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Abstract
Neuroimaging has identified many correlates of emotion but has not yet yielded brain repre-

sentations predictive of the intensity of emotional experiences in individuals. We used ma-

chine learning to identify a sensitive and specific signature of emotional responses to

aversive images. This signature predicted the intensity of negative emotion in individual par-

ticipants in cross validation (n =121) and test (n = 61) samples (high–low emotion = 93.5%

accuracy). It was unresponsive to physical pain (emotion–pain = 92% discriminative accu-

racy), demonstrating that it is not a representation of generalized arousal or salience. The

signature was comprised of mesoscale patterns spanning multiple cortical and subcortical

systems, with no single system necessary or sufficient for predicting experience. Further-

more, it was not reducible to activity in traditional “emotion-related” regions (e.g., amygdala,

insula) or resting-state networks (e.g., “salience,” “default mode”). Overall, this work identi-

fies differentiable neural components of negative emotion and pain, providing a basis for

new, brain-based taxonomies of affective processes.

Author Summary

Emotions are an important aspect of human experience and behavior; yet, we do not have
a clear understanding of how they are processed in the brain. We have identified a neural
signature of negative emotion—a neural activation pattern distributed across the brain
that accurately predicts how negative a person will feel after viewing an aversive image.
This pattern encompasses multiple brain subnetworks in the cortex and subcortex. This
neural activation pattern dramatically outperforms other brain indicators of emotion
based on activation in individual regions (e.g., amygdala, insula, and anterior cingulate) as
well as networks of regions (e.g., limbic and “salience” networks). In addition, no single
subnetwork is necessary or sufficient for accurately determining the intensity and type of
affective response. Finally, this pattern appears to be specific to picture-induced negative
affect, as it did not respond to at least one other aversive experience: painful heat. Togeth-
er, these results provide a neurophysiological marker for feelings induced by a widely used
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probe of negative affect and suggest that brain imaging has the potential to accurately un-
cover how someone is feeling based purely on measures of brain activity.

Introduction
Emotions are a class of psychological states comprised of physiological responses, expressive
behavior, and subjective experiences that are central to our daily lives and to multiple forms of
psychopathology [1] and chronic medical diseases [2]. Emotional information organizes physi-
ological, cognitive, and motor systems into adaptive [3], organism-wide responses to events
and situations relevant for survival and well-being [4–6]. These responses allow us to pursue
resources and avoid harm [7], translate cognitive goals into motivated behavior [8], and navi-
gate the social world [9,10]. Conversely, emotional dysregulation is at the heart of many brain-
and body-related disorders (e.g., mood, anxiety, personality, cardiovascular, and substance use
disorders) and likely cuts across traditional diagnostic boundaries [11]. Thus, understanding
the neurobiological mechanisms that generate and mitigate negative emotional experience is
paramount to understanding both human flourishing and dysfunction.

The importance of understanding the “emotional brain” has motivated hundreds of neuro-
imaging studies in healthy humans [12,13] and those suffering from psychopathology [14–16].
The promise of these studies for basic research is that they will permit a brain-based taxonomy
of emotional processes, avoiding the sole reliance on psychological categories [17,18], while the
hope for clinical development is to provide transdiagnostic markers for psychopathology that
can identify functional brain dysregulation [19] and physical health risk [2,20], predict treat-
ment response [21,22], and guide new, brain-based treatments [23,24].

In spite of this promise, fundamental requirements must be met before neuroimaging find-
ings can be considered brain representations of emotion that are useful for translational pur-
poses [25]. Previous work has identified many brain correlates of emotional versus
nonemotional stimuli [12] and physiological responses [26,27] but has yet to uncover brain sig-
natures diagnostic of an individual’s emotional experience. For example, the amygdala, dorsal
anterior cingulate (dACC), anterior insula (aINS), and other regions reliably respond to aver-
sive stimuli [28], and functional alterations in these regions are considered prominent features
of anxiety disorders [14,29]. However, activation in these regions does not imply an emotional
experience. Amygdala activation can occur in the absence of emotional experience [30] and
does not appear to be involved in all aversive experiences [31]. In addition, the dACC and aINS
are among the most frequently activated regions in the brain across all types of emotional and
nonemotional states [28] and have recently been conceptualized as network “hubs” that may
be integrating cognitive, emotional, and motivational information [32,33].

One factor that contributes to this limitation is that the vast majority of studies focus on
comparing types of stimuli [12], e.g., “negative” versus “neutral” images, rather than finer
grained differences in reported experience [34]. While these emotion-related comparisons are
assumed to reflect “affective processing,” confounds with attention, salience, and other process-
es may render many findings superfluous to emotional experience.

Thus, there is a pressing need for neural signatures that are optimized to predict emotional
experiences and functional outcomes. These indicators should: (1) specify a precise set of brain
voxels that can be tested in new individuals and prospectively applied to new samples and (2)
be sensitive and specific to a class of affective experiences (e.g., negative emotion and not other
states such as attention or arousal) [35].
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Machine learning provides a new toolbox of algorithms suited for developing sensitive and
specific signatures of psychological processes [36–39], particularly when those signatures in-
volve measures across multiple neural systems, as is likely to be the case with emotional experi-
ence [12,18,40]. Standard neuroimaging methods generally preclude estimation and
optimization of the strength of the brain experience correspondence [28,41–43], but cross vali-
dated machine learning analyses can identify whether brain effects are of sufficient magnitude
(e.g., sensitive enough) and specific enough to have translational utility. These techniques have
recently shown great promise in identifying patterns that discriminate among types of affective
experiences from brain [35,44–46] and physiology [47], discriminating patient from control
groups [19,48], and predicting treatment response [49].

Here, we use machine learning in a large sample (n = 183) to identify the brain systems that
predict the intensity of negative affective experiences elicited by viewing images from the Inter-
national Affective Picture System (IAPS) [50], which is among the most robust methods of elic-
iting brief affective experiences (d = 0.81) [51]. In spite of the widespread use of IAPS images
in basic and clinical research (e.g., it is the primary affective task in the human connectome
project [52]), the brain mechanisms that underlie the genesis of the negative experiences they
evoke have not been clearly identified. In addition, it is unclear (a) whether it is possible to
identify a pattern that strongly predicts emotional experience prospectively in out-of-sample
individuals, (b) which brain systems are involved (cortical, subcortical, or both), and (c) wheth-
er brain activity that tracks negative affect is specific for negative affect, or whether it codes for
“salience,” arousal, or more general features of stimulus processing. Answers to all of these
questions are critical for continued progress in both basic affective and clinical sciences.

We address each of these questions by developing a multivariate pattern that predicts nega-
tive emotion and assess its sensitivity and specificity relative to pain—another type of arousing,
salient, negative experience. Finally, to examine the distributed versus localized nature of the
signature, we examined the subsystems necessary and sufficient for accurately predicting nega-
tive emotional experience.

Results

The PINES Signature
We used Least Absolute Shrinkage and Selection Operator and Principle Components Regres-
sion (LASSO-PCR) [35,53] to identify a distributed Picture Induced Negative Emotion Signa-
ture (PINES) that monotonically increased with increasing affective ratings in leave-one-
subject-out cross validated analyses (n = 121). To apply the model to data from individual test
subjects in both cross validation (n = 121) and separate hold-out test datasets (n = 61), we cal-
culated the pattern response—the dot product of the PINES weight map and the test image—
for individual subjects’ activation maps for each of 5 levels of reported negative emotion (see
Fig 1). The resulting continuous values reflect the predicted intensity of negative emotion for a
given activation map. We used these values to classify which of two conditions elicited a stron-
ger negative emotion for an individual (a “forced-choice” test) [35], providing accuracy esti-
mates (Fig 1E). We also used similar classification tests, described below, to evaluate the
sensitivity and specificity of PINES responses to negative emotion versus pain. We focus pri-
marily on results for the test sample, as it was completely independent of all model-training
procedures and provides the strongest evidence for generalizability [54].

The PINES accurately predicted ratings of negative emotional experience in both cross vali-
dation and hold-out test datasets (Fig 2). For individual participants in the cross validation
sample, the average root mean squared error (RMSE) was 1.23 ± 0.06 (standard error; SE) rat-
ing units, and the average within-subject correlation between predicted and actual ratings was
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r = 0.85 ± 0.02). Accuracy was comparable in the test sample (RMSE = 0.99 ± 0.07,
r = 0.92 ± 0.01). The PINES accurately classified highly aversive (rating 5) versus nonaversive
(rating 1) pictures with 100% forced-choice accuracy in both cross validation and test samples
(Fig 2B). Classification accuracy was also high in both the highly aversive range (rating of 5

Fig 1. Experimental paradigm and analysis overview. Panel A depicts the sequence of events for a given trial. Participants view an initial fixation cross
and then are instructed to look at the picture (compared to reappraise). Participants then see a photo and are asked to rate how negative they feel on a likert
scale of 1–5. Panel B illustrates the temporal data reduction for each rating level using voxel-wise univariate analysis and an assumed hemodynamic
response function. Panel C: these voxels are then treated as features and trained to predict ratings using LASSO-PCRwith leave-one-subject-out cross
validation. Subject’s data for each rating is concatenated across participants. Panel D: this multivoxel weight map pattern can be tested on new data using
matrix multiplication to produce a scalar affective rating prediction. Panel E: we calculated two different types of classification accuracy: (a) the ability to
discriminate between high (rating = 5) and low (rating = 1) affective ratings and (b) the ability to discriminate between high affective and high pain data.

doi:10.1371/journal.pbio.1002180.g001
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versus 3: forced-choice = 91%; test sample) and the moderately aversive range (rating of 3 ver-
sus 1: 100%; test sample) (See S1 Table). We also assessed single-interval classification based
on a single image rather than a relative comparison (Table 1), which were only slightly less ac-
curate (Table 1). Comparisons with Support Vector Regression (SVR), another popular algo-
rithm, indicate that these results appear to be robust to the choice of algorithm and, to a large
extent, the amount of data used in the training procedure (see S1 Methods).

The PINES pattern included reliable predictive weights across a number of cortical and sub-
cortical regions (Fig 2A). Positive weights (greater activity predicts more negative emotion)
were found in many regions typically associated with negative emotion [12,40], including the
amygdala, periaqueductal gray (PAG), aINS, dorsomedial prefrontal cortex (dmPFC), ventral
occipital cortex, presupplementary motor area (preSMA), ventromedial temporal lobe (mTL),
and posterior cingulate cortex (PCC). Negative weights were found in the bilateral parahippo-
campal gyrus, right superior temporal gyrus, left temporal parietal junction (TPJ), right cau-
date, and occipital and somatomotor cortices. These regions likely comprise multiple
functional systems, as we describe in more detail below. Though the PINES comprises nonzero
predictive weights across the brain (see S1 Fig), supplementary analyses indicated that a sparse
pattern thresholded at p< .001, as shown in Fig 2 (1.6% of in-brain voxels), was sufficient to
predict emotional experience with comparable sensitivity to the full model (see S1 Methods
and S5 Fig).

Fig 2. PINES. Panel A depicts the PINES pattern thresholded using a 5,000 sample bootstrap procedure at p < 0.001 uncorrected. Blowout sections show
the spatial topography of the pattern in the left amygdala, right insula, and posterior cingulate cortex. Panel B shows the predicted affective rating compared
to the actual ratings for the cross validated participants (n = 121) and the separate holdout test data set (n = 61). Accuracies reflect forced-choice
comparisons between high and low and high, medium, and low ratings. Panel C depicts an average peristimulus plot of the PINES response to the holdout
test dataset (n = 61). This reflects the average PINES response at every repetition time (TR) in the timeseries separated by the rating. Panel D illustrates an
item analysis which shows the average PINES response to each photo by the average ratings to the photos in the separate test dataset (n = 61). Error bars
reflect ±1 standard error.

doi:10.1371/journal.pbio.1002180.g002
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Moderation by demographic variables. An important issue for any biomarker is whether
the relationship between predicted (i.e., PINES responses) and observed responses (i.e., nega-
tive emotion) is different for different subject populations. Here, all participants (n = 182) dem-
onstrated a positive association between the magnitude of the PINES response and negative
emotion. In addition, the slope of the relationship between the PINES response and test partici-
pants’ (n = 61) ratings was not moderated by demographic variables, including age (F(1,56) =
0.37, p = 0.54), sex (F(1,56) = 0.80, p = 0.38), ethnicity (Caucasian (86% of sample) versus Afri-
can American (13%); F(1,56) = 0.29, p = 0.59), or IQ (F(1,56) = 0.96, p = 0.33).

Chronometry of the PINES response. To characterize the time course of PINES re-
sponses during and after picture viewing, we applied the PINES pattern to the entire timeseries
in the test dataset (n = 61) and examined responses at each time point following stimulus onset
(Fig 2C). Monotonic increases with negative emotional experiences began approximately 4 sec
following picture onset and peaked at approximately 6 sec following picture offset, validating
the adequacy of the hemodynamic model used here and verifying that the PINES response is
linked to responses during picture viewing.

Table 1. Patten sensitivity and specificity.

Map Emotion 5
versus 1 (SE)

Pain High versus
Low (SE)

Emotion versus
Pain (SE)☨

Emotion
Correlation (SE)

Pain Correlation
(SE)

Pattern

PINES 93.6 (2.6%)+ 60.7 (8%) 93.2 (2.9%)+ 0.92 (0.01) 0.64 (0.11)

Neurologic Pain
Signature (NPS)

27.7 (5%)+* 82.1 (5.6%)+ 10.7 (3.6%)+* -0.35 (0.06) 0.91 (0.04)

Average Region of
Interest (ROI)

Amygdala 55.3 (6%)* 64.3 (8%) 50.5 (5.8%)* 0.31 (0.07) 0.62 (0.09)

Anterior Cingulate
(ACC)

55.3 (5.6%)* 75 (6.7%)+ 50.5 (5.8%)* 0.26 (0.07) 0.9 (0.02)

Insula 55.3 (6%)* 78.6 (6.2%)+ 45.6 (5.7%)* 0.32 (0.07) 0.92 (0.02)

Network

Visual 50 (6.5%)* 57.1 (8%) 78.6 (4.7%)+* -0.01 (0.08) 0.22 (0.13)

Somatomotor 36.2 (6.2%)+* 71.4 (7.1%)+ 28.1 (5.2%)+* -0.38 (0.06) 0.78 (0.09)

Dorsal Attention 57.4 (6.4%)* 71.4 (6.2%)+ 61.2 (5.6%)* 0.34 (0.07) 0.57 (0.12)

Ventral Attention
(Salience)

51.1 (6%)* 71.4 (6.2%)+ 13.5 (3.9%)+* 0.14 (0.07) 0.56 (0.13)

Limbic 57.4 (6%)* 35.7 (8%) 53.4 (5.8%)* 0.28 (0.06) -0.5 (0.13)

Frontoparietal 51.1 (5.8%)* 60.7 (7.6%) 42.7 (5.7%)* 0.29 (0.07) 0.34 (0.13)

Default 63.8 (5.4%)+* 57.1 (7.6%) 70.8 (5.3%)+* 0.34 (0.06) -0.03 (0.15)

All balanced accuracies reported in this table result from single-interval classification on the test dataset (n = 47; see S1 Table for forced-choice test).

Analyses involving Level 5 and/or Level 1 comparisons exclude participants that did not rate any stimuli with that label. Accuracy values reflect the ability to

discriminate the conditions compared, but are signed, so that values >50% indicate the proportion of participants for which high intensity was classified as

greater than low intensity, for high vs. low analyses, or emotion was greater than pain, for Emotion vs. Pain analyses. Values < 50% indicate the proportion

of participants for which low intensity was classified as greater than high intensity or pain was classified as greater than emotion. For example, the 10.7%

emotion classification of the NPS in the Emotion vs. Pain analysis should be interpreted as a 89.3% hit rate in discriminating pain from emotion. Correlations

reflect Pearson correlations between participant’s pattern responses to levels of affective intensity and self-reported ratings averaged across participants.
☨Please note that this column does not reflect accuracy but rather percent classified as emotion.
+Indicates that accuracy is significantly different from chance (50%), using a two-tailed dependent binomial test.

*Indicates accuracy significantly different from PINES performance using a two-sample two-tailed z-test for proportions (only tested on Emotion 5 versus 1

and Emotion versus Pain columns).

doi:10.1371/journal.pbio.1002180.t001
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Item analysis. IAPS images vary in multiple ways, including the visual and social content
of the images. To test whether the PINES pattern predicted negative emotion across the various
images included in this study, we performed an item analysis to test how strongly the PINES
expression correlated with ratings across individual pictures in the test dataset. We found a
strong linear relationship between the average ratings and pattern response for each image r =
.95, t(28) = 15.66, p< 0.001, even within only the negative pictures r = .67, t(13) = 3.22,
p = 0.006 (Fig 2D). This finding suggests that the PINES response reflects emotional experience
across the heterogeneous visual characteristics (e.g., color, luminance, spatial frequency) and
content in the pictures. One potential confound is that most of the negative images depicted a
social scene, while most of the neutral images were nonsocial. S7 Fig shows an item analysis
highlighting the PINES response to counterexamples of each condition; the results suggest that
the signature is not driven by the degree of sociality. In addition, the average PINES response
across these images also strongly correlated with normative ratings of multiple discrete emo-
tions from an independent study [55] (sadness, r = 0.92; anger, r = 0.94; disgust, r = 0.94; and
fear, r = 0.88). This suggests that the PINES may be tracking a general negative emotional re-
sponse rather than a specific emotional state, consistent with previous factor analyses of emo-
tional elicitation using the IAPS [55]. However, as the normative emotion ratings are highly
intercorrelated in this set of images, further studies are needed to examine the mapping be-
tween PINES responses and emotional content in more detail.

Within-subject prediction. In addition, it is important to assess the degree of individual
variability in the spatial pattern of the PINES. It is possible that some brain regions important
for affect may be highly variable across participants in both interparticipant spatial registration
and functional topography. Therefore, in this analysis, we looked at the performance of pat-
terns trained on individual participant data. Overall, the individualized predictive maps were
able to predict affect ratings on individual trials (mean cross validated r = 0.54 ± 0.02). Interest-
ingly, the cross validated PINES performed significantly better than the within-subject patterns
(mean trial-by-trial r = 0.66 ±0.01), t(120) = 6.28, p< 0.001 (Fig 3C). The relative high accura-
cy of the PINES can be attributed to larger amounts of between-participant than within-partici-
pant trial data. The spatial topography of the average within-participant predictive map was
similar to the PINES (spatial correlation r = .37), though the peaks of the most predictive re-
gions were more spatially diffuse (see Fig 3A, S1 Fig). No individual participant’s weight map
was more spatially similar to the PINES than the group mean (average r = 0.11 ± 0.01), which
suggests that the individualized maps were much noisier than the PINES. The tradeoff between
using the group (PINES) to regularize predictions compared to the individual alone reflects a
classic bias and variance tradeoff fundamental throughout statistics. Introducing some bias to-
wards the group can reduce variance in estimation, improving estimates and predictions. This
is the general principle underlying empirical Bayes estimation, which is widely used throughout
the statistical sciences.

Dependence on visual processing. Though the PINES includes weights in ventral occipi-
tal and temporal regions, which may be related to emotional experience or aspects of high-level
visual processing correlated with emotion, accurate predictions do not depend on these re-
gions. Accuracy for the test sample was maintained even when the PINES was retrained ex-
cluding the entire occipital lobe (forced-choice rating 5 versus 1 = 100%, RMSE = 0.96 ± 0.06,
r = 0.89 ± 0.01; S2 Fig).

Pattern Specificity
Affect systems may be organized by valence so that a brain signature for negative affect may be
found across stimulus modalities and contexts, or in a modality-specific manner, such that
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there is not one “negative affect system” but many. Testing these hypotheses requires compar-
ing multiple types of negative affect across modalities. Here, we assessed the generalizability
and specificity of the PINES response across IAPS pictures and somatic pain, which is a nega-
tive, arousing experience arising from a different modality.

We employed two types of analyses to examine the PINES specificity. First, we compared
the spatial topography of the PINES to another pattern map, the Neurologic Pain Signature
(NPS), which shows high sensitivity and specificity to somatic pain across multiple studies
[35]. The PINES and NPS maps were almost completely uncorrelated (robust ranked spatial
correlation, r̂ = −0.01; Fig 4). Several regions showed positive weights in both maps, including
the anterior cingulate (ACC), insula, and amygdala. As shown in Fig 5C, however, the weight
patterns within these regions were also uncorrelated (bilateral ACC, r̂ = 0.04, insula, r̂ =
−0.05), though weights in the amygdala were modestly correlated (r̂ = 0.21).

Second, we assessed the specificity of the pattern responses in the test IAPS (n = 61) and
thermal pain (n = 28) [56] datasets. The PINES accurately predicted negative affect in the IAPS

Fig 3. Within participant emotion prediction. This figure depicts results from our within-participant analysis, in which the PINES was retrained separately
for each participant to predict ratings to individual photos. Panel A shows the voxels in the weight map that are consistently different from zero across
participants using a one sample t test thresholded at p < 0.001 uncorrected. Panel B shows a histogram of standardized emotion predictions (correlation) for
each participant. The dotted red line reflects the average cross validated PINES correlation for predicting each photo’s rating. Panel C depicts how well each
participant’s ratings were predicted by the PINES (y-axis) versus an idiographically trained, cross-validated map using their individual brain data (x-axis).
Each point on the graph reflects one participant. The dotted red line reflects the identity line. Any data point above the identity line indicates that the
participant was better fit by the PINES than their own weight map.

doi:10.1371/journal.pbio.1002180.g003
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dataset (n = 61) but showed no response to increasing pain intensity in the pain dataset (Fig 4).
Conversely, the NPS responded robustly to increasing pain but showed no response to increas-
ing negative affect in the IAPS dataset. To further assess sensitivity and specificity, we exam-
ined how well responses in each pattern could discriminate (a) high pain versus high negative
affect, (b) high versus low pain, and (c) high versus low negative affect (Table 1). Because this

Fig 4. Affective and pain responses to PINES and NPS. This figure illustrates differences in the spatial topography in the thresholded PINES and NPS
patterns and their predictions in independent emotion (n = 61) and pain (n = 28) test data. Panel A depicts the PINES thresholded at p < 0.001 uncorrected
(see Fig 2). Panel B depicts the average standardized PINES and NPS pattern responses at each level of emotion calculated using a spatial correlation.
Error bars reflect ±1 standard error. Panel C depicts the NPS thresholded at false discovery rate (FDR) q < 0.05 whole-brain corrected. Panel D depicts the
average standardized PINES and NPS pattern responses at each pain level calculated using a spatial correlation. Error bars reflect ±1 standard error.

doi:10.1371/journal.pbio.1002180.g004
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involves comparing responses from two separate, imbalanced test sets (n = 61 versus n = 28),
the analyses described below employ single interval classification, in which individual images
are tested for suprathreshold responses independently (as compared to relative within-subject
differences in forced-choice classification). The threshold was determined by finding the point
that minimized signal detection response bias (see Methods for details), and we report balanced
emotion classification accuracy (chance = 50%), sensitivity, and specificity (See S2 Table for
equivalent forced-choice analyses).

Pain versus emotion. The PINES responded more strongly to emotion than pain and ac-
curately discriminated between the two (93.2 ± 2.9% [SE] accuracy, 93.6% sensitivity, and
92.9% specificity); conversely, the NPS responded more strongly to pain and accurately dis-
criminated pain from emotion (89.3 ± 3.6% accuracy, 89.4% sensitivity, and 89.3% specificity).
Thus, both patterns discriminated between the two modalities.

High versus low intensity in each modality. The NPS successfully classified high versus
low pain (82.1 ± 5.1% accuracy, 82.1% sensitivity, and 82.1% specificity). It also significantly,
though less accurately, classified high versus low emotion (Rating 5 versus 1; 70.4 ± 4.4%,
70.2% sensitivity, and 70.5% specificity), but NPS responses were actually strongest for low-in-
tensity emotion. Examining responses across emotion levels revealed that this was caused by
deactivation of the NPS for all levels of emotion>1, resulting in nonmonotonic responses. In

Fig 5. Region of interest analysis. Panel A illustrates the spatial distribution of the three anatomical ROIs used in all analyses (amygdala = yellow,
insula = red, ACC = cyan). Panel B depicts the average activation within each ROI across participants for each level of emotion and pain in the emotion hold
out (n = 61) and pain test datasets (n = 28). Error bars reflect ±1 standard error. Panel C illustrates the spatial topography of the PINES and NPS patterns
within each of these anatomical ROIs. While these plots show one region, correlations reported in the text reflect bilateral patterns.

doi:10.1371/journal.pbio.1002180.g005
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contrast, the PINES successfully classified high versus low emotion ratings (93.5 ± 2.4% accura-
cy, 93.6% sensitivity, and 93.4% specificity) but was at chance in discriminating high versus
low pain (60.7 ± 6.5% accuracy, 60.7%, sensitivity, 60.7% specificity).

Together, these analyses suggest that the PINES is specific to negative emotion, at least as
compared with pain, and that both the PINES and NPS capture distinct aversive states. Impor-
tantly, we are only assessing specificity to one type of construct (e.g., pain) among many possi-
ble options. Future work must build on these initial novel observations to examine
relationships across many types of positive and negative affect and stimulus modalities to pro-
vide a comprehensive picture of the organization of negative affect systems.

PINES Outperforms Prediction Based on ROIs and Resting-State
Networks
Another question is whether the precise pattern of activity specified in the PINES uniquely cap-
tures negative affect, or whether regions and networks previously used in the literature are suf-
ficient. In order to fully appreciate the sensitivity and specificity of the PINES, it is necessary to
compare it to the standard univariate approach, which typically examines average activation
within ROIs compared to baseline activity. In this analysis, we examined the average response
to emotion and pain stimuli within anatomical ROIs and canonical networks defined in large-
scale resting-state studies [57].

PINES outperforms ROIs. We tested three a priori ROIs that play prominent roles in
negative emotion: ACC, insula, and amygdala (see Table 1, Fig 5A). All ROIs showed linear in-
creases across levels of emotion (Fig 5B; S1 Methods), but the effects were not strong enough to
predict emotion ratings. For the amygdala, prediction—outcome correlations were positive
(test dataset RMSE = 3.04 ± 0.05; r = 0.31 ± 0.07), but high versus low classification accuracy
was at chance (55.3 ± 6%, sensitivity = 55.3%, specificity = 55.3%; Table 1). Comparable effects
were found in the ACC and insula. For the ACC: RMSE = 2.96 ± 0.05, r = 0.32 ± 0.07, accura-
cy = 55.3 ± 5.6%, sensitivity = 55.3%, specificity = 55.3%. For the insula: RMSE = 2.88 ± 0.05,
r = 0.37 ± 0.07, accuracy = 55.3 ± 6%, sensitivity = 55.3%, specificity = 55.3%. In addition, the
amygdala and insula showed a nonmonotonic response function across levels of emotion (Fig
5), as evidenced by significant linear and quadratic effects in both regions (see S1 Methods).
Together, these results indicate that averaged activity in these ROIs is not sufficient to predict
emotional experience. See S1 Methods for a whole-brain searchlight analysis that shows local
regions predictive of emotion and also local patterns that cross predict pain experiences.

PINES outperforms network maps. Many types of brain representations may be encoded
in distributed functional networks, and there is a growing consensus that functional connectiv-
ity in a small set of canonical networks may capture some representations important for cogni-
tion and emotion [57–62]. In this analysis, we compared the PINES to predictive information
in a popular seven-network whole-brain parcellation based on resting-state activity in 1,000
participants [57], treating each of the network masks as a pattern (see Methods). While “soma-
tomotor” (accuracy = 63.8 ± 6.2%) and “default” (accuracy = 63.8 ± 5.4%) networks discrimi-
nated between high and low levels of emotion above chance, none of the networks performed
nearly as well as the PINES (see Table 1 and S6 Fig for all results), including the “ventral atten-
tion network,” (also frequently referred to as the “salience” network) [57,63], which performed
at chance in discriminating high versus low negative emotional experience (51.1 ± 6%).

Activity in four networks successfully discriminated between responses to emotion and pain
(Table 1). The “visual” and “default mode” networks were more strongly activated by high levels
of emotion than high levels of pain (78.6 ± 4.7% and 70.8 ± 5.3%), while the ventral attention
and somatomotor networks responded more strongly to pain than emotion (86.5 ± 3.9% and
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71.9 ± 5.2%, respectively). These results suggest that the brain patterns that define commonly
used resting-state networks can identify the sensory modality of aversive stimulation with mod-
erate accuracy, but they are not sufficient for predicting the intensity of emotional experience.

The PINES Is Composed of Distinct Subnetworks
Defining a brain pattern sensitive and specific to a type of negative emotion is a critical first
step towards developing meaningful models of brain representations of emotion. Here, the de-
velopment of the PINES affords the opportunity to characterize the basis of this pattern repre-
sentation within and across brain networks. Constructionist theories of emotion [12,18]
predict that negative affect is created by interactions among discrete subnetworks that span
multiple brain systems, whereas more traditional modular views predict that one system may
be sufficient. We tested whether the PINES might be composed of multiple distinct subnet-
works and whether responses in multiple subnetworks are necessary for predicting emotional
responses. If so, the negative affect captured by the PINES might be considered a truly multi-
system distributed process.

For this analysis, we calculated pattern responses within each of the largest regions in the
PINES (p< .001, k = 10 voxels; see S1 Methods) for every individual trial within each partici-
pant and used a robust clustering algorithm to group the PINES regions into separate networks
based on similar patterns of trial-by-trial covariation (see Methods). The best solution con-
tained nine separate clusters, which provides a descriptive characterization of the subnetworks
that comprise the PINES (Fig 6, S3 Table) that is broadly consistent with constructionist ac-
counts of emotion [12] and previous meta-analyses of emotion-related networks [17]. These
subnetworks included (a) two networks encompassing different parts of the visual cortex (e.g.,
lateral occipital cortex [LOC] and occipital pole) consistent with the visual modality of the sti-
muli, (b) a left amygdala-right aINS-right putamen network, which has been implicated in

Fig 6. PINES clustering based on shared patterns of connectivity. This figure depicts the results of the hierarchical clustering analysis of the functional
connectivity of the largest regions from the p < 0.001 thresholded PINES pattern. Clusters were defined by performing hierarchical agglomerative clustering
with ward linkage on the trial-by-trial local pattern responses for each region using Euclidean distance. Data were ranked and normalized within each
participant and then aggregated by concatenating all 61 subjects’ trial x region data matrices. Panel A depicts the dendrogram separated by each functional
network. Panel B depicts the spatial distribution of the networks. Colors correspond to the dendrogram labels.

doi:10.1371/journal.pbio.1002180.g006
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multiple forms of arousal and salience, (c) a network that includes bilateral posterior parahip-
pocampi and the precuneus, which are broadly involved in memory and other forms of contex-
tual processing, and (d) a network that includes parts of the dmPFC and PCC that are likely
involved in social cognition but are distinct from more executive processes [64,65]. An addi-
tional network that includes the right somatosensory cortex and contralateral cerebellum may
be involved in preparing for the rating action but may also play a more fundamental role in the
emotion generation process [66].

“Virtual lesion” analysis. Because the PINES is a statistical model of a distributed neural
representation of emotion, it is possible to evaluate how well subsets of the brain model can
predict emotional experiences. An interesting question is whether each subsystem is either nec-
essary or sufficient to predict the emotional experience. Thus, in a “virtual lesion” analysis, we
tested (a) how well each network cluster could discriminate between high versus low ratings
and between pain versus emotion and (b) how much the predictive accuracy was reduced by
removing each network from the predictive map. As expected by the substantial discrepancies
in the task modalities (e.g., visual pictures versus thermal pain and motor response in the IAPS
task), several networks individually performed well at discriminating between the emotion and
pain including the visual LOC (85.4 ± 4.1%), occipital pole (85.4 ± 4.1%), and sensorimotor
and cerebellar networks (93.2 ± 2.9%). These networks were also able to discriminate between
levels of emotion significantly above chance, but importantly, all were significantly outper-
formed by the PINES (see Table 2). Removing individual networks resulted in slight decreases
in high versus low emotion classification accuracy but had a negligible difference on discrimi-
nating between pain and emotion. Classification accuracy remained above 80% for high versus
low emotion and above 90% for emotion versus pain after removing each single network, and
none of these were significantly different from the PINES. These analyses indicate that no spe-
cific subsystem was either necessary or sufficient for predicting negative affect, supporting the
multisystem view.

Discussion
For neuroimaging to be useful in translational applications (e.g., psychiatry, neurology, etc.),
sensitive and specific brain signatures must be developed that can be applied to individual peo-
ple to yield information about their emotional experiences, neuropathology, or treatment prog-
nosis [25]. Thus far, the neuroscience of emotion has yielded many important results but no
such indicators for emotional experiences. Signatures that are sensitive and specific for particu-
lar affective processes are presumably much closer to brain representations of emotional expe-
rience, which can then be interrogated to better understand the mechanisms and typology of
emotion at the neurophysiological level.

The goals of the present study were to: (a) develop a brain signature capable of reliably and
accurately predicting the intensity of negative emotional responses to evocative images, (b)
characterize the signature’s performance in generalizing across individual participants and im-
ages, (c) examine its specificity related to another negative and arousing affective experience
(pain), and (d) explore the structure of the subnetworks necessary and sufficient to predict neg-
ative emotional experience.

We used cross validated machine learning analyses to identify a distributed pattern of activi-
ty predictive of emotional experiences, which we term PINES. The PINES fulfills the basic cri-
teria for a brain signature of negative affect. It accurately predicted monotonic increases in
negative affect ratings in 93.5% of individual test participants (n = 61; single interval). In
forced-choice tests, it correctly identified which of two sets of images was rated as more nega-
tive in 90%–100% of individuals, as long as the images differed by two or more subjective rating
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points (on a five point scale). This demonstrates sensitivity to negative affect across the full
range of the measurement scale.

PINES responses were also surprisingly specific to negative emotion. The PINES did not re-
spond to increased levels of physical pain, another type of arousing, aversive, salient experience.
Conversely, the NPS [35]—a signature previously found to be sensitive and specific to physical
pain—responded strongly to physical pain but not to increasing levels of picture-induced emo-
tional intensity. This double dissociation implies that neither pattern is driven by general
arousal, salience, or negative affect. Though the PINES and NPS independently tracked the

Table 2. Single-cluster and “virtual lesion” analysis.

Map nVoxels Emotion 5
versus 1 (SE)

Pain H
versus L
(SE)

Emotion
versus Pain
(SE)

Emotion
Correlation (SE)

Pain
Correlation
(SE)

Pattern

PINES 328796 93.5 (2.4%) 60.7 (6.5%) 93.2 (2.9%) 0.92 (0.01) 0.64 (0.11)

PINES (p < .001) 5303 91.5 (3%)+ 67.9 (7.6%)+ 97.2 (1.9%)+ 0.89 (0.01) 0.51 (0.13)

Single Cluster

Visual (LOC) 981 83 (4.3%)+* 64.3 (7.1%)+ 85.4 (4.1%)+ 0.73 (0.03) 0.56 (0.12)

Somatosensory and superior
temporal gyrus (STG)

308 59.6 (5.8%)* 32.1 (7.1%)+ 61.2 (5.6%)* 0.12 (0.07) -0.66 (0.11)

Sensorimotor and V1 335 57.4 (6.2%)* 67.9 (7.6%)+ 57.3 (5.7%)* 0.23 (0.07) 0.8 (0.07)

DMPFC and PCC 318 70.2 (5.4%)+* 60.7 (7.6%) 70.8 (5.3%)+* 0.47 (0.06) 0.61 (0.1)

Sensorimotor and Cerebellum 1227 78.7 (4.5%)+* 60.7 (7.6%) 93.2 (2.9%)+ 0.72 (0.04) 0.39 (0.14)

Parahippocampal Gyrus 1025 51.1 (6.4%)* 39.3 (7.1%) 39.9 (5.7%)* -0.05 (0.07) -0.43 (0.13)

Occipital Pole 118 55.3 (6.7%)* 53.6 (8%) 85.4 (4.1%)+ 0.29 (0.08) 0.22 (0.14)

Precuneus and Caudate 537 48.9 (6.2%)* 28.6 (7.1%)+ 53.4 (5.8%)* -0.15 (0.07) -0.82 (0.06)

Amygdala and Insula 454 59.6 (6%)* 75 (6.7%)+ 54.4 (5.7%)* 0.39 (0.06) 0.76 (0.08)

Virtual Lesion-
Cluster Removed

Visual (LOC) 4322 85.1 (4%)+ 46.4 (8.4%) 96.1 (2.3%)+ 0.72 (0.05) -0.17 (0.13)

Somatosensory and STG 4995 91.5 (3%)+ 64.3 (8%) 93.2 (2.9%)+ 0.87 (0.01) 0.67 (0.11)

Sensorimotor and V1 4968 95.7 (2.1%)+ 50 (8%) 97.2 (1.9%)+ 0.9 (0.01) 0.08 (0.15)

DMPFC and PCC 4985 89.4 (3.4%)+ 57.1 (8.7%) 97.2 (1.9%)+ 0.9 (0.01) 0.37 (0.14)

Sensorimotor and Cerebellum 4076 91.5 (3%)+ 60.7 (8.4%) 96.1 (2.3%)+ 0.84 (0.02) 0.56 (0.11)

Parahippocampal Gyrus 4278 85.1 (4%)+ 67.9 (7.1%)+ 96.1 (2.3%)+ 0.83 (0.02) 0.62 (0.11)

Occipital Pole 5185 93.6 (2.6%)+ 64.3 (7.6%) 97.2 (1.9%)+ 0.89 (0.01) 0.46 (0.14)

Precuneus and Caudate 4766 89.4(3.4%)+ 66.1(7.8%)+ 96.1(2.3%)+ 0.85(0.02) 0.76(0.07)

Amygdala and Insula 4849 91.5(3%)+ 57.1(8.4%) 97.2(1.9%)+ 0.9(0.01) 0.25(0.15)

All balanced accuracies reported in this table result from single interval classification on the test sample (n = 47; see S2 Table for forced-choice test).

Analyses involving Level 5 and/or Level 1 comparisons exclude participants that did not rate any stimuli with that label. Accuracy values reflect the ability

to discriminate the conditions compared, but are signed so that values >50% indicate the proportion of participants for which high intensity was classified

as greater than low intensity for high vs. low analyses, or emotion was greater than pain for Emotion vs. Pain analyses. Values < 50% indicate the

proportion of participants for which low intensity was classified as greater than high intensity or pain was classified as greater than emotion. For example,

the 10.7% emotion classification of the NPS in the Emotion vs. Pain analysis should be interpreted as a 89.3% hit rate in discriminating pain from emotion.

Correlations reflect Pearson correlations between participant’s pattern responses to levels of affective intensity and self-reported ratings averaged across

participants.
+Indicates that accuracy is significantly different from chance (50%) using a two-tailed binomial test.

*Indicates accuracy is significantly different from PINES performance using a two-sample, two-tailed z-test for proportions (only tested on Emotion 5

versus 1 and Emotion versus Pain columns).

doi:10.1371/journal.pbio.1002180.t002

Emotion Signature

PLOS Biology | DOI:10.1371/journal.pbio.1002180 June 22, 2015 14 / 28



intensity of negative affect elicited in visual and somatosensory modalities, respectively, we do
not believe they are dissociable based simply on differences in sensory processing for two rea-
sons: (1) the PINES was just as accurate in predicting negative emotion without the occipital
lobe, and when subnetworks associated with modality-specific processes were removed (e.g.,
visual, somatosensory, etc.) and (2) the local PINES and NPS patterns within traditional “af-
fect” regions, such as the ACC and insula, were uncorrelated. This is consistent with our previ-
ous work demonstrating that pain is distinct from other emotional processes based on
distributed spatial topography both across brain regions [28] and within local regions [35,67].

Further analyses explored the nature of emotion-predictive brain representations. The
PINES was comprised of multiple separable subnetworks. Each network independently con-
tributed to the prediction of participants’ negative emotion ratings controlling for other brain
regions, and no single network was necessary or sufficient for predicting emotional experience.
This pattern of results suggests that the PINES is a distributed pattern that encompasses a
number of functional systems, and that multiple systems are required to capture negative
affective experience.

Implications for Theory and Measurement of Emotion
These results have theoretical implications for the neurobiology of emotion in terms of both
the diversity of processes underlying affective experiences and how they are represented in the
brain. Emotions are often defined as a composite of multiple intrinsically inter-related process-
es (e.g., autonomic arousal, expressive behavior, action tendencies, interoception, and con-
scious experiences). Theories differ widely on how these processes combine to give rise to
emotional experience [1], but most major theories suggest that cognitive, sensory, motor, moti-
vational, and interoceptive processes are critical ingredients of emotional experience. For ex-
ample, appraisal theories view emotion as a dynamically unfolding process and emphasize the
role of appraisals [8,68,69], embodied affect theories emphasize interoceptive and somatomo-
tor representations [70], and constructionist theories view emotions as being constructed from
all of these component processes [12,18].

In spite of this richness, since MacLean [71], theories of the emotional brain have treated
emotion as a singular faculty that is localizable to a specific system. Often, this view has trans-
lated into “structure-centric” theories of emotional experience; e.g., the amygdala is critical for
fear [72], the ACC for pain affect [73], and the insula for disgust [74]. In other cases, this view
translates into circumscribed pathways or networks for “core affect” [17] and emotional aware-
ness [75].

It remains unclear how far the structure-centric view can take us in understanding the brain
bases of emotional experience. The regions most strongly identified with emotion are also inti-
mately involved in a wide array of cognitive functions such as attention, error monitoring, as-
sociative learning, and executive control [33]. Recent connectivity [63] and functional diversity
analyses [32] suggest that these regions are not solely processing affective signals but rather
represent functional “hubs” for integrating many types of information.

As the limitations of the structure-centric view are increasingly widely recognized [12,33],
researchers have moved towards the identification of intrinsically connected networks con-
served both at rest and during active tasks [76]. These networks have been labeled with pro-
cess-general names including the “salience network” [63], “default mode” network [77], and
others, and a modern incarnation of the “emotional brain” theory suggests that the basis of
emotional experience is encapsulated in one or a few of these networks such as the “limbic”
network named after MacLean’s original formulation.
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Our results corroborate the view that structure-centric—and even network-centric—models
of emotion are limited and provide an alternative model for the brain representation of emo-
tional experience. In this study, we targeted the conscious experience component, which is the
defining feature of subjective distress and suffering. None of the anatomical regions identified
in previous literature (e.g., amygdala, ACC, insula) predicted the intensity of emotional experi-
ence or discriminated emotion from pain in this study. This suggests that the effects identified
in previous work using traditional statistical parametric mapping approaches are small and un-
likely to serve as effective signatures of the type or magnitude of an emotional experience in an
individual person.

Furthermore, activity in predefined networks was insufficient to capture negative emotion
ratings, demonstrating that the pattern we identified using targeted machine-learning analysis
is not reducible to these more process-general networks. The fact that networks and regions de-
fined a priori, even from very large resting-state samples [57], were insufficient to capture emo-
tional experience here has broad implications for the study of emotion and attempts to identify
biomarkers for mental health disorders going forward [21,25,49].

Finally, our clustering analysis of the PINES map indicated that multiple, separable subnet-
works distributed widely throughout the brain made independent contributions to predicting
emotional experience. Importantly, no single subnetwork appeared to be necessary or sufficient
in characterizing the emotional experience, as the accuracy in predicting the magnitude or type
of experience did not significantly decrease when any given network was omitted. This pattern
is consistent with both appraisal [68,69] and constructionist theories of emotion [12,78], which
posit that emotional experiences result from interactions between core affect, sensory, memory,
motor, and cognitive systems [40].

Conclusions, Limitations, and Future Directions
Overall, these results provide an important step towards identifying emotion-related patterns
that can serve as indicators for components of emotional experience. Such signatures can be
used as intermediate phenotypes for genetic or risk-stratification studies, and they may provide
objective neurobiological measures that can supplement self-report. The identification of inter-
mediate brain-based phenotypes is critical, as self-reported emotion can be affected by many
independent processes [8,18,68]—e.g., core experience, self-reflection, decision-making heuris-
tics, and communicative intentions—which have different implications for understanding
what exactly treatments that modulate emotion are measuring and which processes are affected
by interventions.

We close with several key points and future directions. Importantly, the PINES is not neces-
sarily a biomarker of negative emotion in general. We have demonstrated that it is a signature
for the type of affect induced by aversive IAPS images, but its transferability to other emotional
states (e.g., emotion induced by recall, rejection, positive emotion, or stress) remains to be test-
ed. Such tests are a long-term program of future research that must span many studies and pa-
pers. We still know very little about the underlying structure of affect and which types of
emotional responses can be cross predicted by the same brain markers. It is possible that the
PINES captures some types of negative emotion and not others, and findings to this effect will
help us move beyond the categories proscribed in our language to develop a more nuanced,
brain-based view of affective processes [7,17].

In addition, testing the specificity and transfer of the PINES across many different kinds of
affect is a key to developing more robust and specific markers. The PINES can undoubtedly be
improved. For example, with further development and testing, it may be differentiated into
markers for more specific types of emotional experiences (e.g., emotion categories like fear,

Emotion Signature

PLOS Biology | DOI:10.1371/journal.pbio.1002180 June 22, 2015 16 / 28



disgust, etc. or canonical affect-inducing appraisals). In addition to types of affect, the PINES
can be tested for responses across patient groups (e.g., schizophrenia, depression, or anxiety)
and treatments thought to affect emotion (e.g., self-regulation, drug treatment, psychotherapy,
etc.). This study provides a foundation and a benchmark for such future developments.

Methods
All participants provided written informed consent, and experimental procedures were ap-
proved by the Institutional Review Board of the University of Pittsburgh for the IAPS study
and the University of Colorado, Boulder for the pain study.

IAPS Data Set
Participants. One hundred eighty three participants (mean age = 42.77 y, SD = 7.3 y; fe-

male = 52%; Caucasian = 87%) were recruited from the greater Pittsburgh area to participate in
this study. One participant was excluded due to missing data. Participants were recruited from
a larger study on health and full details regarding recruitment procedures, the study sample,
and testing procedures have been previously reported [79]. The findings reported in this paper
have not been previously reported and do not overlap with those in published reports from this
larger study.

Stimuli. Task stimuli consisted of 15 negative photographs and 15 neutral photographs se-
lected from the IAPS [50]. Pictures were presented using the E-Prime stimulus presentation
software (Psychology Software Tools, Sharpsburg, PA). A small mirror was attached to the
head coil enabling the viewing of projected images onto a screen while in the scanner. Negative
photographs (Pictures: 2053, 3051, 3102, 3120, 3350, 3500, 35550, 6831, 9040, 9050, 9252,
9300, 9400, 9810, and 9921) depicted bodily illness and injury (ten photographs), acts of ag-
gression (two photographs), members of hate groups (one photograph), transportation acci-
dents (one photograph), and human waste (one photograph). Neutral photographs (Pictures:
5720, 5800, 7000, 7006, 7010, 7040, 7060, 7090, 7100, 7130, 7150, 7217, 7490, 7500, 9210) de-
picted inanimate objects (ten photographs) or neutral scenes (five photographs).

Task. Participants completed a reappraisal task and were instructed to either (a) “look”
and maintain their attention to the photos when they came on screen and allow their emotional
reactions to occur naturally or (b) “decrease” and change the way they thought about the image
to feel less negative (see [79] for full task and IAPS stimulus details). Each trial consisted of a 2
sec instructional cue, “look”, followed by the 7 sec presentation of either a negative or neutral
image. After the stimulus presentation, participants were given a 4 sec opportunity to report
their emotional state using a 5-point Likert scale (where 1 indicated feeling neutral and 5 indi-
cated feeling strongly negative). Finally, there was a variable (jittered) 1–3 sec rest period before
the next cue (Fig 1A). We emphasized to participants to base their ratings on how negative
they felt at the end of the image-viewing period. Only “look” trials were included in analyses
for this paper. Though we use participants’ ratings to train and test our brain model, not every
participant reported every level of emotion. For the training sample (n = 121), 98% used a “1,”
88% used a “2,” 98% used a “3,” 88% used a “4,” and 80% used a “5” in their response. For the
test sample (n = 61), 100% used a “1,” 89% used a “2,” 93% used a “3,” 95% used a “4,” and 77%
used a “5” in their response. The lower frequency of participants making a rating of “5” resulted
in smaller sample sizes in “1” versus “5” rating accuracy tests.

Imaging data acquisition. Imaging data were acquired on a 3T Trio TIM whole-body
scanner (Siemens, Erlangen, Germany) using a 12-channel, phased-array head coil. Each ses-
sion included a structural scan for coregistration of the functional images (FOV = 200 × 200
mm, matrix = 256 ×256, TR = 3,000 ms, inversion time (TI) = 100 ms, TE = 11/101 ms, and
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FA = 150°, 36 slices, 3 mm thick, no gap) and a functional scan, which included 344 blood oxy-
gen level dependent (BOLD) images (FOV = 200 × 200 mm, matrix = 64 × 64, TR = 2,000 ms,
TE = 29 ms, flip angle (FA) = 90°, 34 3 mm slices with no gap).

Imaging preprocessing. fMRI data were preprocessed and analyzed using SPM8 (http://
www.fil.ion.ucl.ac.uk/spm) and custom Matlab (MATLAB, The MathWorks, Inc., Natick, MA)
code available from the authors’ website (http://canlab.colorado.edu). Images were first
unwarped and realigned to the first image of the series using a six-parameter, rigid-body trans-
formation. The realigned images were then coregistered to each participant’s T2-weighted
structural image and normalized to the 152 MNI template using a 12-parameter nonlinear and
affine transformation. Spatially normalized images were smoothed with a 6 mm full-width-at-
half-maximum (FWHM) Gaussian kernel and filtered with a high pass filter (180 sec cutoff).
When using whole-brain prediction, smoothing is thought to improve sensitivity to large-scale
patterns [80], which can likely improve between subject predictions.

A univariate general linear model (GLM) was used to create images for the prediction analy-
sis (Fig 1B). The model included one boxcar regressor indicating the rating period, to model
any effects related to motor activity, and another modeling the mean picture viewing epoch.
The model also include five separate boxcar regressors indicating the onset times for each IAPS
picture, which allowed us to model brain activity in response to each picture separately for
each rating level (e.g., [1–5]). All regressors were convolved with a double gamma HRF func-
tion, and an additional 24 covariate regressors modeled movement effects (6 realignment pa-
rameters demeaned, their 1st derivatives, and the squares of these 12 regressors).

Pain Data Set
Participants. Thirty healthy, right-handed participants (Mean Age = 25.2 y, STD = 7.4 y,

female = 40%) were recruited to participate in an fMRI study in which they received thermal
pain stimulation (details on additional counterbalanced sessions is described in a separate
manuscript [56]). Twenty-eight participants completed the thermal pain session. Participants
with psychiatric, physiological, or pain disorders, and neurological conditions were excluded.

Pain calibration. All participants completed a pain calibration session to determine if
they could tolerate the thermal stimulations that they would receive in the fMRI experiment.
Thermal stimulation was applied on the volar surface of the left forearm and dorsal surface of
the left foot using a TSA-II Neurosensory Analyzer (Medoc Ltd., Chapel Hill, NC) with a 16
mm Peltier thermode end plate. Three levels of thermal stimulation (pseudorandomly assigned
to each participant)—low (44 or 45°C), medium (46 or 47°C), and high (48 or 49°C)—were ap-
plied to four different locations on both the upper limb (i.e., volar surface of the left forearm)
and lower limb (i.e., dorsal surface of the left foot). Each stimulation lasted a total of 11 seconds
with a 2 sec ramp-up, a 2 sec ramp-down, and 7 sec at the peak target temperature. The partici-
pants made responses on a Visual Analog Scale (VAS), which had anchors based on a labeled
magnitude rating scale [81,82]. Participants first made a moment-by-moment rating where
they used a pointer on the screen to move continuously along the rating scale and indicate the
level of sensation they felt at each moment. They then made an overall rating at the end of each
trial to indicate the maximum overall sensation they experienced in that trial. Participants who
successfully completed the calibration procedure were then scheduled for the fMRI sessions.

fMRI session. Participants completed a separate scanning session for thermal pain that
contained 11 runs and lasted about an hour. Each stimulation (i.e., 46, 47, and 48°C of heat)
was preceded by a predictive cue (i.e., three levels of cues that corresponded to three levels of
stimulation). Prior to being scanned, participants completed a short training in which they
learned the levels of the three cues that were to be later presented in the scanner through an
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explicit learning task [83]. The first two fMRI runs consisted of a conditioning task where the
participant learned the association between the cues they encountered in the prescan training
and the level of stimulation for that session. During both the conditioning (two runs) and ex-
perimental runs (nine runs), participants received a cue—stimulus pair for each trial and were
asked to make a rating on a visual analogue scale (same as the calibration session) about the
sensation they felt after each trial. The participants rated the intensity of pain they felt during
each trial. Each experimental run contained nine trials (81 total), which were counterbalanced
for each participant using a Latin Square design. Experimental trials (i.e., postconditioning)
began with a 2 sec cue followed by a systematic jitter separating the cue from stimulation (i.e.,
5, 7, 11 sec). Participants then received stimulation for 11 sec followed by a jittered fixation (2,
6, or 14 s). The 11 sec trial duration for somatic pain included a 2 sec ramp-up, 2 sec ramp-
down, and 7 sec at-target temperature. Finally, participants had 4 sec to make a rating of the
sensation they experienced for the stimulation on a visual analogue scale using a trackball (re-
sponses were confirmed with a button click). There was an intertrial jittered fixation (1, 4, or
10 sec) that was counterbalanced across trials within a run so that all runs were of equal dura-
tion. Stimulus presentation and behavioral data acquisition were controlled using
Matlab software.

Imaging acquisition. fMRI data were acquired on a Siemens Tim Trio 3T MRI scanner at
the Intermountain Neuroimaging Consortium facility at the University of Colorado, Boulder.
Structural images were acquired using high-resolution T1 spoiled gradient recall images
(SPGR) for anatomical localization and warped to Montréal Neurological Institute or MNI
space. Functional images were acquired with an echoplanar imaging sequence (TR = 1,300 ms,
TE = 25 ms, field of view = 220 mm, 64 x6 4 matrix, 3.4 x 3.4 x 3.4 mm voxels, 26 interleaved
slices with ascending acquisition, parallel imaging with an iPAT acceleration of 2).

Preprocessing. All images were preprocessed using SPM8 (Wellcome Trust Centre for
Neuroimaging, London, UK) and customMatlab functions. Mean structural T1-weighted im-
ages were computed for each participant from all imaging sessions. The mean structural images
were then coregistered to the first functional image for each participant with an iterative proce-
dure of automated registration using mutual information from the coregistration in SPM8 and
manual adjustment of the automated algorithm’s starting point until the automated procedure
provided satisfactory alignment, and were normalized to MNI space using SPM8, interpolated
to 2 × 2 × 2 mm voxels.

Functional images were corrected for slice-acquisition-timing and motion using SPM8.
They were then warped to SPM’s normative atlas using warping parameters estimated from
coregistered, high-resolution structural images, interpolated to 2 × 2 × 2 mm voxels, and
smoothed with an 8 mm FWHMGaussian kernel.

Prior to preprocessing of functional images, global outlier time points (i.e., “spikes” in sig-
nal) were identified by computing both the mean and the standard deviation (across voxels) of
values for each image for all slices. Mahalanobis distances for the matrix of slicewise mean and
standard deviation values (concatenated) were computed for all functional volumes (time), and
any values with a significant χ2 value (corrected for multiple comparisons) were considered
outliers (less than 1% of images were outliers). The output of this procedure was later used as a
covariate of noninterest in the first level models.

fMRI analysis. First-level GLM analyses were conducted in SPM8. The first six volumes of
each run were discarded, and the nine experimental runs were concatenated for each partici-
pant (the first two conditioning runs were excluded). Boxcar regressors, convolved with the ca-
nonical hemodynamic response function, were constructed to model periods for the 2 sec cue
presentation, the 5, 7, or 11 sec variable prestimulus fixation period, the 11 sec thermal stimula-
tion, and the 4 sec rating periods. The fixation cross epoch was used as an implicit baseline. A
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high-pass filter of 224 sec was used for the somatic pain session, which was determined based
on a first-level analysis on the two conditioning runs, in which the variance inflation factor was
determined to be less than 5%. Contrasts of interest included the low, medium, and high stimu-
lation period collapsed across cues (i.e., low, medium, and high) and body site (i.e., upper limb
and lower limb).

Analysis Methods
Machine learning. We used whole-brain multivariate machine learning pattern analysis

[35,53] to find global patterns of brain activity that best predicted participants’ self-reported af-
fective ratings (e.g., 1–5; Fig 1C). A machine-learning prediction algorithm simply refers to a
function that uses a vector of features (independent variables) to predict the value of a continu-
ous outcome variable (see [84] for an introduction to this approach in the context of fMRI
analysis). Here, we used individual voxels of brain activity as features and used them to predict
participants’ affective ratings of the pictures they viewed while undergoing fMRI. The LAS-
SO-PCR algorithm [35,53] combines principal components regression with an L1 least squares
regularization [85]. Each 3-D map of beta weights from the first level analysis was converted
into a single vector and used to predict the affective rating value. Because there are considerably
more voxels (n = 352,328) than subjects (n = 182), we first reduced the brain data into the
same number of components as observations in our training dataset (n = 121) using a principal
components analysis. Each component represents many different brain voxels that share a sim-
ilar pattern. These components were then used to predict affective ratings using least squares
regression with an L-1 regularization (LASSO). This regularization shrinks beta parameters to
zero. Components with a nonzero beta were selected and then refit using OLS to ensure that
they were not unduly affected by the shrinkage (see [85]). The betas were then back-projected
into voxels in 3-D MNI space.

Cross validation. To minimize the possibility of our algorithm overfitting the data, we
used a rigorous cross validation procedure [85,86]. The general principle of cross validation is
to divide a dataset into two parts; one is used to “train” the classifier, and the other is used to
“test” the accuracy of the classifier. This procedure minimizes overfitting and ensures that the
predictive power of the algorithm generalizes beyond the training dataset. There are a variety
of cross validation procedures, and here we used a very conservative stratified double cross vali-
dation approach to maximize the generalizability of our results [54]. We first divided the data-
set into a training set (2/3 of sample, n = 121) and a final test dataset (1/3 of sample, n = 61) by
stratifying the data along each participant’s average negative rating (this ensured that the aver-
age ratings were equal across groups). The training data were then subjected to a leave-one-
subject-out cross validation. In this approach, N-1 participants’ beta images are trained to pre-
dict the corresponding affective rating, and then these weights are tested on the left out partici-
pant’s data. This process provides an efficient procedure to allow every data point to serve as
both training and test data. The master holdout set, which was not used in the training cross
validation procedure was then used to assess the final accuracy of the algorithm.

Determining predictive voxels. The cross validated PINES pattern consists of the weights
of each voxel in predicting the affective rating plus the intercept. However, to determine the
voxels that made the most reliable contributions to the classification, we performed a bootstrap
test [87]. This involved taking 5,000 samples with replacement from the training dataset and
repeating the prediction process with each bootstrap sample. We then converted this distribu-
tion into a z-value at each voxel and thresholded the map based on the corresponding p-value.
We used multiple thresholds to highlight the regions that were most consistently predictive in
the classification procedure (i.e., p< 0.01, 0.005, 0.001 uncorrected, and FDR p< 0.05
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corrected). All predictions using the test data were performed with the full set of unthresholded
weights, which included all nonzero voxels. We use p< 0.001 for display purposes as we found
that this sparse map was able to predict responses almost as well as the full weight map (S2
Fig). However, we use the full weight map for all analyses reported in this manuscript.

Prediction. To test the performance of the PINES, we applied the pattern to novel test
datasets to quantify the degree to which the pattern was expressed in other datasets. This ap-
proach is critical to assessing the convergent and discriminant validity of the PINES response
[88]. The degree to which the PINES was expressed in other datasets, i.e., the PINES response
(PR), was estimated for each test subject in each test condition by taking the dot product of the

vectorized activation images (~bmap) with the signature pattern (~Wmap), i.e., (PR ¼ ~bmap � ~Wmap)

yielding a single scalar value. Pattern response values were averaged across subjects in the test
datasets. This method allows us to make a pointed prediction about the affective rating akin to
regression. We also used spatial correlation to compare the relationship between the pattern
and various maps. This method facilitates comparing relationships across maps with different
numbers of voxels and intensities and is proportional to the dot product except scaled between
−1–1. For binary maps (e.g., resting-state network parcellations [57]), we used point-biserial
correlations, and for comparing specific regions of the weight maps, we used robust regression.

Within subject prediction. To examine the possibility of the prediction weights being
influenced by poor anatomical registration, we ran an additional analysis in which we trained a
separate model for each subject in the training sample (n = 121) and evaluated the consistency
of each weight for every voxel in the brain across subjects using a one-sample t test. We used the
LASSO-PCR algorithm with a 5-fold cross validation to predict participant ratings for individu-
al IAPS pictures. We compared the performance of these individual weight maps to the cross-
validated PINES map. This allowed us to test the performance of the PINES on an individual
participant’s trial-level data without blurring the boundary between training and test data. Func-
tional alignment techniques [89] are a promising solution to addressing issues concerning indi-
vidual variability in anatomical registrations and should be considered in future work.

Evaluation. To evaluate the performance of the LASSO-PCR algorithm, we compared the
model’s prediction with the actual rating by calculating the RMSE to illustrate overall predic-
tion error and a Pearson correlation to indicate the effect size. Accuracy was determined using
both forced-choice and single-interval classification methods from receiver operator character-
istic curves (ROC). Forced-choice accuracy is “threshold free” in that it takes the maximum
value of a relative comparison within a subject. It has an interesting property that the ROC
curves are symmetrical, and sensitivity, specificity, and positive predictive value are equivalent
to each other and to decision accuracy (i.e., the probability with which the more painful of the
two conditions is selected). For single-interval classification, we used balanced accuracy [90]
formalized as,

b ¼ 1

2

TP
TP þ FN

þ TN
FP þ TN

� �

where true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) are
defined relative to the threshold that minimizes signal detection response bias [91]. We used a
two-tailed dependent binomial z-test to assess the significance of single-interval classification
accuracy, a two-tailed independent binomial test for forced-choice classification accuracy, and
McNemar’s z-test for comparing two dependent proportions to compare the classification ac-
curacy between the PINES and all other maps [92].

Clustering. We used hierarchical agglomerative clustering to find predictive regions that
showed similar response profiles across trials. For this analysis, we extracted contiguous
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regions from the PINES that survived the p< .001 uncorrected threshold and contained a min-
imum of ten voxels. These regions provided the strongest contributions to the PINES. Region-
specific pattern response values to each trial (n = 30) were rank ordered and normalized with-
in-subject to (a) provide statistically robust connectivity estimates, as in nonmetric multidi-
mensional scaling algorithms [93], and (b) reflect within-subject “beta-series” connectivity,
which is both less susceptible to imaging artifacts than raw connectivity [94] and insensitive to
individual differences in hemodynamic variables. Inter-region connectivity matrices were cal-
culated aggregating across trials and subjects and subjected to hierarchical agglomerative clus-
tering with Euclidean distance using the Ward minimum variance algorithm. Clusters were
determined using an arbitrary threshold of 31% of the maximum distance, which resulted in
nine distinct clusters.

Supporting Information
S1 Data. Trial level emotion and pain data. Contains information about each participant’s
trial for the emotion datasets. Pain dataset is averaged within each pain level. File names corre-
spond to nifti files located at http://neurovault.org. Pattern responses to PINES, the within-
subject PINES, and each PINES cluster (e.g., C_�).
(CSV)

S2 Data. Rating level emotion and pain data. Contains information about each participant’s
average rating for the emotion and pain datasets. Contains average activation within ROIs,
resting-state networks, PINES, and NPS pattern responses.
(CSV)

S1 Fig. Weight maps. This figure depicts axial slice montages of different analytic techniques.
PINES FDR: the PINES thresholded using a 5,000 sample bootstrap procedure at FDR q< 0.05
whole-brain corrected with a cluster extent k = 10. PINES-LASSO-PCR the full unthresholded
PINES pattern trained with LASSO-PCR (n = 121). PINES-n182: the PINES weight map when
it is trained with the full dataset (n = 182). PINES-SVR: the PINES when it is trained with the
training data (n = 121) using support vector regression. PINES-within: the average weight map
for the within-participant analysis, in which a separate pattern was trained for each participant
to predict ratings to individual photos (n = 121). PINES-searchlight: standardized prediction
values (i.e., correlations) for each voxel from a whole-brain searchlight analysis (n = 182).
(TIF)

S2 Fig. PINES pattern response without occipital lobe. Panel A depicts the occipital mask ex-
cluded from the data prior to training the PINES. Panel B shows the predicted affective rating
compared to the actual ratings for the cross validated participants (n = 121) and the separate
holdout test dataset (n = 61).
(TIF)

S3 Fig. Varying sample size prediction. This figure depicts the results for the analysis in
which we ran 20 iterations predicting emotion ratings using varying sample sizes. Each itera-
tion randomly sampled participants’ data without replacement. Panel A shows the average
standardized prediction (correlation) for each sample size ranging from n = 2 through n = 121
in the test dataset (n = 61). Panel B shows the average single interval cross predicted accuracy
for discriminating between high and low levels of pain. Panel C shows the average single inter-
val accuracy discriminating between high levels of emotion and pain in the test dataset. Panel
D shows the average spatial correlation of the weight map trained using each sample size with
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the PINES. Error bars in all panels reflect ±1 standard deviation.
(EPS)

S4 Fig. Searchlight analysis. This figure depicts results from a whole-brain searchlight analysis
in which we trained a searchlight (five voxel radius) to predict emotion rating using LAS-
SO-PCR with the full dataset (n = 182) and 5-fold cross validation. Panel A shows the thre-
sholded correlation values for each searchlight (p< 0.001, uncorrected). Panel B shows the
distribution of the correlation values of all searchlights in the brain. The dotted line shows the
cross validated PINES correlation (n = 121) for comparison.
(TIF)

S5 Fig. Thresholded PINES pattern response. Panel A depicts the average forced-choice accu-
racy between high and low emotion ratings for the hold out test dataset (n = 61). The only
threshold level that is significantly different from the PINES is the FDR q< 0.01 pattern. Panel
B shows the average pattern correlation between each thresholded pattern for each emotion
level. Panel C shows the average pattern correlation between each thresholded pattern for each
level of pain. Error bars reflect ±1 standard error.
(TIF)

S6 Fig. Network map pattern response. This figure examines how well resting-state networks
perform using the same testing benchmarks as the PINES, NPS, and affective ROIs. The line
plot depicts the pattern response of the network parcellation from Yeo et al., 2007 on emotion
and pain test datasets using point-biserial spatial correlations. Panel A shows the average net-
work predictions for each level of emotion, while panel B shows the average prediction for each
level of pain. Error bars reflect ±1 standard error.
(TIF)

S7 Fig. Item analysis with social and nonsocial images. This figure depicts the item analysis,
in which the PINES pattern is tested on responses to individual photos in the test sample
(n = 61). Error bars reflect ±1 standard error. The red item reflects the sole nonsocial negative
image, while the cyan item reflects the sole social neutral image. This suggests that the PINES is
not simply picking up on degree of socialness.
(EPS)

S8 Fig. Cross prediction searchlight analysis. This figure depicts results from a whole-brain
searchlight analysis in which we trained a searchlight (five voxel radius) to predict emotion rat-
ing using SVR with the training data set (n = 121) and 5-fold cross validation. We then applied
each searchlight mask to the test pain data set (n = 28) to obtain a standardized pattern re-
sponse, and calculated forced-choice accuracy within each participant to find searchlights that
discriminated between high and low levels of pain. We show the accuracy results thresholded
at p< 0.001 (note FDR q< 0.05 = p< 0.0015).
(TIF)

S1 Methods. Contains supplemental analyses and results including: alternative PINES algo-
rithms and analysis strategies, searchlight and cross-prediction analyses, thresholded
PINES analyses, and anatomical ROI analyses.
(DOCX)

S1 Table. Pattern forced-choice classification. All balanced accuracies reported in this table
result from forced-choice classification on the test dataset (n = 47). This analysis excludes par-
ticipants that did not make a rating of either “1” or “5.” +indicates that accuracy is significantly
different from chance (50%) using a two-tailed independent samples binomial test. �indicates
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accuracy significantly different from PINES performance using a two-sample, two-tailed z-test
for proportions.
(DOCX)

S2 Table. Virtual lesion forced-choice classification. All balanced accuracies reported in this
table result from forced-choice classification on the test dataset (n = 47). This analysis excludes
participants that did not make a rating of either “1” or “5.” +indicates that accuracy is signifi-
cantly different from chance (50%) using a two-tailed independent samples binomial test.
�indicates accuracy significantly different from PINES performance using a two-sample, two-
tailed z-test for proportions.
(DOCX)

S3 Table. Thresholded PINES clusters (p< 0.001, k = 10).
(DOCX)
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