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Over the last few years, shale gas has become one of the most important energy sources in the 

United States, and advances in related technologies have led to an unprecedented economic 

boom in several parts of the country. On the other hand, the shale gas sector and its unique 

extraction technologies are still relatively young, and there are a number of concerns from the 

public about several aspects of the shale gas industry such as hydraulic fracturing, methane 

emission and waste management. The objective of this thesis is to present a comprehensive and 

objective study of shale gas and its entire supply chain, including the various material flows 

within it, in order to motivate safety, cost-savings and operational efficiency improvement. 

The study begins with an introduction to the basic background of the petroleum, natural 

gas and shale gas industry and goes on to describe the process of shale gas production and map 

its supply chain, starting with initial exploration to identify a potential drilling location and 

ending with the delivery of the natural gas to end-use customers. We present detailed flow of 

various materials and when possible, costs in the shale gas supply chain as a first step toward 

planning for its efficient operation. We also span a wide range of topics including environmental 

effects and safety, public health implications of unconventional gas extraction, the upgraded 

equipment and techniques to reduce environmental pollution, the use pattern of shale gas, 

fluctuations in its price, and its implications on sustainable energy. We end with a detailed case 
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study of distributed power generation from Marcellus shale, and discuss how natural gas can 

play a key role in bridging the gap between coal/petroleum based energy and renewable energy. 

As a more reliable and cheaper alternative to renewable energy today, and as a more 

environmentally friendly alternative to other fossil fuels such as coal and petroleum, shale gas 

has the potential to be a solution to the energy gap in the near future. 
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1.0  INTRODUCTION 

The goal of this thesis is to describe the process of shale gas production and to study its supply 

chain, starting with the exploration of a potential drilling location and ending with the delivery of 

the natural gas to end-use customers. The thesis overviews the process and details the flow of 

various materials in the shale gas supply chain as a step toward planning for its efficient 

operation. It also discusses how natural gas plays a key role in bridging the gap between 

coal/petroleum based energy and renewable energy. 

1.1 PETROLEUM AND NATURAL GAS 

Petroleum is a yellow to black liquid that develops naturally over millennia in geological 

formations beneath the surface of the earth. It is extracted and typically, then refined into various 

types of fuels. The term “petroleum” often covers naturally occurring unprocessed crude oil as 

well as products obtained from it. Crude oil is a mixture of hydrocarbons generated over 

centuries from dead plants and animals that lived millions of years ago. It is a fossil fuel that 

exists in liquid form in underground pools or reservoirs, within sedimentary rocks, or near the 

surface in tar (or oil) sands. Although petroleum products can be obtained from coal or biomass 

as well, they are primarily classified as fuels and other products that are made from crude oil as 

well as natural gas (EIA, Oil and Petroleum Products, 2015). After crude oil is collected from the 
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ground, it is transported to a refinery where it is processed and separated into different kinds of 

useable petroleum products such as gasoline, diesel fuel, heating oil, jet fuel, petrochemical 

feedstock, waxes, lubricating oils, and asphalt. 

Petroleum products have been used since ancient times. According to Herodotus and 

Diodorus Siculus, asphalt was used in the construction of the towers and walls of Babylon more 

than 4000 years ago. In addition, oil pits were found near Ardericca (near Babylon), and a pitch 

spring was discovered on Zacynthus. There are many allusions to the use of natural gas as 

alighting and heating resource in ancient China and Japan. The first mention of petroleum in 

America was by Sir Walter Raleigh in 1595, while the first important commercial exploitation of 

oil was at Alfreton, Derbyshire by James Young in 1850, when he patented his process for the 

manufacture of paraffin. Starting from around the middle of the nineteenth century, the 

petroleum industry in the United States began to grow rapidly. The reported crude petroleum 

production in the United States was “2000 barrels in 1859; 4,215,000 barrels in 1869; 19,914,146 

barrels in 1879; 35,163,513 barrels in 1889; 57,084,428 barrels in 1899; and 126,493,936 barrels 

in 1906” (Chisholm, 1910). In 2015, around 3.44 billion barrels of crude oil were produced in the 

United States (EIA, Crude Oil Production, 2016). 

Natural gas is currently one of the major sources for petroleum-based fuels. It was 

naturally formed from the carbon and hydrogen molecules of ancient organic matter millions of 

years ago and is currently trapped inside geological formations as a combustible mixture of 

various hydrocarbon gases (NaturalGas.org, Overview of Natural Gas, 2013). The appearance of 

natural gas started in the Middle East in ancient times when it was viewed as a supernatural 

manifestation. It gave the impression of a mysterious fire bursting from fissures in the ground 

when it was ignited. Seeping natural gas was found in Iran between 6000 and 2000 BC, and its 
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applications started 2500 years ago in China, where people collected it from natural seeps using 

bamboo pipes and used it to boil ocean water to get salt. Natural gas was first known in Europe 

when it was discovered in England in 1659. In 1815, natural gas was found in the United States 

in Charleston, West Virginia when a salt-brine well was being dug. The first natural gas well was 

drilled six years later in 1821, and in 1858, the first natural gas company in the United States was 

established in New York. The 19th century was the starting point of the gas industry, and huge 

amounts of natural gas were found in Texas and Oklahoma in the early 1900s. After World War 

II, the natural gas industry grew rapidly because of the development of natural gas infrastructure. 

It also started to replace oil due to the shortages of crude oil in the late 1960s and early 1970s. 

Today, natural gas is considered as one of the cleanest, safest, and most efficient sources of 

energy (Mokhatab, Poe, & Mak, 2015) 

As shown in Table 1, the composition of natural gas in different wells can vary widely 

before it is refined, but it typically includes methane, ethane, propane, butane and pentane. As 

gas is removed from a reservoir, the compositions might vary even in the same well. 

 

Table 1. Typical Composition of Natural Gas 

Methane CH4 70-90% 

Ethane C2H6 

0-20% 
Propane C3H8 

Butane C4H10 

Pentane C5H12 

Carbon Dioxide CO2 0-8% 

Oxygen O2 0-0.2% 

Nitrogen N2 0-5% 

Hydrogen sulfide H2S 0-5% 

Rare gases A, He, Ne, Xe trace 
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The primary component of natural gas is methane. Methane is a colorless, odorless gas-

form molecule at room temperature (approximately 70°F/21°C) and standard pressure (an 

absolute pressure of exactly 100 kPa) made up of one carbon atom and four hydrogen atoms, i.e., 

CH4. Methane is combustible and the reaction between methane and oxygen when methane is 

burnt is as follows: 

CH4[g] + 2 O2[g] -> CO2[g] + 2 H2O[l] + 891 kJ 

Every molecule of methane (CH4) reacts with two molecules of oxygen (O2) in gas form and 

produces one molecule of carbon dioxide (CO2) in gas form and a unit of water (H2O) in liquid 

form. The reaction also releases a great deal of energy (891 kJ per unit). 

Natural gas is referred to as “wet” gas when other hydrocarbons are present along with 

methane in significant quantities. After these other hydrocarbons are removed, i.e., when it is 

almost pure methane, it is referred to as dry gas. To get to the final customer, gas must be 

processed into uniform quality gas that has specific quality measures so that it can be transported 

via pipelines, which constitute the main mode of transportation for natural gas.  

Characteristics of natural gas are measured in many different ways. As gas, its quantity 

can be measured by the volume in cubic feet when it is at standard temperature and pressure. 

Production and distribution enterprises usually measure natural gas in thousands of cubic feet 

(Mcf), millions of cubic feet (MMcf), or trillions of cubic feet (Tcf). As a supply of energy, 

natural gas can also be measured by potential energy output. It is commonly expressed in British 

thermal units (Btu): one Btu is the energy required to increase the temperature of one pound of 

water at or around 39.2 degrees Fahrenheit by one degree Fahrenheit at normal pressure. When 

used to measure gas it corresponds to the amount of natural gas that will produce this exact 

amount of energy. Typically, one cubic foot of natural gas corresponds to 1,027 Btus. Finally, for 
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billing purposes natural gas is measured by gas utilities in ‘therms’ when delivered to a 

residence. A therm is equivalent to 100,000 Btu, or approximately 97 cubic feet. In addition to 

residential use, the natural gas is also commonly used for electric power generation, and as 

industrial, commercial, and vehicle fuel. 

We present a detailed description of natural gas production in Section 2.2.1, and describe 

the processing of natural gas from wellhead gas to dry gas in Section 2.2.2.We then discuss the 

distribution and storage of natural gas in Sections 2.2.3 and 2.2.4, respectively.  Additionally, in 

Chapter 4 we discuss the use and price fluctuation of natural gas and how natural gas can bridge 

the gap between coal/petroleum based energy and renewable energy. 

1.2 SHALE GAS 

As shown in Figure 1, oil and natural gas can be classified as either conventional or 

unconventional. This depends upon the geological formations from which it is extracted. 

Conventional natural gas can be found in carbonates, sandstones, and siltstones and is typically 

located in deep reservoirs and is associated with crude oil. It is generally easier to produce by 

releasing gas from several small porous zones in naturally developed rock formations. 

Unconventional gas on the other hand, comes from coal (also known as coal-bed methane), tight 

gas sands, gas hydrates and shale. The different types of unconventional gas all contain large 

amounts of natural gas. However, when compared to conventional reservoir rocks, it is usually 

more difficult to extract. In particular, shale gas is the kind of unconventional natural gas 

produced from shale, a “fine-grained sedimentary rock that forms from the compaction of silt 
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and clay-size mineral particles” (EIA, Energy in Brief, 2015). Black shale often contains organic 

material, and the pores in it can trap the oil and natural gas developed from the organic material. 

 

 

Figure 1.  Range of Conventional and Unconventional Hydrocarbons 

 

Around the year 2000, natural gas started to be produced on a large scale from shale in 

the Barnett Shale in north-central Texas. This was pioneered by the Mitchell Energy and 

Development Corporation (EIA, Energy in Brief, 2015). During the 1980s and 1990s, Mitchell 

Energy experimented with alternative methods of hydraulic fracturing in the Barnett Shale, and 

by2000, the firm had developed a hydraulic fracturing technique that could produce commercial 

natural gas from the shale. Following Mitchell, other companies began to drill wells in the 

Barnett Shale, as a result of which it was producing almost half a trillion cubic feet (Tcf) of 

natural gas per year in 2005. As companies developed their confidence in profitable natural gas 

production in the Barnett Shale, they started to expand to other shale locations such as 

Fayetteville in northern Arkansas, Haynesville in eastern Texas and northern Louisiana, 

Woodford in Oklahoma, Eagle Ford in southern Texas, and the Marcellus and Utica Shales in 

Ohio, Pennsylvania, West Virginia and New York. Figures 2 and 3 illustrate the distribution of 
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shale gas plays in the lower forty-eight states and the dry gas production from each kind of shale 

between 2000 and 2016. Today, advanced technologies are able to provide more accurate 

estimates of reservoir capacities and are making production of unconventional natural gas much 

easier and more efficient. In particular, hydraulic fracturing is playing the most important role in 

shale gas production. 

 

 

Figure 2.  Lower 48 States Shale Plays 

(EIA, Energy in Brief, 2015) 
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Figure 3. U.S. Dry Shale Gas Production 

(EIA, Energy in Brief, 2015) 

 

1.3 HYDRAULIC FRACTURING 

Hydraulic fracturing (also called hydrofracturing, hydrofracking, fracking or frac’ing) is a 

reservoir stimulation technique that uses pressurized liquid to fracture the rock. As shown in 

Figure 4, the processes involved in hydraulic fracturing include the high-pressure injection of 

hydraulic fracturing fluid - primarily water, along with a mixture of sand or ceramic beads to 

serve as a propping agent, and chemicals that mainly serve to reduce friction -through a 

wellbore, and a horizontal casing that is perforated to allow the fluid to flow through the 

perforations and create deep cracks in the rock formations that contains natural gas. After the 

hydraulic pressure is removed from the wellhead, natural gas begins to flow up to the well 

(Gandossi, 2013). 
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Figure 4. Hydraulic Fracturing 

(EPA, The Hydraulic Fracturing Water Cycle, 2016) 

 

 Although the term “hydraulic fracturing” started to become more common around 2000, 

when this process began to be used to produce commercial natural gas in the Barnett Shale in 

north-central Texas, the technique itself is not totally new. Hydraulic fracturing has been a well-

established technique for more than 6 decades. The first use of hydraulic fracturing as a 

stimulation technique was in 1949 by Stanolind Oil. Since then, close to 2.5 million fracture 

treatments have been used worldwide in approximately 60% of all wells drilled today, increasing 

the production rate and adding to the US recoverable reserves of oil by at least 30% and to the 

recoverable reserves of gas by 90%.  

Fracturing can be traced back to the 1860s when liquid (and subsequently, solidified) 

nitroglycerin (NG) was used to stimulate hard and shallow rock wells in Pennsylvania, New 
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York, Kentucky, and West Virginia (Watson, 1910).Although NG was extremely hazardous, it 

was spectacularly successful for oil well shooting, where the objective was to separate the oil-

bearing formation to increase both initial flow and subsequent oil recovery. The same fracturing 

principle was soon used with similar effectiveness to water and gas wells. In the 1930s, people 

started to try to inject fluids (acid) that were not explosive into the ground to stimulate a well and 

leave a flow channel to the well, thus enhancing its productivity (Montgomery & Smith, 2010).  

In 1947, Floyd Farris of Stanolind Oil and Gas Corporation (Amoco) performed in-depth 

research to establish a relationship between observed well performance and treatment pressures. 

Based on this study, Farris came up with the idea of hydraulically fracturing a formation (rock, 

for example) to promote production from oil and gas wells. In 1948, the hydraulic fracturing 

process was broadly recognized by the oil and gas industry, thanks to the paper written by J.B. 

Clark of Stanolind Oil. A year later, in 1949, a patent was issued with an exclusive license 

granted to the Halliburton Oil Well Cementing Company (HOWCO) to use the new hydraulic 

fracturing technique. HOWCO performed the first two commercial fracturing treatments. The 

first treatment cost $900 and was in Stephens County, Oklahoma, and the second cost $1,000 and 

was performed in Archer County, Texas on March 17, 1949, using lease crude oil and a mixture 

of gasoline, crude, and 100 to 150 lbm of sand. Soon after that, 332 wells were treated, and the 

average production was increased by 75%. Applications of the fracturing process rose rapidly 

and increased the oil supply in the United States. During the middle 1950s, treatments were used 

in more than 3,000 wells within a month for stretches. In 2008, more than 50,000 hydraulic 

fracturing stages were completed at a cost of between $10,000 and $6 million around the world. 

In addition, a single well usually has from 8 to more than 40 different stages (Montgomery & 

Smith, 2010). 



 11 

 However, although hydraulic fracturing is not totally new, the technique is constantly 

evolving and expanding at an unprecedented rate, so that the industry is larger than ever. 

Directional drilling and new additional chemicals are being applied and the amount of water used 

is much larger (Crawford, 2013).In the past, the average fracture treatment only contained 

approximately 750 gal of fluid and 400 lbm of sand, while average fracture treatment today use 

nearly 60,000 gal of fluid and 100,000 lbm of propping agent. Some of the largest treatments 

even exceed 1 million gal of fluid and 5 million lbm of propping agent. Similarly, hydraulic 

horsepower (hhp) per treatment has increased from approximately 75 hhp to more than 1,500 

hhp, and in some cases it is even around 15,000 hhp (Montgomery & Smith, 2010).  

We provide a detailed description of hydraulic fracturing technologies and treatment in 

Section 2.1.4. 

1.4 THE SHALE GAS INDUSTRY 

Shale gas has become an important natural gas resource in a booming expansion within the 

United States due to the application of new techniques such as horizontal drilling and hydra-

fracking. The development of the industry has had a huge impact on the US economy and 

society, and its future expansion is expected to be rapid. 

As shown in Figure 5, in 2007, when shale gas was first considered as a supply of natural 

gas by EIA, only 8.07% of natural gas gross withdrawals were from shale gas wells, but by 2014, 

the proportion had rapidly risen to 43.88%.  This was matched by a decrease in natural gas gross 

withdrawals from traditional gas wells from 60.79% to 33.13% (EIA, Natural Gas Gross 

Withdrawals and Production, 2016). 
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Figure 5.Natural Gas Gross Withdrawals Shares from Shale Gas Wells and Gas Wells 

Data Source: (EIA, Natural Gas Gross Withdrawals and Production, 2016) 

 

The shale gas industry has resulted insignificant direct and indirect economic effects in 

the form of major enhancements to opportunities in job creation, fiscal recovery, infrastructure 

optimization, economic sustainability and viability (Seydor, et al., 2012). Due to this fact and its 

environmental advantages over coal and to a lesser extent, over petroleum, a long-term increase 

in shale gas development is predicted for the future. Capital of nearly $1.9 trillion is expected to 

be invested in shale gas, leading the share of shale gas to reach an expected 60% of total natural 

gas production, and to the support of nearly 1.6 million jobs by 2035 (IHS Global Insight, 2011). 

However, the industry is also now witnessing a different set of forecasts for the future 

from some sources because of the trend of declining natural gas prices since 2007, when shale 

well drilling started to expand on a major scale. According to the U.S. Energy Information 
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Administration (EIA, Natural Gas Prices, 2016), the wellhead price, before it discontinued being 

estimated in January 2013, had dropped by nearly 60% from $6.25 to $2.66. From 2007 to 2015, 

the average residential price in a calendar year had dropped from $13.08 to $10.38; the yearly 

commercial price had decreased from $11.34 to $7.89; the yearly industrial price had dropped 

from $7.68 to $3.84; and the price of gas used for electric power generation had fallen from 

$7.31 to $3.37, respectively. In particular, the monthly average prices in 2015were consistently 

trending lower than those in the same month in 2014, as illustrated in Figure 6. From the 

viewpoint of profitability, the aforementioned fact is increasing the interest in cost-savings and 

operational efficiency improvement, which requires a comprehensive understanding of the shale 

gas supply chain from the extraction at the gas well to the distribution of final product to the end 

customer. 

 

 

Figure 6. Monthly Natural Gas Price in 2015 and 2014 

Data Source: (EIA, Natural Gas Prices, 2016) 
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Prior research has explored the direct economic impact of the shale gas value chain at the 

well. This work was based on extensive field research, including a site visit and interviews with 

industry participants in Pennsylvania, which has the majority of Marcellus Shale gas reserves 

(Hefley, et al., 2011).  In other work the major supply chain components, supplier resources and 

characteristics were identified and analyzed from the leasing, acquisition and permitting of a 

shale gas well to the natural gas distribution and marketing stages (Seydor, et al., 2012). This 

work also mainly focused on Pennsylvania and its neighborhood area. Cafaro & Grossmann use 

a case study with actual data to analyze the supply chain strategy related to new facilities 

location and capacity, determining the number of shale gas wells to run, and water management 

during drilling (Cafaro & Grossmann, 2014). While these studies have focused on various stages 

or aspects of the supply chain, there is no comprehensive work on the entire supply chain, 

including the various material, information and financial flows within it, a mapping of the value 

stream from source to customer, and the linking of the supply chain to the external environment 

in order to reach cost-savings and operational efficiency improvement.  Addressing some of 

these issues is one of the goals of this research. 

The basic concepts behind a supply chain –and the shale gas supply chain in particular – 

are introduced at the beginning of Chapter 2. We consider the supply chain in two separate 

stages – a transient one and a stable one – and a detailed description of each is provided in the 

rest of this chapter. Their associated material flows are discussed in Chapter 3. Finally, methane 

emission, usage patterns and price fluctuations of natural gas, and how natural gas plays a key 

role in bridging the gap between coal/petroleum based energy and renewable energy are 

discussed in Chapter 4. 
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2.0  SHALE GAS SUPPLY CHAIN 

A supply chain is defined as the network of operations performed by companies or organizations, 

which connect the suppliers to the end-use customers; it requires the management of material, 

information and financial flows across all the players involved in the network (Nahmias & 

Olsen, 2015). Traditionally called logistics, the aforementioned management issues emerged 

with the industrial revolution; however, the term supply chain management is relatively recent 

and dates to the late 1980s. The goal of supply chain management is to achieve a balance 

between low operational costs and a high level of service, since in most cases simultaneously 

optimizing both of these is not feasible. Common topics in supply chain management include 

sourcing, inventory control, production planning, distribution, and sales. 

A supply chain is typically identified as three segments. First, the upstream segment is 

where we source and procure raw materials, components, and subcomponents from external 

suppliers. Second, the midstream segment is where actual manufacturing and assembly take 

place.  Finally, the downstream segment is where distribution and sales to the customer take 

place.   

As shown in Figure 7, the uniqueness of the shale gas supply chain makes it necessary to 

further divide it into two separate supply chains according to the status of gas wells, and each of 

these two chains is studied in more detail in the following sections. 
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Figure 7. Shale Gas Supply Chain 

 

1) The former, or transient supply chain, describes the segments from the 

exploration of a potential drilling location until the completion of well construction and the 

beginning of production. Although this supply chain exists only for a limited amount of time for 

a given well, it is replicated at multiple locations over time and is significant because this is the 

specific aspect in which shale gas with its unique drilling approach is different from 

conventionally produced natural gas. Critical environmental issues, pad location planning, and 

water and chemicals management during hydraulic fracturing are examples of important issues in 

this supply chain. 

2) The latter, or stable supply chain, corresponds to the production of gas in steady 

state and its sales to the end customers. This is largely similar to the supply chain for 

conventional gas wells, but the boom in shale gas production and the large quantities of gas 

being injected into the market presents significant opportunities in locations such as the 

Marcellus Shale region. Figure 8 depicts the facilities involved in the stable supply chain. The 

upstream segment of the stable supply chain corresponds to the production section at the 
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wellhead. The midstream segment involves the processing and storage sections. The downstream 

segment corresponds to the distribution to different types of gas consumers. While our focus is 

not on this supply chain because it is not specific to shale gas, we do study the downstream 

portion a little further because of the effect that the increased production of shale gas is having 

on consumption by the end user.  

 

 

Figure 8. Stable Shale Gas Supply Chain 
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2.1 THE TRANSIENT SUPPLY CHAIN 

The transient supply chain refers to the supply chain that exists for the duration from when 

exploration commences to when construction and fracking of the well are completed and steady 

gas flow commences. It is distinct from other natural gas supply chains because of the unique 

characteristics of horizontal drilling and hydraulic fracturing. The typical transient supply chain 

for shale gas starts with the exploration phase where potential well locations are evaluated.  After 

the geological evaluation and the identification of the well site, the next steps are leasing, 

acquisition and permitting. Once a permit is issued, site preparation and construction can be 

started. After the site has been prepared and the well pad has been completed we come to the two 

key parts of the transient supply chain: (horizontal) drilling and hydraulic fracturing.  With the 

latter, issues such as the volume of water usage, quality of produced water, and disposal and 

reuse of water need to be considered carefully. When hydraulic fracturing is done, and the 

completion of the site is accomplished, the well is ready to produce gas at a steady rate. 

The average time from the exploration of a potential gas well site to its completion 

normally ranges from approximately 18 months to 2 years. The initial stages of exploration, 

leasing and permitting, and site construction take up a majority of this time. Once the drilling of 

the well begins, the time needed to finish drilling is relatively small and this time has continued 

to decrease with improvements in technology. It used to take as much as 20 to 30 days on 

average to drill one well, so that drilling a multi-well pad with eight wells for example, could 

take several months. While there are variations that depend on the geology of the site, the time to 

drill a well has been decreasing and today it could be as low as7 days. A pad usually has 6 to 15 

wells depending upon the geological features of its location. Fracturing and completion both 

takes several weeks. 
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2.1.1 Leasing, Acquisition, and Permitting 

The first stage in the transient chain corresponds to the identification of a potential site at which 

to drill a gas well, when geologists determine which locations might contain a gas reservoir. 

Once a location is identified, the shale gas well operator must obtain top land access and mineral 

rights. A fixed percentage of revenues from produced gas are paid to the land-owner as royalty 

and this royalty is also negotiated as part of the mineral lease agreement. The royalty might 

range from 12.5% to 25% and does not get paid until production begins.  

Once land rights are successfully obtained, techniques such as 3D seismic operations are 

used to study the surface. Reservoir engineers and geologists then study the potential amount of 

gas in the area. The well pad is strategically located while ensuring proper distances from water 

sources and designated environmental areas.  

Operators are typically required to post collateral in the form of a bond for all activities in 

the pre-drilling, drilling, and post-drilling stages as per drilling regulations. The operator’s 

permit application is usually required to include details of the location and nearby locations that 

could be considered as being environmentally sensitive; this includes biodiversity hotspots, coal 

seams, and watersheds. Once the application is reviewed and approved, the operator can begin to 

organize the site construction. 

2.1.2 Site Construction 

Once all the paperwork is completed, the process of site construction begins, when civil 

engineers and construction workers begin to prepare the surface. The site construction typically 

includes activities related to erosion control, road construction, and infrastructure and facilities 
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construction. At first, erosion control is installed for the purpose of protecting nearby highways 

and water resources (such as streams and creeks) from any potential damage that could be caused 

by the distribution of sediments and soil. The type of silt protection to be utilized is determined 

and could be in the form of either silt socks or silt fences. Silt socks are plastic mesh “socks” that 

are typically filled with wood chips. On the other hand, silt fences are usually black fabric fences 

that are held up by wooden stakes, or alternatively, they could be chain link fences with black 

fabric liners.  However, the latter would generally cost much more than the former in terms of 

both materials and installation. 

The next step is road construction, where an important goal is to minimize driving time to 

the pad while allowing ready access for heavy equipment. These are often private roads owned 

by the well operator. Once the road is built, equipment such as backhoes, bulldozers, blades, 

tractors, and rollers are moved to the site by a hauling company using heavy-duty trucks. This 

equipment is typically used to create the foundation for the pad. 

After all equipment arrives on site, it is typically stripped and grubbed. The stripping 

process cuts down any trees on the land; trees thicker than six inches in diameter are usually sold 

for lumber. Smaller trees can usually be used for wood chips. Grubbing removes brush and tree 

stumps. After this stage the location can be leveled. The soil on the top of the site that is stripped 

can be saved and reserved for replenishment of the same location after well-closure. The area is 

cleared, and the ground is covered with several protective layers.  Typically, there is a first layer 

of stone, followed by a layer of protective liner made from a combination of a geotextile fabric 

interwoven with a spray polyurea coating, and finally a mat made of advanced composites that 

serve to further protect against spills while also stabilizing the drilling rig that eventually goes on 

top of it. The protective liner creates a film barrier and serves as a secondary containment 
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structure to hold any spills, such as chemicals, drilling mud, and drill cuttings that are generated 

during later steps.  It also helps to absorb materials such as nuisance leaks, drips, and spills from 

mud tanks and frack tanks on contact, and prevents them from reaching the ground. 

Once the earthwork is done, the base of the pad is typically constructed using rock and 

stone that is usually 8 to 12 inches thick. A finer aggregate material that is often 3 to 4 inches in 

size is then installed on top of this and makes the pad look similar to a parking lot. Housing for 

workers to live and sleep in, infrastructure for cell phone, Internet and satellite TV connections, 

and other temporary infrastructure are built to support the well site for when operations will 

begin. A power generator is also set up to offer power throughout the later stages. 

2.1.3 Drilling 

Once the well pad is constructed, extensive site setup steps are completed prior to actual drilling. 

This includes construction of security fencing, tanks for mud, brine storage tanks, an onsite 

office, restroom accommodations, and of course, the actual drilling rig. Many specific products 

and services are required in each of these steps. 

A number of storage tanks are used to hold the lubricant (or “mud” as it is called) used in 

drilling and that is stored on site. This mud is a combination of water and bentonite clay. The 

specific number of storage tanks can be increased depending on the amount of fluid needed. The 

mud is used to lubricate the pipe and improve drilling rates when it is passed using hydraulic 

force generated by the circulating section. On a drilling rig, mud pumps are also used to circulate 

the mud, and air compressors are used to blow the air into the drill pipe to blow back the mud to 

the surface into a water bath along with soil cuttings. The soil cuttings are subsequently tested 

and separated from the mud, and either stored for reuse as ground-fill later on after the well is 
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completed, or as is the more common case with Marcellus wells, disposed of in landfills or other 

disposal sites. 

In traditional drilling, a mud pond is normally a trench lined with plastic that is used to 

store the water and cutting produced from drilling. It is constructed during site construction. In 

the mud pond, the cuttings and other heavy matter usually settle at the bottom during the 

treatment of the water. With horizontal wells the mud is separated from the other materials in 

specially designed separation tanks and moved into so-called roll-off boxes. Mud ponds and 

storage tanks must be designed to meet minimum standards that are specified for them. 

As one of the major components of the drilling phase, the drill rig itself is designed and 

set up to meet the requirements of vertical and horizontal drilling. Rigging is usually either 

portable or reusable across manufacturers and drilling companies. Various sizes of drill heads, 

pipes and casings are used.  The holes that are drilled have diameters that are reduced with depth 

so that each drill bit is replaced by a smaller one sequentially in the drilling process. As 

illustrated in Figure 9, once the well is drilled to a depth of around 5000 to 7000 feet it reaches 

the kickoff point where the change of direction occurs.  The drill-head then turns and follows a 

lateral layer of shale horizontally for several thousand feet; the lateral layer to be fractured is 

often about 100 feet thick. The bore is normally around 4″ to 6″ in diameter. Directional motors 

with bend angles of 2 to 3 degrees are used to change the direction of the pipe; the length along 

which such a change in direction happens can be as much as 1000 feet. Each well has a single 

bore so that each well has its own vertical and horizontal drilling sections. The well is then 

drilled horizontally to approximately two miles or less, depending on the surrounding geology. 

Typically, a pad could contain as many as 15 wells depending upon its location and geological 
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features, making the pad take the shape of a “spider”. It could take as few as 7 days to drill a 

single well. 

 

 

Figure 9. A Multi-Well Pad with 8 Wells 

 

During the process of drilling the well, the integrity of the bore is maintained by sinking 

steel pipes (known as casing) and surrounding these with concrete to protect ground water from 

contamination.  As shown in Figure 10, several layers of protective casing and cementing are 

required as protection. A conductor hole is drilled into the ground with a pile driver for a shallow 

depth of up to approximately 50 feet before erecting the drill rig so as to prevent the caving of 

soft rock. The conductor hole can also conduct mud from the bottom to the surface when drilling 

is conducted. A conductor casing is then cemented into place. Next drilling continues deeper and 
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the surface casing is then cemented in place starting from about 100 to 500 feet below the earth’s 

surface to protect fresh water reservoirs from being contaminated when the wellbore is drilled.  

A blow-out preventer is installed to protect against unexpected flows from deeper down, and as 

the drill goes deeper, intermediate casings are installed along the bore. Finally, the production 

casing is installed in the production zone along with a number of sophisticated geophysical tools 

used to gather various types of information; these are removed from the well once hydraulic 

fracturing is done. When drilling is completed the well is capped and after all wells in the pad are 

drilled the drilling rig is removed in preparation for fracking. At the same time, the gathering 

pipeline is laid out for when production will begin. 

 

 

Figure 10.Casing and Cement 
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2.1.4 Hydraulic Fracturing 

After drilling is done, the well operator can begin the shale gas well stimulation. If the market 

price for natural gas price is too low for a reasonable profit, well operators may choose to 

postpone fracking until a point in time when they think it would be profitable to get the gas 

flowing. Once the decision is made to start the gas flow, wells are prepared for hydraulic 

fracturing. In this process, fluid under high pressure is utilized to break up the shale rock 

formations in order to release the natural gas trapped inside the rock. Explosive charges are 

assigned to the designed location in the production casing to perforate the casing in order to 

move high-pressure fluid into the surrounding rock.  Fracturing fluid -primarily a mixture of 

water and sand, with a small amount of chemicals – is then injected at high pressure into rock 

formations that are deep underground to fracture them so that gas is released from the rocks and 

flows upwards under pressure. 

A major issue at this stage is the treatment of the flow back (the portion of the fracturing 

fluid that flows back). This can be reused in another fracturing job with or without pre-treatment 

depending on the fracturing fluid design, since the component content of the fluid is highly 

sensitive with respect to individual compositions. We present a detailed discussion about flow 

back treatment in Section 3.1.4. 

Fracturing was used as a stimulation technique approximately 60 years ago, and how it is 

done today and equipment used is similar today.  However, technological advances in hydraulic 

fracturing have enabled higher levels of efficiency, productivity  and safety today, and the 

technology continues to devlop rapidly. Examples include modifications made to accommodate 

higher pressures, long lateral lengths, more frack stages that are closer to each other, better silica 

control, better air quality with lower emissions, dissolving balls instead of plugs to avoid plug 
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drillouts, and sliding sleeves which do not require perforation prior to fracking. Somesignificant 

differences include (Crawford, 2013): 

• Directional Drilling 

Figure 11 depicts the difference between a traditional vertical well and a 

directional well. With fracking of traditional wells there was only a vertical section and 

only the area surrounding the well could be fractured.  With directional drilling the area 

that can be exploited is greatly increased and with multiple wells on the same pad this can 

be increased by an order of magnitude for a roughly similar surface footprint.  

 

 

Figure 11. Vertical Well and Directional Well 
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• High Volumes of Water 

A conventional (only vertical) gas well might typically use about 100,000 gallons 

of fracking water. On the other hand, millions of gallons of water are used in a well that 

uses hydraulic fracturing over a horizontal segment that could run for over a mile. 

Relative to environmental concerns, high volumes of fracking water are accompanied by 

challenges of higher environmental risks at each of the stages including water storage, 

transportation, disposal and recycling.  

• Fracking Fluid 

The main goal of the fluid in hydraulic fracturing is to penetrate and crack the 

shale surrounding the horizontal pipe, and to push sand into the cracks to keep them open 

so that natural gas can seep through the sand and run into the bore. The fluid used in this 

process is called hydraulic fracturing fluid and is mostly water with sand and some 

chemicals to lubricate the fracking water. These chemicals are added to make the fluid 

easier to pump down this very long and narrow bore and to maintain the required high 

pressure of around 6,000-10,000 psi until the end of the bore; this type of fracking fluid is 

also sometimes called slick water.  Without the lubricant the fluid will lose pressure due 

to friction as it flows through a pipe with a small diameter. After fracking is completed 

the fracking fluid is flowed back and stored in on-site tanks and then transported to points 

where it can be recycled or disposed. Generally speaking, anywhere between 15 and 

50%of fracking fluid flows back before gas production or returns later as produced water, 

the rest remain underground permanently(Marcellus-shale.us, 2016). 
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• Multi-pad Fracking Wells 

When fracking conventional wells, there is a single well per pad. With modern 

hydraulic fracturing today, multi-pad wells and directional drilling are commonplace, 

where a number of different wells (typically, ten or so each with its own horizontal 

section) are drilled from the same well pad. The surface footprint of a multi-pad well is 

not that much more than that of a single well in absolute terms, but a single multi-pad 

well with directional drilling has the potential to replace a number of single-bore 

conventional wells to generate the same amount of gas. The Marcellus Shale area was 

constructing about 4-5 wells per day, ramping up to 3,000-5,000 per year with the 

expected total number of wells to be roughly 40,000(Crawford, 2013). 

 

The types of fracturing fluid commonly being used include slick water, linear gel and 

cross linked gel (Momentive, 2012). A fluid such as gelled propane may also be used. Slick 

water is the most commonly used fracturing fluid in shale gas wells because of its low cost, low 

treating pressure, and lower risk. We present a more detailed description of slick water in Section 

3.1.3. 

Compression equipment is usually rented to increase the hydraulic pressure of the 

fracking fluid to between 10,000 and 15,000 psi in order to fracture the rock.  This is sometimes 

referred to as the “iron” and comprises a series of tractor trailers with compressors.  The fracking 

is done in horizontal stages. Each stage is approximately 200feet long, and a well can have 30 to 

60 horizontal stages.  When fracking is completed sometimes tubing is placed inside the casing 

to stimulate the production (as it starts to drop off), and submersible pumping equipment can also 
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be installed inside the tubing to further increase the flow of gas (this is also referred to as 

“artificial lift”). 

2.1.5 Completion 

Once hydraulic fracturing is completed, the flow back water (water, sand, soil, chemicals) has to 

be processed and the well is flowed up until enough water is removed so that it can start 

production operations. The gathering pipeline is laid out in order to collect the natural gas that 

flows out after the flow back of fracturing fluid; sometimes the laying of the gathering pipeline 

will be done during pad construction. Trees and vegetation are removed from where the operator 

plans to dig pipeline trenches. Individual joints of pipe are placed on pipe skids above the soil 

and then installed into the trenches. After all joints of pipeline are installed, the trenches are 

carefully backfilled. The layout of pipelines usually involves two separate trenches where two 

different types of pipelines are installed. The high-pressure pipeline is used to transport the 

initial, strong gas flow under high pressure, while the low-pressure pipeline is utilized for the 

later, weaker flow. 

After that, a “Christmas tree,” which is a combination of equipment containing multiple 

components of tubing head and casing head, is installed at the wellhead. Because the gases and 

liquids flow back at a high pressure, the “Christmas tree” must be able to withstand 2,000 to 

20,000 psi of pressure to protect the natural gas extraction from leaking and preventing blowouts 

at these high pressures. In addition, because of weather conditions and corrosive matter that 

might be present in the flow back, the “Christmas tree” must be made using corrosion-resistant 

materials that can operate in temperatures between-50°C (-58°F)and 150°C (302°F).  
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Once the wellhead and the gathering pipelines are complete, the ground is then refilled, in 

large part by using soil removed during the drilling process; the ground is usually covered in 

layers to avoid any potential pollution. Sometimes, the ground at a site is covered only with soil 

obtained from that same site in order to avoid environmental and ecological problems.   The well 

can actually start production at any time after flow back is completed, and site remediation can 

occur later. The gas that is produced is sent to processing plants as required, and then transported 

along interstate or intrastate pipelines. 

2.2 THE STABLESUPPLY CHAIN 

The stable chain refers to the chain from the production of gas to the delivery of final product to 

the end customer. Unlike the transient supply chain, the stable one is similar to traditional natural 

gas supply chains, as shown in Figure 12. However, the boom in the shale gas industry does have 

an impact on the economy in terms of factors such as infrastructure renewal and interfaces with 

existing industries. 

 

 

  Figure 12. Natural Gas Production and Delivery 

(EIA, Delivery and Storage of Natural Gas, 2014) 
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2.2.1 Production 

After hydraulic fracturing and completion, gas starts to flow up to the ground and is fed into a 

gathering pipeline through which it is transported to a processing plant, other pipelines, or an end 

user. In the initial stages the flow of shale gas is automatic due the natural pressure inside the 

shale, making the production of natural gas over time continuous.  However, the production rate 

changes over time. As shown in Figure 13, initially hydraulic fracturing releases the gas 

suddenly from the natural fracture networks and pores, thus causing a peak in gas production 

rate. After that peak, the shale rock’s naturally low permeability and gradual pressure loss 

combine to make the rate decline during the life span of the well, and eventually the gas needs to 

be compressed and pumped (artificial lift). 

 

 

Figure 13. Discrete-time Well Productivity Profile 

(Cafaro & Grossmann, 2014) 

 

In summary, the gas production rate at a single well is a decreasing function of the age of 

the well. Generally speaking, the production rate of an unconventional natural gas well typically 
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begins with a flush at the initial stage, then decreases exponentially and then flattens out after 3-5 

years. In the following decades, the well continues to produce gas at a relatively low rate, for 

over 20 years in some cases. The recovery rate is lower than conventional gas but technology 

advances will likely increase this (Bahadori, 2014). Research based on gas production in the 

Barnett Shale has also shown that the production rate of shale gas follows a simple scaling rule: 

in the early stages (typically 5 years), it declines as 1 over the square root of time; in the later 

stages the rate declines exponentially. The same study generated an accurate descriptive model 

for shale gas production that was consistent with 8,294 older wells in the Barnett Shale. Another 

2,057 younger wells showed the exponentially declining trend that is predicted by the scaling 

theory, while the remaining 6,237 wells in the analysis were “too young to predict when 

exponential decline will set in, but the model can nevertheless be used to establish lower and 

upper bounds on well lifetime.”(Patzek, Male, & Marder, 2013).However, a new round of 

hydraulic fracturing can enhance permeability and thus increase the production rate. The extra 

hydraulic fracturing when the production rate begins declining is called “refracking” or 

“refracturing” and can be expected to enable wells to increase production flow rates. 

In addition, there are other things that change over the life cycle of a gas well. As the 

reservoir of a well is depleted, although the composition of gas produced from the well is 

typically consistent, the quantities of different constituents may vary over time. The primary 

composition of shale gas is methane (CH4), but it also includes large quantities of ethane (C2H6), 

propane (C3H8), butane (C4H10), and pentane (C5H12). Hexane (C6H14) and heavier hydrocarbons 

might also be present. Many gases also have nitrogen (N2), carbon dioxide (CO2), hydrogen 

sulfide (H2S), and other sulfur components such as mercaptans (R-SH), carbonyl sulfide (COS), 

and carbon disulfide (CS2). There are three types of natural gas in the reservoirs: dry gas, which 
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is almost pure methane; wet gas, which is gas with other hydrocarbons and exists in liquid phase 

at surface conditions; and condensate gas, which is gas with a high content of hydrocarbon 

liquids. The primary product of natural gas after processing is dry gas (methane), and the 

byproducts are normally ethane and other natural gas liquids or NGLs (Mokhatab, Poe, & Mak, 

2015). 

Besides methane and common byproducts, gas reservoirs often contain water and 

hydrocarbons, thus gas wells produce water along with the production of gas, such water is 

called produced water, "brine", "saltwater", or "formation water." It is distinct from the initial 

flow back because it comes out with gas even after flow back stops, as long as the well is 

generating gas.  This produced water must be removed and often there is dehydration equipment 

on site to handle this processing. If the gas being produced is wet gas, then further processing is 

required to handle the heavier natural gas liquids.  Because the water was mixed with the 

hydrocarbon in the shale formation for a long time, it may have similar chemical characteristics 

of the shale formation and hydrocarbon. However, its chemical and physical properties vary 

significantly according to the type of hydrocarbon, geographic location, and formation of the 

shale. The properties and volume may even change through the lifetime of a reservoir. In 

general, the major constituents include dissolved salt and solids, various naturally organic or 

inorganic chemicals, and chemical additives utilized during hydraulic fracturing and drilling. 

Some produced water obtained in shale formations may also hold low level of natural 

radioactivity. The produced water needs to be treated in facilities designed for this purpose, 

transported, and then either reused or disposed. The total cost of managing produced water, 

including the construction and operation cost of facilities, permitting, monitoring and 

transportation, range from 1 cent per barrel to $5 per barrel depending on its properties and 
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location. By one estimate, approximately 21 billion barrels (882 billion U.S. gallons) of 

produced water are generated from about 900,000 wells in the United States per year (Colorado 

School of Mines, 2013). 

2.2.2 Processing 

To get to the final customer, gas may need to be processed into uniform quality gas, which has 

specific quality measures. Oil, water, natural gas liquids, and other impurities such as sulfur, 

helium, nitrogen, hydrogen sulfide, and carbon dioxide are typically removed during processing 

at either the well site or a processing plant (Mokhatab, Poe, & Mak, 2015). The processes to 

transform wellhead natural gas to pipeline-quality dry natural gas include (EIA, Delivery and 

Storage of Natural Gas, 2014): 

• Gas-oil-water separators 

In a one-stage separator, pressure relief separates gas from oil. However, a 

multiple stage separation process is necessary to separate different fluid streams in some 

cases. 

• Condensate separator  

Condensates are often removed from the gas stream directly from the wellhead by 

using separators much like the gas-oil-water separator. Extracted condensate is stored in 

tanks. 

• Dehydration 

To avoid condensation and hydrates in the pipeline, dehydration is applied to 

eliminate water. 
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• Contaminant removal 

Contaminant removal includes the elimination of hydrogen sulfide, carbon 

dioxide, water vapor, helium, nitrogen, and oxygen to acceptable levels typically using 

techniques to direct the flow in a tower containing an amine solution. Hydrogen sulfide 

and carbon dioxide are absorbed by amines from natural gas. Amines can be recycled and 

reused. 

• Nitrogen extraction 

Molecular sieve beds are used to dehydrate Nitrogen in a Nitrogen Rejection Unit 

(NRU). 

• Methane separation 

To separate methane from natural gas liquids, cryogenic processing and 

absorption methods are applied in the gas plant or in the NRU operation. 

• Fractionation 

Fractionation is the process of separating various components of the NGL stream 

by using different boiling points of the individual hydrocarbons and temperature control. 

In the year 2014, there were 19,754,802million cubic feet of natural gas processed in over 

500 operational natural gas processing plants with combined operating capacities of 

approximately 77 billion cubic feet (Bcf) per day(over trillion cubic feet annually) in the United 

States(EIA, Natural Gas Processing Plants in the United States, 2011) (EIA, Natural Gas Plant 

Processing, 2015). However, the specific stages and techniques in each processing plant are 

highly sensitive to the composition of the wellhead natural gas; stages may be integrated into one 

unit, and operated in a different order or at different locations. In a specific gas well, some stages 
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can even be skipped. The various qualities of wellhead gas make the features and capacities of 

their nearby processing plants different, as shown in Figure 14, and the capacity of a natural gas 

processing plant can range from 0~50 mmcf/d to 8500mmcf/d in the United States.  

 

 

Figure 14. Natural Gas Processing Plants and Production Basins, 2009 

(EIA, Natural Gas Processing Plants in the United States, 2011) 

 

2.2.3 Gas Distribution 

After shale gas is processed into the standard quality, it needs to be brought to the market area 

via transmission pipes. In order to maintain the standard quality and monitor its condition, 

facilities such as compressor stations, metering stations, valves, and control stations are involved. 

Finally, a gas market hub is where natural gas is priced and sold to customers in an open market. 
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• Transmission Pipes 

Natural gas pipeline systems run from the gas well, through the processing plant 

and different receipt points, and finally to the principal customer areas. The natural gas 

transmission pipeline is used as the major mode for natural gas distribution. Pipelines can 

vary widely in diameter and distance depending on their types. The common types of 

transmission pipelines include (EIA, Delivery and Storage of Natural Gas, 2014): 

1) Intrastate natural gas pipelines, which operate and transport natural gas 

within a state. 

2) Interstate natural gas pipelines, which operate and transport natural gas 

across state lines. 

3) Hinshaw natural gas pipelines, which receive natural gas from interstate or 

intrastate pipelines and deliver it to consumers. 

After the natural gas is delivered to the consumption communities, it flows into 

smaller-scale pipelines named mains. Service lines, which are the smallest lines, connect 

the mains to the facilities where the natural gas is used.  

 

• Compressor Stations  

In order to maintain standard quality, especially the required high pressure, 

compression stations (also called pumping stations) are required at regular intervals along 

the pipelines, and are usually located 40 to 100 miles apart. Figure 15 provides a view of 

the distribution of natural gas compressor station. The pressures required for different 

pipelines can varying hugely: natural gas flows in interstate pipelines are compressed up 
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to 1,500 pounds per square inch (psi), while natural gas flows in the distribution network 

may have as little as 3 psi of pressurization or ¼ psi at the customer’s 

area(NaturalGas.org, Natural Gas Distribution, 2013). The size of compressor stations 

and the number of compressor engines (pumps) vary based on the diameters and types of 

the pipe and the volumes of gas flow.  

 

 

Figure 15. Natural Gas Compressors 

(EIA, U.S. Natural Gas Pipeline Compressor Stations Illustration, 2008) 

 

Generally speaking, there are three types of compression engines (INGAA, 2015):  

1) Turbine/Centrifugal Compressor 

The Turbine/Centrifugal Compressor uses a large fan inside a case to pump the 

gas as the fan is running.  In order to power the turbine, a small part of natural gas in 

the pipeline is burned to run the natural gas-fired turbine. 

 



 39 

 

2) Electric Motor/Centrifugal Compressor 

The Electric Motor/Centrifugal Compressor is driven by high-voltage electric 

motors.  No air emission permit is required for this type of compressor since no 

hydrocarbons are burned as the fuel to start the engine. However, the supply of 

electric power should be reliable enough to make these units feasible; such electric 

power supply must also usually be close to the compressor to lower the energy lost in 

electricity distribution. 

3) Reciprocating Engine/Reciprocating Compressor 

Reciprocating Engine/Reciprocating Compressors, also known as “recips,” are 

generally larger than any other type of compressor. Natural gas from the pipeline is 

used to start these automobile engines.  In a cylinder case on the side of the unit, 

natural gas is compressed by reciprocating pistons, which are connected to the power 

pistons along a common crankshaft.  One of the advantages of reciprocating 

compressors is that the gas volume pushed in the pipeline can be adjusted 

incrementally to meet changes in gas demand. 

 

• Metering Stations 

Along the interstate natural gas pipelines in which standard natural gas is 

transported over thousands of miles, metering stations are positioned periodically to 

allow enterprises to monitor the status and volume of the natural gas that is transported. 

The metering stations use specialized meters to measure the natural gas flow through the 

pipeline without impeding the movement and pressure of the gas flow (Seydor, et al., 
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2012). To measure the gas flow, the meters used in metering stations may include orifice 

meters, turbine meters, ultrasonic meters, or positive displacement meters (INGAA, 

2016). 

 

• Control Stations 

Sophisticated control systems are used to monitor and manage the gas through all 

sections along the transportation pipeline network. The control station can manage the 

natural gas entering into the pipeline and ensure the timely delivery of this gas to the 

customer. Data received from compressor stations and their monitoring systems are 

collected, assimilated and analyzed in the control station to accomplish the task of 

monitoring and controlling. Typically, this data is provided by the Supervisory Control 

and Data Acquisition (SCADA) system, which is a real-time system that can centralize 

the data measuring the flow rate, operational status, temperature and pressure in order to 

enable quick reactions to unusual activity such as equipment malfunctions or leaks, and 

even remote operation (Seydor, et al., 2012).  

 

• Valves 

Pipeline companies also install valves along the interstate natural gas pipeline 

system to offer a standard controlled flow. Regulations stemming from appropriate safety 

codes specify the distance between two valves and this normally ranges from 5 miles to 

20 miles. The valves are usually open except when a section of pipeline needs 

replacement or maintenance, at which time the valves are closed by operational engineers 

to isolate that section of pipeline. Once the section is isolated, the gas inside is normally 
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vented to make sure that the maintenance crew can finish the maintenance work 

(INGAA, 2016). 

 

• Hubs and Citygate 

Natural gas is normally traded and priced at more than 30 major market hubs 

throughout the United States at the intersection of the major pipeline system, as 

illustrated in Figure 16. The price of natural gas that is traded through the major hubs 

varies based on supply and demand. Traditionally, the price at the Henry Hub in 

Louisiana is considered as a measure of price for gas traded on the New York Mercantile 

Exchange (NYMEX) for physical delivery. In addition, the price difference between 

another hub and the Henry Hub is called the location differential. Figure 17 provides the 

price difference at key trading hubs from 2014 to 2015; generally speaking, the prices are 

roughly at the same level, but could occasionally be significantly different. A detailed 

discussion of natural gas prices is presented in Section 4.2. 
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Figure 16.  Natural Gas Market Centers and Hubs 

(EIA, Market Centers and Hubs, 2009) 

 

 

Figure 17.  Monthly Average Natural Gas Spot Price at Key Trading Hubs 

(EIA, Average annual natural gas spot price in 2015 was at lowest level since 1999, 2016) 
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On the other hand, natural gas can also be priced at the citygate, which is where a 

local distribution company receives gas from the pipeline. The citygate at a major 

metropolitan center offers another point for the natural gas delivery price. 

2.2.4 Storage 

Natural gas inventory is usually stored underground and used as a seasonal supply backup to deal 

with price fluctuations and supply shortages. There are three types of natural gas underground 

storage facilities usually used, as shown in Figure 18 (EIA, Delivery and Storage of Natural Gas, 

2014): 

• Depleted natural gas or oil fields 

Depleted natural gas or oil fields are the most common way to store natural gas as 

well as oil in the United States. They are usually close to consumption centers. 

• Salt caverns 

Salt caverns are widely used in the Gulf Coast states in the form of salt domes, 

while in the Midwest, Northeast, and Southwest, they are usually leached from bedded 

salt formations. Salt caverns offer large quantities of withdrawal and injection rates, 

compared to their working gas capacity. 

• Aquifers 

In the Midwest, aquifers are converted to gas storage reservoirs in the case that 

the impermeable cap rock overlays the water-bearing sedimentary rock. 
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Figure 18.Natural Gas Underground Storage Facilities 

(EIA, Delivery and Storage of Natural Gas, 2014) 

 

The purpose of natural gas storage is to accommodate natural gas price fluctuation as 

well as fluctuations in supply and demand. Figure 19 provides the relationship between natural 

gas price and storage volumes from 2000 to 2015. Generally speaking, a high price tends to lead 

to low storage and vice-versa, but there are occasional periods when the price and storage are 

both at high levels (e.g., summer of 2005). A detailed description of the influence of storage on 

price is presented in Section 4.2. 
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Figure 19.  Natural Gas Storage Levels and Corresponding Prices 

Data Source: (EIA, Weekly Natural Gas Storage Report, 2016) 
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3.0  FLOWS IN THE SUPPLY CHAIN 

As discussed in Chapter 2, we divide the shale gas supply chain into two parts: the transient 

supply chain, which is before production, and the stable supply chain that is after production. 

Once the well starts to produce gas, it is similar to traditional natural gas in terms of flows. 

However, the unique drilling and extraction approach has made the material and financial flows 

in the transient supply chain distinct from the traditional one. In this work, we focus primarily on 

the flows in the transient supply chain.  

While there are many arrangements possible for who does the work, ranging from well 

operators to their subcontractors and providers, the transient supply chain of shale gas is often 

highly subcontracted, i.e., the functions in this chain are typically spread across a number of 

different enterprises. Once the well operator completes the early steps of exploration, leasing, 

acquisition, and permitting, the later steps or large parts of the later steps are typically 

subcontracted to other companies with the well operator serving as an overall coordinator. In 

each such step, the well operator will typically pay another company a total price that is 

negotiated beforehand to do the specialty work that it has been employed to do. This 

arrangement applies to entities such as construction companies, a drilling company, pipeline 

providers, a perforation company, and a fracking company. Typically, the subcontractor will 

provide most of the materials involved as part of service. However, the well operator might also 

provide some of the components and materials such as drill pipe, drill bits, and small equipment 
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such as electrical, safety, metering and other such devices; these might be rented or purchased by 

the well operator.  

While subcontracting is common, there are also some operators (typically, large players 

like Shell and Exxon) who can be vertically integrated, and there are also a few companies (e.g., 

Halliburton) that provide comprehensive services. However, to minimize cost and risk, vertical 

integration tends to not be the norm, especially for smaller players.  Due to the instability and 

unpredictability of natural gas prices, the well operator might drill or frack many wells in a 

relatively short interval of time when the market price of natural gas is considered to be 

attractive, or shut in the well and stop drilling and fracking for a relatively long period when 

natural gas prices are at a lower level. The variation in operational demand and high specificity 

in different steps could result in huge labor costs and carry potential risks of mismatches between 

labor required and labor available. Thus, well operators, and especially smaller players in the gas 

exploration and production sector, tend to focus on organizing, negotiating and contracting with 

their subcontractors, and leave the specialized work to the specialist companies.  

The planning of the supply chain to support each of the stages in gas production can also 

be difficult because wells are typically located near small communities that might object to 

unusual disruptions such as heavy truck traffic. There are other complications as well; for 

example, even if the well itself is located in a remote location, trucks might not be allowed 

during the hunting season, so that all materials need to be delivered before this time. In addition, 

it is often hard to guarantee delivery times and quantities; so well operators tend to sign multi-

source contracts.  
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3.1 MATERIAL FLOWS 

The material flows in the transient supply chain of upstream natural gas usually have two 

characteristics. First, most of the large equipment on site is often rented. Such equipment is 

commonly provided, transported and maintained by the subcontractors. Second, a large portion 

of the materials and components used on site are on consignment. Thus, these items are 

transported and stored on site but the operator is charged only when they are actually used. This 

kind of a business model is popular in the shale industry because it allows well operators to 

eliminate inventory holding costs and reduce risks. On the other hand, the manufacturers also 

benefit because of the increased possibility of their product being used on account of it being 

conveniently available to the operator on site. 

The lead-times of the materials and devices that are purchased by the well operator are 

relatively short, given the fact that these are almost small devices such as electrical devices, 

safety devices, metering devices, and automatic devices. The normal lead-times are around one 

month, for some of the smaller and more common devices these could even be as short as 2 to 3 

days. A small portion of them could also have lead times as long as two months. In general, the 

lead-times of other materials are not an issue in planning since the early steps of exploration and 

permitting often take a sufficient amount of time to schedule the necessary reorder and 

compensate the lead-times. 

3.1.1 Site Construction 

Once all the paperwork is done, the well operator organizes the site construction. Table 2 lists the 

materials, components and equipment typically required during site construction. Each specific 
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operation might be the responsibility of a different company. The subcontractors often provide 

and rent out the equipment related to their work. These different kinds of equipment are usually 

transported to the site by a hauling company using heavy-duty trucks. However, items such as 

stone, rock, silt protection and protective layers are typically purchased by the well operator. In 

addition, Table 3 shows the by-products in construction. Typical by-products include wood chips 

and lumber as described in Section 2.1.2. 

 

Table 2. Material Flows in Site Construction 

No. Operation Material/Component

/Equipment  

Buy/ 

Lease 

Transportation Purpose 

1 Erosion 

control 

Erosion controls / Silt 

protection 

 

Buy Organized by 

operator using 

trucks 

To protect 

water resources 

2 Road 

Construction 

and Surface 

Preparation 

 

Backhoes, dozers, 

blades, tractors, 

grubbing, and rollers 

Lease By a hauling 

company using 

heavy-duty 

trucks 

To create the 

foundation for 

the pad 

Protective layers / 

liners  

 

Buy Organized by 

operator using 

trucks 

To protect the 

surface 

Stone and rock  

 

Buy Organized by 

operator using 

trucks 

To construct the 

pad 

3 Facility 

Construction 

 

 

Infrastructure for 

housing, cellphone 

and satellite TV 

connection 

Buy Trucks To support the 

well site when 

operations 

begin 

Communication tower 

and its components 

Buy Trucks To transmit and 

receive data 

Power generation 

 

Buy Trucks To offer power 
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Table 3. By-product in Site Construction 

Operations By-product Transportation Purpose 

 

Road 

Construction 

and Surface 

Preparation 

 

Trees smaller than six 

inches in diameter 

Trucks To be used for wood 

chips 

Trees thicker than six 

inches in diameter 

Trucks To be sold for lumber 

 

3.1.2 Drilling 

The drilling step is usually subcontracted to a drilling company, which is responsible for all 

aspects of the drilling operation and the required equipment; these are listed in Table 4. Materials 

such as water and drilling mud are also purchased and transported to the drilling rig by the 

subcontractor. However, some components and devices such as drill pipe and drill heads are 

often leased or purchased by the well operator and stored on site for use by the drilling company. 

While these components are utilized by the drilling company the well operator is responsible for 

any item damage or loss. The well operator also purchases materials such as casing, cementing 

and geophysical tools on consignment. 

 

Table 4. Material Flows in Drilling 

No. Operation Material/Component

/Equipment  

Buy/ 

Lease 

Transportation Purpose 

1 Site setup 

 

 

 

 

Drillers Cabin 

 

Lease By drilling 

operator using 

trucks 

To provide 

interface controls, 

information system 

Drilling Mud Buy By drilling 

operator using 

trucks 

To lubricate the 

pipe and improve 

drilling efficiency 
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Table 4 (continued) 

  Water Buy By drilling 

operator using 

trucks or pipes 

To lubricate 

Storage tanks  Lease

/Buy 

By drilling 

operator using 

trucks 

To hold the mud 

and water to be 

used 

Shaker, desander, 

desilter, degasser, 

agitator 

Lease By drilling 

operator using 

trucks 

On site mud 

preparation 

Mud pumps 

 

Lease By drilling 

operator using 

trucks 

To circulate the 

mud 

Air compressors Lease By drilling 

operator using 

trucks 

To blow back the 

mud 

  Mud pond 

 

Lease By drilling 

operator using 

trucks 

Tostore the water 

and cuttings 

produced from 

drilling 

Mud gas separator Lease By drilling 

operator using 

trucks 

To separate mud 

and gas 

2 Drilling Rig Mover Lease By drilling 

operator using 

trucks 

To move the rig 

and pipe 

Drill pipe, drill collars Lease By well 

operator using 

trucks 

To conduct the 

drill head and 

change drilling 

direction 

Drill bits Lease By well 

operator using 

trucks 

To penetrate the 

soil 

Casing and Cementing Buy By well 

operator using 

trucks 

To stay as a seal 

for well integrity, 

safety and 

provision of a 

barrier to isolate 

production from 

groundwater 

Geophysical tools Buy By well 

operator using 

trucks 

To gather various 

types of 

information 

required during 

drilling 
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As shown in Table 5, common by-products include used water, mud and soil cutting. 

Water and mud may be treated in a treating plant and are either reused in another well when 

feasible or alternatively, transported for disposal. Soil cuttings are first tested for radiation, and 

then reused as ground-fill later or transported for disposal. 

 

Table 5. By-product in Site Construction 

Operations By-product Transportation Action 

Drilling Soil cuttings Trucks To be tested, then 

reused as ground-fill 

or to be transported 

for disposal 

Used Mud Trucks To be treated and 

reused 

Water Trucks or pipes To be reused in 

another well, to a 

treatment plant, or to 

be transported for 

disposal 

 

3.1.3 Hydraulic Fracturing 

The step of hydraulic fracturing is also usually subcontracted to a fracking company that 

provides and transports water, sand, chemicals and other required equipment such as tanks and 

pumps to generate fracturing fluid on site as part of its service.   

Slick water is the most commonly used fracturing fluid in shale gas wells. It is a water-

based fluid with a low viscosity of 2 – 3 cP (centipoise, which corresponds to 0.01 poise.) Solid 
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materials, typically sand or man-made ceramic materials, are added to slick water as a proppant, 

whose task is to keep an induced hydraulic fracture open during or following a fracturing 

treatment. Certain chemicals may also be added to the fluid as other common additives. Slick 

water was first used in the Barnett shale as a fracturing fluid containing 800,000 gallons of water 

and 200,000 lb. of sand. It is typically composed of: 

• Water 

Just like its name implies, the largest percentage (over 90%) of slick water is 

made up of water. Typically, water is provided by the well operators and transported by 

trucks making thousands of trips, or via temporary pipelines that are installed below or 

above the ground before fracturing. Most of the water (roughly 65%) is transported from 

lakes, rivers, and creeks, while the remainder is purchased from municipalities (Seydor, 

et al., 2012). The amount of water used in slick water today is typically much more than 

in earlier fracturing fluids, and consumption is usually between one and five million 

gallons of water per fracturing operation. However, not all of the water is lost when 

fracturing is complete. When gas begins to flow out, the natural pressure inside of the 

shale can bring roughly 15% to 40% of the water used in fracturing back to the surface. 

This water is called flow back, and is treated during the completion stage and possibly 

reused as discussed in Section 3.1.4. Furthermore, operators are now finding more ways 

to treat and reuse flow back water in order to minimize overall water consumption. 

 

• Sand 

Sand, at 10%, makes up the second largest component in slick water. The sand is 

specialized to the task and its large density, special shape, and its strength against 
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crushing keep the fracture in the shale rock open, so that the fissures in rock that is 

thousands of feet under the surface will not be blocked once it is fractured by slick water, 

and gas can thus flow out continuously. The sand used in slick water comes from 

different places. For instance, it could be brown sand from Texas, or Ottawa sand that is 

transported from the northeastern part of the United States or imported from Canada.  For 

the Marcellus shale, much of the sand used is Northern White sand from Wisconsin. 

 

• Chemicals 

Chemicals or additives usually represent less than 1% of slick water. Some 

chemicals such as polyacrylamide are usually injected into slick water as friction reducers 

to speed up the mixture of water, sand, and other chemicals on-site. Biocides, surfactants 

and scale inhibitors are also normally found in slick water. Biocides, such as bromine, 

methanol and naphthalene, are used to kill organisms and prevent clogging the fissures 

and the long pipeline inside the well. Surfactants, such as butanol and ethylene glycol 

monobutyl ether (2-BE), can keep the sand suspended in the fluid. Scale inhibitors, 

typically containing hydrochloric acid and ethylene glycol, are added to control and 

prevent scale deposition.  

Other chemicals including benzene and chromium may also be used. Many of 

these chemicals are considered to be toxic and thus raise public concern about potential 

water pollution issues. However, reports of actual contamination in drinking water are 

quite rare since hydraulic fracturing activities are heavily regulated by governments and 

state agencies (Wikimarcellus, 2010).  In addition, improved well designs that utilize 



 55 

multiple layers of steel pipe and cement through the water table also help prevent any 

contamination and pollution of the ground water from occurring. 

 

Table 6 concludes the materials included in the fracturing fluid. A detailed list of 

chemicals used in slick water, along with their Hazard Rating, may be found in Table 21 in 

Appendix. 

 

Table 6. Materials used in Slick Water 

Component Percentage Purpose Examples 

Water More than 

90% 

Base of fracturing 

fluid 

Water from lakes, 

rivers or creeks. 

Sand Nearly 

10% 

To keep fractures in 

the shale open 

Ottawa sand, 

Texas sand, 

Brady sand. 

Friction 

Reducers 

 

 

 

 

 

Less than 

1% 

To speed up the 

mixing process  

Polyacrylamide 

Biocides To kill biological 

organisms 

Bromine, 

methanol and 

naphthalene 

Surfactants To keep the sand 

suspended in the 

fluid 

Butanol, 2-BE 

Scale 

inhibitors 

To control and 

prevent scale 

deposition 

Hydrochloric 

acid, ethylene 

glycol 

 

 



 56 

As shown in Table 7, water is commonly transported from lakes, rivers, creeks, and/or 

nearby municipalities by trucks or pipeline. Sand is often transported via trucks or rail over long 

distances from Texas, Minnesota, Wisconsin, and the northeastern part of the United States or 

even imported from Canada; thus the lead-time of sand can be quite high.  Water, sand, and 

chemicals are stored on site and mixed in tanks. 

 

 

Table 7. Material Flows in Hydraulic Fracturing 

Operation Material/Component/

Equipment  

Buy/ 

Lease 

Transportation Purpose 

Hydraulic 

Fracturing 

 

 

Water 

 

Buy By fracking 

operator using 

trucks or 

pipeline 

Base of fracturing 

fluid 

Sand Buy By fracking 

operator using 

trucks or rail 

To keep fracture 

open 

Chemicals Buy By fracking 

operator using 

trucks 

To speed the 

mixture, kill 

organisms, keep 

sand suspended, 

control and 

prevent scale 

deposition 

Tanks Lease

/Buy 

By fracking 

operator using 

trucks 

To hold and mix 

the fluid 

Pumps and 

compressors 

Lease By fracking 

operator using 

trucks 

To inject 

fracturing fluid at 

a high pressure 

Tubing Buy By fracking 

operator using 

trucks 

To be placed 

inside the casing 

to stimulate the 

production 
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3.1.4 Completion 

The well operator often organizes the completion, and may subcontract some of the operations 

involved to its subcontractors. As illustrated in Table 8, protective and monitoring devices such 

as the “Christmas tree” and metering devices are often purchased and transported by the well 

operator. Soil cuttings generated during the drilling process are usually treated and either 

disposed of during drilling or used later as ground refill, and pipe skids used in the gathering 

pipeline layout could be from wood obtained during site construction. After site completion, the 

operator typically continues to collaborate with the metering system regularly and is responsible 

for maintaining and replacing it if necessary. 

 

Table 8. Material Flows in Completion 

No. 

 

Operation Material/Component

/Equipment  

Buy/ 

Lease 

Transportation Purpose 

1 Flow back 

processing 

Tank Lease Trucks To hold the flow 

back 

2 Gathering 

pipeline 

layout 

 

 

Pipe Skids Made 

from 

wood 

Trucks To place the 

pipeline 

Trencher Lease Trucks To dig trenches 

where pipelines 

are installed 

High-pressure Pipeline Buy Trucks To transport 

initial strong gas 

flow 

Low- pressure 

Pipeline 

Buy Trucks To transport the 

later weaker 

flow 

Monitoring and 

Metering devices 

Buy By well 

operator using 

trucks 

To monitor and 

meter gas flow 
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Table 8 (continued) 

3 “Christmas 

tree” 

installation  

“Christmas tree” Buy By well 

operator using 

trucks 

Multiple 

components of 

tubing head and 

casing head to 

control and 

monitor the gas 

flow out 

4 Ground 

refill 

Soil  From 

soil 

cuttin

g 

 To refill the 

ground 

Layers Buy By well 

operator using 

trucks 

To avoid any 

potential 

pollution 

 

 

As shown in Table 9, the by-products in site completion is primarily flow back 

containing water, sand and chemicals. Flow back is often transported by trucks and/or pipes for 

disposal or to be reused in another fracturing job with or without pre-treatment depending on the 

fracturing fluid design, since the component content of the fluid is highly sensitive with respect 

to individual compositions. Generally speaking, the initial fluid that flows back is relatively 

clean so that it can be blended with just fresh water for use in another well without pre-treatment. 

The later flow back is treated in a conventional brine plant or a new dedicated treatment facility, 

to discharge to surface water. The processes involved include the removal of salts, metals, and 

oils. The flow back fluid needs to be temporarily stored in a pond and transported – usually at a 

significant cost – by trucks, to get to the new well or the treatment facility. In some places, 

wastewater may be disposed deep underground by using deep injection wells (drilling another 

well to store the water). However, this process might be problematic. Small earthquakes in 

several parts of the U.S. are suspected to have been induced by deep injection of drilling 

wastewater in the vicinity (Water & Wastewater International, 2016).  
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Table 9. By-product in Completion 

Operations By-product Transportation Purpose 

 

Flow back 

Processing 

Flow back water 

(containing water, 

sand and chemicals) 

Trucks or pipes 

 

To be reused in another 

well, to be treated in a 

treating plant, or, to be 

transported for disposal 

 

3.2 FINANCIAL FLOWS 

In 2011, Hefley et al.explored the value chain of shale gas wells in Western Pennsylvania. Rather 

than focusing on the perceived benefits and regional impacts, the study emphasized the direct 

economic impacts based on extensive field research including site visits and interviews with 

industry participants (Hefley, et al., 2011). The study provided the direct cost in the steps 

involved in the creation of a Marcellus Shale well.  These steps correspond to stages in our 

transient supply chain as well as the production stage in our stable supply chain, as defined in 

Chapter 2. Table 10, provides estimates of the total cost of a Marcellus Shale well in Western 

Pennsylvania in 2011. The stages of fracturing (32.67%), early preparation prior to site 

construction (28.77%), and drilling (24.55%) are the major contributors to total cost.  
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Table 10. Estimated Total Cost of a Marcellus Shale Well 

Data Source: (Hefley, et al., 2011) 

Stages Costs Share 

Leasing, Acquisition & Permitting $2,201,200 28.77% 

Site Construction $400,000 5.23% 

 

Drilling 

Vertical $663,275 8.67% 

Horizontal $1,214,850 15.88% 

Hydraulic Fracturing $2,500,000 32.67% 

Completion $200,000 2.61% 

Production $472,500 6.17% 

Total $7,651,825 100% 

 

 

However, these costs and the impact of the well on the local economy can change over 

time depending on costs associated with regulation and compliance, inflation, material and labor 

costs, learning curves, and process improvements. 
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4.0  DISCUSSION AND SUMMARY 

In this chapter we discuss some topics relevant to shale gas that have not been detailed in the 

previous chapters. Specifically, we study methane emission in the transient supply chain, discuss 

the usage patterns and price fluctuations of natural gas, compare natural gas with other energy 

sources, and discuss how natural gas plays a key role in bridging the gap between coal/petroleum 

based energy and renewable energy by presenting a real world case study. 

4.1 METHANE EMISSION 

In the United States, methane (CH4) is the second most common greenhouse gas emitted as a 

result of human activities, and constitutes approximately 10.6% of all U.S. greenhouse gas 

emissions. In general, over 60% of global methane emissions are from human activities (EPA, 

Methane and Nitrous Oxide Emissions from Natural Sources, 2010). Common activities that 

cause methane to be emitted to the atmospheric layer include the raising of livestock and natural 

gas leakage. Methane could also be generated naturally from natural sources such as wetlands. 

At the same time, chemical reactions in the atmosphere and natural process in the soil can help to 

remove or reduce methane. This fact has made the lifetime of methane in the atmosphere 

(typically 12 years) much shorter than that of carbon dioxide (CO2); however, the properties of 

methane are such that it can trap radiation with an efficiency that is much higher that of CO2. As 
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a result, the comparative impact of CH4on climate change over a 100-year period is roughly 

more than 25 times greater than that of carbon dioxide (EPA, Overview of Greenhouse Gases, 

2016). 

Oil and gas wells are often criticized for increasing methane emissions and their induced 

environmental pollution (D'Annunzio, 2016). But as Figure 20 shows, methane is also emitted 

from various other sources including agriculture, waste management, and mining. From 1990 to 

2014, about 33% of total methane emissions were from natural gas and petroleum systems.  

 

 

Figure 20. U.S. Methane Emissions by Source, 1990 – 2014 

(EPA, U.S. Greenhouse Gas Inventory Report: 1990-2014, 2016) 

 

The shale industry has been upgrading the equipment and techniques applied to the 

production, storage, and transportation of natural gas in order to reduce leaks that could 

contribute to methane emissions. This approach includes but is not limited to the utilization of 

multiple layers of liners to protect against pollution during site construction and completion (as 

described in Section 2.1.2 and Section 2.1.5), various casings and cement used to prevent gas 
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leakage during drilling (as described in Section 2.1.3), several types of advanced geophysical, 

thermodynamic tools and devices installed inside the tubing or on the wellhead to monitor gas 

flow and prevent leakage (see Section 2.1.4 and Section 2.1.5 for detail), valves, monitoring and 

control stations along with the distribution pipelines and storage facilities to control and monitor 

the temperature, velocity, pressure of gas flow and discover and stop gas leakage (as detailed in 

Section 2.2.3). Figure 21 depicts the trend of Methane emissions from 1990 to 2014, and there is 

no direct evidence that the growth of the shale gas industry since 2007 has had a significant 

impact in terms of increased methane emissions. 

 

 

Figure 21. U.S. Methane Emissions, 1990-2014 

(EPA, Overview of Greenhouse Gases, 2016) 

 

Recent research has measured Volatile Organic Compounds (VOCs) emissions from 

compressor stations and production well pads in the, Uintah Basin, Marcellus Shale region, and 

Denver-Julesburg Basin (Li, et al., 2015). At the same time, the methane and ethane 
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concentrations were also measured, and it was found that the sample variance of VOC emissions 

from individual natural gas facilities is large, but the average VOC emissions rate is very small. 

In most sites, the VOC concentration levels are no more than 1% higher compared to the normal 

VOC level in the atmosphere. Another data driven approach to the analysis of environmental 

impacts of shale gas development in hydraulic fracturing has shown that in over 1,600 samples 

near shale gas wells, only 3 samples process significantly higher levels of methane 

concentration, and further investigation revealed that these three locations were near a well that 

may be uncased and uncemented (Li, et al., 2016).Moreover, there is no data on methane 

concentration levels before the development of shale gas in those areas, and it is possible that the 

higher levels of methane might also be due to causes unrelated to drilling. 

In summary, the industry has in general utilized technological advances to maintain 

methane emissions at acceptable levels under today’s more stringent regulations and in the face 

of strong public opinion.  However, any shortcut or violation of these regulations could result in 

potentially high emission rates. It would appear that a combination of government regulations, 

social opinion, and technological advances compliance by shale companies is required to ensure 

that methane emissions are kept in check. 

4.2 USAGE AND PRICE FLUCTUATIONS OF NATURAL GAS 

In this section we first discuss the volumes and types of natural gas usage and then follow up 

with a discussion of how gas prices are affected by supply and demand. The annual consumption 

of natural gas from 2000 to 2015 is illustrated in Figure 22. As the graph shows, from 2000 to 

2009, consumption fluctuated around roughly the same level, but after 2009, the consumption 
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has increased at a steady rate. In 2009, the total consumption was 22,910,078 MMcf; however, in 

2015, the total annual consumption rose to 27,472,867 MMcf. This is probably because of the 

huge amount of Marcellus Shale gas flowing into the market, thus reducing natural gas prices 

from 2008. The upper line in the figure refers to the total consumption of natural gas, while the 

lower line corresponds to the volumes of natural gas that were finally delivered to consumers. 

The difference between the two lines indicates the amount of gas used in the supply chain for 

other purposes prior to final delivery; this quantity typically includes lease fuel, plant fuel, and 

pipeline and distribution use. Here lease fuel (an estimated 3.6% of the total consumption of 

natural gas) refers to the gas that is used at the well site and lease operations; it usually includes 

the natural gas used in heaters, on-site electricity generators, drilling operations, dehydrators, and 

field compressors. Plant fuel includes the natural gas used as fuel in processing plants, and is 

approximately 1.6% of the total consumption. Pipeline and distribution use is defined as the gas 

used in pipeline operations, which is primarily gas consumed to support compressors and in 

distribution. The amount of pipeline fuel and distribution use is an estimated 2.8% of the total 

consumption (EIA, Natural Gas Consumption by End Use, 2016). In conclusion, the above four 

types of natural gas consumption is in support of natural gas production and transportation and 

represent roughly 8% of the total consumption of natural gas.   
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Figure 22. Natural Gas Annual Consumption from 2000 to 2015 

Data Source: (EIA, Natural Gas Consumption by End Use, 2016) 

 

The usage of natural gas encompasses (EIA, Natural Gas Consumption by End Use, 

2016): 

1) Electric Power: Natural gas used in the electric power generation sector as fuel. 

2) Residential: Natural gas used for household use such as heating, air-conditioning, 

cooking and water heating in private dwellings, including apartments. 

3) Industrial: Natural gas used for power, heat, and chemical feedstock in 

manufacturing establishments, in mining or other mineral extraction, and in fisheries, 
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forestry and agriculture. Natural gas used for electricity and heating to support industrial 

activities is also included. 

4) Commercial: Gas used for sales and service by nonmanufacturing establishments 

or agencies such as hotels, restaurants, wholesale and retail stores and other service 

enterprises; gas used by local, state, and federal agencies engaged in nonmanufacturing 

activities. 

5) Vehicle Fuel: Natural gas used by vehicles as fuel; vehicle fuel consumption is 

computed as the total number of vehicle miles traveled divided by fuel efficiency in miles 

per gallon (MPG). The latter is derived by collecting the actual vehicle fuel mileage and 

assigning the MPGs obtained from EPA certification files adjusted for on-road driving. 

 

As shown in Table 11 and Figure 23, in 2015, most of the natural gas used was in electric 

power (9,671,095 MMcf, 38.64%) and industrial use (7,508,093 MMcf, 29.99%). Furthermore, 

natural gas consumption for electric power increased 40.72% from 2009 and the consumption for 

industrial use increased 21.74%, higher than the overall rate of 19.40%.  

 

Table 11. Natural Gas Consumptions by End Use in 2009 and 2015 

Data Source: (EIA, Natural Gas Consumption by End Use, 2016) 

Annul 

Amount 

Electric 

Power Industrial Residential Commercial 

Vehicle 

Fuel Total 

2009 

(MMcf) 6,872,533 6,167,371 4,778,907 3,118,592 27,262 20,964,665 

2015 

(MMcf) 9,671,095 7,508,093 4,612,455 3,205,756 34,459 25,031,858 

Increase 

Rate 40.72% 21.74% -3.48% 2.79% 26.40% 19.40% 
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Figure 23. Share of Natural Gas Consumptions by End Use in 2015 

Data Source: (EIA, Natural Gas Consumption by End Use, 2016) 

 

The price of natural gas is a function of market supply and market demand: even a tiny 

change in supply or demand in a very short time period can cause huge fluctuations in the price 

of natural gas due to the restricted alternative recourses and the consumption of natural gas in the 

short term. Price changes resulting from supply and demand variations usually feed backwards 

and influence supply and demand, eventually bringing them back into balance. Generally 

speaking, an insufficient supply and higher demand tend to push the price higher, while a 

sufficient supply and lower demand tend to reduce the price. 

The supply side factors that may affect price include (EIA, Factors Affecting Natural Gas 

Prices, 2015): 
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• Variations in the volume of natural gas production 

Domestic natural gas prices are determined mainly by supply, most of which 

comes from domestic natural gas production. Higher natural gas supply tends to lead to 

lower prices. The dry gas production of the United States has increased from 2006 to 

2014, and reached its highest recorded annual total in 2014. The increases in dry gas 

production during this period were primarily the result of “more efficient, cost-effective 

drilling and completion techniques, notably in shale and other tight geologic formations” 

(EIA, Delivery and Storage of Natural Gas, 2014). For instance, in 2012, average 

wholesale (spot) prices dropped considerably throughout the United States compared to 

2011. The natural gas price during the mild 2011-12 winter was relatively low as a result 

of increased production and high levels of natural gas inventories in the Eagle Ford and 

Marcellus regions. 

• The amount of gas inventory in storage facilities  

The amount of gas inventory in underground storage fields plays a key role in 

meeting peak natural gas demand, especially when domestic production and any natural 

gas imports are not able to meet seasonal or sudden increases in demand. When the 

demand and price are low, the excess domestic production and potential low price ofany 

imports are absorbed by storage, which can also support hub services and pipeline 

operations. As shown in Figure 24 and Figure 25, the amount of natural gas inventory in 

storage facilities generally increases from April to October, when the demand for natural 

gas is relatively low. It decreases from November to March, when the demand is high in 

order to support winter heating. 
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Figure 24. Working Gas in Underground Storage 

(EIA, Weekly Natural Gas Storage Report, 2016) 

 

 

Figure 25. Weekly Lower 48 States Natural Gas in Underground Storage 

(EIA, Weekly Natural Gas Storage Report, 2016) 
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• The volume of natural gas being imported and/or exported 

Natural gas prices can be influenced by the import and export of natural gas. 

When international natural gas prices are low, more natural gas is imported, and the 

increased supply decreases the price of domestic natural gas. Conversely, when 

international prices are high enough, gas suppliers tend to export the gas that they 

produce which tends to increase domestic natural gas price. 

 

The demand side factors that may affect prices are (EIA, Factors Affecting Natural Gas 

Prices, 2015): 

• The rate of economic growth 

Economic growth can stimulate natural gas price by promoting natural gas market 

demand. When the rate of economic growth is relatively high, the increased industrial 

and commercial demand for products and services generates a boom in the demand for 

natural gas, leading to the growth of production and prices. In particular, this is more 

obvious for the industrial sector, which uses natural gas as fuel and feedstock for many 

products such as pharmaceuticals and fertilizers (EIA, The Annual Energy Outlook 2015, 

2015). Conversely, a weak economy tends to result in the opposite effect. 

• Variations in winter and summer weather 

Natural gas prices are also influenced by seasonal variations in weather. The 

weather in winter strongly influences commercial and residential demand and the price of 

natural gas. During the cold months, commercial and residential end consumers use more 

natural gas for heating. As demand increases, the pressure to raise prices also increases. 

Furthermore, severe or unexpected weather exacerbates the effect on prices because 
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supply is often unable to react speedily to increased demand in the short term. In 

addition, when the transportation system is running at full capacity, the effects of weather 

on natural gas prices may be intensified. In such cases, prices tend to increase rapidly in a 

short time. As a result, natural gas storage during inclement weather is often used to 

modify the impact of high demand. 

On the other hand, hot summer weather can also increase natural gas prices by 

increasing the demand for power. In 2014, about 27% of electric power was generated 

using natural gas. When the temperature is hotter than normal, the use of air-conditioning 

increases demand for electricity, and this in turn raises the demand for natural gas 

required for electric power generation. Even during the cooler season, temperatures can 

change natural gas prices in a similar fashion. 

• Prices of competing fuels 

The competition between natural gas and other fuels also has an effect on natural 

gas prices. Depending on the energy price, electricity generators, mills for producing 

iron, steel, paper, etc., and other large-volume fuel consumers sometimes switch their 

energy source between natural gas, petroleum and coal. When costs of competing fuels 

drop, the demand for natural gas generally decreases, thereby lowering the price of 

natural gas. Conversely, when the prices of alternative fuels are at relatively high levels, 

fuel consumers usually revert from these fuels to natural gas, thus facilitating its demand 

and driving up the price of natural gas price. 
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4.3 BRIDGING THE GAP 

Although renewable energy technologies are being rapidly developed, it will be a significant 

amount of time before they constitute a viable replacement for fossil fuel based sources. This fact 

has led to a gap between current coal/petroleum based energy and renewable energy in the 

future. With growing concerns about climate change and global warming, few people would 

dispute the fact that renewable energy sources represent the best path to environmentally friendly 

and sustainable energy generation in the world. However, while the power obtained from solar, 

wind, and nuclear resources are developing, there is still a significant energy gap that needs to be 

bridged before renewable energy can satisfy the current large-scale demand from every-day use. 

 Solar power, which is highly dependent on a sunny climate, is not suitable for areas like 

western Pennsylvania where the number of sunny days per year is relatively low. Besides, large 

demands for energy require large land areas to gather sufficient energy from the sun. In addition, 

demand for energy in rainy weather and during the night has led to the requirement to develop 

efficient energy conversion and storage technologies beyond what exist today, which generally 

means a lower efficiency and higher cost in terms of the energy supply chain. 

Similarly, wind energy, while being one of the fastest growing sources of electricity in 

the world, still has its limitations. First, a significant level of noise is generated by wind energy 

facilities, restricting their location to places that are often far away from residential areas. This 

leads to a significant amount of energy being lost during transportation since the energy lost is 

positively correlated with distance. Second, wind energy is not necessarily as environmentally 

friendly as it might be thought of. For instance, wind turbines often threaten the migration routes 

of birds. In addition, wind turbines usually have a large surface footprint. A critical consideration 

is that incoming wind flows are not accurately predictable as a long-term solution to the problem 
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of energy supply. In Pennsylvania, the annual number of operational days for wind turbines 

could be as low as 100 days (PennFuture, 2016). Finally, like solar power, wind energy also 

induces significant energy losses in transportation, conversion, and storage. 

Analogously, although hydroelectric power generates considerably lower level of 

greenhouse emission, it is limited to locations with nearby hydropower that can be feasibly 

harnessed. In addition, hydroelectric power station sat some locations have resulted in extensive 

submersion upstream from the dams/reservoirs. This phenomenon can cause devastation to 

biologically rich in riverine valley forests (forests near the banks of rivers), productive lowland, 

marshland, and grasslands. Hydropower plants could also exacerbate land loss of surrounding 

areas by habitat fragmentation (Robbins, 2007), and dams may also have a serious impact on the 

ecosystem by raising water temperatures, inundating spawning areas, and blocking and changing 

historic migration flows for animals such as salmon and steelhead (USFWS, 2016)(Harrison, 

2008).Changes in the water flow utilized for electricity generation may also induce water 

siltation on dams and flow shortage in downstream areas. These could further result in 

exacerbating climate change.  

Nuclear power, as one of the solutions to bridge the aforementioned energy gap in many 

developed countries, is attracting considerable public attention since the Fukushima disaster in 

Japan in 2011. This tragedy “has intensified the perception of the nuclear reactor as a risky 

proposition, and the result is a resurgence in coal and gas-burning power plants as a cost-

effective, but environmentally damaging, stopgap on the way to renewables” (Lo, 2012). 

Immediately following the Fukushima incident, the amount of coal used for power generation 

rose by 5.4% in the world, making its share higher than any year since 1969.Currently, new 

nuclear plant projects are facing increased difficulties in being approved due to this negative 
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public sentiment and the resultant stringent regulations. Nations such as South Korea and Taiwan 

are even debating the closedown or suspension of nuclear power facilities. In addition, the high 

initial capital investment along with the falling price of fossil fuels has made launching a nuclear 

plant less profitable. Finally, although nuclear energy has no harmful emissions, one fact is often 

being ignored: there is still no satisfactory solution to the problem of nuclear waste disposal that 

is feasible and sufficiently sustainable. 

In summary, non-fossil fuel based technologies for energy are also not without their own 

problems and the most promising ones are still years away from being adequate to meet the 

world’s ever-growing energy needs. Meanwhile, natural gas, a close relative of crude oil, is 

attracting interest and headlines since it produces less greenhouse gases and burns far cleaner 

than coal. Furthermore, natural gas has been found in the United States in abundant quantities 

and sophisticated technologies for its extraction have become commonplace. Energy analysts and 

environmentalists have thus begun considering natural gas as a bridge between coal/petroleum 

based fuels and renewable, low-carbon energy sources (Campbell, 2015). Table 12 summarizes 

the emissions impacts of natural gas, oil, and coal. In summary, natural gas produces only 50.47% 

of the Carbon Dioxide, 0.77% of the Sulfur Dioxides, and 28.33% of the Nitrogen Oxides as 

compared to coal. The potential environmental benefits in switching from oil and coal to gas 

could be tremendous, given that more than 50% of total U.S. energy consumption in the next 20 

years is still expected to be from oil and coal, as shown in Figure 26. The potential benefits 

accrue not only from the usage of natural gas, but also from the improvement of the existing 

natural gas supply chain. 
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Table 12. Average Fossil Fuel Power Plant Emission Rates 

Data Source: (EPA, 2012) 

Emission Pollutants 

(lbs./MWh) 

Natural Gas Oil Coal 

Carbon Dioxide 1,135 1,672 2,249 

Sulfur Dioxides 0.1 12.0 13.0 

Nitrogen Oxides 1.7 4.0 6.0 

 

 

 

Figure 26. U.S. Primary Energy Consumption and Projection 

(EIA, U.S. energy use projected to grow slowly and become less carbon-intensive, 2012) 

 

The remainder of Section 4.3 is based on a real-world case study conducted by the author 

and his colleagues (Fitzgerald, Iketani, Yang, Hefley, & Rajgopal, 2015). 
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4.3.1 Background 

The purpose of this case study is to evaluate the benefits of distributed power generation fueled 

by natural gas extracted from deposits such as the Marcellus Shale. With this approach an 

electricity generating company would be inserted into the midstream supply chain and use a 

series of small, natural gas based power generation units to profitably supply electric power (up 

to 20MW) to one or more dedicated customers and/or back into the traditional electric grid. This 

is in contrast to a large-scale, centralized power generation scheme.  

The defining characteristics of this kind of distributed power generation scheme are that 

(1) the power generation facility is close to the natural gas source; (2) the end users or customers 

are close to the power generation facility; (3) electricity generated by the power generation 

facility for dedicated customers is distributed through a separate transmission/distribution system 

from the main electricity distribution grid (i.e., sold behind the meter) or distributed to the 

purchasing customer through the existing grid, typically though a power purchase agreement 

(PPA) or other contractual mechanism; and (4) any additional electricity that is produced 

(beyond the amount demanded by dedicated customers) are supplied directly into the electric 

distribution grid. These characteristics represent significant differences in the value chain of a 

distributed power producer (DPP) from that of a traditional power producer and could possibly 

result in significant economic benefits for all three parties in the chain: the gas supplier, the 

electricity producer, and the end customer. Gas companies may receive higher profit for gas 

extracted and sold to the DPP because of reduced transportation costs and line losses. The DPP 

could benefit from lower gas prices and higher revenues from electricity that is priced higher 

than the wholesale prices charged when selling to the grid.  Power customers could potentially 

purchase power at lower off-grid prices and will pay nothing or substantially reduced amounts 
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for distribution. In addition, there are potential benefits to other parties as well.  Communities 

close to where the gas source and power generation company are located could see benefits such 

as local use of natural gas, job creation, reduced regional electricity prices and the economic 

advantages that come along with it, as well as non-tangible benefits such as a reduced carbon 

footprint of electricity consumed, lower emissions, and increased energy security. 

The feasibility of this business case hinges on several key challenges. The main challenge 

is identifying the efficiencies along the distributed power supply chain and benefits to the 

community. Economic models and forecasts based on these efficiencies are critical for a DPP to 

choose suppliers and customers, and to develop appropriate pricing structures and contracts that 

would result in the net increase in supply chain value being shared among the three parties in this 

value chain (the shale gas producer, the DPP, and the electricity customer).  The overall value 

proposition has to be one where all three parties realize economic benefits; otherwise this model 

would be infeasible. By understanding the benefits of the business case, companies should be 

better able to articulate them to governments and industries and develop strategies for the future 

of the natural gas industry. 

We show in the following sections that there are potential cost savings of 41% to 56% for 

electricity users, and a potential increase in profits of 12% to 35% for a natural gas supplier by 

locating a midstream company’s facilities within the natural gas supply chain and localizing its 

energy distribution. This study also indicates a significant potential reduction in greenhouse gas 

emissions compared to traditional coal-based power plants. 
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4.3.2 The Supply Chains with Distributed Power Generation 

Figure 27 displays where the DPP fits into the overall distribution system. Traditionally (Figure 

27a), shale gas is transported via pipelines and sold to a power plant at the hub; the electricity 

generated by the power plant is then distributed by the grid and sold to customer. In the proposed 

alternative (Figure 27b), a portion of the gas produced is sold locally to the DPP who produces 

electricity for dedicated customers and puts any excess back on the grid. The processed gas used 

by the DPP does not need to be compressed or transported long distances. We present a detailed 

analysis of the two supply chains in the next section. 

 

 

(a) The Traditional Midstream Sector 

Figure 27. Midstream Gas Sector 

 



 80 

 

(b)The Alternative Midstream Sector with a DPP 

Figure 27 (continued) 

 

The market or index price of natural gas is different from the price at the wellhead 

because of the value adding processes and price markups between the two. Figure 28 illustrates 

these additive cost components that contribute to the index price. Because getting gas from the 

ground to the end customer is labor and technology intensive, there is about a 50/50 split 

between well head price and the value adding processes and how much each contributes to the 

index price. Because transportation cost is shared between extractor and the property owner, they 

both have an incentive to shorten the process or be as efficient as possible wherever they can 

(Cowden, 2015). 
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Figure 28. Natural Gas Cost Components 

 

4.3.3 Economics of Distributed Power Generation 

Distributed power generation has the potential to eliminate much of the transportation and 

compression required by a traditional midstream gas model for the portion of the gas that is sold 

locally. The gas producer can sell at a lower price than the index and still make the same (or 

higher) profit per unit of gas sold to the DPP.  By engaging a dedicated local customer (DLC) 

for electric power generated close to a natural gas source, the DPP in turn benefits by virtue of 

(potentially cheaper) gas and selling behind the meter at rates higher than market wholesale.  

This cost saving can then be shared with the end electricity customer in the form of electricity 

rates that are lower than retail.  

To demonstrate this business case, Figure 29 depicts a basic version of the model 

showing the essential cost elements. Table 13 explains the notations in the figure. We divide the 

supply chain of distributed power generation into two sections, the first one links the Gas 

Supplier and the Power Producer while the second links the Power Producer and the final 

Electricity Customer:  
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1) The Gas Supplier / Power Producer section, is defined from the production of shale gas 

until its delivery to the DPP (or Traditional Power Plant). In the most general case, the 

potential players that exist within this section include:   

 The Well Operator, who operates the well, gathers the gas and normally sells the 

gas to a gas supply company at a price PGH  (Gas Price at well-head) 

 The Gas Supplier, who obtains the gas from the Well Operator, processes and 

transports it, and resells it to the customer, or to a potential gas retail company at a 

price PGW(Gas Wholesale Price)  

 The Gas Retail Company, which buys the gas from the Gas Wholesale Company 

at a hub and then resells it to the customer at a price PGR(Gas Retail Price) 

 The Traditional Power Plant, which purchases the gas from the Gas Supplier at a 

price PGW  or the Gas Retail Company at a price PGR and utilizes it to generate 

electricity  

 The DPP, which intends to purchase UG units of natural gas directly from the Gas 

Supplier at a unit price of PGN (Negotiated Gas Price) after gas is processed by the 

supplier but before it is transported to the hub.  

2) The Power Producer/Electricity Customer section corresponds to the generation of 

electricity in the DPP (or Traditional Power Plant) and its sale to the end customers. In the 

general case, this section includes 

 The Traditional Power Plant, which generates electricity and sells it to an 

electricity retailer at a price PEW(Electricity Wholesale Price)  



 83 

 The Electricity Retail Company, which purchases electricity from the Traditional 

Power Plant and in turn distributes it through the grid and resells it to the 

customer at a price PER (Electricity Retail Price)  

 The Dedicated Local Customer (DLC), who currently purchases electricity across 

the meter from the Electricity Retail Company  

 The DPP, who intends to sell UE units of electricity directly to the DLC behind 

the meter at PEN (Negotiated Electricity Price), but could also sell it to the 

Electricity Retail Company at price PEW 

 

 

Figure 29. Distributed Power Generation Model 
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Table 13. List of Notations 

(a) The Gas Supplier/Power Producer Section 

Notation Unit Meaning 

UG MMBTU Amount of Gas Required by the DPP 

PGH $/MMBTU Gas Price at Well-head 

CP $/MMBTU Gas Processing Cost  

CT $/MMBTU Gas Transportation & Line Costs  

CG $/MMBTU Total Cost for Gas Supplier 

MGW $/MMBTU Gas Wholesale Markup 

PGW $/MMBTU Gas Wholesale Price 

MGR $/MMBTU Gas Retail Markup  

PGR $/MMBTU Gas Retail Price  

PGN $/MMBTU Negotiated Gas Price for DPP 

ZG $/MMBTU Profit for the Gas Supplier 

TVA(G) $ Total Value Added in the  

Gas Supplier/Power Producer section 
 

(b) The Power Producer/Electricity Customer Section 

Notation Unit Meaning 

UE MW hr Amount of Electricity Required by DLC 

CE $/MW hr Electricity Production Cost 

MEW $/MW hr Electricity Wholesale Markup 

PEW $/MW hr Electricity Wholesale Price 

MER $/MW hr Electricity Retail Markup 
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Table 13 (continued) 

PER $/MW hr Electricity Retail Price 

CD $/MW hr Electricity Distribution Costs  

PE $/MW hr Electricity Cost for Customer 

PEN $/MW hr Negotiated Electricity Price for DLC 

ZE $/MMBTU Profit for the Power Plant 

TVA(E) $ Total Value Added in the Power Producer/ 

Electricity Customer section 

 

 

We will refer to Figure 29 and Table 13 for the remainder of the discussion in this 

section. 

A. The Gas Supplier/Power Producer Section  

The gas company earns money from a customer who buys the gas. However, the gas 

company not only spends money to gather the gas, but also incurs the cost of transportation and 

compression. This is the most common way to buy and sell gas in the natural gas industry. 

Research shows that transmission and distribution costs are large components in gas prices, and 

according to EIA’s data, it accounted for 42% to 49% of natural gas prices from 2003 to 2009 

(Seydor, et al., 2012). 

The gas price that the electricity producer pays is either a wholesale price at the hub or a 

retail price to a reseller who buys at the hub at wholesale and sells to many customers. We use an 

estimate of PGW = $3.416 per MMBTU for the wholesale price  by analyzing the NYMEX gas 

wholesale price based on ten years of past prices (EIA, Natural Gas Spot and Futures Prices 

(NYMEX), 2015) and forecasting for the next 5 years. The wholesale price at the hub includes 
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gas wellhead price, transportation cost, and profit of the gas wholesale company. For example, 

suppose the Gas Supplier pays PGH= $0.95 per MMBTU to the Well Operator as the gathering 

cost at wellhead and spends CP=$0.05 per MMBTU for the gas processing, the transportation 

cost and other costs are CT=$1.00 per MMBTU.  So the total unit cost to the gas company is 

CG= 0.95+0.05+1.00=$2.00, and if the gas is sold to the wholesale market at $3.416 per 

MMBTU, then the markup MGW(the profit made) by the Gas Supplier is $1.416 per MMBTU. 

There is possibly, a further retail markup before it is sold to the final customer. 

The Gas Supplier has two options to consider when selling gas to a customer: 

1) OPTION 1: Through a traditional hub 

The cost to the Gas Supplier per MMBTU is: 

CG = PGH +CP+ CT           (1) 

i.e., the total cost for the Gas Supplier (CG) is equivalent to the gas price at the wellhead 

(PGH) plus gas processing cost (CP) and transportation and line costs (CT). 

The markup (profit) of the Gas Supplier per MMBTU (MGW) is represented by the 

difference between Wholesale Price (PGW) and total cost (CG): 

MGW  = PGW − CG= PGW – (PGH+ CP + CT  )                                         (2) 

Note that with a possible retail markup (MGR), the gas costs to the customer (PGR) per 

MMBTU are: 

PGR = PGW+ MGR                             (3) 

So if the gas customer (DPP) is currently purchasing UG units of natural gas at the retail 

price), the total gas cost it is: 

Total Gas Costs ($) = UG PGR             (4) 
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2) OPTION 2: To a distributed power producer (DPP) at a negotiated price 

Alternatively, the Gas Supplier can sell gas directly to a local distributed power producer 

(DPP). By selling gas to the DPP, the Gas Supplier could eliminate or incur vastly lower 

transportation, compression and other line costs (CP).  Suppose the gas is sold right after it is 

processed to the DPP and is priced at a Negotiated Gas Price (PGN). 

For the Gas Supplier, the profit ZG is given by: 

ZG = PGN – ( PGH+ CP )             (5) 

For the DPP, the total gas cost is given by  

Total Gas Cost ($) = UG PNG           (6) 

Then for the Gas Supplier/Power Producer decision makers: 

a) The Gas Supplier should sell gas at a Negotiated Gas Price (PGN)such that the 

profit is at least as much as the traditional wholesale markup MGW, as given by (2), so 

that: 

ZG ≥ MGW                      (7) 

Applying (2) and (5) we have, 

PGN  – ( PGH + CP )  ≥ PGW – ( PGH + CP + CT  )       (8) 

This is equivalent to 

PGN≥ PGW – CT       (9)                             

b) In order to incentivize the DPP, the Negotiated Gas Price (PGN) should be lower 

than Retail Gas Price (PGR) currently being paid: 

PGN  ≤ PGR      (10)                             
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In summary, (9) and (10) imply that: 

PGW – CT  ≤  PGN  ≤ PGR      (11) 

The gas producer now has a profit of ZG per MMBTU (as opposed to MGW with the first 

option), thus the additional profit (say, ZG) for the gas producer from this arrangement is equal 

to: 

ZG =ZG − MGW       (12) 

Using Equations (2) and (5): 

ZG = [ PGN – ( PGH+ CP )  ] – [ PGW – ( PGH+ CP + CT  ) ]  

= PGN– PGW + CT        (13) 

 For the DPP the reduction in unit costs (say CG) from the lower prices paid amount to: 

 CG = PGR − PGN            (14) 

Thus the Total Value Added (TVA(G)) from this arrangement that can be shared between 

both parties is: 

TVA(G) = UG  ( ZG + CG)           (15) 

Applying Equation (13) and (14): 

TVA(G) = UG  [ ( PGN– PGW + CT ) + ( PGR − PGN) ] 

 i.e.,  

TVA(G)= UG  ( PGR– PGW + CT  )         (16) 

In the case where the DPP is directly buying gas at the Wholesale Gas Price (PGW) as 

opposed to retail, one just need to apply MGR =0, i.e., PGR = PGW  and the total value added  = 

UG  CT. 
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The exact share of the benefits for each party will be determined by the value of PGN 

(higher values favor the gas seller and lower values the DPP) as negotiated between the two 

parties. 

 

B. The Power Producer/Electricity Customer Section 

Now consider the Power Producer/Electricity Customer part of the value chain.   

The electricity customer has two options when buying electricity: 

1) OPTION 1: From the grid across the meter. 

If a customer is buying electricity from the grid, the total cost includes the cost of the 

electricity generation and transmission, and the cost of electricity distribution. The cost of 

electricity generation and transmission that the customer is based on buying from the grid at a 

retail price (PER). There is typically a trader between the customer and the electricity generation 

companies who will buy the electricity at a unit wholesale price (PEW) from the electricity 

companies that includes a markup per unit (MEW) above the cost to produce and transmit the 

electricity ($CE per unit). The trader then resells it to the customer at the unit retail price (PER); 

the difference or retail markup (MER) between wholesale and retail cost represents the profit per 

unit to the retailer.  The distribution costs incurred by the customer are in addition to this and the 

rates differ slightly according to the specific type of account that it applies to (based on average 

and/or maximum/peak consumption).  For simplicity, we assume that this can be stated as $CD 

per unit of electricity.  In summary, for a customer, Electricity Cost per MW  hr includes 

Electricity Generation and Transmission Retail Price (PER) and Distribution Cost (CD): 

PE  = PER + CD          (17) 
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Where Electricity Generation and Transmission Retail Price (PER) is equal to Electricity 

Wholesale Cost (PEW) plus Electricity Retail Markup (MER), i.e.: 

PER= PEW + MER         (18) 

So total customer costs are  

Total Electricity Costs = UE PE 

  = UE ( PER + CD ) 

  = UE ( PEW + MER + CD )     (19) 

For the electricity power generator, the Wholesale Markup (MEW) per MW hr is the 

difference between Wholesale Price (PEW) and generation and transmission cost (CE): 

MEW= PEW−CE          (20) 

 

2) OPTION 2: Act as a dedicated local customer (DLC) and buy from the distributed 

power producer (DPP), behind the meter. 

On the other hand, suppose electricity is sold behind the meter to a dedicated customer at 

a Negotiated Electricity Price per MW hr (PEN). We assume that the customer would only pay for 

the electricity generation and transmission while the cost of distribution (CD) is eliminated or 

vastly reduced and included in the negotiated price.  Because the reseller/trader does not exist 

anymore, the markup added between wholesale and retail as the revenue of the trader is also 

eliminated. We also assume the customer does not need to pay for a standby service fee for the 

privilege of backup electricity, because the distributed power generator would provide that 

service as part of their obligation to provide power to the customer (presumably, via the grid).  

Thus, for the DPP, the profit (say, ZE) is now given by: 

ZE ($/MMBTU) = PEN – CE           (21) 
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For the DLC, the total electricity cost is:  

Total Electricity Costs = UE PEN          (22) 

So for the DPP/DLC decision makers: 

a) The DPP should sell electricity at a Negotiated Electricity Price (PEN) that can 

ensure that the profit (say ZE) is greater than the wholesale markup (MEW) so as to make 

more money compared to the traditional way (Option 1): 

ZE≥ MEW          (23) 

Applying (20) and (21) this yields: 

PEN – CE  ≥  PEW − CE           

i.e., 

PEN≥  PEW            (24) 

b) In order to incentivize the DLC, the Negotiated Electricity Price (PEN) should be 

lower than the customer’s regular Electricity Cost (PE): 

PEN≤PE            (25) 

Applying (17) this yields: 

PEN≤  PER + CD           (26) 

This (25) and (26) imply that: 

PEW≤PEN≤  PER + CD           (27) 

Note that the DPP now has additional unit profits (ZE) given by: 

ZE =ZE− MWE            (28) 
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From (20), (21) and (28) it follows that: 

ZE = (PEN − CE) – ( PEW – CE ) 

= PEN– PEW             (29) 

While the unit cost reduction for the customer (say, CE) is: 

CE = PE − PEN  

= PER + CD − PEN            (30) 

Thus the Total Value Added (TVA(E)) of this arrangement that can be shared between 

both parties is: 

TVA(E) = UE  (ZE +CE)            (31) 

Applying (29) and (30) yields: 

TVA(E) = UE  [ ( PEN– PEW) + (PER + CD − PEN) ] 

 = UE  ( PER+ CD− PEW)       (32) 

Since PER–PEW is equal to the retail markup MER, we have 

TVA(E) = UE  ( MER+ CD)       (33) 

The exact share of the benefits that each party obtains will be determined by the value of 

PEN (higher values favor the DPP and lower values the customer) as negotiated between the two 

parties. 

4.3.4 A Case Study 

We now use the model proposed in the previous section with a real-world example of a 

potential dedicated local customer and a potential distributed power producer (because of 

confidentiality agreements we designate this customer as DLC and the power producer as DPP), 
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using estimates of market prices for gas and electricity, estimates of various costs in the model, 

and actual electricity consumption history at DLC. 

A. The Gas Supplier/Power Producer Section  

Based upon interviews with the Marcellus Shale Coalition (Cowden, 2015), the cost 

during transportation from the gas well to the distribution hub is estimated to be between $0.50 

and $1.00 per MMBTU in Pennsylvania. We use the mid-point of this range ($0.75) as an 

estimate of transportation costs, along with a wholesale gas price forecast of PGW = 3.416 per 

MMBTU, and assume that the DPP buys at this price without a retail markup, so that PGR= PGW 

= 3.416.  The scenario for the decision makers is as follow: 

1. Assuming a transport and line loss cost (CT) of $0.75 per MMBTU, the well price 

(PGH), processing cost (CP) and the wholesale markup (MGW) thus add up to $3.416 

- $0.75 = $2.666 per MMBTU. With the savings in transport and line costs, any 

price higher than this will enable the gas company to make more money compared 

to the traditional way.   

2. For the DPP, if the gas company is selling gas at a price lower than $3.416 per 

MMBTU, then it is less expensive than paying what it currently does.   

Therefore the negotiated gas price per MMBTU (PGN) must satisfy condition (11) in the 

previous section: PGW– CT  ≤  PGN ≤ PGR. Substituting PGR= PGW = 3.416andCT= 0.75, we have: 

2.666  ≤PGN ≤3.416        (34) 

We consider two options over the lifetime of the DPP’s power plant (say, 20 years) : (1) 

the DPP runs its facility 11 hours on-peak per day; and (2) also runs off-peak hours. However, it 

is assumed that the total daily running time cannot exceed 22.8 hours in order to match a 95% 

capacity goal to account for reserve time for maintenance, etc. The engine efficiency of the 
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facility is assumed to be 8,300 BTU/KW hr. As shown below, if the DPP runs its facility for as 

much time as possible, the DPP and its gas partner could share a total saving of between 

$13,814,520 and $27,629,040 over twenty years. If the facility only runs at on-peak time, a total 

saving of $6,664,900 to $13,329,800 could be shared by the two. From Equation (16) and since 

PGR= PGW = 3.416by assumption, we have: 

TVAG = UG  (PGR– PGW + CT ) = UG CT        (35) 

We compute three estimates of potential supply chain value based on three possible 

values of CT over its assumed range: 0.50, 0.75, and 1.00. 

First, note that 

Daily Amount of Gas Used (MMBTU) = Engine Efficiency (BTU/KW  hr)  

    MMBTU/BTU    KW  hr/MW  hr  Capacity of total Electricity Generation (MW)   

Operating Hours per day (hour)        (36) 

= 8300        10
3   20   Operating Hours per day =166   Operating Hours per day 

 Consider a 20-year period of 20   365=7300 days. From (35) and (36):  

TVAG = UG CT           

          = 7300  Daily Amount of Gas Used  CT 

          = 7300   166  Operating Hours per day  CT 

          = 1,211,800  Daily Operating Hours  CT     (37) 

 

Case (i): Power generator only runs on-peak: 

Lowest TVA(G) On Peak = 1,211,800   11  0.50 = $6,664,900   (38) 

Average TVA(G) On Peak = 1,211,800   11  0.75 = $9,997,350   (39) 

Highest TVA(G) On Peak = 1,211,800   11  1.00 = $13,329,800   (40) 
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Case (ii): Power generator runs on-peak time as well as off-peak: 

Lowest TVA(G) On & Off Peak = 1,211,800   22.8  0.50 = $13,814,520  (41) 

Average TVA(G) On & Off Peak = 1,211,800   22.8  0.50 = $20,721,780 (42) 

Highest TVA(G) On & Off Peak = 1,211,800   22.8  0.50 = $27,629,040  (43) 

 

While the dollar amount of increase in supply chain value above only depends on the 

transportation and line loss costs per MMBTU, the percentage saving in the overall supply chain 

cost also depends on the actual gas prices (since we need to find the current value of the chain).  

This percentage saving in supply chain cost is given by (total dollar value of savings)  (total 

current value) = (CT UG)  (PGR UG) = CT/PGR. 

Since gas prices are uncertain we also examine how these estimates might change with 

different gas prices. We consider two additional scenarios using two different gas prices of 

$3.420.60 around the mean estimate. To come up with the widest range of estimates, the 

extreme case 1(pessimistic) estimate of the percentage saving in supply chain cost would be 

when gas price (PGR) is highest and transport costs (CT) are lowest, while the extreme case 2 

(optimistic) would be the opposite one. Table 14 displays the percentage saving along with the 

actual dollar values computed earlier for three scenarios. Based on the extremes considered 

herein the supply chain saving resulting from the local gas contract ranges from 12.44% to 

35.46%. 
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Table 14. The Gas Supplier/DPP Interface Efficiency 

Case Nominal 

Case 

Extreme 

Case 1 

Extreme 

Case 2 

Transportation Costs 

$/MMBTU (A) 

0.5 0.75 1 

Saving if power generator only 

runs On-peak 

$9,997,350 $6,664,900 $13,329,800 

Saving if power generator runs 

On & Off-peak 

$20,721,780 $13,814,520 $27,629,040 

Gas Price $/MMBTU (B) 3.416 4.02 2.82 

% Saving in Supply Chain Cost 

(A/B) 

21.96% 12.44% 35.46% 

 

 

 

Additionally, there might be other benefits due to a shorter distance between extraction 

and the end user that are not directly quantifiable; these are outlined later in the next section. 

 

B. The DPP/DLC Section 

Here we use actual data from a potential dedicated local customer (DLC). Currently, this 

entity is paying PER = $68.20 per MW hr for the electricity itself.  The distribution costs are 

more difficult to estimate because there are several different accounts that are all charged 

differently according to tariff rates established by the distribution company (Strah, 2015) as 

follows: 

Account type 1: GENERAL SERVICE – PRIMARY  

$90.73 per month (Customer Charge), plus 

$2.60 per kW for all billed kW 

$.20 for each rkVA of Reactive Demand Billed 
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Account type 2: GENERAL SERVICE - MEDIUM  

$19.11 per month (Customer Charge), plus Demand  

$2.62 per kW for all billing demand as measured in kW  

$0.20 for each rkVA of Reactive Demand Billed 

Account type 3: GENERAL SERVICE - SMALL  

$19.24 per month (Customer Charge), plus  

$0.01926 per kWh for all kWh  

Account type 4: RESIDENTIAL SERVICE  

$10.85 per month (Customer Charge), plus  

$0.03135 per kWh for all kWh  

Based on an analysis of detailed billing and usage information provided by DLC, the 

average demand is around 1,100 kW, while the on-peak demand is around 1,800 kW, and the 

percentages of the totals attributable to each of the above four rate types were estimated as 

follows and are summarized in Table 15: 

1) 60% of the demand, i.e., 660 kW of average and 1,080 kW of on-peak demand is 

estimated as being charged the General Service Primary rate, and is charged by on-

peak demand; 

2) 30% of the demand, the 330 kW of average and 540 kW of on-peak demand is 

estimated as being charged the General Service – Medium rate, and is charged by on-

peak demand; 

3) 5% of the demand, the 55 kW of average and 90 kW on-peak demand is estimated as 

being charged the General Service – Small rate, and is charged by average demand; 
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4) 5% of the demand, the 55 kW of average and 90 kW on-peak demand is estimated as 

being charged the Residential rate, and is charged by average demand. 

 

Table 15. Electricity Demand Estimates at DLC 

Demand 
Average 

Demand 

On-peak 

Demand 
Percentage 

Total 1,100 kW 1,800 kW 100% 

Primary 660 kW 1,080 kW 60% 

Medium 330 kW 540 kW 30% 

Small 55 kW 90 kW 5% 

Residential 55 kW 90 kW 5% 

  

 

Ignoring the relatively small amount from the reactive demand in the bill, the distribution 

cost component is calculated as follows: 

1) The General Service Primary rate applies to 60% of the demand, the 660 kW of 

average and 1,080 kW of on-peak demand, and is charged based upon on-peak 

demand, so the related distribution cost is $90.73 per month (Customer Charge) plus 

$2.60 per kW for all billed kW (On-peak Demand), which is $2,898.73:  

Monthly Primary Distribution Cost ($) = Customer Charge ($) + Rate per kW 

($/kW)   All billed kW (kW) 

      = $90.73 + 2.60 $/kW  1,080 kW = $2,898.73     (44) 

2) The General Service Medium rate applies to 30% of the demand, the 330 kW of 

average and 540 kW of on-peak demand, and is charged based upon on-peak demand. 
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The cost related to this is $19.11 per month (Total Customer Charge) plus $2.62 per 

kW for all billing demand as measured in kW (On-peak Demand), which is 

$1,433.91: 

Monthly General Service Medium Distribution Cost ($) = Customer Charge ($) + 

Rate per kW ($/kW)   All billed kW (kW) 

= $19.11 + 2.62 $/kW  540 kW = $1,433.91     (45) 

3) The General Service Small rate applies to 5% of the demand, the 55 kW of average 

and 90 kW on-peak demand, and is charged based upon average demand. Therefore, 

the cost of this account is $19.24 per month plus $0.01926 per kWh for all kWh, 

which is $781.94: 

Monthly General Service Small Distribution Cost ($) = Total Customer Charge ($) + 

Rate per kWh ($/kW)   All billed kWh (kW hr) 

= $19.24 + 0.01926 $/kW hr   55 kW   30   24 hours = $781.94  (46) 

Since All billed kWh (kW hr) = Average Demand (kW)   Time (hours) 

4) The Residential rate applies to 5% of the demand, the 55 kW of average and 90 kW 

on-peak demand is applied to Residential rate, and is charged based upon average 

demand. The cost is $10.85 per month plus $0.03135 per kWh for all kWh, which is 

$1,252.31: 

Monthly Residential Distribution Cost ($) = Total Customer Charge ($) + Rate per 

kWh ($/kW)   All billed kWh (kW hr) 

= $10.85 + 0.03135 $/kW hr  55 kW   30   24 hour = $1,252.31  (47) 
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Therefore, the Total Monthly Distribution Cost is the sum of these four components: 

Monthly Total Distribution Cost = $2,898.73 + $1,433.91 + $781.94 + $1,252.31 

= $6,366.89          (48) 

Now consider the monthly electricity generation and transmission retail costs which are 

= Electricity Retail Price ($PER/MW hr)   Average Demand (MW)   hours per month  

Hence  

Monthly Electricity Generation and Transmission Retail Price Paid = 68.20 $/MW hr  

1.1 MW   30   24 hour = $54,014.40       (49) 

The Total Cost is: 

Current Average Monthly Electricity Cost ($) = Monthly Electricity Generation and 

Transmission Retail Price Paid ($) + Monthly Distribution Cost ($) 

= $54,014.40 + $6,366.89 = $60,381.29      (50) 

For the purpose of validation, the actual electricity bills from DCX were analyzed by 

each account. The generation and transmission cost, and the distribution cost of each account 

was calculated separately. The average amounts of usage or demand related to all billed kW or 

kWh were obtained, and the average rate of each component was computed. If we compare each 

component of average monthly electricity cost to actual electricity billing as shown in Table 16, 

it can be seen that the estimates are very close to the actual values.  This validates the adequacy 

of the assumptions made in our cost calculations. In addition, we ignored taxes, which could also 

account for the fact that the actual cost of 0.0725 is a little higher than the assumed value of 

0.0682. 
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Table 16. Each Component of Estimated and Actual Billing 

Component 

Generation and Transmission Distribution Total 

P M S+R Total P M S+R Total  

Cost 

Estimated $32,408 $16,204 $5,401 $54,014 $2,899 $1,434 $2,034 $6,367 $60,381 

Actual $37,231 $15,206 $4,131 $56,568 $2,760 $1,126 $1,994 $5,880 $62,448 

Demand 

Estimated 

475,200

kWh 

237,600

kWh 

79,200

kWh 
792,000

kWh 1080 kW 540 kW 

79,200

kWh 

  

Actual 

513,574

kWh 

209,770

kWh 

56,906

kWh 
780,250

kWh 1002 kW 404 kW 

56,906

kWh 

Rate 

Estimated 0.0682 + Tax 

2.60+ 

Reactive 

2.62+ 

Reactive 0.0253 

Actual 0.0725 2.66 2.74 0.0345 

 
*P: Primary, M: General Service Medium,    : General Service Small plus Residential 

 

To calculate the added supply chain value from a distributed power model, the monthly 

electricity generation and transmission price paid is further divided into monthly electricity 

wholesale cost plus the retail markup. For each unit of electricity, recall from Equation (17): 

Electricity Retail Cost (PER) = Electricity Wholesale Cost (PEW)+ Electricity Retail Markup 

(MER)  

The wholesale price is determined from an analysis of the wholesale electricity market 

data (EIA, Wholesale Electricity and Natural Gas Market Data, 2015). The average wholesale 

price is estimated to be PEW= $44.01 per MW hr, and given that the retail price is MRE=$68.20 

per MW hr, we can compute the retail markup as 

MER= PER − PEW= 68.20– 44.01=$24.19 per MW hr.    (51) 

We can now compute the wholesale and retail markup components of the monthly 

transmission and generation charges costs ($54,014.40that we previously computed) as follows: 
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Monthly Electricity Generation & Transmission Wholesale Cost ($) = Electricity 

Wholesale Price ($PEW per MW hr)   Average Demand (MW)   hours per month 

= 44.01   1.1   720 = $34,856       (52) 

And, 

Monthly Electricity Generation & Transmission Markup Cost ($) = Electricity Retail 

Markup ($MER per MW hr)   Average Demand (MW)   Time (hour) 

= 24.19   1.1   720 = $19,158       (53) 

Allocating these two totals among the four rate types using the aforementioned demand 

ratios: 

1) Monthly Primary Electricity Markup Cost = 60% $19,158.48 = $11,495  (54) 

Monthly Primary Electricity Wholesale Cost = 60% $34,855.92 = $20,914(55) 

2) Monthly Medium Electricity Markup Cost = 30% $19,158.48 = $5,748  (56) 

Monthly Medium Electricity Wholesale Cost = 30% $34,855.92 = $10,457 (57) 

3) Monthly Small Electricity Markup Cost = 5% $19,158.48 = $958   (58) 

Monthly Small Electricity Wholesale Cost = 5% $34,855.92 = $1,743  (59) 

4) Monthly Residential Electricity Markup Cost = 5% $19,158.48 = $958  (60) 

Monthly Residential Electricity Wholesale Cost = 5% $34,855.92 = $1,743 (61) 

Now consider the scenario with a DPP providing power behind the meter.  This 

eliminates the distribution cost (CD) and retail markup (MER). The supply chain value for each 

account/rate type account and the monthly bills are illustrated in Table 17. Note that the TVA(E) 

is given by Equation (33): TVA(E) = UE  ( MER+ CD). 



 103 

Across the different account/rate types, the percentage saving in supply chain cost varies 

between 40.72% and 55.91%, while the overall saving is 42.27%. 

 

Table 17. The DPP/DLC Section Saving 

Account Primary Medium Small Residential Total 

Percentage 60% 30% 5% 5% 100% 

Average Demand 660 kW 330 kW 55 kW 55 kW 1,100 kW 

On-peak Demand 1,080 kW 540 kW 90 kW 90 kW 1,800 kW 

Monthly Distribution Share 

(A) 
$2,899 $1,434 $782 $1,252 $6,367 

Monthly Markup 

Share(B=UEMER) 
$11,495 $5,748 $958 $958 $19,158 

Monthly Wholesale 

Share(C= UEPEW) 
$20,914 $10,457 $1,743 $1,743 $34,856 

Monthly Total Cost 

(A+B+C) 
$35,307 $17,638 $3,483 $3,953 $60,381 

Monthly Savings (TVA(E)) 

(A+B) 
$14,394 $7,181 $1,740 $2,210 $25,525 

% Saving in Supply Chain 

Cost(A+B)/(A+B+C) 

40.77% 40.72% 49.96% 55.91% 42.27% 

20-year Value 

(A+B) 12 20 
$3,454,517 $1,723,548 $417,566 $530,455 $6,126,089 

 

 

 

We can also compute the average distribution rate (CD) for one unit (MW  hr) of 

electricity as: 

CD = Monthly Total Distribution Cost ($) (Average Demand (MW)   Time (hour)) 

= $6,367  (1.1 MW   30   24 hour)  

= 8.04 $/MW hr         (62) 

Therefore, for the DPP/DCX decision makers: 
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a) The DPP should sell electricity at a Negotiated Electricity Price (PNE) that can 

make the profit greater than the wholesale markup (MEW) so as to make more 

money compared to the traditional way. Applying Equation (24): 

PEN≥  PEW= 44.02        (63) 

b) In order to incentivize the dedicated customer, the Negotiated Electricity Price 

(PEN) should be lower than traditional Electricity Cost at Customer (PE). Plugging 

in Equation (25), (26) and (62): 

PEN≤  PE = PER + CD = 68.20 + 8.04 = 76.24    (64) 

So (also refer to Equation (27) in: PEW≤  PEN≤  PER + CD, so that),  

44.02 PEN 76.24         (65) 

Note that the DPP now has additional profits of (ZE = PEN– PEW) per MW hr (by 

Equation (29)), while DCX saves (CE = PER + CD − PEN) per MW hr (by Equation (30)). 

Generally speaking, the total savings of this arrangement that can be shared between both 

parties over the next 20 years is computed using Equation (32): 

TVA(E) = UE  ( PER+ CD  − PEW) 

=1.1 MW  20  365   24 hour   (68.20+8.04–44.02)($/MW hr)  

= $6,126,089          (66) 

Therefore, a value around 6 million can be shared between the DPP and DCX over the 

next 20 years. 
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4.3.5 Discussion 

Levelized cost of electricity 

The levelized cost of electricity (LCOE), described as a useful summary measurement of the 

total competiveness of different generating technologies, represents the per kilowatt-hour cost (in 

real dollars) of constructing and operating a generating plant over a projected financial life and 

duty cycle. The LCOE considers capital costs, fuel costs, fixed and variable operations and 

maintenance (O&M) costs, financing costs, and an assumed utilization rate. As indicated in 

Table 18, the LCOE of natural gas-fired power plants is lower than that of other power plants. 

This advantage would help generators set competitive electricity prices and pass on benefits to 

their end-users (EIA, Annual Energy Outlook 2015, 2015). 

 

Table 18. Estimated Levelized Cost of Electricity for New Generation Resources 

Plant Type 

(Dispatchable Technologies) 

Total System LCOE 

($/MWh) 

Natural Gas-fired 72.6 

Advanced Coal 115.7 

Advanced Nuclear 95.2 

Wind 73.6 

Solar 114.3 

 

 

 

While wind and solar power have an advantage in producing electricity without any fuel, 

there are several disadvantages as discussed earlier. 

 

Reduction of Environmental Impact and Cost 

The proposed business case eliminates some portions of the gas transportation process including 

some treatment and compression. In the Marcellus Shale gas region, the typical gas line utilized 
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is large-diameter (24 to 36 inches) and the average in most cases is 120 miles in length.  Based 

on research by the International Pipeline and Offshore Contractors Association, the carbon 

footprint associated with laying large-diameter pipelines is approximately 960 tons per mile. 

Therefore, the proposed case could reduce around 115,200 tons of CO2 emissions over its 

lifetime if it obviates the need to lay such a pipeline.  Of course, this might not be relevant since 

the gas is more than likely, transported across an existing pipeline. 

The proposed business case can reduce both environmental impacts and costs. Table 19 

describes the total amount of CO2 emissions (refer to Table 12 for lbs. of emissions per KWh 

from gas and coal based plants) and Table 20 calculates environmental costs (refer to Table 18 

for cost of electricity per MWh from gas and coal based plants), both of which can be reduced. 

The proposed case could save about 49.53% of carbon tax compared to a traditional coal-based 

power plant. 

 

Table 19. Comparison of Total Amount of CO2Emissions (tons) 

Production Process 
Proposed Business 

Case (Natural Gas) 

Traditional Case 

(Natural Gas)  

 Traditional 

Case (Coal) 

CO2 Emissions 1,889,094
(1)

 1,889,094 3,743,235 
(2)

 
NOTES: 

1) 1,135 lbs. /MWh × 20 MW × 20 Years ×365 Days × 22.8 h× 0.0005 lbs./ton 

2) 2,249 lbs. /MWh × 20 MW × 20 Years ×365 Days × 22.8 h × 0.0005 lbs./ton 

 

 
Table 20. Comparison of Total Cost (US dollar) 

Process 
Proposed Business 

Case (Natural Gas) 

Traditional Case 

(Natural Gas) 

Traditional Case 

(Coal) 

Carbon Tax 
(1)

 47,227,350
(1)

 47,227,350 93,580,875 

Cost of Electricity 241,670,880
(2)

 241,670,880 385,142,160
(3)

 

Transmission Loss
(4)

 0 14,379,417 22,915,958 

Total Cost 288,898,230 303,327,647 501,638,993 
NOTES:  

1) Assume the carbon tax rate is $25/ton-CO2emissions in Table 19 (EIA, Annual Energy Outlook 2015, 

2015) 
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Table 20 (continued) 

2) $72.6/MWh × 20 MW× 20 Years × 365 Days × 22.8 h (US dollar per year) 

3) $115.7/MWh × 20 MW× 20 Years × 365 Days × 22.8 h (US dollar per year) 

4) Average transmission loss rate in Pennsylvania is 5.95%(EIA, State Electricity Profiles, 2016) 

 

 

 

Indirect and Induced Impact 

One of the advantages of the business case described herein is that the natural gas that is 

produced is used locally for electricity consumption. In addition to the supply chain efficiency, 

one can also expect indirect economic impacts because of the creation of employment. Once 

employees move to areas producing natural gas to staff and maintain the distributed power 

generation facilities, they also drive development of restaurants, hotels, car dealerships, 

entertainment and any other services they might need. The additional indirect and induced 

impact of the Marcellus Shale industry in Pennsylvania on goods and services were $1.56billion 

(indirect impact) and $1.84 billion (induced impact) in 2009(Hefley & Seydor, 2015). It is 

estimated that $1.90 of total gross output or sales is generated for every $1 that the Marcellus 

industry spends in the state.(Constantine, Watson, & Blumsack, 2010). 

4.3.6 Limitations 

This case study does not consider the economic and environmental impacts of taxes and other 

related government policies. One such policy under discussion in Pennsylvania is the severance 

tax. These taxes or fees are in place in approximately 35 states in the United States (Rabe & 

Hampton, 2015). One cost component not addressed in the analyses in this study is any potential 

future extraction or severance taxes or fees. Such extraction, drilling taxes or fees would 

typically be levied on the extraction of a non-renewable natural resource, such as the extraction 

of natural gas from the Marcellus play. A severance tax would typically be levied on the 
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extractor, which would change the Wholesale Gas Price (PGW) in the Gas Supplier/Power 

Producer Section analysis by adding severance tax costs to the gas price at the well-head (PGH). 

These taxes or fees have served a number of purposes. They been used to create 

severance endowments; contribute to a state’s general fund; contribute to a permanent fund, 

whose earned interest can help balance the state budget; or used for targeted purposes such as 

funding conservation and environmental cleanup projects or to provide annual allocations to 

local governments (National Conference of State Legislatures, 2012) (Rabe & Hampton, 2015). 

For example, under Pennsylvania’s current system of impact fees, the state distributed 

$233,500,000 in impact fees to counties and municipalities in 2014 (Pennsylvania Public Utility 

Commission, 2015). These uses are all implements of public policy. 

There are perceptions among governmental regulators and legislators that they need to 

suppress severance tax rates or expand exemptions in order to sustain investment (Rabe & 

Hampton, 2015). A policy implementation that could be used to encourage utilization of 

Marcellus natural gas within the state could be to waive or reduce any severance taxes or impact 

fees for natural gas extracted and used for distributed power generation within the state.  This use 

of Marcellus gas potentially has not only significant economic benefits for all three parties in the 

chain (the gas supplier or extractor, the electricity producer operating the distributed power 

generation facility, and the end customer), but also the added benefit of reduced gas costs as a 

result of reduced or waived severance taxes.  In addition to these direct economic benefits, 

distributed power generation may also result in other indirect and induced economic benefits and 

reduced environmental impacts discussed above. 
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4.3.7 Conclusion 

The natural gas industry is in a unique situation. Due to the global glut in petroleum and gas, the 

price of natural gas has dropped significantly since 2015. This situation calls for innovative 

approaches to increase supply chain efficiency so that the natural gas industry can remain 

profitable. Using the distributed power production model has the potential to reduce 12% to 35% 

of the cost in the upstream supply chain. Our case study also shows that there could be a cost 

saving in the range of 41% to 56% for different kinds of electricity users. Power producers could 

potentially eliminate enormous amounts of environmental emissions compared to traditional 

coal-based power plants. Clearly, this model could not be used everywhere, but depending on the 

scale along which it can be implemented there is significant potential for large absolute cost 

savings. 

In summary, the supply chain reengineering for the distributed power generation industry 

introduced and quantified in this case study is a new way of taking advantage of the recent boom 

in natural gas, rather than an optimization of the existing business process flow. It describes a 

revolution more than an evolution. As shown from the case study, if the natural gas supply chain 

can be further analyzed and optimized, there could be more potential economic benefits for the 

supplier and customer and environmental benefit for society at large. With the power generation 

supply chain efficiency as an operations strategy, this is one way of enabling increased all-

around efficiencies for the near future.  



 110 

4.4 SUMMARY AND CONCLUSIONS 

In this thesis we introduced the basic background of the petroleum, natural gas and shale gas 

industry in Chapter 1. In Chapter 2 we described the process of shale gas production and mapped 

its supply chain, which starts with the exploration of a potential drilling location and ends with 

the delivery of the natural gas to end-use customers.  We propose a breakdown of this supply 

chain into two parts: a transient one that exists until the well goes into production and a stable 

one that remains thereafter.  In Chapter 3, we presented detailed flow of various materials and 

some relevant costs in the shale gas supply chain as a first step toward planning for its efficient 

operation. Finally, in Chapter 4 we touch upon other related issues such as methane emission, 

natural gas use patterns and fluctuation in its prices. Through a case study of distributed power 

generation from Marcellus shale we also discussed how natural gas can play a role in bridging 

the gap between coal/petroleum based energy and renewable energy. 

Although clean renewable energy is highly desirable as a source of future power needs, 

technologies in this area are not mature and reliable enough to meet a majority of our energy 

needs today. Its environmental and cost advantages thus make natural gas an attractive bridge 

between fossil energy and renewable energy. It is more reliable and a cheaper alternative to 

renewable energy today, and as a more environmentally friendly alternative to other fossil fuels 

such as coal and petroleum, natural gas has the potential to be a solution to the energy gap in the 

near future. 

On the other hand, the most common concerns about the shale gas industry are with 

respect to methane emissions, water management and pollution. Under today’s more stringent 

regulations and in the face of strong public opinion, the shale industry has in general attempted 

to address the latter issue by utilizing technological advances with on-site or off-site water 
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treatment for reuse of wastewater or discharge as fresh water. In addition, the industry has been 

upgrading the equipment and techniques applied to the production, storage, and transportation of 

natural gas such as various protective layers, casings and cement in order to reduce leaks that 

could contribute to methane emissions and environmental pollution. However, the technology 

and processes behind the production, distribution and delivery of natural gas from shale gas 

should continue to be studied and optimized.  

4.5 CONTRIBUTIONS AND FUTURE WORK 

The primary contributions of this thesis are to: 1)separate the shale gas supply chain into two 

segments based upon the unique characteristic of shale gas; 2) emphasize and study the processes 

in the transient supply chain along with their related critical issues; 3) map out the material flows 

within the transient supply chain as a first step to achieving cost savings and operations 

improvement; 4) establish a business model for utilizing Marcellus shale gas for distributed 

power generation and use a real-world case study to demonstrate how shale gas can effectively 

bridge the gap between other fossil fuels like coal/petroleum and renewable energy. The work is 

based on detailed field investigations and interviews, and collaboration with several local 

business players in order to conduct a comprehensive and objective study. 

This research offers a better understanding of the unique characteristics of the shale gas 

supply chain. The stable supply chain of shale gas, which is post-production, is not particularly 

different from that of conventional gas since it generally follows similar processes once gas is 

extracted and gathered. However, the transient supply chain for shale gas is distinct, and its 

unique aspects and material flows are investigated and mapped in this thesis.  
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There are still some significant challenges that need to be addressed. Among these 

challenges, development and retention of the workforce is a major issue. Due to the specialized 

techniques and uncommon working environment, all workers must be skilled to meet labor and 

safety standards. This could be problematic since local workers might not be sufficiently skilled 

or experienced in terms of these standards. In Pennsylvania, although 250,000 jobs were 

projected to be supported by natural gas (Considine, Watson, & Blumsack, 2011), companies 

have often had to recruit workers from other states where drilling has existed long since, because 

the local workers “aren’t trained to do the actual drilling jobs” (Toland, 2010). As a result, 

approximately 70% of the shale gas employees are recruited from out of state, according to one 

analysis, while materials and equipment could also be potentially from there (Barth, 2011).The 

situation is most serious for the many small and medium sized players that do not have the same 

resources as the relatively small number of large and more vertically integrated companies. 

A related issue is that the workforce is disproportionately impacted by the cyclical nature 

of the oil and gas sector.  Interest in the sector grows when there is a boom but any downturn has 

a significant impact on the number of gas and oilfield professionals as they tend to move to a 

different sector; the number of fresh graduates in these areas also declines. This is also true of 

areas like supply chain management in the shale gas sector where skills are often transferable 

and result in the loss of experienced personnel when there is a downturn. When the situation 

changes for the better there is often a big shortage of qualified personnel, and new hires can often 

face a significant learning curve.  By one estimate, 71% of the workforce in the oil and gas 

industry is estimated to be over 50 years old (Randazzo, 2014). By 2018, around half of the 

current engineers and geophysicists in this industry will retire, according to another study (Oil & 

Gas IQ, 2014). This situation will lead to a serious labor shortage in the next few years, 
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especially if the shale industry comes out of its current downturn and there is increased activity. 

Common immediate and growing areas of need for the shale gas sector to bridge this skills gap 

include (David, 2014)(Faraguna, 2013) (Low, 2013): 

 Geologists, geophysicists, and geoscientists with skills in subsurface reservoir 

characterization 

 Petroleum and reservoir engineers to determine optimal drilling locations and maximize 

recovery 

 Drilling and fracking specialists such as petrophysicists, oil field mechanics, seismic 

interpreters, hydrocarbon mud loggers, and hydromechanics and hydrokinetics experts 

with horizontal drilling and hydraulic fracturing skills and experience to exploit and 

stimulate the reservoirs 

 Plant managers, operations managers, project managers, and finance managers who can 

take responsibility for various operations, planning, budgeting and other management 

duties related to exploration and production of shale gas 

 Transportation, shipping and maritime leaders to support downstream marketing and 

transportation operations 

The educational methods, training lead-times and correlation and compatibility with other 

industrial sectors are still not clear and remain to be studied as future guidance for training local 

workers. In order to stimulate local employment and compensate for this labor shortage, further 

study of man-power and human resource issues is needed in the future. 
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APPENDIX A 

CHEMICALS IN HYDRAULIC FRACTURING FLUIDS 

Table 21. A Summary of the Various Chemicals Used to Make Hydraulic Fracturing Fluids 

(Montgomery C. , 2013) 

Chemical Name 
CAS 

Number 
Chemical Purpose 

Product 

Function 

Hazard 

Rating1 

 

Hydrochloric Acid 

HCl 

 

007647-01-0 

Removes acid soluble minerals 

and weakens the rock to allow 

lower fracture iniciation 

pressures. 

 

Acid 

 

4*,8** 

 

Glutaraldehyde 

C5H8O2 

 

000111-30-8 

Eliminates bacteria in the water to 

prevent frac polymer premature 

breakdown and well souring 

 

Biocide 

 

3*,6** 

Quaternary Ammonium 

Chloride Compounds 

 

63393-96-4 
Clay Control Agents 

Biocides 

and Clay 

Stabilizers 

 

3** 

Tetrakis Hydroxymethyl-

Phosphonium Sulfate 

C8H24O8P2.SO4 

 

055566-30-8 

Eliminates bacteria in the water to 

prevent frac polymer premature 

breakdown and well souring 

 

Biocide 

 

NR 

Ammonium Persulfate 

(NH4)2S2O8 

 

007727-54-0 

Breaks the polymer that is used to 

create the fracturing fluid 

 

Breaker 

 

4*,5** 

Sodium Chloride 

NaCl 
007647-14-5 Product Stabilizer Breaker NR 

Magnesium Peroxide 

MgO2 

1335-26-8 
Delays the breakdown of the 

fracturing fluid gelling agent 
Breaker 5** 
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Table 21 (continued) 

 

Magnesium Oxide 

MgO 

 

1309-48-4 

 

Delays the cross linking of the 

fracturing fluid gelling agent 

 

Buffer 

 

4* 

 

Calcium Chloride 

CaCl2 

 

10043-52-4 

 

Product Stabilizer and Freeze 

Protection 

 

Buffer 

 

NR 

 

Ammonium Chloride 

NH4Cl 

 

012125-02-9 

 

Clay Stabilizer – Compatible with 

Mud Acid 

 

Clay 

Stabilizer 

 

4*,9** 

 

Choline Chloride 

[HOCH2CH2N
+(CH3)3]C 

 

67-48-1 

 

Prevents clays from swelling or 

migrating 

 

Clay 

Stabilizer 

 

5* 

 

Potassium chloride 

KCl 

 

007447-40-7 

 

Prevents clays from swelling or 

migrating 

 

Clay 

Stabilizer 

 

5*,5** 

 

Tetramethyl ammonium 

chloride 

(CH3)4NCl 

 

000075-57-0 

 

Prevents clays from swelling or 

migrating 

 

Clay 

Stabilizer 

 

3*,6** 

 

Sodium Chloride 

NaCl 

 

007647-14-5 
  

 

NR 

 

Isopropanol 

CH3CH(OH)CH3 

 

000067-63-0 

 

Winterizing agent 

 

Winterizin

g agent 

and 

Surface 

Tension 

Reduction 

 

3** 

 

Methanol 

CH3OH 

 

000067-56-1 

 

Winterizing agent 

 

Winterizin

g agent 

 

3*, 3** 

 

Formic Acid 

HCOOH 

 

000064-18-6 

 

pH adjustment 

 

pH 

adjustmen

t 

 

4*.8** 

 

Acetaldehyde 

CH3CHO 

 

000075-07-0 

 

Prevents the corrosion of the pipe 

 

Corrosion 

Inhibitor 

 

4*,3** 
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Table 21 (continued) 

 

Hydrotreated Light 

Petroleum Distillate 

 

064742-47-8 

 

Carrier fluid for gelling agents, 

friction reducers and crosslinkers 

 

Carrier 

fluid and 

fluid loss 

control 

 

3** 

 

Potassium Metaborate 

KBO2 

 

013709-94-9 

 

Crosslinker for borate crosslinked 

fluids 

 

Crosslinke

r 

 

3* 

 

Triethanolamine (TEA) 

N(CH2CH2OH)3 

 

102-71-6 

 

Maintains fluid viscosity as 

temperature increases 

 

Fluid 

Stabilizer 

 

5*,3** 

 

Sodium Tetraborate 

Na2B4O7 

 

001330-43-4 

 

Crosslinker for borate crosslinked 

fluids 

 

Crosslinke

r 

 

4* 

 

Boric Acid 

H3BO3 

 

13343-35-3 

 

Crosslinker for borate crosslinked 

fluids 

 

Crosslinke

r 

 

4* 

 

Chelated Zirconium 
 

 

Crosslinker for High Temperature 

or low pH Fluids 

 

Crosslinke

r 

 

 

Zirconium oxychloride 

ZrCl2O 

 

7699-43-6 

 

Inorganic Clay Stabilizer 

 

Clay 

Stabilizer 

 

4* 

 

Ethylene Glycol 

OCH2CH2OH 

 

000107-21-1 

 

Product stabilizer and / or 

winterizing agent. 

 

Winterizin

g Agent 

 

4* 

 

Methanol 

CH3OH 

 

000067-56-1 

 

Surface Tension Reduction and / 

or winterizing agent. 

 

Fluid 

Recovery 

and 

Winterizin

g Agent 

 

3*,3** 

 

Ethanol 

C2H5OH 

 

000064-17-5 

 

Product stabilizer and / or 

winterizing agent. 

 

Fluid 

Recovery 

and 

Winterizin

g Agent 

 

3** 

 

Polyacrylamide 

(C3H5NO)n 

 

009003-05-8 

 

“Slicks” the water to minimize 

friction 

 

Friction 

Reducer 

 

5* 
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Table 21 (continued) 

 

Guar Gum and its 

derivatives HPG, 

CMHPG 

 

009000-30-0 

 

Thickens the water in order to 

suspend the proppant and reduce 

friction 

 

Gelling 

Agents 

 

NR 

 

Derivatives of cellulose - 

HEC, CMHEC 

R(n)OCH2COONa 

 

9004-34-6 

9004-32-4 

 

Thickens the water in order to 

suspend the proppant and reduce 

friction 

 

Gelling 

Agents 

 

NR 

 

Xanthan gum 

 

11138-66-2 

 

Thickens Acid in order to control 

fluid loss 

 

Gelling 

Agent 

 

NR 

 

Citric Acid 

(HOOCCH2)2C(OH)COO

H 

 

000077-92-9 

 

Prevents precipitation of metal 

oxides 

 

Iron 

Control 

 

5*,8** 

 

Acetic Acid 

CH3COOH 

 

000064-19-7 

 

Prevents precipitation of metal 

oxides and pH control 

 

Iron 

Control 

and pH 

Adjustme

nt 

 

4*,8** 

 

Thioglycolic Acid 

HSCH2COOH 

 

000068-11-1 

 

Prevents precipitation of metal 

oxides 

 

Iron 

Control 

 

3*,8** 

 

Sodium Erythorbate 

C6H7O6. Na 

 

006381-77-7 

 

Prevents precipitation of metal 

oxides 

 

Iron 

Control 

 

NR 

 

Lauryl Sulfate and its 

Derivatives 

C12H25OSO2ONa 

 

000151-21-3 

 

Used to prevent the formation of 

emulsions in the reservoir and to 

improve fluid recovery 

 

Non-

Emulsifier 

and 

Surfactant

s 

 

4* 

 

Sodium Hydroxide 

NaOH 

 

001310-73-2 

 

Adjusts the pH of fluid to initiate 

the effectiveness of other 

components, such as crosslinkers 

 

pH 

Adjusting 

Agent 

 

4*,8** 

 

Potassium Hydroxide 

KOH 

 

001310-58-3 

 

Adjusts the pH of fluid to initiate 

the effectiveness of other 

components, such as crosslinkers 

 

pH 

Adjusting 

Agent 

 

2*,8** 
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Table 21 (continued) 

 

Sodium Carbonate 

Na2CO3 

 

000497-19-8 

Adjusts the pH of fluid to 

maintains the effectiveness of 

other components, such as 

crosslinkers 

 

pH 

Adjusting 

Agent 

 

5*,5** 

 

Potassium Carbonate 

K2CO3 

 

000584-08-7 

Adjusts the pH of fluid to 

maintains the effectiveness of 

other components, such as 

crosslinkers 

pH 

Adjusting 

Agent 

 

4* 

Sodium Acrylate and 

Copolymers of 

Acrylamide 

C3H3O2. Na 

 

007446-81-3 

 

Prevents scale deposits in the pipe 

or in the fracture 

 

Scale 

Inhibitor 

 

NR 

 

Sodium Polycarboxylate 

 

N/A 

 

Prevents scale deposits in the pipe 

Scale 

Inhibitor 
 

 

Phosphonic Acid Salt 

 

N/A 

 

Prevents scale deposits in the pipe 

Scale 

Inhibitor 
 

Naphthalene 

C10H8 

 

000091-20-3 

Carrier fluid for the active 

surfactant ingredients 

 

Surfactant 

 

3*,4** 

Ethylene glycol 

monobutyl ether - 

EGMBE 

C4H9OCH2CH2OH 

 

000111-76-2 

 

Surface Tension Reduction for 

Fluid Recovery 

 

Surfactant 

 

4*, 6** 

 

[i] - 1 – Hazard Rating – An attempt made by the author to rate the hazard level associated with 

the chemicals in the list. The first number of Hazard Rating with the “*” is the Poison Hazard 

and the second number of Hazard Rating with “**” is the transportation Hazard. The Poison 

Hazard is defined by the EU/Swiss Poison Class and the transportation Hazard is defined by the 

US Department of Transportation (DOT). The appearance of “NR” means that no rating could be 

found, and if a substance is present, that chemical was normally non-hazardous. 

[ii] - * EU/Swiss Poison Class 
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