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Abstract
Epidemics of infectious diseases often occur in predictable limit cycles. Theory suggests

these cycles can be disrupted by high amplitude seasonal fluctuations in transmission

rates, resulting in deterministic chaos. However, persistent deterministic chaos has never

been observed, in part because sufficiently large oscillations in transmission rates are

uncommon. Where they do occur, the resulting deep epidemic troughs break the chain of

transmission, leading to epidemic extinction, even in large cities. Here we demonstrate a

new path to locally persistent chaotic epidemics via subtle shifts in seasonal patterns of

transmission, rather than through high-amplitude fluctuations in transmission rates. We

base our analysis on a comparison of measles incidence in 80 major cities in the prevacci-

nation era United States and United Kingdom. Unlike the regular limit cycles seen in the UK,

measles cycles in US cities consistently exhibit spontaneous shifts in epidemic periodicity

resulting in chaotic patterns. We show that these patterns were driven by small systematic

differences between countries in the duration of the summer period of low transmission.

This example demonstrates empirically that small perturbations in disease transmission

patterns can fundamentally alter the regularity and spatiotemporal coherence of epidemics.

Author Summary

Measles epidemics continue to pose a significant public health risk wherever vaccination
coverage is low. In such populations transmission rates tend to fluctuate seasonally, mir-
roring patterns of human aggregation, due to the timing of school terms, and/or the
migration of workers and their families. Here we show empirically that slight changes in
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the seasonal pattern of measles transmission can lead to massive shifts in the complexity
of measles dynamics, in some cases driving epidemic patterns that resemble deterministic
chaos. Our analysis is based on a comparison of 20-year biweekly measles incidence time
series in 80 major cities in the prevaccination era United States and United Kingdom. The
results are important in two ways: first, in contrast to previous theory, we show that subtle
shifts in seasonal patterns of transmission can cause deterministic chaos in the epidemic
dynamics of acute immunizing infections; second, we demonstrate that this new route to
deterministic chaos is significantly more robust to stochastic extinction compared with
previous chaotic models, suggesting chaotic dynamics may be more common in natural
populations than previously thought.

Introduction
Acute immunizing infections remain a leading cause of death worldwide, and have accounted
for a significant portion of all morbidity and mortality throughout human history, especially
among children and in countries without adequate vaccination coverage [1–4]. Understanding
the processes that determine epidemic patterns in these diseases can aid in forecasting and
improve the efficacy of public health interventions. Studying the epidemiological dynamics of
these diseases also provides a unique window on population-level predictability and its limita-
tions, in an important applied context.

Epidemics of acute immunizing infections often occur in predictable cycles[5–10]. The
underlying drivers of measles epidemics are particularly well understood, consisting of the
basic demographic clockwork of repeated depletion of the susceptible population by infection
or vaccination, followed by susceptible recruitment through birth. Cycles of human aggrega-
tion from school holidays or the migration of workers and their families cause seasonal fluctua-
tions in transmission to sustain recurrent epidemics [2,11]. This overall clockwork is
modulated by secular variation in susceptible recruitment caused by changes in birth rate and
vaccination uptake [12], and by demographic stochasticity and local extinction in small popu-
lations, which predisposes smaller towns and cities to be entrained to the dynamics of larger
metropolitan centers [13,14]. Simple mathematical models that incorporate these drivers have
in many cases successfully predicted incidence patterns, making measles a canonical system in
the study of non-linear population dynamics and prime target for elimination [5,6,11,12,14].

The most intensively studied incidence patterns for measles are from Europe—notably the
UK—during the prevaccination era and are characterized by stable limit cycles (regularly
occurring seasonal epidemics) with annual or biennial periods [5,11,15,16]. In the biennial
cycles, susceptible depletion in the major epidemic years is replenished by births throughout
the following year, during which minor epidemics may occur[17]. Increasing birth rate in this
context causes the susceptible population to replenish more rapidly, leading to a collapse from
biennial to regular annual cycles, as observed during the post-World War II “baby boom”

[5,12,18].
In contrast, recent analyses of measles in western Africa—notably Niger—have revealed

complex dynamics, featuring episodic epidemics with highly variable amplitudes. These are
primarily caused by sharp seasonal increases in population density driven by collective migra-
tion [2] resulting in deep epidemic troughs, through nonlinear resonant feedbacks [6,19].
Owing to the intense seasonality, the equations describing measles dynamics in Niger produce
deterministically chaotic trajectories, as conjectured by previous theory [6,18]. However, the
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deep post-epidemic troughs invariably break the chains of transmission, precluding local
persistence.

Previous case studies, therefore, suggest an impossible tension with respect to chaos in real
world epidemics. Despite its mathematical plausibility [20–23], the large amplitude seasonal
fluctuations in transmission rates that have been presumed a prerequisite for chaos [12,17,19],
in practice result in so deep epidemic troughs that frequent stochastic extinctions are inevitable
[19]. Thus exotic nonlinear dynamics and local persistence have been thought to be in opposi-
tion in nature [24]. We refute that hypothesis here by showing evidence of widespread persis-
tent chaos in the epidemic dynamics of prevaccination measles in the United States, which
emerged via a new route to chaos that is less prone to stochastic extinction.

Methods
We take a comparative approach, analyzing 20-year biweekly time series data on measles inci-
dence in 80 major cities, 40 in the US and 40 in England andWales (UK). To compare these
contexts, we fit a Time-series Susceptible Infected Removed (TSIR) model to the measles inci-
dence data for each of the 80 cities [5,6,11]. The TSIR model describes macroscale properties of
the stochastic branching process of measles spread, focusing on the expectation for number of
secondary cases arising from the current population of infected individuals (hereafter the
“deterministic skeleton”) and the probability distribution describing variation around that
expectation due to the stochastic nature of infectious disease spread.

Representing the number of infected individuals in generation t by It, the concurrent num-
ber of susceptible individuals by St, and the population size by Nt, the TSIR model is given by

E½Itþ1� ¼ btI
a
t StN

�1
t ð1Þ

Itþ1 � Neg:Bin:ðE½Itþ1�; ItÞ ð2Þ

where E[.] is the expected value and βt represents seasonally fluctuating transmission rate in
each city. The mixing parameter α, usually set at slightly less than unity, accounts for latent
inhomogeneity in contact patterns between susceptible and infected individuals [23], as well as
compensating for instabilities arising from discretizing the underlying continuous-time process
[25]. Following previous work [11,16], we use α = 0.975 for all cities, which leads to good per-
formance under forward simulation of the model.

The TSIR model for measles operates at the characteristic two-week serial interval of infec-
tion. Eq 2 represents the birth-and-death stochasticity inherent in transmission dynamics
resulting in a negative binomial distribution of new cases with mean E[It+1] and dispersion
parameter It, so that the variance in It+1 is given by E[It+1] + E[It+1]

2/It. To study the determin-
istic skeleton of the dynamics, we model It+1 = E[It+1] in place of Eq (2).

Susceptible dynamics are modeled as

Stþ1 ¼ St þ Bt � Itþ1 ð3Þ

where Bt is the observed time-varying birth rate in a given city (see below). Secular variation in
susceptible recruitment is a well-known driver of variation in measles periodicity [12] that we
account for by using data on birth rates for each city when fitting and doing forward simula-
tions. The full procedure for fitting the TSIR model to data follows well established techniques
[5,11] that also included here as Supporting Information (S1 Text).

We assembled biweekly time series of measles incidence in US cities using the Project
Tycho database [26] and took biweekly measles incidence and demographic data for cities in
the UK from previous work [11,27]. For US cities we took estimates of population size for each
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city over the period of the study from census data [28] and estimated effective birth rates by
differencing biweekly time series of the number of children under one year old [29], adjusting
for the rate at which children age out of this class. For total and infant population sizes in the
US, biweekly time series were obtained by evaluating at each biweek a spline function fitted to
the decennial data (see S1 Text). Variations in the approach to reconstructing US recruitment
rate, including varying background infant mortality, and changing the degrees of freedom in
spline fitting, did not affect the results.

We used data for the 40 US cities in the Project Tycho database with the most records of
measles incidence, which included most major US cities. While the Project Tycho database has
measles incidence data from 1903 to 1953, data coverage was uniformly high for these 40 cities
between 1920 and 1940, so we used that period in the analysis. For the England and Wales
measles data we used the city of London plus the largest 39 cities that were more than 50km
from London to prevent a “borough effect” where UK cities in the greater London area are
entrained to its dynamics.

Due to limitations on data availability, the US measles data we used extends from 1920–
1940, whereas the England and Wales measles data extends from 1944 to 1964. Our analysis
accounts for demographic differences associated with the changing time window between the
US and the England and Wales data, including differences in birth rates over time among cities
and countries. Consequently, the temporal mismatch between the US and UK data does not
drive the observed epidemic patterns—evidence from other sources clearly shows that measles
epidemics in London, UK and other major UK cities remained predominantly biennial and
non-chaotic in the period covered by the US data (1920–1940; see S1 Text)[15,30].

Results
Measles dynamics varied systematically among cities and countries in the prevaccination era,
with US cities exhibiting more diverse and episodic epidemics than cities in the UK. Whereas
measles dynamics in the UK were predominantly locked on a biennial cycle, as previously
reported [5,6,11,31], a majority of US cities showed lower frequency, higher amplitude oscilla-
tions (Fig 1). Consequently, the mean periodicity of a city’s measles incidence (see S1 Text) var-
ied more widely among US cities, and was higher on average, compared to cities in the UK.

We found a comparable systematic variation in the shapes of the underlying seasonal trans-
mission patterns in each country, particularly a systematically lengthening of the summer
period of low transmission in US relative to the UK (Fig 2A). Given the biology and demogra-
phy of measles transmission, it is likely that this lengthening is associated with historical differ-
ences in timing and duration of school summer holidays between the two countries [11,32].
Corroborating historical data on the timing of school holidays in US cities is not currently
available. Whatever their origins, we show that these systematic differences in transmission
rates caused measles dynamics in the US to diverge from the stable annual or biennial limit
cycles previously characterized in measles epidemics for the UK. US measles cycles exhibit
higher and more variable mean periodicity (Fig 2B–2E) and are more sensitive to initial condi-
tions (Fig 2E–2G), which are hallmarks of complex population dynamics[33]. This conclusion
is supported by several lines of evidence, as follows.

First, twenty-year forward simulations of the deterministic skeleton of the TSIR model
parameterized with the fitted seasonal transmission function for each city yielded close fits to
the times series of measles incidence (Fig 2B–2D and Fig C in S1 Text), confirming that
observed differences among cities and countries in epidemic complexity can be explained by
systematic variation in seasonal transmission patterns. Occasional discrepancies between the
data and the forward simulations (such as for London in 1964, where the epidemic was smaller
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than predicted) are due in part to the accumulation over many biweekly timesteps of measure-
ment errors in the data on birth rates and case counts, which were imperfectly reported. In
addition, latent processes not included in the TSIR model, such as variation in age structure,
may cause discrepancies between the forward simulations and the data. However, previous
work [12] has shown that the long-term impact of such latent structure may be encoded in the
shape of the seasonal transmission function, which could explain how simple models can suc-
cessfully capture the key features of epidemics in complex populations, as is the case with the
measles periodicity described here.

As a second line of evidence for transmission-driven differential complexity in US measles
epidemics, the deterministic TSIR simulations of measles in US cities were much more sensi-
tive to initial conditions relative to UK cities. That is, slight changes to the initial proportion of
the population that was susceptible or infected in US cities produced large differences in epi-
demic periodicity, but this was not the case for UK cities (Fig 2E–2G). The fine-scale depen-
dence on initial conditions in US cities precludes long-range historical forecasts of measles
epidemics in the prevaccination US because the outcome of such simulations depends on pre-
cise estimates of the initial proportion of the population that is susceptible and infected, which
cannot be estimated without significant statistical uncertainty (Fig 2F and 2G). This is in con-
trast to the UK, where accurate forecasts of the prevaccination era incidence time series can be
achieved from a wide range of starting conditions, making forecasts in the UK resilient to sta-
tistical uncertainty in the initial susceptibility of the population (Fig 2E).

Fig 1. Differences among cities in the amplitude and frequency of historical measles cycles—epidemics in US cities were larger andmore
episodic than in England andWales, where outbreaks were predominantly biennial. (A-C) Biweekly incidence of measles per thousand population,
corrected for underreporting, for three representative cities in the US (1920–1940) or UK (1944–1964). Red dashed lines show births per thousand
population per year. The mean periodicity of each time series is indicated on the left colorbar. (D-E) Location and periodicity of each city in the data, with the
area of each circle proportional to mean population.

doi:10.1371/journal.pcbi.1004655.g001
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Third, the stochastic model (Eq 2), which continually pushes epidemic trajectories away
from the deterministic skeleton, provides further evidence of how cities with subtly different
seasonal transmission patterns respond to perturbations in the number susceptible and
infected. The stochastic simulations also show good correspondences between the model and
the data, as measured by assessing whether the distribution of periodograms generated under
repeated forward simulation of the stochastic model qualitatively matched the periodogram of
the data. The distributions of periodograms for UK cities (Fig 2H) were less dispersed than in
the US (Fig 2I and 2J). For US cities, stochastic simulations revealed multiple distinct periodic
patterns. These distinct patterns coexist in the same parameter space, emerging as a result of
stochastic variation in the simulation process alone (Fig 2I and 2J). In this case the data match
a subset of the possible periodograms, while other periodograms suggested by the model for a
given parameterization were not observed (Fig 2J). In the parlance of dynamical systems theory
this suggests the presence of coexisting attractors[12] or important unstable manifolds [34,35].
In practical terms, the stochastic simulations imply that if time could be repeatedly wound
back and played again from a similar starting point, biennial measles dynamics in UK cities

Fig 2. (A) Biweekly transmission rate in 80 cities: 40 in the US (circles) and 40 UK (crosses). Polygons enclose the interquartile range for the
transmission rates of cities in each country (US, blue; UK, black), illustrating that systematic differences between countries exceed inter-city
differences within a country. Enclosing lines show the 5th and 95th analogous quantiles. Bars on the vertical axis highlight differences among
countries in the duration and timing of the summer period of reduced transmission. (B-D) Successful forward simulation of the deterministic
skeleton of the TSIRmodel parameterized with city-level transmission data (red lines) compared to incidence data (black lines) for London,
Boston and New York. Simulations were started with the initial conditions indicated by red circles in adjacent panes and run forward for 20 years
without further information added from the incidence data. (E-G) performance of the forward simulations starting from different initial conditions.
Lighter shades indicate a better fit (measured as sum of squared distance between the model and the data during the peakmonth of May). (H-J)
Periodograms of 100 stochastic simulations of the TSIRmodel for each of the same three cities, contrasting the periodogram of the data (dashed
line) with the best 20 simulations shown in red and the remaining 80 shown in grey.

doi:10.1371/journal.pcbi.1004655.g002
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would still be biennial, whereas US cities would display a diversity of possible trajectories.
Where it happens that measles cycles in a US city are predominantly biennial (e.g. New York),
the regular periodicity belies a sensitivity to initial conditions.

As further evidence for chaotic measles dynamics in the US we calculated dominant Lyapu-
nov Exponents (LE; see S1 Text) for each city in the data. LEs measure the rate at which similar
epidemic trajectories converge (LE< 0) or diverge (LE>0) [6,36], quantifying the sensitivity
of a dynamical system to small changes in state. While all LEs for cities in England and Wales
were negative, the majority of US cities had positive LEs (Fig 3A). This corroborates the results
of the stochastic simulations, providing another line of evidence for sensitive dependence on
initial conditions across US cities, due to a slight change in the shape of the seasonal transmis-
sion function relative to cities in the UK.

Surprisingly, however, the resulting complex dynamics in the US were as stable as those in
the UK in terms of the risk of local extinction, with local extinction rare in all cities above
around 300,000 inhabitants in both countries (Fig 3B). The highly irregular measles dynamics
of the US are, thus, as robust to stochastic extinction as the clock-like regularity of the epidem-
ics in the UK. This is surprising because previous models of chaotic epidemic dynamics for sea-
sonally immunizing infections predicted that increased complexity is accompanied by
increased risk of stochastic extinction, apparently precluding persistent deterministic chaos in
real-world scenarios [12,19,24].

Analysis of the clockwork underlying these epidemic dynamics reveals two distinct routes
to deterministic chaos for seasonally modulated immunizing infections (Fig 4). To demonstrate
these routes we began with the TSIR model for Los Angeles, US, which has a mean periodicity
of ~3 years and a positive LE, and systematically varied the amplitude of the seasonal transmis-
sion function, and/or the duration of the period of low transmission (see S1 Text), while hold-
ing susceptible recruitment constant. On one hand, increasing the amplitude of seasonal
oscillations in transmission leads to chaotic dynamics through the previously well-character-
ized route [6], corresponding to the extinction-prone measles dynamics observed in Niger,
where deep epidemic troughs frequently break local chains of transmission [19]. On the other,
increasing the duration of the seasonal period of low transmission, while holding seasonal

Fig 3. (A) Global Lyapunov exponents estimate the rate of divergence of local dynamics following small perturbations, indicating that the majority
of US cities above the critical community size experienced sensitive dependence on initial conditions—the defining feature of chaotic population
dynamics. (B) Rates of stochastic local extinction are, however, similar for cities in the UK and US, with extinction unlikely above the common
critical community size of approximately 300,000.

doi:10.1371/journal.pcbi.1004655.g003

Chaos and Seasonality of Measles Epidemics

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004655 February 4, 2016 7 / 12



amplitude constant, also leads to chaos. In contrast to the chaotic measles epidemics previously
described in Niger, the new route to chaos revealed in the prevaccination US is associated with
local persistent chains of transmission (Fig 3B). Therefore, although these distinct routes to
chaos yield equivalent levels of deterministic complexity, they are associated with contrasting
properties of local persistence: only the new low-amplitude route to chaos exemplified by mea-
sles in US cities can sustain true chaotic fluctuations for a significant period of time (Fig 4B).

The existence of distinct routes to chaos with contrasting probabilities of local extinction
explains both the complexity and persistence of measles epidemics in the prevaccination
United States, as well as the systematic differences between measles epidemics in the prevacci-
nation US, the prevaccination UK and in present-day sub-Saharan Africa. In particular, we
found transitions to complex epidemic dynamics do not necessitate high-amplitude fluctua-
tions in transmission rates nor broad secular changes in susceptible recruitment, as previously
thought [12]. The US analysis shows that subtle shifts in seasonal transmission patterns can
also lead to chaos. But the origins of dynamic complexity—whether through the canonical
routes or the newly described low-amplitude route operating in the US—have important impli-
cations for the local persistence of the resulting epidemics.

Finally, we note that systematic differences in dynamics at the city level may have propagated
to affect countrywide patterns in the spatiotemporal coherence of disease incidence patterns.
While the annual or biennial predictable measles cycles in UK cities represented synchronous
phase locked oscillations across the entire island[14,37], the locally persistent chaotic dynamics
in the US appeared to break the phase-lock in US measles epidemics, both over the same spatial
scale as the UK, and overall (Fig B in S1 Text). However, further, more detailed, spatial analyses
are necessary to tackle systematic variation in the strength of these correlations at inter-city and
regional scales. This may be an interesting avenue for future work.

Fig 4. (A) Bifurcation plot for the deterministic skeleton of the seasonally forced TSIRmodel parameterized for Los Angeles, US, as a function of
the duration of the period of low transmission (horizontal axis) and the relative amplitude of seasonal fluctuations (vertical axis) (see S1 Text).
Colors indicate the mean periodicity of the resulting dynamics, showing two distinct routes to deterministic chaos. Marginal plots show the
predicted number of cases in Los Angeles each May, as seasonal amplitude and duration of the seasonal low-transmission period are varied one
at a time. Hollow circles indicate the approximate locations of London, UK, and Niamey, Niger on the bifurcation plot. Simulations were run for 100
years following 100 years of burnin to remove transient dynamics. (B) Proportion of biweeks with <1 case for each of the simulations shown in the
main bifurcation diagram (grey circles), for simulations with seasonal transmission amplitudes near 1.0 and with positive Lyupanov exponents
(blue circles, and blue line on the vertical axis of the adjacent subfigure), and for simulations with seasonal transmission amplitudes near 1.5 and
with positive Lyupanov exponents (red circles, and red line on the vertical axis of the adjacent figure).

doi:10.1371/journal.pcbi.1004655.g004

Chaos and Seasonality of Measles Epidemics

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004655 February 4, 2016 8 / 12



Discussion
The realization in the 1970s that simple models of population growth can have complex
dynamics [20], spurred several decades of effort in ecology and epidemiology to explain highly
variable time series using a few general equations [22,38], with hopes of emulating the success
of Newtonian physics [24]. Although controlled laboratory experiments supported the hypoth-
esis that complex dynamics in living populations can emerge from simple rules [39] applica-
tions to real-world scenarios were often stymied by the role of stochasticity—chance events
play a significant role in the growth trajectories of many live populations, but such variation is
minimized in deterministic models and controlled experiments.

A particular challenge was the fact that canonical chaotic models of seasonally forced epi-
demics carried a high risk of stochastic extinction. Specifically, the route to chaos described by
these models involves broad-scale changes in susceptible recruitment, such as changes in birth
rate or vaccination coverage, or significant structural changes in the seasonal pattern of trans-
mission, such as changes in the amplitude of seasonal fluctuations in transmission rate [12,19].
But these structural changes result in deep epidemic troughs, where the chain of transmission
is maintained by only a few individuals. This greatly increases the likelihood that an epidemic
will fade out, due to random variation in the timing of infection and removal events [12,19,40].
This tradeoff, where achieving a realistic level complexity requires an unrealistic rate of sto-
chastic fadeouts, apparently precluded persistent deterministic chaos as an explanation for
capricious incidence time series. In contrast, we have shown that small shifts in the seasonal
pattern of disease transmission can offer a new, more stable, route to persistent deterministic
chaos (Fig 4).

The relative importance of noise and determinism in population dynamics varies with con-
text: for instance, stochasticity appears to generate proportionally more of the amplitude in
rubella cycles (as well as driving patterns in local extinction), because the deterministic skeleton
of these dynamics falls on an attractor that is globally less stable [41]. Similarly, the intermittent
3–4 year periodic pertussis dynamics is thought to emerge from stochastic resonance around a
deterministic skeleton with a dominant annual period [42]. For US measles dynamics in the
prevaccination era, the effects of stochasticity and determinism are inextricably intertwined
through highly nonlinear sensitive dependence on initial conditions.

Although not conclusive, analysis of cross correlation in measles incidence across cities sug-
gests that US cities may have had less synchronized epidemics at regional and country-wide
scales (Fig B in S1 Text). The level of synchrony among connected populations has been shown
to influence patterns of disease persistence per se, but predictions for the impact of chaos on
metapopulation dynamics have been somewhat equivocal, as epidemic chaos has its own com-
plex relationship with persistence. Specifically, spatial decorrelation, such as that seen among
US cities, can improve disease persistence in a metapopulation context, as subpopulations that
experience local extinctions may be more likely to be rescued by connected subpopulations
that have not experienced a fadeout—the metapopulation “rescue effect” [43–45]. However,
spatial decorrelation specifically linked to chaos was previously thought to be an unlikely
source of pathogen persistence, because deep seasonal troughs in transmission rates, thought
to be a prerequisite to chaos, tend to synchronize the timing of fadeouts across the metapopula-
tion, diminishing the rescue effect [40]. The new route to locally persistent but decorrelated
dynamics may change this perspective.

Our analysis demonstrates the impacts of chaos on the metapopulation dynamics of cities,
showing that the network consequences of complex epidemic patterns depend on the origins of
the complexity. On one hand, if complex cycles emerge via high amplitude fluctuations in
transmission rates, then local populations will be more likely to experience synchronous
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fadeouts, and metapopulation rescue effects will not considerably improve local persistence
[19,40]. On the other hand, if complex epidemic cycles emerge from slight changes in the dura-
tion of the seasonal period of low transmission—as shown here for measles in the prevaccina-
tion era US—local populations will experience relatively higher rates of disease persistence, in
addition to a plausibility of significant metapopulation rescue effects. The enhanced persistence
is consistent with the data presented here, where the observed probability of measles fadeouts
across US cities (Fig 3B) was still lower than that predicted in single-city simulations under the
more stable route to chaos operating in the US, suggesting the presence of a rescue effect[44]
(Fig 4B).

In conclusion, the emergence of persistent chaotic epidemics in the prevaccination US from
small shifts in seasonal transmission patterns reveals a novel and potentially widespread route
to chaos in population dynamics[24,46,47]. Moreover, these results show empirically that the
viability of chaotic populations depends subtly on the route to chaos. In practice, this means
that small perturbations in transmission rates, such as those caused by shifts in host behavior
or the imposition of epidemic control measures, can lead to a rapid erosion of the capacity to
forecast epidemic patterns, which can in turn reduce the efficacy of control strategies such as
reactive vaccination[2,19,48,49]. Generally, population dynamics are deterministically more
sensitive to perturbations than previously thought.
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