111477.

Kristensen AR, Gsponer J, Foster LJ. Protein synthesis rate is the predominant regulator of protein
expression during differentiation. Molecular systems biology. 2013; 9:689. doi: 10.1038/msb.2013.47
PMID: 24045637; PubMed Central PMCID: PMC3792347.

Matalon O, Horovitz A, Levy ED. Different subunits belonging to the same protein complex often
exhibit discordant expression levels and evolutionary properties. Current opinion in structural biology.
2014; 26:113-20. doi: 10.1016/j.sbi.2014.06.001 PMID: 24997301.

Pascal LE, True LD, Campbell DS, Deutsch EW, Risk M, Coleman IM, et al. Correlation of mRNA and
protein levels: cell type-specific gene expression of cluster designation antigens in the prostate. BMC
genomics. 2008; 9:246. doi: 10.1186/1471-2164-9-246 PMID: 18501003; PubMed Central PMCID:
PMC2413246.

Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, et al. Proteogenomic characterization of human colon
and rectal cancer. Nature. 2014; 513(7518):382—7. doi: 10.1038/nature13438 PMID: 25043054;
PubMed Central PMCID: PMC4249766.

Alaynick WA. Nuclear receptors, mitochondria and lipid metabolism. Mitochondrion. 2008; 8(4):329-37.
doi: 10.1016/j.mit0.2008.02.001 PMID: 18375192; PubMed Central PMCID: PMC2831104.

Roberti M, Polosa PL, Bruni F, Manzari C, Deceglie S, Gadaleta MN, et al. The MTERF family pro-
teins: mitochondrial transcription regulators and beyond. Biochimica et biophysica acta. 2009;
1787(5):303-11. doi: 10.1016/j.bbabio.2009.01.013 PMID: 19366610.

Scarpulla RC, Vega RB, Kelly DP. Transcriptional integration of mitochondrial biogenesis. Trends in
endocrinology and metabolism: TEM. 2012; 23(9):459-66. doi: 10.1016/j.tem.2012.06.006 PMID:
22817841; PubMed Central PMCID: PMC3580164.

Yakubovskaya E, Guja KE, Eng ET, Choi WS, Mejia E, Beglov D, et al. Organization of the human
mitochondrial transcription initiation complex. Nucleic acids research. 2014; 42(6):4100-12. doi: 10.
1098/nar/gkt1360 PMID: 24413562; PubMed Central PMCID: PMC3973321.

Meng F, Wiener MC, Sachs JR, Burns C, Verma P, Paweletz CP, et al. Quantitative analysis of com-
plex peptide mixtures using FTMS and differential mass spectrometry. Journal of the American Soci-
ety for Mass Spectrometry. 2007; 18(2):226-33. doi: 10.1016/j.jasms.2006.09.014 PMID: 17070068.

Paweletz CP, Wiener MC, Bondarenko AY, Yates NA, Song Q, Liaw A, et al. Application of an end-to-
end biomarker discovery platform to identify target engagement markers in cerebrospinal fluid by high
resolution differential mass spectrometry. Journal of proteome research. 2010; 9(3):1392—401. doi:
10.1021/pr900925d PMID: 20095649.

Gellerich FN, Gizatullina Z, Trumbeckaite S, Nguyen HP, Pallas T, Arandarcikaite O, et al. The regula-
tion of OXPHOS by extramitochondrial calcium. Biochimica et biophysica acta. 2010; 1797(6-7):
1018-27. doi: 10.1016/j.bbabio.2010.02.005 PMID: 20144582.

Huttemann M, Lee |, Pecinova A, Pecina P, Przyklenk K, Doan JW. Regulation of oxidative phosphor-
ylation, the mitochondrial membrane potential, and their role in human disease. Journal of bioenerget-
ics and biomembranes. 2008; 40(5):445-56. doi: 10.1007/s10863-008-9169-3 PMID: 18843528.

Pierron D, Wildman DE, Huttemann M, Markondapatnaikuni GC, Aras S, Grossman LI. Cytochrome ¢
oxidase: evolution of control via nuclear subunit addition. Biochimica et biophysica acta. 2012;
1817(4):590-7. doi: 10.1016/j.bbabio.2011.07.007 PMID: 21802404; PubMed Central PMCID:
PMC3923406.

Scheller K, Sekeris CE. The effects of steroid hormones on the transcription of genes encoding
enzymes of oxidative phosphorylation. Experimental physiology. 2003; 88(1):129—40. PMID:
12525861.

Schwarzlander M, Fricker MD, Muller C, Marty L, Brach T, Novak J, et al. Confocal imaging of glutathi-
one redox potential in living plant cells. Journal of microscopy. 2008; 231(2):299-316. doi: 10.1111/j.
1365-2818.2008.02030.x PMID: 18778428.

Dooley CT, Dore TM, Hanson GT, Jackson WC, Remington SJ, Tsien RY. Imaging dynamic redox
changes in mammalian cells with green fluorescent protein indicators. The Journal of biological chem-
istry. 2004; 279(21):22284—-93. doi: 10.1074/jbc.M312847200 PMID: 14985369.

PLOS ONE | DOI:10.1371/journal.pone.0134049 July 31,2015 27/29


http://www.ncbi.nlm.nih.gov/pubmed/12096112
http://dx.doi.org/10.1039/b908315d
http://www.ncbi.nlm.nih.gov/pubmed/20023718
http://dx.doi.org/10.1371/journal.pgen.1001393
http://dx.doi.org/10.1371/journal.pgen.1001393
http://www.ncbi.nlm.nih.gov/pubmed/21695224
http://dx.doi.org/10.1038/msb.2013.47
http://www.ncbi.nlm.nih.gov/pubmed/24045637
http://dx.doi.org/10.1016/j.sbi.2014.06.001
http://www.ncbi.nlm.nih.gov/pubmed/24997301
http://dx.doi.org/10.1186/1471-2164-9-246
http://www.ncbi.nlm.nih.gov/pubmed/18501003
http://dx.doi.org/10.1038/nature13438
http://www.ncbi.nlm.nih.gov/pubmed/25043054
http://dx.doi.org/10.1016/j.mito.2008.02.001
http://www.ncbi.nlm.nih.gov/pubmed/18375192
http://dx.doi.org/10.1016/j.bbabio.2009.01.013
http://www.ncbi.nlm.nih.gov/pubmed/19366610
http://dx.doi.org/10.1016/j.tem.2012.06.006
http://www.ncbi.nlm.nih.gov/pubmed/22817841
http://dx.doi.org/10.1093/nar/gkt1360
http://dx.doi.org/10.1093/nar/gkt1360
http://www.ncbi.nlm.nih.gov/pubmed/24413562
http://dx.doi.org/10.1016/j.jasms.2006.09.014
http://www.ncbi.nlm.nih.gov/pubmed/17070068
http://dx.doi.org/10.1021/pr900925d
http://www.ncbi.nlm.nih.gov/pubmed/20095649
http://dx.doi.org/10.1016/j.bbabio.2010.02.005
http://www.ncbi.nlm.nih.gov/pubmed/20144582
http://dx.doi.org/10.1007/s10863-008-9169-3
http://www.ncbi.nlm.nih.gov/pubmed/18843528
http://dx.doi.org/10.1016/j.bbabio.2011.07.007
http://www.ncbi.nlm.nih.gov/pubmed/21802404
http://www.ncbi.nlm.nih.gov/pubmed/12525861
http://dx.doi.org/10.1111/j.1365-2818.2008.02030.x
http://dx.doi.org/10.1111/j.1365-2818.2008.02030.x
http://www.ncbi.nlm.nih.gov/pubmed/18778428
http://dx.doi.org/10.1074/jbc.M312847200
http://www.ncbi.nlm.nih.gov/pubmed/14985369

@’PLOS ‘ ONE

c-Myc and AMPK Cooperatively Control Cellular Energy Levels

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P. Redox regulation of cell survival. Antioxi-
dants & redox signaling. 2008; 10(8):1343-74. doi: 10.1089/ars.2007.1957 PMID: 18522489;
PubMed Central PMCID: PMC2932530.

Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, et al. AMPK is a negative regulator of the
Warburg effect and suppresses tumor growth in vivo. Cell metabolism. 2013; 17(1):113-24. doi: 10.
1016/j.cmet.2012.12.001 PMID: 23274086; PubMed Central PMCID: PMC3545102.

Janssen-Heininger YM, Nolin JD, Hoffman SM, van der Velden JL, Tully JE, Lahue KG, et al. Emerg-
ing mechanisms of glutathione-dependent chemistry in biology and disease. J Cell Biochem. 2013;
114(9):1962-8. doi: 10.1002/jcb.24551 PMID: 23554102; PubMed Central PMCID: PMC3857728.

Igbal MA, Gupta V, Gopinath P, Mazurek S, Bamezai RN. Pyruvate kinase M2 and cancer: an
updated assessment. FEBS letters. 2014; 588(16):2685-92. doi: 10.1016/j.febslet.2014.04.011
PMID: 24747424,

Vander Heiden MG, Lunt SY, Dayton TL, Fiske BP, Israelsen WJ, Mattaini KR, et al. Metabolic path-
way alterations that support cell proliferation. Cold Spring Harbor symposia on quantitative biology.
2011; 76:325-34. doi: 10.1101/sgb.2012.76.010900 PMID: 22262476.

Morgan HP, O'Reilly FJ, Wear MA, O'Neill JR, Fothergill-Gilmore LA, Hupp T, et al. M2 pyruvate
kinase provides a mechanism for nutrient sensing and regulation of cell proliferation. Proceedings of
the National Academy of Sciences of the United States of America. 2013; 110(15):5881-6. doi: 10.
1073/pnas.1217157110 PMID: 23530218; PubMed Central PMCID: PMC3625322.

Patel MS, Korotchkina LG. Regulation of mammalian pyruvate dehydrogenase complex by phosphor-
ylation: complexity of multiple phosphorylation sites and kinases. Experimental & molecular medicine.
2001; 33(4):191-7. doi: 10.1038/emm.2001.32 PMID: 11795479.

Kolobova E, Tuganova A, Boulatnikov I, Popov KM. Regulation of pyruvate dehydrogenase activity
through phosphorylation at multiple sites. The Biochemical journal. 2001; 358(Pt 1):69-77. PMID:
11485553; PubMed Central PMCID: PMC1222033.

Wong N, De Melo J, Tang D. PKM2, a Central Point of Regulation in Cancer Metabolism. International
journal of cell biology. 2013; 2013:242513. doi: 10.1155/2013/242513 PMID: 23476652; PubMed
Central PMCID: PMC3586519.

Li Z, Yang P, Li Z. The multifaceted regulation and functions of PKM2 in tumor progression. Biochi-
mica et biophysica acta. 2014; 1846(2):285-96. doi: 10.1016/j.bbcan.2014.07.008 PMID: 25064846.

Yang W, Lu Z. Regulation and function of pyruvate kinase M2 in cancer. Cancer letters. 2013; 339(2):
153-8. doi: 10.1016/j.canlet.2013.06.008 PMID: 23791887; PubMed Central PMCID: PMC3950276.

Semenza GL, Artemov D, Bedi A, Bhujwalla Z, Chiles K, Feldser D, et al. 'The metabolism of tumours':
70 years later. Novartis Foundation symposium. 2001; 240:251-60; discussion 60—4. PMID:
11727934.

Jeon SM, Chandel NS, Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival
during energy stress. Nature. 2012; 485(7400):661-5. doi: 10.1038/nature11066 PMID: 22660331;
PubMed Central PMCID: PMC3607316.

Bardeesy N, Sinha M, Hezel AF, Signoretti S, Hathaway NA, Sharpless NE, et al. Loss of the Lkb1
tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature. 2002;
419(6903):162—7. PMID: 12226664.

Kuehl WM, Bergsagel PL. MYC addiction: a potential therapeutic target in MM. Blood. 2012; 120(12):
2351-2. doi: 10.1182/blood-2012-08-445262 PMID: 22996653.

Wang H, Mannava S, Grachtchouk V, Zhuang D, Soengas MS, Gudkov AV, et al. c-Myc depletion
inhibits proliferation of human tumor cells at various stages of the cell cycle. Oncogene. 2008; 27(13):
1905-15. doi: 10.1038/sj.onc.1210823 PMID: 17906696; PubMed Central PMCID: PMC3144565.

Sodir NM, Evan Gl. Finding cancer's weakest link. Oncotarget. 2011; 2(12):1307-13. PMID:
22202195; PubMed Central PMCID: PMC3282087.

Salt |, Celler JW, Hawley SA, Prescott A, Woods A, Carling D, et al. AMP-activated protein kinase:
greater AMP dependence, and preferential nuclear localization, of complexes containing the alpha2
isoform. The Biochemical journal. 1998; 334 (Pt 1):177—-87. PMID: 9693118; PubMed Central PMCID:
PMC1219677.

JuTC, Chen HM, Lin JT, Chang CP, Chang WC, Kang JJ, et al. Nuclear translocation of AMPK-
alpha1 potentiates striatal neurodegeneration in Huntington's disease. The Journal of cell biology.
2011; 194(2):209-27. doi: 10.1083/jcb.201105010 PMID: 21768291; PubMed Central PMCID:
PMC3144412.

Kazgan N, Williams T, Forsberg LJ, Brenman JE. Identification of a nuclear export signal in the cata-
lytic subunit of AMP-activated protein kinase. Molecular biology of the cell. 2010; 21(19):3433—42.
doi: 10.1091/mbc.E10-04-0347 PMID: 20685962; PubMed Central PMCID: PMC2947478.

PLOS ONE | DOI:10.1371/journal.pone.0134049 July 31,2015 28/29


http://dx.doi.org/10.1089/ars.2007.1957
http://www.ncbi.nlm.nih.gov/pubmed/18522489
http://dx.doi.org/10.1016/j.cmet.2012.12.001
http://dx.doi.org/10.1016/j.cmet.2012.12.001
http://www.ncbi.nlm.nih.gov/pubmed/23274086
http://dx.doi.org/10.1002/jcb.24551
http://www.ncbi.nlm.nih.gov/pubmed/23554102
http://dx.doi.org/10.1016/j.febslet.2014.04.011
http://www.ncbi.nlm.nih.gov/pubmed/24747424
http://dx.doi.org/10.1101/sqb.2012.76.010900
http://www.ncbi.nlm.nih.gov/pubmed/22262476
http://dx.doi.org/10.1073/pnas.1217157110
http://dx.doi.org/10.1073/pnas.1217157110
http://www.ncbi.nlm.nih.gov/pubmed/23530218
http://dx.doi.org/10.1038/emm.2001.32
http://www.ncbi.nlm.nih.gov/pubmed/11795479
http://www.ncbi.nlm.nih.gov/pubmed/11485553
http://dx.doi.org/10.1155/2013/242513
http://www.ncbi.nlm.nih.gov/pubmed/23476652
http://dx.doi.org/10.1016/j.bbcan.2014.07.008
http://www.ncbi.nlm.nih.gov/pubmed/25064846
http://dx.doi.org/10.1016/j.canlet.2013.06.008
http://www.ncbi.nlm.nih.gov/pubmed/23791887
http://www.ncbi.nlm.nih.gov/pubmed/11727934
http://dx.doi.org/10.1038/nature11066
http://www.ncbi.nlm.nih.gov/pubmed/22660331
http://www.ncbi.nlm.nih.gov/pubmed/12226664
http://dx.doi.org/10.1182/blood-2012-08-445262
http://www.ncbi.nlm.nih.gov/pubmed/22996653
http://dx.doi.org/10.1038/sj.onc.1210823
http://www.ncbi.nlm.nih.gov/pubmed/17906696
http://www.ncbi.nlm.nih.gov/pubmed/22202195
http://www.ncbi.nlm.nih.gov/pubmed/9693118
http://dx.doi.org/10.1083/jcb.201105010
http://www.ncbi.nlm.nih.gov/pubmed/21768291
http://dx.doi.org/10.1091/mbc.E10-04-0347
http://www.ncbi.nlm.nih.gov/pubmed/20685962

@’PLOS ‘ ONE

c-Myc and AMPK Cooperatively Control Cellular Energy Levels

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

Zhang P, Metukuri MR, Bindom SM, Prochownik EV, O'Doherty RM, Scott DK. c-Myc is required for
the CHREBP-dependent activation of glucose-responsive genes. Molecular endocrinology. 2010;
24(6):1274-86. doi: 10.1210/me.2009-0437 PMID: 20382893; PubMed Central PMCID:
PMC2875801.

Attie AD, Kendziorski CM. PGC-1alpha at the crossroads of type 2 diabetes. Nature genetics. 2003;
34(3):244-5. PMID: 12833045.

Kukidome D, Nishikawa T, Sonoda K, Imoto K, Fujisawa K, Yano M, et al. Activation of AMP-activated
protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and
promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes. 2006; 55(1):
120-7. PMID: 16380484.

Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K. Mechanism for fatty acid "sparing"
effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding pro-
tein by AMP-activated protein kinase. The Journal of biological chemistry. 2002; 277(6):3829-35.
PMID: 11724780.

Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and
metabolism. Nature cell biology. 2011; 13(9):1016—23. doi: 10.1038/ncb2329 PMID: 21892142;
PubMed Central PMCID: PMC3249400.

Bres V, Yoh SM, Jones KA. The multi-tasking P-TEFb complex. Current opinion in cell biology. 2008;
20(3):334—40. doi: 10.1016/j.ceb.2008.04.008 PMID: 18513937; PubMed Central PMCID:
PMC2628440.

Rahl PB, Young RA. MYC and transcription elongation. Cold Spring Harbor perspectives in medicine.
2014; 4(1):a020990. doi: 10.1101/cshperspect.a020990 PMID: 24384817.

Cao Z, Lindsay JG, Isaacs NW. Mitochondrial peroxiredoxins. Sub-cellular biochemistry. 2007;
44:295-315. PMID: 18084900.

Go YM, Jones DP. Redox compartmentalization in eukaryotic cells. Biochimica et biophysica acta.
2008; 1780(11):1273-90. doi: 10.1016/j.bbagen.2008.01.011 PMID: 18267127; PubMed Central
PMCID: PMC2601570.

Miranda-Vizuete A, Damdimopoulos AE, Spyrou G. The mitochondrial thioredoxin system. Antioxi-
dants & redox signaling. 2000; 2(4):801-10. PMID: 11213484.

Raha S, Robinson BH. Mitochondria, oxygen free radicals, and apoptosis. American journal of medi-
cal genetics. 2001; 106(1):62—70. doi: 10.1002/ajmg.1398 PMID: 11579426.

Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends in biochemical
sciences. 2000; 25(10):502—-8. PMID: 110504 36.

Pitkanen S, Robinson BH. Mitochondrial complex | deficiency leads to increased production of super-
oxide radicals and induction of superoxide dismutase. The Journal of clinical investigation. 1996;
98(2):345-51. doi: 10.1172/JCI118798 PMID: 875564 3; PubMed Central PMCID: PMC507436.

Robinson BH. Human complex | deficiency: clinical spectrum and involvement of oxygen free radicals
in the pathogenicity of the defect. Biochimica et biophysica acta. 1998; 1364(2):271-86. PMID:
9593934.

Irani K. Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive
oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circulation
research. 2000; 87(3):179-83. PMID: 10926866.

Sarsour EH, Kumar MG, Chaudhuri L, Kalen AL, Goswami PC. Redox control of the cell cycle in
health and disease. Antioxidants & redox signaling. 2009; 11(12):2985-3011. doi: 10.1089/ARS.
2009.2513 PMID: 19505186; PubMed Central PMCID: PMC2783918.

Liu L, Ulbrich J, Muller J, Wustefeld T, Aeberhard L, Kress TR, et al. Deregulated MYC expression
induces dependence upon AMPK-related kinase 5. Nature. 2012; 483(7391):608—12. doi: 10.1038/
nature10927 PMID: 22460906.

PLOS ONE | DOI:10.1371/journal.pone.0134049 July 31,2015 29/29


http://dx.doi.org/10.1210/me.2009-0437
http://www.ncbi.nlm.nih.gov/pubmed/20382893
http://www.ncbi.nlm.nih.gov/pubmed/12833045
http://www.ncbi.nlm.nih.gov/pubmed/16380484
http://www.ncbi.nlm.nih.gov/pubmed/11724780
http://dx.doi.org/10.1038/ncb2329
http://www.ncbi.nlm.nih.gov/pubmed/21892142
http://dx.doi.org/10.1016/j.ceb.2008.04.008
http://www.ncbi.nlm.nih.gov/pubmed/18513937
http://dx.doi.org/10.1101/cshperspect.a020990
http://www.ncbi.nlm.nih.gov/pubmed/24384817
http://www.ncbi.nlm.nih.gov/pubmed/18084900
http://dx.doi.org/10.1016/j.bbagen.2008.01.011
http://www.ncbi.nlm.nih.gov/pubmed/18267127
http://www.ncbi.nlm.nih.gov/pubmed/11213484
http://dx.doi.org/10.1002/ajmg.1398
http://www.ncbi.nlm.nih.gov/pubmed/11579426
http://www.ncbi.nlm.nih.gov/pubmed/11050436
http://dx.doi.org/10.1172/JCI118798
http://www.ncbi.nlm.nih.gov/pubmed/8755643
http://www.ncbi.nlm.nih.gov/pubmed/9593934
http://www.ncbi.nlm.nih.gov/pubmed/10926866
http://dx.doi.org/10.1089/ARS.2009.2513
http://dx.doi.org/10.1089/ARS.2009.2513
http://www.ncbi.nlm.nih.gov/pubmed/19505186
http://dx.doi.org/10.1038/nature10927
http://dx.doi.org/10.1038/nature10927
http://www.ncbi.nlm.nih.gov/pubmed/22460906

