
CARDIOVASCULAR DISEASE IN TYPE 1 DIABETES:   
QUANTIFYING RISK AND ADDRESSING LIMITATIONS  

IN THE ANALYSIS OF LONGITUDINAL COHORT STUDIES 

by 

Rachel G. Miller 

BS in Microbiology, University of Pittsburgh, 2003 

 MS in Biostatistics, University of Pittsburgh, 2005 

Submitted to the Graduate Faculty of 

the Graduate School of Public Health in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

University of Pittsburgh 

2016 



ii 

UNIVERSITY OF PITTSBURGH 

GRADUATE SCHOOL OF PUBLIC HEALTH 

This dissertation was presented 

by 

Rachel G. Miller 

It was defended on 

July 20, 2016 

and approved by 

Stewart J. Anderson, PhD, Professor, Department of Biostatistics, 
Graduate School of Public Health, University of Pittsburgh 

 Akira Sekikawa, MD, MPH, PhD, Associate Professor, Department of Epidemiology, 
Graduate School of Public Health, University of Pittsburgh 

Tina Costacou, PhD, Assistant Professor, Department of Epidemiology, 
Graduate School of Public Health, University of Pittsburgh 

Dissertation Advisor: Trevor J. Orchard, MD, MMedSci, Distinguished Professor, 
Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh 



iii 

Copyright © by Rachel G. Miller 

2016 



iv 

ABSTRACT 

Cardiovascular disease (CVD) has historically been increased in type 1 diabetes compared to the 

general population, but no contemporary estimates of risk are available in the United States.  

Additionally, the reasons for this increased risk are not fully understood, as the hyperglycemia 

that characterizes type 1 diabetes is itself an inconsistent predictor of CVD incidence. Thus, the 

objective of this dissertation is to quantify the contemporary incidence and excess risk of CVD in 

young adults <45 years old with type 1 diabetes and to utilize novel statistical methods to 

address limitations in the analyses of longitudinal cohort studies, in an effort to better understand 

the risk factor patterns that lead to CVD in this population.  

Data are from the Pittsburgh Epidemiology of Diabetes Complications study, a 

prospective cohort study of childhood-onset type 1 diabetes diagnosed at Children’s Hospital of 

Pittsburgh between 1950 and 1980.  CVD data from the background Allegheny County, 

Pennsylvania population were used to calculate age- and sex-matched standardized mortality 

(SMR) and incidence rate ratios (IRR).  Using tree-structured survival analysis (TSSA), formal 

subgroup analysis was performed to identify groups at varying levels of risk for CVD, based on 

threshold effects of continuous risk factors. Joint models were used to simultaneously model the 

longitudinal trajectory of HbA1c and time to CVD incidence.  
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CVD risk was shown remain significantly increased in this type 1 diabetes cohort. TSSA 

identified a range of risk groups, which were defined by combinations of diabetes duration, non-

HDL cholesterol, albumin excretion rate, and white blood cell count. The longitudinal trajectory 

of HbA1c was associated with CVD risk, similarly across all manifestations of CVD, including 

coronary artery disease, stroke, and lower extremity arterial disease, which is a new finding in 

this cohort.  This work has important impacts on public health, as it confirms that individuals 

with type 1 diabetes continue to be at increased risk for CVD and demonstrates that novel 

statistical methods should be utilized as a complement to traditional methods to increase 

understanding of disease etiology. 
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1.0  INTRODUCTION 

1.1 TYPE 1 DIABETES 

1.1.1 Introduction and Epidemiology 

Type 1 diabetes is an autoimmune disease in which the insulin-secreting beta cells in the 

pancreas are destroyed, so that the body is unable to produce insulin, a hormone that is required 

to convert sugar into energy.  The pathogenesis of type 1 diabetes is complex and not well 

understood, with both genetic and environmental factors likely interacting to trigger the 

autoimmune response that targets the pancreatic beta cells.  The clinical presentation of type 1 

diabetes includes weight loss, frequent urination, extreme thirst, and fatigue (1).  In the United 

States, it is estimated that between 740,000 and 970,000 individuals have type 1 diabetes (2) and 

the incidence has been increasing significantly in recent decades (3–6) by greater than 3% per 

year (5,7) with a corresponding increase in prevalence of 23% between 2001-2009 reported by 

the SEARCH for Diabetes in Youth Study (8).   Type 1 diabetes most often manifests in 

childhood or adolescence, reflecting the initiation of islet autoimmunity early in life (9). In high 

incidence countries, males are at a greater risk of developing type 1 diabetes than females, and 

this difference does not seem to be explained by sex differences in environmental exposures, 

while in lower incidence countries this sex difference is attenuated (10).  There are also 
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geographic differences in type 1 diabetes rates, with the highest rates in Finland and Sardinia (7) 

and the lowest rates in Asia (11).  Generally, incidence is higher in the northern hemisphere 

compared to the southern (11).    

1.1.2 Pathophysiology and Risk Factors 

The pathophysiology of type 1 diabetes is dominated by an autoimmune response of 

CD4+ T-lymphocytes against the pancreatic beta cells, however the underlying cause for this 

process is not known.  Various prospective cohort studies have shown that the clinical 

presentation of type 1 diabetes is preceded by the presence of islet autoantibodies (9,12–14).  

Additionally, as the progression from autoimmunity to clinical diabetes has been shown to 

proceed in a linear fashion, the age when these autoantibodies are first detected seems to relate to 

an increased risk of progression to type 1 diabetes (15) and determine the age of type 1 diabetes 

onset (16).  The Finnish DIPP study reported a median of 2.5 years from autoantibody 

seroconversion until the onset of type 1 diabetes (17), and a similar rate of progression has also 

been observed in other cohorts (18).  Islet autoantibodies have been found to be present in over 

90% of individuals at type 1 diabetes diagnosis and though these autoantibodies do not directly 

cause type 1 diabetes, they can be used clinically to distinguish type 1 and type 2 diabetes (19).  

While the cause of beta cell autoimmunity is not fully understood, there is evidence for 

contributions from genetic and environmental factors, including dietary, lifestyle, and infectious 

factors.  The most well established genetic factor is the human leukocyte antigen (HLA) locus, 

located on chromosome 6p21.  Individuals with the HLA-DR3-DQ2/DR4-DQ8 genotype are at 

the highest risk for developing type 1 diabetes, with an approximate 20-fold increased risk 
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compared to the general population (20).  The risk in these individuals is even higher if they also 

have first-degree relatives with type 1 diabetes (21).  Additionally, other HLA genes confer 

intermediate risk (22) and more recently the protein tyrosine phosphatase nonreceptor type 22 

(PTPN22) has also been shown to be a strong predictor of type 1 diabetes (23–26), as well as 

other autoimmune diseases (25). 

The evidence for potential environmental contributors to type 1 diabetes include 

outbreaks (27) and the increasing incidence of type 1 diabetes among the lower-risk HLA 

genotypes that has been observed in recent years (28–30).  Dietary factors have been explored 

and in both the DAISY (31) and BABYDIAB (32) cohorts, the introduction of cereals before 3 

months of age was associated with an increased risk of islet autoimmunity, particularly in the 

high risk HLA genotype.  Early exposure to cow’s milk has also been implicated as a predictor 

of islet autoimmunity (33–36) and the Ig-G antibodies that bind bovine insulin show cross-

reactivity with human insulin (33,37,38). Insulin resistance and increasing rates of childhood 

obesity have also been hypothesized to be risk factors for type 1 diabetes and underlie the 

“accelerator hypothesis” (39).   In support of this hypothesis, studies have found that insulin 

resistance is associated an increased risk of progression to type 1 diabetes in individuals with 

islet autoimmunity (40–44).  Finally, enteroviruses have been proposed as another potential 

trigger of islet autoimmunity (45–47) and their effect may interact with other environmental 

factors, such as diet, to increase the risk of progression to type 1 diabetes (16,48). 
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1.2 MORTALITY TRENDS IN TYPE 1 DIABETES 

Type 1 diabetes (T1DM) is consistently associated with increased mortality, though the 

excess risk seems to have decreased over recent years (49). Large differences in T1DM mortality 

are seen across countries, with smaller excess mortality generally observed in European 

countries and larger excess observed in the United States (49). There is also a sex difference, 

with women with T1DM having a greater excess mortality compared to men (50). More recent 

reports from the Scottish Registry Linkage Study and the Swedish National Diabetes Register 

both show that T1DM continues to be associated with an increased mortality compared to the 

general population across all age groups, with younger women at particularly high risk (51,52).  

A recent report from Australia further suggests that younger patients (<40 years) with T1DM are 

not experiencing a decline in “diabetes” mortality, in contrast to other causes and age groups 

(53).  Contemporary data from the United States focused on young adults with long-duration 

T1DM are lacking, though recent findings from the Diabetes Control and Complications 

Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study show 

lower all-cause mortality with intensive insulin therapy compared to conventional therapy (54). 
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1.3 CARDIOVASCULAR DISEASE IN TYPE 1 DIABETES 

1.3.1 Introduction and Epidemiology 

Cardiovascular disease (CVD), including coronary artery disease (CAD), cerebrovascular 

disease, and peripheral vascular disease, is a major complication of type 1 diabetes.  As in the 

general population, CVD is a major contributor to morbidity and mortality in individuals with 

type 1 diabetes, however the risk of CVD is greatly increased in type 1 diabetes (55).  The 

reasons for this increased risk are not fully understood, as the hyperglycemia that characterizes 

type 1 diabetes is itself an inconsistent predictor of CVD incidence (56–64). The cumulative 

incidence for CAD by age 55 years has been estimated to be as high as 35% in type 1 diabetes, 

compared to <10% in the nondiabetic population (55).  The risk of stroke is also elevated in type 

1 diabetes and has been estimated to be approximately four times higher in type 1 diabetes 

compared to the nondiabetic population (65,66).  Likewise, the risk of peripheral vascular 

disease (PVD) is also higher in diabetes, with the incidence estimated to be approximately 5 

times greater in individuals with diabetes compared to those without in the Framingham Study 

(67). Notably, the gender difference in CVD incidence seen in the general population seems to 

be narrowed in diabetes, so that women have nearly the same risk as men (56,68). 

During the 1980s, CVD risk was much greater in T1DM compared to the general 

population in two United States cohorts (55,69), including CVD mortality (70,71), though data 

from the DCCT/EDIC study has shown a reduction in CVD incidence with intensive insulin 

therapy (72). The Scottish Registry Linkage Study concludes that while the relative risk for CVD 

mortality associated with T1DM has declined, there remains a significantly elevated risk 

compared to the general population (51). The new American College of Cardiology/American 
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Heart Association (ACC/AHA) cholesterol guidelines have proposed a ten-year CVD risk 

threshold of ≥7.5% for statin therapy for those aged 40-75 years with an LDL-c >70 mg/dl (73), 

but there are no clear guidelines for patients with long duration childhood-onset T1DM aged <40 

years.  There are also no recent reports from the United States quantifying contemporary CVD 

risk in T1DM. 

1.3.2 Risk Factors 

As stated above, glycemia has not consistently been associated with CVD incidence in 

type 1 diabetes.  In the DCCT/EDIC study, however, the intensive diabetes therapy arm had 

significantly lower incidence of CAD compared to the conventional therapy arm (74).  In 

contrast, in observational studies, HbA1c has not been a consistent predictor of CVD events 

(58,60,61,66,75–77).  One potential explanation for these seemingly discordant results is that, in 

the DCCT, intensive therapy was begun early in the course of diabetes, raising the suggestion 

that glycemia may play a role in the initiation of atherogenesis (78).  Despite the level of HbA1c 

not predicting CAD incidence, in the EDC study, decreasing HbA1c over time has been 

associated with a lower risk of CAD (62), as shown in Figure 1. 
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Figure 1. Coronary Artery Disease (CAD) incidence by HbA1c change category in the EDC study. 
Fallers: a fall of 1 standard deviation or greater; Risers: a rise of 1 standard deviation or 
greater, Stable: change within 1 standard deviation.  Adapted from Prince et al. 
Diabetologia. 2007; 50(11): 2280-8.  

Additionally, HbA1c variability, but not mean HbA1c over time, was predictive of CVD 

events in the FinnDiane study (77).  In contrast to this inconsistent relationship between HbA1c 

and CAD, glycemia has been more consistently associated with an increased risk of PAD 

(58,79,80).  This difference may indicate that hyperglycemia is more strongly associated with 

stable atherosclerosis, which characterizes PAD, rather than plaque rupture, which characterizes 

the acute coronary events (78).  In the general population, the majority of acute coronary events 

are precipitated by plaque rupture and a small proportion is due to plaque erosion (81,82).  In 

type 1 diabetes, these proportions are reversed with the majority of events due to plaque erosion 

(81,82), adding more evidence that hyperglycemia is associated with stable atherosclerosis. 
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 Other diabetes complications, specifically nephropathy and neuropathy are strong 

predictors of CVD incidence.  While nephropathy is considered a major risk factor for CVD in 

type 1 diabetes (83–86), this relationship is not well understood.  In some cases, adjusting for the 

traditional cardiovascular risk factors that are potential confounders of the renal-CAD link does 

attenuate the relationship (60).  Also, in the EDC study, nephropathy seems to affect the 

presentation of CAD, such that individuals with ON are more likely to present with a “harder” or 

more severe event, like a myocardial infarction (63).  Additionally, nephropathy was found to be 

a stronger risk factor for CAD in men than in women (56), while in the Eurodiab study 

nephropathy predicted CAD incidence in both sexes (61).  Nephropathy is also a strong predictor 

of stroke (66).  Neuropathy has also been associated with an increased risk of CAD (75,87–91), 

but the nature of this association is not well understood.   

 In addition to the diabetes-specific factors already discussed, standard CVD risk factors 

are important predictors of CVD incidence in type 1 diabetes.  CVD risk factors appear at 

younger ages in type 1 diabetes (92).  Generally, lipid levels are not particularly high in type 1 

diabetes, but it has been reported by the SEARCH study investigators that in youth with type 1 

diabetes and poor glycemic control, lipids are often elevated (93).  The major standard risk 

factors also predict CVD incidence in type 1 diabetes, including blood pressure, lipids, and 

waist-hip ratio (56,75,94,95).  Inflammatory factors are also associated with CVD (96–98) and 

have recently been linked to the progression of coronary artery calcification in type 1 diabetes 

(99).  In general, type 1 diabetes is characterized by high levels of inflammatory cytokines (100–

103), which may contribute to the elevated risk of CVD in type 1 diabetes.  Although the risk of 

developing CVD is approximately equivalent by gender in type 1 diabetes, there is evidence that 

the risk factors for CVD differ in men and women (56).  Besides the aforementioned sex 
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difference in the relationship between CAD and nephropathy, smoking is a stronger risk factor in 

men, perhaps due to the fact that men are more likely to smoke or smoke more than women, 

while depressive symptomatology and physical activity appear to predict CAD more strongly in 

women (56). 

There also seems to be some variation in the relationship between specific risk factors 

and each manifestation of CVD, though few studies of type 1 diabetes have performed the direct 

comparisons needed to fully address this issue.  In a comparison of risk factors for CAD versus 

LEAD in the Pittsburgh EDC study, after 6 years of follow-up, hypertension, depressive 

symptomatology, and nephropathy were independently predictive of CAD only, while HbA1c 

and smoking were independently predictive of LEAD only (58).  Diabetes duration and serum 

lipids (HDL-cholesterol for CAD and LDL-cholesterol for LEAD) were predictive of both 

manifestations of CVD.  A report from the Wisconsin Epidemiologic Study of Diabetic 

Retinopathy comparing risk factors for CAD and stroke showed that smoking was an 

independent predictor of CAD only, while HbA1c was predictive of stroke only (75).   

 Genetic markers have also been identified as potentially important risk 

factors.  The haptoglobin gene seems to be strongly associated with CAD events (104) and 

coronary artery calcification (105) in type 1 diabetes, consistent with the relationship that had 

previously been reported in type 2 diabetes (106–108). The endothelial nitric oxide synthase 

(NOS3) gene and the receptor for advanced glycation end-products (RAGE) gene have also been 

linked to CVD in type 1 diabetes (109,110).    

Many questions remain regarding the prediction of CVD in type 1 diabetes.  One 

important issue is the need to develop a better understanding of the role of glycemia in the 

pathophysiology of CVD.  As discussed above, findings on the association between glycemia 
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and CVD have been mixed.  Another problem that remains is lack of type 1 diabetes-specific 

target levels for risk factors, as no trials have been undertaken in type 1 diabetes 

populations.  For example, the results of recent trials in type 2 diabetes show that intensive blood 

pressure control does not seem to decrease the risk of mortality or CVD (111–113), but it is 

unclear if this relationship is the same in type 1 diabetes, where individuals have longer disease 

duration at younger ages due to the earlier onset of type 1 diabetes.  Finally, more research needs 

to be done to determine if there are additional high risk subgroups of patients within type 1 

diabetes. 

1.4 LIMITATIONS OF COMMONLY USED STATISTICAL METHODS IN 

LONGITUDINAL COHORT STUDIES  

Typically, in longitudinal cohort studies, the association between risk factors and the 

occurrence of the outcome of interest is assessed using Cox proportional hazards regression.  The 

dependent variable in Cox regression is the hazard function of the outcome of interest, while the 

independent variable(s) are generally entered into the model in their continuous form to obtain a 

hazard ratio, an estimate of the relative risk (114).  When modeled in this manner, the association 

between risk factor and log cumulative hazard is assumed to be linear (114).  Thus, the 

possibility of a nonlinear relationship or a threshold which stratifies a risk factor into important 

subgroups is not considered.  It is also difficult to model and interpret higher order interactions 

using traditional regression methods.  Additionally, using these types of analyses, the full 

potential of the longitudinal trajectory of the risk factor data is not often utilized.  Instead, only 
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either baseline variables or the average values of risk factors are often used as predictors.  We 

will expand on these limitations in sections 1.4.1-1.4.3. 

1.4.1 Limitation 1:  Inadequate assessment of subgroups and higher order interactions 

Formal identification of important subgroups is not often attempted in observational 

cohort studies.  Even if identification of such subgroups is attempted, interactions between 

various groups are not assessed because it is very cumbersome to do so with traditional modeling 

techniques.  Studies where these types of analyses have been undertaken demonstrate the 

potential importance of such an approach.  For example, decision tree analyses of the Western 

Collaborative Group Study data identified various groups of men, based on interactions between 

obesity, age, and hypertension status, who were at very high risk of coronary heart disease 

mortality (115).  In the EDC study, these methods were used to identify subgroups of 

participants based on biologic risk factors who were at low risk for complications (116).  Genetic 

markers were then examined within the low risk groups and, using this approach, associations 

between the genes and complications emerged that were not observed in the overall study 

population (116). 

1.4.2 Limitation 2: Failure to assess nonlinearity 

As stated above, the commonly used regression techniques and tests for trend assume an 

underlying linear relationship between the exposure and the outcome.  If the true relationship is 

nonlinear, then inferences will be invalid, potentially leading to important clinical consequences 
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(117–119).  An example of this can been seen in the relationship between blood pressure and 

CVD (120).  Blood pressure has been shown to have a J-shaped relationship with CVD. 

However, in most studies only a linear relationship is examined.  Hence, there is the potential for 

misinformed clinical decisions to be made, if the increased risk at lower blood pressure is not 

recognized.  Determining an accurate representation of the shape of the relationship is critical for 

prevention efforts (121).  In cases where the relationship between a risk factor and outcome is U-

shaped, testing for a linear association may not detect a relationship at all (117,122).  Another 

drawback of assuming an underlying linear relationship is that the potential for threshold effects 

is not assessed. 

A common way to assess nonlinearity is to categorize or dichotomize the risk 

factor.  While this is a straightforward way to examine the shape of the association, it is usually 

based on arbitrary or sample-based groupings, which may not adequately describe the 

association or identify the optimal cut-points (123).  In many cases, different choices of 

groupings may also lead to differing conclusions (124–126).  Categorization also leads to less 

statistical efficiency, compared to using continuous variables (127) and results in a step-function, 

which is not biologically plausible (125). 

1.4.3 Limitation 3: Neglecting the full potential of longitudinal data 

Analyses of data from longitudinal cohort studies also rarely make full use of the 

information contained in the serially measured risk factors.  Commonly, baseline variables are 

used as predictors, but this approach, while generally providing valid results, does not account 

for changes in the variables over time that may affect risk (128).  For example, this approach 
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may underestimate the effect of risk factors that become important closer to the time of the 

event.  Stability and change of predictors is relevant for determining the likelihood of an 

individual having an event, thus incorporating within-subject patterns is important for obtaining 

a more complete understanding of the relationship between risk factor and outcome (128–131).  

In some cases, failing to utilize all available data may lead to invalid results (128). 

One common approach for accommodating change of risk factors in statistical analyses is 

to model change (132).  However, this approach does not account for the actual pattern of change 

and assumes a constant, linear increase or decrease over the follow-up and may also 

underestimate the variance of the factor (133).  Another common approach for utilizing 

longitudinal data is to model the average (or updated mean) risk factor over the follow-up, 

however this has similar drawbacks to modeling change, leading to a loss of important 

information (134). 

1.5 STATISTICAL APPROACHES TO ADDRESS LIMITATIONS OF 

TRADITIONAL METHODS  

In an attempt to overcome the aforementioned issues, the objective of this dissertation is 

to utilize statistical methods which can explore higher order interactions and important 

subgroups, accommodate potential nonlinearity, and make use of serially measured risk factors 

to better understand the association between the 20-year incidence of the various first 

manifestations of CVD and risk factors in the Pittsburgh Epidemiology of Diabetes 

Complications Study.  The details of these methods will be described in sections 1.5.1-1.5.3.  
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1.5.1 Identification of high risk subgroups and interactions using tree structured survival 

analysis 

The aims in using this approach are: 1) to determine whether there are meaningful 

subgroups at high risk for CAD, stroke, or PVD derived from the many variables measured in the 

EDC study and 2) to identify interactions between the groups.   These goals will be 

accomplished through the identification of particularly important categorical variables as well as 

identifying threshold effects or cut-points for continuous variables that divide the sample into 

high-risk subgroups.  Tree-structured survival analysis (TSSA), a decision tree approach that is 

able to take time to CVD event into account, will be used to accomplish this aim.  This approach 

will also facilitate the identification of important interactions between risk factors.  It is 

important to note that analyses using classification tree methods are exploratory in nature (135), 

however, they may be useful in identifying previously unknown high-risk subgroups and 

interactions between risk factors. 

TSSA falls under the general machine learning method of decision trees, which were 

initially proposed by Morgan and Sonquist in the 1960s (136) and refined by Quinlan in the 

1970s (137,138).  In 1984, Breiman et al. developed Classification and Regression Trees 

(CART), an algorithm which generated decision trees with continuous and categorical outcomes 

(139).  The general idea underlying decision tree construction is that attributes are split into 

subsets (nodes) and then these are again split by another attribute.  The process is repeated 

recursively until all instances within a node have the same outcome classification 

(140).   Traditionally, decision trees are used to derive subgroups for the prediction of a binary 

outcome.  However, in the 1980s and 90s, the decision tree framework was extended to 

accommodate time-to-event survival data with censored observations (141–143). Cross-
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validation is the most commonly used method for training and testing to find the best 

tree.  Rather than simply building a single tree and holding out a proportion of the data for 

testing, cross-validation is an iterative process which repeats the process several times on random 

samples from the data (140).  Then error rates from the various iterations are used to identify the 

best fitting and most parsimonious tree (144).   

To accomplish the proposed aims, the rpart (recursive partitioning) routine in the 

statistical package R version 3.0.2 (145) will be utilized.  The rpart routine has been described in 

detail by Therneau and Atkinson (144).  The routine uses the basic method of recursive 

partitioning described above.  Subgroup splits are chosen based on an “impurity function”, such 

as the information index and the Gini index, where the value that minimizes these functions is 

chosen as the best cut-point.  In order to model data where the outcome is a time to event with 

censored observations, the time values are scaled so that log(survival) is linear under an 

exponential model, which results in a tree that is equivalent to the local full likelihood decision 

tree for relative risks (143).  To avoid over-fitting, the resulting tree is pruned by selecting a tree 

size with the minimum cross-validated error, as measured by a complexity parameter 

(144).  Importantly, rpart is able to accommodate missing data and as long as each subject has 

data for at least one independent variable, they are included.  

TSSA has previously been utilized to analyze 10-year follow-up data from the EDC study 

(116).  In those analyses, separate decision trees were constructed to identify the subgroup at the 

lowest risk of coronary artery disease, confirmed distal symmetric polyneuropathy, and overt 

nephropathy, based on biologic risk factors only.  Within the lowest risk groups, the relationship 

between genetic markers and the outcome were examined.  The current proposed TSSA analyses 

differ from the prior analyses in the following ways: 1) the follow-up period now reaches 24 
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years, so there are now 192 cases of CAD, compared to only 99 in the original analysis, and 2) 

the objective of the current analysis is to identify subgroups at particular risk for both total CVD 

and the different first manifestations of CVD (CAD, stroke, and PAD).  Data from EDC 

participants who were free of CVD at baseline will be utilized to construct a decision tree with 

time to CVD event as the outcome with the rpart routine in R.  Separate trees will also be 

constructed for each of the three first manifestations of CVD, in an attempt to identify subgroups 

and potentially important interactions between risk factors which lead to particularly high or low 

risk for developing each specific manifestation. 

Decision trees have many advantages in epidemiologic research, most notably that the 

results are presented in a manner that is similar to the thinking process used to approach medical 

questions.  Thus, the resulting trees are well-suited for clinical application (135,146).  Another 

important advantage is that trees provide a clear representation of interactions between attribute 

subgroups.  Demonstration of higher-order interactions using statistical models is complicated 

and cumbersome, but they can be intuitively presented using decision trees 

(115,135,146).  Decision trees also have the advantage of avoiding various statistical 

assumptions, such as linearity or proportional hazards (146).  As mentioned above, the major 

limitation of decision trees is that the method is considered to be exploratory and does not assess 

the relative importance of risk factors (135).  Therefore, the resulting subgroups and interactions 

may not be definitive and should be replicated in other populations.  Finally, it is important to 

consider the biologic and clinical plausibility of the results, and to perform sensitivity analyses to 

avoid misleading inferences (135,147).  
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1.5.2 Assessment of nonlinear associations between risk factors and incidence of CVD 

outcomes using restricted cubic splines 

The aim of using this approach is to establish the shape of the relationship between risk 

factors and risk of CVD using restricted cubic splines.  Allowing for potential nonlinear 

associations between risk factors and CVD incidence may lead to the detection of threshold 

effects or protective effects at certain levels of a factor (i.e. U- or J-shaped relationships, as 

described above).  Utilizing splines to assess nonlinear relationships helps to avoid pitfalls of 

categorization or dichotomization, such as loss of power and bias due to choice of cut-points 

(117,124,126) and also allow the general shape of the relationship to be inferred (117).  These 

issues are detailed in the 2005 paper by May and Bigelow, in which various methods of 

assessing nonlinear, dose response relationships were compared (117).  They concluded that, for 

detection of a nonlinear, dose-response relationship, restricted splines were best at representing 

the shape of the association, compared to linear, categorization, and fractional polynomial 

approaches (117).  Spline regression is very flexible and can represent almost any possible shape 

of an association (119).  While underutilized in epidemiologic studies, spline regression has 

revealed interesting nonlinear relationships between risk factors and CVD outcomes.  In a recent 

report from the Tehran Lipid and Glucose study, fasting plasma glucose was found to have a 

curvilinear relationship with CVD events and both all-cause and CVD mortality (148).  Blood 

pressure has been shown to have a J- or U-shaped relationship with CVD events in many studies 

(149–154).  Examples where this issue was formally examined using spline regression include 

the Cardiovascular Health Study (155), where the relationship was determined to be linear, and 

the Treating to New Targets (TNT) trial (120), where the relationship was J-shaped. 
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Briefly, spline regression is characterized by piecewise functions where each piece is a 

low-order polynomial defined over a certain interval of the continuous variable (126).  The point 

between any two intervals is called a “knot”, denoted k.  Usually, continuity constraints of the 

curve itself and perhaps the corresponding first or second derivatives are imposed at the knots 

that connect the piecewise polynomials giving the spline a smooth appearance.  Generally, five 

knots are used (or fewer for smaller data sets) and these are located at fixed percentiles 

(119).  Placing the knots at fixed percentiles helps to avoid subjective bias and makes results 

comparable across variables and studies (156).  Commonly, for k=5, knots are placed at the 5th, 

25th, 50th, 75th, and 95th percentiles (156).  Spline functions tend to be quite flexible and knot 

placement does not significantly affect results (157).   An important characteristic of spline 

functions is that the slope of each interval is constrained to be the same as the slope of the next 

interval at their common knot to avoid a sudden change in risk between intervals (i.e. smoothed) 

(126,158).  Cubic spline functions, which are sums of third degree polynomials, are commonly 

chosen and produce very smooth curves (126).  “Restricted” spline functions are constrained to 

be linear before the first and after the last knot.  This restriction helps to avoid poor model fit that 

often occurs at extreme ends of the distributions (117,126,158). 

Restricted cubic splines are created by 1) dividing the continuous variable into intervals 

using knots at fixed percentiles, 2) create a new variable for each knot that is zero below the knot 

and a third order polynomial above, 3) smooth the slopes of the piecewise functions at the knots, 

as described above, and 4) restrict the first and last intervals to be linear (119).   To determine 

statistical significance, first, the null hypothesis that the slopes of all of the piecewise functions 

are equal to zero is tested.  If this initial test is not statistically significant, then the factor and 
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outcome are not associated, but if the initial test is significant, then a second test is performed 

with the null hypothesis that the nonlinear coefficients are zero.  

The restricted cubic spline method will be utilized with the EDC data to determine 

whether risk factors are related to CVD incidence in a nonlinear fashion and whether the shape 

of the relationships differs by the first manifestation of CVD.  No systematic assessment of 

nonlinear relationships between risk factors and CVD incidence has been previously undertaken 

using EDC data. Prevalent cases of CVD will be excluded and risk factor variables will be 

modeled using restricted cubic splines in Cox proportional hazards models for risk of incident 

CVD.  All analyses will be performed using the RCS macro for Cox regression with restricted 

cubic splines (156) in SAS 9.3 (SAS Institute Cary, NC).   The RCS macro also provides a 

graphical representation of the estimated spline function, which facilitates interpretation of the 

results (156). 

The major advantage of using restricted cubic splines is that the shape of the relationship 

between risk factors and outcomes can be inferred (117).  Failing to consider possible 

nonlinearity could lead to false null results or misrepresentation of the true relationship as being 

linear when it is not (117).  Splines also provide more power to detect a relationship compared to 

other methods of assessing nonlinearity, such as categorization (159).   The main limitation of 

cubic splines is that they can be sensitive to the choice of knot location (126), so it is important 

to test different locations and perform sensitivity analyses. 

The results of these analyses examining the dose-response relationship between risk 

factors and cardiovascular disease in the EDC cohort are presented in Appendix A. 
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1.5.3 Utilizing the serial measured risk factor data in the EDC study to predict the 

incidence of cardiovascular disease using joint modeling of longitudinal and time-to-event 

data 

The aim of this approach is to assess the predictive capability of serially measured risk 

factor data on the incidence of total cardiovascular disease, as well as its various manifestations, 

using joint longitudinal and time-to-event models.  Utilizing the longitudinal data available in the 

EDC study in this manner will accommodate information on both the rate of change of 

covariates, as well as their relationship with the time to CVD events.  Joint modeling is not 

commonly used in epidemiologic studies, though the method has been applied in varied 

settings.  The HIV literature has several examples of joint modeling being used to determine 

whether longitudinal CD4+ counts improve the prediction of survival (128,160–162).  Additional 

recent examples of joint modeling in epidemiologic studies include analyses to determine 

whether longitudinal measures of allograft valve function were predictive of patient survival 

(163) and to examine the relationship between longitudinal measures of red blood cell 

distribution width and survival in heart failure patients (164). 

 Joint modeling allows both the longitudinal repeated covariates, usually modeled using 

random effects, and the time-to-event data to be modeled together.   Briefly, a joint model 

consists of two sub-models.  A mixed-effects model defines the change over time of the 

longitudinal covariate.  The modeled random effects are simultaneously included in a survival 

model, so that the relationship between the pattern of change of covariates and time to the event 

of interest can be estimated (131).  These random effects, or subject-specific deviations from the 

average effect, are assumed to be the underlying link between the longitudinal repeated measures 

and the subject-specific hazard for the time-to-event outcome (128). 
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 Joint modeling can be performed using the joineR routine in R.  Before starting, the 

data must be stored in three “data frames”: 1) the repeated measures data must be stored in a 

frame with the format of one row per observation per subject (i.e. multiple rows per subject), 

with a column for id and another for the corresponding follow-up time, 2) the time-to-event 

survival data must be stored in a frame with one row per subject, and 3) the baseline covariate 

data for adjustment must also be stored in a frame with one row per subject (165).  Beginning 

with exploratory analyses, the individual profiles of repeated measures data can be plotted using 

joineR for subgroups of the subjects, to examine any potential important patterns or outlying 

subjects.  Then longitudinal and time-to-event hazard sub-models can be fit, specifying a random 

intercept and slope, which corresponds to the previously described method detailed by Wulfsohn 

and Tsiatis (160,165). 

 Joint modeling will be utilized with the EDC data to determine whether 

longitudinal patterns of covariate change predict CVD incidence and whether these relationships 

differ by the first manifestation of CVD.  While survival analyses and mixed models analyses 

have been performed extensively on EDC data, jointly modeling both processes has not 

previously been carried out.  The 24-year follow-up data for CVD incidence will be used in the 

current analyses.  Clinical risk factors were measured every two years from baseline (1986-1988) 

until the 10-year follow-up (1996-1998) and then again at 18-years.  Prevalent cases of CVD will 

be excluded and repeatedly measured risk factor variables will be modeled as predictors in joint 

models where the outcome is time to first CVD event.  Models will be repeated separately with 

time to CAD, stroke, and PVD as the outcome.  All analyses will be performed using the joineR 

routine in R (145,165). 
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 The major advantage of joint modeling is that it allows the relationship between 

longitudinal repeated measures and a time-to-event outcome to be examined.  Using simpler 

methods, such as modeling the two processes separately, may lead to bias if some subjects 

survive far beyond the most recent follow-up.  Our proposed joint model is able to account for 

this differential follow-up time by including the subject-specific random effects within the 

survival model (128,166).  As emphasized by Lim et al., joint modeling may be particularly 

useful when the goal is to use longitudinal measures of biomarkers to improve prediction of an 

event (128). The main limitation of joint modeling is the potential for bias if the censoring 

process is related to the longitudinal repeated measures data (i.e. informative censoring) 

(160).  Another limitation is that joint modeling is not included in any of the widely used 

commercial software packages, so model fitting is more difficult than when using more 

established methods.   
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2.0  ESTIMATING CONTEMPORARY TOTAL MORTALITY AND 

CARDIOVASCULAR DISEASE RISK IN YOUNG ADULTS WITH TYPE 1 DIABETES 

2.1 ABSTRACT 

The degree to which mortality and cardiovascular disease (CVD) incidence remains 

elevated in young US adults with type 1 diabetes (T1DM) is unclear. We determined 

contemporary rates for adults <45 years old with long-standing, childhood-onset T1DM. 

Members of the Epidemiology of Diabetes Complications (EDC) study cohort <45 years old 

during the 1996-2012 follow-up period (n=502) were studied. Mortality and CVD rates were 

calculated for ages 30-39 and 40-44 years. Data from the background Allegheny County, 

Pennsylvania population were used to calculate age- and sex-matched standardized mortality 

(SMR) and incidence rate ratios (IRR). In both age groups, the SMR for total mortality was 

approximately 5. CVD mortality SMRs ranged from 20-33. Hospitalized CVD IRR was 

approximately 8; revascularization procedures account for much of the increased risk. For all 

outcomes the relative risk was larger in women. Participants aged 30-39 years had 6.3% absolute 

10-year CVD risk, approaching the American College of Cardiology/American Heart

Association recommended cut-point of 7.5% for initiation of statin therapy in older adults. Total 

and CVD mortality and hospitalized CVD are all significantly increased in this contemporary US 
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cohort of young adults with long-standing T1DM. These findings support more aggressive risk 

factor management in T1DM, especially among women. 

2.2 INTRODUCTION 

Type 1 diabetes (T1DM) is consistently associated with increased mortality, though the 

excess risk seems to have decreased over recent years (49).  Large differences in T1DM 

mortality are seen across countries, with smaller excess mortality generally observed in 

European countries and larger excess observed in the United States (49). There is also a sex 

difference, with women with T1DM having a greater excess mortality compared to men (50). 

More recent reports from the Scottish Registry Linkage Study and the Swedish National 

Diabetes Register both show that T1DM continues to be associated with an increased mortality 

compared to the general population across all age groups, with younger women at particularly 

high risk (51,52).  A recent report from Australia further suggests that younger patients (<40 

years) with T1DM are not experiencing a decline in “diabetes” mortality, in contrast to other 

causes and age groups (53).  Contemporary data from the United States focused on young adults 

with long-duration T1DM are lacking, though recent findings from the Diabetes Control and 

Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) 

study show lower all-cause mortality with intensive insulin therapy compared to conventional 

therapy (54).   

Atherosclerotic cardiovascular disease (CVD), including coronary artery disease (CAD) 

is a major complication of T1DM (78). During the 1980s, CVD risk was much greater in T1DM 
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compared to the general population in two United States cohorts (55,69), including CVD 

mortality (70,71), though data from the DCCT/EDIC study has shown a reduction in CVD 

incidence with intensive insulin therapy (72). The Scottish Registry Linkage Study concludes 

that while the relative risk for CVD mortality associated with T1DM has declined, there remains 

a significantly elevated risk compared to the general population (51). The new American College 

of Cardiology/American Heart Association (ACC/AHA) cholesterol guidelines have proposed a 

ten-year CVD risk threshold of ≥7.5% for statin therapy for those aged 40-75 years with an 

LDL-c >70mg/dl (73), but there are no clear guidelines for patients with long duration 

childhood-onset T1DM aged <40 years.  

As there are no reports from the United States quantifying contemporary mortality and 

CVD risk in young adults with long duration T1DM, our objective was to determine such rates 

for individuals <45 years old with long-standing, childhood-onset T1DM for the years 1996-

2012 and to compare these data from the Pittsburgh EDC Study to the age-matched background 

population in Allegheny County, Pennsylvania. 

2.3 METHODS 

2.3.1 Study Design and Population 

The Pittsburgh EDC Study is a prospective cohort study of childhood-onset (<17 years 

old) T1DM. All participants were diagnosed, or seen within one year of diagnosis, at Children’s 

Hospital of Pittsburgh between 1950 and 1980. The cohort has been described in detail 
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elsewhere (167,168). In brief, participants have been followed since 1986-1988, initially with 

biennial examinations and questionnaires for ten years and thereafter with biennial 

questionnaires and further examinations at 18 and 25 years post-baseline. The current analyses 

were restricted to EDC participants who were <45 years old during the January 1, 1996 to 

December 31, 2012 follow-up period (n=502). Research protocols were approved by the 

University of Pittsburgh institutional review board and all participants provided written informed 

consent.   

2.3.2 Ascertainment of Mortality and Cardiovascular Outcomes 

In the EDC study, mortality was ascertained using medical records, death certificates, 

autopsy reports, and/or interview with next of kin and classified according to the Diabetes 

Epidemiology Research International (DERI) system (169) by a committee of physicians. CVD 

mortality was defined as fatal CAD, myocardial infarction, or stroke. Incidence of nonfatal CVD 

events (i.e. myocardial infarction, hospitalized coronary artery bypass graft, hospitalized 

angioplasty, and stroke) was self-reported by the study participant and confirmed by medical 

records. 

Mortality data for the age-matched background Allegheny County, Pennsylvania 

population between 1996-2012 were obtained through the Allegheny County Health Department 

and provided by the Division of Health Informatics, Pennsylvania Department of Health (the 

Department of Health specifically disclaims responsibility for any analyses, interpretations, or 

conclusions). The data were abstracted using the Pennsylvania Department of Health 

Epidemiologic Query and Mapping System (EpiQMS) by selecting total deaths, and separately, 
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coronary heart disease deaths (ICD10/ICD9: I11, I20-I25, I516/402, 410-414, 4292) and stroke 

deaths (ICD10/ICD9: I60-69/430-438). CVD hospitalization data for the age-matched 

background Allegheny County, Pennsylvania population were only available for the years 2004-

2010 and were abstracted from Pennsylvania Health Care Cost Containment Council (PAHC4) 

data and obtained through the Allegheny County Health Department. 

2.3.3 Risk Factor Assessment 

Fasting blood samples were taken to measure HbA1, lipids, and lipoproteins.  HbA1 

values were converted to DCCT-aligned values using a regression equation derived from 

duplicate assays (DCCT HbA1c=0.14 + 0.83[EDC HbA1]) (62). Serum total cholesterol and 

triglycerides were determined enzymatically (170,171) and HDL cholesterol was determined 

using a modified precipitation technique (172) based on the lipid research clinics method (173). 

LDL-cholesterol levels were calculated from the measurements of total cholesterol, triglycerides 

and HDL-cholesterol using the Friedwald equation (174).  Use of lipid-lowering therapy was 

self-reported. Blood pressure readings were taken according to the Hypertension Detection and 

Follow-Up protocol (175) and hypertension was defined as having either blood pressure >140/90 

or self-reported use of blood pressure lowering therapy. Urinary albumin was measured by 

immunonephelometry (176). Albumin excretion rate (AER) was calculated for each of three 

timed urine samples (24-hour, overnight, and 4-hour collections obtained over a two week 

period); the median of the three AERs was used in analyses. Current smoking status was 

obtained by self-report.   
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2.3.4 Statistical Analyses 

Analyses to quantify total mortality, CVD mortality, and CVD event rates included EDC 

data from the complete follow-up period between 1996 and 2012. Crude rates were calculated as 

the total number of events per 100,000 person years with 95% confidence intervals for the age 

groups 30-39 years and 40-44 years. Outcomes were defined as total mortality, CVD mortality 

(i.e. fatal CAD or stroke), total CVD (i.e. Fatal CAD or stroke, myocardial infarction, nonfatal 

stroke, or hospitalized coronary artery bypass graft or angioplasty), ACC/AHA CVD (i.e. Fatal 

CAD or stroke, nonfatal myocardial infarction, nonfatal stroke), and total CAD (i.e. Total CVD 

excluding fatal/nonfatal stroke).   

To quantify the excess risk of total mortality, CVD mortality, CVD, and CAD incidence 

in the EDC cohort, the expected number of events for each age group was calculated by 

multiplying the person-years at risk in the EDC cohort by the mortality and CVD and CAD 

incidence rates in the background Allegheny County population. Standardized mortality (SMR) 

and incidence rate ratios (IRR) were calculated, as appropriate, as the ratio of the observed 

number of events in EDC to the expected number of events. Due to the hospitalization data for 

the background Allegheny County population being restricted to 2004 to 2010, comparisons to 

the general population were carried out by restricting the EDC data to participants who were <45 

years old between 2004-2010 and performing a comparison of their CVD rates to the 2004-2010 

Allegheny County data. Finally, to address the possibility of survivor bias in the EDC data, a 

sensitivity analysis was performed in which all mortality and CVD events occurring between age 

30 and 44 ascertained during the complete 1986-2012 EDC study follow-up were included. 
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Statistical analyses were performed using SAS version 9.3 (SAS Institute Inc. Cary, NC) and the 

Open Source Epidemiologic Statistics for Public Health (OpenEpi) calculators (177). 

2.4 RESULTS 

Of the 391 participants who contributed follow-up between ages 30-39 during 1996-

2012, 5.6% (22) had at least one CVD event and 4.6% died during the 1996-2012 follow-up 

period. Of the 474 participants contributing follow-up between ages 40-44, 8.9% (n=42) had at 

least one CVD event and 5.1% (n=24) died. Participant characteristics by age group at the 1996-

1998 baseline examination are shown in Table 1. In both age groups, those who had CVD events 

and who died were significantly more likely to have hypertension, be using blood pressure-

lowering therapy, and have higher albumin excretion rates. Current smoking was significantly 

associated with CVD in those aged 30-39 and mortality in those aged 40-44. LDL-cholesterol 

was associated with CVD in those aged 30-39, but not in those 40-44 years old. HbA1c did not 

differ significantly in either age group by mortality or CVD status. 
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Table 1. Baseline (1996-1998) Characteristics by 1996-2012 Total Mortality and Cardiovascular Disease (CVD) Event Status 

Age 
Group1 

Characteristic Overall Died during 
follow-up 

Alive through 
follow-up 

p-value CVD Event No CVD p-value

30-39 Total n (n with clinical data) 391 (260) 18 (10) 373 (252) 22 (14) 369 (246) 
Diabetes Duration (yrs) 25.1 (5.0) 24.8 (5.2) 25.1 (5.0) 0.77 25.3 (5.5) 25.1 (5.0) 0.81 
Female Sex2 49.4% (193) 66.7% (12) 48.5% (181) 0.13 50.0% (11) 49.3% (182) 0.95 
HbA1c (%) 8.4 (1.4) 8.5 (0.8) 8.4 (1.5) 0.93 9.0 (1.5) 8.4 (1.4) 0.13 
LDL-cholesterol (mg/dl) 116.4 (31.2) 122.0 (35.4) 116.2 (31.1) 0.59 132.9 (37.1) 115.3 (30.6) 0.03 
HDL-cholesterol (mg/dl) 53.3 (13.6) 61.0 (22.6) 53.0 (13.1) 0.29 50.9 (14.5) 53.4 (13.6) 0.48 
Triglycerides (mg/dl)3 94 (66-144) 94 (73-180) 94 (66-143) 0.76 139 (82-180) 93 (66-132) 0.04 
Lipid-Lowering Therapy2 5.1% (19) 13.3% (2) 4.8% (17) 0.18 14.3%(3) 4.6% (16) 0.08 
Hypertension2 25.8% (76) 50.0% (9) 24.6% (69) 0.05 52.6% (11) 23.9% (66) 0.006 
Blood Pressure-Lowering 
Therapy2 

18.6% (68) 39.0% (7) 17.7% (62) 0.04 47.6% (10) 16.9% (58) <.0001 

Albumin Excretion Rate 
(µg/min)3 

11.5 
(5.8-77.4) 

310.6 
(209-1717) 

10.7 
(5.6-56.8) 

0.0002 296.7 
(18.9-1369) 

10.5 
(5.6-50.2) 

0.0004 

Current Smoker2 19.8% (73) 25.0% (4) 19.6% (69) 0.53 38.1% (8) 18.7% (65) 0.04 

40-44 Total n (n with clinical data) 474 (318) 24 (9) 450  (310) 42 (25) 432 (293) 
Diabetes Duration (yrs) 27.5 (6.2) 29.0 (5.7) 27.4 (6.2) 0.21 28.3 (5.9) 27.4 (6.3) 0.35 
Female Sex2 49.4% (234) 41.7% (10) 49.8% (224) 0.44 40.5% (17) 50.2% (217) 0.23 
HbA1c (%) 8.4 (1.5) 8.7 (1.6) 8.4 (1.5) 0.39 8.6 (2.1) 8.3 (1.4) 0.06 
LDL-cholesterol (mg/dl) 118.2 (31.2) 109.5 (28.6) 118.4 (31.3) 0.45 122.9 (31.0) 117.8 (31.2) 0.47 
HDL-cholesterol (mg/dl) 53.8 (14.0) 61.1 (25.5) 53.6 (13.5) 0.41 55.5 (17.3) 53.7 (13.7) 0.54 
Triglycerides (mg/dl)3 90 (66-129) 114 (73-125) 89 (66-129.5) 0.36 99.5 (76-154) 89 (66-126) 0.22 
Lipid-Lowering Therapy2 5.8% (26) 15.8% (3) 5.3% (23) 0.09 10.5% (4) 5.3% (22) 0.26 
Hypertension2 31.7% (115) 62.5% (10) 30.3% (105) 0.007 50.0% (17) 29.8% (98) 0.02 
Blood Pressure-Lowering 
Therapy2 

23.0% (102) 47.4% (9) 21.9% (93) 0.02 42.1% (16) 21.2% (86) 0.003 

Albumin Excretion Rate 
(µg/min)3 

12.5 
(5.7-57.2) 

81.8 
(34.8-527.8) 

11.0 
(5.6-51.6) 

0.003 42.0 
(14.4-201.3) 

10.7 
(5.6-50.9) 

0.006 

Current Smoker2 17.3% (77) 42.1% (8) 16.2% (69) 0.009 25.6% (10) 16.5% (67) 0.15 
Values are mean (SD) unless noted.  1Participant included in an age group if contributed any follow-up within the age range, 2 %(n), 3 median (interquartile range) 
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cohort

was

and

the

33.3, 

greater 

2.4.1 Total and CVD Mortality 

Age-matched comparisons of total mortality and CVD mortality between the EDC 

and the background Allegheny County population are presented in Table 2. Total mortality 4.6 

times higher than background in the 30-39 year age group (SMR 4.6, 95% CI 2.8, 7.2) 5.4 

times higher in the 40-44 year age group (SMR 5.4, 95% CI 3.6, 8.0). In both age groups, 

relative increase in mortality was greater in women than in men (Table 2). CVD mortality 

showed greater relative increases than total mortality in both age groups (age 30-39:  SMR 95% 

CI 16.9, 59.4, age 40-44: SMR 20.6, 95% CI 11.9, 33.1) and women again had relative 

increases than men. 
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Table 2. Total and Cardiovascular (CVD) Mortality Rates by Age and Sex in the in Epidemiology of Diabetes Complications (EDC) Study Cohort 
Compared to the Background Allegheny County Population (1996-2012) 

1Fatal coronary artery disease or stroke 

EDC Study Cohort (1996-2012) Allegheny County (1996-2012) 
Event Age and Sex Events Person 

Years 
Rate per 100,000 

(95% CI) Events Person 
Years 

Rate per 100,000
(95% CI) 

SMR 
(95% CI) 

Total 
Mortality 30-39 17 2,705 628 (379, 984) 3,817 2,765,085 138 (134, 142) 4.6 (2.8, 7.2) 

Men 1,352 444 (180, 920) 2,537 1,354,618 187 (180, 195) 2.4 (0.97, 5.0) 
Women 11 1,353 813 (428, 1409) 1,280 1,410,467 91 (86, 96) 9.2 (4.8, 15.9) 

40-44 24 1,910 1257 (826, 1835) 3,590 1,551,328 231 (224, 239) 5.4 (3.6, 8.0) 
   Men 14 998 1403 (800, 2287) 2,266 750,841 302 (289, 314) 4.7 (2.7, 7.6) 

Women 10 912 1096 (558, 1946) 1,324 800,487 165 (157, 174) 6.7 (3.4, 11.9) 
CVD 

Mortality1 30-39 10 2,705 370 (188, 658) 312 2,765,085 11 (10, 13) 33.3 (16.9, 59.4) 
   Men 4 1,352 296 (94, 712) 213 1,354,618 16 (14, 18) 18.5 (5.9, 44.7) 

Women 6 1,353 443 (180, 920) 99 1,410,467 7 (6, 8) 63.4 (25.7, 131.8) 
40-44 15 1,910 785 (457, 1263) 583 1,551,328 38 (35, 41) 20.6 (11.9, 33.1) 

Men 9 998 902 (441, 1648) 412 750,841 55 (50, 60) 16.4 (8.0, 30.0) 
Women 6 912 658 (267, 1363) 171 800,487 21 (18, 25) 31.6 (12.8, 65.7) 

32
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39 and 

2.4.2 CVD Incidence Rates 

CVD incidences rates in young adults with T1DM are shown in Table 3. Using the 

CVD definition, which includes hospitalized revascularization procedures, young adults in aged 

30-39 had a CVD rate of 961 events per 100,000 person years (95% CI 643, 1385) those

aged 40-44 had a rate of 2,356 events per 100,000 (95% CI 1744, 3113). If the ACC/AHA 

definition of CVD, which does not include revascularization procedures, is used, the 

decrease to 628 events per 100,000 person years  (95% CI 379, 984) in those aged 30-1,518 

events per 100,000 person years (95% CI 1038, 2145) in those aged 40-44. For CAD

(which includes hospitalized revascularizations) those aged 30-39 had a rate of 850 per 100,000 

person years (95% CI 553, 1253), while the rate for those aged 40-44 was 2,042 per 100,000 

(95% CI 1476, 2753).   

Age-matched IRRs of CVD rates between young adults in the EDC cohort and 

background Allegheny County population during 2004-2010 are presented in Figure 

absolute CVD rates are presented in Table 4). EDC participants aged 30-39 had a total CVD of 

599 per 100,000 person years (95% CI 190, 1438), which is 8 times higher than the 

Allegheny County (95% CI 2·5, 19·3). Those aged 40-44 had a rate of 1,821 per 100,000 years 

(95% CI 1040, 2964), which is also approximately 8 times higher than the background 

(Rate Ratio (RR) 7.8, 95% CI 4.4, 12.7). If revascularization procedures are excluded, and 

ACC/AHA CVD definition is used, the rate for EDC participants aged 30-39 decreases 

per 100,000 person years (95% CI 50, 986), and is no longer significantly increased 

background (RR 5.0, 95% CI 0.8, 16.5). 
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Table 3. Cardiovascular Disease (CVD) Incidence Rates by Age and Sex in the 
Epidemiology of Diabetes Complications Study 1996-2012 

Event Age and 
Sex Events Person 

Years 
Rate per 100,000 

(95% CI) 
Total CVD 30-39 26 2,705 961 (643, 1385) 

Men 14 1,352 1036 (591, 1690) 
Women 12 1,353 887 (481, 1503) 

40-44 45 1,910 2356 (1744, 3113) 
Men 27 998 2705 (1827, 3858) 

Women 18 912 1974 (1211, 3041) 
ACC/AHA CVD 30-39 17 2,705 628 (379, 984) 

Men 8 1,352 592 (275, 1121) 
Women 9 1,353 665 (325, 1217) 

40-44 29 1,910 1518 (1038, 2145) 
Men 19 998 1904 (1184, 2903) 

Women 10 912 1096 (558, 1946) 
CAD 30-39 23 2,705 850 (553, 1253) 

Men 14 1,352 1036 (591, 1690) 
Women 9 1,353 665 (325, 1217) 

40-44 39 1,910 2042 (1476, 2753) 
Men 24 998 2405 (1583, 3503) 

Women 15 912 1645 (959, 2638) 

For those aged 40-44, using the ACC/AHA CVD definition reduced the rate to 650 per 

100,000 person years (95% CI 238, 1435), which is 4 times higher than background (95% CI 1.4, 

8.7). For CAD alone, EDC participants aged 30-39 had 12-fold higher risk than background (RR 

11.8, 95% CI 3.7, 28.4), while those aged 40-44 had 8-fold higher risk (RR 8.3, 95% CI 4.4, 

14.5). Again, for all definitions and both age groups, women in the EDC cohort had higher 

relative increases in risk over background compared to men, despite men having higher absolute 

risk. 
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2.4.3 Sensitivity Analysis 

When the estimates for total mortality and total CVD events were repeated including the 

entire 1986-2012 follow-up, EDC participants aged 30-39 had 10-fold greater total mortality 

(95% CI 7.2, 13.5) and 22-fold greater CVD incidence (95% CI 17.1, 28.2) than background. In 

those aged 40-44, EDC participants had 9-fold higher mortality (95% CI 6.3, 11.7) and 13-fold 

greater CVD incidence (95% CI 10.0, 16.1) than background.  

Figure 2.  Inicidence rate ratios for the Epidemiology of Diabetes Complications Study cohort compared to 
the background Allegheny County population, 2004-2010 
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2.5 DISCUSSION 

These results demonstrate that for a contemporary cohort of young adults <45 years old 

with long duration T1DM, total mortality, CVD mortality, and hospitalized CVD events are still 

significantly increased compared to the age-matched background population. Total mortality was 

increased approximately 5-fold, while CVD mortality was increased 20- to 30-fold. Hospitalized 

CVD events were increased 8-fold, with revascularization procedures accounting for much of the 

increased risk. If revascularization procedures are excluded, CVD risk was increased 4- to 5-fold. 

For CAD alone, the increase in risk was even larger than for CVD, at 8 to 11 times that of 

background. For all outcomes, the relative risk in women was larger than for men. 

2.5.1 Relative Risk of Mortality 

The excess risk of mortality associated with T1DM in the current analyses is consistent 

with prior reports. A recent systematic review of 23 reports on population-based T1DM cohorts 

concluded that T1DM is associated with excess mortality worldwide (49). The magnitude of 

excess risk varied widely, from no excess in a small cohort from Iceland (178) to an estimated 

8.5-fold excess in a cohort from Cuba (179). In a 2010 report from Allegheny County, 

Pennsylvania, a 6-fold greater mortality than the age-matched general population was observed 

by 20 years of diabetes duration (180).     

More recently, the Scottish Registry Linkage Study reported age-specific mortality and 

CVD rates (51). Total mortality for men aged 30-39 years with T1DM was 3.4 times that of the 

general population, while it was 5.2 times that of the general population for women in the same 
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age group. The SMR for total mortality in women 30-39 years old was markedly higher here in 

the EDC cohort at 9.2. In the Scottish report, the T1DM population aged 40-49 years had 4 and 

4.7 times higher mortality than the general population for men and women, respectively. These 

increases were again somewhat lower than seen here in the EDC cohort, but as our data 

examined those 40-44 years old, these results are not directly comparable. It is also important to 

note that at any given age, the EDC cohort represents a longer duration of diabetes than the 

Scottish Registry Linkage Study. The Scottish registry includes adult-onset cases of T1DM, and 

thus the median diabetes duration of 17.5 years at baseline is significantly shorter than that of the 

EDC cohort (26.6 years), which is restricted to exclusively childhood-onset (<17 years old) 

T1DM. This difference in the length of exposure to T1DM may explain the lower excess 

mortality seen in the Scottish study. 

Another recent report, from the Swedish National Diabetes Register, showed that even 

for patients with T1DM who had on-target glycemic control for the past 8 years, both total and 

cardiovascular mortality were increased compared to the general population (52). When 

examined by age and sex, regardless of glycemic control, the study reported that men between 

18-49 years old had 3- to 4-fold greater total mortality compared to the general population, while

women in the same age range had more than 4-fold greater total mortality. Relative increases 

were larger for deaths due to cardiovascular causes in both sexes, but especially for women, 

where CVD mortality was more than 7 times that of the general population. These relative 

increases are again lower than those reported here for young adults in the EDC cohort, 

particularly for CVD mortality. As in the Scottish Registry Linkage Study, however, the Swedish 

National Diabetes Register includes adult-onset cases of T1DM, so again, the average diabetes 

duration of 20.4 years is shorter than that of the EDC cohort, and may at least partially explain 
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the lower excess mortality.  In a separate report on data from the Swedish National Diabetes 

Register, life expectancy between the time periods of 2002-2006 and 2007-2011 was found to 

have increased by approximately two years in men but was unchanged in women (181). 

In a population-based study from Australia during two time periods, 1997-2003 and 

2004-2010, T1DM was also consistently associated with increased total mortality across both 

sexes and all age groups, except in children <10 years old (182). For men, the SMR was 4.1 in 

both time periods for those 30-39 years and 4.7 and 4.4, respectively, for those aged 40-49 years 

in each time period. For women, SMRs were 4.6 and 5 in those aged 30-39 years and 4.7 and 4.2 

in those aged 40-49. Total and CVD mortality in the source population declined significantly 

between 2000 and 2011 (53), with similar trends by sex. The SMRs for total mortality that we 

report here for the EDC cohort are comparable to the Australian report for men, but are markedly 

higher in women. The higher relative mortality observed in women was also shown in the 2010 

report from the Allegheny County T1DM Registry (180). As noted in that report by Secrest et 

al., it may not be appropriate to directly compare differences in SMR due to variation in 

methodology or characteristics across the populations. The higher relative mortality observed in 

women in the EDC cohort and the Allegheny County T1DM Registry compared to the other 

populations discussed may reflect differences in access to health care across countries, but this 

hypothesis is difficult to assess. The higher relative risk for women was also noted in a recent 

meta-analysis of 26 T1DM studies published between 1966 and 2014, where the excess risk of 

all-cause mortality associated with T1DM was 37% higher in women than in men when pooled 

across studies (50).  Interestingly, in a DCCT-eligible subgroup of EDC participants, the 

mortality rate of 363 per 100,000 (95% CI 202, 604) is very similar to the rate of 346 per 
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100,000 (95% CI 272, 440) observed in the DCCT conventional treatment arm (54), lending 

support to the generalizability of the DCCT data in the United States.  

2.5.2 Relative Risk of Cardiovascular Disease 

Our finding that young adults with T1DM remain at increased risk of CVD is also 

consistent with other recent reports. In the Scottish Registry Linkage Study, men and 

women with T1DM aged 20-39 years had CVD risk 4.8 and 5.5 times that of the general 

population, respectively (51). The sex difference was larger for those aged 40-49 years, 

where men with T1DM had 3.1 times the risk of the general population, while women with 

T1DM had greater than 5 times the risk. The sex difference we observed in the EDC cohort 

supports the finding that women with T1DM have greater excess CVD risk than men, but the 

excess was larger than seen in the Scottish study (51). The aforementioned meta-analysis by 

Huxley et al. reported that the sex difference was more extreme for CAD incidence than it 

was for mortality (50), which is consistent with our findings. In the pooled results from the 

meta-analysis, women with T1DM were >13 times more likely to have a CAD event than 

women without diabetes, while men with T1DM were approximately 6 times more likely to have 

a CAD event (50).  It has been suggested that the effect of hyperglycemia and diabetes on 

vascular risk is greater in women then in men, possibly due to poorer glycemic control in 

women (50,183). However, Colhoun et al. also reported that the greater excess risk in 

women with T1DM was not explained by a worse CVD risk factor profile for women 

compared to men (184). In an earlier report from the EDC study, depressive symptomatology 

was found to be associated with CAD incidence in women, but not 
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in men, suggesting that nontraditional risk factors may explain the excess CVD risk in women 

and merit further exploration (56).    

A comparison of the relative risk estimates reported across countries can be found in 

Appendix B. 

2.5.3 Absolute Risk of Cardiovascular Disease 

Despite this consistent evidence that young adults with T1DM are at increased risk of 

CVD mortality and morbidity, treatment guidelines are based on extrapolations from data on 

type 2 diabetes and the general population due to a lack of trial data in T1DM. The validity of 

using these extrapolations has been questioned (185). The 2013 ACC/AHA guidelines 

recommend high-intensity statin therapy in individuals between ages 40-75 years with diabetes 

and a ≥7.5% estimated 10-year risk of CVD (73). In these analyses of the EDC cohort, young 

adults 40-44 years old had a 10-year ACC/AHA definition CVD risk of 15.2%. The guidelines 

state that, in individuals with diabetes who are younger than 40 years, the decision to begin statin 

therapy should be individualized (73). Here, in the EDC cohort, young adults 30-39 years old 

had a 6.3% 10-year CVD risk (ACC/AHA definition), which approaches, but is slightly below, 

the recommended cut-point of 7.5%. However, three additional CVD events occurred in the 30-

39 year old age group prior to the 1996 baseline used in these analyses and approximately 5% of 

30-39 year olds in the EDC were already on lipid-lowering medication at baseline (Table 1), with

the proportion rising to >20% by 2012 (data not shown). Thus, it is likely that the 10-year CVD 

risk would exceed 7.5% if it were possible to include the prevalent cases and account for existing 

lipid-lowering therapy.   Additionally, if hospitalized revascularization procedures are included 

in the CVD definition, the 10-year risk in 30-39 year olds increases to 9.6%. These results 
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suggest that CVD risk in young adults with T1DM duration >20 years who are between 30-39 

years old is most likely high enough to merit the use of statin therapy, given current ACC/AHA 

thresholds. Furthermore, a recent report has suggested that an individualized approach to statin 

therapy may be more appropriate, which would further justify statin use in this group of T1DM 

patients (186).  The importance of glycemic control in preventing CVD events remains a critical 

question.  Here, while CVD cases did have higher levels of HbA1c at baseline, the difference did 

not reach statistical significance. Interestingly, in an examination of CVD risk factors from the 

DCCT/EDIC study, updated weighted-mean HbA1c was found to be a strong predictor of CVD 

incidence, second only to age, while LDL-cholesterol was a significant, but weaker predictor 

(187). These results stress the need for intensive glycemic control, in addition to lipid-lowering 

therapy, to prevent CVD events. 

A comparison of the absolute risk estimates reported across countries can be found in 

Appendix B. 

2.5.4 Strengths and Limitations 

Our study has noted strengths. The Pittsburgh EDC is a well-characterized cohort with 

nearly thirty years of prospective follow-up to date. Deaths and CVD events were verified using 

death certificates, interviews with next of kin, autopsy reports, and medical records and classified 

by a committee of physicians using all available information.  The limitations include the 

potential for “survivor bias” due to deaths occurring prior to the 1996-2012 follow-up period of 

interest here. This issue may lead to an underestimation of the CVD risk of the EDC cohort, as 

the highest risk participants may have died prior to the beginning of follow-up. We have 

attempted to assess this possibility by performing a sensitivity analysis, which includes all deaths 
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and CVD events that occurred in young adults <45 years old during the entire 1986-2012 follow-

up of the EDC cohort. These estimates provide an upper limit to the excess mortality and CVD 

risk in these young adults. Another limitation of these analyses is the restricted availability of 

CVD hospitalization data from the background population to 2004-2010. Also, using the 

available data set from Allegheny County, it is not possible to identify which individuals in the 

background population data have T1DM which, in addition to the EDC participants who are 

already using lipid-lowering therapy, leads to a potential underestimation of the relative 

increased risk of the EDC cohort. Finally, these data are from a cohort of people from 

Southwestern Pennsylvania and may not reflect the experience of all young adults with T1DM in 

the United States. Also, the EDC is a hospital-based cohort, which may restrict the 

generalizability of these results. However, it has previously been shown that the epidemiologic 

characteristics (167) and the mortality experience (188) in the hospital-based EDC cohort closely 

reflects that of the population-based Allegheny County T1DM cohort for participants who were 

diagnosed during the same period. 

In conclusion, total mortality, CVD mortality, and hospitalized CVD events remain 

significantly increased in this US contemporary cohort of young adults <45 years old with long-

duration T1DM, compared to the background population. As has been consistently demonstrated 

across international studies, the relative increase in risk is greater for women than for men. These 

findings support the need for more aggressive CVD risk factor management particularly in 

women with T1DM.   
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Table 4.  Comparison of Cardiovascular Disease (CVD) Incidence Rates by Age and Sex between the Epidemiology of Diabetes 
Complications (EDC) Study and Background Allegheny County Population (2004-2010) 

EDC Study Cohort (2004-2010) Allegheny County (2004-2010) 
Event Age and Sex Events Person 

Years 
Rate per  

100,000 (95% CI) Events Person 
Years 

Rate per 100,000 
(95% CI) 

Rate Ratio 
(95% CI) 

Total CVD 30-39 4 668 599 (190, 1438) 797 1,032,759 77 (72, 83) 8.0 (2.5, 19.3) 
Men 2 307 651 (109, 2135) 501 505,822 99 (90, 108) 6.7 (1.1, 22.0) 

Women 2 361 554 (93, 1818) 296 526,937 56 (50,63) 10.0 (1.7, 33.0) 
40-44 14 769 1,821 (1040, 2964) 1,411 604,102 234 (221, 246) 7.8 (4.4, 12.7) 

Men 5 390 1,282 (471, 2818) 934 291,303 321 (300, 341) 4.0 (1.5, 8.9) 
 Women 9 379 2,375 (1164, 4313) 477 312,799 152 (139, 166) 15.8 (7.7, 29.0) 

ACC/AHA 
CVD 

30-39 2 668 229 (50, 986) 635 1,032,759 61 (57, 66) 5.0 (0.8, 16.5) 

Men 0 307 - 383 505,822 76 (68, 83) - 
 Women 2 361 554 (93, 1818) 252 526,937 48 (42, 54) 11.8 (2.0, 38.9) 
40-44 5 769 650 (238, 1435) 1,001 604,102 166 (155, 176) 3.9 (1.4, 8.7) 

Men 3 390 769 (196, 2079) 619 291,303 212 (196, 229) 3.8 (0.9, 10.2) 
 Women 2 379 528 (88, 1732) 382 312,799 122 (110, 134) 4.3 (0.7, 14.4) 

CAD 30-39 4 668 599 (190, 1438) 524 1,032,759 51 (46, 55) 11.8 (3.7, 28.4) 
Men 2 307 651 (109, 2135) 376 505,822 74 (67, 82) 9.1 (1.5, 30.0) 

 Women 2 361 554 (93, 1818) 148 526,937 28 (24, 33) 20.0 (3.4, 66.1) 
40-44 11 769 1,430 (755, 2472) 1,036 604,102 171 (161, 182) 8.3 (4.4, 14.5) 

Men 4 390 1,026 (327, 2455) 768 291,303 263 (245, 282) 3.9 (1.2, 9.4) 
 Women 7 379 1,847 (811, 3619) 268 312,799 86 (75, 96) 21.9 (9.6, 43.3) 

43
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3.0  RISK STRATIFICATION FOR 25-YEAR CARDIOVASCULAR DISEASE 

INCIDENCE IN TYPE 1 DIABETES:  TREE-STRUCTURED SURVIVAL 

ANALYSIS

3.1 ABSTRACT 

-year 

The formal identification of high risk subgroups, though clinically useful, is generally 

undertaken in observational cohort studies of cardiovascular disease (CVD).  Tree-

strucured survival analysis (TSSA) was utilized to determine whether there are meaningful 

subgroups varying levels of CVD risk in the Pittsburgh Epidemiology of Diabetes 

Complications study, a prospective cohort study of childhood-onset (<17 years old) type 1 

diabetes. Of the participants free of CVD (defined as the first instance of coronary artery 

disease, stroke, or extremity arterial disease) at baseline, 263 (46.9%) had an incident CVD 

event over the 25 follow-up.  TSSA revealed a range of risk groups, from 24 to 85%, 

which were define combinations of diabetes duration, non-HDL-cholesterol, albumin 

excretion rate (AER), white blood cell count.  Interestingly, those with short duration 

diabetes but elevated cholesterol had similar risk to long duration diabetes, while major sex 

differences were appa for long diabetes duration participants.  Our findings suggest that 

subgroups with major risk differences exist in this cohort of childhood-onset type 1 diabetes.  

Further study, inc external validation, is needed to better determine the prognostic utility of 

TSSA for CVD management. 
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3.2 INTRODUCTION 

As in the general population, cardiovascular disease (CVD) is a major contributor to 

morbidity and mortality in individuals with type 1 diabetes, however the risk of CVD is greatly 

increased (55,65–67).  The reasons for this increased risk are not fully understood, as the 

hyperglycemia that characterizes type 1 diabetes has been an inconsistent predictor of CVD 

incidence across studies (57–64,189). Notably, the gender difference in CVD incidence observed 

in the general population seems to be narrowed in type 1 diabetes, so that women have nearly the 

same risk as men (56,68). 

There is evidence to support the existence of important subgroups with respect to CVD 

incidence and risk factors in type 1 diabetes.  While nephropathy is considered a major risk 

factor for CVD in type 1 diabetes (83–86), this relationship is also not well understood.  In some 

cases, adjusting for the traditional cardiovascular risk factors that are potential confounders or 

mediators of the renal-CAD link does attenuate the relationship (60).  Nephropathy may also 

affect the presentation of CAD, such that individuals with nephropathy are more likely to present 

with a “harder” or more severe event, like a myocardial infarction (63).  Additionally, though 

nephropathy was found to be a stronger risk factor for CAD in men than in women in the 

Pittsburgh Epidemiology of Diabetes Complications (EDC) study (56), in the Eurodiab study 

nephropathy predicted CAD incidence in both sexes (61).  Although the risk of developing CVD 

is approximately equivalent by sex in type 1 diabetes, there is evidence that the risk factors for 

CVD differ in men and women.  Besides the aforementioned sex difference in the relationship 

between CAD and nephropathy, smoking may be a stronger risk factor for CAD in men, while 

depressive symptomatology and less physical activity appear to predict CAD more strongly in 

women (56).   
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Formal identification of important subgroups is not often undertaken in observational 

cohort studies of CVD. Utilizing methodology to formally identify subgroups at varying levels of 

risk may reveal relationships between risk factors and outcomes that are not detected using usual 

methods, such as comparing means, which assesses aggregate data, or regression, which 

generally assumes a constant increasing risk of an outcome for each unit increment of a risk 

factor.  Neither of these commonly used approaches accounts for potential heterogeneity within 

the group being studied, the possibility of complex higher-order interactions between risk factors 

(115), or a potential non-linearity or threshold effect of a risk factor on the outcome of interest 

(146). Even when identification of subgroups is attempted, interactions between groups are often 

not assessed because it is cumbersome to do so with traditional regression techniques (135,146).  

Studies where decision tree methods have been utilized demonstrate the potential importance of 

such an approach in identifying CVD risk groups (115,116,190).  Decision tree analysis of the 

Western Collaborative Group Study data identified different groups of men, based on 

interactions between obesity, age, and hypertension status, who were at very high risk of 

coronary heart disease mortality (115).  Also, in an earlier exploration of the Pittsburgh EDC 

study, decision tree methods were used to identify subgroups of participants who were at low 

risk for diabetes complications based on biologic risk factors.  Genetic markers were then 

examined within the lowest risk groups identified by the trees and, using this approach, 

associations between the genes and complications emerged that were not observed in the overall 

study population (116).  These examples demonstrate that decision trees offer advantages to 

epidemiologic research and may reveal relationships between risk factors and outcomes that 

would otherwise remain undetected.  Additionally, the resulting trees are potentially well suited 

for clinical applications, as they are presented in a manner that is often similar to the medical 
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decision-making process (135,146). Thus, we used tree-structured survival analysis, a 

hierarchical decision tree method that can accommodate time-to-event outcomes, to determine 

whether there are meaningful subgroups at varying levels of CVD risk in the Pittsburgh EDC 

study.  In addition to total CVD, specific manifestations of CVD, including CAD, stroke, lower 

extremity arterial disease, and fatal CAD and stroke events were assessed as separate outcomes 

to explore whether differences in subgroups and higher-order interactions would emerge. 

3.3 METHODS 

3.3.1 Study population 

The Pittsburgh EDC Study is a prospective cohort study of childhood-onset (<17 years 

old) type 1 diabetes. All participants were diagnosed, or seen within 1 year of diagnosis, at 

Children’s Hospital of Pittsburgh between 1950 and 1980.  The cohort has been described in 

detail elsewhere (167,191).  In brief, participants have been followed since 1986-1988, initially 

with biennial examinations and questionnaires for 10 years and thereafter with biennial 

questionnaires and further examinations at 18 and 25 years post-baseline.  Research protocols 

were approved by the University of Pittsburgh institutional review board and all participants 

provided written informed consent. 
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3.3.2 Ascertainment of cardiovascular outcomes 

Participants were followed for 25 years to assess the incidence of total cardiovascular 

disease (CVD), defined as the first instance of coronary artery disease (CAD) (i.e. fatal CAD, 

myocardial infarction, revascularization procedure, blockage ≥50%, ischemic ECG, or angina), 

stroke, or lower extremity arterial disease (LEAD - Ankle brachial index (ABI) <0.8, lower limb 

amputation due to vascular cause, or intermittent claudication).  Fatal events were ascertained 

using medical records, death certificates, autopsy reports, and/or interview with next of kin and 

classified according to the Diabetes Epidemiology Research International (DERI) system (169).  

Myocardial infarction, revascularization/blockage, and stroke were self-reported by the study 

participants and confirmed by medical records.  Amputation was ascertained by self-report 

and/or physician examination.  ABI was determined using a Doppler blood-flow detector with 

the subject supine and ratios for each of the right and left tibialis posterior and doralis pedis 

systolic pressures were calculated with arm systolic pressure as the denominator. Intermittent 

claudication was assessed using the Rose questionnaire (192).   In addition to total CVD, the 

following alternative outcomes were assessed: total CAD, stroke, LEAD, and CVD mortality 

(CAD death, fatal MI, or fatal stroke).  Participants with prevalent CVD at baseline were 

excluded from analyses of the corresponding analyses outcome. 

3.3.3 Risk Factor Assessment 

Fasting blood samples were taken to measure HbA1, lipids, lipoproteins, serum 

creatinine, and serum albumin.  HbA1 values were converted to DCCT-aligned values using a 

regression equation derived from duplicate assays (DCCT HbA1c=0.14 + 0.83[EDC HbA1]) 
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(62).  Serum total cholesterol and triglycerides were determined enzymatically (170,171) and 

HDL cholesterol was determined using a modified precipitation technique (172) based on the 

lipid research clinics method (173).  Non-HDL cholesterol (non-HDLc) was calculated by 

subtracting HDL cholesterol from total cholesterol.  Three seated blood pressure readings were 

taken with a random-zero sphygmomanometer, and the mean of the second and third readings 

was used in analyses, according to the Hypertension Detection and Follow-Up protocol (175).  

Serum creatinine was measured using an Ectachem 400 Analyzer (Eastman Kodak Co.).  Pulse 

rate (beats/minute) was determined by palpitating the radial pulse for 30 seconds and multiplying 

by two. Serum and urinary albumin were measured by immunonephelometry (176).  Albumin 

excretion rate (AER) was calculated for each of three timed urine samples (24-hour, overnight, 

and 4-hour collections obtained over a two week period); the median of the three AERs was used 

in analyses. Glomerular filtration rate was estimated by the CKD-EPI creatinine equation (193).  

White blood cell count (WBC), red blood cell count, hemoglobin, and hematocrit were measured 

using a Coulter Counter S-Plus IV.  Fibrinogen was measured using the Biuret method.  

Participants were weighed in light clothing on a balance beam scale.  Height was measured using 

a wall-mounted stadiometer.  Body mass index (BMI) was calculated as the weight in kilograms 

divided by the square of the height in meters.  Waist circumference was measured twice at the 

midpoint between the highest point of the iliac crest and the lowest part of the costal margin in 

the midaxillary line. If the two measurements differed by >0.5 cm, a third measurement was 

performed. The mean of the waist measurements was recorded as waist circumference. Hip girth 

was measured at the widest point of the glutei, usually at the level of the greater femoral 

trochanter, and the mean of two measures was recorded as the hip circumference, in the same 

manner as the waist measurements. The ratio of the waist to hip circumference (WHR) was used 
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in analyses. Current smoking status was obtained by self-report.  Insulin dose was calculated by 

dividing units of insulin administered per day by body weight in kilograms.   

3.3.4 Tree-Structured Survival Analysis 

In 1984, Breiman et al. developed Classification and Regression Trees (CART), an 

algorithm which generated decision trees for continuous and categorical outcomes (139).  The 

general concept underlying decision tree construction is that attributes are split into subsets 

(nodes), each of which is homogeneous with respect to the outcome of interest.   Split points are 

based on values of attributes that maximize a criterion quantifying heterogeneity of outcomes 

among each of the daughter nodes.  The largest heterogeneity occurs in the initial split. 

Subsequent splits can be made on either the same or other attributes.  This hierarchical process is 

repeated recursively until all instances within a node are as homogenous as possible, with regard 

to outcome classification (140).    Traditionally, decision trees are used to derive subgroups for 

the prediction of a binary outcome.  However, in the 1980s and 90s, the decision tree framework 

was extended to accommodate time-to-event survival data with censored observations (141–

143).  Cross-validation is the most commonly used method for training and testing to find the 

best tree.  Rather than simply building a single tree and holding out a proportion of the data for 

testing, cross-validation is an iterative process which repeats the process several times on random 

samples that partition the data into n relatively equally sized subsets (n is usually 5 or 10) 

(140).  One of the subsets is dropped and the tree is refit.  This process is repeated for each of the 

other n-1 subsets and then error rates from the n fits are used to identify the best fitting and most 

parsimonious tree (144). 
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In our analyses, we used the rpart routine of R version 3.0.2 (R Development Team 2013) 

to fit decision trees to the EDC data for the time to CVD event outcome.  The rpart routine has 

been described in detail by Therneau and Atkinson (144).  Data from EDC participants who were 

free of CVD at baseline were included in these analyses (n=561).  The list of baseline variables 

made available for tree building is shown in Table 5.   A minimum of 15 observations in each 

child node was required for further splitting to be considered.  The complexity parameter 

corresponding to the minimum cross-validated error was chosen to prune the tree. Separate trees 

were also constructed for each manifestation of CVD outcome variable described above, in an 

attempt to identify subgroups and potentially important interactions between risk factors.  

Additionally, separate trees were constructed for men and women and for the two diabetes 

diagnosis subcohorts (1950-1964 versus 1965-1980).  We previously examined these two 

subcohorts and found that they have significantly different survival experiences (188).  

3.4 RESULTS 

Of the 561 participants free of CVD at baseline, there were 263 (46.9%) cases of incident 

CVD over the 25-year follow-up.  Participant characteristics at baseline are shown in Table 5.  

EDC participants who developed CVD over the 25 years of follow-up were significantly older, 

had longer diabetes duration, higher BMI, WHR, non-HDL cholesterol, triglycerides, systolic 

and diastolic blood pressures, pulse rate, WBC, serum creatinine, and AER, and lower serum 

albumin, eGFR, and insulin dose, and were more likely to be smokers.  
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Table 5.   Baseline Charateristics of the Pittsburgh EDC Cohort by 25-Year Total Cardiovascular Disease 
(CVD) Incidence Status (n=561 free of prevalent CVD at baseline) 
Characteristic CVD Incidence 

(n=263) 
No CVD 
(n=298) 

p-value

Age (years) 29.9 (7.4) 24.3 (7.0) <.0001 
Diabetes Duration (years) 21.5 (7.4) 16.2 (6.4) <.0001 
Female Sex, % (n) 49% (130) 49% (147) 0.98 
Non Caucasian, % (n) 1.9% (5) 2.4% (7) 0.78 
BMI (kg/m2) 23.8 (3.2) 23.3 (3.2) 0.04 
Waist-Hip Ratio 0.84 (0.07) 0.81 (0.07) <.0001 
HbA1c (%) 8.78 (1.50) 8.71 (1.53) 0.59 
HDL Cholesterol (mg/dl) 53.7 (12.6) 54.9 (12.0) 0.25 
Non-HDL Cholesterol (mg/dl) 146.5 (42.8) 122.7 (34.8) <.0001 
Triglycerides (mg/dl), median 
(IQR) 

88.5 (65-131) 75.0 (56-102) 0.005 

Systolic Blood Pressure (mmHg) 116.3 (16.2) 109.0 (11.4) <.0001 
Diastolic Blood Pressure (mmHg) 74.1 (11.6) 70.6 (9.6) 0.0001 
Blood Pressure Med Use, % (n) 14% (37) 3.2% (9) <.0001 
Pulse Rate (bpm) 79.5 (9.7) 76.8 (9.7) 0.001 
Hemoglobin (g/dl) 15.0 (1.7) 15.3 (1.5) 0.06 
White Blood Cell Count (x103/µl) 6.77 (1.97) 6.17 (1.56) <.0001 
Fibrinogen (mg/dl) 301.8 (97.8) 285.8 (126.5) 0.10 
Serum Albumin (g/dl) 4.58 (0.80) 4.73 (0.71) 0.02 
Serum Creatinine (mg/dl) 1.11 (1.18) 0.90 (0.61) 0.007 
Albumin Excretion Rate (µg/min), 
median (IQR) 

27.8 (8.8-406.3) 10.9 (6.3-28.7) <.0001 

Estimated Glomerular Filtration 
Rate (mL/min/1.73 m2) 

98.4 (33.2) 111.7 (28.4) <.0001 

Insulin Dose (units/kg body 
weight) 

0.77 (0.27) 0.81 (0.24) 0.08 

Ever smoker, % (n) 44% (115) 30% (89) 0.0007 
Current smoker, % (n) 26% (68) 19% (56) 0.05 
Values are mean (sd), unless noted 
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3.4.1 Total Cardiovascular Disease Decision Tree 

The best survival tree for total CVD incidence identified five distinct risk groups (Figure 

4).  The tree first split on diabetes duration at the selected cut-point of 20.9 years.  In those with 

diabetes duration <20.9 years, and thus low risk, the tree further split on non-HDLc at 132.5 

mg/dl (CVD incidence 24.2% below (Group A) and 50.4% above (Group B) the non-HDLc cut-

point).  In those with diabetes duration ≥20.9 years the tree first split on AER at a cut-point of 

91.7 µg/min and in those with AER<91.7 µg/min, a second split on WBC at 7.15 x103/µl is 

identified (CVD incidence 52.5% below (Group C) and 81.5% above (Group D) the WBC cut-

point).  Finally, in those defined by duration≥20.9 years and AER≥91.7 µg/min, the highest risk 

group had a CVD incidence of 85.2% (Group E).  Kaplan-Meier curves for the five groups 

confirmed the pattern of CVD incidence identified by the tree (Figure 5).  The baseline 

characteristics of the five groups identified by TSSA are shown in Table 6. 
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Figure 3.  Survival Tree for the 25-Year Incidence of Total Cardiovascular Disease in the Pittsburgh EDC 
Study Overall Cohort 
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Figure 4.  Kaplan Meier Survival Curves for the 25-Year Incidence of Total 
Cardiovascular Disease by Risk Groups Identified by Tree-Structured Survival Analysis 
aGroup A=Diabetes duration<20.9years, nonHDL-cholesterol<132.5mg/dl 
bGroup B=Diabetes duration<20.9years, nonHDL-cholesterol≥132.5mg/dl 
cGroup C=Diabetes duration≥20.9years, albumin excretion rate<91.7µg/min, white cell count 
<7.15 x103/µl 
dGroup D=Diabetes duration≥20.9years, albumin excretion rate<91.7µg/min, white cell count 
≥7.15 x103/µl 
eGroup E=Diabetes duration≥20.9years, albumin excretion rate≥91.7µg/min 
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Table 6.  Baseline Characteristics of the Five Pittsburgh EDC 25-Year Total Cardiovascular Disease (CVD) 
Risk Groups Identified by Tree-Structured Survival Analysis 
Characteristic Group A: 

24.2% 
CVDa 

Group B: 
50.4% 
CVDb 

Group C: 
52.5% 
CVDc 

Group D: 
81.5% 
CVDd 

Group E: 
85.2% 
CVDe 

Age (years) 22.3 (5.6) 23.9 (5.1) 33.3 (5.7) 37.0 (4.9) 33.3 (5.4) 
Diabetes Duration (years) 13.5 (3.9) 14.7 (3.7) 26.5 (3.8) 28.5 (3.7) 26.6 (4.2) 
Female Sex, % (n) 47% (106) 53% (69) 51% (51) 63% (17) 42% (34) 
Non Caucasian, % (n) 1.8% (4) 3.1% (4) 2.0% (2) 3.7% (1) 1.2% (1) 
BMI (kg/m2) 23.0 (3.3) 23.8 (3.2) 23.9 (2.9) 23.8 (3.3) 24.0 (3.3) 
Waist-Hip Ratio 0.81 (0.06) 0.83 (0.06) 0.82 (0.07) 0.85 (0.09) 0.85 (0.08) 
HbA1c (%) 8.55 (1.26) 9.50 (1.77) 8.16 (1.30) 9.02 (1.33) 8.77 (1.64) 
Insulin Dose (units/kg) 0.84 (0.23) 0.83 (0.25) 0.69 (0.19) 0.72 (0.27) 0.76 (0.31) 
HDL Cholesterol (mg/dl) 54.9 (11.3) 52.4 (11.4) 57.3 (13.7) 57.9 (12.5) 50.8 (13.2) 
Non-HDL Cholesterol 
(mg/dl) 

105.7 (16.6) 165.5 
(37.7) 

129.8 (35.0) 151.2 (32.9) 160.6 (43.4) 

Triglycerides (mg/dl), 
median (IQR) 

67.5 
(55-89) 

112 
(79-153) 

71 
(52-97) 

94.5 
(68.5-136) 

115 
(80-173) 

Systolic Blood Pressure 
(mmHg) 

107.5 (10.8) 111.3 
(12.4) 

112.4 (11.7) 115.6 (13.6) 126.6 (18.7) 

Diastolic Blood Pressure 
(mmHg) 

69.3 (10.0) 73.0 (9.2) 71.1 (8.5) 72.3 (9.4) 80.6 (13.0) 

Blood Pressure Med Use, % 
(n) 

0.95% (2) 5.6% (7) 6.1% (6) 15% (4) 34% (27) 

Pulse Rate (bpm) 76.2 (9.8) 79.7 (8.8) 77.2 (8.3) 80.4 (11.1) 81.0 (11.0) 
Hemoglobin (g/dl) 15.3 (1.5) 15.4 (1.6) 15.0 (1.5) 14.7 (1.9) 14.8 (1.9) 
White Blood Cell Count 
(x103/µl) 

6.12 (1.58) 6.83 (1.70) 5.42 (0.92) 8.52 (1.50) 7.35 (2.25) 

Fibrinogen (mg/dl),  
median (IQR) 

250 
(210-300) 

280 
(240-360) 

250 
(210-310) 

300 
(240-330) 

320 
(275-382.5) 

Serum Albumin (g/dl) 4.71 (0.71) 4.64 (0.81) 4.82 (0.61) 4.50 (0.59) 4.43 (0.92) 
Serum Creatinine (mg/dl) 0.84 (0.29) 0.99 (1.12) 0.88 (0.27) 1.30 (1.75) 1.50 (1.51) 
Albumin Excretion Rate 
(µg/min), median (IQR) 

9.75 
(6.08-20.2) 

20.22 
(8.81-
168.6) 

11.07 
(6.51-23.6) 

12.36 
(6.94-39.4) 

830.6 
(291.1-1961.4) 

Estimated Glomerular 
Filtration Rate 
(mL/min/1.73 m2) 

114.8 (25.5) 112.0 
(32.6) 

102.6 (24.8) 91.6 (34.5) 77.5 (32.6) 

Ever smoker, % (n) 21% (48) 42% (54) 41% (41) 63% (17) 56% (45) 
Current smoker, % (n) 15% (34) 29% (37) 9.9% (10) 44% (12) 26% (32) 
aGroup A (n=223): Diabetes duration<20.9 yrs, nonHDL-cholesterol<132.5 mg/dl 
 bGroup B (n=129): Diabetes duration<20.9 yrs, nonHDL-cholesterol≥132.5 mg/dl 
 cGroup C (n=101): Diabetes duration≥20.9 years, albumin excretion rate<91.7µg/min, white cell 
count <7.15 x103/µl 
 dGroup D (n=27): Diabetes duration≥20.9 years, albumin excretion rate<91.7µg/min, white cell count 
≥7.15 x103/µl 
 eGroup E (n=81): Diabetes duration≥20.9 years, albumin excretion rate≥91.7µg/min 

Separate decision trees were also derived for total CVD incidence by sex and diabetes 

diagnosis subcohort (1950-1964 versus 1965-1980) (Figure 6). In women (panel A), the 25-year 
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incidence of CVD was 46.9% (130 cases) and the tree first split on diabetes duration at 17.6 

years. In lower risk women with diabetes duration <17.6 years, non-HDLc further discriminated 

CVD risk, with a chosen cut-point of 125.3 mg/dl (CVD incidence 13% below and 46% above 

cut-point).  In women with diabetes duration ≥17.6 years, no further discriminating factors were 

identified and the 25-year risk of CVD was 66%.  In men (panel B), there was a similar 46.8% 

(133 cases) 25-year incidence of CVD, but the tree first split on AER at 104.3 µg/min. In men 

with AER<104.3 µg/min, the tree split on non-HDLc.  Those with non-HDLc <133.2 mg/dl had 

a 24.1% 25-year risk of CVD, while in those with non-HDLc ≥133.2 mg/dl waist-hip ratio 

further discriminated risk (CVD incidence 0% below and 64.3% above cut-point). Men with 

AER ≥104.3 µg/min had the highest risk and the tree further split on diabetes duration at 26 

years (CVD incidence 65.2% below and 96.2% above cut-point).  

In the 1950-1964 subcohort (panel C), the 25-year incidence of CVD was 70.6% (120 

cases) and the tree split only on AER at 91.7 µg/min (CVD incidence 59.8% below and 88.9% 

above cut-point).  The 1965-1980 subcohort (panel D) had a 36.6% (143 cases) 25-year CVD 

incidence.  The tree first split on non-HDLc at 133.2 mg/dl. In those with non-HDLc <133.2 

mg/dl, the tree split on AER: those with AER <458 µg/min had 23.4% risk, while those with 

AER ≥458 µg/min had 71.4% risk. In those with non-HDLc≥133.2 mg/dl, diabetes duration 

further discriminated risk, such that those with duration <18.2 years had 44.3% risk and those 

with duration ≥18.2 years had 73.5% risk.   
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Figure 5.  Survival Trees for the 25-Year Incidence of Total Cardiovascular Disease By Sex 
and Type 1 Diabetes Diagnosis Cohort  
A)Women, B) Men, C) Type 1 Diabetes Diagnosed 1950-1964, D) Type 1 Diabetes Diagnosed
1965-1980

3.4.2 Specific Manifestations of Cardiovascular Disease 

The best fitting survival trees for the specific manifestations of CVD are shown in Figure 

7. The 25-year incidence of CVD death was 17.0% (112 deaths).  The tree for CVD mortality

(panel A) first split on AER: in those with AER<26.93 µg/min, diabetes duration further 

discriminated risk of CVD mortality at a cut-point of 23.09 years.  Diabetes duration was also 
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selected as the discriminating factor in those with AER ≥26.93 µg/min, but at a slightly lower 

cut-point of 21.95 years (Figure 7A).  

For CAD, the 25-year incidence was 34.7% (210 cases out of 605 free of CAD at 

baseline), with the first split on diabetes duration at the selected cut-point of 22.8 years (panel 

B).  In those with diabetes duration <22.8 years the tree further split on non-HDLc at 123.2 

mg/dl, while in those with diabetes duration ≥22.8 years the tree further split on AER at 131.9 

µg/min.   

The 25-year incidence of stroke was 6.7% (44 cases out of 654 free of stroke at baseline).  

The tree for stroke (panel C) first split on non-HDLc at 115.6 mg/dl.  In those with non-

HDLc<115.6 mg/dl, no further splits were selected, but in those with non-HDLc ≥115.6 mg/dl, 

stroke risk split on AER at 54.3 µg/min, with the lower AER group further splitting on WBC at 

9.2 x103/µl. 

The 25-year incidence of LEAD was 26.1% (157 cases out of 601 free of LEAD at 

baseline).  For LEAD (panel D), diabetes duration was chosen for the first split, such that with 

diabetes duration <21 years, the tree split on non-HDL cholesterol at 132.5 mg/dl.  Likewise, in 

those with diabetes duration ≥21 years, the tree also split on non-HDLc, but at a higher cut-point 

of 164.6 mg/dl. 
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Figure 6.  Survival Trees for the 25-Year Incidence of the Specific Manifestations of 
Cardiovascular Disease 
A) Cardiovascular Mortality, B) Coronary Artery Disease, C) Stroke, D) Lower Extremity
Arterial Disease
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3.5 DISCUSSION 

Tree-structured survival analysis of the EDC study data suggest that subgroups with 

major CVD risk differences exist in this cohort of childhood-onset type 1 diabetes over 25 years 

of follow-up and that these subgroups are identifiable by threshold effects of continuously 

measured risk factors measured only once at baseline.  A wide range of CVD risk was observed 

across the TSSA-identified subgroups, ranging from 24 to 85% over the 25-year follow-up.  

Though various combinations of diabetes duration, non-HDLc and/or AER generally 

discriminated risk for both total CVD and the specific manifestations of CVD, the identified 

optimal cut-points of the risk factors varied and WBC and waist-hip ratio also discriminated in 

some subgroups. 

For total CVD, five subgroups were identified through varying combinations of risk 

factors and they corresponded to three levels of CVD risk.  The lowest risk (24.2%) group was 

characterized by shorter diabetes duration/younger age and had a relatively good risk factor 

profile (Group A).  Two moderate risk groups were identified:  one with shorter diabetes 

duration/younger age and non-HDLc ≥132.5 mg/dl (Group B, CVD risk 50.4%) (Group B) and 

the other with longer diabetes duration/older age, but a relatively good risk factor profile (Group 

C, CVD risk 52.5%). The nearly equivalent 25-year CVD risk in these two groups suggests that 

moderate dyslipidemia can “accelerate” CVD risk in shorter duration type 1 diabetes to the 

equivalent of older, longer duration individuals.  Further examination of the risk factor profile of 

Group B showed that the mean non-HDLc was 165.5 (SD 37.7) and HbA1c was 9.5 (SD 1.8), 

both of which were the highest of all of the five groups identified by TSSA (Table 6).  These 

results provide considerable support for more intensive lipid and HbA1c control in short duration 

type 1 diabetes.  Finally, two high risk groups were identified: both had longer diabetes 
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duration/older age, but one mostly female, characterized by higher WBC, and smoking rates 

(Group D, CVD risk 81.5%) and the other mostly male, characterized primarily by renal disease 

(Group E, CVD risk 85.2%). 

That AER was the primary factor discriminating risk at longer, but not shorter, duration 

may be related to more severe albuminuria as diabetes duration increases.  The chosen AER cut-

point of approximately 92 µg/min falls within the microalbuminuria range (20-200 µg/min). 

However, further investigation (Table 6) of the group with AER >92 µg/min (Group E) showed 

that the majority had overt nephropathy (AER >200 µg/min), which is a well-established CVD 

risk factor in type 1 diabetes (83–86).  Within the lower AER group, WBC further discriminated 

total CVD risk, such that those with lower AER, but higher WBC (Group D, 82% CVD risk) 

were at nearly equivalent risk to those with higher AER (Group E, 85% CVD risk).  Further 

examination of Group D showed that it had the highest rate of smoking of the five groups 

identified by the TSSA analyses (Table 6), which may contribute to both high WBC levels and 

CVD rate of this group. 

When separate trees were fit by sex, AER only discriminated CVD risk in men.  This 

supports the earlier observation that renal disease may be a more important CVD risk factor in 

men compared to women (56).  Non-HDLc discriminated risk in men only if AER was lower. In 

women, diabetes duration was the major discriminating factor and non-HDLc further 

discriminated CVD risk in those with shorter diabetes duration.   

In the earlier, 1950-1964 diagnosis cohort, AER was the only discriminating factor 

identified, which concurs with the total CVD tree, where AER was important at longer diabetes 

duration.  In contrast, the 1965-1980 diagnosis cohort first split on non-HDLc and AER only 

discriminated risk at lower levels of non-HDLc. Interestingly, the lower-non-HDLc/higher AER 
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group had nearly the same CVD risk as the higher-non-HDLc/longer duration group (71 and 

74%, respectively).  The differences in the trees between the two diagnosis cohorts support the 

evidence that there may be a declining role of renal disease on CVD.  Rates of renal disease, 

particularly end-stage renal disease, have declined with time (168) and albuminuria has been 

shown to be less likely to precede CVD than previously reported (194).     

The tree for CVD mortality first split on AER at a cut-point of 26.9 µg/min.  This cut-

point is close to the cut-point used to define the lower limit of microalbuminuria (20-200 

µg/min), which is strongly associated with higher all-cause mortality (195,196) and CVD rates 

(84,86,197) in type 1 diabetes.  Diabetes duration modified risk at both levels of AER, such that 

having duration ≥23 years was associated with a 6-fold increase in risk within the lower AER 

group and having duration of ≥22 years was associated with an approximately 2.5-fold risk 

within the higher AER group. 

The tree for CAD was similar to the total CVD tree, which is not surprising as CAD was 

the most common manifestation CVD in this cohort.  The chosen optimal cut-points for the risk 

factors differed slightly than those chosen for total CVD, with the non HDLc cut-point in the 

CAD tree being 9 units lower than in the total CVD tree (123 and 132 mg/dl, respectively).  

Conversely, the AER cut-point was 40 units higher in the CAD compared to the total CVD tree 

(132 and 92 µg/min, respectively).     

For stroke, non-HDLc <115.6 mg/dl was associated with very low risk of <0.5% over 25 

years.   The combination of non-HDLc≥115.6 mg/dl and AER≥54.3 µg/min led to a moderate 

16% risk of stroke. Interestingly, having higher non-HDLc and WBC≥9.2x103/µl, but lower 

AER, led to the highest level of risk, at 25%.  This relationship between very elevated WBC and 

stroke merits further study.  WBC has been reported as a risk factor for stroke in the EDC study 
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(198), as well as in the general population (199–201), but a threshold effect at such a high WBC 

level on the long-term risk of stroke, has not been previously reported, to our knowledge.  

Generally, little is known about the predictors of stoke in type 1 diabetes, as there have been few 

reports.   Serum lipids have been associated with stroke incidence in the Fremantle (202) and 

EDC studies (198), but not in the WHO Multinational Study of Vascular Disease in Diabetes 

(WHO MSVDD) (203), while nephropathy was shown to be strongly associated with stroke in 

both the EDC and the MSVDD (198,203).  

Finally, the tree for LEAD split on diabetes duration and then, within both shorter and 

longer duration, split on non-HDLc at 132.5 mg/dl and 164.6 mg/dl, respectively.  The shorter 

duration/higher non-HDLc group had nearly the same risk of LEAD as the longer duration/lower 

non-HDLc group (28 and 32%, respectively), again underscoring the importance of lipid control 

in type 1 diabetes, especially with diabetes duration <25 years.  This relatively short duration 

corresponds to an average age of only 33 years in this cohort of childhood-onset type 1 diabetes.  

That non-HDLc was the major discriminating factor concurs with the results from an earlier 

analysis of the EDC study at 6 years of follow-up, which found that serum lipids predicted 

LEAD, but renal damage did not (58).  In the general population, serum lipids have also been 

strongly associated with the development of LEAD (204–210).   

Strengths and limitations 

The EDC cohort is a prospective study with 25 years of follow-up to ascertain CVD 

outcomes.  The cohort is well characterized, with data available for many clinical risk factors, 

and represents a wide range of diabetes diagnosis years.  CVD events were verified using death 

certificates and medical records by reviewers masked to risk factor status. One limitation of the 
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study is that the cohort is 98% Caucasian, due to the demographics of Allegheny County, 

Pennsylvania (<15% African American), and lower type 1 diabetes incidence among African 

Americans during the period when the cohort was diagnosed, so it is not known if these results 

apply to other groups.  There is also a potential for “survivor bias”, particularly in the older 

1950-1964 diagnosis subcohort, because prevalent cases of CVD were excluded from these 

analyses of incident events.  Only baseline risk factor data were included as predictors in these 

analyses, thus we cannot account for the impact of patterns of risk factor change over time.  

However, this situation is very appropriate for clinicians also have only a single data point 

available.  Finally, TSSA is considered to be an exploratory method and these results require 

external validation in other T1D cohorts before they can be applied in clinical settings.  In 

particular, TSSA is not easily amenable to the construction of models where inferential 

statements (using, e.g., p-values) can be made about the data. 

In conclusion, tree-structured survival analysis of the EDC study data suggests that 

subgroups with major CVD risk differences are identifiable by threshold effects of continuously 

measured risk factors. In many cases, similar levels of CVD risk are reached through different 

combinations of risk factor groupings. For total CVD, a high-risk group with shorter diabetes 

duration was identified which suggests that elevated non-HDLc increases CVD risk to the level 

of a longer diabetes duration group.  Within longer diabetes duration individuals, two high-risk 

groups were identified through distinct pathways:  one mostly female, with high rates of 

smoking, and WBC, and the other mostly male, characterized by renal disease. Utilizing decision 

tree methods to identify subgroups at higher levels of risk in this manner may help to shed light 

on the various pathways leading to CVD outcomes. Further study, including external validation, 
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is needed to better determine the prognostic utility of TSSA and the identification of subgroups 

at varying levels of CVD risk in type 1 diabetes. 
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4.0  HEMOGLOBIN A1C AND CARDIOVASCULAR DISEASE INCIDENCE IN 

TYPE 1 DIABETES:  AN APPLICATION OF JOINT MODELING OF LONGITUDINAL 

AND TIME-TO EVENT DATA IN THE PITTSBURGH EPIDEMIOLOGY OF 

DIABETES COMPLICATIONS (EDC) STUDY 

4.1 ABSTRACT 

The reasons for the increased risk of cardiovascular disease (CVD) in type 1 diabetes 

(T1D) are not fully understood. The hyperglycemia, measured by HbA1c, that characterizes T1D 

has been an inconsistent predictor of CVD incidence.  However, only baseline HbA1c or a 

summary measure, such as the mean over follow-up, is usually analyzed.  Joint modeling allows 

longitudinal repeated covariates, modeled using random effects, and the time-to-event data to be 

modeled together. Thus our objective was to assess the association between serially measured 

HbA1c and CVD incidence using joint modeling.  Data were from the Pittsburgh Epidemiology 

of Diabetes Complications (EDC) study, a prospective cohort study of childhood-onset T1D that 

has repeatedly reported little association between mean baseline or follow-up HbA1c and 

coronary artery disease incidence.  Of 561 participants without CVD at baseline, 263 (42.1%) 

developed CVD over 25-years. Each one unit increase in HbA1c was associated with a 1.4-fold 

increase in the risk of CVD (95% CI: 1.17, 1.72), after adjusting for baseline values of other 

CVD risk factors, and a 1.3-fold increased risk (95% CI: 1.03, 1.42) after adjusting for updated 
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means of other factors.  These findings, which support the need for good glycemic control to 

prevent CVD in T1D, underscore the importance of utilizing methods that incorporate within-

subject variation over time when analyzing and interpreting data from longitudinal cohort 

studies.      

4.2 INTRODUCTION 

Cardiovascular disease (CVD), comprising coronary artery disease (CAD), 

cerebrovascular disease, and peripheral vascular disease, is a major complication of type 1 

diabetes.  As in the general population, CVD is a significant contributor to morbidity and early 

mortality in individuals with type 1 diabetes, however the risk of CVD is greatly increased in 

type 1 diabetes (55).  The reasons for this increased risk are not fully understood, as the 

hyperglycemia, as measured by HbA1c, that characterizes type 1 diabetes is itself an inconsistent 

predictor of CVD incidence (56–64).  In the Diabetes Control and Complications Trial 

(DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) follow-up study, the 

intensive diabetes therapy arm had significantly lower incidence of CAD compared to the 

conventional therapy arm (211).  Also, in a more recent analysis, updated weighted-mean HbA1c 

was found to be an important predictor of CVD incidence, second only to age (187).  In contrast, 

observational studies have not found HbA1c to be a consistent predictor of CVD events 

(58,60,61,75,66,76,77).  One potential explanation for these seemingly discordant results is that, 

in the DCCT, intensive therapy was begun early in the course of diabetes, raising the suggestion 

that glycemia may play a role in the initiation of atherogenesis (78).  Despite the level of HbA1c 

not predicting CAD incidence, in the Pittsburgh Epidemiology of Diabetes Complications (EDC) 
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study, a prospective cohort study of childhood-onset type 1 diabetes, decreasing HbA1c over 

time was associated with a lower risk of CVD (62).  Additionally, HbA1c variability, but not 

mean HbA1c over time, was predictive of CVD events in the FinnDiane study (77).  In contrast 

to this inconsistent relationship between HbA1c and CAD, glycemia has been more consistently 

associated with an increased risk of peripheral artery disease (PAD) (58,79,80).  This difference 

may indicate that hyperglycemia is more strongly associated with stable atherosclerosis, which 

characterizes PAD, rather than plaque rupture, which precipitates the acute coronary events (78).  

Stable atherosclerosis is characterized by plaques with high fibrous and lower macrophage and 

lipid content and evenly distributed atherosclerosis around the circumference of the vessel lumen 

(212).  Unstable atherosclerosis is characterized by “vulnerable plaques”, which have a necrotic 

core highly prone to produce a thrombus, or clot, and are covered by thin, fibrous caps (212). In 

the general population, the majority of acute coronary events are precipitated by the rupture of 

vulnerable plaques, with only a small proportion resulting from erosion of more stable 

atherosclerotic plaques (81,82).  In type 1 diabetes, these proportions are reversed with the 

majority of events due to plaque erosion (81,82), consistent with the hypothesis that 

hyperglycemia is associated with more stable atherosclerosis. 

In the observational cohort studies used to examine these associations, baseline HbA1c is 

most often used as a predictor of CVD incidence. This approach, while generally providing valid 

results, does not account for changes in glycemic control over time that may affect risk 

(128).  For example, this approach may underestimate the effect of HbA1c if it becomes more 

important closer to the time of the event.  Stability and change of predictors are relevant for 

determining the likelihood of an individual having an event, thus incorporating within-subject 

patterns is important for obtaining a more complete understanding of the relationship between 



70 

risk factor and outcome (128–131). Analyses of data from longitudinal cohort studies rarely 

make full use of the information contained in serially measured risk factors and, in some cases, 

failing to utilize all available data may lead to invalid results (128). 

One common approach for accommodating change of risk factors in statistical analyses is 

to model change directly (132).  However, this approach does not account for the actual pattern 

of change and assumes a constant, linear increase or decrease over the follow-up and may also 

underestimate the variance of the factor (133).  Another approach for utilizing longitudinal data 

is to model the average (or updated mean) risk factor over the follow-up period. However, this 

method has similar drawbacks to modeling change, leading to a loss of important information 

regarding variability over time (134).   

 Joint modeling allows both longitudinal repeated covariates and time-to-event data 

to be modeled together, as detailed by Wulfsohn and Tsiatis (160).  Comprehensive 

overviews of joint models have also been provided by Tsiatis and Davidian (213) and by Diggle 

et al. (214). Briefly, a joint model consists of two submodels.  A mixed-effects model 

characterizes the trajectory over time of the longitudinal covariate.  The modeled random effects 

are simultaneously included in a survival model, so that the relationship between the pattern of 

covariate change and time to the event of interest can be estimated (131).  These random effects, 

or subject-specific deviations from the average effect, are assumed to be the underlying link 

between the longitudinal repeated measures and the subject-specific hazard for the time-to-event 

outcome (128). 

While survival analyses and repeated measures analyses using mixed models have 

separately been performed using EDC study data, jointly modeling both processes has not 

previously been carried out.  Thus, our objective is to assess the relationship between serially 
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measured HbA1c and the incidence of CVD using joint modeling.  Additionally, the specific 

manifestations of CVD (i.e. coronary artery disease, LEAD, CVD mortality, etc.) were examined 

separately to explore whether the relationship with HbA1c differs by type. 

4.3 METHODS 

4.3.1 Study Population 

The Pittsburgh EDC Study is a prospective cohort study of childhood-onset (<17 years 

old) T1DM. All participants (n=658) were diagnosed, or seen within one year of diagnosis, at 

Children’s Hospital of Pittsburgh between 1950 and 1980. The cohort has been described in 

detail elsewhere (167,168). In brief, participants have been followed since 1986-1988, initially 

with biennial examinations and questionnaires for ten years and thereafter with biennial 

questionnaires and further examinations at 18 and 25 years post-baseline. Research protocols 

were approved by the University of Pittsburgh institutional review board and all participants 

provided written informed consent.   

4.3.2 Ascertainment of Cardiovascular Outcomes 

Participants were followed for 25 years to assess the incidence of total CVD, defined as 

the first instance of CAD (fatal CAD, myocardial infarction, revascularization procedure, 

blockage ≥50%, ischemic ECG, or angina), stroke, or LEAD (Ankle brachial index (ABI) <0.8, 
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lower limb amputation due to vascular cause, or intermittent claudication).  Fatal events were 

ascertained using medical records, death certificates, autopsy reports, and/or interview with next 

of kin and classified according to the Diabetes Epidemiology Research International (DERI) 

system (169).  Myocardial infarction, revascularization/blockage, and stroke were self-reported 

by the study participants and confirmed by medical records.  Amputation was ascertained by 

self-report and/or physician examination.  ABI was determined using a Doppler blood-flow 

detector with the subject supine and ratios for each of the right and left tibialis posterior and 

dorsalis pedis systolic pressures were calculated with arm systolic pressure as the denominator. 

Intermittent claudication was assessed using the Rose questionnaire (192).   In addition to total 

CVD, the following alternative outcomes were assessed: total CAD, stroke, LEAD, and CVD 

mortality (CAD death, fatal MI, or fatal stroke).  Participants with prevalent CVD at baseline 

were excluded from analyses of the corresponding outcome. 

4.3.3 Risk Factor Assessment 

Risk factors were assessed at baseline and repeated at 2-, 4-, 6-, 8-, 10-, and 18-years of 

follow-up. Fasting blood samples were taken to measure HbA1/HbA1c, lipids, and serum 

creatinine.  From baseline through 10 years of follow-up, HbA1 values were converted to 

DCCT-aligned HbA1c values using a regression equation derived from duplicate assays (DCCT 

HbA1c=0.14 + 0.83[EDC HbA1]) (62).  At the 18-year examination, HbA1c was measured 

using the DCA 2000 analyzer (Bayer Healthcare LLC. Elkhart, IN) and converted to DCCT-

aligned HbA1c by the equation: DCCT HbA1c=(EDC HbA1c-1.13)/0.81.  From baseline 

through the 10-year examination, serum total cholesterol and triglycerides were determined 

enzymatically (170,171) and HDL cholesterol was determined using a modified precipitation 



73 

technique (172) based on the lipid research clinics method (173).  At the 18-year examination, 

serum lipids were measured using the Cholestech LDX (Cholestech Corp., Hayward, CA). Non-

HDL cholesterol (non-HDLc) was calculated by subtracting HDL cholesterol from total 

cholesterol.  White blood cell count (WBC) was determined using a Coulter Counter.  Three 

seated blood pressure readings were taken with a random-zero sphygmomanometer, and the 

mean of the second and third readings was used in analyses, according to the Hypertension 

Detection and Follow-Up protocol (175).  Hypertension was defined as blood pressure ≥140/90 

mmHg or use of blood pressure-lowering medication.  Past and current smoking status was 

obtained by self-report.  At study visits, three timed urine samples (24-hour, overnight, and 4-

hour collections obtained over a two week period) were collected.  Urinary albumin was 

measured in each sample by immunonephelometry (176) and albumin excretion rate (AER) was 

calculated; the natural log transformed median of the three AERs was used in analyses.  Serum 

creatinine was measured using an Ectachem 400 Analyzer (Eastman Kodak Co., Rochester, NY).  

Glomerular filtration rate (eGFR) was estimated by the Chronic Kidney Disease Epidemiology 

Collaboration (CKD-EPI) creatinine equation (193).  A positive renal disease status at baseline 

was defined as AER≥200µg/min in at least 2 of the 3 timed urine samples, eGFR<60 ml/min/m2, 

or a history of renal transplant or dialysis.  

4.3.4 Statistical Analyses 

Prevalent cases of CVD at baseline were excluded. Baseline characteristics were 

compared between those who developed CVD during the 25 years of follow-up and those who 

did not using two-sample t-tests for continuous variables (or Wilcoxon rank-sum, if data were 
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not normally distributed) or using chi-squared tests for dichotomous variables in SAS v. 9.3 

(SAS Institute, Cary, NC).  Longitudinal HbA1c and time to first CVD event were the outcomes 

of interest and were examined simultaneously using joint models (160,165).  For the longitudinal 

sub-model, a subject-specific random effects model with random intercept and slope was used to 

examine the trajectory of HbA1c over follow-up.  HbA1c was censored at the time point 

immediately prior to the CVD event for cases.  For the survival submodel we employed a Cox 

proportional hazards model.  Interactions between longitudinal HbA1c and important pre-defined 

subgroups, specifically diabetes diagnosis cohort (diabetes diagnosed 1950-64 versus 1965-80), 

sex, and renal disease at baseline, were tested to determine whether the longitudinal HbA1c 

trajectory differed by group. Models were repeated separately with time to CAD, stroke, and 

LEAD as the outcome, respectively.   All models were adjusted for other baseline CVD risk 

factors and final models were selected using backward selection and likelihood ratio tests. The 

risk factors considered for adjustment were years of diabetes duration, non-HDLc, hypertension, 

ln(AER), and white blood cell count, except in cases where collinearity was a concern (i.e. 

models including the diagnosis cohort indicator were not adjusted for diabetes duration and those 

including the renal disease status indicator were not adjusted for ln(AER)).  Alternate models 

were fit adjusting for the updated mean of each factor (i.e. the mean value of all available 

measurements prior to event or censoring), instead of baseline values.   All joint modeling was 

performed using the joineR routine in R (165,145).    
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4.4 RESULTS 

Of the 561 participants free of CVD at baseline, 263 (42.1%) went on to develop CVD 

during the 25-year follow-up.  Baseline characteristics by CVD incidence status are shown in 

Table 5.  The participants who developed CVD were significantly older, had longer diabetes 

duration, higher body mass index, waist-hip ratio, non-HDLc, triglycerides, blood pressures, 

white blood cell count, and AER and lower eGFR.  They were also more likely to be taking 

blood pressure lowering medication, have hypertension, and report past smoking.  The median 

follow-up time for CVD ascertainment was 15.0 years (range 0.2 to 27.7 years).  The survival 

curve for total CVD is shown in Figure 8 and the observed mean longitudinal HbA1c profile by 

CVD incidence status is shown in Figure 9.  
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Figure 7.  Kaplan Meier Curve for Survival Free of Cardiovascular Disease (CVD) Over 25 Years of Follow-
Up 

Figure 8. Observed Mean HbA1c by 25-Year Total Cardiovascular Disease Incidence Status 
Error bars are ±standard error 

7	

7.5	

8	

8.5	

9	

9.5	

10	

0	 2	 4	 6	 8	 10	 18	

Hb
A1

c	
(%

)	

Follow-Up	Time	(years)	

Cases	

Noncases	



77 

Three models were fit to associate HbA1c trajectories (longitudinal component) with 

time to total CVD (survival component): (1) a joint model where both the longitudinal and 

survival sub-models were not adjusted for other covariates, (2) a joint model where both the 

longitudinal and survival sub-models were adjusted for baseline covariates, and (3) a joint model 

where both the longitudinal and survival sub-models were adjusted for covariates averaged over 

the follow-up (Table 7).  In model 1, there was a statistically significant mean decrease in HbA1c 

of -0.03 units per year (95% CI: -0.05, -0.02).  For the corresponding survival sub-model, the 

association parameter was 0.43 and was statistically significant (95% CI: 0.26, 0.64), indicating 

that there is strong evidence of an association between the two sub-models. In other words, 

HbA1c is associated with CVD risk at any given time t.  In model 2, after adjusting for baseline 

diabetes duration, non-HDLc, hypertension, ln(AER), and WBC, the association parameter of 

0.33 was only slightly attenuated and remained statistically significant.  Thus, each one unit 

increase in HbA1c was associated with an exp(0.33)=1.4-fold increase in the risk of CVD (95% 

CI: 1.17, 1.72), after covariate adjustment.  In model 3, adjusted for diabetes duration and 

updated mean non-HDLc, ln(AER), and WBC, the association parameter was further attenuated, 

but remained significant at 0.22 (95% CI: 0.03, 0.35), corresponding to a 1.25-fold increased risk 

of CVD (95% CI: 1.03, 1.42) per unit increase in HbA1c. 
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Table 7. Estimated Coefficients and 95% Confidence Intervals From a Joint Model with a 
Random Effects Longitudinal HbA1c Sub-Model and a Cox Survival Sub-Model for Time 
to Total Cardiovascular Disease (CVD) 

Model Model 
Adjustment 

Sub-Model Covariates Estimate 95% CI 

1 Unadjusted, 
Main Effects 
Only 

Longitudinal 
HbA1c random 
effects 

Intercept 
Time 

9.03 
-0.03

8.90, 9.12 
-0.05, -0.02

Cox Survival Association Parameter 0.43 0.26, 0.64 

2 Adjusted for 
Baseline 
CVD Risk 
Factors 

Longitudinal 
HbA1c random 
effects 

Intercept 
Time 
Diabetes Duration 
Non-HDLc 
Hypertension 

8.29 
-0.035
-0.03
0.009
-0.36

7.58, 8.53 
-0.05, -0.02
-0.04, -0.01
0.008, 0.01
-0.70, -0.08

Cox Survival Diabetes Duration 
Non-HDLc  
Hypertension 
ln(Albumin Excretion 
Rate)  
White Blood Cell Count 
Association Parameter 

0.07 
0.008 
0.52 
0.15 

0.10 
0.33 

0.05, 0.09 
0.004, 0.01 
0.07, 0.99 
0.08, 0.21 

0.02, 0.18 
0.16, 0.54 

3 Adjusted for 
Updated 
Mean CVD 
Risk Factors 

Longitudinal 
HbA1c random 
effects 

Intercept 
Time 
Diabetes Duration 
Non-HDLc 
ln(Albumin Excretion 
Rate) 

7.98 
-0.02
-0.03
0.01
0.11

7.47, 8.37 
-0.04, -0.01
-0.05, -0.02
0.006, 0.01
0.05, 0.15

Cox Survival Diabetes Duration 
Non-HDLc 
ln(Albumin Excretion 
Rate) 
White Blood Cell Count 
Association Parameter 

0.08 
0.01 
0.23 

0.10 
0.22 

0.08, 0.01 
0.005, 0.02 
0.17, 0.31 

0.03, 0.16 
0.03, 0.35 

There was a significant interaction between diabetes diagnosis cohort and time with 

respect to HbA1c trajectory (ß=-0.04, 95% CI: -0.08, -0.01).  The observed longitudinal 

trajectories of HbA1c by diabetes diagnosis cohort are depicted in Figure 10.  As seen in the 

graph, HbA1c was generally lower in the earlier 1950-1964 diagnosis cohort throughout follow-

up and this earlier cohort also experienced a more dramatic decline in HbA1c after 6 years of 
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follow-up compared to the more recent 1965-1980 diagnosis cohort.  Despite this interaction 

between diagnosis cohort and time with respect to HbA1c, the association between HbA1c 

trajectory and CVD risk was similar in both diagnosis cohorts (1950-1964, HR per 1-unit 

increase in HbA1c=1.30, 95% CI: 1.05, 1.65; 1965-1980, HR per 1-unit increase in 

HbA1c=1.21, 95% CI: 1.001, 1.46).  There were no significant interactions between sex or renal 

disease status at baseline and time with respect to HbA1c. 

Figure 9. Observed Mean HbA1c by Type 1 Diabetes Diagnosis Cohort 
Error bars are ±standard error     
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CVD, with a one unit increase in HbA1c associated with a 1.4-fold increased risk of both CAD 

and LEAD (95% CI: 1.05, 1.67 and 1.22, 1.67, respectively) and a 2-fold increased risk of stroke 

(95% CI: 1.5, 2.5).  Adjusting for updated mean CVD risk factors only slightly attenuated these 

associations and the longitudinal trajectory of HbA1c remained significantly associated with 

each CVD manifestation (Table 9).  In these alternate models, a one unit increase in HbA1c was 

associated with a 1.2-fold increased risk of CAD (95% CI: 1.03, 1.35), a 1.9-fold increased risk 

of stroke (95% CI: 1.26, 2.36), and a 1.3-fold increased risk of LEAD (95% CI: 1.11, 1.57).       
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Table 8. Estimated Coefficients from Joint Models with a Random Effects Longitudinal 
HbA1c Sub-Model and a Cox Survival Sub-Model for Time to Each Specific Manifestation 
of Cardiovascular Disease, Adjusted for Baseline Covariates 

Outcome Sub-Model Covariates Estimate 95% CI 
Coronary 
Artery Disease 

Longitudinal 
HbA1c random 
effects 

Intercept 
Time 
Diabetes Duration 
NonHDLc 
Hypertension 
ln(Albumin Excretion 
Rate)  

8.26 
-0.04
-0.03
0.008
-0.48
0.07

7.88, 8.60 
-0.05, -0.03
-0.04, -0.02
0.006, 0.01
-0.81, -0.17
0.01, 0.11

Cox Survival Diabetes Duration 
NonHDLc  
Hypertension 
ln(Albumin Excretion 
Rate)  
Association Parameter 

0.09 
0.008 
0.47 
0.15 

0.32 

0.07, 0.11 
0.004, 0.01 
0.03, 0.83 
0.06, 0.23 

0.05, 0.51 
Stroke Longitudinal 

HbA1c random 
effects 

Intercept 
Time 
Diabetes Duration 
NonHDLc 
Hypertension 

8.33 
-0.04
-0.02
0.009
-0.36

7.81, 8.62 
-0.05, -0.03
-0.03, -0.01
0.007, 0.01
-0.66, -0.07

Cox Survival Diabetes Duration 
NonHDLc  
ln(Albumin Excretion 
Rate)  
Association Parameter 

0.08
0.01
0.27

0.71

0.03, 0.11
0.008, 0.02
0.15, 0.39

0.40, 0.92
Lower 
Extremity 
Arterial 
Disease 

Longitudinal 
HbA1c random 
effects 

Intercept 
Time 
Diabetes Duration 
NonHDLc 

8.39 
-0.03
-0.03
0.009

7.96, 8.71 
-0.05, -0.02
-0.05, -0.02
0.007, 0.012

Cox Survival Diabetes Duration 
NonHDLc 
Association Parameter 

0.06 
0.01 
0.34 

0.04, 0.09 
0.008, 0.02 
0.20, 0.51 
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Table 9.  Estimated Coefficients from Joint Models with a Random Effects Longitudinal 
HbA1c Sub-Model and a Cox Survival Sub-Model for Time to Each Specific Manifestation 
of Cardiovascular Disease, Adjusted for Updated Mean Covariates 
Outcome Sub-Model Covariates Estimate 95% CI 
Coronary 
Artery Disease 

Longitudinal 
HbA1c random 
effects 

Intercept 
Time 
Diabetes Duration 
NonHDLc 
ln(Albumin Excretion 
Rate)  

7.92 
-0.03
-0.03

0.0009
0.11 

7.30, 8.33 
-0.05, -0.02
-0.05, -0.02
0.007, 0.013
0.04, 0.17 

Cox Survival Diabetes Duration 
NonHDLc  
ln(Albumin Excretion 
Rate)  
White Blood Cell Count 
Association Parameter 

0.10 
0.008 
0.24 

0.10 
0.18 

0.08, 0.12 
0.004, 0.01 
0.13, 0.31 

0.0009, 0.18 
0.03, 0.30 

Stroke Longitudinal 
HbA1c random 
effects 

Intercept 
Time 
Diabetes Duration 
NonHDLc 
ln(Albumin Excretion 
Rate) 

8.04 
-0.04
-0.03
0.009
0.11

7.71, 8.41 
-0.05, -0.03
-0.05, -0.02
0.006, 0.011
0.06, 0.16 

Cox Survival Diabetes Duration 
NonHDLc  
ln(Albumin Excretion 
Rate)  
Association Parameter 

0.07 
0.013 
0.44 

0.62 

0.04, 0.11 
0.004, 0.02 
0.28, 0.59 

0.23, 0.86 
Lower 
Extremity 
Arterial 
Disease 

Longitudinal 
HbA1c random 
effects 

Intercept 
Time 
Diabetes Duration 
NonHDLc 
ln(Albumin Excretion 
Rate) 

8.08 
-0.03
-0.04
0.009
0.11

7.61, 8.46 
-0.05, -0.02
-0.05, -0.02
0.006, 0.011
0.06, 0.15 

Cox Survival Diabetes Duration 
NonHDLc 
ln(Albumin Excretion 
Rate) 
Association Parameter 

0.06 
0.014 
0.17 

0.30 

0.04, 0.08 
0.008, 0.018 
0.06, 0.27 

0.10, 0.45 
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4.5 DISCUSSION 

Our findings show that the longitudinal trajectory of HbA1c is associated with 25-year 

CVD incidence in this cohort of long-standing childhood onset type 1 diabetes and that this 

association does not differ by the specific manifestation of CVD.  The results of these joint 

models show that CVD risk is associated with the combination of a subject’s level of Hba1c at 

baseline and rate of change of HbA1c over follow-up, a longitudinal process represented by a 

random intercept and slope.  A one unit increase in the level of HbA1c is associated with a 40% 

increased risk of developing CVD, after adjusting for baseline CVD risk factors, and a 25% 

increased risk of CVD, after adjusting for each participant’s mean values of CVD risk factors 

over the follow-up.      

These results provide additional insight into the role of HbA1c on CVD risk, compared to 

other methods of assessing this relationship, such as modeling baseline HbA1c (62,215), updated 

mean HbA1c, change between the first and last HbA1c measurements (62), or a cumulative 

measure of glycemic exposure (58) as predictors.   Prior analyses of EDC data using baseline 

HbA1c, were unable to demonstrate an association between glycemia and CAD incidence 

(58,215). As evident in the plots of HbA1c trajectories shown in Figure 2, the level of HbA1c at 

baseline did not differ in those participants who went on to develop CVD versus those who did 

not.  However, as time progressed, the HbA1c trajectories between the two groups grew farther 

apart. Interestingly, in both groups, mean HbA1c rose until 6 years of follow-up, albeit more so 

in the CVD cases, which corresponds to calendar years 1992-1994, and began to decline steadily 
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thereafter, likely reflecting the implementation of intensive insulin therapy into clinical practice 

following the results of the DCCT (216).  In another prior EDC analysis, based on a 16 year 

follow-up, absolute change in HbA1c was significantly associated with CAD risk (62).  In those 

analyses, CAD cases had a mean increase in HbA1c of +0.62 between their first and last 

measures, while noncases had a mean decrease of -0.09.  The current analyses add additional 

information by incorporating all available HbA1c measures and within subject-variability, 

allowing us to quantify the increase in CVD risk associated with each unit increase in HbA1, 

while also adjusting for the mean level of other risk factors over time.  

Attenuation of the association between longitudinal HbA1c and CVD was somewhat 

greater when adjusting for the updated means of other CVD risk factors, compared to adjusting 

for the baseline values.  Additional analyses to determine which factors lead to the attenuation of 

the HbA1c effect revealed that mean non-HDLc had the greatest impact (data not shown).  Non-

HDLc is traditionally an important CVD risk factor in general, regardless of diabetes status and 

individuals with type 1 diabetes typically do not have higher non-HDLc levels than observed in 

the general population.  A report using data from the National Health and Nutrition Examination 

Surveys estimated that US adults had a mean non-HDLc of 155 mg/dl (95% CI 153-157) 

between 1988-1994 (217).  This value is markedly higher than the mean non-HDLc observed in 

the EDC cohort both at the 1986-1988 baseline (Table 5) and over follow-up (mean over all 

cycles=136.3, SD=36.3), thus non-HDLc level itself does not seem to explain the increased CVD 

risk associated with type 1 diabetes in this cohort. It is, however, possible that the effect of non-

HDLc could be modified by diabetes, so that CVD risk is increased even at lower levels of non-

HDLc.   Even given the observed attenuation of the effect of the HbA1c trajectory on CVD risk, 

the HbA1c trajectory remained a significant predictor of CVD independent of non-HDLc, 
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demonstrating that glycemic control may explain more of the increased CVD risk than has 

previously been shown in observational studies.  These findings are consistent with the recent 

report from the DCCT/EDIC, where updated weighted-mean HbA1c was found to be an 

important predictor of CVD incidence independent of lipid levels (187). 

 From a clinical perspective, these results provoke questions as to how the 

relationship observed here can be used to determine which patients should be targeted for CVD 

prevention based on their level of glycemic control. Data from a longitudinal study can be used 

to examine etiologic pathways that may take many years of follow-up to be revealed.  This 

information is in contrast to clinically available information, where often only a current snapshot 

of risk factor level is accessible. Potentially, this type of joint modeling could be used to create a 

“2-step” prediction model.  For example, cross-sectional HbA1c and other clinical characteristics 

are entered to first predict the longitudinal trajectory of HbA1c over time and then to 

subsequently translate this predicted trajectory into a patient’s risk of developing CVD.  An 

important unanswered question is whether some individuals are resistant to the benefits of 

intensive insulin therapy and would continue to be at high risk for CVD, regardless of HbA1c 

control.  As shown in Figure 9, in the EDC, the pattern of glycemic control was generally worse 

over time in those who developed CVD compared to those who did not. However, it is unclear 

whether hyperglycemia in the CVD cases was undertreated or if this group is resistant to the 

benefits of appropriate treatment.  The mean insulin dose between the CVD cases and noncases 

did not differ at baseline (Table 5) or at any other point during the follow-up (data not shown), 

suggesting that equivalent treatment for glycemia was less effective in those who went on to 

develop CVD.   It is possible that there are genetic factors that drive both resistance to glycemic 

control and CVD risk.  Identifying such factors is an important area of future research.        
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Our study has many strengths.  The EDC is a well-characterized, prospective cohort 

study with 25 years of follow-up to ascertain CVD incidence and clinical risk factors.  CVD 

events were verified using death certificates and medical records by reviewers who were masked 

to risk factor status.  Only HbA1c measurements prior to CVD incidence were included in these 

analyses to minimize the potential for reverse causality.  Using joint modeling we were able to 

incorporate all HbA1c measurements and model the longitudinal trajectory taking the within-

subject variability into account.  The major advantage of joint modeling is that it allows the 

relationship between longitudinal repeated measures and a time-to-event outcome to be 

examined.  As emphasized by Lim et al., joint modeling may be particularly useful when the 

goal is to use longitudinal measures of biomarkers to improve prediction of an event (128).  

Another advantage of using joint modeling in this type of application is that it is able to reduce 

the potential for bias associated with event-free survival far beyond the last measurement of a 

longitudinal covariate by accounting for the subject-specific random effects (131). Using simpler 

methods, such as modeling the two processes separately, may lead to bias if some subjects 

survive far beyond the most recent follow-up.  Joint modeling is able to account for this 

differential follow-up time by including the subject-specific random effects within the survival 

model (128,166).    

One limitation of our study is that the cohort is 98% Caucasian.  There are two main 

reasons for this overrepresentation of Caucasians: 1) the population of Allegheny County, 

Pennsylvania is <15% African American and 2) the incidence of type 1 diabetes was lower 

among African Americans during the period when the cohort was diagnosed. Consequently, it is 

unknown whether these results apply to more diverse groups.  There is also a potential for 

“survivor bias”, particularly in the older 1950-1964 diagnosis subcohort, because prevalent cases 
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of CVD at baseline were excluded from these analyses.  A limitation associated with joint 

modeling is that the censoring process is assumed to be independent of the random effects. If this 

assumption is violated then the parameter estimates may be biased (160).    

In conclusion, using joint modeling, we demonstrate that the longitudinal trajectory of 

HbA1c is associated with 25-year CVD incidence in this cohort of long-standing childhood onset 

type 1 diabetes and that this association does not differ by the specific manifestation of CVD.  

These results are in contrast to previous analyses using only baseline or mean HbA1c as 

predictors, which have not revealed a strong relationship between glycemic control and CVD 

(62,215).  Thus, these findings underscore the importance of utilizing methods that incorporate 

within-subject variation when analyzing data from longitudinal cohort studies.      
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5.0  DISCUSSION 

5.1 SUMMARY AND CONCLUSIONS 

These findings reflect a comprehensive examination of the epidemiology of CVD and its 

risk factors in type 1 diabetes.  Our first objective was to quantify the contemporary incidence 

and excess risk of CVD in young adults <45 years old with type 1 diabetes, which addresses a 

critical gap in the knowledge of this population in the United States.  We demonstrate that CVD 

risk continues to be significantly increased in type 1 diabetes, compared to the background 

population, and that this risk is particularly elevated in women with type 1 diabetes.  Our second 

objective was to utilize novel statistical methods to address limitations in the analyses of 

longitudinal cohort studies, in an effort to better understand the risk factor patterns that lead to 

the increased risk of CVD in this population.  One limitation of traditional analyses is that 

associations between risk factors and outcomes are assumed to be linear and continuous, 

ignoring the possibility of threshold effects or higher-order interactions between factors.  Using 

tree-structured survival analysis, we performed formal subgroup analysis and identified distinct 

groups at varying levels of risk for CVD, based on threshold effects of continuous risk factors.  

The factors defining these groups differed by diabetes diagnosis cohort and by sex, suggesting 

that the relative importance of CVD risk factors have changed over time and are different in men 

and women.  Another limitation in the analysis of cohort studies is the failure to adequately 
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utilize the repeated measures risk factor data by using only baseline or composite measures of 

risk factors that underestimate variability over time.  We used joint models to simultaneously 

model the longitudinal trajectory of HbA1c, including all measures obtained during the EDC 

follow-up, and time to CVD incidence.  We found that the longitudinal trajectory of glycemic 

control is associated with the risk of CVD.  Importantly, longitudinal HbA1c was similarly 

associated with all manifestations of CVD, including coronary artery disease, which is a new 

finding in this cohort.  Interestingly, longitudinal HbA1c was nearly equivalently associated with 

both CAD and LEAD, while the association was stronger for stroke incidence. These results 

support the findings from trial data, which show that glycemic control is important for 

preventing and delaying CVD, in addition to microvascular complications. 

5.2 FINDINGS 

5.2.1 Contemporary Cardiovascular Disease Burden 

A major gap exists regarding the contemporary burden of CVD in type 1 diabetes in the 

United States.  This is particularly true for young adults, who would be expected to have higher 

excess risk than older ages due to very low rates of CVD in young adults the general population.  

Additionally, treatment guidelines are unclear for young adults <40 years old, thus it is important 

to quantify risk in this group to inform clinical practice recommendations.  Treatment guidelines 

are based on extrapolations of data from the general and type 2 diabetes populations, but the 

usefulness of these recommendations in individuals with long duration type 1 diabetes is 
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questionable (185).  At any given age, the average duration of type 1 diabetes is significantly 

longer than type 2 diabetes, due to the typically younger age at onset.   

By examining data from EDC participants <45 years old between 1996-2012, we have 

attempted to address the question of whether there remains an excess risk of CVD, as was last 

demonstrated in the 1980s (55,69).  We found that both CVD mortality and hospitalized CVD 

event rates are still significantly increased compared to the age-matched background population.  

This increase is especially large for women, an issue discussed in further detail below. 

The excess CVD risk is consistent with data from other recent reports from Scotland (51), 

Sweden (52), and Australia (53), however, in our US cohort, our estimates suggest a greater 

excess risk than shown in all of these countries.  Differences in diabetes duration (i.e. length of 

exposure to diabetes) may explain some of the higher risk seen in the EDC cohort.  The other 

registries include adult-onset cases of type 1 diabetes, thus there is a shorter average diabetes 

duration at any given age.  There is also the distressing prospect that individuals with type 1 

diabetes in the United States are inadequately treated compared to their counterparts in other 

developed nations.  There is historical evidence to support this possibility.  A 1991 report from 

the DERI study found that premature mortality in type 1 diabetes was greater in the US and 

Japan compared to Finland and Israel (169).  Another prior report comparing data across 

countries showed that the United States has greater excess mortality associated with type 1 

diabetes than most of the European countries (with the exception of eastern Europe) and Canada 

(218).  The current findings add more evidence that prevention trials specific to type 1 diabetes 

are needed to address CVD risk in this high-risk population. 

We also quantified the absolute risk of CVD in young adults to address the question of 

whether their CVD risk is high enough to warrant statin therapy, regardless of cholesterol levels.  
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The American College of Cardiology/American Heart Association guidelines state that high-

intensity statin therapy is recommended in individuals between ages 40-75 years with diabetes 

and a ≥7.5% 10-year risk of CVD, but in individuals with diabetes who are <40 years old, the 

decision to being statin therapy should be individualized (73).  In cases of childhood-onset type 1 

diabetes, the duration of diabetes already exceeds 20 years by time an individual reaches age 30, 

so it is unclear how this recommendation should be applied in clinical practice.  In the EDC 

cohort, we find that young adults 30-39 years old have a 6.3% 10-year CVD risk, which 

approaches the 7.5% 10-year risk specified by the ACC/AHA guidelines.  However, it is 

important to note that 5% of this age group in the EDC cohort was already on lipid-lowering 

medication in 1996 and this proportion rose to 20% by 2012.  Thus, we can reasonably assume 

that the 10-year risk would exceed 7.5% if none of the cohort were using lipid-lowering 

medication.  These results support recommending statin therapy to all individuals with type 1 

diabetes duration of >20 years who are at least 30 years old and underscore the need for trial data 

specific to type 1 diabetes.          

5.2.2 Cardiovascular Disease Risk Stratification and Interactions Between Risk Factors 

The excess CVD risk that persists in type 1 diabetes also points to the need for better 

identification of individuals who are at high risk for targeted interventions.  Recommending 

statin therapy to a wider group, as discussed above, is an important strategy to consider. It is also 

likely that assessing the possibility of interactions between multiple risk factors could lead to the 

identification of subgroups, which may benefit from interventions that target a range of risk 

factors.  Using tree-structured survival analysis (TSSA), we were able to demonstrate the 

presence of such meaningful subgroups with differing levels of CVD risk in the EDC cohort.  
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For total CVD, five groups were identified based on threshold effects of continuously measured 

risk factors.  Interestingly, the five groups were based on combinations of different risk factors, 

but corresponded to 3 levels of CVD risk:  a low risk (24%) group characterized by shorter 

diabetes duration and younger age, with a relatively good risk factor profile, two moderate risk 

groups, one with shorter diabetes duration and younger age, but high non-HDLc and HbA1c, and 

the other with longer diabetes duration and older age, but a good risk factor profile (50 and 53% 

risk, respectively), and two high risk groups, one mostly women with higher WBC and smoking, 

and the other mostly men with renal disease (82 and 85% risk, respectively).  There are several 

intriguing observations that can be made regarding these results.  One observation is that the risk 

factors profiles of the subgroups differed in ways additional to those characterized by the factors 

chosen by this computational method as the splitting factors.  In other words, the method 

discriminated subgroups that were distinct from each other in more ways than just the 

combinations of diabetes duration, non-HDLc, albumin excretion rate, and WBC that defined the 

groups.  Another important observation is that having high non-HDLc cholesterol seems to erase 

the protection against CVD associated with shorter diabetes duration/younger age.  This finding, 

in combination with our finding that CVD risk remains significantly elevated in young adults 

with type 1 diabetes, underscores the importance of more aggressive treatment of cholesterol 

beginning at younger ages in this population. The American Association of Clinical 

Endocrinologists guidelines state that non-HDLc should be below 130 mg/dl for people with 

diabetes and below 100 mg/dl in the cases of diabetes with another major risk factor (e.g. 

advanced age, smoking, family history of CAD) (219).  Here, the optimal cut-point for non-

HDLc in EDC participants with diabetes duration of <20 years was 132.5 mg/dl, which is close 

to the recommendation of 130 mg/dl.  Prior analyses from the EDC study examining various 
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LDLc target levels concluded that LDLc>100mg/dl was associated with an increased risk of 

CAD (220).  Generally, a non-HDLc cut-point of 30 mg/dl higher than the LDLc cut-point is 

recommended (221), so again, the 132.5 mg/dl identified here is consistent with these prior 

results. 

In this TSSA analysis, we used baseline factors, so they account for exposures at only a 

single time point, which excludes any interpretation regarding cumulative exposures or changes 

in risk factor patterns over time.  However, it is an important finding that baseline factors were 

able to discriminate between groups so well because this situation is similar to what is 

encountered in clinical practice, where a care provider may only have access to the most recent 

measurements.  Computational decision tree methods, like TSSA, hold promise for helping to 

better elucidating the interrelationships between risk factors to increase understanding of the 

pathophysiology of CVD.  Traditional regression-based analysis methods tend to examine 

whether risk factors are related to outcomes independently, but this approach ignores the 

complex interactions between risk factors that are certainly occurring (115,146).  As more 

computational tools become available, it will be important to utilize them to continue to increase 

our understanding of disease processes.     

5.2.3 Longitudinal Trajectory of Glycemic Control and Cardiovascular Disease 

The inconsistent relationship between glycemic control and cardiovascular outcomes has 

been a perplexing issue in type 1 diabetes research. As diabetes is characterized by 

hyperglycemia, it is natural to assume that glycemia should explain the excess CVD risk 

observed in type 1 diabetes.  In the DCCT/EDIC, the intensive insulin therapy arm had 

significantly lower CVD incidence than the conventional therapy arm (74), which leads to the 
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logical assumption that lower HbA1c is protective against CVD incidence.  However, this 

relationship has not been consistent across observational studies of type 1 diabetes (56–63).  One 

potential explanation for the discordant results is that the DCCT participants had a shorter 

diabetes duration at baseline, so the intensive insulin therapy was begun early in the course of 

disease, raising the possibility that glycemia plays a greater role in the initiation of atherogenesis 

than in its progression (78).  Another possibility is that the DCCT intensive insulin therapy arm, 

with a mean baseline HbA1c of 9.1%, achieved an average HbA1c of 7.4% after 6 years (74), 

which is significantly lower than the average HbA1c in the observational studies.  For example, 

in the EDC data shown here, mean HbA1c was 8.75% at the 1986-88 baseline, decreased to 

8.4% 10-years later, and was approximately 8.0% at 18 years of follow-up (Figure 9).  This 

difference between the DCCT and observational studies suggests that perhaps the benefit of 

glycemic control on CVD risk may only be achieved at very low levels of HbA1c.  Another 

major difference is that the observational studies have generally examined only baseline HbA1c 

as a predictor of CVD incidence.  This approach provides valid results but does not account for 

changes in glycemic control over time that may affect risk (128).  The DCCT results encompass 

six years of intensive insulin therapy, so cumulative improvement in glycemic control over the 

course of the trial is accounted for, even if it is not directly modeled.  Prior analyses of the EDC 

cohort have attempted to account for the cumulative effect of HbA1c by modeling HbA1c-

months, a measure of exposure to excess HbA1c, similar to pack-years of smoking (58,222).  

This cumulative measure was still not independently associated with coronary artery disease.  

Another, more recent, analysis of EDC data also confirmed no association between CAD and 

baseline or mean HbA1c over follow-up, but did detect an inverse relationship with absolute 

change in HbA1c (62).  These results suggest that analyses need to incorporate variability in 
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HbA1c over time, but still do not provide an estimate of the relative risk of CVD associated with 

the level of glycemic control at any given time.  This point is essential for clinical relevance, as 

healthcare providers may only have a patient’s current HbA1c measure.  

To address the limitations discussed above, here we have presented the results of joint 

models of the longitudinal trajectory of HbA1c and time to CVD event.  Joint models incorporate 

the subject-specific random effects into the time-to-event framework, and thus model the 

combined effect of a subject’s baseline HbA1c level and rate of change over follow-up on the 

risk of an outcome by utilizing a random intercept and slope.  This method allows us to quantify 

the relative CVD risk associated with each unit increase in HbA1c, averaged over the entire 

longitudinal trajectory.   We find that a one unit increase in the level of HbA1c is significantly 

associated with a 40% increased risk of developing CVD, after adjusting for baseline CVD risk 

factors, and a 25% increased risk of CVD, after adjusting for the mean values of CVD risk 

factors over follow-up.  CAD has been the specific CVD outcome with the most inconsistent 

relationship with HbA1c, but here a one unit increase in HbA1c is associated with a 40% 

increased risk of CAD, after adjusting for baseline factors, and a 20% increased risk of CAD 

after adjusting for mean risk factor values over follow-up.   

Graphically examining the longitudinal trajectories of HbA1c by CVD incidence status 

provides further insight into the lack of association that has been previously reported.  As seen in 

Figure 9, baseline HbA1c was nearly identical regardless of subsequent CVD incidence status.  

With little variability in HbA1c, an association between baseline HbA1c and CVD risk could not 

possibly be detected.  Significant separation in the two trajectories is not observed until 6 years 

of follow up.  These first several years of HbA1c measures would drive much of the mean 

HbA1c over time. After the first 6 years of follow-up, HbA1c began to steadily decline, 
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reflecting the implementation of the DCCT results into clinical practice.  Even though the rate of 

decline (i.e. the slope) after 6 years appears to be the same in subsequent CVD cases compared 

to noncases, the cases had a larger increase in the first 6 years, and their HbA1c was 

approximately 0.5 units higher than those who did not develop CVD over the remainder of 

follow-up. 

It is intriguing that baseline levels of other CVD risk factors, specifically lipids and blood 

pressure, are able to predict CVD incidence, while baseline HbA1c does not.  Examining the 

longitudinal trajectories of non-HDLc and systolic (SBP) and diastolic blood pressures (DBP) in 

EDC reveals that participants who go on to develop CVD have higher levels of these traditional 

risk factors throughout the entire follow-up, including the baseline examination.  The levels of 

non-HDLc, SBP, and DBP increase over time to a greater degree in the subsequent CVD cases, 

but there is still obvious separation between the cases and noncases even >20 years prior to the 

event or censoring time.  This observation suggests that lipid and blood pressure disturbances in 

patients at high risk for CVD may become apparent earlier in the natural history of diabetes.  In 

contrast, HbA1c levels were nearly equivalent at baseline and separation between cases and 

noncases became greater closer to the time of CVD event.  The reasons for this lack of variability 

in HbA1c at baseline are unclear.  Given the wide range of years of diabetes duration (6-36 

years) represented at the EDC baseline, it would be expected that glycemic control would also 

vary widely.  One possibility is that while the standard insulin regimen at the time of the EDC 

baseline examination was generally inadequate, some individuals were more susceptible to the 

effects of this inadequate regimen than others and their control worsened over time, leading to 

increased vascular risk.  This explanation is supported by the HbA1c trajectories shown in Figure 

9, where the participants who subsequently developed CVD had accelerated worsening of 
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HbA1c under the period of conventional treatment (i.e. through year 6).  Beginning in follow-up 

year 8, after intensive insulin therapy had been initiated in clinical practice, their HbA1c declined 

at a rate similar to those who did not develop CVD.   The traditional CVD risk factors may be 

more strongly related to lifestyle and genetic factors that are not specific to diabetes, and thus 

appear earlier in the lifespan.  The differences in the trajectories of HbA1c and the traditional 

CVD risk factors warrants further investigation. Though baseline values of these other traditional 

factors have consistently been shown to be associated with CVD incidence in type 1 diabetes, 

using utilizing joint models to examine the relationship between their longitudinal trajectories 

and CVD incidence should provide more precise estimates of relative risk.  This type of analysis 

may also reveal important differences in longitudinal trajectories between subgroups of 

participants (e.g. men and women).  Performing joint models analysis for other CVD risk factors 

using EDC data is an important area of future research. 

5.2.4 Cardiovascular Disease Risk and Risk Factors in Men and Women 

While in the general population, women have lower risk of CVD than men, in diabetes 

this protection is essentially erased and women are consistently shown to have nearly equivalent 

absolute CVD risk as men (56,68).  This lack of protection in diabetes also means that women 

with diabetes have a greater excess risk of CVD than men, an effect that has been consistently 

shown across international studies (50–53,183).  In a 2015 meta-analysis, Huxley et al. reported 

a pooled SMR for CVD mortality of 11.3 in women versus 5.7 in men (50).  The difference in 

excess risk was somewhat greater for CAD events, with a pooled incidence ratio of 13.3 in 

women and 5.6 in men.  The results presented here are consistent, also showing a greater excess 

risk in women of both CVD mortality (Table 2) and all definitions of CVD and CAD events 
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(Table 4).  The excess risk observed in EDC is even greater than seen in women of comparable 

ages in other recent reports; some potential reasons for this difference were discussed in section 

5.2.1.  However, this differential excess risk seen in EDC compared to the Scottish and Swedish 

registries is even greater in women than in men.  This difference is not likely to be explained by 

the longer average diabetes duration in EDC versus the registries, which should not differ 

significantly by sex.  Rather, the difference in excess risk by sex supports the hypothesis that 

there is a treatment bias unfavorable to women.  A cross-sectional analysis of data from the 

DCCT/EDIC showed that women were less likely than men to achieve an HbA1c of <7% or 

<8% (223).  Women were also less likely to be treated with statins even if they had elevated 

LDL cholesterol levels (223). Differences in treatment by sex have also been shown in type 2 

diabetes, where women have been shown to be less likely to be using statins (224,225) and 

aspirin therapy (226,227) and also less likely to achieve target blood pressure and lipid levels 

than men (225,227).  In the EDC, throughout the 1996-2012 follow-up in the young adults 

<45 years old examined here, women were about half as likely as men to report taking lipid-

lowering medications, despite similar levels of LDL cholesterol.  This difference in lipid 

medication use by sex was not statistically significant.  Nevertheless, our results suggest the 

possibility that these treatment differences by sex in type 1 diabetes may be greater in the United 

States, compared to other developed countries, and warrants further study. 

 Despite the similar rates of CVD incidence in men and women with type 1 

diabetes, there is evidence that the risk factors for CVD differ by sex (56).  In the EDC study, 

nephropathy was found to be a stronger risk factor for CAD in men than in women (56), 

although in the Eurodiab study nephropathy predicted CAD incidence in both sexes (61).  In the 

EDC, smoking is a stronger risk factor in men, perhaps due to the fact that men are more likely 
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to smoke or smoke more than women, while depressive symptomatology and physical activity 

appear to predict CAD more strongly in women (56).  Hyperglycemia has also been shown to 

contribute to the development of hypertension more strongly in men than women in EDC (228).  

Different distributions of lipid levels by sex can lead to differential relationships with CVD 

outcomes and may at least partially explain the excess risk seen in women.  For example, while 

HDL cholesterol is generally protective, very high HDL cholesterol (>80mg/dl) appears to 

increase CAD risk in women with type 1 diabetes (229).  In men, an inverse linear association is 

present in men, but very few have HDL cholesterol levels >80mg/dl.  

  Here we have also shown that factors for risk stratification differ in men and women.  

While sex was not chosen as a splitting factor, in the overall CVD decision tree (Figure 4), one 

of the major differences between the two high risk, long diabetes duration groups (Groups D and 

E) was a differential sex distribution.  Group D was mostly female and characterized by worse

glycemic control and a much higher rate of current smoking than Group E.  In contrast, Group E 

was mostly male with greater renal damage, as measured by their very high median AER, and 

lower mean estimated glomerular filtration rate.  When separate trees were fit by sex (Figure 6, 

Panels a and b), diabetes duration was the primary splitting factor in women.  In women with 

longer diabetes duration at baseline, no other factors discriminated risk – a discouraging finding 

as diabetes duration is not a modifiable risk factor and the risk in this group is quite high, 

approaching 70% over 25 years of follow-up.  In women with shorter diabetes duration, non-

HDL cholesterol was the only discriminating factor.  Nearly 50% of the shorter duration women 

with non-HDL cholesterol >125 mg/dl developed CVD.  These women ranged in age from 13 to 

30 years old at baseline and thus only 38 to 55 years old at the end of follow-up, so they are at a 

particularly high CVD risk for such a young group. This finding underscores the importance of 
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more aggressive treatment of cholesterol, particularly in younger women, as discussed above. 

Albumin excretion rate only discriminated CVD risk in men.  This supports the earlier 

observation that renal disease may be a more important CVD risk factor in men compared to 

women (56).  Non-HDL cholesterol discriminated risk in men only in the case of lower AER.  In 

men with lower AER, but higher non-HDL cholesterol, waist-hip ratio further discriminated risk, 

supporting the role of insulin resistance in the development of CVD in men.  A measure of 

estimated insulin sensitivity, estimated glucose disposal rate, has been shown to be inversely 

related to cardiovascular outcomes in both sexes in EDC, but men do have lower insulin 

sensitivity, on average, than women (215).  So, as in the case of very high HDL cholesterol in 

women, this observation in men is more likely to be driven by a difference in the distribution of 

waist-hip ratio by sex, rather than by a true sex-specific effect of insulin resistance on CVD risk. 

Finally, when examining the effect of the longitudinal trajectory of HbA1c on CVD risk, 

there was no difference in the trajectory of HbA1c over time by sex.  There was also no evidence 

of a difference in the association between longitudinal HbA1c and CVD by sex, regardless of the 

manifestation of CVD.  This observation is consistent with the recent analyses from the 

DCCT/EDIC, where there was also no difference in the relationship between updated mean 

HbA1c and CVD by sex (187). 

5.2.5 Diabetes Diagnosis Cohort Effects 

One of the greatest strengths of the EDC study is that it represents a wide range of 

diabetes diagnosis years.  This characteristic means that the study cohort lends itself well to 

division into meaningful subcohorts that have experienced different natural histories due to the 

changing nature of diabetes treatment during the follow-up time.  Past analyses stratified by 
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diabetes diagnosis year have helped to quantify the impact of improvements in care, such as the 

initiation of intensive insulin therapy after the results of the DCCT, in an observational setting.  

Specifically, these previous analyses have examined changing incidence of complications over 

the decades of diagnosis years (191), a significant improvement in life expectancy in those 

diagnosed in 1965-1980 compared to 1950-1964 (188), and changing impacts of risk factors 

between those diagnosed in the 1960s versus the 1970s (230).  

In the analyses presented here, separate decision trees were built by diabetes diagnosis 

cohort to explore changes in factors for CVD risk stratification.  In the earlier, 1950-1964 

diagnosis cohort, AER was the only discriminating factor identified, which concurs with the total 

CVD tree, where AER was important at longer diabetes duration.  In contrast, the 1965-1980 

diagnosis cohort first split on non-HDL cholesterol.  In this more recent subcohort, AER only 

discriminated risk at lower levels of non-HDL cholesterol. This difference in the decision trees 

between the two diagnosis subcohorts supports the evidence that there may be a declining role of 

renal disease on CVD.  It has previously been shown that rates of renal disease, particularly end-

stage renal disease, have declined with time (168) and albuminuria has been shown to be less 

likely to precede CVD than reported in earlier studies (194).  

When examining the longitudinal trajectory of HbA1c, we observed differences by 

diagnosis cohort (Figure 10).  The 1950-64 diagnosis cohort had a lower mean baseline HbA1c 

and this difference persisted throughout most of the follow-up.  The HbA1c level in both 

diagnosis cohorts peaked at cycle 6 and then declined thereafter, reflecting the impact of the 

DCCT results being incorporated into clinical practice.  There was, however, a significant 

interaction between diagnosis cohort and time with respect to HbA1c, driven by the steeper 

decline in HbA1c observed after cycle 6 in the 1950-64 cohort, compared to the more recent 
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1965-80 cohort.  Despite this interaction with respect to HbA1c trajectory over time, there was 

no difference in the relationship between longitudinal HbA1c and CVD incidence by diagnosis 

cohort.  

5.3 STRENGTHS AND LIMITATIONS 

The work presented here has many strengths.  The Pittsburgh EDC is a well-characterized 

cohort with over 25 years of prospective follow-up to ascertain mortality and complication 

status, as well as several clinical visits providing repeated measures of clinical characteristics 

over time.  The study includes a wide range of diabetes diagnosis years, which enables analyses 

of the changing natural history of type 1 diabetes.   Deaths and cardiovascular outcomes were 

verified using death certificates, interviews with next of kin, autopsy reports, and medical 

records, as appropriate, and were classified by a committee of physicians who were masked to 

risk factors status.  The novel statistical methods applied to the data addressed key limitations of 

traditional analyses by formally assessing the presence of subgroups and higher-order 

interactions using tree-structured survival analysis and more complete utilization of the available 

repeated measures data on HbA1c using joint models. 

The major limitation of these data is the potential for “healthy survivor” bias due to 

deaths and the exclusion of participants with cardiovascular disease prior to baseline.  This issue 

could lead to an underestimation of the CVD risk in this cohort, as the highest risk participants 

may have died prior to the beginning of follow-up.  We have attempted to address this possibility 

by performing a sensitivity analysis for the estimated CVD rates and also by performing analyses 

separately between the two diagnosis subcohorts (1950-1964 and 1965-1980), since the bias, if 
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present, would occur almost exclusively in the earlier subcohort.  Another limitation of these 

analyses is the restricted availability of CVD hospitalization data from the background 

Allegheny County population.  This particularly impairs our ability to make estimates of excess 

risk that are as precise as those from other countries, where population-level databases are more 

comprehensive and accessible.  Additionally, these data are from a cohort of almost exclusively 

Caucasian (98%) people from Southwestern Pennsylvania and may not reflect the experience of 

all individuals with type 1 diabetes in the United States.  The EDC study is also a hospital-based 

cohort, which may further restrict the generalizability of these results.  However, it has 

previously been shown that the epidemiologic characteristics (167) and mortality experience 

(188) of the EDC closely reflect those of the population-based Allegheny County type 1 diabetes

registry for individuals who were diagnosed during the same period.  Furthermore, it has also 

been shown that patterns of complication incidence in the EDC are similar to those of the 

conventional treatment arm of the DCCT, in a subgroup with similar baseline characteristics 

(194), lending support to the generalizability of the EDC cohort.         

5.4 DIRECTIONS FOR FUTURE RESEARCH 

The results presented here highlight several key questions that remain regarding CVD in 

type 1 diabetes.  One major question is: what is the contemporary burden of CVD in individuals 

with type 1 diabetes who are aged <30 years?  The EDC cohort does not have optimal numbers 

of individuals in this younger age range after 1996 to estimate contemporary CVD risk in this 

group.  Combining EDC data with data from younger individuals also diagnosed at Children’s 

Hospital of Pittsburgh would help to address this issue in a comparable group.  A combined 
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analysis would also allow more exploration into changes in factors for risk stratification, as well 

as examination of the impact of the HbA1c trajectory in a group who had a greater proportion of 

their diabetes natural history in the post-DCCT era.  These analyses could also be used to explore 

at what age elevated CVD risk factors begin to translate into clinical CVD events.   

Within the EDC cohort, additional analyses that better account for the effect of 

medications, such as statin therapy, on CVD risk should be undertaken.  In these current 

analyses, the proportion of young adults <45 years old using statins started out very low (<5% in 

1996), but rose to approximately 20% over follow-up.  Analyses that attempt to incorporate the 

effects of statins on CVD incidence would give us a better estimate of the untreated/baseline 

CVD risk and allow us to quantify how this risk is modified by treatment.  Performing these 

analyses by sex is especially important, given the evidence that women are at a greater excess 

risk for CVD and may be undertreated for CVD risk factors. 

As an exploratory method, the decision tree analysis naturally lends itself to many 

follow-up analyses.  One interesting application of these results would be to look within the 

subgroups identified using clinical risk factors to examine differences in novel markers of risk, 

similar to the analysis by Costacou et al. (116).  In that earlier analysis, candidate genes were 

examined.  The EDC study has recently obtained new genotyping data that would now allow a 

genome wide association study (GWAS) to be performed, opening the possibility of identifying 

new genetic markers for CVD risk.  A key question is: why are some individuals who are 

expected to be at high risk for CVD according to their clinical characteristics protected and, 

conversely, why are some individuals expected to be at low risk for CVD susceptible?  Many 

novel risk factors, including genes and cytokines, could be examined in these groups in an 

attempt to further discriminate risk and better predict which individuals will develop CVD.  
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Decision tree methods could also be used to identify better cut-points for treatment targets and to 

inform planning for clinical trials specific to type 1 diabetes.  Rather than identifying a single 

risk factor target level for the entire type 1 diabetes population, this type of machine learning 

method could be used to identify subgroup-specific target levels based on combinations of risk 

factors.  A key limitation of the decision tree analysis is that because it is an exploratory method, 

it that requires external validation before the results could be widely translated.  Collaborating 

with other studies of type 1 diabetes cohorts and registries to validate the factors and cut-points 

for CVD risk stratification should be a priority.     

Expanding on the joint models presented here is another area of future study.  One 

potential direction is to utilize this method or another related method to extend the understanding 

of the progression of glycemia over the natural history of type 1 diabetes and its relationship to 

the development of macrovascular disease.  One problem with translating the results of 

longitudinal cohort studies like the EDC into clinical practice is the lack of complete information 

available to the healthcare provider.  Data from a longitudinal study can be used to examine 

etiologic pathways that may take many years of follow-up to be revealed.  This is in contrast 

with clinically available information, where often only a current snapshot of risk factor levels is 

accessible.  Potentially, this type of joint modeling could be used to create a “2-step” prediction 

model.  For example, cross-sectional HbA1c and other clinical characteristics are entered to first 

predict the longitudinal trajectory of HbA1c over time and then to subsequently translate this 

predicted trajectory into a patient’s risk of developing CVD.  Additionally, statisticians are 

developing and refining methods to jointly model longitudinal risk factors and multiple time-to-

event outcomes (231).  In these models, the longitudinal trajectory of a risk factor can be used to 

predict a sequence of time-to-event outcomes, such as a CVD event and subsequent death. Type 
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1 diabetes is characterized by many different complications, thus applying this type of modeling 

has great potential to increase understanding of the natural history of complication development 

in this population.  The pathways from renal disease to CVD and CVD to mortality are of 

particular interest.  Finally, the two major approaches described here, TSSA and joint modeling, 

could be combined.   First, TSSA could be used to identify major subgroups and then joint 

modeling could be applied within the groups to determine whether trajectories of other 

continuous risk factors differ with respect to time and their relationship to CVD incidence. 

5.5 PUBLIC HEALTH IMPLICATIONS 

We have demonstrated that young adults with type 1 diabetes remain at a significantly 

increased risk of CVD mortality and morbidity compared to the age- and sex-matched 

background population. The excess risk is especially great in younger women. Likewise, risk 

stratification showed that women with shorter diabetes duration at baseline who also have 

elevated non-HDL cholesterol had an approximate 50% risk of developing CVD by age 55.  We 

have also shown that young adults with type 1 diabetes who are between 30-39 years old have a 

6.3% 10-year risk of developing CVD overall, which approaches the 7.5% 10-year risk threshold 

for intensive statin therapy recommended for adults >40 years old by the ACC/AHA (73).   

However, the 10-year risk we estimate for 30-39 years old includes individuals who are already 

on statin therapy, which rose to 20% of the group by the end of follow-up.  Thus, we can 

reasonably assume that the 10-year risk would exceed 7.5% if none of the cohort were using 

lipid-lowering medication.  These results support recommending statin therapy to all individuals 

with type 1 diabetes duration of >20 years who are at least 30 years old.  These findings also 
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underscore the need for cholesterol and blood pressure intervention trials specific to type 1 

diabetes to address the excess risk that remains in this population, particularly in young adults 

and women.          

The relationship between glycemic control and CVD has historically been inconsistent 

across trial data and observational studies.  Here, by utilizing an analysis method that 

incorporates the longitudinal trajectory of glycemia, we have been able to quantify the relative 

CVD risk associated with each unit increase in HbA1c, averaged over the entire longitudinal 

trajectory.  These findings add important information to the understanding of how the 

relationship between hyperglycemia and CVD develops over time.  It supports the need for good 

glycemic control, in addition to lipid and blood pressure control, to prevent CVD in type 1 

diabetes.  

From an analytic standpoint, this work demonstrates the need to consider the limitations 

of traditional statistical methods for analyzing data from longitudinal cohort studies.  The 

relationships between risk factors and disease are complicated and may not be adequately 

represented by traditional methods with assume characteristics such as linearity or do not 

account for changes over time.  The accessibility of computationally intensive methods is ever 

increasing due to higher processing capabilities and the availability of open source programs.   

This body of work has therefore demonstrated a comprehensive examination of the 

epidemiology of CVD and its risk factors in type 1 diabetes. We have quantified the 

contemporary incidence and excess risk of CVD in young adults <45 years old with type 1 

diabetes and have utilized novel statistical methods to address limitations in the analyses of 

longitudinal cohort studies.  These novel methods have enabled us to identify subgroups at 

varying levels of CVD risk and to estimate the association of longitudinal HbA1c with CVD 
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incidence.  This work demonstrates that novel methods should be considered as part of the 

epidemiologic “toolbox” as a complement to more traditional methods to increase understanding 

of disease etiology. 
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APPENDIX A. EXAMINATION OF THE DOSE RESPONSE RELATIONSHIPS 

BETWEEN RISK FACTORS AND CARDIOVASCULAR DISEASE IN TYPE 1 

DIABETES USING RESTRICTED CUBIC SPLINES 

Blood Pressure and 25-Year Risk of Coronary Artery Disease (CAD) by Sex in Type 

1 Diabetes (T1D):  The Pittsburgh Epidemiology of Diabetes Complications (EDC) Study 

Diastolic Blood Pressure (DBP) has been shown to have a J-shaped relationship with 

CAD in many studies.  Trial data have suggested that aggressively lowering BP can have 

detrimental CAD effects, but there is a lack of evidence in T1D.  Thus we aim to model the dose-

response relationship between Systolic BP (SBP) and DBP with CAD incidence separately by 

sex to examine whether there is increased risk at low BP levels and if this relationship differs in 

men and women with T1D. 

Participants in the Pittsburgh EDC, a prospective cohort study of childhood onset T1D, 

were followed for 25 yrs to ascertain CAD incidence (first instance of fatal CAD, myocardial 

infarction, revascularization, coronary stenosis >=50%, ischemic ECG, or angina). Restricted 

cubic splines in Cox models were used to model baseline (1986-88) SBP and DBP on risk of 
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CAD in those who were free of prevalent CAD at baseline (n=304 men, 301 women, mean 

age=27, T1D duration=19yrs). 

Over 25 yrs, 109 (35.9%) men and 101 (33.6%) women developed CAD.  SBP had a 

linear association with CAD in both sexes (p<.0001). For DBP, no association was observed in 

men (p=0.21), but a J-shaped association was observed in women (nonlinear p=0.005), with a 

nadir at approximately 75 mmHg (Figure 10).  This nonlinear association remained after 

covariate adjustment (p=0.03).   

These data suggest that the shape of the relationship between diastolic blood pressure and 

CAD differs by sex in T1D.  More research is needed to determine whether aggressive lowering 

of blood pressure is associated with increased risk of CAD in women with T1D.  
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Figure 10.  Hazard Rations Over the Range of Diastolic Blood Pressures (DBP) and 
Coronary Artery Disease by Sex, Restricted Cubic Spline Analysis 
Albumin Excretion Rate (AER) Has A Nonlinear Association With Coronary Artery Disease 
(CAD) Mortality In Type 1 Diabetes (T1D): The Pittsburgh Epidemiology Of Diabetes 
Complications (EDC) Study   

 

 

 

Background:  There is evidence that risk for CAD may increase at AER levels below the 

microalbuminuria threshold (20 μg/min). Accurately determining the shape of this relationship is 

critical for prevention efforts.  We thus modeled the dose-response relationship between AER 

and CAD. 
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Methods:  EDC study participants diagnosed with T1D from 1965-1980 and without 

CAD (n=413 mean) were followed for 25 years from baseline (1986-88) when mean T1D 

duration and age were 15 and 23yrs; 50% male. The association between baseline ln(AER) and 

CAD incidence (fatal CAD, MI, revascularization procedure/blockage ≥50%, ischemic ECG or 

angina) and mortality was modeled using Cox proportional hazards with restricted cubic splines 

(five knots at fixed percentiles - 5th: 3.7µg/min, 25th: 7.2µg/min, 50th: 13.9µg/min, 75th:100.5 

µg/min, and 95th:1863 µg/min). 

Results:  There were 95 (23%) cases of incident CAD.  Risk of total CAD increased 

linearly with increasing AER (p<.0001) but adding nonHDL-cholesterol to the model attenuated 

the relationship (p=0.19); there was no evidence for a nonlinear relationship (Figure 11, 

nonlinear effect p=0.55).  Risk of fatal CAD (29 cases) increased between ~12-150 µg/min and 

then remained constant at higher AERs (Figure, adjusted nonlinear effect p=0.01). 

Conclusions: Risk of fatal CAD seems to increase before the 20 µg/min 

microalbuminuria threshold is reached and remains constant at AER>150 µg/min. 
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Figure 11. Log Hazard Ratios Over the Range of ln(Albumin Excretion Rate) and Total 
and Fatal Coronary Artery Disease, Restricted Cubic Spline Analysis 
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APPENDIX B. COMPARISONS OF RELATIVE AND ABSOLUTE RISKS OF 

MORTALITY AND CARDIOVASUCLAR DIEASE ACROSS COUNTRIES 

Table 10. Comparison of EDC Estimated Excess Mortality and CVD with Recent 
International Reports 

EDC Scottish Registry 
Linkage Study (51) 

Swedish National 
Diabetes Register (52) 

Australia (182) 

Follow-Up 
Period 

1996-2012 2005-2007 1998-2011 1997-2003; 
2004-2010* 

Age 
Group 

SMR 
(95% CI) 

Age 
Group 

SMR 
(95% CI) 

Age 
Group 

HR 
(95% CI) 

Age 
Group 

SMR 
(95% CI) 

Total Mortality 

Men 30-39 2.4 
(0.97, 5.0) 

30-39 3.4 
(2.8, 4.0) 

18-34 2.8 
(2.3, 3.5) 

30-39 4.1 (3.6, 4.6);
4.1 (3.6, 4.7)* 

40-44 4.7 
(2.7, 7.6) 

40-49 4.0 
(3.8, 4.2) 

35-49 4.3 
(3.8, 4.8) 

40-49 4.7 (4.3, 5.1);
4.4 (4.0, 4.8)* 

Women 30-39 9.2 
(4.8, 15.9) 

30-39 5.2 
(3.7, 7.2) 

18-34 4.1 
(3.1, 5.4) 

30-39 4.6 (3.9, 5.3);
5.0 (4.2, 5.9) 

40-44 6.7 
(3.4, 11.9) 

40-49 4.7 
(3.6, 6.2) 

35-49 4.4 
(3.7, 5.2) 

40-49 4.7 (4.2, 5.3);
4.2 (3.8, 4.7)* 

Cardiovascular 
Mortality 

Men 30-39 18.5 
(5.9, 44.7) 

- - 18-34 3.5 
(1.9, 6.4) 

- - 

40-44 16.4 
(8.0, 30.0) 

- - 35-49 5.4 
(4.3, 6.8) 

- - 

Women 30-39 63.4 
(25.7, 
131.8) 

- - 18-34 6.9 
(2.8, 17.3) 

- - 

40-44 31.6 
(12.8, 
65.7) 

- - 35-49 7.5 
(5.2, 10.9) 

- - 
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Table 11. Comparison of EDC Estimated Excess CVD with the Scottish Registry Linkage 
Study 

EDC Scottish Registry 
Linkage Study 

Follow-Up Period 1996-2012 2005-2007 

Total CVD 
Incidence 

Age 
Group 

Rate Ratio 
(95% CI) 

Age 
Group 

Rate Ratio 
(95% CI) 

Men 30-39 6.7 
(1.1, 22.0) 

20-39 4.8 
(3.7, 6.2) 

40-44 4.0 
(1.5, 8.9) 

40-49 3.1 
(2.7, 3.6) 

Women 30-39 10.0 
(1.7, 33.0) 

20-39 5.5 
(4.2, 7.2) 

40-44 15.8 
(7.7, 29.0) 

40-49 5.1 
(3.8, 6.8) 



116 

Table 12. Comparison of EDC Absolute and CVD Mortality with Recent International 
Reports 

EDC Scottish 
Registry 

Linkage Study 

Swedish  
National  

Diabetes Register 

Australia 

Follow-Up 
Period 

1996-2012 2005-2007 1998-2011 2006 

Age 
Group 

Rate per 
100,000 

(95% CI) 

Age 
Group 

Rate per 
100,000 

(95% CI) 

Age 
Group 

Rate per 
100,000 

(95% CI) 

Age 
Group 

Rate per 
100,000 

Total 
Mortality 

Men 30-39 444 
(180, 920) 

30-39 627 
(474, 816) 

≥18 997 
(959, 1035) 

0-39 269 

40-44 1430 
(800, 2287) 

40-49 1236 
(1023, 1481) 

40-60 1198 

Women 30-39 813 
(428, 1409) 

30-39 418 
(281, 599) 

0-39 190 

40-44 1096 
(558, 1946) 

40-49 843 
(642, 1088) 

40-60 689 

CVD 
 Mortality 

Men 30-39 296 
(94, 712) 

- - ≥18 342 
(320, 365) 

0-39 49 

40-44 902 
(441, 1648) 

- - 40-60 338 

Women 30-39 443 
(180, 920) 

- - 0-39 22 

40-44 658 
(267, 1363) 

- - 40-60 128 
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Table 13.  Comparisons of Absolute CVD Incidence with the Scottish Registry Linkage 
Study 

EDC Scottish Registry Linkage 
Study 

Follow-Up Period 1996-2012 2005-2007 

Total CVD 
Incidence 

Age 
Group 

Rate per 
100,000 

(95% CI) 

Age 
Group 

Rate per 
100,000 

(95% CI) 

Men 30-39 1036 
(591, 1690) 

20-39 273 
(197, 369) 

40-44 2705 
(1827, 3858) 

40-49 1154 
(944, 1397) 

Women 30-39 887 
(481, 1503) 

20-39 176 
(110, 276) 

40-44 1974 
(1211, 3041) 

40-49 814 
(613, 1060) 
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