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Abstract

In complex systems with stochastic components, systems laws often emerge that describe
higher level behavior regardless of lower level component configurations. In this paper,
emergent laws for describing mechanochemical systems are investigated for processive
myosin-actin motility systems. On the basis of prior experimental evidence that longer pro-
cessive lifetimes are enabled by larger myosin ensembles, it is hypothesized that emergent
scaling laws could coincide with myosin-actin contact probability or system energy con-
sumption. Because processivity is difficult to predict analytically and measure experimental-
ly, agent-based computational techniques are developed to simulate processive myosin
ensembles and produce novel processive lifetime measurements. It is demonstrated that
only systems energy relationships hold regardless of isoform configurations or ensemble
size, and a unified expression for predicting processive lifetime is revealed. The finding of
such laws provides insight for how patterns emerge in stochastic mechanochemical sys-
tems, while also informing understanding and engineering of complex biological systems.

Author Summary

Complex biological systems consist of many parts that interact in non-obvious ways. In
these systems, levels of organization often emerge, as evidenced by cases where cells form
tissues, tissues form organs, and organs interact to form complete organisms. We hypothe-
sized that that laws exist that describe system functioning at one level, independently of
the configuration at other levels. The hypothesis was tested using simulations of motor
protein systems, and demonstrated that patterns in their behavior emerge at a systems
level. Results demonstrated a law concerning energy utilization predicts the lifetime of
these systems before dissociation, regardless of the components present in the system.
These findings reveal organizational laws that simplify complex systems analysis and can
facilitate engineering design approaches for bio-based technologies.
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Introduction

In multi-level stochastic systems, the collective interactions of lower-level building blocks are
necessary for producing emergent system functionality, however, some emergent system prop-
erties may hold regardless of how lower level building blocks are configured [1]. This general
principal is highly applicable to biophysical systems, where complex system functionality
emerges from stochastic mechanochemical molecular interactions [2-4]. Collective emergent
functionality is a definitive feature of motility systems, where filament gliding behavior
emerges from the interactions of myosin molecular motors and actin filaments [5,6]. To pro-
mote motility, myosins exert force as they stochastically attach and detach to gliding actin fila-
ments [6-8]. However, it is not fully understood how changes in myosin isoform structure
affect the system’s higher level functioning (e.g. how fast/long the filament continues gliding).
Such considerations are important because many isoforms exist in the myosin superfamily,
with particular isoforms suited for varied cellular functions including muscular contraction, cy-
toskeleton scaffolding, and active diffusion [9]. Better descriptions for how individual myosin
structure [10] and ensemble size [11] relate to system functionality could promote understand-
ing of both natural and engineered molecular motor systems [12,13]. Derived system laws that
describe the operations at the systems level as components are altered could significantly ad-
vance analyses of natural and synthetic myosin performance [14,15], and have particular appli-
cations relating to myosin-based diseases such as cardiomyopathy, where muscle tissue growth
is affected by individual myosin configuration [16]. Additionally, such rules could aid in devel-
oping heuristics for engineered technologies such as nano-actuators, molecular materials, and
bio-sensors [17,18].

In both natural and engineered myosin systems, functionality often emerges from the pro-
cessive transport of actin filaments relative to stationary myosins; a minimum number of myo-
sins are required to ensure a filament continues with a consistent trajectory and velocity.
Consistency in processivity is measurable through considering a system’s processive lifetime P,
which refers to the duration from initial myosin-actin contact until system dissociation occurs
during periods when no myosins are in contact with actin (Fig 1) [19]. Processivity is an essen-
tial metric to consider in the design of myosin-based nanotechnologies that operate on similar
principles as motility assays [20]. Motility assays are common experiments for investigating
how individual myosin configuration affects system behavior, and these experiments often
measure the velocity of actin filaments propelled by a bed of myosins [21]. Typically, there is a
negligible load assumed to act on the actin filament, which is representative of physiological sit-
uations with low external loads or nanotechnologies that operate in similar controlled environ-
ments. Although many models and simulations exist for myosin systems [5,22-24], they
mostly concentrate on physiological models rather than motility assays. The simulation of mo-
tility assays, however, enables the experimental investigation of phenomenon such as how my-
osin isoform configuration affects the maximum achievable filament velocity and probability
of contact among myosins and actin, which is suggestive of the potential loaded system capabil-
ities. We therefore concentrate on building models and simulations of motility assays as a basis
for investigating emergent system laws informed by fundamental biophysical experiments.

From previous motility assay experiments, P is known to increase with the number of myo-
sins N interacting with a filament and myosin duty ratio r, defined as the proportion of time a
myosin remains attached to actin [25]. Because processivity is a system behavior that emerges
from many myosins’ stochastic actions [26], none of which are processive individually, it is not
possible to predict P with certainty, but rather requires the consideration of an average. These
complications have made quantifications of P difficult and established analytical models have
instead relied on estimations [19,27] to predict whether a system behaves in an emergent
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Fig 1. Schematic of processive myosin system with dissociation. Schematic of a myosin ensemble
propelling actin at unloaded velocity v,,. Myosin states are stochastic, with myosins being detached, attached
and power-stroking (light yellow point of contact), or attached and drag-stroking (dark red point of contact).
Initially three myosins are attached (top); later the filament has translated and one myosin is attached
(middle); at processivity termination, all myosins are detached (bottom).

doi:10.1371/journal.pcbi.1004177.g001

regime [28] that enables perpetual processivity. These estimations require consideration of the
contact probability of a system Pc (the probability of at least one myosin being attached at a
given time), as

P=1-(1-r" (1)

Experimental studies suggest that perpetual processivity is reached for chicken skeletal mus-
cle myosin when Pc > 90% [19], but could require Pc > 99.6% [29] when considering uncer-
tainties. These uncertainties arise from standard error in average filament velocity
measurements at the systems level, and in determining specific behaviors of individual myo-
sins, such as their rate of attachment which is not directly measureable. Because of these uncer-
tainties and their propagation across scales, it is difficult to determine with precision the
influence of particular parameters such as Pc on system performance, since it is influenced by
multiple measurements with uncertainty. Therefore, simulation approaches informed by em-
pirical measurements can enable insights for how difficult to measure parameters affect
system behavior.

It is not obvious whether processive lifetime PP would scale with contact probability P as
myosin isoform structure varies and influences duty ratio r (i.e. will systems with equivalent Pc
have similar processive lifetimes), which is representative of an initial hypothesis. As an alter-
native, we propose that system energy consumption E increases with the number of myosins in
a system/ensemble N, which assumes each myosin continues utilizing ATP at the same rate as
more myosins are added to the system, and generally holds true for unloaded systems. It can
then be hypothesized that such energy relationships could inform a scaling law, since it would
support previous empirical measurements that processive lifetime increases as myosins are
added to the system. With energy scaling, it is assumed that myosins consume energy from
ATP atarate e, and E = e-N, which is a valid assumption if N does not influence e. Generally
this assumption is true when adding more myosins to the system does not affect the individual
force output of myosins. The cycling rate of myosins is primarily governed by the velocity of
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the gliding filament, and eventually saturates at higher velocities [27], meaning that the linear
assumption is valid for systems operating at high velocities. Such scenarios are possible when
the force on the system is low, such as muscle contraction against low loads or in vitro motility
studies where filaments must only overcome the drag force from their environment; in both
cases, adding or removing myosins from the system does not significantly alter the gliding fila-
ment velocity. It is then possible to assume the energy required for perpetual processivity by
approximating that Pc = 90% when an average number of attached motors is Ny, = N - r = 2;
a minimum required N for perpetual processivity occurs when N =2/r,or E =2 - ¢/r if P scales
with system energy.

In this paper, our goal is to determine how P scales when considering Pc and E, and then
develop a unified expression for predicting P regardless of isoform configuration and N. These
predictions are possible to validate with wet-lab experiments, but infeasible to conduct for
every possible system configuration. Where empirical data is not available, analytical ap-
proaches are utilized to validate the predictions of the simulation through predicting the sys-
tem behavior of the same system configuration input in both models. The unified expression
would greatly aid in predicting mechanisms of complex in vivo biological systems while en-
abling rapid prototyping of myosin-based technologies [12]. The isoform parameters chosen in
this paper are the myosin lever arm length, myosin detachment rate, and myosin attachment
rate which are three of the most critical parameters for optimizing myosins for nanotechnolo-
gies[18]. These parameters roughly correspond to the three primary phases of a myosin’s cycle
consisting of a power-stroke (positive force generation), drag-stroke/detachment (negative
force generation), and velocity dependent rate of binding to actin (Fig 1) [15]. All three of these
parameters have values investigated empirically for a number of different isoforms and their
influence on motility behavior, which aids in validation of developed models and simulations.

Because of the intractability of predicting processive ensemble behavior with analytical
models, the problem is approached using agent-based simulation methods [30,31], where each
agent is an individually configured computational object that autonomously recreates myosin
behaviors in a spatially discretized virtual environment. The approach contrasts to past myosin
simulations focusing on muscle [5,24,32], which are challenging to validate for single myosin
functioning. We have previously examined myosin force-velocity curves for varied isoforms
and developed a discretized virtual motility assay environment [15]. Here, analytical expres-
sions and simulations are first examined for varied isoform types and validated with experi-
mental evidence of how altered myosin molecular structures affect ensemble behavior. A
computational environment is then built for simulating and measuring processive lifetime 7
durations, and these novel measurements are used to determine whether P scales with contact
probability Pc or system energy E modulation. Once a scaling metric is found that is indepen-
dent of isoform configuration, an analytical expression is fit to the simulation data that serves
as the unified expression for determining P of any system regardless of its components.

Methods
Analytical and Agent-Based Modeling Approaches

Analytical and simulation approaches were first developed with a three-state mechanochemical
model for individual myosins interacting with an actin filament traveling at steady state veloci-
ty v without regards to processive lifetime PP (Supplementary Movie 1 in S1 Text), that is an ex-
tension of past myosin modeling methods [27]. When a myosin is detached, it stores energy
from ATP as strain while the myosin head is displaced from its equilibrium state and attaches
to actin sites with attachment rate k,,,. Binding sites are spaced every x,; (36nm) distance, based
on actin’s highly conserved structure. Once attached, the myosin has displacement 3, in its
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power-stroke, that decreases before reaching a point of zero-displacement based on lever
length [ 'and step angle 6, with &, = [ - sin(6), with 6 assumed as 30° for all isoforms considered
in this study. Once a myosin reaches zero-displacement, it begins displacing in a negative direc-
tion as other myosins continue pulling the filament. The myosin detaches with rate constant
ko during its drag-stroke of length 6_ = v/kos. 6., kon» and ko were determined as isoform pa-
rameters because they map to molecular structures that vary independently in nature [33,34]
and are prevalent in myosin engineering experiments [14,35-37].

Because myosins behave stochastically, it is often not possible to predict with certainty a my-
osin’s state and therefore time-average behaviors are typically considered. Time-average behav-
iors are validated from analytical and simulation predictions with experimental evidence from
past unloaded motility assays, for varied isoforms. In unloaded assays, myosins propel the fila-
ment at unloaded velocity v, and forces produced by power-stroking myosins balance drag-
strokers, such that the time-average myosin displacement (d) equals zero. (d) is found by con-
sidering myosins with complete stroke lengths &, = 5, + §_, leading to (d) = (5,/2) - (5,/8,,) -
(82) - (8-18,,) [27]. When (d) =0, 6> /2 = &, and simplifies to §° /2 = (vu/koﬂ)Q, to produce

v, = (V2/2)(6,ky) (2)

suggesting that v,, is linearly dependent on &, and kg In cases when motility systems operate
under load, the time-average force is calculated by (f) = x - r - (d), where the myosin stiffness
is found through considering that a myosin can not store energy greater than what myosins
may approximately utilize from ATP (e = 62.5z]) to find x = els.>.

A myosin’s duty ratio r is found analytically by modifying past methods [27] and assuming
a filament has traveled x distance at time ¢, with a myosin head having probability p,,(x,f) and
Pos(x,t) of attaching and detaching to binding sites, respectively. With rate constants for attach-
ing k,,(x) and detaching k,¢(x), a myosin’s interaction with actin when travelling at steady
state is:

(3)

Pon(%) = v (%) + Kk ()poy (%)

k off (x)
When considering k,, as a high rate of attachment that occurs for a myosin head within a

spatial proximity x, to a binding site, and that myosins only bind while detached, the probabili-
ty of binding P, over time t, as a site passes is:

fo

P, = / Kuerpl—ho)it = 1= exp(—ht) = 1 - exp( ) (@)

v
0

Because binding sites are spaced regularly by x,, the average distance A a filament travels
each myosin cycle is
_ Xa

1 — exp(— )

v

A (5)

and r = 8,,/A.

The agent-based simulation consists of a discrete number of independently configured and
autonomous myosin agents interacting with a filament in a virtual environment. The simula-
tion operates in discrete spatial and temporal steps, with a filament translating dX = 1nm each
step over a duration dT determined by v = dX/dT, which is a small enough step size to capture
individual myosin behaviors while keeping required computational effort to a minimum. Each
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Fig 2. Agent-based simulation of myosin systems. (a) Logic rules that each individual myosin agent autonomously follows each step of the simulation. (b)
Three rendered frames of myosin ensembles interacting with a single long actin filament. Myosins only generate force when attached to actin and based on
their state generate positive force promoting filament motility (left pointing arrows) or negative force retarding motility (right pointing arrows).

doi:10.1371/journal.pcbi.1004177.9002

myosin agent has three possible states of either (0) detached, (1) being attached to the filament
during a power-stroke, or (2) being attached to the filament during a drag-stroke. During each
timestep of the simulation, each myosin agent follows programmed logic as presented Fig 2A
that is representative of a myosin’s mechanochemical states and behaviors. Depending on a
myosin’s current state, it will begin following rules in one of three ‘Start’ blocks and continue
through if/then statements until an ‘End’ command is reached. For instance, a myosin that is
not bound to actin (state 0) will first check if a binding site is near, where x,,;, is the distance
from a myosin’s zero strain location to the nearest binding site, x, represents how close a myo-
sin head must be to a binding site to have a chance of binding, and step size 8, represents the
distance of a myosin head from the point of zero strain. If the check fails, the myosin ceases its
actions until the next time step. If the check succeeds, a random number is generated and com-
pared to a myosin’s chance of attachment for that time step to determine whether it binds and
enters the power-stroke state for the next simulation step or ceases its actions. The chance to
attach is based on the actin's attachment rate parameter k,,, and the window of time a binding
site is available such that P(k,,,) = k,,, - dT. If a myosin agent attaches, it remains in its power-
stroke (state 1) until it has a head displacement d of zero, as its head translates with the travel-
ling filament and has initial displacement d = &, that reduces by dX each step. In the drag-
stroke (state 2), a myosin has a random chance of detaching according to its detachment rate
kogrand P(kop) = kog - dT. Fig 2B demonstrates a rendering of myosins operating as an ensemble
according to the rules in Fig 2A.

In order to compare the simulation with analytical results, the time-average force (f) is re-
quired which represents the behaviors of myosin agents interacting with a filament travelling
at v. The velocity of a simulation is assumed a priori and the time and spatial steps are then cal-
culated. Monte Carlo samplings were used to determine a myosin’s displacement at time ¢, and
(f) is found from aggregating m measurements such that (f) = L3"" f(t,), where f(t,) is a mo-
tor’s instantaneous force at time ¢; found by f= k - d. The simulation terminates once the stan-
dard error s, of the mean for (f) reaches s, < 0.005, therefore m varies each simulation. In these
simulations velocity is considered an independent variable while force is a dependent variable,
therefore iterative processes in assuming velocities is required in cases where the simulations
are utilized to determine the velocity of a system under a specified load. In the case of motility
assays, the external load is considered to be zero and an initial assumption for velocity is found
through using the analytical equations.
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Results
Validation of Analytical Model and Agent-Based Simulation

The analytical and simulation models were validated by comparing empirical data [27] for
chicken skeletal muscle myosin (k,,, = 900s ™", ko= 1600s", and 8, = 5nm) under load to iso-
forms with one configuration variable altered, while the remaining two are identical to chicken
skeletal myosin as indicated in Fig 3A. The force-velocity relationship was found analytically
through solving (f) = k- r - (d) as described further in the methods section, while the simulated
force-velocity relationship was determined through simulating ensemble systems at varied ve-
locities and aggregating to find the time-average force until error was negligible.

The resulting force velocity relationships demonstrate that both the analytical and simula-
tion methods can recreate the hyperbolic force-velocity relationship of myosins, which forms
the basis of muscle performance. Additionally, each isoform configuration parameter has
unique influences on systems functioning, such as higher attachment rates leading to a greater
force per velocity with no influence on maximum unloaded velocity, while step size and de-
tachment rate decreases result in lower maximum velocities and force per velocity. These dif-
ferences are important, because it suggests a complex relationship in emergent ensemble
behavior based on individual myosin configuration. Notably, attachment rate increases result
in greater energy expenditure in a system (because myosins cycle more often), while the other
two configuration variables do not. The change in maximum velocity that results from alter-
ations in myosin step size and detachment rate are a result of differences in how long a myosin
remains in its power or drag-stroke state; in motility systems the total force of the system must
equal zero, which suggests that myosins with longer drag-strokes or shorter power-strokes will
generate more negative force or less positive force, respectively, therefore resulting in lower sys-
tem filament velocities.

Although there is limited empirical evidence describing the loaded response of synthetic iso-
forms with altered variables in comparison to chicken skeletal muscle myosin, there is experi-
mental evidence describing the maximum (or unloaded) velocity v, for synthetic myosins [14]

B
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Fig 3. Comparison of agent-based molecular simulation and analytical methods to experimental data. (a) A datum isoform (squares) has k,, =

900s™", ko= 1600s™", and &, = 5nm that correspond to empirical measurements [27], whereas extrapolated isoforms have one perturbed parameter each as

labeled on the chart (e.g. the “k,, = 1500s~"” isoform has values ko, = 1500s~", ko= 1600s™", and &, = 5nm). Each line corresponds to analytical outputs
while symbols refer to simulation data, with the exception of solid circles that represent experimental data. (b) v,, as myosin isoforms vary for analysis and

simulations, with each isoform normalized to one perturbed parameter as other parameters remain constant. The ks perturbation (blue diamonds) has k,, =

900s ™", kopr=3500s~", and &, = 10nm, normalization; the k., perturbation (orange rectangles) has k., = 3500s™", ko= 1000s~", and &, = 10nm

normalization; the &, perturbation (pink triangles) has ko, = 900s™", ko= 800s™", and &, = 13nm normalization. Experimental data corresponds to the &, [14]

and kg [33] values.

doi:10.1371/journal.pcbi.1004177.9003
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with altered 6, and natural myosins of varied kg [33], while k,,, alterations have no influence,
which is plotted in Fig 3B. Analytically v, is found using Eq 2, while the simulation requires an
a priori assumed velocity and determination for whether the time-average force of the system
equals zero. The unloaded velocity for simulated systems was found by iteratively adjusting the
input v in increments of 100 nm/s from zero until (d) < Onm, and is plotted in Fig 3B in addi-
tion to the empirical results. There is strong agreement among analytical and empirical trends,
suggesting that the biophysics is captured for each of the unique influences of isoform configu-
ration inputs. The juxtaposition of these two modeling approaches is important, as the simula-
tion determines relationships by allowing system relationships to emerge in contrast to explicit
formulations from the analytical model, but both approaches result in similar predictions.

Stochastic Ensemble Behavior

The analytical and simulation models are both extendible to predicting stochastic ensemble be-
havior, such as determining the probability that at least one myosin in the system is attached to
actin, which is necessary for ensuring the system operates with a consistent trajectory and does
not dissociate [27]. The contact probability Pc that describes the percentage of time that at
least one myosin is attached to actin is used to find an adjusted unloaded filament velocity

v = P_-v,. To determine the simulated P, Monte Carlo methods were used to count the
number of attached myosins during run-time. Fig 4A and 4B are histograms for ensembles of
N =25 myosins and N = 100 myosins, demonstrating that occurrences obey a Poisson distribu-
tion, and there is a much lower chance of no myosins being attached as N increases.

The contact probability P can then be found from the simulation by taking the proportion
of measurements with zero myosins attached compared to the total number of measurements,
which is comparable directly with empirical and analytical results (through using the relation-
ship v = P_ - v,). Experimentally, data was collected using chicken skeletal muscle myosin and
increasing the concentration of myosins added to a flow cell while measuring actin filament ve-
locity, until adding more myosins to the system resulted in no further increases in motility ve-
locity, which is indicative of the point when at least one myosin remains in contact with actin
about 100% of the time [21] (Supplementary Movie 2 in S1 Text). In these experiments, a vis-
cous liquid was added to the motility cell environment in order to reduce the chance of system
dissociation when no myosins were attached, and enables the measurement of filament veloci-
ties relative to the highest possible velocity for the system (Fig 3C). This point was reached in
experiments when amounts greater than 100 pg/mL of myosins were added to the motility cell.
When simulation and experimental results are normalized for the case of chicken skeletal mus-
cle myosins (k,,, = 90057}, ko= 1600s™", and &, = 5um) as N varies, it was found that strong
agreement occurs when plotted with N = 60 myosins as the ensemble size that corresponds to
the maximum achievable velocity (Fig 3C), and reflects ensembles with a contact probability
Pc of about 91%. Uncertainty in these comparisons exist because it is not possible to determine
with certainty the number of myosins interacting with actin filaments empirically, to measure
the average filament velocity of the system with certainty, and because there are likely fluctua-
tions in instantaneous filament velocities that occur physically, but are not represented in the
models.

Instead of precisely calculating processive lifetime, analytical approaches often rely on ap-
proximations such as the rule suggesting that if at least two myosins are attached to a filament
on average, N, > 2, a system will remain perpetually processive. When N, = 2, it is generally
true that Pc ~ 90% for chicken skeletal muscle myosin [19]. It is possible to compare the simu-
lation and analytical methods when considering many isoforms and N, to determine whether
all systems of a given N, will have similar Pc according to Pc=1-(1 - r)N. The analysis is
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collapsing on a single curve. Therefore, systems have nearly identical contact probabilities for a given number of attached myosins, independent of

ensemble size or isoform configuration.

doi:10.1371/journal.pcbi.1004177.9004

conducted by first choosing a median isoform (k,,, = 2000s ", ko= 2500s7%, and 8, = 10nm)
and increasing the amount of myosins within the system until the average number of attached
myosins is three, which results in a curve of N, and Pc for that particular isoform (Fig 4D).
The process was repeated for isoforms that have one isoform value different in comparison to
the median isoform, which enabled a controlled basis of comparison to determine how each
myosin isoform configuration input affected ensemble energy and processivity behavior. For
instance, the curve “k,, = 1000s™"” in the legend of Fig 4D indicates ensembles of different
sizes for an isoform with values of k,,, = 1000s™", kogr= 2500s~", and 8, = 10mm. Isoforms were
extrapolated one at a time for each isoform input parameter and resulted in a total of seven
data sets that all followed the same curve in Fig 4D, thus indicating the basic relationship be-
tween the number of attached isoforms and probability that at least one was attached for all
considered system configurations. The values of isoforms chosen for extrapolation in Fig 4D
represent a set of isoforms within 2-3 times greater or smaller parameter values when
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compared to chicken skeletal muscle myosin, which forms a significant basis of comparison,
while also being representative of known myosins with larger lever arms [36] and faster kinetics
[38].

The collapsing of all isoform types on the same curve in Fig 4D occurs even though systems
have isoforms of differing r and varied N to reach a particular Pc, and is related to the number
of attached motors obeying a Poisson’s distribution. Therefore, either Pc or N, could inter-
changeably scale with P. Because P measurements are expected to scale exponentially with N
as supported experimentally [25], we propose a unified expression in the form
P(N,,) = AePNar;, where N, increases with N and r, and A and B are scaling constants. The
exponential scaling assumption also follows from Fig 4A and 4B, because of the low chance of
no myosins being attached in large ensembles. The scaling equation only holds if A and B have
similar values for all isoforms, a property tested with simulations. If accurate, the equation en-
ables the prediction P from any system based on N, which is a property of the system and
not of single myosins and is difficult to validate with analytical and experimental approaches.

Processive Lifetime Simulations

To determine whether the unified expression predicts system processivity independently of in-
dividual isoform configuration, simulations must demonstrate that all isoforms have similar
coefficients A and B. To determine these coefficients, the computational environment was
modified to recreate processive lifetime events, with each simulation measurement reflecting
the time from initial myosin-actin contact until system dissociation (Supplementary Movie 3
in S1 Text). Dissociation occurs in the simulation when no myosins are attached for 1ms,
which represents an average duration before an actin diffuses from the myosins’ reach, based
on past experiments [39]. It is possible to manipulate this duration through altering the fluid’s
viscosity in the environment. When histograms for processive lifetime P were produced from
simulations of two different ensemble sizes N (Supplementary Movie 4 in S1 Text), they fol-
lowed an exponential decay that agrees with past experiments [36] (Supplementary Section 1
in S1 Text). A sample processive run recorded from the simulation environment is presented
in Fig 5, and illustrates a duration of time from initial contact among myosin and actin until
system dissociation occurs when no myosins are attached for a period of greater than 1 ms.

An investigation of many different ensemble sizes and isoform configurations was con-
ducted using the simulation to measure processive lifetime of varied isoform configurations
(Supplementary Movie 5 in S1 Text). A significant body of data was collected, beginning with
the simulation of a median isoform configuration (k,, = 2000s7", ko= 2500s 7%, and 8, =
10nm) with an ensemble size N of 10 while myosin and system behaviors were recorded from
the simulation. The ensemble size of the system was increased until the average processive life-
time exceeded 1s (higher values of processive lifetime began approaching perpetually proces-
sive systems that required extensive computational effort). The process was repeated for
isoforms that varied by one input variable in comparison to the median isoform (e.g. an iso-
form with extrapolated k,, = 10005 represented an isoform of k,,, = 1000s ", ko= 250057,
and 8, = 10nm). The extrapolation of one isoform variable from the median isoform enabled a
controlled basis of comparison to determine how each myosin isoform configuration input af-
fects ensemble energy and processivity behavior. Isoforms were extrapolated one at a time to
produce seven curves that represented how each ensemble's contact probability Pc corre-
sponded to its processive lifetime in Fig 6A.

Results in Fig 6A demonstrate an exponential increase in P that scales with system energy
consumption (and therefore contact probability P.), as expected. However, the constants A
and B are not conserved because myosins with higher detachment rates k4 have much lower P
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Fig 5. Processive myosin simulation rendering. The rendering illustrates six periods of time during the
agent-based simulation of a single processive run-length event. In the first (top) frame, no myosins are
attached, then myosins begin attaching and propelling the filament until a period of time greater than 1ms
when no myosins are attached, which leads to systems dissociation (bottom frame). The duration of time
recorded for the run length event is measured from the initial point of myosin contact with a filament until
system dissociation.

doi:10.1371/journal.pcbi.1004177.9005

for a given system energy consumption. These results suggest that processive lifetime scaling
for systems of different isoforms does not occur universally with contact probability, but could
possibly occur through considering relationships with system energy consumption when con-
sidering that higher k,leads to increasingly unstable systems with higher energy requirements
E,,(P) to reach a given P [17]. The energy requirement arises from considering the average
ATPase rate of a myosin e = v/A and assuming a minimum number of myosins are required

N4 to reach a given P such that N, (P) = N,,,(P)/r. It follows that a required system energy

isE,,(P) =e-N,(P)/r, and in terms of isoform parameters is
N .
B () = el Pl ©
0, +vi(ky)

The relationship among myosin isoform values being predictive of the energy required for
processivity may be investigated through viewing simulation results according to the energy
consumed by a system on average for a given processivity. The process is initiated by consider-

ing how E,, (P) fluctuates as each myosin parameter is altered independently. Eq 6 can be
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Fig 6. Trends among isoform variations for simulated processive lifetimes and ensemble energy usage. (a) Simulation measurements of processive
lifetime P and contact probability Pc when ensemble size N varies. Isoforms include a median (red with &, = 10nm, k., = 2000s™", and kofr = 25003‘1), with
other isoforms having one perturbed parameter as indicated, therefore higher contact probabilities lead to longer P, and lower detachment rates k. lead to
higher processive lifetimes for a given contact probability. (b) The minimum average system energy consumption E required for P > 500ms. Isoforms are all
perturbed from a configuration where parameters are half of their normalized value; isoforms of higher ko require more energy to reach the same P for a

given Pc.

doi:10.1371/journal.pcbi.1004177.9006

simplified to E,, (P) = N,,(P) - k,;;, suggesting that E,, scales with kg This agrees with simu-

req
lations because N,., remains constant for myosins of varied step sizes &, (as duty ratio r re-
mains unchanged) while E, ., remains static as attachment rate k,,, varies despite e varying
(Supplementary Section 2 in S1 Text). E,., was determined at P = 500ms by simulating in-
creasingly larger ensembles until reaching the first occurrence of P > 500ms from an average
of 1,000 simulations for a varied set of isoforms that includes a baseline isoform with k,,, =
125057, ko= 1500s5™", and 8, = 7.5nm, and isoforms with one input parameter extrapolated
from the baseline isoform values (Fig 6B). Fig 6B demonstrates that E,., grows with k,gbut re-
mains constant as other parameters vary. Therefore, Eq 6 is not a fully predictive model and the
unified scaling law requires adjustment to account for the energy differences in processivity when

kogis altered, which suggests a modification to find an adjusted system energy E¥ = Eg - Nay.

Unified Scaling at the Systems Level for All Isoforms

When determining E* from Fig 6B simulation results are representative of ensembles with pro-
cessive lifetimes of approximately 500ms. All isoforms have nearly identical E* while having
vastly different contact probabilities, thus suggesting that E* is a viable predictor of processive
lifetime (Supplementary Section 3 in S1 Text). Therefore, the unified expression that fits the
simulation data is possible to express as P(E*) = Ae®”". When simulation results from Fig 6A
are reconsidered with E, there is strong agreement among all isoform types adhering to one
master curve (Fig 7). Coefficients were fit to the median isoform in Fig 7, resulting in A ~ 14.5
and B ~ 4.5(10™*) and even hold as multiple parameters of isoforms are varied simultaneously
(as represented by “low” and “high” isoform configurations in Fig 7).

The results demonstrate that ensembles have similar processive lifetimes as a function of ad-
justed energy consumption E*, regardless of which isoform is present. These results are signifi-
cant, because they suggest that the properties of the myosin motility system scale
independently of the myosins configured within the system, despite individual changes in
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Fig 7. Master curve that predicts processive lifetime of ensembles composed of many different
myosin isoforms. Processive lifetimes for isoforms when adjusted system energy consumption E* varies.
Isoforms are identical to Fig 6A, except for additional low (5, = 5nm, ko, = 1000s~", and kos = 1500s~") and
high (5, = 15nm, ko, = 3000s~", and k.= 35005~ ") isoforms, which demonstrate the master curve holds as
multiple myosin parameters are altered. The master curve analytically captures the overall response
predicted through the unified expression P = Ae®€", with A ~ 14.5 and B ~ 4.5(107*). Here, processive
lifetime is predictable regardless of individual myosin configuration and the master curve asymptotes are
indicative of energy thresholds for perpetual processivity.

doi:10.1371/journal.pcbi.1004177.9007

myosins having unique effects on other performance metrics as considered in previous figures
(Figs 3A, 3B and 6A).

Discussion

In this study, agent-based simulation techniques were utilized to find a unified expression for
describing processive myosin ensemble lifetimes P that hold as ensembles size and single myo-
sin structures vary. Two hypotheses were tested that were informed by past experimental data,
that P scales with the number of myosins in a system or the probability that at least one is at-
tached. Simulations demonstrated that neither of these hypotheses held true. Instead, a master
expression was derived that enables novel quantifications of P through consideration of how
the number of attached myosins influences energy consumption. The expression was deter-
mined through simulation evidence that although P always increases with larger contact prob-
abilities and system energy for a given isoform, systems energy modulation potentially offers a
more accurate scaling law that holds for all systems regardless of isoform presence. The unified
expression simplifies understanding and analysis of myosin systems, as emergent system be-
havior is quantifiably independent of system sub-components.

These results are significant in that they investigate critical parameters in a complex system
and find fundamental laws based on a resulting model with stochastic components. The model
makes several simplifying assumptions that could be further investigated as potential indicators
of universal system behaviors. For instance, myosins have many different mechanochemical
states and under certain circumstances, such as operating at very low velocities or high forces,
other biophysical mechanisms may alter aspects of the three state cycle significantly. Addition-
ally, the model makes a simplifying assumption that the system operates at a constant velocity
and force regardless of how many myosins are attached to the filament; it is expected that since
myosins may not contribute equal force to the filament over their entire cycle, the filament ve-
locity would fluctuate with low myosin counts. These considerations suggest that the results of
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the unified master equation are applicable for the particular set of isoforms and assumptions
modeled in this study, and further considerations of laws may be required to determine their
applicability when the system enters differing regimes of emergent behavior [40] or operates
under largely different conditions.

Loading on myosin systems may also influence their processive functioning, although it is
difficult to measure motility assay performance with known loads [21]. These situations were
not investigated in the study as there is no validation for varied myosin isoforms experimental-
ly. In the analytical and agent-based models of myosin, additional loads in the system would
only alter the processive lifetimes of systems through reducing the filament velocity, since myo-
sin cycles are dictated in the model entirely by the speed of the gliding filament. The reduction
in filament speed would occur because myosins are required to balance forces among them-
selves and the external load. However, it is possible that empirical studies would show that pro-
cessive myosin systems behave quite differently under load, because single myosins are no
longer able to propel the filament at all, therefore possibly promoting a more stochastic instan-
taneous velocity.

The method for finding a unified scaling expression using an agent-based simulation ap-
proach is extendible to describing emergent laws in a variety of similar complex biological sys-
tems. The derivation of such laws is particularly important because they enable a simplification
in the analysis of systems with many different parameters, and could form heuristics for engi-
neers to follow when designing nanotechnologies. Through finding universal relationships in
how the configuration of a system affects its behaviors, it enables researchers to concentrate on
other trade-offs present in the system, such as choosing among isoforms on the basis how fast
they propel filaments under conditions that control for desired processive lifetimes across sys-
tems. Such considerations in simplifying the modeling and variables are crucial, both in pro-
moting understanding from a scientific perspective and enabling effective development of
bionanotechnologies.

Supporting Information

S1 Text. Contains descriptions of Supplementary Movies, Supplementary Section 1
(Histogram of simulated processivity events), Supplementary Section 2 (Influences of Var-
ied Isoforms on Processivity), and Supplementary Section 3 (Determination of a Unified
Scaling Equation).

(DOCX)

S1 Dataset. Simulation and empirical data.
(XLSX)

Author Contributions

Conceived and designed the experiments: PE. Performed the experiments: PE. Analyzed the
data: PE. Contributed reagents/materials/analysis tools: PE JM. Wrote the paper: PE JC CS PL.
Designed, coded, and operated molecular simulation: PE. Conceived and contributed to wet-
lab experiments: PE JM.

References
1. Albert-laszlo B, and Albert R. (1999) Emergence of scaling in random networks. Science 285: 509—
512.

2. BhallaU, and lyengar R. (1999) Emergent properties of networks of biological signaling pathways. Sci-
ence 283: 381-387. PMID: 9888852

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1004177  April 17,2015 14/16


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004177.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004177.s002
http://www.ncbi.nlm.nih.gov/pubmed/9888852

@-PLOS |s3toar o

Emergent Laws for Describing Complex Myosin-Based Systems

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

van Oers RF, Merks RM (2013) Mechanical cell-substrate feedback explains pairwise and collective
endothelial cell behavior in vitro. arXiv preprint arXiv:13083721.

Erickson RP, Jia Z, Gross SP, Clare CY (2011) How molecular motors are arranged on a cargo is im-
portant for vesicular transport. PLoS computational biology 7: €1002032. doi: 10.1371/journal.pcbi.
1002032 PMID: 21573204

Campbell K (2009) Interactions between connected half-sarcomeres produce emergent mechanical
behavior in a mathematical model of muscle. PLoS Computational Biology 5.

Leibler SaDAH (1993) Porters versus rowers: a unified stochastic model of motor proteins. The Journal
of Cell Biology 121: 1357—1368. PMID: 8509455

Erdmann T, and Schwarz U. (2012) Stochastic force generation by small ensembles of myosin | mo-
tors. Physical Review Letters 108: 188101. PMID: 22681120

Julicher F, Ajdari A, Prost J (1997) Modeling molecular motors. Reviews of Modern Physics 69: 1269.

LeDuc PR, and Robert M. Bellin (2006) Nanoscale intracellular organization and functional architecture
mediating cellular behavior. Annals of Biomedical Engineering 34: 102—113. PMID: 16456640

Resnicow DI, Deacon J. C., Warrick H. M., Spudich J. A., and Leinwand L. A. (2010) Functional diversi-
ty among a family of human skeletal muscle myosin motors. PNAS 107: 1053—-1058. doi: 10.1073/
pnas.0913527107 PMID: 20080549

Piazzesi G, et al. (2007) Skeletal muscle performance determined by modulation of number of myosin
motors rather than motor force or stroke size. Cell 131: 784—795. PMID: 18022371

Van den Heuval M, and Dekker C. (2007) Motor proteins at work for nanotechnology. Science 317:
333-336. PMID: 17641191

Scarabelli G, Grant B (2014) Mapping the structural and dynamical features of kinesin motor domains.
PLoS computational biology 9: €1003329. doi: 10.1371/journal.pcbi.1003329 PMID: 24244137

Uyeda T, Abramson P., and Spudich J. (1996) The neck region of the myosin motor domain acts as a
lever arm to generate movement. PNAS 93: 4459-4464. PMID: 8633089

Egan P, Cagan J, Schunn C, LeDuc P (2013) Design of complex biologically based nanoscale systems
using multi-agent simulations and structure-behavior-function representations. Journal of Mechanical
Design 135: 061005.

Moore JR, Leinwand L, Warshaw DM (2012) Understanding cardiomyopathy phenotypes based on the
functional impact of mutations in the myosin motor. Circulation Research 111: 375-385. doi: 10.1161/
CIRCRESAHA.110.223842 PMID: 22821910

Agarwal A, and Hess H. (2010) Biomolecular motors at the intersection of nanotechnology and polymer
science. Prog Polym Sci 25: 252-277.

Egan P, Cagan J, Schunn C, LeDuc P (2015) Synergistic human-agent methods for deriving effective
search strategies: The case of nanoscale design. Research in Engineering Design 26(2): 145—169.

Harada Y, Sakurada K, Aoki T, Thomas DD, Yanagida T (1990) Mechanochemical coupling in actomy-
osin energy transduction studied by in vitro movement assay. Journal of Molecular Biology 216: 49—
68. PMID: 2146398

Korten T, Mansson A., and Diez S. (2010) Towards the application of cytoskeletal motor proteins in mo-
lecular detection and diagnostic devices. Current Opinion in Biotechnology 21: 477-488. doi: 10.1016/
j.copbio.2010.05.001 PMID: 20860918

Greenberg MJ, Kazmierczak K, Szczesna-Cordary D, Moore JR (2010) Cardiomyopathy-linked myosin
regulatory light chain mutations disrupt myosin strain-dependent biochemistry. Proceedings of the Na-
tional Academy of Sciences 107: 17403-17408. doi: 10.1073/pnas.1009619107 PMID: 20855589

Craig E, and Linke H. (2009) Mechanochemical model for myosin V. PNAS 106: 18261-18266. doi:
10.1073/pnas.0908192106 PMID: 19822760

Cooke R, White H., and Pate E. (1994) A model of the release of myosin heads from actin in rapidly
contracting muscle fibers. Biophysical Journal 66: 778-788. PMID: 8011910

ChinL, Yue P., Feng J. J., and Seow C. Y. (2006) Mathematical simulation of muscle cross-bridge
cycle and force-velocity relationship. Biophysical Journal 91: 3653-3663. PMID: 16935957

Ishijima A, Kojima H., Higuchi H., Harada Y., Funatsue T., and Yanagida T. (1996) Multiple- and single-
molecules analysis of the actomyosin motor by nanometer-piconewton manipulation with a micronee-
dle: Unitary steps and forces. Biophysical Journal 70: 383—400. PMID: 8770215

Baker JE, Brosseau C., Joes P. B., and Warshaw D. M. (2002) The biochemical kinetics underlying
actin movement generated by one and many skeletal muscle myosin molecules. Biophysics Journal
82:2134-2147. PMID: 11916869

Howard J (2001) Mechanics of Motor Proteins and the Cytoskeleton Sunderland, MA: Sinauer Associ-
ates, Inc. 367 p. PMID: 11684429

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1004177  April 17,2015 15/16


http://dx.doi.org/10.1371/journal.pcbi.1002032
http://dx.doi.org/10.1371/journal.pcbi.1002032
http://www.ncbi.nlm.nih.gov/pubmed/21573204
http://www.ncbi.nlm.nih.gov/pubmed/8509455
http://www.ncbi.nlm.nih.gov/pubmed/22681120
http://www.ncbi.nlm.nih.gov/pubmed/16456640
http://dx.doi.org/10.1073/pnas.0913527107
http://dx.doi.org/10.1073/pnas.0913527107
http://www.ncbi.nlm.nih.gov/pubmed/20080549
http://www.ncbi.nlm.nih.gov/pubmed/18022371
http://www.ncbi.nlm.nih.gov/pubmed/17641191
http://dx.doi.org/10.1371/journal.pcbi.1003329
http://www.ncbi.nlm.nih.gov/pubmed/24244137
http://www.ncbi.nlm.nih.gov/pubmed/8633089
http://dx.doi.org/10.1161/CIRCRESAHA.110.223842
http://dx.doi.org/10.1161/CIRCRESAHA.110.223842
http://www.ncbi.nlm.nih.gov/pubmed/22821910
http://www.ncbi.nlm.nih.gov/pubmed/2146398
http://dx.doi.org/10.1016/j.copbio.2010.05.001
http://dx.doi.org/10.1016/j.copbio.2010.05.001
http://www.ncbi.nlm.nih.gov/pubmed/20860918
http://dx.doi.org/10.1073/pnas.1009619107
http://www.ncbi.nlm.nih.gov/pubmed/20855589
http://dx.doi.org/10.1073/pnas.0908192106
http://www.ncbi.nlm.nih.gov/pubmed/19822760
http://www.ncbi.nlm.nih.gov/pubmed/8011910
http://www.ncbi.nlm.nih.gov/pubmed/16935957
http://www.ncbi.nlm.nih.gov/pubmed/8770215
http://www.ncbi.nlm.nih.gov/pubmed/11916869
http://www.ncbi.nlm.nih.gov/pubmed/11684429

@-PLOS |s3toar o

Emergent Laws for Describing Complex Myosin-Based Systems

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Berger F, Keller C., Klumpp S., and Lipowsky R. (2012) Distinct transport regimes for two elastically
coupled molecular motors. Physical Review Letters 108: 208101. PMID: 23003191

Toyoshima Y, Kron S., and Spudich J. (1990) The myosin step size: Measurement of the unit displace-
ment per ATP hydrolyzed in an in vitro assay. PNAS 87: 7130-7134. PMID: 2144900

Sneddon M, Faeder J. R., and Emonet T. (2011) Efficient modeling, simulation and coarse-graining of
biological complexity with NFsim. Nature Methods 8: 177-185. doi: 10.1038/nmeth.1546 PMID:
21186362

Hanna L, and Cagan J. (2009) Evolutionary Multi-Agent Systems: An Adaptive and Dynamic Approach
to Optimization. Journal of Mechanical Design 131:011010-011011-011010-011018.

Redaelli A, Soncini M., and Montevecchi F. M. (2001) Myosin cross-bridge mechanics: geometrical de-
terminants for continuous sliding. Journal of Biomechanics 34: 1607—1617. PMID: 11716863

Weiss S, Rossi R., Pellegrino M., Bottinelli R., and Geeves M. A. (2001) Differing ADP release rates
from mosin heavy chain isoforms define the shortening velocity of skeletal muscle fibers. The Journal of
Biological Chemistry 276: 45902—45908. PMID: 11590173

Harris DE, Work S. S., Wright R. K., Alpert N. R., and Warshaw D. M. (1994) Smooth, cardiac and skel-
etal muscle myosin force and motion generation assessed by cross-bridge mechanical interactions in
vitro. Journal of Muscle Research and Cell Motility 15: 11-19. PMID: 8182105

Ruff C, Fuch M., Brenner B., Manstein D. J., and Meyhoefer E. (2001) Single-molecule tracking of myo-
sins with genetically engineered amplifier domains. Nature Structural Biology 8: 226—229. PMID:
11224566

Hodges AR, Krementsova E. B., and Trybus K. M. (2007) Engineering the processive run length of my-
osin V. The Journal of Biological Chemistry 282: 27192-27197. PMID: 17640878

Murphy CT, and Spudich J. A. (1998) Dictyostelium myosin 25-50K loop substitutions specifically af-
fect ADP release rates. Biochemistry 37:6738-6744. PMID: 9578557

Ito K, Ikebe M., Kashiyama T., Mogami T., Kon T., and Yamamoto K. (2007) Kinetic mechanism of the
fastest motor protein, Chara myosin. Journal of Biological Chemistry 282: 19534—19545. PMID:
17488711

Uyeda T, Kron S, Spudich J (1990) Myosin step size estimation from slow sliding movement of actin
over low densities of heavy meromyosin. J Mol Biol 214: 699-710. PMID: 2143785

Alvarado J, Sheinman M, Sharma A, MacKintosh FC, Koenderink GH (2013) Molecular motors robustly
drive active gels to a critically connected state. Nature Physics 9: 591-597.

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1004177  April 17,2015 16/16


http://www.ncbi.nlm.nih.gov/pubmed/23003191
http://www.ncbi.nlm.nih.gov/pubmed/2144900
http://dx.doi.org/10.1038/nmeth.1546
http://www.ncbi.nlm.nih.gov/pubmed/21186362
http://www.ncbi.nlm.nih.gov/pubmed/11716863
http://www.ncbi.nlm.nih.gov/pubmed/11590173
http://www.ncbi.nlm.nih.gov/pubmed/8182105
http://www.ncbi.nlm.nih.gov/pubmed/11224566
http://www.ncbi.nlm.nih.gov/pubmed/17640878
http://www.ncbi.nlm.nih.gov/pubmed/9578557
http://www.ncbi.nlm.nih.gov/pubmed/17488711
http://www.ncbi.nlm.nih.gov/pubmed/2143785


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


