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Abstract
Longitudinal investigation of the neural correlates of reward processing in depression may

represent an important step in defining effective biomarkers for antidepressant treatment

outcome prediction, but the reliability of reward-related activation is not well understood.

Thirty-seven healthy control participants were scanned using fMRI while performing a re-

ward-related guessing task on two occasions, approximately one week apart. Two main

contrasts were examined: right ventral striatum (VS) activation fMRI BOLD signal related to

signed prediction errors (PE) and reward expectancy (RE). We also examined bilateral visu-

al cortex activation coupled to outcome anticipation. Significant VS PE-related activity was

observed at the first testing session, but at the second testing session, VS PE-related acti-

vation was significantly reduced. Conversely, significant VS RE-related activity was ob-

served at time 2 but not time 1. Increases in VS RE-related activity from time 1 to time 2

were significantly associated with decreases in VS PE-related activity from time 1 to time 2

across participants. Intraclass correlations (ICCs) in VS were very low. By contrast, visual

cortex activation had much larger ICCs, particularly in individuals with high quality data. Dy-

namic changes in brain activation are widely predicted, and failure to account for these

changes could lead to inaccurate evaluations of the reliability of functional MRI signals.

Conventional measures of reliability cannot distinguish between changes specified by algo-

rithmic models of neural function and noisy signal. Here, we provide evidence for the former
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possibility: reward-related VS activations follow the pattern predicted by temporal difference

models of reward learning but have low ICCs.

Introduction
It is essential to improve the test-retest reliability of the blood oxygenation level dependent
(BOLD) signal both to provide a deeper understanding of individual differences in context-de-
pendent neural responses, as well as a meaningful interpretation of functional neural circuitry
changes across time. Currently, obtaining reliable neural activation appears somewhat elusive,
with some studies reporting strikingly consistent activations across time between participants
(e.g. [1]) and other studies reporting low test-retest reliability (e.g. [2]). As might therefore be
expected, the literature as a whole seems to align somewhere between the two, with a modest
(‘fair’) reliability: the pooling of studies reporting Intra-Class Correlations (ICCs), a conven-
tional metric of data reliability, yielded an average ICC of around 0.5 [3]. Notably, such levels
of reliability would be unacceptable in many other fields of scientific investigation, and this has
tempered optimism about the use of functional magnetic resonance imaging (fMRI) to provide
meaningful insight into individual differences [4].

Several approaches have been utilized to improve reliability of fMRI methods including a
careful attention to the acquisition parameters within and across scanners, especially in multi-
site studies. Beyond image acquisition, another limiting factor of reliability may be the statisti-
cal analysis pipeline employed [5, 6]. Mis-specification in the modeling of the BOLD response,
perhaps due to systematic differences in the haemodynamic response function (HRF: [7]) or
the problematic consequences of physiological noise [8] may be serious impediments to the re-
liability and reproducibility of patterns of neural activation. We recently demonstrated that im-
provement in the test-retest reliability of response in some brain regions can be achieved by
correcting for both HRF and BOLD response modeling [9]. However, emotion-related amyg-
dala activation was generally unreliable, as assessed by a conventional measure of reliability
(ICCs: (see also [2, 10, 11]), and was not consistently improved by alternative modeling strate-
gies. This was observed despite the capability of the procedure to reveal clinically relevant indi-
vidual differences in amygdala activation [12]. Among several possible explanations for this
discrepancy, one likely explanation is that as predicted by previous empirical [13, 14] and theo-
retical conceptions of amygdala function [15, 16], amygdala activation may change dynamical-
ly during the experimental paradigm itself.

A good place to investigate further the possibility of dynamic change in neural response in
specific regions of interest is to examine reward-related activation in the ventral striatum (VS).
Considerable empirical evidence has accumulated on activation of this region during reward
processing and hypotheses about the VS have been sharpened by numerous studies. A domi-
nant hypothesis of reward-related activation in the VS is that it follows predictions according
to the temporal difference (TD) model of learning [17]. This model posits that reward-related
activation occurs when there is a deviation from expectation, and that it reflects whether an
event is better or worse than expected (a ‘signed prediction error’). Importantly, with training,
the same signal becomes coupled to the earliest reliable predictor of reward, e.g., a cue predict-
ing future reward [18, 19]. Concurrently, the signal coupled to the outcome itself—the pre-
dicted reward—diminishes, unless the reward is surprisingly increased. From the perspective
of reliability, however, activation that fluctuates as a result of the process of conditioning would
be expected to be difficult to reproduce, and thus the ventral striatal response to prediction
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error is likely to be non-stationary across time. Thus, although variation in activation levels
from the first to second scanning session will lead to low estimates of reliability using ICCs or
similar measures, such variation may be predictable insofar as it follows what we would have
expected from a learning mechanism.

In a previous fMRI study of a reward paradigm (based on [20, 21]), we examined the neural
response in VS to outcome-coupled positive prediction errors in healthy control (HC) partici-
pants—events when an outcome is more rewarding (i.e. has a greater monetary value) than
was expected [22]. We also observed a negative correlation between the magnitude of this re-
sponse and the activation in the VS associated with a prior cue which signaled the likelihood of
obtaining reward. This negative relationship follows from the predictions of the TD model: the
process of conditioning should reduce outcome-coupled prediction error- (PE) related and in-
crease cue-coupled reward expectancy- (RE) related activation (see also [23]). Individuals with
relatively high learning rates would then show relatively increased RE- and reduced PE-related
VS activation. We would also expect this pattern to generalize to a second testing session, i.e.,
RE activations would continue to increase and PE activations would fall further. Although
learning is not an explicit requirement of the guessing task used below, the pattern of our previ-
ous neural findings implies this type of process, and we expected reward-related brain regions
to track the ongoing reward contingencies as the task progresses. Ongoing computation within
these regions would lead to a representation of the expected value of task events, and may con-
cord with a ‘critic’ [24], which encodes changes in the future expected value (prediction errors)
independent of the action policy selected. Moreover, given the behavioral policies on a guessing
task are unconstrained, a signal reflecting a critic may be more easily identified across partici-
pants than one that reflects action policy.

Abnormal VS activation during reward processing has been repeatedly reported in major
depressive disorder (MDD). However, variability of findings across cohorts and paradigms,
and the presence of robust activation in response to some reward-related stimuli (e.g. [22, 25,
26]) might suggest an alteration of the normal pattern of prediction error-related modulation
of VS activation [27–29], rather than a generalized hypo-activation of the region. Further ex-
amination of the extent to which PE-related modulation of VS activation is disrupted in de-
pressed individuals with MDD, and the extent to which this may be ameliorated by
antidepressant treatment response [30], is an important area of study in mood disorders re-
search. Furthermore, longitudinal study of VS activation during reward processing in MDD in-
dividuals may represent a useful paradigm for identifying biomarkers predicting
antidepressant treatment response in MDD. Prior to such study, however, it is necessary to es-
tablish the properties of normal longitudinal VS response during reward processing. If the VS
activations to reward-related stimuli do indeed change dynamically with repeated testing, anal-
ysis of such data for the purpose of defining biomarkers would thus need to focus on the effect
of pathology or treatment on the predicted extent of change, rather than on deviations from an
expected point estimate.

The present report addresses three aspects of reliability: 1) Evaluation of test-retest reliabili-
ty of VS activation, 2) Evaluation of the consistency of reward-related activation across four
data acquisition sites and 3) Evaluation of the relationship between test-retest reliability and
data quality. With regard to the first aim, VS response during PE and RE processing at two
time points (1 week apart) was examined in HC using a reward paradigm employed in previous
studies. We also examined the test-retest reliability of the anticipation-related activation in the
occipital cortex, given our previous findings that occipital responses during an emotion pro-
cessing task were relatively stable and reliable over time [9]. This occipital cortex activation
thus provided a useful control measure. Analyses of the whole brain activation maps were
also conducted.
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With regard to the second aim, the impact of variation in data quality in and across the four
data collection sites on fMRI test-retest reliability was examined. The analysis strategy was de-
rived from a previous study that used the same task, and a comparison of the two studies was
performed [22]. With regard to the third aim, we included data that would normally have been
excluded due to excess motion, low signal to noise ratio (SNR), artifacts or poor coverage, to
enhance the variability of data quality within the sample. We derived a metric of data quality
using factor analysis. The reasoning was threefold: first, comparing the reliability of relatively
low and high quality data should provide information about how far test-retest reliability is af-
fected by variation in data quality. We were also able to test whether a metric of data quality
could be used to weight data points based on their precision and improve regression model es-
timates. Finally, of most relevance to the EMBARC study, an assessment of the effect of data
quality on fMRI reliability has implications for minimum standards of data acquisition for the
use of biomarkers in longitudinal, treatment prediction studies.

Methods

Participants
HC participants were recruited as part of the Establishing Moderators and Biosignatures of An-
tidepressant Response in Clinical Care (EMBARC) study, a multi-site longitudinal study aim-
ing to identify neuroimaging and other moderators of treatment response in depressed
individuals with MDD (Trivedi et al., in press; [31]). Forty healthy individuals were tested
twice, one week apart, in one of four sites (10 participants per site). A group of MDD partici-
pants were also recruited and tested at the same sites (n = 148; 97 females; mean age = 37.11;
SD = 12.93), but data from this cohort are otherwise not described in the present report. Of the
40 healthy individuals, three participants were excluded—one due to a missing time 1 scan,
one due to severe ghosting, and one due to a very low SNR (41) on one scan. This left a final
sample of 37 (mean age: 38.03, SD: 15.27; 22 (59%) female). Written informed consent was ob-
tained for all participants in accordance with the Declaration of Helsinki. Enrollment of partic-
ipants was approved by the UT Southwestern Institutional Review Board, New York State
Psychiatric Institute Institutional Review Board (Columbia University), Partners Human Re-
search Committee (Massachusetts General Hospital and McLean Hospital), University of
Michigan Medical School Institutional Review Board, and Stony Brook University Institutional
Review Board. Additionally, approval to analyze data was obtained from the University of
Pittsburgh Institutional Review Board.

Participants were recruited for the study if they were between the ages of 18 and 65. Exclu-
sion criteria included a Quick Inventory of Depressive Symptomatology—Self Report
(QIDS-SR) score of 8 or above, lifetime history for MDD, psychotic depression bipolar (I, II, or
NOS) disorder, schizoaffective disorder, schizophrenia, other Axis I psychotic disorders, and/
or any current Axis I or II diagnoses; presence of DSM-IV criteria for substance dependence in
the last 6 months, except for nicotine, or substance abuse in the last 2 months, and/or the pres-
ence of a positive urine drug screen at test; currently actively suicidal or considered a high sui-
cide risk; presence of epilepsy or other conditions requiring an anticonvulsant; presence of
thyroid medication for hypothyroidism unless stable on the thyroid medication for 3 months;
any current history for an unstable general medical condition or clinically significant abnormal
laboratory results. Participants were excluded if taking the following medications: antipsychot-
ic medications, anticonvulsant medications, mood stabilizers, central nervous system stimu-
lants, daily use of benzodiazepines or hypnotics, antidepressant medications, or any other
psychotropic medication (including herbal treatments, i.e., St. John's Wort, Omega 3 fatty
acids, S-Adenosyl methionine). Finally, participants were excluded if they were receiving or
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had received vagal nerve stimulation, electroconvulsive therapy, or repetitive transcranial mag-
netic stimulation, other somatic antidepressant treatments, or psychotherapy in the last 6
months. Usual fMRI exclusion criteria applied including pregnancy or breastfeeding, non-flu-
ency in English, neurological conditions, claustrophobia, or the presence of metal in the body
precluding MRI.

Despite these exclusions, there nevertheless remained variation in the quality of the scans:
some participants were included in the sample of 37 showing truncated field of view, radiofre-
quency and field inhomogeneity artifacts. We attempted to examine the extent to which the
variation in quality influenced test retest reliability.

Data Acquisition
Neuroimaging data were collected at four different sites using 3 Tesla scanners: Columbia Uni-
versity (CU); Massachusetts General Hospital (MG); University of Michigan (UM); University
of Texas Southwestern (TX). Mean blood-oxygenation-level-dependent (BOLD) T2�-weighted
images were then acquired with a gradient echo echo-planar imaging (EPI) sequence during
8-minutes, comprising 240 volumes covering 39 axial slices. Five warm up scans were dis-
carded prior to the recording of BOLD images. T1-weighted Structural 3D axial images were
acquired in the same session. Details of the acquisition parameters are displayed in S1 Table.

Paradigm
An eight-minute slow event-related card-guessing game was employed (see Fig 1). The task in-
cluded four possible trial types: the expectation of a possible win, followed by win outcomes
(win trials) or no change outcomes (disappointment trials) in equal probability (50%); expecta-
tion of a possible loss, followed by loss outcomes (loss trials) or no change outcomes (relief tri-
als) in equal probability (50%). The task constituted one run, in which 24 trials were presented,
with 6 trials each for win, disappointment, relief and loss outcomes. Trials were presented in
pseudorandom order with predetermined outcomes, and the same task sequence was used in
both sessions. Individuals were told that their performance would determine a monetary re-
ward after the scan, with $1 for each win and 50 cents deducted for each loss. Total possible
earnings were $3. During each trial, individuals guessed via button press whether the hidden
number on the back of a visually presented card would be greater or less than five (4 seconds:
presentation of a question mark). An upward or downward arrow was then presented for 6 sec-
onds, representing possible-win or possible-loss respectively, while the participant anticipated
the outcome. The outcome then appeared for 1 second (the actual card number for 500ms and
then the outcome value for 500ms) followed by a 9 second inter-trial interval (ITI). For out-
come value, an up arrow was presented for a $1 win, and down arrow for a 50 cents loss, and a
yellow circle was presented for no change outcomes. Individuals practiced the task before
the scan.

Data analysis: fMRI preprocessing and general linear model
Data were preprocessed and analyzed with Statistical Parametric Mapping software, Version-8
(SPM8). Data for each participant were realigned to the first volume in the time series to cor-
rect for head motion. Realigned BOLD images were then coregistered with the subject’s ana-
tomical image, after both had been skull stripped using the FSL Brain Extraction Tool (BET).
The anatomical image was normalized to the Montreal Neurological Institute (MNI)/ICBM
152 template using a non-linear transformation and segmented into separate tissue types.
BOLD images were then transformed to the same space via the segmented structural image
(the ‘unified segmentation’method). Scans with abnormally high or low signal intensity were
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reconstructed via interpolation using the AFNI 3dDespike tool. The images were then spatially
smoothed with an 8mm Gaussian kernel. A first-level fixed-effect model was constructed for
each participant. These included four regressors representing different phases of the task: re-
sponse (4 second duration, starting at the onset of the question mark), anticipation per se (6
second duration, starting at the onset of the arrow), outcome (1 second duration, starting at the
onset of the number and including the feedback arrow), and baseline (the final 3 seconds of the
ITI). The anticipation and outcome regressors were also accompanied by parametric modula-
tors representing reward expectancy (RE) and prediction error (PE) respectively. RE regressors,
coupled to the anticipation period, reflected the expected value of the arrow, being set to +0.5
for the up arrow condition (given the 50% chance of winning $1) and -0.25 for the down arrow
condition (given the 50% chance of losing 50 cents). PE regressors, coupled to the outcome,
were determined by the difference between the outcome and the expected value i.e. +0.5 for a
win (1.0–0.5 = 0.5) following an up arrow, -0.5 for no win following an up arrow (0–0.5 = -0.5),
+0.25 for a no loss following a down arrow (0-(-.25) = 0.25), -0.25 for a loss following a down
arrow (-0.5-(-0.25) = -0.25). Another regressor was included to model omission errors, if these
were made, which lasted 17 seconds from the onset of the question mark and replaced other
trial events during this period. The Canonical HRF was convolved with each regressor. Move-
ment parameters from the realignment stage were entered as covariates of no interest to control
for participant movement. A high pass filter (60 seconds), and autoregressive (AR(1)) model-
ing were also implemented at the first level.

Fig 1. Figure shows the structure of the guessing task, including phases for response, anticipation and outcome (only reward-related feedback
shown).

doi:10.1371/journal.pone.0126326.g001
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A first level model constructed in the manner described above was fitted to each voxel using
restricted maximum likelihood estimation, for each participant. Each of the two sessions was
fitted independently. The resulting parameter maps were analyzed at the second (group) level
using directional, voxelwise t-tests. In addition, mean parameter estimates were extracted from
regions of interest (ROIs) and focused analyses were performed (see below).

Data analysis: tests of predictions and reliability
A functionally-defined mask of the ventral striatum (VS) was obtained from a previous study
in a separate sample with the same task (identifying activity coupled to PEs) and used for an
ROI analysis [22]: the mask was obtained by applying a threshold of p<0.001 uncorrected to
the data from all participants in our previous study. The mask was split into separate right and
left VS masks; the right VS mask was used as a primary focus for hypothesis testing as effects of
interest were clearer in this region in our previous study (see also [23]), but left VS parameter
estimates were also examined. Mean parameter estimates from the RE and PE contrasts were
extracted from these ROIs.

As a positive control, we used another contrast unrelated to reward processing (anticipation
per se), and extracted from 8mm spheres located in bilateral visual cortex defined by coordi-
nates from our previous study (-27, -91, 4; 30, -88, 4). In secondary analyses, groups were com-
pared at the whole brain level for all three of the critical contrasts, using a cluster forming
threshold of p<0.001 uncorrected and a family-wise error (FWE) rate cluster threshold of
p<0.05. Site and slice SNR were included as covariates of no interest in whole brain analyses.

Data from the VS and occipital ROIs were analyzed using t-tests and repeated measures
analysis of variance (ANOVA), to examine relevant effects of time, hemisphere, and in the case
of VS, contrast type (RE, PE) on the activation within these regions using SPSS (IBM SPSS Sta-
tistics Version 20.0). Pearson’s correlations and linear regression were also conducted to assess
the relationship between RE and PE parameter estimates in the VS.

The reliability of the data was assessed using the intraclass correlation coefficient (ICC(3,1)
[32]). This measure provides a metric of the consistency of data from time 1 to time 2, and is
used widely in neuroimaging research [3]. To assess the effect of site, we repeated analyses with
and without site as a covariate (for ANOVA) and as independent variables in the regression
analyses. For the latter, Columbia University (CU) was taken as the reference site, and three
dummy variables were created representing each of the other three sites (the same approach
was taken for whole brain SPM analyses). In addition, we tested the consistency of the crucial
time by event type (RE, PE) interaction by excluding each site in turn, to determine whether
any one site was primarily responsible for the observed effects.

Finally, due to our prediction that VS activation would be unstable across time, it was im-
portant to demonstrate that the activity we observe at time 1 is not simply artifactual. To do so,
we examine the consistency between the magnitudes of parameter estimates generated in the
present study at time 1 and those observed in our previous work with an independent sample
[22]. The rationale for this is simple: noise is unlikely to replicate. We computed Bayes Factors
[33, 34] between corresponding data reported in the present study and our previous work, to
assess the strength of evidence in favor of the ‘null’ hypotheses that the two data sets are gener-
ated from a similar set of underlying parameters. Bayes factors of 6 or greater reflect ‘strong’ ev-
idence in favour of a given hypothesis [34], as opposed to ‘anecdotal’ or ‘positive’. In addition,
we also assessed the degree of model fit for the relationship between right VS RE and PE in the
present data, using the intercept and beta parameters derived from our previous study based in
Pittsburgh (henceforth: ‘Pitt’).
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Data analysis: assessing data quality
To assess the effects of data quality on brain activation estimates and their reproducibility, we
attempted to generate a single numerical dimension on which to assess variation in data quali-
ty. For each participant, measures reflecting SNR and motion were computed (see Table 1).
Two measures of whole-brain SNR were computed: slice SNR and voxel SNR [35]. Four mea-
sures of motion were computed: maximum motion, mean motion, number of micro-motions
(per TR motion>0.1mm), number of macro-motions (per TR motion>0.5mm). As macro
motions were not normally distributed across individuals, even after transformation, these
were not included in further analysis. These five measures (two SNR; three motion) were com-
puted across both time points, yielding ten variables which were submitted to an unrotated fac-
tor analysis. The majority (57.3%) of the variance in these ten measures was explained by a
single factor, which was positively associated with motion and negatively associated with SNR,
and did not differentiate between the two sessions. The factor explaining the next most vari-
ance (12.8%) did not have as obvious an interpretation, although loadings on the different vari-
ables seemed to differ slightly between the two sessions. As there were no further factors of
theoretical interest, we focused solely on the first factor, and used this as a way to divide the
HC cohort into ‘high SNR’ (n = 18) and ‘low SNR’ subgroups (n = 19): all participants with
negative loadings were placed in the high SNR group and all with positive loadings were placed
in the low SNR group (see Table 1).

Splitting the groups allowed analysis of the data reliability to be conducted separately in the
two subgroups. The numerical value of the first factor loading was then inverted, such that data
with a higher SNR/less motion had a larger numerical value, and the mean was shifted such
that all values were greater than zero. This was done to facilitate interpretation of subsequent
analyses of the residuals and model fitting.

We used this variable in several ways. First, we compared variables of interest (e.g. right VS
PE responses) between the subgroups, and computed ICCs for each subgroup. Second, as the
loading variable was thought to relate to data quality, we examined the relationship between
the loading variable and indices of regression model fits including residuals of the fits. The re-
siduals were derived either directly from the regression models or from leave-one-out (LOO)
fits of the data. We expected a heteroskedastic relationship between residuals and precision:

Table 1. Table describing motion and SNR data, stratified by the two ‘high SNR’ (n = 18) and ‘low SNR’ (n = 19) subgroups.

Time 1 High SNR Time 1 Low SNR Time 2 High SNR Time 2 Low SNR

Macro Motions: Mean (SD) 0 (0) 1.58 (3.17) 0.17 (0.51) 1.21 (2.57)

Macro Motions: Min-max 0–0 0–11 0–2 0–10

Micro Motions: Mean (SD) 12.89 (13.54) 69.68 (47.35) 21.50 (20.25) 61.21 (36.74)

Micro Motions: Min-max 0–49 6–164 0–75 6–146

Mean Motion (mm): Mean (SD) 0.25 (0.16) 0.86 (0.66) 0.30 (0.17) 0.79(0.91)

Mean Motion (mm): Mean (SD) 0.07–0.72 0.27–3.22 0.11–0.78 0.08–4.34

Max Motion (mm): Mean (SD) 0.48 (0.28) 1.76 (1.07) 0.64 (0.35) 1.54 (1.41)

Max Motion (mm): Min-max 0.15–1.25 0.68–4.81 0.27–1.65 0.19–6.40

Slice SNR: Mean (SD) 306.32 (88.65) 193.57 (68.63) 270.68 (81.04) 220.58 (66.64)

Slice SNR: Min-max 197.93–462.60 93.40–321.59 137.64–407.75 85.07–319.58

Volume SNR: Mean (SD) 69.23 (12.59) 44.95 (9.88) 65.11 (11.69) 46.98 (9.12)

Volume SNR: Min-max 48.85–91.92 25.70–59.66 45.20–84.78 25.67–60.48

Aside from macro-motion variables which were not appropriately distributed, comparisons of transformed motion or raw SNR variables between low and

high groups using t-tests were significant in all cases (t(35)>2.06, p<0.047).

doi:10.1371/journal.pone.0126326.t001
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precisely estimated data should show small residuals, whereas imprecisely estimated data
should show variable residuals. Consequently, we used Spearman’s Rho to examine
this relationship.

Finally, in a related analysis, we also estimated the best fitting regression model using a
weighted least squares procedure: as the loading variable was derived as a proxy of precision,
including the variable in a weighted least squares (WLS) model should enhance model fit.
However, as the scaling of this relationship was not known (neither its magnitude nor sign), we
decided to estimate the scaling parameter by selecting the parameter (using increments of 0.1)
which produced the best (log likelihood) fit of the data within the weighted regression model.
The scaling parameter was used in the weighted model as an exponent, and allowing the best
fitting scaling factor to be positive or negative could allow the effect of the parameter to either
increase or invert the weighting of the data points. Specifically, the loading factor scores for
each participant were raised to the power of the best fitting scaling parameter. Given the com-
bination of the rotation of the loading factor scores and the position of the weighting parameter
within the WLS model, we anticipated that a positive scaling factor would fit the data best: larg-
er factor loadings would be associated with more precisely estimated data points. Equally how-
ever, if, following fitting, improvement in model fit with the weighted model yielded a negative
scaling parameter, we would conclude that scaling of the precision of the data points is exploit-
ing a random or unexplained feature of the data. A negligible parameter would indicate that all
data points should be weighted equally. We had no strong expectancies regarding the magni-
tude of the scaling factor (i.e. whether the loading factor should have a linear or non-linear re-
lationship with weighting).

Results

Behavioral performance
Median reaction time was 682.27ms (standard deviation 239.25) at time 1 and 637.27ms (SD
154.10) at time 2. Response omission error rate was low at each time point (time 1: mean 0.35,
SD 0.72; time 2: mean 0.35, SD 0.59). No significant differences between the sessions
were observed.

ROI analysis: Ventral striatum
Significant right VS PE-related activation was observed at time 1 (t = 5.65, p<0.001) but not
time 2 (t = 1.42, p = 0.17), and a paired t-test revealed that the magnitude of reduction was sig-
nificant (t = 3.12, p = 0.004). Conversely, significant right VS RE-related activity was observed
at time 2 (t = 2.76, p = 0.009) but not time 1 (t<1: see Fig 2), although the difference between
the sessions was not significant (t = 1.28, p = 0.21).

Across participants, increases in right VS RE-related activity from time 1 to time 2 were as-
sociated with decreases in right VS PE-related activity from time 1 to time 2 across participants
(r = -0.37, p = 0.025: see Fig 3, Table 2). At time 1 alone, participants with greater right VS RE-
related activity had reduced right VS PE-related activity (r = -0.46, p = 0.004; see Table 2). This
finding was not observed at time 2 (r = 0.15, p = 0.37). ICCs in right VS were very low: RE—
ICC: 0.20; 95% confidence interval -0.13/0.49; F(36) = 1.51, p = 0.11; PE—ICC 0.01 95% CI
-0.31/0.33; F(36) = 1.02, p = 0.48.

Data from the left VS followed a similar pattern and were highly correlated with corre-
sponding right VS parameter estimates (r’s>0.58, p<0.001 in all cases), but specific predictions
of the TD model, such as a reduction in PE activation from time 1 and time 2, or between-par-
ticipant correlations between RE and PE measures, did not reach significance. No significant
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hemisphere effects were observed in an ANOVA reflecting effects of time, hemisphere and
condition (F(1,36)<2.77, p>0.11 in all cases).

Given that we had observed poor test-retest reliability of VS activation as assessed by the
ICC(3,1) statistic, it became more important to demonstrate that time 1 activations on the task
are reproducible, and thus do not represent a spurious finding. To this end, we compared time
1 VS parameter estimates (left/right; RE/PE) obtained in the present study with our previous
findings: we observed Bayes factors of between 6.38 and 9.17 in favor of the null hypothesis
that there was no difference between the studies. In addition, we compared the relationship be-
tween right VS RE and PE data: numerical values of betas and intercepts for the two data sets
were very similar (Pitt: beta -1.13, intercept 0.72; EMBARC: -1.32, intercept 0.80). Predicting
the present data from parameters (beta/intercept) derived from our previous study yielded a
very similar estimate of the amount of variance explained compared to predictions made using
the parameters obtained by least squares fitting of the present data (using EMBARC parame-
ters r2 = 0.21; using Pitt parameters r2 = 0.20).

ROI analysis: Occipital Cortex
Parameter estimates were obtained from left and right visual cortex ROIs coupled to anticipa-
tion per se. Occipital activation was significant at time 1 (t’s> 4.79, p’s<0.001) but not time 2

Fig 2. Significant VS PE-related activity was observed at time 1 (A) but not time 2 (B). Significant VS RE-related activation was observed at time 2 (C)
but not time 1 (D). Figures thresholded at p<0.025 uncorrected, and masked with the ROI, for display purposes. Bar charts of extracted parameter estimates,
displaying the mean PE-related (E) and RE-related (F) findings within the entire VS regions of interest. Error bars reflect standard errors of the mean (SEM).
(G). Whole brain PE activations at time 1, thresholded at p<0.001, k>200.

doi:10.1371/journal.pone.0126326.g002
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Fig 3. Left: Change in right VS RE activation from time 1 to time 2 is negatively correlated with the change in right VS PE activation from time 1 to
time 2. Right: Right VS RE activation at time 1 is negatively correlated with right VS PE activation at time 1.

doi:10.1371/journal.pone.0126326.g003

Table 2. Table describingmodel fit and associated statistics of two regressionmodels applied to key
variables of interest (RE/PE) in the present study.

Dependent measure Right VS RE time
1–time 2

Right VS RE
time 1

Independent measure Right VS PE time
1–time 2

Right VS PE
time 1

R2 without weighting 0.14 0.21

T (p) without weighting -2.34 (0.025) -3.07 (0.004)

T (p) without weighting with site covariate -2.75 (0.010) -3.09 (0.004)

Model r2 without weighting with site covariate 0.20 0.21

T (p) with weighting -2.60 (0.013) -3.07 (0.004)

Best fit weight parameter without site 1.3 0

T (p) with weight with site covariate -2.94(0.006) -3.17 (0.003)

Best fit weight parameter with site 1.3 -0.4

Correlation of loading score with squared residuals (rho,p) -0.35 (0.034) 0.023 (0.90)

Correlation of loading score with LOO squared residuals (rho,
p)

-0.36 (0.030) -0.00 (0.96)

Correlation of loading score with LOO minus normal squared
residuals (rho,p)

-0.33 (0.046) -0.00 (0.99)

Parametric ordinary or weighted least squares regression were used throughout, aside from the association

of loading score with the squared residuals generated by the basic model, in which we used Spearman’s

Rho.

doi:10.1371/journal.pone.0126326.t002
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(t’s< 1), and significant differences in overall activation in occipital cortex from time 1 to time
2 (t’s>3.48, p<0.002) were observed. Within an ANOVAmodel including hemisphere and
time factors, no hemisphere effects or interactions were observed (F’s<1.06, p’s>0.31). ICCs in
bilateral visual cortex to the anticipation per se contrast were higher (left: ICC: 0.52; 95% CI
0.24/0.72; F(36) = 3.17, p<0.001; right ICC: 0.36; 95% CI 0.05/0.61; F(36) = 2.13, p = 0.013).

Whole brain findings: Prediction error
At time 1, a very large, significant cluster (cluster size 7076; FWE p<0.001; see Fig 2G) was ob-
served, encompassing bilateral VS (peak voxel: 16, 8, -6), thalamus, amygdala, ventromedial
PFC and extended ventrally towards the retrosplenial cortex, posterior cingulate and precu-
neus. A second, large cluster was present within a large section of the cerebellum (cluster size
3564; FWE p<0.001). Other clusters were present in the left superior frontal gyrus (peak voxel
-24, 44, 38; cluster size 508; FWE p = 0.001), middle temporal gyrus (peak voxel 66, -28, -10;
cluster size 478; FWE p = 0.002), dorsal anterior cingulate cortex (peak voxel 4 32 22; cluster
size 374; FWE p = 0.007), the right supramarginal gyrus (PFop/PFt/OP3/OP4: peak voxel 54,
-18, 24; cluster size 307; FWE p = 0.015) and finally the right superior parietal lobule (SPL:
7PC; peak voxel 28–46 46; cluster size 247; FWE p = 0.035). Other clusters of activation were
observed at uncorrected thresholds. By contrast, no significant or uncorrected activation was
observed at time 2.

Reward Expectancy
No significant or uncorrected activation was observed at time 1. At time 2, no significant clus-
ters were observed, but uncorrected (p<0.001; cluster corrected p = 0.18) activation was seen
in the VS (peak voxel: 10, 2, -8). Other uncorrected clusters were also observed in anterior cin-
gulate and anterior insula, and the cerebellum.

Anticipation per se
Two significant visual cortex clusters were observed at time 1: right occipital (peak voxel: 22,
-96, 2; cluster size: 611 voxels; FWE p = 0.001); left occipital (peak voxel: -20, -94, 0; cluster
size: 850 voxels; FWE p<0.001). These clusters were close to our a priori occipital ROIs, which
had been derived from the peak activations in our previous study [22]. In addition, a region of
left ventrolateral PFC reached cluster corrected significance (peak voxel: -54, 28, 10; cluster size
364 voxels; FWE p = 0.012). Other uncorrected activations were seen in left parietal and pre-
motor cortex. At time 2, very little activation was observed even at uncorrected thresholds.

Site effects
We assessed the effect of site in a number of ways. Although significant effects of site were ob-
served in some analyses, the relatively low power of this analysis and large number of potential
comparisons meant that the likelihood of spurious effects of site was increased. Our primary
goal was to assess the degree to which hypothesized effects were impacted by site effects, and to
demonstrate that predicted effect sizes were consistent across sites. To start, we focused on the
effect of most interest—the reciprocal increase and decrease in right VS RE and PE activation
from time 1 to time 2 (time by event type interaction) as captured by a repeated measures
ANOVA. Across all individuals, the effect size (partial eta2) was 0.21; if site were included as a
covariate, the effect size was 0.23.

The best test of whether site impacts the effect of interest would be to include an interaction
between site and the effect in question. This would require testing a three-way site-by-time-by-
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event type interaction, which this study is underpowered to detect. Instead, to determine
whether any one site was responsible for the observed effects, we left each site out in turn and
re-ran the primary analyses. Effect sizes varied in a small window from 0.13 to 0.31, despite the
removal of one-quarter of the data each time. Site did explain some variance in the ANOVA
model as a main effect (F(3, 33) = 3.93, p = 0.017; partial eta2 = 0.26), but no two-way interac-
tions with site were significant (all ps>0.081). Regression analyses describing the relationship
between RE and PE (see Table 2) were overall very similar with or without the modelling of the
effect of site, and hierarchical regression revealed that the addition of site variables did not pro-
vide a superior regression model fit given the increase in model parameters. Levene’s test re-
vealed no significant differences in the magnitude of the error variances of any of the variables
across sites (F’s<1).

Including site variables in the visual cortex regression analyses slightly reduced the signifi-
cance of the relationship between time 1 and time 2 activation, although not substantially. As
with the VS data, including site in a time by hemisphere ANOVA model led to a main effect of
site (F(3, 33) = 5.47, p = 0.004) rather than a significant interaction effect (p’s>0.076). Levene’s
test revealed a significant effect of site on the error variance of right visual cortical activation at
time 1 (F(3,33) = 3.00, p = 0.044); all other measures were not significant (F’s<1).

The squared residuals generated from all four regression models reported in Table 2 did not
significantly differ by site, regardless of how they were computed (standard, LOO), nor was the
difference between LOO and standard residuals significantly different.

Data Quality
Motion variables (micro-motions, mean motion and maximum motion) from each session
were log transformed, together with slice and volume SNR for each session. Substantial inter-
correlations were seen between the variables, but no clear differences in their magnitude were
seen across experiment sessions (see Table 1). A factor analysis was used to generate a data
quality ‘loading score’, a scalar variable reflecting data quality, and on this basis to divide the
sample into two groups (see Methods): a high SNR group was associated with low levels of mo-
tion and high SNR, and the reverse was true for the low SNR group (see Table 1). Moreover,
aside from one severe inhomogeneity artifact (time 1) and flickering stripe artifact (time 2), all
cases of severe artifacts were in the low SNR group, although individuals with poor coverage
were equally represented in both groups. Artifacts of moderate magnitude were also slightly
more common in the low SNR group.

ROI analysis: SNR effects
For PE parameter estimates in right VS, ICCs were similar for low and high SNR groups (High:
-0.02; low: 0.04). For RE parameter estimates in right VS, ICCs were higher for the high SNR
group (0.30) than the low SNR group (0.12). Left VS ICCs were similar to those of the right VS
(whole group: RE: 0.18; PE -0.14; RE: high SNR 0.27 low SNR 0.13; PE: high SNR -0.17 low
SNR -0.14). No significant group differences were observed between high and low SNR for left
or right VS response to RE or PE (all t’s<1.92, p>0.062). In addition, the null hypotheses that
bilateral VS PE activation at time 1, or RE activation at time 2 is equal to zero was independent-
ly rejected in both SNR subgroups (all t’s>2.35, p’s<0.032), except the right VS RE activation
at time 2, which was at trend-level significance in both groups (t’s = 1.82–2.056, p’s = 0.056–
0.085).

There were no significant differences between high and low SNR HC groups in right or left
occipital cortex response to anticipation per se (t(35)<1), but ICCs were greater in the high
SNR group (left 0.64; right 0.43) than the low SNR group (left 0.35; right 0.27). Only the visual
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cortex ICCs in the high SNR group were significantly different from zero (left: F(17) = 4.50,
p = 0.002; right: F(17) = 2.49, p = 0.034), whereas the low SNR group ICCs were not (left: F(18)
= 2.07, p = 0.066; right: F(18) = 1.75, p = 0.12).

Weighted analysis
We compared regression models describing the relationship between right VS RE and PE acti-
vation with equivalent weighted least squares models. To generate a weighting, we took the
loadings on the motion/SNR factor described previously. These loading scores were subtracted
from 4, so that all values were greater than zero and more precise data points were associated
with larger values. Given the ordering of the weighting score—more precise variables had the
largest numbers—we expected a positive scaling score to be produced in the best fitting weight-
ed least squares model.

Estimation of relationships between RE and PE in the VS were not much affected by
reweighting the data points (Table 2), but generally a very slight improvement in fit was seen.
However, the best fitting weighting parameter was positive, as expected, for the change in RE
and PE from time 1 to time 2. It was negligible but negative for the relationship between RE
and PE at time 1.

A second analysis also supported the idea that only the residuals of the relationship of RE
and PE from time 1 to time 2 was associated with the data quality loading scores. Specifically,
we tested the idea that modelling of inter-subject variability would be worse in participants
with noisy data, and thus the residuals of a given model would be associated with the data qual-
ity loading score. Association of loading scores with residuals was present in time 1 to time 2
changes in right VS RE and PE, whereby lower quality data was associated with greater residu-
als, but this relationship was not seen between right VS RE and PE at time 1 (see Table 2). In
the former case, the relationship between loading score and residuals was significant not only
for conventionally-calculated squared residuals, but also LOO-calculated squared residuals,
and also the difference between LOO and conventionally calculated squared residuals. Togeth-
er, both the weighting and correlation with residuals suggests that residuals—errors of the fit of
the relationship between two variables—were calibrated with an independent measure of data
precision, but only for the right VS RE/PE time 1/time 2 change scores and not the
other relationships.

Discussion
Dynamic changes in neural activation are consistent with a variety of psychological theories
and have been successfully observed in previous fMRI studies [17]. Nevertheless, conventional
measures of temporal reliability (e.g. ICCs) cannot distinguish between expected, dynamic
changes in regional activation and noisy signal. In the present study, we provide evidence for a
methodology to identify expected changes: although reward-related VS activations have very
low ICCs over time, they follow the pattern consistent with the temporal difference (TD) mod-
els of reward learning. These models hold that following conditioning, reward-related activa-
tion should move to the earliest predictor of reward. Thus we observed a significant decrease
from time 1 to time 2 in VS-prediction error (PE)- related activation coupled to the outcome,
whereas VS-reward expectancy (RE)- related activation coupled to a predictive cue was ob-
served to increase over this time period.

In the present work, we demonstrate that the form of learning predicted by the TD model—
a transfer of the same signal from outcome- to cue-coupled activation—can be manifest across
two testing sessions. Moreover, correlational analyses support the ideas suggested by our previ-
ous study [22]: that individual differences in an inferred learning rate seem to play a role in

Test-Retest Reliability of Ventral Striatum Reward Activation

PLOS ONE | DOI:10.1371/journal.pone.0126326 May 11, 2015 14 / 20



determining variation in VS activations in our paradigm, leading to a significant reciprocal re-
lationship between RE- and PE-coupled VS activation across individuals, but as a consequence,
low ICCs. However, to explain the entire pattern of findings, another factor may also be re-
quired. PE responses on the second session are somewhat lower than would be expected: due
to the 50% contingencies, substantial prediction errors should still be elicited at the second ses-
sion. By this stage, the outcomes may be perceived as uninformative [36–38] and thus phasic,
learning related activation may diminish. This type of effect may accentuate the PE to RE trans-
fer observed across sessions.

Previous examinations of the test-retest reliability of reward related fMRI activations have
been inconsistent [11, 39, 40]. Two of the previous reports, employing the monetary incentive
delay (MID) task [40] or a similar variant [11] have shown good reliability. In these designs, re-
ward related cues drive motivated responding for reward, and VS activation becomes rapidly
coupled to an anticipatory cue (other MID designs, in which there is more variability in out-
come value, can drive robust outcome-related activation e.g. [41]). In light of this inconsisten-
cy, it should be noted that the dynamic fluctuations predicted by the TD model may not
necessarily lead to reduced reliability. For example, if conditioning is rapid, reward expectancy
activation may reach asymptote during the first session, leading to a more consistent RE-cou-
pled activation. Its (asymptotic) magnitude may be related to individual differences in a trait-
like reward sensitivity [40], which by definition will generalize well from session to session. By
contrast, a paradigm more like ours [39], with a guessing component and prediction error-
modelled responses, showed low reliabilities—at least for the reward rather than motor-related
activations. However, unlike our findings, significant VS PE responses were also seen at the sec-
ond session, perhaps due to the lack of a predictive cue. Whether reliability is seen or not is
likely therefore to depend on the task design, and the interaction with individual differences
that determine features of the acquisition curve including the asymptotic response, learning
rate and degree of retention from the first to the second time point. Increasing the number of
trials per session is also likely to enhance reliability, by mitigating the effects of spurious vari-
ability and allowing a more precise estimation of a participant’s beta parameter estimate. An
increased number of trials also provide an opportunity for reward expectancy to tend towards
asymptote. However, the effect of increasing task length on PE responses is less clear, given
that they appear to fall so sharply in the second block. An alternative manipulation that may af-
fect reproducibility is repeatedly to change the contingencies during the paradigm: previous
work with probabilistic reversal learning task has suggested that this can be associated with reli-
able cortical, although not necessarily subcortical, activations [42]. This manipulation may sus-
tain a surprise-related component of PE activations, although higher-order representations of
task structure may emerge [43] and render such contingency changes more predictable. Other
manipulations which might increase attentional engagement with the task may also enhance
reliability [44].

Activation in visual cortex coupled to the anticipation per se condition was more reliable,
yielding ICCs which compared more favorably with the extant literature [3]. Indeed, these
ICCs perhaps underestimated the predictability of the signal, if not its reliability, given that
there was a substantial decrease in the amplitude of visual cortex across all subjects, and that
ICCs were reduced in individuals with low SNR compared to high. The former point is related
to the specific properties of the use of ICC as a measure of reliability: that it is sensitive to
changes in variability and range across sessions. The latter point implies that data quality can
play a part in determining the upper limit of reliability and accords with previous observations
that ICCs can be compromised by even one or two individuals within a group with relatively
high motion [45].
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The finding that ICCs were generally compromised in lower quality data, but that there was
no systematic bias in the estimation of between-participant mean parameter estimates between
high and low quality data, suggests that it may be beneficial to weight each datum based on its
precision within a group analysis (see e.g. [46, 47]). We took a very simple approach, compar-
ing weighted least squares with ordinary least squares, and found modest improvements of
time 1 to time 2 regression model fits (see Table 2). One assumption of weighted least squares
is that the measure of precision is known precisely, and this was obviously not met in the pres-
ent data. Instead, we estimated the scaling parameter that led to the best fitting data. The opti-
mal scaling parameter had the anticipated influence on the weighting of data points reflecting
the change in right VS RE and PE from time 1 to time 2: namely that data points (participants)
associated with lower SNR and greater motion were relatively down-weighted (Table 2).

Another implication of increased variability in parameter estimates associated with data
quality is the possibility that residuals from a between-subjects correlational relationship
should scale with precision. Again, this type of relationship was only observed for one of the
three relationships we investigated (change in right VS RE and PE from time 1 to time 2:
Table 2). We characterized the relationship between residuals and precision further, by re-esti-
mating the regression line and hence the residuals using leave one subject out (LOO) cross-val-
idation. In this case, we would expect participants with particularly noisy data to show even
larger residuals, as the least squares fit would somewhat mitigate the effect of mis-estimated
data points on the regression line, ‘capitalizing on sampling error’ [48]. The LOO-derived re-
siduals also correlated with our measure of data quality for the change in right VS RE and PE
from time 1 to 2. Finally, the difference, per subject, between LOO- and conventionally-derived
residuals correlated with data quality only for the RE/PE change association, suggesting that
the LOO method indeed may reduce the effect of within-sample fitting bias.

Given that we wish to argue that low levels of reliability of VS activation are indeed expected
due to session effects, it becomes more important to show that activity in the VS at time 1 is
meaningful. One way to do so is to determine whether it replicates: that is, whether similar
data can be obtained at time 1 across separate cohorts. We compared the parameter estimates
obtained in our previous study [22] with the equivalent data in the present study. For the VS,
the reproduction of parameter estimates was strong, as assessed by Bayes factors [34]. This rep-
lication of our previous findings argues against interpretations of the pattern of time 1 to time
2 changes VS activation in terms of regression to the mean, insofar as it would be highly im-
probable to estimate the same pattern of high and low mis-estimation in two separate cohorts.
Moreover, the orthogonalization of the RE and PE contrasts in the design matrix employed is
good, allowing each to be independently estimated. In addition, the same relationship between
right VS RE and PE was observed at time 1 as had been observed in the previous study. To
demonstrate the similarity of parameter estimates, we fitted EMBARC data to the regression
parameters (beta, intercept) obtained in the previous study, and explained a very similar pro-
portion of the variance in the data as parameters derived from least squares fitting of the
EMBARC data (in contrast to what might be expected by within-sample bias in least squares
fitting: [49, 50]). The significance of the relationship between right VS RE and PE at time 1 was
slightly but noticeably greater in the EMBARC sample than we had previously reported, proba-
bly because we used a more precisely defined ROI for the EMBARC data—one derived from
the Pittsburgh sample’s activation rather than a spherical 8mm ROI. Thus, more precise (spa-
tio-temporal) modeling may also contribute to an enhanced power to replicate
previous observations.

The general pattern of reproducible activations suggests that equivalent data can be ob-
tained across different data acquisition sites. Our previous study was based in Pittsburgh,
whereas there are four data acquisition sites in EMBARC (see Methods). In general, the effect
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sizes of interest were fairly stable regardless of how site was modeled. In addition, we saw no
evidence that site affected the residuals of the regression model fits, which might be the case if
one site were associated with unusual data.

Although our previous study [22] did not reveal differences in the magnitude of RE- and PE-
related VS activations between healthy individuals and patients with unipolar and bipolar de-
pression, this study did provide corroboration for the view that a TD learning signal is disrupted
in depressive illness [29]. The negative relationship across participants between RE- and PE-re-
lated activation was similarly present in the control but not patient groups, the latter groups
showing a totally uncorrelated relationship despite similar overall RE/PE activation. As pertains
to the goals of the EMBARC study, we might predict that patients who are responsive to treat-
ment may begin to show more robust RE-related activation in the second session, while those
who do not may paradoxically show a more consistent pattern of low RE- and high PE-related
activation. Indeed, enhanced post-treatment anticipation-related activation in depressed indi-
viduals was observed by Stoy and colleagues [30]. As we have discussed, individual differences
in rate of RE-/PE- transfer (learning rate) also play a significant role in determining the pattern
of VS activation, so the extent of remission may also moderate the relationship between RE-
and PE- related activation across individuals at the post-treatment session—yielding a negative
relationship where previously none existed [22]. The observation that antidepressant treatment
might restore a healthy pattern of reward-related VS-activation would provide useful mechanis-
tic support for translational models of depression and related therapeutic strategies [51].

Summary
We show that inter-individual reward-related activation in the right ventral striatum can be
well accounted for if understood and modeled within the framework of temporal difference
learning. Thus, low reliability measured by ICC does not necessarily reflect the deleterious ef-
fects of physiological noise or poor data quality, although we show that this does have some ef-
fect. Anticipation-related visual cortex activation showed greater test-retest reliability,
particularly in participants with the best quality data. Finally, weighting data points on the
basis of their precision, which we were able to do for the right VS, may be relevant with regard
to the clinical use of fMRI. Ideally, any evidence obtained from a patient, even from a sub-opti-
mal scan, should have potential to be clinically useful. Moving toward a clinical framework, we
suggest that measurement of RE- and PE- related VS activation in depressed individuals can
help elucidate neural mechanisms underlying abnormal temporal difference learning during
reward processing in these individuals, and provide neural measures that may serve as future
targets for therapeutic interventions.
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