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Abstract

Background

Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease, lead-

ing to severe disability and death in young men. Death is caused by the progressive degen-

eration of striated muscles aggravated by sterile inflammation. The pleiotropic effects of the

mutant gene also include cognitive and behavioral impairments and low bone density.

Current interventions in DMD are palliative only as no treatment improves the long-term

outcome. Therefore, approaches with a translational potential should be investigated, and

key abnormalities downstream from the absence of the DMD product, dystrophin, appear to

be strong therapeutic targets. We and others have demonstrated that DMDmutations alter

ATP signaling and have identified P2RX7 purinoceptor up-regulation as being responsible

for the death of muscles in themdxmouse model of DMD and human DMD lymphoblasts.

Moreover, the ATP–P2RX7 axis, being a crucial activator of innate immune responses, can

contribute to DMD pathology by stimulating chronic inflammation. We investigated whether

ablation of P2RX7 attenuates the DMDmodel mouse phenotype to assess receptor suitabil-

ity as a therapeutic target.

Methods and Findings

Using a combination of molecular, histological, and biochemical methods and behavioral

analyses in vivo we demonstrate, to our knowledge for the first time, that genetic ablation of

P2RX7 in the DMDmodel mouse produces a widespread functional attenuation of both
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muscle and non-muscle symptoms. In dystrophic muscles at 4 wk there was an evident

recovery in key functional and molecular parameters such as improved muscle structure

(minimum Feret diameter, p < 0.001), increased muscle strength in vitro (p < 0.001) and in

vivo (p = 0.012), and pro-fibrotic molecular signatures. Serum creatine kinase (CK) levels

were lower (p = 0.025), and reduced cognitive impairment (p = 0.006) and bone structure

alterations (p < 0.001) were also apparent. Reduction of inflammation and fibrosis persisted

at 20 mo in leg (p = 0.038), diaphragm (p = 0.042), and heart muscles (p < 0.001). We show

that the amelioration of symptoms was proportional to the extent of receptor depletion and

that improvements were observed following administration of two P2RX7 antagonists (CK,

p = 0.030 and p = 0.050) without any detectable side effects. However, approaches suc-

cessful in animal models still need to be proved effective in clinical practice.

Conclusions

These results are, to our knowledge, the first to establish that a single treatment can

improve muscle function both short and long term and also correct cognitive impairment

and bone loss in DMD model mice. The wide-ranging improvements reflect the conver-

gence of P2RX7 ablation on multiple disease mechanisms affecting skeletal and cardiac

muscles, inflammatory cells, brain, and bone. Given the impact of P2RX7 blockade in the

DMDmouse model, this receptor is an attractive target for translational research: existing

drugs with established safety records could potentially be repurposed for treatment of this

lethal disease.

Introduction
Duchenne muscular dystrophy (DMD) results in loss of dystrophin, which disrupts structural
scaffolds for dystrophin-associated proteins (DAPs) as well as specific signaling processes,
causing progressive muscle loss with sterile inflammation [1]. Symptoms also include cognitive
and behavioral impairment [2] and bone structure abnormalities [3], both irrespective of the
functional muscle impairment. This symptom diversity illustrates the importance of DMD
gene expression in various cells.

Molecular approaches aimed at restoration of dystrophin hold some promise, but achieving
the 15%–20% level of expression required to fully protect muscle fibers [4] in all crucial muscle
groups remains a challenge. Moreover, muscle targeting would not tackle non-muscle symp-
toms. Therefore, alternative strategies should be investigated, and treatments aimed at alter-
ations downstream from the absence of dystrophin have shown therapeutic promise [5].
Clearly, targeting signaling pathways using pharmacological agents is currently more achiev-
able than restoration of structural proteins via molecular approaches.

We and others have demonstrated that DMDmutations impact on the control of ATP sig-
naling and have identified P2RX7 up-regulation as being responsible for the death of human
DMD lymphoblasts and muscles in themdxmouse model of DMD [6–11]. Analyzing the con-
sequences of P2RX7 activation, we discovered a novel mechanism of autophagic cell death, and
pharmacological blockade or genetic ablation of P2RX7 proved protective against the ATP-
induced death of dystrophic muscles [12].

P2RX7 belongs to a family of cell membrane ATP-gated ion channels. Unlike some other
purinoceptors, full activation of P2RX7 requires high levels of extracellular ATP (eATP),
which occur in inflammatory conditions [13]. P2RX7 was originally identified on macrophages
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and lymphocytes as a sensor of eATP released from damaged cells (one of the damage/danger-
associated molecular patterns [DAMPs]) and was considered an activator of the “danger
mode” of the immune response [14].

Levels of cytoplasmic ATP in skeletal muscles are particularly high, so there is a potential
for 5–10 mM eATP at the dystrophic cell membrane [10]. Furthermore, the DAP α-sarcogly-
can is a muscle-specific ATP hydrolase responsible for 25% of eATP degradation [15]. In
DMD, α-sarcoglycan is lost from the sarcolemma [1], which raises eATP levels, creating an
environment consistent with increased activation of P2RX7.

Crucially, P2RX7 expression and function are increased in many diverse pathologies such as
rheumatoid arthritis, graft-versus-host disease, transplant rejection, neuro-inflammation, pain
[16], and limb-girdle muscular dystrophy type 2B—another muscular dystrophy with an
inflammatory component [8]. As P2RX7 upregulation is present in both DMD [6] andmdx
mice [9], over-activation of P2RX7 could contribute to damage both directly by causing the
death of dystrophic muscles [12] and indirectly by stimulating harmful inflammatory
responses.

We bredmdxmice with Pfizer or Glaxo P2RX7 knockout mice and developed two lines of
dystrophic mice (Fig 1A). One line (Pf-mdx/P2X7−/−) lacked functional receptors [17]. The
second (G-mdx/P2X7−/−) was an isoform knockout, in which the main (P2RX7a) variant was
knocked out but the low-expression P2RX7k variant escaped inactivation [18]. Therefore, the
latter served as an additional control. These models were used to establish the impact of P2RX7
ablation on the dystrophic pathology in muscle, brain, and bone and to assess its suitability as a
therapeutic target.

Methods
All animal experiments were performed in accordance with approvals from the Institutional
Ethical Review Board, University of Portsmouth, and the Home Office, UK (70/7479), and

Fig 1. Generation and characterization ofmdx/P2X7−/− mice. (A) Schematics of mouse breeding. (B)
Representative Western blots showing increased expression of P2RX7 in 4-wk-oldmdx compared to wild-
type (WT) gastrocnemius and its absence inmdx/P2X7−/−. Use of separateWestern blots is indicated by
solid black lines. (C) Micrographs of P2RX7 immunofluorescence localization (green signal) in 4-wk-old
tibialis anterior (TA) muscle fromWT,mdx, and Pf-mdx/P2X7−/− mice showing expression in areas rich with
infiltrating cells, and negative control using no primary antibody and with a blue signal denoting nuclear
counterstaining.

doi:10.1371/journal.pmed.1001888.g001
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with the recommendations of Directive 2010/63/EU of the European Parliament and of the
Council of September 22, 2010, L276/33 (20.10.2010). The protocols (see below and S1 Check-
list) were approved by the French Local Ethical Committee of Normandy (CENOMEXA;
approval numbers N/14-04-04-16, N/15-04-04-17, and N/16-04-04-18) and were conducted in
an authorized animal facility (authorization number C-76-540-2), under the supervision of
authorized investigators (J. C. do Rego; authorization number 76.A.29 from the Ministère de
l’Agriculture et de la Pêche, France). Investigators were blinded to the sample group allocation,
where possible.

Generation of Double-Mutant Mice
Animals were central to this project, as there is no in vitro system allowing testing of a disease
involving muscle damage and inflammatory processes, which are, in addition, interdependent.
In a consensus opinion of experts, themdxmouse is currently the most appropriate preclinical
model to test treatment efficacy for DMD (http://www.treat-nmd.eu/research/preclinical/dmd-
sops/).

Pfizer and Glaxo P2RX7 knockout male mice [19,20] were crossed withmdx C57Bl/10ScSn-
Dmdmdx/J female mice (Harlan Laboratories). Male F1 mice were sequentially intercrossed
withmdx females to generate double-mutant mice. The F3 generation showed the expected
Mendelian distribution of genotypes, all of them on anmdx background. The P2X7−/− and
mdx genotypes were identified by PCR using ear biopsy genomic DNA. The genotype was con-
firmed by Western blotting of muscle samples, using anti-dystrophin and anti-P2RX7 antibod-
ies (listed below).

To mimic the clinically relevant situation, analyses were performed in male mice (unbiased
by gender). At 4 wk,mdxmice show muscle degeneration and regeneration and an inflamma-
tory cell infiltration pattern akin to the human pathology. The diaphragm is themdxmuscle
that undergoes progressive degeneration, which is particularly noticeable at older ages [21]. In
DMD patients, those who survive to the third decade present with cardiomyopathy and heart
failure [22]. Therefore, diaphragms and hearts were studied at 20 mo to investigate the late-
stage effects of receptor ablation.

Antagonist Administration
Starting at 2 wk of age,mdxmice were treated daily by intraperitoneal injection for 4 wk with
125 mg/kg body weight Coomassie Brilliant Blue G 250 (CBB) (Sigma-Aldrich) or for 4 wk
with 8.4 mg/kg body weight oxidized ATP (ox-ATP) (Tocris Bioscience) or for 2 wk with 50
mg/kg body weight A-438079 (Tocris Bioscience). Dosage was based on previous studies
[9,23,24]. Age-matched control mice received the same volume of sterile saline (for CBB and
ox-ATP) or saline with 20% v/v DMSO solution (for A-438079).

PCR Analysis
PCRs for the identification of P2RX7, WT, and mutant alleles were performed using the follow-
ing primers: Pfizer exon-13 WT (Fv 50-TGGACTTCTCCGACCTGTCT; Rv 50-TGGCATAG
CACCTGTAAGCA) and neomycin cassette KO (Fv 50-CTTGGGTGGAGAGGCTATTC; Rv
50-AGGTGAGATGACAGGAGATC), and Glaxo exon-1 WT (Fv 50-TGCCCATCTTCTGAA
CAC; Rv 50-CTTCCTCTTACTGTTTCCTCCC) and LacZ KO variant (Fv 50- TGCCCATCTT
CTGAACAC; Rv 50-GCAAGGCGATTAAGTTGGG). Themdxmutation was identified using
ARMS (amplification refractory mutation system) primers as previously described [25]. PCR
conditions were as follows: denaturing at 94°C for 3 min; 35–40 cycles of 94°C for 30–40 s,
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55–59°C annealing for 30–40 s, and elongation at 72°C for 1 min per kilobase of expected PCR
product length; followed by a final 10-min elongation step at 72°C.

Quantitative PCR Analysis
Total RNA was extracted using the RNeasy Kit (Qiagen) per manufacturer’s instructions, and
1 μg of RNA was used for cDNA synthesis. 25–50 ng of the cDNA was used to perform expres-
sion analyses with Taqman on the StepOnePlus System (Applied Biosystems) or using the
ViiA 7 Real-Time PCR System (Life Technology) and using SYBR Green on the LightCycler
1536 (Roche). All data were analyzed using Qbase+ software (Biogazelle). Quantitative PCR
(qPCR) primers used for the analysis were purchased from Applied Biosystems or Primer
Design. A set of 12 candidate reference genes (Primer Design) was tested, and the most stably
expressed genes were determined using the geNorm tool of the Qbase+ software. These were
used as reference to establish individual gene expression values (2−ΔΔCT). Four to five biological
replicates (individual mice) for each genotype were analyzed in duplicate, and all samples were
run on the same plate to avoid inter-run variation and calibration. qPCR analyses were per-
formed in Portsmouth, Rouen, and Pittsburgh, and results for overlapping transcripts were
cross-referenced between collaborating centers.

RNA-Seq Analysis
RNA was extracted as described above from TA muscles isolated from four individual mice per
genotype. RNA quality was confirmed using Bioanalyzer (Agilent) per manufacturer’s instruc-
tions, and RNA-Seq was performed by a commercial service provider, Source BioScience. Raw
FASTQ files were preprocessed by quality and adapter trimming and mapping to mouse
genome (mm10 genome assembly, UCSC Genome Browser), and expression quantification
was performed using the Tuxedo suite (TopHat and Cufflinks, [http://www.nature.com/nprot/
journal/v7/n3/full/nprot.2012.016.html]). Genes of interest were selected to match the Qiagen
mouse fibrosis PCR array (http://www.sabiosciences.com/rt_pcr_product/HTML/PAMM-
120A.html). The resulting gene-level expression table for relevant RNAs is available as S2
Table.

Antibodies
The following antibodies were used: CD4–14–0041, CD8–14–0081, and Ly6G—14–5931, all rat
monoclonal (eBioscience); IL1B—8689, rabbit polyclonal (Cell Signaling Technology); F4/80—
ab74383 and collagen type-Ia—ab34710, both rabbit polyclonal (Abcam); CD68—MCA1957GA
and CD206—MCA2235GA, both rat monoclonal (AbD Serotec); CD163—sc-33560, rabbit
polyclonal (Santa Cruz Biotechnology); dystrophin—MANDRA1, mouse monoclonal, and myo-
genin—FD5, rat monoclonal (Developmental Studies Hybridoma Bank); LC3II—L7543 and
actin—A2066, both rabbit polyclonal, and GAPDH—G9545 (Sigma-Aldrich); collagen type-IV
—AB769, goat polyclonal (Chemicon); P2X7–177 003, rabbit polyclonal (Synaptic Systems);
β-tubulin—IMG-5810A, rabbit polyclonal (Imgenex); dystrophin—2166, rabbit polyclonal, was a
kind gift from D. J. Blake, Cardiff University.

Western Blotting
Total proteins from frozen tissues were extracted by crushing samples in liquid nitrogen, with
further homogenization in extraction buffer: 1× Lysis-M, 1× protease inhibitor cocktail, 2×
phosphatase inhibitor cocktail (all Roche), 2 mM sodium orthovanadate (Sigma-Aldrich). All
samples were centrifuged (800g for 3 min at 4°C), and protein concentrations were determined
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using the Bicinchoninic Acid Kit (Sigma-Aldrich). 20–40 μg of protein was mixed with
Laemmli buffer at a 1:1 v/v ratio with 5% v/v β-mercaptoethanol, heated for 5 min at 95°C, and
chilled on ice. Samples were separated on 6%–12% w/v SDS-polyacrylamide gels and electro-
blotted onto Hybond C membranes (Amersham). Blots were blocked in 5% w/v nonfat milk
powder in 1× Tris buffered saline with Tween 20 (TBST) (0.01% v/v Tween 20; Sigma-Aldrich)
for 1 h prior to probing with a primary antibody diluted in the same blocking buffer (overnight
at 4°C or for 2 h at room temperature), then blots were washed (3×) with 1× TBST for 10 min
and incubated with the appropriate horseradish-peroxidase-conjugated secondary antibody
(Sigma-Aldrich) for 45 min. Specific protein bands were visualized using luminol-based sub-
strates (Uptilight US, Cheshire Sciences), and images were obtained using a G:BOX Chemi
XT16 system (Syngene). β-actin, GAPDH, and tubulin were used as protein-loading controls.
All densitometric analyses of specific protein bands were made using exposure times within
the linear range and the integrated density measurement function of ImageJ software [26,27].

Immunolocalization
Frozen muscle was transferred to a cryostat chamber and allowed to equilibrate to −20°C.
Cryosections 5- to 10-μm thick were then cut from the middle third of the sample and collected
on poly-L-lysine (0.5 mg/ml)–coated glass slides. Sections were allowed to air dry for several
hours. Samples were fixed in a 2%–4% w/v paraformaldehyde solution in TBST for 15 min at
4°C, followed by two washes in TBST. The primary antibody incubation in TBST containing
10% v/v serum was applied for 2 h at room temperature or overnight at 4°C. Three 5-min
TBST washes were applied before secondary antibody incubation in TBST and 2% v/v serum
containing Hoechst fluorescent nuclear counterstain for 1 h at room temperature. Sections
were finally washed three times for 10 min before mounting in FluorSave (Merk Millipore)
fluorescence mounting medium. Either entire cross-sections through the mid-portion of TA
muscles were captured in their entirety using a zoom microscope (Axiozoom V.16, Zeiss), or
whole cross-sections were made of montaged 20× magnification fields of view. For quantifica-
tion of immunofluorescent cells, a semi-automated (unbiased) method using a thresholding
macro designed in ImageJ was used. Numbers were then expressed per unit of area. For dia-
phragms, counts per unit of area for each animal were derived by averaging the counts from
five fields of view encompassing a significant portion of each diaphragm cross-section. Counts
were also made using the threshold and analyze particles functions of ImageJ. Enumeration of
dystrophin revertant fibers (the dystrophin-expressing fibers arising due to spontaneous exon
skipping occurring in myogenic cells) was achieved using the cell counter plugin of ImageJ
[26,27] applied to whole cross-sections of diaphragm. Revertant fibers were reported as num-
ber per square millimeter. For the quantification of IgG permeability into muscle fibers, the
entire cross-section was analyzed. Manually delineated IgG-positive (compromised) fluores-
cent areas were compared (percent of total area of the muscle cross-section).

Morphometric Analysis
Muscle fiber size and central nucleation were visualized by collagen type-IV and Hoechst
immunofluorescence staining of frozen muscle sections. Individual microscope fields of view
were montaged using ImageJ to present whole cross-sections through the muscle. Image analy-
sis was performed on these composite images using Fiji and ImageJ open-source software (US
National Institutes of Health). A macro was developed to sequentially (i) subtract background
components to minimize noise that could interfere with further analysis; (ii) apply band-pass
thresholds to separate color channels; (iii) dilate borders to close inconsistent gaps; (iv) skele-
tonize these borders; (v) apply a convolution filter to translate pixels uniformly for border
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detection; (v) generate a mask of the muscle fiber borders using the analyze particles function,
simultaneously eliminating stray “non-border” signals; and (vi) overlay threshold-delimited
nuclei over the border mask, before another analyze particles command was used to measure
morphometric variables including “area” and “minimum Feret diameter.” Fiji image process-
ing steps and macro construction were partially derived from published standard operating
procedures [28] (http://treat-nmd.eu/research/preclinical/dmd-sops/). An average of 3,243
muscle fibers per 4-wk-old TA were measured: themdx TA had an average of 3,161 fibers and
the Pf-mdx/P2X7−/− TA had an average of 3,325 fibers. In the 20-mo-old TA analysis, an aver-
age of 4,639 muscle fibers were measured per cross-section:mdx TA had an average of 4,493
fibers and Pf-mdx/P2X7−/− TA had an average of 4,786 fibers. There was no difference in the
number of muscle fibers between cross-sections frommdx and Pf-mdx/P2X7−/− TA (t-test,
t = 0.51, df = 7, p = 0.624). Fiber number per unit of tissue area is presented. The step-by-step
protocols developed by us and used in this study are shown as video available at http://youtu.
be/GZVaRQYgGQU (morphometric analysis using Fiji) and http://youtu.be/oxyM7r7VYp0
(central nucleation count from the analyze particles output).

Trichrome Staining
The trichrome method employed here is the TREAT-NMD-recommended protocol (http://
treat-nmd.eu/research/preclinical/dmd-sops/). Briefly, 10-μm-thick cryosections were fixed in
4% w/v PFA and 0.1 M PBS followed by Bouin’s fixative, stained with Biebrich scarlet-acid
fuchsin solution (Sigma-HT151, Sigma-Aldrich) for 20 min, washed in water, and incubated in
a phosphotungstic/phosphomolybdic acid solution (5% w/v phosphotungstic acid, 5% w/v
phosphomolybdic acid, DDH2O) for 2 × 3 min, directly before incubation in aniline blue solu-
tion (2.5% w/v aniline blue, 2% v/v acetic acid, DDH2O) for 7 min. Optionally, sections were
washed in water and incubated in glacial acetic acid solution (1% v/v; DDH2O) for 1 min.
Finally, sections were washed, dehydrated, and mounted, and the entire sections were visual-
ized using bright-field Axiozoom V.16 (Zeiss); positive (blue) areas are expressed as percent of
the total area of each muscle cross-section.

Serum Creatine Kinase Levels
Sera were prepared and creatine kinase (CK) levels were analyzed using the Creatine Kinase
Enzymatic Assay Kit (3460–07, BioScientific) or the Creatine Kinase Activity Assay Kit
(Mak116-1kt, Sigma-Aldrich), according to manufacturers’ instructions.

Bone Morphometric Analyses (6 mo)
Bones were removed, cleared of soft tissues, and analyzed by micro-computed tomography
(μCT) as described previously [3]. Briefly, μCT 40 (Scanco Medical) was used to assess trabecu-
lar bone volume fraction (bone volume/total volume [BV/TV]), micro-architecture in the
metaphyseal region of the tibia, and cortical geometry at the mid-tibia. For trabecular bone,
BV/TV (percent), trabecular thickness, trabecular number (the number of plates per millimeter
of length), and trabecular separation (Tb.Sp) (micrometers) were assessed on 100
contiguous μCT slides, starting 100 slides below the growth plate.

Bone Morphometric Analyses (4 wk)
Mice tibias were imaged by means of μCT (XT H 225, X-Tek Systems), and a complete data
acquisition was performed (V = 50–55 kV, I = 95–110 μA, voxel size = 6–8 μm, rotational
step = 0.19°/360°, acquisition time = 90 min). The regions of interest used for the
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morphometric assessment were selected to include both the cancellous and cortical bones in
the proximal tibias and the cortical bones in the mid-shaft of the tibias, similarly to the meth-
odology used in [3]. Image processing was performed using the seeded region growing (SRG)
technique (ImageJ) to automate segmentation of the bone tissue from the background. The
morphometric parameters measured were bone volume fraction (BV/TV), trabecular bone
thickness, and Tb.Sp.

Force Measurements in Diaphragms Ex Vivo
Whole diaphragms were excised from 4-mo-old WT,mdx, Pf-mdx/P2X7−/−, and G-mdx/
P2X7−/− mice and placed into Krebs-Ringer solution (NaCl 118 mM, KCl 4.7 mM, NaHCO3

24.88 mM, KH2PO4 1.18 mM, glucose 11.1 mM, MgSO4 0.82 mM, CaCl2 2.52 mM), taking
care not to handle the muscle wherever possible. Sutures were then tied to two points on either
side of a segment of attached rib, which were then attached to an immobile plastic clamp. A
centrally derived triangular section of the diaphragm was used for testing. Contractile force
was translated along another suture, tied to the central tendon apex of the approximately equi-
lateral triangular section of muscle. This suture was, in turn, attached to a mechanical force
transducer (ADInstruments), amplifier, and data acquisition setup. Excitation of muscle was
achieved via local field potentials through platinum electrodes in oxygenated (95% O2, 5%
CO2) Krebs-Ringer solution, at a constantly maintained temperature of 37°C.

Each diaphragm was stretched in very small increments from an initial resting state to estab-
lish the optimal excitation-to-force generation length. Diagnostic testing also confirmed that
the voltage twitch stimulus of 140 V (2-ms length) was adequate to elicit a maximal twitch
response. To achieve a maximal isometric tetanic force response, diaphragm sections were sub-
jected to a 140 V (2 ms) stimulus train at 100-Hz frequency for 0.5–1 s. The test regime
involved collecting six twitch responses, followed by six tetanic trains, with a 2-min rest period
between each. Maximal twitch and tetanic response were taken from the tallest of the respective
force traces. All forces were normalized to muscle wet weight and expressed as Newtons per
gram of tissue (N/g). This testing strategy [29] followed the TREAT-NMD standard operating
procedures for the use of experimental animals (http://treat-nmd.eu/research/preclinical/dmd-
sops/).

RunningWheel Activity
Locomotor activity was assessed using cages equipped with voluntary running wheels (Intelli-
bio), placed in a dimly lit, quiet, and ventilated room, at a temperature of 22 ± 1°C, under a 12
h light/12 h dark cycle (light on between 7:00 a.m. and 7:00 p.m.). Mice were individually
housed in cages. The recording apparatus was connected to a computer to process the data.
Animals had 24-h access to the wheels, and total distance travelled was measured.

Grip Strength Test
In this and all other in vivo tests, investigators were blinded with respect to the sample group
allocation.

The grip strength test was performed to assess muscular strength and forepaw grasping
reflex. The mouse was held by the tail and slowly approached to a metallic grid (6 × 6 cm) con-
nected to a force sensor (Bioseb). Once the animal gripped the grid by its forelimbs, a gentle
horizontal traction was applied to the tail until the animal let the grid go. The maximal force
was recorded over two trials with a 1-min inter-trial interval. Strength was estimated by the
mean of both trials.
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Elevated Zero Maze Test
Anxiogenic activity was assessed in the elevated zero maze test, a pharmacologically validated
assay of anxiety in rodents, based on the natural aversion of mice to elevated and open spaces.
The apparatus consisted of an infrared-transmitting, ring-shaped, black Plexiglas platform
(outer diameter 45 cm, width 6 cm), placed 60 cm above ground level in a dimly illuminated
room, divided equally into four quadrants with two opposing open quadrants and two oppos-
ing closed quadrants (surrounded by a 27-cm wall from the surface of the maze). Each mouse,
previously isolated for 15 min before the experiment in a small individual cage, was placed at
the end of an open section, with its head facing a closed quadrant. The time spent and the dis-
tance travelled in open and closed quadrants during a 5-min period were recorded using the
EthoVision XT 9.0 automated image analysis system (Noldus Information Technologies).

Rotarod Test
The Rotamex-5 (Columbus Instruments) was used for the evaluation of motor coordination.
Mice were placed onto the rod of the apparatus at 0 rpm to allow them to balance and then
rotation was increased by about 0.4 rpm/s, to a maximum of 17 rpm. The time period for
which the mice were able to maintain their balance on the bar was recorded automatically
using photobeam break technology and the instrument’s software.

Parallel Rod Floor Test
This test was performed using the parallel rod floor apparatus (Stoelting Europe) as described
previously [30]. Briefly, the instrument floor consisted of a series of parallel steel rods, a stain-
less steel base plate with an acrylic border raised 1 cm above the base plate, and a clear acrylic
box with no bottom and a removable lid. Locomotor activity and number of foot slips were
recorded during two consecutive periods of 5 min. A slip was detected by the AnyMaze auto-
mated analysis system as a paw touched the base plate, completing a circuit.

Novel Object Recognition Test
Experiments were undertaken using a Plexiglas open field box (40 × 40 cm) with grey walls (30
cm high) and a white floor under constant room temperature (23 ± 1°C) and homogeneous
dim illumination (open field center: 40 lux). To test the memory retention of each mouse at
three distinct retention intervals, three sets of three objects of different shapes and color were
used, which were either glass, plastic, or metal. The procedure started with a 5-d habituation
period [31]. The object recognition test started 2 d after the end of habituation. Mice were first
submitted to a single acquisition trial, where they were exposed to two new identical objects for
10 min. Memory retention was tested at 10 min, 24 h, or 48 h. Each animal was thus submitted
to three successive acquisition/retention phases, following a sequence of retention delays that
was counterbalanced among individuals. During these test phases, one of the familiar objects
was replaced by a novel object, with a different shape and color. During the 5-min testing,
exploration of an object was defined as pointing the nose to the object and/or touching the
object with the nose. The total time spent with each object and number of times each object
was explored were recorded and scored using fully automated EthoVision XT 10.0 video track-
ing software (Noldus Information Technologies). Data are presented as the discrimination
index (time or frequency exploring novel object × 100/total object exploration time or
frequency).
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Statistical Analysis
As detailed in the figure legends, Student’s t unpaired test was used for comparisons between
two data groups (P2X7 protein; CD4, CD8, and Ly6G/tubulin mRNA levels; CD68-positive
and revertant fiber counts; CD11b and P2X4 protein; in vivo effects of P2X7 antagonists). All
other statistical analyses were for three or more data groups and employed ANOVA with
Tukey’s post hoc test. In order to account for possible heteroscedasticity of data, the Anderson-
Darling normality test was applied to data that yielded p< 0.05 from ANOVA, and permuta-
tion analysis was applied using Treeperm v1.6 script in R Studio v3.2.2. With the exception of
serum CK levels in Pf-mdx/P2X7−/−mice and F4/80, Foxp3, and IL12 levels in dystrophic mus-
cle (to which Mann-Whitney U and Kruskal-Wallis H tests were applied), Anderson-Darling
tests yielded p> 0.05, and, unless otherwise stated, permutation analysis also yielded p< 0.05.
A p-value of<0.05 was considered statistically significant, and the values are reported as fol-
lows in figures: �p< 0.05, ��p< 0.005, ���p< 0.001.

Results

P2RX7 Ablation ImprovesmdxMouse Muscle Structure and Function
Tomimic the clinically relevant situation, we analyzed the effects of P2RX7 ablation in 4-wk-old
male mice. At this age,mdx limb muscles showed significantly increased expression of P2RX7
(Fig 1B and 1C) and the typical degeneration and regeneration pattern akin to human pathology.
Gross histological features ofmdx andmdx/P2X7−/−muscles were similar, and the fraction of
muscle fibers with centralized nuclei was not significantly different. However, using a semi-auto-
mated measurement of the minimum Feret diameter of muscle cross-sections, we found a signifi-
cantly increased diameter of centrally nucleated (C/N) fibers (p< 0.001) in the Pf-mdx/P2X7−/−

TA (Fig 2A and 2B), and such an increase is a feature observed in less-severe phenotypes.

Fig 2. P2RX7 ablation reducesmdxmousemuscle pathology. The color-coding legend applies to all graphs in the figure. (A) Collagen type-IV (green)
and nuclei (blue) immunofluorescence with an accompanying frequency histogram (B) of the minimum Feret diameter of C/N fibers from 4-wk-oldmdx and
Pf-mdx/P2X7−/−mice showing the right shift in TA muscle fiber size corresponding with the greater average Feret diameter of Pf-mdx/P2X7−/− fibers (t-test,
t = 6.99, df = 6, p < 0.001). (C) Elevated myogenin levels (averageWestern blot values) in both Pf-mdx/P2X7−/− and G-mdx/P2X7−/−muscle (ANOVA,
F = 33.38, df = 2, n = 4, 3, 4, p < 0.001; Tukey’s test, G-mdx/P2X7−/− versusmdx, p < 0.001; G-mdx/P2X7−/− versus Pf-mdx/P2X7−/−, p = 0.516; Pf-mdx/
P2X7−/− versusmdx, p < 0.001) and (D) significantly lower average serum CK levels in Pf-mdx/P2X7−/− compared tomdxmuscle (Mann-Whitney U test,
W = 388, n = 18, 16, p = 0.012; permutation analysis, F = 7.07, p = 0.013; log10 serum CK ANOVA, F = 3.76, df = 2, n = 19, 18, 16, p = 0.030; Tukey’s test, Pf-
mdx/P2X7−/− versusmdx, p = 0.025). (E) Example immunofluorescence micrographs of IgG penetration into muscle fibers and (F) chart showing reduced
average IgG influx into Pf-mdx/P2X7−/−muscle (ANOVA, F = 5.52, df = 2, n = 3, 5, 3, p = 0.031; Tukey’s test, Pf-mdx/P2X7−/− versusmdx, p = 0.032). *p <
0.05, ***p < 0.001.

doi:10.1371/journal.pmed.1001888.g002
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While mRNA levels of MyoD were similarly elevated in all dystrophic mice (S1 Table), tran-
script and protein levels of myogenin were higher in bothmdx/P2X7−/− strains compared to
mdx (Fig 2C; G-mdx/P2X7−/− versusmdx, p< 0.001; G-mdx/P2X7−/− versus Pf-mdx/P2X7−/−,
p = 0.516; Pf-mdx/P2X7−/− versusmdx, p< 0.001), suggesting improved muscle regeneration.

Analyses of serum CK revealed significantly lower levels in 4-wk-old Pf-mdx/P2X7−/− than in
mdxmice (Fig 2D; untransformed Pf-mdx/P2X7−/− versusmdx data, p = 0.013; log10 serum CK,
p = 0.025), indicative of less sarcolemma damage and therefore less leakage of this intracellular mus-
cle enzyme. This was confirmed by decreased sarcolemma permeability to blood-born IgGmole-
cules [32] inmdx/P2X7−/−muscle fibers (Fig 2E and 2F; Pf-mdx/P2X7−/− versusmdx, p = 0.032).

Moreover, the significantly reduced autophagy in 4-wk-oldmdx/P2X7−/−muscles in vivo
(Fig 3A and 3B), indicated by decreased LC3II (Pf-mdx/P2X7−/− versusmdx, p = 0.008), corre-
sponded with protective effects of P2RX7 ablation against ATP-induced autophagic muscle
death, previously shown in vitro [12].

Finally, we compared muscle force in diaphragm organ bath preparations: isometric tetanic
forces generated by 4-mo-old dystrophic diaphragms with ablated P2RX7 were significantly
(approx. 30%–50%) greater (Pf-mdx/P2X7−/− versusmdx, p< 0.001) than those generated by
mdxmuscles (Fig 3C).

Collectively, these data indicate that P2RX7 ablation resulted in significant amelioration of
muscle pathology.

Analyses of G-mdx/P2X7−/−mice, which retain the low-expression P2RX7k isoform [18], also
in skeletal muscles [9], showed increased tetanic forces (Fig 3C; G-mdx/P2X7−/− versusmdx,
p = 0.010). Myogenin levels were elevated compared tomdx and in line with Pf-mdx/P2X7−/− (Fig
2C; G-mdx/P2X7−/− versusmdx, p< 0.001), while CK levels (Fig 2D; G-mdx/P2X7−/− versusmdx,
p = 0.111) and sarcolemma permeability to IgG, albeit lower, were not statistically significantly dif-
ferent. The intermediate effects seen in G-mdx/P2X7−/− as compared to Pf-mdx/P2X7−/−mice
confirmed the association between decreased P2RX7 expression and the phenotypic improve-
ments. Moreover, we analyzed F1 Pf-mdx/P2X7+/−males. These heterozygous mice had interme-
diate levels of muscle P2RX7 expression (S1A Fig), exactly as shown before in immune cells [33].
Again, this intermediate level corresponded with the intermediate Feret diameter values in these
mice (S1B Fig). F1 and G-mdx/P2X7−/− data also confirmed that the improvements found in dou-
ble-mutants are not due to the genetic background variation resulting frommdx-P2X7−/− breed-
ing, as this would have had an impact in all mouse lines.

Fig 3. P2RX7 ablation improvesmdxmousemuscles. (A) Autophagy induction (LC3I to LC3II shift in
representative Western blots) found inmdxmuscles is blocked in Pf-mdx/P2X7−/− muscles, with average
values shown in (B) (ANOVA, F = 11.57, df = 2, n = 4, p = 0.003; Tukey’s test, Pf-mdx/P2X7−/− versusmdx,
p = 0.008). Note: use of separate Western blots is indicated by solid black lines. (C) Greater average
diaphragm isometric tetanic forces at 4 mo in both Pf-mdx/P2X7−/− and G-mdx/P2X7−/− compared tomdx
mice (ANOVA, F = 37.97, df = 2, n = 4, 4, 5, p < 0.001; Tukey’s test, G-mdx/P2X7−/− versusmdx, p = 0.010;
Pf-mdx/P2X7−/− versusmdx, p < 0.001). *p < 0.05, ***p < 0.001.

doi:10.1371/journal.pmed.1001888.g003
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P2RX7 Ablation Reduces the Inflammatory Signature of Dystrophic
Muscles
Chronic inflammation is an important pathological feature in DMD andmdx [34], and corti-
costeroids have beneficial, albeit limited, effects in both [35]. Macrophages, along with T-lym-
phocytes and neutrophils, make up the bulk of immune cell infiltrations, and M1 pro-
inflammatory macrophages dominate and add to the damage. However, M2 macrophages are
also present and essential for muscle regeneration [36]. Therefore, a non-selective attenuation
of immune cell functions carries the risk of interfering with regenerative processes.

Given P2RX7’s role in induction of inflammation and expression in most immune cells,
including in macrophages [14,19], we studied the effects of receptor ablation on the inflamma-
tory signature of dystrophic muscles. To identify major changes, we used inflammatory path-
ways qPCR panel array analysis (S1 Table) followed by immunodetection. As expected, P2RX7
co-localized with macrophage markers, and the CD163 immunofluorescence associated with
the M2 macrophages [36] was present in a subset of CD68-positive cells infiltratingmdxmus-
cles (Fig 4A and 4B).

Fig 4. P2RX7 ablation inmdxmice reducesmacrophage infiltration. (A) Immunofluorescence co-localization of CD68 macrophage marker with P2RX7.
To confirm spatial co-localization, side and bottom panels show overlapping z-plane images. (B) M2 macrophage marker (CD163) co-localization with a
subset of CD68-positive cells within the inflammatory infiltrate regions inmdxmuscle. Blue signal identifies cell nuclei. (C) F4/80 macrophage marker levels
shown as normalized averageWestern blot values (left) and F4/80 relative to CD163 (right). Significantly less F4/80 was found in Pf-mdx/P2X7−/− and G-
mdx/P2X7−/− muscles compared tomdxmuscles (Kruskal-Wallis H test,H = 7.73, df = 2, n = 4, p = 0.021; Mann-Whitney U test, Pf-mdx/P2X7−/− versusmdx,
W = 26.0, n = 4, p = 0.030; G-mdx/P2X7−/− versusmdx,W = 26.0, n = 4, p = 0.030), while the ratio of F4/80 level to CD163 level, denoting M1/M2
macrophage ratio, was significantly reduced in Pf-mdx/P2X7−/− muscles (Kruskal-Wallis H test,H = 8.77, df = 2, n = 4, p = 0.012; Mann-Whitney U test,
W = 26.0, n = 4, p = 0.030). (D) A representative Western blot (top) illustrating decreased P2RX4 protein levels, and corresponding qPCR data (bottom)
showing decreased expression of P2RX4mRNA in Pf-mdx/P2X7−/− gastrocnemius compared tomdx gastrocnemius (ANOVA, F = 25.96, df = 2, n = 5, p <
0.001; Tukey’s test,mdx versus C57, p < 0.001; Pf-mdx/P2X7−/− versusmdx, p = 0.017; Pf-mdx/P2X7−/− versusWT, p = 0.005). *p < 0.05, ***p < 0.001.
Use of separateWestern blots is indicated by solid black lines.

doi:10.1371/journal.pmed.1001888.g004
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Comparisons of immune cells inmdx andmdx/P2X7−/− muscles at 4 wk showed that F4/80
pan-macrophage marker levels were lower in bothmdx/P2X7−/− strains (Fig 4C, left panel; Pf-
mdx/P2X7−/− versusmdx, p = 0.030; G-mdx/P2X7−/− versusmdx, p = 0.030), and the F4/80 to
CD163 (pro-inflammatory to pro-regenerative) marker ratio was also significantly reduced in
Pf-mdx/P2X7−/− compared tomdxmice (Fig 4C, right panel; p = 0.030). P2RX4 expression was
significantly lower in Pf-mdx/P2X7−/− muscles (Fig 4D;mdx versus WT, p< 0.001; Pf-mdx/
P2X7−/− versusmdx, p = 0.017; Pf-mdx/P2X7−/− versus WT, p = 0.005), which agreed with the
presence of this receptor in infiltrating macrophages [37] and thus further confirmed reduced
macrophage loads. This result also excluded potential compensatory overexpression of this
receptor in the absence of P2RX7.

The CD4 and CD8 cell numbers were not significantly affected by P2RX7 ablation (Fig 5A;
p> 0.05), but a significant increase in Foxp3 and IL12α expression inmdx/P2X7−/−muscles
(Fig 5B; Pf-mdx/P2X7−/− versusmdx: Foxp3, p = 0.022, and IL12α, p = 0.001; see also S1 Table)
indicated a shift towards Treg cells, known to suppress immune responses [38]. This result
showed that P2RX7 depletion ameliorates tissue inflammation by promoting Treg cell functions
[39] also in dystrophic muscles.

Together, these data indicate a significantly reduced inflammatory profile in 4-wk-old Pf-
mdx/P2X7−/− muscles. Moreover, the decreased TNFα expression (Fig 5B; p = 0.029; S1 Table)
agreed with its production being dependent on P2RX7 function [19] but was also an important
result given that pharmacological interference with this inflammatory mediator has been
shown to reduce DMD pathogenesis [40]. The significantly reduced neutrophil marker Ly6G
mRNA expression found in Pf-mdx/P2X7−/− muscles (Fig 5B; Pf-mdx/P2X7−/− versusmdx,
p = 0.002; S1 Table) was confirmed by both immunolocalization (Fig 5C) andWestern blotting
(Fig 5D; p = 0.006). Clearly, in agreement with recent studies [41], P2RX7 ablation has a wide-
spread impact on inflammatory cell migration, and this correlates with significant improve-
ments in dystrophic muscles.

Dystrophic Muscles Present an Early Fibrotic Signature, Which Is
Reduced by P2RX7 Ablation
Unlike in DMD, themdxmouse shows little fibrosis in limb muscles. Surprisingly, combined
RNA-Seq and qPCR analyses of 4-wk-old leg muscle samples revealed a clear pro-fibrotic gene
expression signature at this early disease stage (Fig 6).

The expression pattern of genes involved in the regulation of fibrosis showed significant up-
regulation of pro-fibrotic and down-regulation of anti-fibrotic genes (S2 Table; S2 Fig). Impor-
tantly, P2RX7 ablation reduced this early fibrotic signature (Figs 6 and S2), with many genes
expressed at levels resembling those in WT muscles (for specific p-values see S2 Table). This
gene-level expression analysis not only uncovered an early, pro-fibrotic environment inmdx
muscles but also confirmed that the widespread effects of P2RX7 ablation include lessening of
this phenotype, which is one of the critically important abnormalities of the dystrophic
pathology.

P2RX7 Ablation Produces Long-Term Improvements in Skeletal and
Cardiac Muscles
To assess the long-term effects of P2RX7 ablation, we tested 20-mo-old limb, diaphragm, and
cardiac muscles [21]. As expected at this stage, the leukocyte (CD11b-positive cell) numbers
were low and were not different between Pf-mdx/P2X7−/− andmdx TA muscles (Fig 7A; p>
0.05).
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Fig 5. P2RX7 ablation inmdxmice reduces the inflammatory signature. (A) Enumeration of CD4- and
CD8-positive cells in TA muscle frommdx and Pf-mdx/P2X7−/− mice showed no statistical difference in these
cell numbers between the two genotypes (CD4 t-test, t = 0.97, df = 7, p = 0.366; CD8 t-test, t = 0.95, df = 8,
p = 0.372). This finding corresponded with CD4 and CD8 qPCR data (S1 Table). (B) Selected results of
qPCR gene expression analyses using inflammatory panels: relative expression levels (2−ΔΔCT) in muscle-
derived mRNAs frommdx andmdx/P2X7−/−mice demonstrate significant differences in expression levels of
Foxp3 (Kruskal-Wallis H test, H = 10.26, df = 2, n = 5, p = 0.006; Mann-Whitney U test, Pf-mdx/P2X7−/−

versusmdx,W = 16.0, n = 5, p = 0.022), IL12α (Kruskal-Wallis H test,H = 11.08, df = 2, n = 9, 10, 10,
p = 0.004; Mann-Whitney U test, Pf-mdx/P2X7−/− versusmdx,W = 61.0, n = 10, p = 0.001), TNFα (t-test,
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However, qPCR analyses showed significantly lower expression of P2RX4 (p = 0.001) and
TNFα (p = 0.007) genes and significantly increased Foxp3 (p< 0.001) and IL12α (p = 0.020)
expression levels inmdx/P2X7−/− TA samples (Fig 7B). These findings agreed with the results
in 4-wk-old samples and demonstrated that P2RX7 ablation has a long-term anti-inflammatory
effect in dystrophic muscles. Moreover, the statistically significant reduction in trichrome
staining in 20-mo-old Pf-mdx/P2X7−/− TA (Fig 7C; Pf-mdx/P2X7−/− versusmdx, p = 0.038)
confirmed reduced muscle fibrosis across ages. P2RX7 expression was detectable inmdxmus-
cles at this age (Fig 8A), and the reduced autophagy in 20-mo-oldmdx/P2X7−/− muscles (Fig
8A; p = 0.004) corresponded with the results obtained in 4-wk-old samples and extended our
earlier observation of the protective effect of P2RX7 ablation against ATP-induced autophagic
muscle death [12].

Finally, there was no difference in the percentage of C/N fibers (p> 0.05), and measure-
ments of the average minimum Feret diameter showed no differences in total (p> 0.05) and
C/N (p> 0.05) fibers, while there was a significant increase in Feret diameter (p = 0.032) in
non-C/N fibers from 20-mo-old Pf-mdx/P2X7−/− TA (Fig 8B).

Notably, diaphragm is themdxmuscle that shows mild pathology at early stages and under-
goes progressive degeneration that becomes prominent from week 15 [21]. The numbers of
CD11b+ and CD68+ inflammatory cells were significantly lower in 20-mo-old Pf-mdx/P2X7−/−

diaphragms (Fig 9A; CD11b+, p = 0.015; CD68+, p = 0.009), confirming that the long-term
reduction of the pro-inflammatory phenotype also occurs in this progressively damaged
muscle.

Similar levels of connective tissue in trichrome staining (Fig 9B; Pf-mdx/P2X7−/− versus
mdx, p = 0.095) showed that the altered profile of cells infiltrating double-mutant muscles did
not alter diaphragm fibrosis [36]. There was, however, a statistically significant increase in
muscle fiber Feret diameter (Fig 9C; Pf-mdx/P2X7−/− versusmdx, p = 0.006), concomitant with
a lower total number of diaphragm fibers per unit area (Fig 9D; Pf-mdx/P2X7−/− versusmdx,
p = 0.001; Pf-mdx/P2X7−/− versus WT, p = 0.051), while the percentage of C/N fibers was
lower inmdx than in Pf-mdx/P2X7−/− diaphragms (Fig 9D, p = 0.008). Revertant fibers were
present in a lower number in Pf-mdx/P2X7−/− thanmdx diaphragms (Fig 9E; p = 0.007). Dys-
trophin-expressing revertant fibers arise due to spontaneous exon skipping. These rare events
take place only in proliferating precursor cells, which are activated by muscle degeneration/
regeneration. Therefore, in experimental paradigms not affecting splicing of the dystrophin
transcript, fewer revertant fibers have been used as an indicator that fewer degeneration/regen-
eration cycles occurred over the muscle lifetime [43,44].

DMD patients who survive to the third decade present with cardiomyopathy, and heart fail-
ure becomes a common cause of death [22]. We analyzed hearts from 20-mo-old mice and
found significantly decreased cardiac muscle fibrosis (Pf-mdx/P2X7−/− versusmdx, p< 0.001),
measured as area occupied by connective tissue in trichrome staining and structural damage
(Fig 9F), coinciding with fewer CD11b-positive leukocytes infiltrating Pf-mdx/P2X7−/− com-
pared tomdx hearts (Fig 9G; Pf-mdx/P2X7−/− versusmdx, p = 0.005).

t = 2.86, df = 6, p = 0.029), and Ly6G (ANOVA, F = 14.68, df = 2, n = 3, 4, 4, p = 0.002; Tukey’s test, Pf-mdx/
P2X7−/− versusmdx, p = 0.002) transcripts inmdx/P2X7−/− mice compared tomdx. Lower expression of
Ly6GmRNA corresponded with a lower number of Ly6G immunopositive neutrophils (red signal in Ly6G
immunolocalization micrograph) (C) and significantly lower Ly6G protein levels (D) in Pf-mdx/P2X7−/−

compared tomdxmuscles (t-test, t = 4.14, df = 6, p = 0.006). Blue signal—Hoechst nuclear counterstaining.
*p < 0.05, **p < 0.005.

doi:10.1371/journal.pmed.1001888.g005
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P2RX7 Ablation ImprovesmdxMuscle Strength and Endurance In Vivo
and Reduces Cognitive and Behavioral Abnormalities
To analyze the effects of receptor ablation on muscle function in vivo, groups of 8- to 12-wk-
old WT,mdx, and Pf-mdx/P2X7−/− male mice followed a functional test regime consisting of
forelimb grip strength, rotarod, voluntary wheel activity, and parallel rod floor running. Signifi-
cant improvements in grip strength (Fig 10A; p = 0.012) and muscle endurance (Fig 10B;
p = 0.016) were observed inmdx/P2X7−/− compared tomdxmice. A lack of changes in latency

Fig 6. Expression of genes associated with fibrosis as measured by RNA-Seq. Fragments per kilobase per million fragments mapped (FPKM) values
for each sample were obtained using Cuffnorm (Tuxedo suite), log-transformed, and normalized to zero mean and unit standard deviation (rows with missing
expression values were removed). Hierarchical clustering was performed using theWard’s method [42]. KO, knockout.

doi:10.1371/journal.pmed.1001888.g006

Fig 7. P2RX7 ablation reduces inflammation and fibrosis in 20-mo-old tibialis anterior muscles. (A)
Representative immunofluorescence micrographs (left) and enumeration of CD11b-expressing cells in
20-mo-old TA showing no significant difference in the numbers of infiltrating leukocytes in Pf-mdx/P2X7−/−

compared tomdxmuscles (t-test, t = 1.82, df = 8, p = 0.107). (B) qPCR gene expression analyses: relative
expression levels (2−ΔΔCT) in muscle-derived mRNAs frommdx andmdx/P2X7−/− TA demonstrate significant
decreases in P2RX4 (t-test, t = 4.04, df = 17, p = 0.001) and TNFα (t-test, t = 3.07, df = 18, p = 0.006), with
concomitant increases in expression levels of IL12α (t-test, t = 2.56, df = 18, p = 0.020) and Foxp3 (t-test,
t = 6.8, df = 17, p < 0.001) in Pf-mdx/P2X7−/− compared tomdxmuscles. (C) Representative images of
trichrome staining (left) and trichrome average intensities in 20-mo-old TA muscles demonstrating a
significant decrease in fibrosis in Pf-mdx/P2X7−/− compared tomdxmice (ANOVA, F = 6.18, df = 2, n = 3, 5,
4, p = 0.020; Tukey’s test, Pf-mdx/P2X7−/− versusmdx, p = 0.038). *p < 0.05, **p < 0.005, ***p < 0.001.

doi:10.1371/journal.pmed.1001888.g007
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time to fall off the rotarod and in performance in the parallel rod floor tests (Fig 10C, run time
and speed; Fig 10D, activations; all p> 0.05 formdx/P2X7−/− versusmdx) excluded differences
in motor coordination between these strains.

Cognitive and behavioral impairment is a well-defined feature of DMD: the overall IQ of
DMD patients is one standard deviation below the mean of the unaffected population [2]. Dis-
tinct dystrophin isoforms are expressed in neurons and glia [45], and P2RX7 is recognized as a
gatekeeper of inflammatory processes between these two cell types [46]. Treatments targeting
the adultmdx brain produced some improvement [47], proving that at least some abnormali-
ties are reversible. WT,mdx, and Pf-mdx/P2X7−/− mice were therefore compared in a series of
behavioral tests to identify the effect(s) of receptor ablation. Consistent with previous studies
[48],mdxmice showed impaired long-term recognition memory and enhanced emotional
reactivity (Fig 10E; contact discrimination 10 min, 24 h, 48 h; p = 0.916, 0.012, 0.017; duration
discrimination 10 min, 24 h, 48 h; p = 0.980,< 0.001, = 0.021; Fig 10F; open-arm distance and
duration; p< 0.001,< 0.001; closed-arm distance and duration, p = 0.230,< 0.001). Impor-
tantly, ablation of P2RX7 inmdxmice resulted in a significant improvement in performance in
the novel object recognition memory test (Fig 10E; contact discrimination 10 min, 24 h, 48 h
Tukey’s test; Pf-mdx/P2X7−/− versusmdx, p = 0.984, 0.004, 0.006; Pf-mdx/P2X7−/− versus WT,
p = 0.970, 0.908, 0.890; duration discrimination Tukey’s test 10 min, 24 h, 48 h; Pf-mdx/P2X7−/
− versusmdx, p = 0.905,< 0.001, = 0.031; Pf-mdx/P2X7−/− versus WT, p = 0.969, 0.994, 0.985)

Fig 8. P2RX7 ablation reduces the pathology in 20-mo-old tibialis anterior muscles. (A) Representative
Western blots (left) confirming P2RX7 protein expression in 20-mo-old TA and illustrating decreased
autophagy (LC3I to LC3II shift), with the results in the graph showing lower levels of LC3II relative to GAPDH
in TA from 20-mo-old Pf-mdx/P2X7−/− compared tomdxmice (t-test, t = 3.74, df = 10, p = 0.004). Total
protein staining is shown to illustrate the equal protein loading. (B) Representative ImageJ output masks from
morphometric analyses of TA fibers (left) and graphs showing representative results (right and bottom). While
no differences were found in the proportion of C/N fibers or the average minimum Feret diameter of total or C/
N fibers (t-test, t = 0.57, df = 8, p = 0.586; t = 2.04, df = 8, p = 0.076; t = 1.25, df = 8, p = 0.248, respectively),
there was a significant increase in the minimum Feret diameter of non-C/N fibers inmdx/P2X7−/− compared
tomdxmuscles (t-test, t = 2.58, df = 8, p = 0.032). *p < 0.05, **p < 0.005.

doi:10.1371/journal.pmed.1001888.g008
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and in reduced anxiety as measured in the elevated zero maze test (Fig 10F; open-arm distance
and duration Tukey’s test; Pf-mdx/P2X7−/− versusmdx, p = 0.0450, 0.047; Pf-mdx/P2X7−/− ver-
sus WT, p = 0.109, 0.060; closed-arm distance and duration Tukey’s test; Pf-mdx/P2X7−/− ver-
susmdx, p = 0.687, 0.047; Pf-mdx/P2X7−/− versus WT, p = 0.659, 0.060). These tests are not
affected by motor activity or muscle strength and therefore reflect the positive impact of
P2RX7 ablation on the dystrophic central nervous system (CNS).

P2RX7 Ablation Reduces Bone Loss in Dystrophic Mice
Bone structure abnormalities in DMD patients andmdxmice were previously believed to have
musculoskeletal origins. However, rather than being an effect of asymmetric loss of muscle
force, these have recently been confirmed as an independent disease manifestation [3]. μCT
bone morphometry analyses (Figs 11A and S3) in WT,mdx, andmdx/P2X7−/− mice revealed
reduced bone mass inmdxmice as young as 4 wk, i.e., before any muscle loss that could cause
bone structure alterations, and confirmed significant bone abnormalities at 6 mo (Fig 11B;
4-wk BV/TV, p = 0.029; 6-mo BV/TV, p = 0.014; 6-mo Tb.Sp, p = 0.008).

In contrast, in 6-mo-old Pf-mdx/P2X7−/−mice, we found significant improvements in BV/
TV (p = 0.046) and in Tb.Sp (p< 0.001) compared tomdxmice (Fig 11B). These data demon-
strate that P2RX7 ablation improves the dystrophic bone phenotype.

P2RX7 Antagonist Treatment Reduces Dystrophic Pathology
In a preliminary study to determine whether treatment with P2RX7 antagonists can ameliorate
dystrophic symptoms in vivo, 2-wk-oldmdxmice were injected intraperitoneally with CBB or
ox-ATP for 4 wk. CBB treatment reduced CK levels (Fig 12A; p = 0.030), which correlates with
mdx/P2X7−/− results presented here and also with previous data showing a reduced number of
degeneration/regeneration cycles following CBB administration in 6-mo-oldmdxmice [9].

Moreover, ox-ATP treatment decreased muscle expression of CD11b, denoting reduced
inflammatory cell infiltrations (Fig 12B; p = 0.047). Finally, daily administration of 50 mg/kg of
the more selective, competitive P2RX7 antagonist A-438079 for only 2 wk [49] decreased CK

Fig 9. P2RX7 ablation continues to reduce dystrophic pathology in 20-mo-old diaphragm and heart.
(A) Representative immunofluorescence micrographs (left) and enumeration of CD11b- and
CD68-expressing cells in 20-mo-old diaphragms showing reduced numbers of infiltrating leukocytes (CD11b
t-test, t = 3.68, df = 6, p = 0.015) and macrophages (CD68+ t-test, t = 4.73, df = 4, p = 0.009) in Pf-mdx/
P2X7−/− compared tomdx diaphragms. (B) Trichrome staining (left) and its average intensity in 20-mo-old
diaphragms demonstrating no increase in fibrosis in Pf-mdx/P2X7−/− overmdxmice (ANOVA, F = 60.32,
df = 2, n = 5, 5, 3, p < 0.001; Tukey’s test, Pf-mdx/P2X7−/− versusmdx, p = 0.095; permutation analysis, Pf-
mdx/P2X7−/− versusmdx, F = 4.47, p = 0.095). (C) Representative ImageJ output masks frommorphometric
analyses of diaphragm fibers (left) demonstrating the increased average minimum Feret diameter inmdx/
P2X7−/− compared tomdx diaphragms (ANOVA, F = 75.17, df = 2, n = 3, p < 0.001; Tukey’s test, Pf-mdx/
P2X7−/− versusmdx, p = 0.006; permutation analysis, Pf-mdx/P2X7−/− versusmdx, F = 20.01, p = 0.099). (D)
Graphs showing a lower total number of diaphragm fibers per unit area in Pf-mdx/P2X7−/− versusmdxmice
(left; ANOVA, F = 52.77, df = 2, n = 3, p < 0.001; Tukey’s test, Pf-mdx/P2X7−/− versusmdx, p = 0.001; Pf-
mdx/P2X7−/− versusWT, p = 0.051) and the increased proportion of C/N fibers (right; t-test, t = 5, df = 4,
p = 0.008). (E) Dystrophin immunofluorescence in representative transverse sections of 20-mo-old
diaphragms showing the typical staining (green signal) in dystrophin-positive muscles and clusters of
revertant dystrophin-positive fibers in dystrophic samples. The data show significantly fewer revertant fibers
in 20-mo-old Pf-mdx/P2X7−/− than inmdx diaphragms (t-test, t = 5.12, df = 4, p = 0.007). (F) Representative
trichrome staining (left) of whole hearts from 20-mo-old mice showing a significant decrease in cardiac
muscle damage (histological lesions) and average area of fibrosis (blue signal in trichrome staining) in Pf-
mdx/P2X7−/− versusmdxmice (ANOVA, F = 166.29, df = 2, n = 4, 3, 3, p < 0.001; Tukey’s test, Pf-mdx/
P2X7−/− versusmdx, p < 0.001). (G) Representative examples of CD11b+ leukocyte marker staining (left; red
immunofluorescence) and infiltrating cell counts demonstrating fewer infiltrations in Pf-mdx/P2X7−/−

compared tomdx hearts (ANOVA, F = 19.65, df = 2, n = 3, p = 0.002; Tukey’s test, Pf-mdx/P2X7−/− versus
mdx, p = 0.005). *p < 0.05, **p < 0.005, ***p < 0.001.

doi:10.1371/journal.pmed.1001888.g009
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levels (p = 0.050) and significantly reduced the number of infiltrating (F4/80 positive) macro-
phages (Fig 12C; p = 0.012), again in agreement with improvements found inmdx/P2X7−/−.

Discussion
The data we present here demonstrate that P2RX7 ablation in the most widely used animal
model of DMD produced significant improvements in key functional and molecular disease
parameters in dystrophic leg muscles at 4 wk and in legs, diaphragms, and hearts at 20 mo, i.e.,
at all the stages where the model reproduces the DMD pathology [21]. In addition to the allevi-
ation of muscle disease, decreased inflammation and reduced non-muscle symptoms in CNS
and bone were also clearly evident. This wide therapeutic impact reflects convergence of
P2RX7 ablation on multiple pathological mechanisms (summarized in Fig 13), thus offering a
promising new approach to treating this debilitating disease (see below).

The partial effects of P2RX7 ablation observed in G-mdx/P2X7−/− mice (which retained one
of the P2RX7 isoforms) and in heterozygousmdx/P2X7+/− (with intermediate P2RX7 levels)
suggest that even incomplete inhibition of this receptor would produce some therapeutic effect.

Fig 10. P2RX7 ablation improvesmdxmuscle strength and endurance and object recognition memory and decreases anxiety in vivo. Forelimb grip
strength (A) and voluntary wheel run distance (B) were significantly greater in Pf-mdx/P2X7−/− compared tomdxmice (grip strength ANOVA, F = 22.99,
df = 2, n = 9, 9, 10, p < 0.001; Tukey’s test, Pf-mdx/P2X7−/− versusmdx, p = 0.0118; run distance ANOVA, F = 12.73, df = 2, n = 9, 9, 10, p < 0.001; Tukey’s
test, Pf-mdx/P2X7−/− versusmdx, p = 0.016). The rotarod test (C) showed no difference for total average run time and average speed (run time ANOVA,
F = 1.23, df = 2, n = 9, 9, 10, p = 0.310; Tukey’s test, Pf-mdx/P2X7−/− versusmdx, p = 0.300; speed ANOVA, F = 2.23, df = 2, n = 9, 9, 10, p = 0.129; Tukey’s
test, Pf-mdx/P2X7−/− versusmdx, p = 0.109), and the parallel rod floor test (D) showed no significant differences in the average number of activations over
several run time-spans betweenWT,mdx, and Pf-mdx/P2X7−/−mice (ANOVA, F = 2.6, 0.62, 1.34; df = 2; n = 9, 9, 10; p = 0.094, 0.545, 0.212; at 0–5, 5–10,
and 0–10 min, respectively). In the object recognition test (E) there was no significant difference between genotypes at 10-min retention delay, but at 24 h
and 48 h, both duration and contact discrimination were significantly different from the 50% chance level for the Pf-mdx/P2X7−/−mice, but not formdxmice.
Memory retention in Pf-mdx/P2X7−/−mice was equal to that in WTmice, whilemdxmice performed at a lower level thanWT (contact discrimination 10 min,
24 h, 48 h ANOVA; F = 0.08, 7.37, 6.83; df = 2; n = 10, 9, 10; p = 0.922, 0.003, 0.004; Tukey’s test, Pf-mdx/P2X7−/− versusmdx, p = 0.984, 0.004, 0.006; Pf-
mdx/P2X7−/− versusWT, p = 0.970, 0.908, 0.890;mdx versusWT, p = 0.916, 0.012, 0.017; duration discrimination 10 min, 24 h, 48 h ANOVA; F = 0.09,
16.17, 5.1; df = 2; n = 10, 9, 10; p = 0.913, < 0.001, = 0.013; Tukey’s test, Pf-mdx/P2X7−/− versusmdx, p = 0.905, < 0.001, = 0.031; Pf-mdx/P2X7−/− versus
WT, p = 0.969, 0.994, 0.985;mdx versusWT, p = 0.980, < 0.001, = 0.021,). (F) In the elevated zero maze anxiety test, both the duration and the distance
travelled by Pf-mdx/P2X7−/− mice within the open arm of the maze were greater than those ofmdxmice, andmdxmice performed at a lower level thanWT
(distance and duration ANOVA, F = 10.51, 11.76; df = 2; n = 10, 9, 10; p < 0.001, < 0.001; Tukey’s test, Pf-mdx/P2X7−/− versusmdx, p = 0.045, 0.047; Pf-
mdx/P2X7−/− versusWT, p = 0.109, 0.060;mdx versusWT, p < 0.001, < 0.001). In the closed arm (F, bottom), there was no difference in distance travelled,
but Pf-mdx/P2X7−/− mice spent less time in this arm thanmdxmice, andmdxmice more time thanWT (distance and duration ANOVA, F = 1.42, 11.76; df = 2;
n = 10, 9, 10; p = 0.259, < 0.001; Tukey’s test, Pf-mdx/P2X7−/− versusmdx, p = 0.687, 0.047; Pf-mdx/P2X7−/− versusWT, p = 0.659, 0.060;mdx versusWT,
p = 0.230, < 0.001). *p < 0.05, **p < 0.005, ***p < 0.001.

doi:10.1371/journal.pmed.1001888.g010
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Indeed, treatment with broad purinoceptor antagonists has shown some impact in themdx
model of DMD (reviewed in [13]), as did our short-term administration of P2RX7 antagonists
(Fig 12). Importantly, the purinoceptor antagonists used here, CBB and ox-ATP, here have
slow association rates and do not competitively block agonist activation [50]. We are currently
testing new-generation, increased affinity competitive antagonists [51], which are supposed to
be significantly more effective, and one such a compound showed some positive effects just
after 2 wk of administration (Fig 12).

Regarding the mechanisms by which P2RX7 ablation produced muscle recovery, these
involved both direct effects in dystrophic muscle cells showing over-activation of this receptor
[7–11] and reduced inflammation [13,34,52]. Regarding the latter, dystrophin-deficient mus-
cles chronically release high levels of ATP together with other DAMPs, and the resulting
immune cell infiltrations contribute to disease progression [34,36]. Targeting innate immunity
was shown to slow disease progression [53] and therefore may become a new therapeutic strat-
egy to treat DMD. Deletion of P2RX7, with its unique capability to respond to high eATP levels
and to activate inflammation through release of pro-inflammatory cytokines [14], is bound to
make a significant impact. Indeed, inmdx/P2X7−/−mice, we found an overall decrease in the
muscle inflammatory signature and reduced numbers of infiltrating leukocytes. Moreover, we
also discovered increased Foxp3 and IL12αmRNA levels in both 4-wk-old and 20-mo-old
muscles, indicating a shift in T-cell responses: Foxp3 transcription factor is required for Treg

cell development and function, while IL12α is highly expressed by mouse Foxp3+ Treg cells but
not by effector CD4+ T cells [38]. Treg cells modulate the immune response to maintain toler-
ance to self-antigens, and since peripheral tolerance breakdown has been demonstrated in both
DMD andmdx [53–56], this result is very encouraging.

Fig 11. P2RX7 ablation reducesmdx bone loss. (A) Representative μ-CT images of distal femurs from
6-mo-old mice. (B) μ-CT morphometry in 4-wk-old proximal tibiae and 6-mo-old femurs. As early as age 4 wk,
the BV/TV ratio inmdxmice was reduced, and it remained altered at 6 mo. But P2RX7 ablation significantly
improved BV/TV and Tb.Sp parameters in oldermdx/P2X7−/− mice compared to oldermdxmice (4-wk BV/TV
ANOVA, F = 4.29, df = 2, n = 6, p = 0.034; Tukey’s test,mdx versusWT, p = 0.029; 6-mo BV/TV ANOVA,
F = 7.29, df = 2, n = 4, p = 0.013; Tukey’s test,mdx versusWT, p = 0.014; Pf-mdx/P2X7−/− versusmdx,
p = 0.046; 6-mo Tb.Sp ANOVA, F = 48.69, df = 2, n = 4, p < 0.001; Tukey’s test,mdx versusWT, p = 0.008;
Pf-mdx/P2X7−/− versusmdx, p < 0.001.). *p < 0.05, ***p < 0.001.

doi:10.1371/journal.pmed.1001888.g011
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In turn, high eATP acting on P2RX7, which is overexpressed in dystrophic muscle cells [7–
9], could activate a number of mechanisms, including ERK phosphorylation and ion channel
opening, producing activation of signaling cascades. Treatment with apyrase, an ATP-degrad-
ing enzyme, reduced intracellular Ca2+ levels inmdx fibers [57], thus confirming that purino-
ceptors contribute to the deregulated Ca2+ homeostasis in dystrophic muscles. Therefore,
P2RX7 ablation or inhibition would eliminate Ca2+ influx occurring via this receptor and also
triggering secondary modulation of other Ca2+ channels, abnormal functions of which have
been described inmdxmyofibers [58,59].

In addition, we have shown recently that the P2RX7 large pore formation (occurring at high
eATP levels) leads to the autophagic death of dystrophic muscle cells [12], which contributes
both to fiber loss and to exhaustion of the pool of muscle-resident stem cells required for repair
and regeneration [43,60]. Indeed, P2RX7 ablation reduced autophagy in both 4-wk-old and
20-mo-oldmdx TA. Further studies are needed to clarify the puzzling shift between positive
and negative roles for autophagy described in young and old dystrophic muscles, respectively
[61].

The improved heart, leg, and diaphragm phenotype in 20-mo-oldmdx/P2X7−/− muscles
demonstrates that similar mechanisms operate in both skeletal and cardiac muscles and remain
active in muscles undergoing continuous, severe degeneration/regeneration akin to human

Fig 12. Short-term P2RX7 antagonist administration reduces severity of muscle pathology. (A) Comparison of serum CK levels inmdxmice (control)
andmdxmice injected with the P2RX7 antagonist CBB. Note the high variability of CK levels in the dystrophic sera. Daily administration of CBB over the
4-wk period reduced CK levels (t-test, t = 2.3, df = 26, p = 0.030), in line with the effects of P2RX7 ablation in 4-wk-old Pf-mdx/P2X7−/− mice. (B)
Representative Western blots (left) and average value plots (right) demonstrating significantly decreased levels of the CD11b leukocyte marker in
gastrocnemius muscles ofmdxmice injected with ox-ATP compared tomdx saline-injected controls (t-test, t = 2.84, df = 4, p = 0.047). Use of separate
Western blots is indicated by solid black lines. (C) Comparisons of serum CK levels (left) and F4/80+ macrophage loads inmdxmice showing significant
decreases (CK t-test, t = 2.26, df = 9, p = 0.050; F4/80 t-test, t = 4.34, df = 4, n = 3, p = 0.012) following 14 daily administrations of the competitive P2RX7
antagonist A-438079. *p < 0.05.

doi:10.1371/journal.pmed.1001888.g012
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disease. Interestingly, we have confirmed the previous observation [62] that a higher level of
fibrosis in diaphragms may coincide with a lower proportion of C/N myofibers (Fig 9). Central
nuclei denote muscle regeneration and thus are considered an indicator of muscle pathogene-
sis. However, as demonstrated in both studies, the proportion of C/N fibers alone is not an
accurate marker of muscle degeneration. It has been suggested that such myofibers may be
more resistant to mechanical stress [63], which, in turn, could contribute to the differences in
the pathology observed in diaphragm compared to limb muscles. The presence of fewer rever-
tant fibers has been used as an indicator that a muscle has undergone fewer degeneration/
regeneration cycles [43,44]. Revertant fibers arise due to rare, spontaneous exon skipping
events, which take place only in proliferating precursor cells activated by muscle degeneration.
Therefore, in experimental paradigms not inducing dystrophin exon skipping, such as
described here, revertant fibers are a good indicator of muscles’ degeneration/regeneration
history.

Fig 13. P2X7 purinoceptor involvement in the dystrophic pathology. Absence of dystrophin and
resulting loss of the DAP complex lead to myofiber damage. Degenerating/dying muscle releases large
quantities of DAMPs, including ATP, which trigger chronic inflammation. P2RX7 activation on dystrophic
myofibers exacerbates injury by promoting intracellular Ca2+ build-up and autophagic cell death. Infiltrating
macrophages (Mφ), T-cells, and granulocytes (GrC) cause further myofiber damage, while chronically
elevated levels of inflammatory mediators disturb normal brain and bone functions. Chronic inflammation also
reduces repair by altering satellite cell (SC) activation and muscle precursor cell differentiation, while high
eATP levels combined with P2RX7 overexpression contribute to their death and thus reduce muscle
regeneration further still.

doi:10.1371/journal.pmed.1001888.g013
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The cardiac improvement observed when P2RX7 was blocked is also of clinical importance
because, with prolonged patient survival (due to advances in general care), heart failure
becomes a more common cause of death in DMD.

Targeting P2RX7 is, to our knowledge, the first clinically relevant treatment for DMD cog-
nitive dysfunction. This is important because severe cognitive impairment occurs in one-third
of DMD patients. Absence of dystrophin causes a rearrangement of the precise spatiotemporal
pattern of synaptic transmission [64,65]. Re-expression of dystrophin inmdx brains results in
some improvement [48], indicating that at least partial correction of the cognitive phenotype
can be achieved, even in adult brains. However, gene targeting into the CNS is inherently diffi-
cult, and therefore currently tested therapies do not address this aspect of the pathology. In
contrast, treatments downstream from the primary deficit offer a better chance of success by
exploiting more accessible targets. It is currently not known whether dystrophin absence causes
P2RX7 abnormalities in brain cells similar to those identified in muscles and DMD lympho-
blasts [6]. In fact, it is not unequivocal which brain cells express P2RX7 [66]. Therefore, we are
investigating the dystrophic CNS to establish whether it is possible to attribute this improve-
ment directly to P2RX7 ablation in specific cells. An alternative explanation is that the leaky
blood–brain barrier found in dystrophic brains [67] causes inflammatory mediators to affect
brain functions [68], in which case, the decreased chronic inflammation inmdx/P2X7−/− mice
would be what results in improved brain performance. Whatever the mechanism, our findings
suggest that DMD-associated cognitive impairment could be treated with administration of
P2RX7 antagonists. Such drugs, including brain-permeable ones, are undergoing trials for
other diseases [69].

P2RX7 plays significantly different roles in bone physiology and in disease states [70].
Importantly, ablation of P2RX7 in our model did not exacerbate but rather improved the dys-
trophic bone phenotype. As bone abnormalities inmdxmice have been linked to chronic
inflammation [71], the reduced inflammatory signature inmdx/P2X7−/−muscles may also
translate into reduced bone loss in these mice.

A therapeutic strategy that can improve both muscle and non-muscle abnormalities would
be a significant development: bone deformities contribute to the physical disability and death
of DMD patients. In turn, the brain is the second major site of dystrophin gene expression, and
cognitive and behavioral impairments associated with DMD add to the very severe burden of
this disease, affecting the quality of life of patients and their families.

The molecular mechanism leading to the P2RX7 abnormality in dystrophinopathy found
both in muscle [7–9] and non-muscle cells [6] is unknown. Is this a structural defect related to
the scaffolding function of dystrophin or a regulatory defect at the gene or the transcript level?
Nonetheless, normal DMD gene expression is essential for normal functioning of various cells,
and DMDmutations have detrimental effects evident already at early stages of the disease [72–
74]. These findings may lead to a rethink of DMD pathogenesis and treatment.

In summary, loss of dystrophin disrupts many downstream processes. Recent examples
have illustrated that such processes may offer good targets for therapeutic interventions that
are not constrained by the causative mutation [5,40,52]. Moreover, such approaches may be
effective not only in protecting muscle cells but also with respect to inflammation, cognitive
impairment, and bone abnormalities, which all make substantial contributions to the DMD
pathology.

Our data show that selective ablation or blockade of P2RX7 ameliorates themdx dystrophic
process both short and long term and does not cause detectable side effects in this DMD
mouse model. Given that specific P2RX7 antagonists have been in human trials for other con-
ditions [75], these could be readily repurposed for treatment of this lethal disease. Furthermore,
nucleoside reverse transcriptase inhibitors (e.g., zidovudine) have been shown to block P2RX7
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activation in a number of disease models [76]. These drugs, with an extensive pharmacological
and safety record for human use, including in children, appear ready for trials in DMD.
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(Volume Graphics). The calculation of the morphometric parameters was carried out by
importing the CT images into ImageJ software. A region of interest (ROI) containing trabecu-
lar bone only was defined, and for each specimen the following morphometric parameters
were determined: BV/TV, trabecular thickness (Tb.Th) and Tb.Sp. Measurements were aver-
aged over ten consecutive slices just below the femoral head.
(TIF)

S1 Table. Depiction of the qPCR data comparing relative gene expression levels in gastroc-
nemius-derived mRNAs fromWT,mdx, Pf-mdx/P2X7−/−, and G-mdx/P2X7−/−mice. Statis-
tically significant differences in ANOVA with Tukey’s post hoc test at p< 0.001 are depicted
in red and green for up- and down-regulated genes, respectively, and values (2−ΔΔCT) shown.
Not included were the following genes, where no statistically significant differences in qPCR
analyses were found: Bcl10, C1ra, C2, Casp3, Casp9, Cd163, Cebpa, Csf1, Cxcr3, Cxcr4, Fas, Fos,
Foxo3, Gpx4,Hif1a,Hspa1b,Hspd1, Ifngr1, Igf1, Il6ra, Il10rb, Irf1, Irf3, Irf9, Jun,Mmp2, Nfkb1,
Nos2, P2ry12, Prdx5, Ptges, Rbpj, Rplp0, Socs1, Socs3, Sod1, Stat1, Stat3, Tgfbr1, Tnfrsf1a, and
Twist1. The following genes gave expression values below the detection threshold or ill-repro-
ducible results in repeated experiments: Adora1, Bdnf, Ccl5, Il1a, Il6, Il17a, Il18, Pla2g5, Serp-
ing1, and Tnfrsf1b.
(PDF)

S2 Table. Expression of fibrosis-related and collagen genes estimated using RNA-Seq. Frag-
ments per kilobase per million fragments mapped (FPKM) values as calculated by Cuffdiff and
Cuffnorm (Cufflinks suite, http://cole-trapnell-lab.github.io/cufflinks/) are given in the tables
cuffdiff_fpkm and cuffnorm_fpkm. The results of the differential expression analysis per-
formed using Cuffdiff are provided in the table cuffdiff_diff_expression.
(XLSX)
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Editors' Summary

Background

Muscular dystrophies are inherited diseases in which the body’s muscles gradually weaken
and waste away. The most common and severe muscular dystrophy—Duchenne muscular
dystrophy (DMD)—also includes cognitive (thinking) and behavioral impairments and
low bone density as well as chronic inflammation. DMD affects about 1 in 3,500 boys; girls
can be carriers of DMD but rarely have any symptoms. At birth, boys who carry a muta-
tion (genetic change) in the gene that makes the protein dystrophin seem normal, but the
symptoms of DMD soon begin to appear. Affected children may initially have difficulty
walking or may find it hard to sit or stand independently. As they age, their muscle
strength progressively declines, a process that is aggravated by sterile inflammation (an
immune system response to tissue damage that occurs in the absence of an infectious
agent), and most affected boys are confined to a wheelchair by the time they are 12 years
old. The diaphragm and other muscles involved in breathing also weaken, and the heart
muscle becomes enlarged. Consequently, few boys with DMD live beyond their early 20s,
usually dying from breathing or heart problems. At present, there is no cure for DMD.
However, physical therapy and treatment with steroids (intended to reduce sterile inflam-
mation) can prolong the ability of patients to walk, and assisted ventilation can help with
their breathing.

WhyWas This Study Done?

One way to treat DMD under investigation is replacement of the defective dystrophin in
muscles using gene therapy. Dystrophin normally forms structural scaffolds that sit in the
membranes that surround muscle fibers and protect the fibers from damage during muscle
contraction. In DMD, the loss of dystrophin, dystrophin-associated proteins, and specific
signaling processes causes progressive muscle loss. Although gene therapy approaches that
target dystrophin hold some promise, achieving sufficient dystrophin expression in all the
crucial muscle groups to prevent progressive muscle damage is hard. Moreover, gene ther-
apy targeted at muscles will not treat the non-muscle-related characteristics of DMD. Tar-
geting an abnormality downstream of dystrophin might therefore be a better approach to
the treatment of DMD. One such target is P2RX7. This purinoceptor was originally identi-
fied as a sensor of ATP released from damaged cells and is an activator of innate immune
responses. Because upregulation of P2RX7 is responsible for muscle death in themdx
mouse model of DMD and for the death of human DMD lymphoblasts, in this study, the
researchers investigate whether genetic ablation of P2RX7 can attenuate the DMD symp-
toms of themdxmouse model.

What Did the Researchers Do and Find?

The researchers matedmdxmice and mice that lack the gene for P2RX7 to obtain Pf-mdx/
P2RX7−/− mice, which make no functional dystrophin or P2RX7. They then compared the
structure and function of the muscles (dystrophic pathology) in these mice with those in
mdxmice. They also examined specific aspects of the behavior of the mice. At four weeks,
there was improved muscle structure and strength, decreased inflammation, and decreased
fibrosis (thickening and scarring of the connective tissue covering the muscles) in the Pf-
mdx/P2RX7−/−mice compared to themdxmice. P2RX7 ablation also reduced blood levels
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of creatinine kinase (a marker of muscle, heart, and brain injury), cognitive impairment,
and bone structure alterations. Importantly, the reduction in inflammation and fibrosis
was still evident at 20 months in the leg, diaphragm, and heart muscles of the Pf-mdx/
P2RX7−/− mice compared to themdxmice. Finally, the dystrophic pathology inmdxmice
could also be reduced by treating these mice with P2RX7 antagonists (molecules that bind
to P2RX7 and prevent its function).

What Do These Findings Mean?

These findings show that genetic ablation of P2RX7 can improve muscle function in the
short and long term and can also correct cognitive impairment and bone loss in a mouse
model of DMD. Thus, inmdxmice, P2RX7 ablation affects multiple disease mechanisms
that affect skeletal and heart muscles, inflammatory cells, brain, and bone. Other prelimi-
nary findings suggest that P2RX7 blockade inmdxmice also improves DMD symptoms.
These are promising results, but results in animals do not necessarily translate into effec-
tive clinical treatments. Nevertheless, these findings identify P2RX7 as an attractive target
for the treatment of DMD, particularly since it might be possible to repurpose P2RX7
antagonists originally developed for the treatment of chronic pain for the treatment of
DMD.

Additional Information

This list of resources contains links that can be accessed when viewing the PDF on a device
or via the online version of the article at http://dx.doi.org/10.1371/journal.pmed.1001888.

• The US National Institute of Neurological Disorders and Stroke provides information
on muscular dystrophy (in English and Spanish)

• The US National Human Genome Research Institute also provides basic information on
Duchenne muscular dystrophy and links to additional resources

• The US Centers for Disease Control and Prevention has information about muscular
dystrophy

• The not-for-profit Nemours Foundation provides information about muscular
dystrophy for parents, children, and teenagers (in English and Spanish)

• The US not-for-profit organization Parent Project Muscular Dystrophy provides
detailed information about all aspects of Duchenne muscular dystrophy and parents’
stories about Duchenne muscular dystrophy

• MedlinePlus provides links to further resources on muscular dystrophy and an encyclo-
pedia page on Duchenne muscular dystrophy (in English and Spanish)

• Wikipedia has pages about Duchenne muscular dystrophy and P2RX7 (note that Wiki-
pedia is a free online encyclopedia that anyone can edit; available in several languages)

• TREAT-NMD is a network for the neuromuscular field that provides an infrastructure
to ensure that the most promising new therapies reach patients as quickly as possible
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