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PARAMETER ESTIMATION FOR DYNAMICAL SYSTEMS

Shelby R. Stanhope, PhD

University of Pittsburgh, 2016

Parameter estimation is a vital component of model development. Making use of data, one

aims to determine the parameters for which the model behaves in the same way as the system

observations. In the setting of differential equation models, the available data often consists

of time course measurements of the system. We begin by examining the parameter estimation

problem in an idealized setting with complete knowledge of an entire single trajectory of data

which is free from error. This addresses the question of uniqueness of the parameters, i.e.

identifiability. We derive novel, interrelated conditions that are necessary and sufficient for

identifiability for linear and linear-in-parameters dynamical systems. One result provides

information about identifiability based solely on the geometric structure of an observed

trajectory. Then, we look at identifiability from a discrete collection of data points along

a trajectory. By considering data that are observed at equally spaced time intervals, we

define a matrix whose Jordan structure determines the identifiability. We further extend the

investigation to consider the case of uncertainty in the data. Our results establish regions in

data space that give inverse problem solutions with particular properties, such as uniqueness

or stability, and give bounds on the maximal allowable uncertainty in the data set that can be

tolerated while maintaining these characteristics. Finally, the practical problem of parameter

estimation from a collection of data for the system is addressed. In the setting of Bayesian

parameter inference, we aim to improve the accuracy of the Metropolis-Hastings algorithm

by introducing a new informative prior density called the Jacobian prior, which exploits

knowledge of the fixed model structure. Two approaches are developed to systematically

analyze the accuracy of the posterior density obtained using this prior.
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1.0 INTRODUCTION

The motivation for this investigation is rooted in the modeling of biological systems with

differential equations. In such an endeavor, one aims to model a physical phenomenon

to better understand it, explain it, reproduce it, and possibly to make predictions about

it. Insight can be gained through both quantitative and qualitative analysis of the model

equations. The advantages of employing differential equation models for biological systems

are discussed in [19]. In particular, the dynamics of how a system behaves over time, under

varying conditions can be captured using such a modeling approach.

Development of a model is a process consisting of several stages. First, the model struc-

ture for the system of interest is designed based on physical laws and a priori knowledge

of how certain components in the system interact. Model complexity is a fundamental is-

sue that must be confronted. The reductionist approach, in which small scale interactions

are studied, or the systemic approach, of representing higher levels of organization, may be

appropriate, depending on the modeling application [53, 60, 86]. Next, the identifiability

of model parameters is analyzed and the model is appropriately adjusted. Data about the

physical system is then collected using experimental studies, or already existing data is uti-

lized, and values of model parameters are estimated from the data. Further analysis of the

model is conducted and modifications to the model structure may be necessary. It is the

estimation of the parameters on which this work is focused.

Differential equation models of physical systems often involve parameters whose values

are not known and which may represent physical properties that cannot be directly measured.

Other model parameters might arise from approximations or model reductions and they may

have no direct biological interpretation [57]. Parameter estimation relies on the comparison

of experimental observations of the modeled system with corresponding model output to

1



obtain values for these parameters. Due to this, some assert that the usefulness of the model

is ultimately linked to the quality and abundance of the data [19]. Unfortunately, biologically

realistic models are likely to be parameter rich and data poor [7]. More recently, experimental

techniques such as microarray analysis, genome sequencing, high throughput flow cytometry

and ELISA biochemical assays, have made a wealth of biological data available for certain

applications [77].

Our particular interests stem from applications of mathematical modeling in medicine. In

this setting, experimental data often consists of time course measurements of test subjects

exposed to the same stimulus. In this work, we will refer to data collected from a single

subject at multiple points in time as single trajectory data. This data is often sparsely

available, for example, because an experiment is not repeatable due to the disease’s alteration

of the subject’s immune system [36, 62]. It is also common that not all model variables can

be measured. In this work, we will look at the problem of parameter estimation from single

trajectory data and collections of single trajectory data. We do not focus on a particular

application of mathematical modeling in biology, but instead try to address more broad

aspects of parameter estimation for dynamical systems.

Our investigation of parameter estimation from single trajectory data follows a natural

progression. We begin by examining an idealized setting with complete knowledge of an

entire trajectory of data which is free from error, and then we consider discrete points along

this trajectory. Next, we allow these discrete points to have uncertainty, and finally, we look

at the case of collections of discrete single trajectory data.

In the setting of error free data, we begin in Chapter 2, by addressing the question of

identifiability. A model is said to be identifiable if the parameter estimation problem has a

unique solution given some amount of error free data. Identifiability analysis is an a priori

study that should be conducted once a model structure has been fixed. It is important

to establish identifiability prior to implementing computational techniques for parameter

estimation to avoid misinterpretation of the numerical results.

There is a rich body of literature addressing identifiability for both linear and nonlinear

systems of differential equations, [8, 9, 44, 58, 63, 89]. For linear systems of differential

equations, the transfer function method utilizes Laplace transforms of the model equations

2



to derive a response function whose coefficients determine identifiability [8]. This method ul-

timately relies on the ability to solve simultaneous nonlinear equations. In another approach

for linear systems, power series expansions of the trajectory as a function of the unknown

parameters are analyzed to determine identifiability [89]. Alternatively, instead of trying

to identify the parameter matrix of the linear system directly, the modal matrix approach

aims to identify the eigenvalues and eigenvectors of the matrix [44]. These methods are

only feasible for low dimensional systems as the analysis becomes difficult or impossible as

dimensions increase. For nonlinear systems of differential equations, a differential algebra

approach employs differential polynomials to define an input-output relation with rational

coefficients which depend on the model parameters. These coefficients are used to define a

map whose injectivity determines the identifiability. Computer algorithms have been intro-

duced to perform the symbolic computations required for the differential algebra approach

[9]. Another approach for nonlinear systems is the implicit function method. Here, deriva-

tives of the system outputs with respect to time are taken and any unobservable system states

are eliminated. Then the rank of a matrix whose entries consist of partial derivatives with

respect to the parameters determines the identifiability of the system [90]. In this approach,

higher order derivatives can become complicated and the singularity of the matrix can be

difficult to determine [63]. Each of these treatments are highly reliant on computations that

are only feasible in low dimensions or with the help of computer programs. Also, in the

methods discussed above, the models typically include an input which serves as a control

for the system. Identifiability is then addressed with full access to the set of all admissible

controls. Our treatment is instead geared toward the case of single trajectory data. Without

access to a set of controls, resulting in a variety of observations for the system, we have only

a single initial condition, and thus one trajectory, from which to determine the parameters.

This work complements this existing literature and approaches the identifiability problem in

a uniquely different way, see Figure 1.

In Chapter 2, we investigate identifiability by asking whether the parameters of linear and

linear-in-parameters dynamical systems can be uniquely determined from a single trajectory.

We provide precise definitions of several forms of identifiability, and derive some novel,

interrelated conditions that are necessary and sufficient for these forms of identifiability to

3



Figure 1: Features of our investigations of identifiability compared to those of existing meth-

ods.

arise. We also show that the results have a direct extension to a class of nonlinear systems

that are linear in parameters. One of our results provides information about identifiability

based solely on the geometric structure of an observed trajectory, while other results relate

to whether or not there exists an initial condition that yields identifiability of a fixed but

unknown coefficient matrix and depend on its Jordan structure or other properties. Several

examples are presented to illustrate identifiability for various systems and trajectories. In the

later part of the chapter, we transition to looking at identifiability from a discrete collection

of data points along a trajectory. By considering data that are observed at equally spaced

time intervals, we form a special matrix whose Jordan structure determines the identifiability.

Lastly, we show that the sensitivity of parameter estimation with discrete data depends on

a condition number related to the data’s spatial confinement. The content of this chapter

appeared as a publication in [76].

In Chapter 3, we continue our study of parameter estimation with discrete data from

a single trajectory and extend the investigation to consider the case of uncertainty in the

data. The problem of estimation of parameters of a dynamical system from discrete data

can be formulated as the problem of inverting the map from the parameters of the system

to points along a corresponding trajectory. Solving the inverse problem becomes even more
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challenging in the presence of uncertainty in experimental measurements, as may arise due

to measurement errors and fluctuations in system components. In Chapter 3, we focus on

linear systems of differential equations and derive necessary and sufficient conditions for

single trajectory data to yield a matrix of parameters with specific dynamical properties.

To address the key issue of robustness, we go on to establish conditions that ensure that

the desired properties of the solution to the inverse problem are maintained on an open

neighborhood of the given data. We then build from these results to find bounds on the

maximal uncertainty in the data that can be tolerated without a change in the nature of

the inverse problem. In particular, both analytical and numerical estimates are derived for

the largest allowable uncertainty in the data for which the qualitative features of the inverse

problem solution, such as uniqueness or attractor properties, persist. We also derive the

conditions and bounds for the non-existence of a real parameter matrix corresponding to

the given data, which can be utilized in modeling practice to prescribe a level of uncertainty

under which the linear model can be rejected as a representation of the data. One result

establishes regions in data space on which uniqueness of the inverse problem solution is

guaranteed. The invertibility of the solution map on these sets will play a vital role in the

analysis of Chapter 4. Regions in data space on which the inverse problem maintains a

unique solution can also be mapped back to define regions in parameter space on which the

model is identifiable. The contents of this chapter have been submitted for publication and

are currently undergoing review.

Our final study relates to the practical problem of parameter estimation given a collection

of discrete single trajectory data. As we have seen, such a collection of data may arise from

time series data which was measured experimentally from several individuals in a population.

This situation provides the motivation for our study and presents several challenges in the

parameter estimation problem. If the parameters of the model have biological significance, for

example virus clearance rate or initial concentration of virus particles, it is natural for their

values to vary from individual to individual within a population. With this perspective, the

solution to the inverse problem is not a single parameter value, but instead, is a distribution

of parameters representing variability over a population [77]. The objective is then to find

the best approximation to the parameter density that describes this distribution. In a
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Bayesian inference approach to parameter estimation, the parameter density is approximated

by a posterior density, which makes use of the data that is available for the system. An

introduction to Bayesian inference for parameter estimation can be found in [33, 74]. The

posterior density is formed using a likelihood function, which quantifies the deviation of the

model from the available data, and a prior density which incorporates any previous knowledge

about the parameters. A sample of the posterior can be constructed using Markov chain

Monte Carlo techniques, and in particular the Metropolis-Hastings algorithm. Several recent

papers have used the Metropolis-Hastings algorithm for Bayesian parameter estimation in

models of infectious disease and intrahost response to bacterial and viral infections, [59, 64,

65, 69].

Prescription of a likelihood function and prior density are necessary to implement Bayesian

parameter estimation. The prior density reflects any information that is known about the

parameters before data is considered, which may include bounds on the values of the pa-

rameters which are obtained from literature (e.g. biological experiments) or from qualitative

analysis of the system (e.g. analysis of existence and stability of equilibria). A nonin-

formative prior (also commonly referred to as an objective or flat prior) is used when no

information about the parameter values is known. Alternatively, an informative prior can

be used when characteristics of the parameters are known a priori. Unlike noninformative

priors, informative prior is not dominated by the likelihood. The choice of a prior is a topic

of intense debate among practitioners of Bayesian inference [10, 32, 68, 74]. In Chapter 4, we

contribute to the conversation on prior density selection by introducing a new informative

prior density called the Jacobian prior, which exploits knowledge of the fixed model structure,

Figure 2. After presenting a theoretical derivation of the prior, we develop two approaches

to systematically analyze the accuracy of the posterior density obtained by implementing

the Metropolis-Hastings algorithm with the Jacobian prior. In first approach, we employ

a linear system of differential equations and use key results of Chapter 3 to define the pa-

rameter density solution to the inverse problem as means for comparison with the posteriors

obtained from the Metropolis-Hastings algorithm. The posterior obtained with the Jacobian

prior is compared to the parameter density and to other posteriors that are computed using

two other commonly employed priors. The second approach can be used with any system
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Figure 2: Our contribution to the problem of prior density selection.

of differential equations; we apply it again with the linear system and then with a nonlinear

model. For the linear system of differential equations, there is a clear evidence that the

Jacobian prior makes the posterior a better approximation of the parameter density. In the

nonlinear case, the posterior is approximated more accurately with the Jacobian prior in

some cases and equally well using all three of the priors in other cases.
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2.0 IDENTIFIABILITY OF LINEAR AND LINEAR-IN-PARAMETERS

DYNAMICAL SYSTEMS FROM A SINGLE TRAJECTORY

2.1 INTRODUCTION

Mathematical models of physical systems often include parameters for which numerical values

are not known a priori and cannot be directly measured. Parameter estimation relies on the

comparison of experimental observations of the modeled system with corresponding model

output to obtain values for these parameters. There are many computational techniques

for parameter estimation that can be employed, most of which rely on minimization of the

difference between model output and observed data. However, before numerical estimates

of parameter values are pursued, it is important to address the question of whether the

parameters of the model are identifiable; that is, does the parameter estimation problem have

a unique solution, given access to some amount of error free data? If the model’s parameters

are not identifiable from such idealized data, then numerical estimates of parameters from

data may be misleading. Clearly, the answer to this question depends on the structure of

the underlying model, the amount and type of the data given, and the precise definition of

uniqueness.

Identifiability analysis of dynamical systems has been an area of intense study [8, 15, 18,

63, 67, 89] and it is usually employed to aid model development, which ideally proceeds in the

following order: first a model of a system of interest is designed; second, the identifiability

of model parameters is analyzed and the model is appropriately adjusted; third, sufficient

amount of data about the physical system is collected using experimental studies; and finally,

values of model parameters are estimated from the data. In many biological studies, however,

the order is often reversed, and modelers use data that were collected before any thought was
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given to modeling of the system. The modeler then faces the challenging task of designing a

model that represents and explains the existing data for a system that is no longer available

or for which measurements cannot be repeated under the original conditions. In some cases,

repeated collection of data from a single subject is impossible because it has been destroyed

during the process of data collection. This happens frequently in studies of disease models

in clinical settings, in which either the disease itself or the manipulations performed to assay

the subject’s state may be fatal to the subject (laboratory animal). In immunological studies

on mice, for example, each data point is an aggregate of data obtained from several different

animals which are sacrificed during the process [82, 46]. In disease studies on larger mammals

or humans, longitudinal data may be obtained for a single subject, but the experiment is not

reproducible because the subject’s immune system has been altered by the disease [36, 62].

In this chapter we take this problem to the extreme and address the question of identifiability

of parameters of dynamical systems from a single observed trajectory.

Linear models are a natural starting point for our study because they have a simple

structure, but the identifiability question in this setting is nonetheless nontrivial because

the solution to such a system depends nonlinearly on its parameters. This setting is also

convenient because there is existing theory to build on and one can exploit invertible op-

erators for numerical techniques for handling linear systems. Parameter identifiability for

linear dynamical systems has been studied extensively in control theory and related areas

[8, 30, 34, 48, 67, 70, 88, 89]. A time-invariant linear control model typically has the form

9xptq “ Axptq `Buptq

yptq “ Cxptq
(2.1)

where A,B,C are parameter matrices, xptq is a vector function that defines the state of the

system at time t, uptq is the vector of input (control), and yptq is the vector output. Zero

initial conditions are typically chosen, but delta-function controls can be used to represent

any desired initial condition. The impulse response function Y psq “ CpsI ´ Aq´1B fully

describes the (Laplace transformed) solutions of the system. In this context the matrix pa-

rameters A,B,C are said to be identifiable if they can be determined from the set of output
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observations y obtained by varying the control u. It is known that even with all control func-

tions available, the matrices A,B,C are not all simultaneously identifiable, since the impulse

response function is invariant under the transformation pA,B,Cq Ñ pT´1AT, T´1B,CT q,

where T is an invertible matrix [8]. Kalman [48] devised a nomenclature in which the system

(2.1) is transformed into a new set of variables that can be divided into four classes: (a) con-

trollable but unobservable, (b) controllable and observable, (c) uncontrollable and unobserv-

able, and (d) uncontrollable but observable. Bellman and Åström showed that if C is square

and has full rank (i.e., all states x are observable) and the matrix rB |AB | ¨ ¨ ¨ |An´1Bs has

full rank (i.e., the system is controllable), then both A and B are identifiable from the im-

pulse response of the system when a full set of controls is available [8]. In special situations

in which the matrices A,B,C depend on a parameter, that parameter may be identifiable

even when C does not have full rank. It is not clear whether enough information can be

obtained to identify the parameters from a smaller set of controls, perhaps even a single

trajectory (i.e., single control), however, which is all that may be available in our motivating

applications. Sontag has shown that when the model is identifiable, the parameters can be

estimated even from information about a single variable extracted from a single trajectory,

provided that enough data points have been measured: no more than 2r` 1 data points are

required to identify r parameters in the case in which the dynamical system is real analytic

[75]. Since the classical results discussed above imply that C must be full rank for identi-

fiability to be possible, we predominantly focus here on the case in which C is full rank in

(2.1), in which case, without loss of generality, we can in fact assume that C “ I. However,

we also briefly consider the issue of partial identifiability when C is of lower rank.

As the next step, we examine nonlinear dynamical systems that depend linearly on

parameters. Such systems can be written in the form

9xptq “ Afpxptqq ` uptq ´ µptqxptq (2.2)

where A is a parameter matrix, f is a known, locally Lipschitz continuous map (to insure

existence and uniqueness of solutions), uptq is a time-dependent input and µptq is a decay

control. Such systems commonly arise in differential equation models of chemical reaction

networks that are derived from mass-action kinetics; in those cases, A is the stoichiometric
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matrix, f is the vector of reaction rate functions (each of which is a product of a reaction

rate constant and a monomial in the components of x), u is the inflow into the reaction

chamber, and µ is the outflow [41, 24, 25]. Among models of type (2.2) one can also include

the generalized Lotka-Volterra models that are commonly used in ecology or population

dynamics [21, 66, 43], in which cases A is usually a sparse matrix. The problem of identifying

the model (2.2) consists of two separate tasks: (i) identification of the parameter matrix A

and (ii) identification of the reaction rate functions fpxq. Each of these problems has been

studied extensively [38, 84, 50]. Several conditions for identifiability have also been derived.

For example, Chen and Bastin [13] found necessary and sufficient conditions for identifiability

of A in the case when full response of the system to the controls u and µ is available. Farina et

al. [23] addressed the problem of identifying the reaction rate constants in fpxq by expanding

the system and linearizing about an equilibrium state and found that the Jacobian must be

full rank and that knowledge of dynamical data for any time-dependent input to the system

is essential. Craciun and Pantaea [16] related the identifiability of chemical reaction network

systems to the topology of the reaction network. Here we assume that the functions fpxq

are known and focus on task (i).

We begin in Section 2.2 by presenting several definitions of identifiability and review-

ing established theorems on identifiability for linear dynamical systems. In Section 2.3, we

expand on these results to provide a complete rigorous characterization of identifiability

from a single trajectory for linear dynamical systems. More specifically, we discuss several

equivalent characterizations of the identifiability criterion, which ultimately yield an iden-

tifiability condition solely based on geometric properties of the known trajectory, namely

whether or not the trajectory is confined to a proper subspace of the relevant phase space.

This criterion provides practical utility, since it can be applied using what is known about

the trajectory, without knowledge of the structure of the parameter matrix. Subsequently,

we investigate the existence of a trajectory for which the parameter matrix is identifiable,

obtaining a necessary and sufficient requirement for existence based on the properties of the

coefficient matrix associated with the model. Several examples illustrate identifiability for

various systems and initial conditions. In Section 2.4, we briefly discuss some implications

of our confinement result for partial identifiability and for identifiability when not all model
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variables are observable. In Section 2.5, we extend our results to a broader class of dynamics

by deriving necessary and sufficient conditions for identifiability of a nonlinear system that is

linear in parameters. The sufficient condition again has geometrical character and refers to

the confinement of an image of the trajectory in the space of reaction rates. In Section 2.6,

we discuss the problem of finding parameter values explicitly using discrete data and show

that some linear models are identifiable from a complete trajectory but not from a finite set

of data, and that the accuracy of parameter estimation is related to how significantly the

available data deviates from confinement. The chapter concludes with a brief summary of

results and possible future directions in Section 2.7.

2.2 DEFINITIONS AND PRELIMINARIES

We consider a model defined as a linear dynamical system in which data for all of the state

variables is available (i.e. C “ I) and the set of inputs (controls) consists of the set of initial

conditions:

9xptq “ Axptq

xp0q “ b.
(2.3)

In equation (2.3), xptq P Rn is the state of the system at time t, the system parameters are

the entries of the coefficient matrix A P Rnˆn, and b P Rn is the initial condition. For clarity

of exposition we will refer to the entire matrix A as the (matrix) parameter A. Analysis of

linear systems of the form (2.3) is greatly simplified since we have an explicit formula for

their solutions, which we generally refer to as trajectories:

xpt;A, bq “ eAtb “
8
ÿ

j“0

Ajtj

j!
b. (2.4)

In the context of this work the term model identifiability is meant to represent the

identifiability of the parameters of the model. In other words, we fix the model structure

and ask whether the matrix parameter A can be uniquely determined from error-free data

consisting of a trajectory or some subset thereof. This question is strongly related to whether,

independent of the data, two distinct parameters can lead to identical solutions. A term
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parameter distinguishability has been used in this context in the literature [15, 34]. It is

clear that these characteristics depend not only on the properties of the system, but also on

the set of possible parameters being considered for comparison. The identifiability problem

should therefore be reformulated as determining whether, on a particular subset of Rnˆn,

the map from parameter space to solution space is injective. The extreme cases are to

allow parameters from the full parameter space Rnˆn or to restrict to a single point in the

parameter space. In the latter case, identifiability is trivial since there are no other competing

parameters to consider.

The initial condition b determines the trajectory (2.4) of the system (2.3) uniquely for any

given A. It needs to be taken into consideration, since we may or may not know or be able

to select the initial values of the states represented in a model before running an experiment,

and hence we may wish to consider identifiability from a given initial condition or from a

larger set of initial conditions. We shall discuss here three progressively more constrained

definitions of identifiability. In the first definition, we allow for an initial condition to be

chosen to aid identifiability:1

Definition 1. Model (2.3) is identifiable in Ω Ď Rnˆn if and only if for all A,B P Ω, A ‰ B,

there exists b P Rn such that xp¨;A, bq ‰ xp¨;B, bq.2

For identifiability in the sense of Definition 1, we immediately have the following result:

Theorem 2. Model (2.3) is identifiable in Rnˆn.

Proof. Consider the negation of the statement: model (2.3) is not identifiable in Ω if there

exist A,B P Ω, A ‰ B, such that for all b P Rn, for all t P R, xpt;A, bq “ xpt;B, bq. This

negation cannot hold on a set Ω containing distinct elements A and B, since if xpt;A, bq “

xpt;B, bq for all b P Rn, for all t P R, then differentiation of equation (2.4) and evaluation

at t “ 0 gives Ab “ Bb for all b. Applying this result to n linearly independent choices of

b gives AW “ BW for the invertible matrix W with the selected b vectors as its columns,

1The definitions above employ the term identifiability in the same sense in which global identifiability has
been used in some literature (e.g., [80]) to distinguish this concept from that of local identifiability, which
focuses on a small neighborhood of a given parameter. However, since Ω may be just a proper subset of the
full parameter space, the use of the word global in this context could be misleading and thus we omit it.

2The notation xp¨;A, bq ‰ xp¨;B, bq indicates that there exists at least one t ą 0 such that xpt;A, bq ‰
xpt;B, bq. Analogously, xp¨;A, bq “ xp¨;B, bq indicates that xpt;A, bq “ xpt;B, bq are identical for all t.
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hence A “ B. As a consequence, we see that for any two distinct linear systems (2.3), there

is an initial condition b P Rn that will distinguish the solutions.

Theorem 2 implies that if we are free to choose the initial condition, then any two linear

models with distinct parameter matrices in Rnˆn can be distinguished, because we can

choose the initial condition b such that the corresponding trajectories will be distinct. In

practice, however, control over the initial condition may not be available, and more restrictive

definitions of identifiability are needed. Nonetheless, Definition 1 is important in a setting

in which the matrix A itself is parametrized by an auxiliary parameter. For example, for

9x “ pp1 ` p2qx, the parameter sets pp1, p2q “ pc1, c2q and pp1, p2q “ pc2, c1q will result in the

same trajectory, with no initial condition b that will distinguish them.

Identifiability from a single trajectory is addressed by the following definition:

Definition 3. Model (2.3) is identifiable in Ω from b P Rn if and only if for all A,B P Ω

with A ‰ B, it holds that xp¨;A, bq ‰ xp¨;B, bq.

Since in most practical applications with biological data, the initial condition is fixed

and cannot be chosen at will, most of our results in Section 2.3 relate to identifiability in the

sense of Definition 3. It is also of interest, however, to consider the problem of identifiability

from any initial condition:

Definition 4. Model (2.3) is unconditionally identifiable in Ω if and only if for all A,B P

Ω, A ‰ B implies that for each nonzero b P Rn, xp¨;A, bq ‰ xp¨;B, bq.

Sufficient conditions for unconditional identifiability will be revealed in the end of Section

2.3.

We will now show that necessary and sufficient conditions for identifiability of model

(2.3) in the sense of Definition 3 follow from published results of Thowsen [80] and Bellman

and Åström [8]. First, suppose that Ω is an open set, in which case we have:

Theorem 5. For Ω Ă Rnˆn open and a fixed b P Rn, model (2.3) is identifiable in Ω from b

if and only if tb, Ab, ..., An´1bu are linearly independent for all A P Ω.

Remark. An alternative but equivalent formulation would replace the condition of linear

independence with the condition that the matrix rb|Ab|...|An´1bs has full rank, which would
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bring the wording closer to that of Bellman and Åström.

We will obtain Theorem 5 from the following theorem, presented by Thowsen [80] (and

simplified later by Gargash [28]), which we state without proof:

Theorem 6. Let Ω Ă Rnˆn be a set of matrices such that Ω “ t
řp
j“1Ajαj|α P Θu, where

Aj P Rnˆn for all j and Θ is an open subset of Rp. Fix b P Rn and let

GpAq “

»

—

—

—

—

—

—

—

–

A1b . . . Apb

A1Ab . . . ApAb
...

. . .
...

A1A
n´1b . . . ApA

n´1b

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

n2ˆp

Model (2.3) is identifiable in Ω from b if and only if rankGpAq “ p for all A P Ω.

Proof. (of Theorem 5) Consider the decomposition of A into elementary matrices, A “

řn
i,j“1Eijaij where tEiju is the standard basis for nˆ n matrices, and the set Θ is equal to

Rn2
. Under this decomposition, the matrix GpAq in Theorem 6 takes the special form GpAq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

E11b E12b . . . Ennb

´´´ ´´´ ´´´ ´´´

E11Ab E12Ab . . . EnnAb

´´´ ´´´ ´´´ ´´´
...

...
. . .

...

´´´ ´´´ ´´´ ´´´

E11A
n´1b E12A

n´1b . . . EnnA
n´1b

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

bT 0 . . . 0

0 bT . . . 0
...

... . . .
...

0 0 . . . bT

´´´ ´´´ ´´´ ´´´

pAbqT 0 . . . 0

0 pAbqT . . . 0
...

... . . .
...

0 0 . . . pAbqT

´´´ ´´´ ´´´ ´´´...
... . . .

...
´´´ ´´´ ´´´ ´´´

pAn´1bqT 0 . . . 0

0 pAn´1bqT . . . 0
...

... . . .
...

0 0 . . . pAn´1bqT

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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Let

G̃pAq “

»

—

—

—

—

—

—

–

bT

pAbqT

...

pAn´1bqT

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

nˆn

.

With this definition, rankGpAq “ n ¨ rank G̃pAq. Hence, rankGpAq “ n2 if and only if

rank G̃pAq “ n, which holds if and only if tb, Ab, ..., An´1bu are linearly independent.

Next, we note that the sufficiency of the condition of linear independence of tb, Ab, ..., An´1bu

is not tied to the requirement that Ω is an open set. This observation becomes obvious from

a reformulation of a result of Bellman and Åström obtained for the control system (2.1) [8]:

Theorem 7. For Ω Ă Rnˆn and a fixed b P Rn, if tb, Ab, ..., An´1bu are linearly independent

for all A P Ω, then model (2.3) is identifiable in Ω from b.

Let us define, for a fixed b P Rn, the set Ωb “ tA P Rnˆn : tb, Ab, ..., An´1bu are linearly

independentu. This set has a special significance for the identifiability of the model from b

in view of the following corollary of Theorem 5:

Corollary 8. Let b P Rn be fixed. The set Ωb is the largest open set in which model (2.3) is

identifiable from b.

Proof. Clearly, by Theorem 5, any open set Ω Ď Rnˆn in which the model (2.3) is identifiable

from b satisfies Ω Ď Ωb. That Ωb is an open set follows from Corollary 18, which is stated at

the end of the next Section.

In view of Theorem 5, the sets Ωb can be employed to characterize sets Ω in which the

model (2.3) is unconditionally identifiable:

Corollary 9. Let Ω P Rnˆn be open. Model (2.3) is unconditionally identifiable in Ω if and

only if Ω Ď
Ş

bPRnzt0u Ωb.

Although the conditions stated in Theorems 5, 7, and Corollary 9 reveal the properties

of sets in which the model is identifiable, their practical applicability is limited, because we

cannot test whether the system obeys the condition A P Ωb unless we know the matrix pa-

rameter A. In the next section, we derive a more practical condition based on the properties
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of a model trajectory. That is, let γpA, bq “ txpt;A, bq : t P Ru Ă Rn denote the orbit of

the model (2.3) corresponding to the trajectory with initial condition b. The condition that

we obtain specifies, for any given trajectory, whether or not we can identify the model from

that trajectory. Specifically, we show that the model (2.3) is identifiable from a trajectory if

and only if the orbit corresponding to that trajectory is not confined to a proper subspace

of Rn.

2.3 IDENTIFIABILITY CONDITIONS BASED ON TRAJECTORY

BEHAVIOR OR COEFFICIENT MATRIX PROPERTIES

2.3.1 Analysis

Now that we have established that the identifiability of the model from a fixed initial con-

dition b is characterized by the linear independence of the set tb, Ab, ..., An´1bu, we will

discuss certain equivalent characterizations of that property that reveal its implications for

the geometrical behavior of the corresponding orbit.

We will denote the space formed by linear combinations of the vectors tb, Ab, ..., An´1bu

as KnpA, bq “spantb, Ab, ..., An´1bu. This space is the Krylov subspace generated by A and

b [92] which is also called the A-cyclic subspace generated by b [40] and is the range of the

controllability matrix rb |Ab | ¨ ¨ ¨ |An´1bs.

Lemma 10. tb, Ab, ..., An´1bu are linearly dependent, or equivalently dimpKnpA, bqq ă n, if

and only if b is contained in an A-invariant proper subspace of Rn.

Proof. Recall that a space V is called A-invariant if for all v P V,Av P V . For the forward

direction, assume that dimpKnq ă n. Certainly, b P Kn. The result thus follows from

showing that Kn is invariant under A. To establish this invariance, let x P Kn. Then,

x “ c0b ` c1Ab ` ... ` cn´1A
n´1b and Ax “ c0Ab ` c1A

2b ` ... ` cn´1A
nb. By the Cayley-

Hamilton Theorem, An can be written as a linear combination of I, A,A2, ..., An´1. Hence,

Ax “ d0b` d1Ab` ...` dn´1A
n´1b P Kn, as desired.
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The reverse direction follows immediately, as b P V for an A-invariant set V with

dimpV q ă n implies that, since Kn Ď V , dimpKnq ď dimpV q ă n as well.

Lemma 11. Orbit γpA, bq is confined to a proper subspace of Rn if and only if b is contained

in an A-invariant proper subspace of Rn.

Proof. For the backward direction, let V Ă Rn be an A-invariant proper subspace of Rn. If

b P V , then Ajb P V for all j “ 0, 1, .... Hence, xpt;A, bq “ eAtb “
8
ÿ

j“1

tjAjb

j!
P V for all

t P R. So, γpA, bq Ď V .

For the forward direction, assume that γpA, bq is confined to a proper subspace of Rn.

Then there exists v ‰ 0 P Rn such that vTxpt;A, bq “ 0 for all t P R. Since xpt;A, bq “ eAtb,

we have vT eAtb “ 0 for all t P R as well. Furthermore, differentiation gives vTAeAtb “

0, . . . , vTAjeAtb “ 0 for all t P R, for j “ 0, 1, ..., n´ 1. In particular, for t “ 0, vTAjb “ 0

for j “ 0, 1, ..., n ´ 1. Hence, vT rb Ab...An´1bs “ 0. Since v ‰ 0, rb Ab...An´1bs cannot have

full rank, and thus Lemma 10 gives the desired result.

In light of Theorem 5, Lemmas 10 and 11 yield the following corollary:

Corollary 12. For Ω Ă Rnˆn open, model (2.3) is identifiable in Ω from b if and only if for

all A P Ω, γpA, bq is not confined to a proper subspace of Rn.

Combining the above results we obtain one of the main results of this chapter, a concise

relation between the uniqueness of the parameters of the model (2.3) and the geometric

structure of its orbits:

Theorem 13. For the model (2.3) there exists no B P Rnˆn with A ‰ B such that xp¨;A, bq “

xp¨;B, bq if and only if the orbit γpA, bq is not confined to a proper subspace of Rn.

Proof. Suppose that the orbit γpA, bq of model (2.3) is not confined to a proper subspace

of Rn, i.e., the parameter matrix A that supplied the orbit obeys A P Ωb. If B P Ωb

with A ‰ B, then the trajectories xpt;A, bq and xpt;B, bq are distinct as a result of the

identifiability of the model (2.3) in Ωb from b. If, on the other hand, B R Ωb, then the set

of vectors tb, Bb, ..., Bn´1bu is linearly dependent and hence Lemmas 10 and 11 imply that
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the orbit γpB, bq is confined to a proper subspace of Rn. Therefore xpt;B, bq is not equal to

xpt;A, bq.

Theorem 13 implies that the parameter matrix of model (2.3) is uniquely defined by

any trajectory that has an orbit that is not confined to a proper subspace. It is a practical

result that provides immediate information about the possibility of model identification

from a single trajectory while relying solely on the geometrical description of the trajectory.

Note that the full trajectory is needed to identify the matrix A since the orbit provides no

information about the transit time.

With this relation of identifiability to trajectory behavior, we can also observe that

identifiability is invariant under similarity transformation.

Corollary 14. Model (2.3) is identifiable in Ω P Rnˆn from b P Rn if and only if model (2.3)

is identifiable in Ω̃S “ tC “ SAS´1 : A P Ωu from Sb, for all S P Rnˆn invertible.

Proof. For the forward direction, assume that model (2.3) is identifiable in Ω from b and let

A P Ω. Let S be an invertible nˆ n matrix and define C “ SAS´1. Assume C and D yield

the same trajectory for the initial condition Sb. Since C and D yield the same trajectory,

eCtSb “ eDtSb and hence eS
´1CStb “ eS

´1DStb and eAtb “ eS
´1DStb, for all t P R. Since A

is identifiable from b, A “ S´1DS. So, SAS´1 “ D, which yields C “ D. Hence, model

(2.3) is identifiable in Ω from Sb, for all S P Rnˆn invertible. The reverse direction follows

similarly.

Having related identifiability on Ω to the linear independence of tb, Ab, ..., An´1bu for

A P Ω, it is natural to ask whether for every parameter matrix A the set Ωb is non-empty,

i.e., whether for every A there is an initial condition b such that such that tb, Ab, ..., An´1bu

are linearly independent. We will now show that such a b need not necessarily exist and

hence there are models (2.3) that cannot be identified from any single trajectory.

The following result determines under what conditions on the structure of A the set Ωb

is non-empty.

Theorem 15. There exists b such that tb, Ab, ..., An´1bu are linearly independent if and only

if A has only one Jordan block for each of its eigenvalues.
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Proof. The result follows from Cyclic Decomposition Theorem for square matrices. In par-

ticular, a vector b such that tb, Ab, ..., An´1bu are linearly independent is called a cyclic vector

for A. A corollary of the Cyclic Decomposition Theorem ([40] p. 237) states that A has a

cyclic vector if and only if the characteristic and minimal polynomials for A are identical,

which holds if and only if the matrix A has only one Jordan block for each of its eigenvalues.

This condition results from the fact that a nilpotent matrix pJ´λIq, where J is an kˆk

elementary Jordan matrix with eigenvalue λ, has minimal polynomial of the form xk, and

furthermore the minimal polynomial of A is of order m “
řs
i“0 ki where ki is the size of the

largest Jordan block corresponding to the eigenvalue λi of A, with the sum being taken over

all distinct eigenvalues of A. Now, the property that A has only one Jordan block for each of

its eigenvalues holds if and only if m “
řs
i“0 ki “ n, which is equivalent to the characteristic

and minimal polynomials for A being identical.

An additional Proposition elucidates a certain structure for b that is useful for attaining

identifiability.

Proposition 16. For a k ˆ k elementary Jordan matrix J with eigenvalue λ and vector

b P Rk with bk ‰ 0, pJ ´ λIqmb “ 0 if and only if m ě k.

Proof. The backward direction is immediate since for m ě k, pJ ´ λIqm “ 0. The forward

direction follows because for p ă k, pJ ´ λIqpb “ rbp`1, . . . , bk, 0, . . . , 0s
T ‰ 0 whenever

bk ‰ 0.

Theorem 15 establishes the existence of b from which model (2.3) is identifiable under

the linear independence condition and Proposition 16 specifies a structure for such b. In

particular, for such b, the component corresponding to each ki ˆ ki Jordan block Ji of A

must not be annihilated by pJi ´ λiIq
ki´1. For diagonalizable A, this result reduces to the

requirement that such b has a nonzero component in each eigenspace of A (see Lee [56]).

This property, sometimes referred to as persistent excitability for systems in control theory,

has been discussed by [5, 58]. A result closely related to Theorem 15 can be found in [52].

More interesting examples arise for matrices that do not have distinct real eigenvalues and

are discussed in examples below.
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Another helpful characterization of the linear independence of tb, Ab, ..., An´1bu can be

stated in terms of left eigenvectors of A, using the well known PBH controllability test for

linear systems [47]:

Theorem 17. The vectors tb, Ab, ..., An´1bu are linearly independent if and only if there is

no left eigenvector of A orthogonal to b.

In our case we employ this theorem for the following result:

Corollary 18. For Ω Ă Rnˆn open, model (2.3) is identifiable in Ω from b if and only if

there is no left eigenvector of A orthogonal to b for any A P Ω.

The Corollary 18 provides a new criterion for identifiability of the model (2.3) and can

be used to characterize the set Ωb from Section 2: Ωb “ tA P Rnˆn : wTA “ λw ñ wT b ‰ 0u

defines the largest open set in which the model is identifiable from b. Likewise,

č

bPRnzt0u

Ωb “ tA P Rnˆn : wTA “ λw ñ wT b ‰ 0 for all b P Rn
zt0uu

defines the largest set Ω in which the model is unconditionally identifiable.

For matrices of even dimensions we can use this representation to define sets Ω in which

model (2.3) is unconditionally identifiable. For example, let Ωc “ tA P R2ˆ2 : A has a

complex pair of eigenvaluesu. Any left eigenvector w of a matrix A in this set has nonzero

imaginary part and hence w is not orthogonal to any vector b P R2. By Corollary 18, tb, Abu

are linearly independent (over R), hence the model is unconditionally identifiable in Ωc by

Corollary 9.

Interestingly, matrices with odd dimensions always have a real-valued left eigenvector

w and our results imply that there is no set Ω Ď Rp2n`1qˆp2n`1q in which model (2.3) is

unconditionally identifiable, since in that case one can find b P R2n`1 such that wT b=0.

2.3.2 Examples

We will now discuss several examples of identifiability in Ω from b for various sets Ω in

parameter space and initial conditions b. We start by discussing certain special choices
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of Ω selected based on the properties we have established as important for identifiability.

Subsequently, we consider how the behaviors of trajectories of (2.3) for some particular

matrices relate to our results.

As we have discussed, Ωb “ tA P Rnˆn : tb, Ab, ..., An´1bu are linearly independentu “

tA P Rnˆn : wTA “ λw ñ wT b ‰ 0u is the largest open set in which the model is identifiable

from b. Thus, identifiability from b holds in any subset of Ωb, regardless of whether that set

is open. Also, we can define a larger (non-open) set Ω in which we have identifiability from

b by extending Ωb in trivial ways, such as by combining Ωb with a single matrix A0 P Ωb
c.

For Ω “ Ωb Y tA0u, the model will be identifiable in Ω from b because the orbit γpA0, bq

is confined to a proper subspace of Rn and will not coincide with any orbit for a matrix in

Ωb (which cannot be so confined). This type of trivial extension could be continued with a

sequence of matrices that have confined trajectories for the initial condition b, but with no

two solutions that are the same. On the other hand, define Ω “ RnˆnzΩb, which is not open,

such that Theorem 5 and Corollary 12 do not apply. It is clear that any two distinct matrices

A,B with the same eigenvalues that share b as a eigenvector for the same eigenvalue will

yield the same solution, xpt;A, bq “ xpt;B, bq for all t P R, and such matrices can be found

in Ω. Hence, by Definition 3, model (2.3) is not identifiable in Ω from b. This argument

shows that we do not have identifiability from b on the complement of Ωb.

Next, define ΩJ “ tA P Rnˆn : A has more than one Jordan block for some eigenvalueu.

From Theorem 15 we know that for any A P ΩJ , tb, Ab, ..., An´1bu are linearly dependent for

any b P Rn. ΩJ is a set of measure zero and is not open in Rnˆn, however, so Theorem 5

does not apply to the identifiability of ΩJ . We can again appeal directly to Definition 3 to

show that the model is not identifiable in ΩJ from b for any choice of b P Rn. For example,

in R3ˆ3, fix b “ r1, 1, 1sT . Let

A “

»

—

—

—

–

´2 0 0

0 ´2 0

2 ´1 ´3

fi

ffi

ffi

ffi

fl

and B “

»

—

—

—

–

´2 0 0

1 ´2.5 ´0.5

1 ´0.5 ´2.5

fi

ffi

ffi

ffi

fl

.
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A and B both have the Jordan matrix

D “

»

—

—

—

–

´2 0 0

0 ´2 0

0 0 ´3

fi

ffi

ffi

ffi

fl

which has two Jordan blocks for λ “ ´2, so A,B P ΩJ . A and B also share b as an

eigenvector for λ “ ´2. So, xpt;A, bq “ xpt;B, bq for all t P R, but A ‰ B, hence by

Definition 3, model (2.3) is not identifiable in ΩJ from b. An analogous pair of matrices that

violate identifiability can be obtained for any b P Rn by simply choosing two matrices with

the same Jordan form, having more than one Jordan block for some eigenvalue and sharing

b as an eigenvector for that eigenvalue. In fact, ΩJ X Ωb “ H. So it is straightforward to

construct sets Ω Ď Rnˆn on which the model is not identifiable from b, using elements of ΩJ .

To illustrate the application of Theorem 13, we will now discuss several examples of 2

ˆ 2 and 3 ˆ 3 matrices. For each, we consider under what conditions they have confined

trajectories and correspondingly, for what initial conditions b we have A P Ωb.

Figure 3 shows the phase plane for each of four matrices with trajectories plotted for a

few different initial conditions. Matrix

Aa “

»

–

´2 1

1 ´2

fi

fl

has distinct eigenvalues. For any initial condition b lying on an eigenvector, the correspond-

ing orbit will be confined to a proper subspace of R2. These are the only initial conditions

that lead to confined trajectories, so Aa P Ωb for all b not on an eigenvector. This observa-

tion is consistent with the requirements on the structure of b for identifiability, as given in

Proposition 16 and the associated discussion. That is, if we consider Aa and b written in the

basis in which Aa is in Jordan form (diagonalized), then b would have a zero component if

and only if it were an eigenvector.

Matrix

Ab “

»

–

´5{2 1{2

´1{2 ´3{2

fi

fl
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(a) (b)

(c) (d)

Figure 3: Phase portraits for system (2.3) generated by four matrices with different eigen-

value structures. In this and subsequent figures, red curves are trajectories from which the

corresponding model is not identifiable while blue curves are trajectories that yield identifi-

ability. Matrices Aa, Ab, Ac, Ad, as given in the text, were used to generate panels (a), (b),

(c), and (d) respectively.

has a repeated eigenvalue of ´2 and is not diagonalizable. Since it only has one Jordan

block, the requirement on b for the orbit to not be confined is that in the basis in which Ab is

given in Jordan form, b must have a nonzero component in the last entry. Equivalently, this

requirement means that b cannot lie on the genuine eigenvector r1, 1sT . From the phase plane
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it is easy to see that the orbit arising from any initial condition lying on this eigenvector will

be confined to a proper subspace of R2. So, Ab P Ωb for all b not on the genuine eigenvector.

Matrix

Ac “

»

–

´2 ´3

3 ´2

fi

fl

has a complex conjugate pair of eigenvalues. In this circumstance, R2 has no nontrivial

Ac-invariant proper subspaces. Therefore, the orbit from any nonzero initial condition is not

confined to a proper subspace of R2. This conclusion is clear from the phase plane. Hence,

Ac P Ωb for all b P R2zt0u.

Finally, matrix

Ad “

»

–

´2 0

0 ´2

fi

fl

represents the case of a repeated Jordan block for λ “ ´2. This is a star shaped system in

which every initial condition lies on an eigenvector and hence every orbit is confined to a

proper subspace. Thus, in this case, there exists no b such that Ad P Ωb.

Figure 4: Phase space structures for matrix Ae.
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Figure 4 corresponds to the matrix

Ae “

»

—

—

—

–

´1 ´3 2

0 ´4 2

0 0 ´2

fi

ffi

ffi

ffi

fl

,

which has three distinct real eigenvalues. The corresponding eigenvectors are plotted in

black and the planes represent the two-dimensional invariant subspaces spanned by pairs of

eigenvectors. Any initial condition lying in one of these planes will have a zero component

(in the basis in which A is diagonalized) and the corresponding orbit will be confined to that

plane. Any initial condition outside of these planes will have a orbit that is not confined to

a proper subspace. Hence, Ae P Ωb for all b not lying in one of the planes. This example is

the three-dimensional analogue of Aa but is more interesting because for Ae to be in Ωb, not

only must b not lie on an eigenvector of Ae, but it also may not land on any two-dimensional

plane spanned by two eigenvectors of Ae.

Figure 5: Phase space structures for matrix Af .

Figure 5 was generated from

Af “

»

—

—

—

–

´0.2 ´1 0

1 ´0.2 0

0 0 ´0.3

fi

ffi

ffi

ffi

fl

,
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Figure 6: Phase space structures for matrix Ag.

which has a complex conjugate pair of eigenvalues and one real eigenvalue: λ1,2 “ ´0.2 ˘ i

and λ3 “ ´0.3. Any orbit with an initial condition on the xy plane will stay confined to

that plane. This is the only proper Af -invariant subspace of R3. It is clear from the phase

plane that any orbit from an initial condition outside of this plane will not be confined to a

proper subspace. Hence, Af P Ωb for all b not lying in the xy plane.

Figure 6 corresponds to

Ag “

»

—

—

—

–

´1 1 0

0 ´1 0

0 0 ´1

fi

ffi

ffi

ffi

fl

,

which has two Jordan blocks for the eigenvalue λ “ ´1. Because of the repeated block,

the orbit from any initial condition is confined to a proper subspace of R3. Hence, there is

no b P R3 such that Ag P Ωb. This conclusion can also be verified from Theorem 17. The

left eigenvectors of Ag are: x1 “ r0, 1, 0s, x2 “ r0, 0, 1s. For an arbitrary b “ rb1, b2, b3s
T ,

there exists a left eigenvector, namely, x “ r0, ´b3, b2s, such that xb “ 0. Thus, Theorem

17 implies that tb, Agb, A
2
gbu are linearly dependent for all b P R3.
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2.4 PARTIAL IDENTIFIABILITY FROM A CONFINED TRAJECTORY

2.4.1 Analysis

The examples presented in the last section bring up the following question: If the model (2.3)

is not identifiable from a single trajectory, how much information about A can be obtained

from such a trajectory? The answer to this question is provided by a natural generalization

of the results leading to Theorem 13.

Theorem 19. Suppose V is a proper linear subspace of Rn invariant under A with k “

dimV . Let A|V denote the linear operator on V that is obtained as a restriction of A to the

subspace V . The following statements are equivalent:

(i) V is the minimal A-invariant subspace such that b P V .

(ii) tb, Ab, . . . , Ak´1bu are linearly independent in V .

(iii) The orbit γpA, bq is in V and is not confined to a proper subspace of V .

(iv) There exists no B P Rnˆn such that B|V ‰ A|V and xp¨;B, bq “ xp¨;A, bq.

Proof. The proof of the theorem can be constructed by generalization of the proofs discussed

above. In particular, proof of the equivalence of (i) and (ii) is analogous to the proof of

Lemma 10, proof of the equivalence of (i) and (iii) is analogous to the proof of Lemma 11,

and proof of the equivalence of (iii) and (iv) is analogous to the proof of Theorem 13

It may be of concern that the subspace V depends on the matrix to be identified and

hence is not known in advance. However, in view of the statement (iii) of Theorem 19,

the subspace V is clearly defined by the orbit γpA, bq as the smallest linear subspace of

Rn containing γpA, bq. Therefore, given the trajectory xpt;A, bq one can identify both the

invariant subspace V and the restriction A|V but no more information about the model (2.3).

The restriction operator A|V is identical to a submatrix of A if the subspace V is a span

of vectors from the standard basis te1, e2, . . . , enu of Rn. In general, A|V can be decomposed

using a basis tv1, v2, . . . , vku of V as follows:

A|V “
k
ÿ

i“1

k
ÿ

j“1

αijAij (2.5)
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where Aij are rank-1 matrices such that Aijvj “ vi, and αij with i, j “ 1, ..., k are determined

by the trajectory xpt;A, bq. By completing tv1, v2, . . . , vku into a basis tv1, v2, . . . , vnu of Rn

one can write the unidentified part of the parameter matrix, A´ A|V , as

A´ A|V “
n
ÿ

i“1

n
ÿ

j“k`1

αijAij `
n
ÿ

i“k`1

k
ÿ

j“1

αijAij (2.6)

where the remaining coefficients αij are free parameters.3

The full parameter matrix A can be reconstructed from several confined trajectories of

the system. The minimum number of such trajectories needed to fully identify A depends on

the number and relative positions of the subspaces to which those trajectories are confined.

As a final comment in this section let us note that the results above can also be used to

characterize the case in which the model variables are not fully observable, i.e., the case

9xptq “ Axptq, xp0q “ b,

yptq “ C xptq
(2.7)

in which the known matrix C is not of rank n. Suppose that the orbit γpA, bq of the

trajectory xpt;A, bq of the system is confined to a subspace V . Suppose, in addition, that

dimV ď rankC and that V X nullC “ 0. Then one can construct an invertible map C̃

that takes V into rangeC and determine xpt;A, bq from the observed image of the trajectory

ypt;A, b, Cq as xpt;A, bq “ C̃´1ypt;A, b, Cq. Using the procedure above, one can then identify

A|V from the trajectory xpt;A, bq. Unfortunately, the information on whether xpt;A, bq is

confined and to which subspace cannot be directly ascertained by observing ypt;A, b, Cq.

3The matrix rAsB “ rαijs is comprised of the coefficients of A in the basis B “ tv1, v2, . . . , vnu.
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2.4.2 Example

The matrix Ae defined in the last section has a two-dimensional invariant subspace V “

spantv1, v2u where v1 “ r1, 1, 0sT , v2 “ r0, 0, 1sT . Trajectory xpt;Ae, bq starting at b “

r´1,´1, 1sT is confined to V but not to any lower-dimensional subspace of V . In accord

with Theorem 19, we can use the trajectory xpt;Ae, bq to identify Ae|V . Specifically, we

transform Ae to the coordinate system with the basis B “ tv1, v2, v3u, where v3 “ r0, 1, 0s
T ,

as

rAesB “

»

—

—

—

–

´4 2 ´3

0 ´2 0

0 0 ´1

fi

ffi

ffi

ffi

fl

.

The expansion in the basis tv1, v2u of the restriction Ae|V is given by the upper left 2x2

submatrix of rAesB.

Now, for any matrix B with invariant subspace V and such that B|V “ Ae|V , the

trajectory xpt;B, bq is identical to xpt;Ae, bq. Each such matrix, in the coordinates of V ,

must agree with the upper left 2x2 block of rAesB and take the form

rBsB “

»

—

—

—

–

´4 2 β13

0 ´2 β23

0 0 β33

fi

ffi

ffi

ffi

fl

for some β13, β23, β33 P R. Transforming rBsB to the standard coordinate system yields

B “

»

—

—

—

–

´β13 ´ 4 β13 2

β13 ´ β33 ´ 4 β13 ` β33 2

´β23 β23 ´2

fi

ffi

ffi

ffi

fl

.

Note that in this particular case, the third column of matrix A is identifiable from the

confined trajectory xpt;Ae, bq.
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2.5 SYSTEMS THAT ARE LINEAR IN PARAMETERS

2.5.1 Analysis

Consider now a nonlinear dynamical system that depends linearly on parameters and has

only its initial condition as a control:

9xptq “ Afpxptqq

xp0q “ b.
(2.8)

In equation (2.8), xptq P Rn is the state of the system at time t, the system parameters

are the entries of the coefficient matrix A P Rnxm, b P Rn is the initial condition, and

f “ pf1, ..., fmq : Rn Ñ Rm, where fj are functions that are locally Lipschitz continuous in x.

The initial condition b determines the trajectory xpt;A, bq of the system (2.8) for any given

A. A definition of identifiability, analogous to Definition 1, can be stated as follows:

Definition 20. Model (2.8) is identifiable in Ω Ď Rnˆm if and only if for all A,B P Ω, A ‰

B, there exists b P Rn such that xp¨;A, bq ‰ xp¨;B, bq.

Recall that for the linear model (2.3), Theorem 2 implies identifiability in Rnˆn. Such

general identifiability, however, does not hold for systems that are linear in parameters.

Instead, we can obtain a necessary condition for identifiability of the model (2.8) using

the properties of the map f . We first introduce F , the largest linear subspace of Rm that

contains the range of f , as F “ spantfpxq|x P Rnu Ď Rm. The dimension of F determines

the identifiability of the model (2.8) as follows:

Theorem 21. If dimF ă m, then model (2.8) is not identifiable in Rnˆm.

Proof. Assume dimF “ r ă m. Let tv1, ..., vru be a basis for F . Complete tv1, ..., vru to

a basis tv1, ..., vr, vr`1, ..., vmu of Rm and let V “ rv1 | ... | vms. For fixed A P Rnˆm, choose

C P Rnˆpm´rq such that C ‰ rAvr`1 | ... |Avms and let D “ rAv1 | ... |Avr |Cs. Finally, let

B “ DV ´1. This procedure yields B P Rnˆm such that (i) Avj “ Bvj, j “ 1, .., r and (ii)

Avj ‰ Bvj for some j P tr ` 1, ...,mu. Since (i) implies that Afpxq “ Bfpxq @x P Rn, the

trajectories xpt;A, bq and xpt;B, bq of the model (2.8) are identical for any initial condition

b P Rn, yet (ii) implies that B ‰ A. Hence, the model (2.8) is not identifiable in Rnˆm.
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One of the main results for linear systems described in Section 2.3 was Theorem 13,

which provides a connection between the uniqueness of the parameters of a model (2.3) and

the confinement of the orbit of that model. Interestingly, a similar result can be shown for

model (2.8), but here, parameter uniqueness is instead linked to the geometric structure of

the image of the orbit of the model in the flux space. Let φpA, bq “ tfpxpt;A, bqq | t P Ru be

a curve in Rm that represents the image under the map f of the orbit γpA, bq of the model

(2.8).

Theorem 22. There exists no B P Rnˆm with A ‰ B such that xp¨;A, bq “ xp¨;B, bq if and

only if φpA, bq is not confined to a proper subspace of Rm.

Proof. To prove the reverse implication, suppose that φpA, bq is not confined to a proper

subspace of Rm. Then one can find the matrix A uniquely as follows: Since φpA, bq is

not confined, one can choose m distinct time points t1, ..., tm, such that the matrix F “

rfpxpt1qq | ... | fpxptmqqs is invertible. From knowledge of the trajectory, one knows 9xpt1q, . . . ,

9xptmq. Appending this information into a matrix yields the linear equation r 9xpt1q | ... | 9xptmqs “

A rfpxpt1qq | ... | fpxptmqqs “ AF , which has a unique solution A “ r 9xpt1q | ... | 9xptmqsF
´1.

Therefore there is no other matrix B that would produce a trajectory identical to A.

The forward direction is proven by contrapositive utilizing an argument similar to the

one used in the proof of Theorem 21. Assume that φpA, bq is confined to a proper sub-

space of Rm and define Fγ “spantfpxpt, A, bqq, t P r0,8qu. By the confinement of φpA, bq,

dimFγ “ r ă m. Let V “ tv1, ..., vru be a basis for Fγ. Complete V to a basis of

Rm, V̂ “ tv1, ..., vr, vr`1, ..., vmu. Construct B P Rnˆm such that Avj “ Bvj, j “ 1, .., r, but

Avj ‰ Bvj for some j P tr ` 1, ...,mu (as in the previous proof). With this construction,

A ‰ B, but, Afpxq “ Bfpxq @x P Rn, and hence xpt;A, bq “ xpt;B, bq.

As in the linear case, this theorem is a statement about identifiability of the model from

a single trajectory. In fact, since the linear model (2.3) is a special case of the nonlinear

model (2.8) with f being the identity map, Theorem 13 is a special case of Theorem 22. In

that case, the confinement of the orbit image φpA, bq in the flux space is equivalent to the

confinement of the orbit γpA, bq of the trajectory.
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Figure 7: Confinement of φpA, bq in the flux space.

2.5.2 Examples

As an illustrative example, consider the system,

9x “ a11x` a12xy ` a13y

9y “ a21x` a22xy ` a23y
(2.9)

System (2.9) is linear in parameters and can be represented in the form of model (2.8)

with

A “

»

–

a11 a12 a13

a21 a22 a23

fi

fl

and fpx, yq “ rx, xy, ysT . For the matrix

A “

»

–

´2 1 ´2

´1 1 ´3

fi

fl

and initial condition b “ r1, 1sT , φpA, bq is confined to a proper subspace of R3, as shown

in figure (7). Theorem 22 implies that there exists a matrix B P R2ˆ3 with A ‰ B

such that xpt;A, bq “ xpt;B, bq. One can construct B using the procedure described in

the proof of the theorem. Since xptq “ yptq for the solution of the IVP, we have Fγ “
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spantpx, x2, xqT |x P Ru. Thus tp1, 0, 1qT , p0, 1, 0qT u is a basis for Fγ. Complete this basis to

tv1, v2, v3u “ tp1, 0, 1q
T , p0, 1, 0qT , p1, 0,´1qT u, a basis of R3. Let

D “ rAv1 |Av2 |ws “

»

–

´4 1

´4 1
w

fi

fl

such that w ‰ Av3 “ r0, 2s
T . For example, let

D “

»

–

´4 1 ´2

´4 1 ´6

fi

fl .

Then

B “ Drv1 | v2 | v3s
´1
“

»

–

´3 1 ´1

´5 1 1

fi

fl

is one such example.

Another example is provided by the Lotka-Volterra model of competing species [21, 66],

9x “ xp1´ ax´ cyq

9y “ yp1´ ay ´ cxq.
(2.10)

Model (2.10) is linear in parameters with

A “

»

–

1 ´a ´c 0 0

0 0 ´c 1 ´a

fi

fl

and fpx, yq “ rx, x2, xy, y, y2sT .

For any initial condition of the form b “ rx0, x0s
T , the trajectory of the system obeys

xptq “ yptq and depends on the sum a`c but not the individual values of the parameters a, c.

This is consistent with Theorem 22, which concludes that since fpx, xq “ rx, x2, x2, x, x2sT

and φpA, bq is confined to a proper subspace of R5, the parameter matrix which yields this

trajectory is not unique, and therefore model (2.10) is not identifiable in R2ˆ5.
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2.6 DISCRETE DATA

In practical applications, one does not typically have knowledge of a full trajectory of

the system, but rather a sample of discrete data points that lie on a trajectory, possi-

bly perturbed by measurement noise. Suppose for now that we have m accurate data

points x0, x1, . . . , xm´1 in Rn that lie on the trajectory of the model (2.3), defined as

xk “ xptk;A, bq, k “ 0, 1, . . . ,m ´ 1, where t0, t1, . . . , tm´1 are distinct time points. Non-

confinement of the orbit γpA, bq “ txpt;A, bq : t P Ru is obviously determined by the dimen-

sion of the span of the data vectors.:

Lemma 23. Orbit γpA, bq is not confined to a proper subspace of Rn if and only if there

exist t0, t2, . . . , tn´1 such that x0, x2, . . . , xn´1 are linearly independent.

Note that the confinement of an orbit cannot be established from a fixed, finite data

set. For example, in a two-dimensional system, the available data may lie in a straight line,

but the underlying solution may be a spiral, which is not a confined orbit. Model (2.3)

is identifiable from a full trajectory in this example, since the corresponding orbit is not

confined to a proper subspace.

It now remains to show how the parameter matrix A is determined from the data. The

parameter matrix A can be computed explicitly without the need for optimization from n`1

data points which are uniformly spaced in time. Let x0, . . . , xn be such that xk “ xptk;A, bq

for each k “ 0, . . . , n, with tk`1 ´ tk “ ∆t for all k “ 0, . . . , n ´ 1. Assume that every

collection of n of the data points are linearly independent. Let Φp∆tq denote the principal

matrix solution of model (2.3) and let X0 and X1 denote the matrices rx0 |x1 | ... |xn´1s and

rx1 |x2 | ... |xns, respectively. The principal matrix solution provides a relation between the

data given by Φp∆tqxk “ xk`1, thus Φp∆tqX0 “ X1. Without loss of generality, we can let

∆t “ 1 and define Φ “ Φp1q. Then, by the invertibility of X0 we find that,

Φ “ X1pX0q
´1. (2.11)

In theory, the matrix A can be computed by taking the matrix logarithm of Φ, since Φ “ eA.

It is important to note, however, that the logarithm of a matrix does not always exist, and if
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it does, it is not necessarily unique. Requirements for the existence of a real matrix logarithm

are given in the following theorem [17].

Theorem 24. Let Φ be a real square matrix. Then there exists a real solution A to the

equation Φ “ eA if and only if Φ is nonsingular and each Jordan block of Φ belonging to a

negative eigenvalue occurs an even number of times.

In our case, Φ “ X1pX0q
´1 is nonsingular due to the linear independence of the data.

The second condition of Theorem 24 is satisfied trivially if x0, x2, . . . , xn are indeed discrete

points on a trajectory of the linear model (2.3). More importantly, uniqueness of the matrix

logarithm, which is directly related to the identifiability of the model (2.3), is addressed in

the following theorem [17].

Theorem 25. Let Φ be a real square matrix. Then there exists a unique real solution A to

the equation Φ “ eA if and only if all the eigenvalues of Φ are positive real and no Jordan

block of Φ belonging to any eigenvalue appears more than once.

Given the data x0, x2, . . . , xn, the matrix logarithm yields a unique corresponding pa-

rameter matrix A if and only if Φ, defined using (2.11), satisfies the hypotheses of Theorem

25. We have established earlier (in Theorem 15) that model (2.3) can be identified from

some initial condition b if and only if A has only one Jordan block for each of its eigenvalues.

If A satisfies this requirement and has real eigenvalues, then Φ has positive eigenvalues and

has one Jordan block for each of them and hence satisfies the hypotheses of Theorem 25. We

can then conclude that model (2.3) is identifiable from the data x0, x1, . . . , xn. If, however,

A has one Jordan block for each of its eigenvalues and has complex eigenvalues, then Φ

has a negative eigenvalue and a pair of Jordan blocks associated to each pair of complex

eigenvalues of A. For example,

A “

»

–

0 π

´π 0

fi

fl

has eigenvalues ˘πi and has no repeated Jordan blocks, yet

eA “

»

–

´1 0

0 ´1

fi

fl
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Figure 8: paq Plot of the orbits for Ar with r “ 0, 1,´1, pbq Plot of the x component of the

trajectory. Each of the three distinct systems satisfy the data.

with a repeated Jordan block and negative eigenvalues. In such a case, Theorem 25 implies

that one can find a matrix B ‰ A such that eB “ Φ “ eA. Although the trajectories

xpt;A, x0q and xpt;B, x0qmust necessarily differ (since the model with matrix A is identifiable

from the full trajectory xpt;A, x0q), the data obtained from these trajectories for the same

set of time points tt0, t2, . . . , tnu are identical. Thus, we have the following observation.

Corollary 26. The model (2.3) with matrix A that has a pair of complex eigenvalues is not

identifiable from any set of data x0, x2, . . . , xn that are uniformly spaced in t.

Figure 8 illustrates the non-identifiability that arises with complex eigenvalues in the

case of discrete data for 2x2 linear systems. In this example, the solution to the system with

parameter matrix

Ar “

»

–

´3{2 ´4

4 ´3{2

fi

fl` 2πr

»

–

0 ´1

1 0

fi

fl

will satisfy the data for any integer value of r. The solutions shown in Figure 8 are for the

cases r “ 0, 1, and ´1.

The extension of the above computation to the model (2.8) is simple, provided one can

measure not only the values x1, x2, . . . , xm of the variables at t1, t2, . . . , tm, but also their
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rates of change y1, y2, . . . , ym, where yk “ dxpt;A, bq{dt|t“tk . Just as in the proof of Theorem

22, if fpx1q, fpx2q, . . . , fpxnq are linearly independent (and hence φpA, bq is not confined to

a proper subspace), then the unique parameter matrix that yields this data is given by

A “ Y F´1 (2.12)

where Y “ ry1 | . . . | yms and F “ rfpx1q | . . . | fpxmqs.

The computations outlined above are valuable not only because they offer direct methods

for computing the parameter matrix A that do not rely on minimization of an error function,

but also because they can be used to provide insight into the sensitivity of A to the data.

Since both computations are based on linear algebraic operations, one can use the tools of

numerical analysis to determine the conditioning of the problem (see, e.g., [83]). In the case of

the linear model (2.3), equation (2.11) implies that the problem of computing Φ has condition

number κpX0q “ }X0}}pX0q
´1}, and indeed one can compute that any perturbations of the

data (δX0 of X0 and δX1 of X1) induce a perturbation δΦ of Φ that obeys

}δΦ}

}Φ}
ď κpX0q

ˆ

}δX0}

}X0}
`
}δX1}

}X1}

˙

(2.13)

where }.} is any norm of choice. Note that if }.} is the Euclidean norm }.}2, then κpX0q

equals the ratio of the largest to the smallest singular values of X0. It follows that the closer

are the data vectors x0, x1, . . . , xn´1 (i.e., the columns of X0) to being linearly dependent,

the more ill-conditioned is the inverse problem.

Likewise, in the case of the model (2.8), equation (2.12) implies that the problem of

computing A has the condition number κpF q “ }F }}F´1}, and hence any perturbations δF

and δY induce a perturbation δA that obeys

}δA}

}A}
ď κpF q

ˆ

}δF }

}F }
`
}δY }

}Y }

˙

. (2.14)

Again, the closer are the vectors fpx1q, fpx2q, . . . , fpxmq (i.e., the columns of F ) to being

linearly dependent, the more ill-conditioned is the inverse problem.

The observations made at the end of this section indicate that the highest accuracy in

the inverse problem (and hence the lowest sensitivity to measurement errors) can be achieved

by selecting data so as to minimize the condition number of the data matrix. This result
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has an important practical implication: although the results in Sections 2.3 and 2.5 indicate

that for an identifiable model any infinitesimally small portion of a trajectory is sufficient

to identify the parameter matrix, in any practical situation a small segment of trajectory

will have a nearly linear orbit and hence any selection of data from that segment will yield a

data matrix with high condition number. Thus, in order to minimize the condition number,

one must have a sufficiently large portion of the trajectory that explores all dimensions of

the underlying space.

2.7 CONCLUSIONS

In this chapter, for both linear and nonlinear dynamical systems, we have derived necessary

and sufficient conditions for identifiability of parameters from a single trajectory based solely

on the geometry of the trajectory or the geometry of an image of the trajectory. Furthermore,

we have shown that an improved accuracy of parameter estimation can result when the tra-

jectory deviates farther from being confined. These results have a practical utility since the

criterion can be applied using only what is known about the trajectory, without any knowl-

edge of the model parameters. Additional results for linear systems include a link between

identifiability from single trajectory with initial condition b and the linear independence of

tb, Ab, ..., An´1bu, several characterizations of the linear independence of tb, Ab, ..., An´1bu in-

cluding a condition on the Jordan form of A, and the result that unconditional identifiability

cannot occur outside of R2nˆ2n. Finally, we addressed the question of explicitly computing

model parameter values from a discrete collection of data points.

There are several directions for possible extension of the results in this chapter. First,

our results imply that discrete data contained within a lower-dimensional subspace of the

full state space will not yield identifiability of an underlying system. Such data may arise,

however, from particular samplings of a trajectory that is not confined in this way. The

derivation of more general identifiability conditions from discrete data remains for future

exploration. Second, the condition C “ I is highly restrictive, because in real scenarios not

all variables of the system may be observable. We have shown that when C is not of full
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rank, then confinement of an orbit to an invariant subspace of dimension not greater than

the rank of C can yield partial identifiability of the parameter matrix. A natural extension

of the present study would be to investigate if there are ways to enhance the practical

applicability of this result or to obtain more general identifiability results in this case. A

third direction for future study would be the consideration of general nonlinear systems. We

have shown that identifiability conditions based on confinement can be derived for systems

that feature linearity in parameters, regardless of whether the dynamics is linear or nonlinear.

For nonlinear dynamical systems lacking this form of parameter dependence, the assessment

of identifiability will likely require new ideas. The prospects for addressing this problem

using linearization about trajectories appear to be limited, based on our observations about

sensitivity associated with parameter estimation from small segments of trajectories. A final

direction to consider is the identifiability of systems that are linear or linear in parameters

with time-dependent parameter matrices. Our methods would likely be useful for systems

with rather trivial time-dependence, such as piecewise constant parameter matrices, where

switching times between different constant values are known and full solution trajectories

are available, but handling more general time-dependence appears to be a difficult problem.

These and other related topics represent important directions for follow-up studies.

In the next chapter, we will continue to look at the case of discrete single trajectory data.

Moving beyond the setting of error free data, we will investigate properties of the inverse

solution in the presence of uncertainty in the data.
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3.0 ROBUSTNESS OF SOLUTIONS OF THE INVERSE PROBLEM FOR

LINEAR DYNAMICAL SYSTEMS WITH UNCERTAIN DATA

3.1 INTRODUCTION

A fundamental problem in modeling temporally evolving systems is the determination of

model parameter values from experimental observations collected at specific time points.

Since models can be viewed as forward mappings from sets of parameter values to time-

dependent states of model variables, the problem of parameter estimation is often referred

to as an inverse problem. Although parameter estimation has received significant attention

in the literature, certain fundamental questions about the inverse problem still remain open.

Solving the inverse problem becomes even more challenging in the presence of uncertainty

in experimental measurements, as may arise due to measurement errors and fluctuations in

system components. The overall goal of this chapter is to derive estimates of the degree

of uncertainty in data to which properties of the inverse problem, such as existence and

uniqueness of solutions, are robust.

We start by addressing fundamental issues of existence and uniqueness of solutions to the

inverse problem based on a discrete collection of linearly independent data points assumed to

be known without uncertainty, before turning to the uncertain case. We focus our analysis

on linear models, which are prevalent in the study of many important applications including

pharmacokinetics, linear response theory for mechanical and electronic systems, continuous

time Markov chain probabilistic models, and near-equilibrium responses of nonlinear systems

[11, 31, 3, 73]. In addition to their applicability, linear systems are convenient because in the

linear case, there is an explicit structure of the associated forward solution map that can be

exploited. Furthermore, we mostly consider data points that are equally spaced in time, as
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may be obtained from experiments with regimented data collection schedules and for which

it may be possible to explicitly solve for the linear system parameter matrix. Despite these

advantages, the inverse problem is nontrivial because the solution to a linear dynamical

system depends nonlinearly on its parameters.

Specifically, in Section 3.2, we begin by considering data with no uncertainty, where

classical results on matrix logarithms yield necessary and sufficient conditions for the data

to specify a unique parameter matrix A that solves the inverse problem. Contrary to our

expectations, we find that the existence of model parameters corresponding to given data is

guaranteed only for a restricted subset of potential data sets and that there is only a limited

region in data space that yields a unique set of parameters. Subsequently, we explore how

uncertainty in the data impacts the existence and uniqueness of A. In Section 3.3, we

provide conditions that ensure that existence or uniqueness of the inverse problem solution

is guaranteed to hold in an open neighborhood of data, and we make use of a convenient

transformation to better characterize regions in which A is unique. These steps prepare us

for Section 3.4, where we present the main results of the chapter, consisting of analytical

and numerical estimates of the maximum uncertainty in the data under which the properties

of the inverse problem are certain to be preserved. Examples for 2-dimensional systems are

shown in Section 3.5, where we first define regions in data space for which the solution

to the inverse problem has various properties and then illustrate bounds on the maximal

permissible uncertainty for those properties. Finally, in Section 3.6, we briefly remark on

the case of non-equally-spaced data points, and we conclude with a discussion in Section 3.7,

which includes some comments on open directions and related work in the past literature.

3.2 DEFINITIONS AND PRELIMINARIES

As in Chapter 2, we consider the model defined as a finite-dimensional linear dynamical

system; recall equation (2.3):

9xptq “ Axptq

xp0q “ b.
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In equation (2.3), xptq P Rn is the state of the system at time t, the system parameters are

the entries of the coefficient matrix A P Rnˆn and b P Rn is the initial condition. For clarity

of exposition we will refer to the entire matrix A as the parameter A. We shall define the

parameter space P as the set of all parameters A and initial conditions b.

For a fixed A, system (2.3) has a well defined solution, or trajectory, given by xpt;A, bq “

Φptqb, where Φptq “ eAt is the principal matrix solution. The data representing the system

is a set of observations of the trajectory values. We assume that data for all of the state

variables is available and denote by D the data space consisting of a set of pn ` 1q-tuples

d “ px0, x1, x2, . . . , xnq of points xj P Rn. Each such d will be referred to as a data set and

each xj as a data point. Sampling the trajectory xpt;A, bq at equally spaced times (without

loss of generality ∆t “ 1) yields an element of D, namely a data set composed of the specific

data points xj “ xpj; A, bq P Rn, j “ 0, 1, . . . , n; non-uniformly spaced data are discussed

in Section 3.6. We use solution map to refer to the map F : P Ñ D from parameter space

to data space defined as F pA, bq “ px0, x1, x2, . . . , xnq for this choice of txju sampled from

xpt;A, bq. From the definition of xj, it is immediately clear that b “ x0 and thus, we focus

on the problem of determining the parameter A. The inverse problem is then the problem

of inverting the map F to find F´1pdq (i.e., A such that F pA, b “ x0q “ d) for a given data

set d. If the data set d is obtained from experimental measurements or some other outside

source, then this problem may or may not have a solution.

We set out to derive necessary and sufficient conditions that a data set d P D must satisfy

so that there exists a unique real matrix A for which the dynamical system (2.3) produces

data d (i.e., so that d “ F pA, bq). These conditions define a subset of the data space on

which the inverse map F´1 is well defined. Given a uniformly spaced data set d P D, one can

attempt to solve the inverse problem as presented in Section 2.6. We review the constructs

here, as this notation is referenced several times throughout this chapter. Denote by X0

and X1 the n ˆ n matrices rx0 | . . . |xn´1s and rx1 | . . . |xns, respectively. The principal

matrix solution provides a relation between the data points; letting Φ :“ Φp1q “ eA, we have

xj`1 “ Φxj, which implies that X1 “ ΦX0 and hence Φ “ X1X
´1
0 . All that remains is to

find A as the matrix logarithm of Φ. Thus, from an operational standpoint, the map F´1 is a

composition of two nonlinear maps: (i) The map G : D Ñ Rnˆn defined by Gpdq “ Φ, which
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is defined (and continuous) at all points d such that x0, . . . , xn´1 are linearly independent

(i.e. wherever X´1
0 exists), and (ii) the matrix logarithm map, denoted here as L : Rnˆn Ñ P

and defined as A “ LpeAq. Hence, F´1 “ L ˝ G is well defined if (i) X0 is invertible, (ii)

the matrix logarithm of Φ exists, and (iii) the matrix logarithm of Φ is unique. The case

when condition (i) fails was studied extensively in Chapter 2; in that case the system (2.3)

generating the data d either does not exist or is not identifiable. Conditions (ii) and (iii) can

be addressed with the help of theorems 24 and 25 by Culver [17], presented in Section 2.6,

which characterize the existence and uniqueness of a real matrix logarithm.

We note that even when a matrix logarithm exists, there are still issues with how to

compute it. Numerical methods for computing the logarithm of a matrix are discussed in

[37, 14, 1].

3.3 EXISTENCE AND UNIQUENESS OF THE INVERSE IN N

DIMENSIONS

As will become clear shortly, Theorems 24 and 25 identify matrices Φ that are not robust

in the sense that they form a set of zero measure. Since we aim to discuss the properties of

inverse problem solutions for uncertain data, such as data that is perturbed due to noise, it

makes sense to determine conditions that ensure that a given matrix Φ is inside an open set

of matrices with particular existence or uniqueness properties.

3.3.1 Inverse problems on open sets

We now state and prove three corollaries of Theorems 24 and 25 that are useful for considering

uncertain data and, as it turns out, avoid the conditions on Jordan blocks that can become

overly cumbersome for practical use in n dimensions. The first corollary characterizes open

sets of matrices that have real logarithms, the second corollary characterizes open sets of

matrices that have unique real logarithms, and the third corollary characterizes open sets of

matrices that do not have real logarithms.
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Corollary 27. (to Theorem 24) Let Φ˚ be an n ˆ n real matrix. The following statements

are equivalent:

(a) There exists an open set U Ă Rnˆn containing Φ˚ such that for any Φ P U the equation

Φ “ eA has an nˆ n real solution A.

(b) Φ˚ has only positive real or complex eigenvalues.

Proof. Suppose that Φ˚ P Rnˆn has only positive real or complex eigenvalues. Then the

result follows immediately by Theorem 24 and the continuous dependence of eigenvalues on

matrix entries.

For the converse, suppose that Φ˚ P Rnˆn has a real matrix logarithm, i.e., Φ˚ “ eA

where A is nˆ n real matrix. By Theorem 24, either Φ˚ satisfies pbq, or Φ˚ has at least one

negative eigenvalue and the corresponding Jordan block occurs an even number of times.

We now show that the second alternative contradicts the existence of the open set U . To

this end, let Φ˚ “ QJQ´1, where

J “

»

—

—

—

–

J1 0

0 J2

. . .

fi

ffi

ffi

ffi

fl

(3.1)

is a Jordan canonical form of Φ˚ with J1 a Jordan block corresponding to a negative eigen-

value. Let B “ QKQ´1 where,

K “

»

–

aI 0

0 0

fi

fl ,

with a P R and I the identity matrix of the same size as J1. Then for every sufficiently small

nonzero a, Φ`B has a negative eigenvalue for which the corresponding Jordan block occurs

exactly once and hence there is no real A such that Φ`B “ eA.

Corollary 28. (to Theorem 25) Let Φ˚ be nˆ n real matrix. The following statements are

equivalent:

(a) There exists an open set U Ă Rnˆn containing Φ˚ such that for any Φ in U the equation

Φ “ eA has a unique nˆ n real solution A.

(b) Φ˚ has n distinct positive real eigenvalues.
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Proof. The proof is similar to the previous one. Condition (b) implies condition (a) based

on Theorem 25 and continuity. For the converse, suppose that Φ˚ P Rnˆn has a unique real

matrix logarithm, i.e., there is a unique A P Rnˆn such that Φ˚ “ eA, and Φ˚ is in the

interior of an open set of such matrices. By Theorem 25, Φ˚ has positive real eigenvalues

and no Jordan block appears more than once. There can be more than one Jordan block

for the same eigenvalue but those Jordan blocks must be of different sizes. We can write

Φ˚ “ QJQ´1 where J is the Jordan canonical form of Φ˚ as defined in (3.1) and Ji are

ordered in size from largest to smallest, such that no two Ji are the same.

Suppose now that the largest Jordan block, J1, is not a 1 ˆ 1 matrix. Let pJptq be the

characteristic polynomial of J , i.e., pJptq “
śk

i“1pλi ´ tq
di where λi are all real positive and

d1 ě 2. Let B “ QKQ´1 where K is an n ˆ n matrix with all zero entries except L12 “ a,

L21 “ ´a. Then, for every a ą 0, Ĵ “ J ` K has entries Ĵ12 “ 1 ` a, Ĵ21 “ ´a, which

implies that Ĵ has characteristic polynomial

pĴptq “
“

pλ1 ´ tq
2
` ap1` aq

‰

pλ1 ´ tq
d1´2

k
ź

i“2

pλi ´ tq
di

with two complex roots. It follows that Φ˚ ` B “ eA does not have a unique real solution

A for a ą 0, which contradicts the assumption that A is unique for each Φ in an open set

containing Φ˚. Thus, all Jordan blocks Ji are of size 1 and furthermore, since no two Ji can

be the same, Φ˚ has n distinct eigenvalues.

Statements similar to Corollaries 27, 28 can be made to establish the existence of open

sets of matrices with other properties. An example follows.

Corollary 29. (to Theorem 24) Let Φ˚ be nˆ n real matrix. The following statements are

equivalent:

(a) There exists an open set U Ă Rnˆn containing Φ˚ such that for each Φ P U the equation

Φ “ eA does not have an nˆ n real solution A.

(b) Φ˚ has at least one negative eigenvalue of odd multiplicity.
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Proof. Suppose that Φ˚ P Rnˆn has at least one negative eigenvalue of odd multiplicity.

Then, there is at least one Jordan block associated to it that occurs an odd number of times

and hence, by Theorem 24, there is no A P Rnˆn such that Φ˚ “ eA. Moreover, there exists

an open neighborhood of Φ˚ for which there remains at least one negative eigenvalue of odd

multiplicity. 1

For the converse, suppose that there exists an open set U Ă Rnˆn containing Φ˚ such

that for each Φ P U the equation Φ “ eA does not have an n ˆ n real solution A. Since

Φ˚ “ eA has no real solution, by Theorem 24, either Φ˚ is singular, or there is a negative

eigenvalue of Φ˚ which belongs to a Jordan block that appears an odd number of times, or

both.

If Φ˚ is singular with no Jordan block associated to a negative eigenvalue occurring an

odd number of times, then in every neighborhood of Φ˚ there exists a Φ which is nonsingular

with the same condition on Jordan blocks, and Φ “ eA will have a real solution A. This

contradicts the existence of U .

Thus, there is at least one negative eigenvalue of Φ˚ for which a Jordan block repeats an

odd number of times. Denote these negative eigenvalues by λ1, . . . λr, r ě 1. Let mλi be the

multiplicity of λi.

Suppose that all mλi are even. Let Φ˚ “ QJQ´1 where J is the Jordan canonical form of

Φ˚ as defined in (3.1), let Jλ1
1 , Jλ1

2 , . . . , Jλ1
k denote all of the Jordan blocks associated to λ1

(the blocks may have the same size), and denote by J1 the block-diagonal matrix comprised

of Jλ1
1 , Jλ1

2 , . . . , Jλ1
k .

For i “ 1, ..., k define W λ1
i to be a block-diagonal matrix of the same dimension as Jλ1

i

comprised of K, where

K “

»

–

0 a

´a 0

fi

fl

for some a ą 0. If the dimension of Jλ1
i is even and equal to 2s, then W λ1

i is comprised of ex-

actly s blocks K, the characteristic polynomial of Jλ1
i `W

λ1
i is pptq “ rpλ1 ´ tq

2 ` ap1` aqs
s

and, since a ą 0, Jλ1
i `W λ1

i has only complex eigenvalues.

1A perturbation may split it into a collection of distinct negative eigenvalues of various multiplicities
and/or complex pairs, but at least one negative eigenvalue with odd multiplicity will remain.
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If is the dimension of Jλ1
i is odd and equal to 2s ` 1, then W λ1

i contains s blocks

K and a zero block of size one, the characteristic polynomial of Jλ1
i ` W λ1

i is pptq “

rpλ1 ´ tq
2 ` ap1` aqs

s
pλ1´ tq, and since a ą 0, Jλ1

i `W λ1
i has s complex conjugate pairs of

eigenvalues and one real negative eigenvalue λ1.

Define the mλ1 ˆmλ1 matrix,

C1 “

»

—

—

—

–

W λ1
1

. . .

W λ1
k

fi

ffi

ffi

ffi

fl

.

Since mλ1 is even, the number of odd sized blocks is even, therefore for every a ą 0, the

matrix J1 ` C1 has an even number of size one Jordan blocks corresponding to eigenvalue

λ1, and all other eigenvalues of J1 ` C1 are complex.

By repeat this process for λ2, . . . , λr, we can construct the matrix

F “

»

—

—

—

—

—

—

–

C1

. . .

Cr

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Let B “ QFQ´1. Then it follows that for every a ą 0, all negative eigenvalues of Φ˚ ` B

will have Jordan blocks that repeat an even number of times. If Φ˚ is nonsingular, then

Φ˚`B “ eA has real solution A for every a ą 0. If Φ˚ is singular, then Φ˚`B`aI “ eA has

real solution A for every a ą 0 sufficiently small. In either case, this implication contradicts

the existence of the open set U . Thus it must be that some mλi is odd and therefore, Φ˚

has at least one negative eigenvalue of odd multiplicity.

For a given d such that the associated matrix Φ has n distinct positive eigenvalues,

Corollary 27 (28, or 29, respectively) gives an open set U Ă Rnˆn on which the matrix

logarithm exists (exists and is unique, or does not exist, respectively). By the continuity of

G at d, G´1pUq (the preimage of U) is an open set in D containing d such that every data

set in G´1pUq is generated by a real A (a unique real A, or no real A, respectively). This
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concept will be important in Section 3.4, as we seek sets in D that define the largest allowable

uncertainty about d such that the inverse problem has a solution (a unique solution, or no

solution, respectively).

3.3.2 Companion matrix formulation

Suppose we wish to identify a region of data on which the inverse map F´1 is well defined,

i.e., a region R Ă D such that for every d P R there is a unique parameter A that defines

a linear system (2.3) with a trajectory that generates the data set d. Corollary 28 tells us

that, for a data set d and corresponding fundamental matrix Φ “ X1X
´1
0 , the uniqueness of

A on a neighborhood of Φ is determined by the eigenvalue structure of Φ. Since eigenvalue

properties are invariant under similarity transformation, we will proceed by first simplifying

the form of the matrix.

Let Φ̂ be the matrix similar to Φ that has the form of a companion matrix, i.e.,

Φ̂ “ PΦP´1
“

»

—

—

—

—

—

—

—

—

—

–

0 0 . . . 0 y1

1 0 . . . 0 y2

0 1 . . . 0 y3

...
. . .

...

0 0 . . . 1 yn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

One can think of Φ̂ as the fundamental matrix for a trajectory for which the data set

d̂ is comprised of the vectors of the standard basis of Rn, together with the data vector

y “ py1, y2, . . . , ynq
T , i.e., Φ̂ “ Gpd̂q for d̂ “ pe1, e2, e3, . . . , en, yq. The matrix P defines

the affine transformation that takes the data d into the standard (normalized) data d̂, i.e.,

P : Rn Ñ Rn where Pxj “ ej`1, Pxn “ y. This implies that P “ X´1
0 and Φ̂ “ X´1

0 X1.

Companion matrices have several nice properties, one of which is that their characteristic

polynomials have a very simple form, given by pptq “ y1 ` y2t` ¨ ¨ ¨ ` ynt
n´1 ´ tn. Matrices

Φ̂ and Φ have the same eigenvalues; hence, Φ has real, positive, distinct eigenvalues if and

only if pptq has real, positive, distinct roots. A method for determining the number of real

distinct roots of a polynomial was presented in [91] using foundational theory from [27].

Given that the roots are real, Descartes’ rule of signs with the criterion that the maximum
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number of negative roots is zero gives necessary and sufficient conditions for positivity of

the roots, which translate into conditions on y. A discussion of this approach is included in

Appendix A.

3.3.3 Examples

As a first illustrative example, consider the case n “ 2. The conditions on y “ py1, y2q
T

so that Φ̂ has 2 distinct positive eigenvalues, obtained from the Yang theorem [91] and

Descartes’ rule of signs, are: y2
2 ` 4y1 ą 0, y2 ą 0, and y1 ă 0 (see Appendix A.0.1). They

define a region R̂ Ă R2 pictured in Figure 13(a). To gain insight into how these conditions

translate into conditions on the data set px0, x1, . . . , xnq, one can look at the transformation

of the region R̂ back to a region R Ă D using the inverse transformation P´1. One can obtain

several different cross-sections of R by fixing two data points from x0, x1, x2 and allowing the

third to vary. The shaded regions in Figure 13(b)-(d) represent all the possible coordinates

the third data point could have such that the data set yields a unique inverse A when the

two other data points are fixed as shown.

In case of n “ 3, the conditions on y “ py1, y2, y3q
T are given in Appendix A.0.2 and the

region R̂ in y-space where all inequalities are satisfied is depicted in Figure 10. Just as in

the two-dimensional case, the region is simply connected and unbounded. If we substitute

y2 “ ´q1y
2
3 and y1 “ q2y

3
3, where q1 and q2 are new parameters, we can describe the region

using inequalities y3 ą 0, 0 ă q1 ă 1{3, ´27q3
2 ` p18q1 ´ 4qq2 ´ 4q3

1 ` q2
1 ą 0. The benefit

of the new parametrization (which can be introduced for arbitrary dimension) is that it

demonstrates that the region R̂ consists of curved rays that start at the origin and extend

to infinity.

There is an important remark we wish to make while discussing the companion matrix

associated with given data, concerning the problem of incomplete data. Since Φ̂ “ X´1
0 X1

and Φ̂ is determined by the eigenvalues of Φ, for any choice of such eigenvalues, i.e., for any

choice of Φ̂, there exists xn such that the data set d “ px0, x1, x2, . . . , xnq is compatible with

Φ̂, namely xn “ X0y. In other words, the knowledge of X0, i.e., the knowledge of the first n

data points x0, x1, . . . , xn´1 for an n-dimensional linear dynamical system, does not provide
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Figure 9: (a) Region R̂ in y-space for which Φ̂ P R2ˆ2 has two distinct positive eigenvalues

and hence Φ has a unique matrix logarithm, which solves the inverse problem. (b)-(d)

Regions in data space D for which Φ P R2ˆ2 has a unique matrix logarithm, obtained as

cross-sections of R formed by fixing two data points as shown. For example, in pbq, x1, x2

are fixed and the shaded region indicates where the coordinates of x0 can lie; note that pdq

is strongly related to Figure 13.

any information about the eigenvalues of that system. Thus, we cannot deduce from just n

data points whether the observed n-dimensional linear system is stable or unstable, whether

it is a node or spiral or saddle, or even whether the data are generated by a system with

a real parameter matrix. Figure 11 illustrates this point by showing trajectories of linear

dynamical systems (2.3) that all share an identical matrix X0 but differ widely in dynamical

properties. The same observation can be made about similar cases in which any one of the
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Figure 10: Region R̂ in y-space for which Φ̂ P R3ˆ3 has a unique matrix logarithm.

.

n` 1 data points x0, x1, x2, . . . , xn is missing.

3.4 ANALYSIS OF UNCERTAINTY IN THE DETERMINATION AND

CHARACTERIZATION OF INVERSE

Realistic data are never exact, but are subject to uncertainty caused by measurement error,

fluctuation in experimental conditions, or variability in experimental subjects. A natural

question arises as to how large an uncertainty in the data can be tolerated without altering

the properties of the solution to the inverse problem. Several scenarios are of interest; for

example,

• The data imply that the inverse system has a stable node. What is the largest uncertainty

in the data that ensures the maintained stability of the equilibrium for the inverse system?

What is the largest uncertainty that maintains the node property?

• The data imply that the inverse system has oscillations (damped or undamped). What

52



0 2 4 6 8 10

−4

−2

0

2

t

x

Stable node

0 2 4 6 8 10

−4

−2

0

2

t

x

Saddle

0 2 4 6 8 10

−4

−2

0

2

t

x

Stable Spiral

0 2 4 6 8 10

−4

−2

0

2

t

x

No Real Inverse

Figure 11: Trajectories of system (2.3) that share 5 data points in 5 dimensions need not

have the same dynamical behaviors. Each panel shows time courses of all 5 components

of system (2.3) with n “ 5 for a particular choice of parameter A. Within each panel,

each color represents a different component of the system, while the same components share

the same color across panels. Five points that are equally spaced in time, through which

the trajectories pass in all panels where trajectories exist, are marked with circles. The

next equally spaced point is labeled with a star; these points differ across panels and lead to

different properties of the inverse problem solution, including non-existence of real parameter

matrix for the data in the lower right panel.

is the largest uncertainty that maintains the oscillatory property of the system?

• The inverse does not exist for given data. What is the largest uncertainty for which we
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can still rule out the linear model?

The theory developed in Section 3.3 implies that all of the above criteria can be formulated as

conditions on the eigenvalues of the perturbed fundamental matrix. For example, a system

with a stable node still has a stable node under perturbation if and only if the eigenvalues of

the perturbed fundamental matrix remain real, positive, distinct, and smaller than 1. Thus,

in principle, we could construct algebraic constraints on the data similar to those given in

Section 3.3.2 to define regions of the data space in which data correspond to systems with

specific dynamical properties. Generalizing the examples of Section 3.3.3, however, reveals

that even in the case of a unique inverse in 4 dimensions, the algebraic constraints are very

complex. We will therefore focus instead on the scenario where a specific data set d is given

and derive bounds on the maximal perturbation of d for which a particular property of the

system is conserved.

Note that any affine transformation of the data preserves the eigenvalue structure and

hence the existence, uniqueness, and stability of the system with respect to the inverse prob-

lem. Thus, the data can be varied in a coordinated fashion to an arbitrary extent without

affecting qualitative properties of the inverse. Here, however, we focus on finding limits on un-

correlated perturbations of the data. Let Cpd, εq “
n
Ś

i“0

cpxi, εq where cpz, εq is a hypercube in

Rn with center z P Rn and side length 2ε, i.e., where cpz, εq “ tz̃ P Rn|max1ďjďn|z̃j ´ zj| ă εu

for zi denoting the components of the vector z. The definition of the neighborhood Cpd, εq

is chosen so that the parameter ε controls the maximum perturbation ∆x0,∆x1, . . . ,∆xn in

any component of the data x0, x1, . . . , xn, i.e., d̃ P Cpd, εq if and only if maxi,j|p∆xiqj| ă ε

where |p∆xiqj| “ px̃iqj ´ pxiqj. Neighborhood Cpd, εq of the data set d P D will be called

permissible for some qualitative property of the inverse of d (such as existence, uniqueness,

stability, and so on) if and only if that qualitative property is shared by inverses of all data

sets d̃ P Cpd, εq. The value ε ą 0 is called the maximal permissible uncertainty for some

qualitative property of the inverse of d if and only if Cpd, εq is a permissible neighborhood

of d for that property and Cpd, ε̃q is not a permissible neighborhood for that property for all

ε̃ ą ε.

We begin with an analytical and numerical description of the maximal permissible un-

certainty for existence and uniqueness of the inverse F´1pdq of d. The extension to other
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properties will be described in Section 3.4.4. We derive both lower and upper analytical

bounds on maximal permissible uncertainty, describe a numerical procedure for comput-

ing the bounds, and then compare the estimates with direct numerical results for several

examples.

3.4.1 Analytical lower bound

Consider a fixed data set d “ px0, x1, x2, . . . , xnq P D such that the associated matrix Φ “

X1X
´1
0 “ rx1 | . . . |xnsrx0 | . . . |xn´1s

´1 has n distinct positive eigenvalues. Thus, A “

F´1pdq is unique and there is a neighborhood of d for which uniqueness persists. For any

perturbed data set d̃ “ px̃0, x̃1, x̃2, . . . , x̃nq P D with x̃i “ xi ` ∆xi define the perturbed

data matrices X̃0 “ X0 `∆X0 “ rx0 | . . . |xn´1s ` r∆x0 | . . . |∆xn´1s and X̃1 “ X1 `∆X1

(analogously). Let Φ̃ “ X̃1X̃
´1
0 be the fundamental matrix of the perturbed data.

Let εU be the maximal permissible uncertainty in the data d to ensure the existence of a

unique inverse. By definition, for any perturbation of the data with maxi,j|p∆xiqj| ă εU the

matrix Φ̃ has a unique logarithm A, and for any ε̂ ą εU there exists a perturbation of the

data with εU ă maxi,j|p∆xiqj| ă ε̂ such that Φ̃ does not have a unique logarithm.

A lower bound εU on εU can be obtained by the following result, where ‖¨‖ denotes a

matrix norm that is either the maximum row sum norm ‖¨‖
8

or the maximum column sum

norm ‖¨‖1, defined as

‖A‖
8
“ max

1ďiďn

n
ÿ

j“1

|aij|, ‖A‖1 “ max
1ďjďn

n
ÿ

i“1

|aij|.

Theorem 30. Let d P D be such that Φ has n distinct positive eigenvalues λ1, . . . , λn. Let

m1 “
1
2

miniăj|λi ´ λj|, m2 “ min1ďiďntλiu ą 0, and δU “ mintm1,m2u. If ε ą 0 is such

that ε ď εU :“ fpδU, dq, where

fpδ, dq “
δ

n pδ ` 1` ‖Λ‖q ‖S´1‖‖X´1
0 S‖

, (3.2)

Φ “ SΛS´1, and Λ “ diagpλ1, . . . , λnq, then for any d̃ P Cpd, εq, Φ̃ has n distinct positive

eigenvalues and hence the equation eÃ “ Φ̃ has a unique solution Ã.
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The proof of Theorem 30 utilizes several preliminary results that we now present. The

first result and its proof make use of Theorems 6.1.1 (Gershgorin Disc Theorem) and 6.3.2

in [42] and the proofs presented therein.

Theorem 31. Let Φ P Rnˆn be diagonalizable with Φ “ SΛS´1 and Λ “ diagpλ1, . . . , λnq.

Let E P Rnˆn. If λ̃ is an eigenvalue of Φ` E, then λ̃ P D, where

D “

n
ď

i“1

Di, Di “ tz P C : |z ´ λi| ď ‖S´1ES‖u.

Furthermore, if λi are all distinct and the discs Di are pairwise disjoint, then each Di contains

exactly one eigenvalue of Φ` E.

Proof. By similarity, Φ ` E has the same eigenvalues as Λ ` S´1ES. Denote by eij the

elements of S´1ES. Then, by the Gershgorin Disc Theorem, the eigenvalues of Λ` S´1ES

are contained in the union of the discs

Qi “ tz P C : |z ´ pλi ` eiiq| ď
n
ÿ

j“1
j‰i

|eij|u.

Clearly, each disc Qi is contained in the disc

Pi “ tz P C : |z ´ λi| ď
n
ÿ

j“1

|eij|u.

Furthermore, in view of

n
ÿ

j“1

|eij| ď max
1ďiďn

n
ÿ

j“1

|eij| “ ‖S´1ES‖
8

each disc Pi is contained in the disc

Di “ tz P C : |z ´ λi| ď ‖S´1ES‖
8
u.

Thus, if λ̃ is an eigenvalue of Φ`E, then λ̃ P Qi Ď Pi Ď Di for some i and therefore, λ̃ P D.

The argument for the norm ‖¨‖1 is constructed in a similar fashion by replacing row sums

with column sums in the relations above.

If λi are all distinct and the sets Di are pairwise disjoint, then the discs Qi are pairwise

disjoint, and Gershgorin Disc Theorem implies that there is exactly one eigenvalue of Φ`E

in each Qi and hence each Di.
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Lemma 32. Suppose the eigenvalues λ1, . . . , λn of Φ are real, positive and distinct. Let

Φ “ SΛS´1 with Λ “ diagpλ1, . . . , λnq and let m1 “
1
2

miniăj|λi ´ λj|, m2 “ min1ďiďntλiu,

and δ “ mintm1,m2u. If ‖S´1ES‖ ă δ, then the eigenvalues of Φ`E are real, positive, and

distinct.

Proof. Suppose the eigenvalues λ1, . . . , λn of Φ are real, positive and distinct. Then Φ is

diagonalizable as Φ “ SΛS´1 with Λ “ diagpλ1, . . . , λnq. Let Ri be the disc

Ri “ tz P C : |z ´ λi| ď m1u

and Di be as in the statement of Theorem 31. Since ‖S´1ES‖ ă δ ď m1, it follows that

Di Ď Ri. The sets Ri are pairwise disjoint, by the definition of m1, so the sets Di are pairwise

disjoint and, by Theorem 31, each Di contains exactly one eigenvalue of Φ` E. The center

of Di is λi P R, so if Di were to contain a complex eigenvalue of Φ`E, it would also contain

its conjugate, which is a contradiction. Thus, the eigenvalues of Φ`E are real and distinct.

Furthermore, the inequality ‖S´1ES‖ ă δ ď m2 implies that Di Ď tz P C : |z´λi| ď m2u Ď

tz P C : Repzq ą 0u, and hence the eigenvalues of Φ` E are all positive.

Thus, to guarantee that the eigenvalues λ̃1, . . . , λ̃n of Φ̃ “ Φ ` E are real, positive, and

distinct, it suffices to choose the perturbation matrix E such that ‖S´1ES‖ ă δ. Theorem

30 provides a lower bound on the largest allowable perturbation of the data points such that

this condition holds.

Proof. (Theorem 30) Let d̃ P Cpd, εq and let Φ̃ be the associated fundamental matrix as

previously defined. Let E “ X̃1X̃
´1
0 ´ X1X

´1
0 . Applying the definitions of X̃0, X̃1 yields

EpX0`∆X0q “ pX1`∆X1q´ΦpX0`∆X0q, which implies that E “ ∆X1X
´1
0 `Φ∆X0X

´1
0 ´

E∆X0X
´1
0 and S´1ES “ S´1∆X1X

´1
0 S ` ΛS´1∆X0X

´1
0 S ´ S´1ESS´1∆X0X

´1
0 S. There-

fore,

‖S´1ES‖ ď ‖S
´1∆X1X

´1
0 S‖` ‖ΛS´1∆X0X

´1
0 S‖

1´ ‖S´1∆X0X
´1
0 S‖

.

After introducing ‖S´1∆X‖ :“ maxt‖S´1∆X0‖, ‖S´1∆X1‖u, we obtain the following bound

on ‖S´1ES‖ in terms of ‖S´1∆X‖ (provided that ‖S´1∆X‖‖X´1
0 S‖ ă 1):

‖S´1ES‖ ď ‖S
´1∆X‖p1` ‖Λ‖q‖X´1

0 S‖
1´ ‖S´1∆X‖‖X´1

0 S‖
. (3.3)
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Now, let

q “
δU

p1` ‖Λ‖q
` 1, ε̂ “ n‖S´1‖ε

and let ε be as in the statement of the theorem. It follows from ε ď εU that ε̂ ď q´1

q‖X´1
0 S‖ , or

equivalently 1
q
ď 1 ´ ε̂‖X´1

0 S‖. The condition d̃ P Cpd, εq implies that |p∆xiqj| ă ε for all

i P t1, . . . , nu, j P t0, . . . , nu, and so ‖S´1∆X‖ ď ‖S´1‖‖∆X‖ ď ε̂ (which holds for both

‖¨‖1 and ‖¨‖
8
q. Thus,

1

q
ă 1´ ‖S´1∆X‖‖X´1

0 S‖. (3.4)

Substitution of (3.4) into inequality (3.3) can be used to conclude that ‖S´1ES‖ ă δU. By

Lemma 32, Φ̃ has n distinct positive eigenvalues.

In the special case where the first n data points x0, . . . , xn´1 are fixed, we can obtain a

tighter bound on the size of ∆xn. We look for the largest uncertainty ε of the final data

point xn so that for any x̃n P cpxn, εq, d̃ “ px0, . . . , xn´1, x̃nq gives an associated Φ̃ with n

distinct positive eigenvalues. Fixing the first n data points implies that ∆X0 “ 0 and hence

E “ ∆X1X
´1
0 .

Theorem 33. Let d P D be such that Φ has n distinct positive eigenvalues, and let ε ą 0

satisfy

ε ă max

"

δ

‖S´1‖
8
‖X´1

0 S‖
8

,
δ

n‖S´1‖1‖X
´1
0 S‖1

*

.

Then for any d̃ “ px0, . . . , xn´1, x̃nq where x̃n P cpxn, εq, the associated matrix Φ̃ has n

distinct positive eigenvalues and hence the equation eÃ “ Φ̃ has a unique solution Ã.

Proof. Given fixed x0, . . . , xn´1 and x̃n P cpxn, εq, we have ‖∆X1‖8 “ ‖r0 ¨ ¨ ¨ 0 ∆xns‖8 “

max1ďjďn|p∆xnqj| ă ε, and ‖∆X1‖1 ă nε. If ‖X´1
0 S‖

8
ă n‖X´1

0 S‖1, then

‖S´1ES‖
8
ď ‖S´1∆X1‖8‖X

´1
0 S‖

8
ă ε‖S´1‖

8
‖X´1

0 S‖
8
ă δ.

In the opposite case,

‖S´1ES‖1 ď ‖S
´1∆X1‖1‖X

´1
0 S‖1 ă nε‖S´1‖‖X´1

0 S‖1 ă δ.

In both cases, by Lemma 32, Φ̃ “ Φ` E has n distinct positive eigenvalues.
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3.4.2 Analytical upper bound

To construct an upper bound on εU, we only need to provide a technique for constructing

a perturbation ∆x0,∆x1, . . . ,∆xn for which the corresponding matrix Φ̃ does not have n

distinct real positive eigenvalues. Naively, for any specified diagonal form Λ̃ of Φ̃, we can

choose an arbitrary set of eigenvectors S̃, compute Φ̃ “ S̃Λ̃S̃´1, choose the first data point x̃0,

compute the remaining data points as x̃k “ Φ̃kx̃0, and compute the error ε “ maxi,j|p∆xjqi|.

This procedure can be used to provide a valid upper bound on εU, but the resulting bound

will be too large to be useful. Instead, we suggest the following approach.

Let Φ̂ “ X´1
0 ΦX0 be the companion matrix defined in Section 3.3. The vector y (the

last column of Φ̂) is uniquely determined by the eigenvalues of Φ. Likewise, we can specify

ỹ of the companion matrix ˆ̃Φ “ pX̃0q
´1Φ̃X̃0 by prescribing the eigenvalues of Φ̃. The vector

ỹ satisfies the relation

ỹ “ pX̃0q
´1x̃n “ pX0 `∆X0q

´1
pxn `∆xnq,

which, using xn “ X0y, implies a formula for the perturbation of xn in terms of the pertur-

bation of all other data points:

∆xn “ ∆X0ỹ `X0pỹ ´ yq. (3.5)

This formula provides a linear constraint on the perturbation of the data in terms of the im-

posed eigenvalue properties (as represented by vector ỹ) that does not require the knowledge

of the eigenvector matrix S. Let Cpd, ε̃q be the smallest neighborhood of d that contains a

data set d̃ corresponding to a companion matrix defined by ỹ. In view of (3.5), the problem

of finding ε̃ can be reformulated as a linear programming problem of minimizing ε while

satisfying the constraints

wi “
n´1
ÿ

j“0

p∆xjqiỹj`1 ´ p∆xnqi 1 ď i ď n

´ε ď p∆xjqi ď ε 1 ď i ď n, 0 ď j ď n
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where w “ X0py ´ ỹq. The solution of this problem is given by

ε̃ “ max
i

|wi|
‖ỹ‖1 ` 1

“
‖X0py ´ ỹq‖8
‖ỹ‖1 ` 1

. (3.6)

Equation (3.6) can provide an upper bound εU on εU for any appropriate choice of ỹ; this

approach does not provide an explicit formula for the minimizer of the linear programming

problem, however.

If one desires an analytical upper bound together with an explicit formula for the per-

turbations ∆xi that realize this bound, one can use the inequality

εU ď min
∆X0

max
0ďjďn

t‖∆xj‖8u ď min
∆X0

maxt‖∆X0‖, ‖∆X0ỹ `X0pỹ ´ yq‖u (3.7)

where the matrix norm ‖¨‖ can be either ‖¨‖
8

or ‖¨‖1. Two crude estimates of (3.7) can

be obtained by putting ∆X0 “ 0, which implies εU ď ‖X0pỹ ´ yq‖ or by choosing ∆X0

such that ∆X0ỹ ` X0pỹ ´ yq “ 0 (for example as ∆X0 “ X0py ´ ỹqỹT {‖ỹ‖2
2) which yields

εU ď ‖X0py ´ ỹqỹT‖{‖ỹ‖2
2. A more refined approximation is then provided by the following

convex interpolation of the two crude estimates: ∆X0 “ αwỹT with 0 ď α ď ‖ỹ‖´2
2 and

w “ X0py ´ ỹq. An optimum in (3.7) is reached when

‖∆X0‖ “ ‖∆X0ỹ `X0pỹ ´ yq‖,

which implies

α‖wỹT‖ “ ‖w‖p1` α‖ỹ‖2
2q

and hence

α “
‖w‖

‖wỹT‖` ‖w‖‖ỹ‖2
2

.

An upper bound on εU is therefore provided by the quantity

εU “
‖X0py ´ ỹq‖‖X0py ´ ỹqỹ

T‖
‖X0py ´ ỹqỹT‖` ‖X0py ´ ỹq‖‖ỹ‖2

2

. (3.8)

The upper bound estimates given above, whether they are obtained as a solution of the

linear programming problem (3.6) or using (3.8), depend on the choice of ỹ, i.e., the choice of

eigenvalues of the perturbed matrix Φ̃. One can refine these bounds by further optimization

over all appropriate values of those eigenvalues.
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3.4.3 Numerical bound

In addition to finding analytical upper and lower bounds on the uncertainty of the data

using the techniques described above, one can also take a numerical approach to estimating

εU. For simplicity in representing the set Cpd, εq graphically, we will focus our discussion on

the case of a 2-dimensional system; however, the approach can be extended to n-dimensions.

Fix d “ px0, x1, x2q P pR
2q3. To estimate εU, we will discretize the surface of Cpd, εq and

examine whether each grid point yields a unique inverse. By gradually increasing ε we can

find the bound as the largest value of ε for which a grid point fails to give unique inverse.

In practice, we surround each data point xj with a collection Mj of points of equally spaced

along the edge of a square with center point xj and side length 2ε. Depending on the desired

precision, we choose Mj to consist of either 8, 16, or 32 grid points. Then, we pair any point
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Figure 12: Grid Mj surrounding a sample data point.

p0 P M0 with any points p1 P M1 and p2 P M2 to define the matrix Φ “ rp1 | p2srp0 | p1s
´1.

In accordance with Theorem 25, the eigenvalues of Φ will determine whether the solution to

Φ “ eA is unique.

3.4.4 Analytical bounds for additional properties

Using the results we have obtained so far, we can derive upper and lower bounds on the

uncertainty in data that preserves additional qualitative properties of the solution to the

inverse problem, as long as these properties can be defined as conditions on the eigenvalues of

the matrix Φ. For example, let d P D be such that Φ has n distinct real eigenvalues λ1, . . . , λn

satisfying 0 ă λj ă 1, j “ 1, . . . , n. Then, the associated matrix A (with Φ “ eA) has n
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distinct negative eigenvalues and hence the equilibrium is a stable node. Let εSN define the

maximal permissible uncertainty in the data d under which the equilibrium remains a stable

node. A lower bound on εSN can be obtained using the same argument as in Theorem 30,

except with the bound on maximum perturbation of eigenvalues, δU, replaced by the quantity

δSN that guarantees that the perturbed eigenvalues remain real, distinct, and between 0 and 1.

Below we present, without proofs, analytical lower bound statements analogous to Theorem

30 for the cases of a stable node and a stable system, as well as for the case in which we

require no solution to exist. We leave it to the reader to derive upper bounds using the line

of reasoning presented in Section 3.4.2.

Theorem 34. Let d P D be such that Φ has n distinct positive eigenvalues λ1, . . . , λn

satisfying 0 ă λj ă 1, j “ 1, . . . , n. Let m1 “
1
2

miniăj|λi ´ λj|, m2 “ min1ďjďntλju,

m3 “ min1ďjďnt1´ λju and δSN “ mintm1,m2,m3u. If ε ą 0 is such that ε ď εSN “ fpδSN, dq

with f as defined in (30), then for any d̃ P Cpd, εq, Φ̃ has n distinct positive eigenvalues λ̃j

with 0 ă λ̃j ă 1, j “ 1, . . . , n, and hence the equation eÃ “ Φ̃ has a unique matrix solution

Ã for which the origin of (2.3) is a stable node.

To guarantee stability of the equilibrium with respect to all inverse problem solutions

without demanding uniqueness of a solution, we require that d P D be such that the eigen-

values of Φ are not real negative and satisfy 0 ă |λj| ă 1, j “ 1, . . . , n. Then, the associated

matrix A (with Φ “ eA) has (possibly complex) eigenvalues with negative real part and thus

the equilibrium at the origin is stable. Let εS define the maximal permissible uncertainty in

the data d such that the equilibrium remains stable. A lower bound on εS is obtained in the

following result.

Theorem 35. Let d P D be such that the eigenvalues of Φ are not real negative and satisfy

0 ă |λj| ă 1, j “ 1, . . . , n. Let m1 “ min1ďjďnt1 ´ |λj|u, m2 “ minj|λj| for all j such that

Repλjq ą 0, m3 “ minj|Impλjq| for all j such that Repλjq ă 0 and δS “ mintm1,m2,m3u.

If ε ą 0 is such that ε ď εS “ fpδS, dq with f as defined in 30, then for any d̃ P Cpd, εq, the

eigenvalues of Φ̃ satisfy 0 ă |λ̃j| ă 1, j “ 1, . . . , n and are not real negative, and hence the

equation eÃ “ Φ̃ has a solution Ã and every such solution has all eigenvalues with negative

real part.
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Finally, it is interesting to consider the case of nonexistence of an inverse. In particular,

given data d for which a real inverse A does not exist, i.e., data that do not represent the

trajectory of any real linear system, what is the greatest amount of uncertainty for which

nonexistence of a real solution persists, and hence a linear model should not be considered

as a possible mechanism underlying the observed uncertain data? Let d P D be such that

Φ has at least one negative real eigenvalue of odd multiplicity, which implies that there is

no real matrix A such that Φ “ eA. Let εDNE define the maximal permissible uncertainty

in the data d under which the inverse problem will be guaranteed to remain without a real

solution. A lower bound on εDNE is obtained in the following result.

Theorem 36. Let d P D be such that Φ has at least one negative real eigenvalue of odd

multiplicity. Let the collection of such eigenvalues be denoted by λ1, . . . , λk, where λk is the

closest to zero. Let m1 “ max1ďiďkpminjpj‰iq
1
2
|λj ´λi|q, m2 “ |λk| and δDNE “ mintm1,m2u.

If ε ą 0 is such that ε ď εDNE “ fpδDNE, dq with f as defined in (30), then for any d̃ P Cpd, εq,

Φ̃ has at least one negative eigenvalue of odd multiplicity, and hence the equation eÃ “ Φ̃

has no real solution.

3.5 EXAMPLES FOR TWO-DIMENSIONAL SYSTEMS

In the case of two-dimensional linear systems, one can represent several of the previous results

in a more explicit fashion and extend upon stability results to encompass various classifi-

cations of the equilibrium. We present these extensions here, along with several numerical

examples that can be conveniently depicted in the phase plane.

3.5.1 Regions of existence and uniqueness of the inverse

The criteria in Theorems 24 and 25 are based on the Jordan structure of Φ, which for real

2 ˆ 2 matrices can only take a few different forms, and hence can be analyzed completely.

Utilizing the relationship between the eigenvalues of a matrix and its trace and determinant,

the criteria for existence and uniqueness of the matrix logarithm of Φ can be fully charac-
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terized by conditions on the trace and determinant of Φ which, in turn, can be expressed as

conditions on the data from which Φ is constructed. For notational simplicity, let D “ det Φ

and T “ tr Φ.

The analysis is based on the following straightforward corollaries of Culver’s theorems:

Corollary 37. Let Φ P R2ˆ2. There exists A P R2ˆ2 such that Φ “ eA if and only if D ‰ 0

and any of the following hold:

1. D ą 0, T ą 0, and T 2 ě 4D,

2. T 2 ă 4D,

3. Φ “ λI, with λ ă 0.

Corollary 38. Let Φ P R2ˆ2. There exists a unique A P R2ˆ2 such that Φ “ eA if and only

if T ą 0, T 2 ě 4D ą 0, and Φ ‰ λI for all λ P R.

The diagram in Figure 13(a) summarizes outcomes with respect to the existence and

uniqueness of A, based on the trace and determinant of Φ. The label DNE indicates that

0
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Non−Unique

DNE
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Figure 13: (a) Existence and uniqueness of matrix logarithm of Φ classified in terms of D

and T . (b) An example of how the existence and uniqueness of A depend on the coordinates

of x2, given fixed x0, x1.

in this region, the matrix logarithm results in complex matrices A, whereas we are only

interested in data resulting from systems with real parameters (A P R2ˆ2). Φ is singular on
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the red dashed line that cuts through the DNE region, and therefore no inverse A exists there.

The dotted green boundary represents the case where Φ has two real, negative eigenvalues

that are equal. Here, Φ is either a 2ˆ 2 Jordan block, in which case, A is a complex matrix,

or Φ is a negative scalar multiple of the identity matrix, in which case, A is non-unique and

a continuum of real matrices A exists [17]. The dashed blue boundary demarcates the case

where Φ has two real, positive eigenvalues that are equal. If Φ is a 2ˆ 2 Jordan block, then

A is unique, but if Φ is a positive scalar multiple of the identity, then Φ has multiple Jordan

blocks for a given eigenvalue and hence is non-unique.

Let us now focus on data d “ px0, x1, x2q P D, where x0, x1, x2 P R2 are three data points

spaced uniformly in time along the trajectory of the system. LetX0 “ rx0 |x1s, X1 “ rx1 |x2s,

and X̂ “ rx0 |x2s. The following two theorems summarize the results obtained above as well

as those covering the case in which X0 is not invertible.

Theorem 39. There exists a 2-dimensional system (2.3) for which the solution map gives

the data x0, x1, x2 spaced uniformly in time if and only if any of the following conditions

hold:

1. det X0 ‰ 0, det X1{ det X0 ą 0, det X̂{ det X0 ą 0, and pdet X̂q2 ě 4 detX1 detX0,

2. det X0 ‰ 0 and pdet X̂q2 ă 4 det X1 det X0,

3. det X0 ‰ 0 and X1 “ λX0 with λ ă 0,

4. x2 “ λx1 “ λ2x0, with λ ‰ 0.

Theorem 40. There exists a unique 2-dimensional system (2.3) for which the solution map

gives the data x0, x1, x2 spaced uniformly in time if and only if

det X0 ‰ 0, det X̂{ det X0 ą 0,

pdet X̂q2 ě 4 det X1 det X0 ą 0, and X1 ‰ λX0 for all λ ‰ 0.

The conditions defined in Theorems 39 and 40 define regions in 6-dimensional data space

in which the inverse A exists or exists and is unique. By fixing two of the data points, one

can visualize two-dimensional cross-sections of these regions defined by conditions on the

third data point. Figure 13(b) shows the outcomes associated with different regions where

x2 can be located, given example locations of x0 and x1. The label DNE indicates that for
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x2 in this region, the matrix logarithm results in complex matrices A, which means there is

no real 2-dimensional system (2.3) that gives the data x0, x1, x2.

3.5.2 Classifying the equilibrium point associated with the inverse

Theorems 39 and 40 give results on the existence and uniqueness of A based on the data.

Once we know that a real matrix A exists, additional conditions on the data may be found

that define certain important properties of the system. The classification of the equilibrium

point at the origin is easily determined by eigenvalues of A and hence can be transformed

into conditions on the data. The conditions on the classification of A in terms of properties

of Φ “ eA are given by the following statement, where again, D “ det Φ and T “ tr Φ:

Theorem 41. The equilibrium point x “ 0 of system (2.3) with matrix A P R2ˆ2 is

1. a stable node, if T ą 0, T 2 ą 4D ą 0, and 1 ą D ą T ´ 1.

2. an unstable node, if T ą 0 and T 2 ą 4D ą 4pT ´ 1q.

3. a saddle, if T ´ 1 ą D ą 0.

4. a stable spiral, if T 2 ă 4D ă 4.

5. an unstable spiral, if T 2 ă 4D and D ą 1.

6. a center, if D “ 1 and T 2 ă 4.

The region in Figure 13(a) where A is unique contains all of the systems where the

equilibrium point is a saddle or node and the region corresponding to a non-unique A contains

all of the systems where the equilibrium point is a spiral or a center (with stars on the

boundary between uniqueness and non-uniqueness). The regions described in Theorem 41

are depicted in Figure 14(a). Note that although the theorem as stated translates conditions

on A into conditions on Φ, the partitioning it provides can also be used to determine the

classification of x “ 0 for any A derived as the logarithm of a given Φ.

As in the case of Theorems 39 and 40, the conditions of Theorem 41 can be converted

to conditions on the data x0, x1, x2 P R2. Such conditions were used to construct Figure

14 (b), which describes regions in which the placement of x2, given fixed locations of x0

and x1, yields a system with a particular type of equilibrium and corresponding asymptotic

behavior. Note that, consistent with Figure 14, when data lies in the region where it uniquely
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specifies A, the equilibrium of the resulting system is a saddle or a node, while data that

gives non-unique real A yields spirals and centers.
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Figure 14: (a) Classification of the origin for (2.3) with A such that Φ “ eA, depicted in

terms of conditions on D “ det Φ and T “ tr Φ. Solid lines form boundaries between regions;

dashed lines do not. Note that the origin is a center for (2.3) on the solid line separating

stable and unstable spirals. (b) Conditions on the position of x2 to give dynamical systems

with specified equilibrium point types when x0 and x1 are fixed. Solid lines form boundaries

between regions; dashed lines do not.

3.5.3 Bounds on maximal permissible uncertainty

In this section we will illustrate the dependence of the maximal permissible uncertainty on

the data and the property being maintained.

Example 1. Differences between analytical bounds and numerical estimates of maximal

permissible uncertainty. Let d “ px0, x1, x2q “
`

p10, 2qT , p6.065,´4.44qT , p7,´10qT
˘

, which

are points that are equally spaced in time on a trajectory of the system (2.3) with

A “

»

–

´0.6724 ´0.7201

´0.8610 ´0.0244

fi

fl .

Since Φ “ eA has two distinct positive eigenvalues, A is the unique matrix that yields

the data d. For this data set, the direct numerical estimate of the maximum permissible
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uncertainty for uniqueness is ε̃U “ 1.075. The analytical lower bounds on εU are substantially

smaller than the numerical bound, namely ε8U “ 0.083 and ε1U “ 0.149 (where ε8U is found by

applying the norm ‖¨‖
8

and ε1U by using the norm ‖¨‖1 in Theorem 30).

The analytical upper bound depends on the choice of eigenvalues for the perturbed

matrix Φ̃. Using (3.8) and choosing a perturbed matrix with one zero eigenvalue and the

second eigenvalue equal to the average of eigenvalues of Φ yields the upper bound εU “ 1.245.

Optimization over the value of the second eigenvalue yields a better estimate εU “ 1.078,

which is essentially identical to the numerical upper bound. Choosing a perturbed matrix

with identical eigenvalues equal to the average of eigenvalues of Φ leads to εU “ 1.841 and

optimization over the position of the double eigenvalue gives the upper bound εU “ 1.570.

Using the linear programming estimate of (3.6) gives the same bounds as the zero eigenvalue

choice of perturbation. Choosing a perturbed matrix with identical eigenvalues equal to the

average of eigenvalues of Φ and solving (3.8) yields εU “ 1.224 and optimization over the

position of the double eigenvalue gives εU “ 1.140. A summary of the optimal bounds is

given in the second column of Table 1.

Example 2. Dependence of maximal permissible uncertainty on x2. As in Example 1,

let x0 “ p10, 2qT , x1 “ p6.065,´4.44qT . Theorem 41 defines regions in R2 that specify the

nature of the equilibrium based on the location of the last data point x2. The boundaries of

the regions are shown in Figure 15(a). We select a sample point x2 from each labeled region,

and in each case, we compute various estimates of the maximal permissible uncertainty ε

to preserve the corresponding property. We depict each uncertainty by outlining in 15(b)

the square-shaped sets cpx0, εq, cpx1, εq, and cpx2, εq in the phase plane R2, which can be

interpreted as follows: given any x̃0 P cpx0, εq, x̃1 P cpx1, εq, and x̃2 P cpx2, εq, the matrix A

that yields the data d “ px̃0, x̃1, x̃2q has the appropriate property. Table 1 summarizes the

location of x2, the property being preserved, and the best estimate of ε in each case. As can

be seen in Figure 15, it appears that the proximity of x2 to the boundary of the region in

which the desired property holds impacts the size of the resulting ε.

Example 3. Dependence of maximal permissible uncertainty on the choice of solution

property. Consider the data set d with x0, x1 as in Examples 1 and 2 and with fixed x2 “

p3.6,´4.3qT , corresponding to a dynamical system with a stable node at the origin. The
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Figure 15: Numerical estimates of bounds ε associated with various inverse problem proper-

ties for data set in which x0 and x1 are fixed while x2 is varied. (a) Regions where particular

properties hold along with locations of x2 used in the estimates. (b) Squares depict the

numerically obtained bounds on the uncertainty allowed to preserve stable node (red), sta-

bility (cyan), uniqueness (blue), and nonexistence (green) properties. Coordinates of x2 and

numerical values of the bounds are listed in Table 1.

maximal permissible uncertainty of the data depends on what property we require to be

preserved. In this case we can choose between uniqueness, the stable node property, or

stability. If we want to guarantee a unique solution to the inverse problem, we find that

ε̃U “ 0.072. This is quite small due to the proximity of x2 to the border of the stable spiral

region where A is non-unique, as seen in Figure 16(a). Note that cpx2, ε̃Uq does not extend

all the way out to the boundary of the stable spiral region, because these boundary lines

are derived with x0 and x1 fixed, but we allow uncertainty in all three data points. For

preservation of the stable node property, we observe that in this case ε̃SN “ ε̃U; however, this

relation does not hold universally. It would not be true, for example, if x2 were located within
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Table 1: Best Estimates of εX, X P t SN, U, S, DNE u, for Example 2

Property (X) Stable Node (SN) Unique (U) Stable (S) Nonexistence (DNE)

x2 p3.68,´3.46q p7,´10q p3.1,´5.5q p3, 6q

ε̃X Numerical estimate 0.216 1.075 0.519 3.055

εX by Theorem 30 0.059 0.149 0.207 0.609

εX by (3.6) 0.217˚ 1.078: 0.519; 3.059#

εX by (3.8) 0.251˚ 1.078: 0.665; 3.683:

˚λ1 “ λ2, :λ1 “ 0, ;λ2 “ 1, #λ2 Ñ8

the stable node region but closer to the saddle region where A is unique (e.g., see Example

4 below). If we want to ensure that the data lie on a trajectory that converges to the origin

(i.e., preserve the stability of the system), we find that the maximal permissible uncertainty

is ε̃S “ 0.647, which is significantly larger than ε̃U. Thus we can guarantee stability for

larger uncertainty in the data than what is needed to preserve the uniqueness of solutions.

Figure 16(a) depicts the data in the phase plane and the numerically computed maximal

permissible uncertainties for the uniqueness, stable node, and stability properties. Within

the set Cpd, ε̃Sq, any choice of data will lie on a stable trajectory, however, the uniqueness

of the inverse problem may not be preserved. In 16(b) we illustrate two different data sets

contained in Cpd, ε̃Sq; one data set on a stable node trajectory (red), corresponding to a

unique A, and a second data set belonging to a stable spiral trajectory (blue), where A is

not unique.

Example 4. Dependence of maximal permissible uncertainty on the choice of solution

property. Consider the data set d with x0, x1 as in Examples 1-3 and with x2 “ p5,´5.6qT ,

which corresponds to a stable node equilibrium. Again, the maximal permissible uncertainty

of the data depends on what property we require to be preserved. Here we find that ε̃SN “
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Figure 16: (a) Numerical estimates, ε̃U “ ε̃SN (red), and ε̃S (cyan) for data depicted. (b)

Stable node trajectory (red) that passes through the data d at equally spaced time points

and stable spiral trajectory (blue) through perturbed data d̃ “ px0, x1, p3.1,´4.3qT q where

d̃ P Cpd, ε̃Sq but d̃ R Cpd, ε̃Uq.

ε̃S “ 0.091. If we relax the constraint that A be a stable node, and just require that it is

unique, then unlike the previous example, we find a larger maximal permissible uncertainty,

ε̃U “ 0.487. The data d and the numerically computed ε̃SN “ ε̃S and ε̃U are pictured in

the phase plane in Figure 17(a). Any data set d̃ P Cpd, ε̃Uq will be generated by a unique

A; however, we find that the trajectories on which the data lie may have vastly different

behavior. For example, d as previously defined and d̃ “ px0, x1, p5.4,´5.6qT q both belong to

Cpd, ε̃Uq; however, d lies on a trajectory converging to the origin and d̃ belongs to an unstable

trajectory as shown in Figure 17(b).

Example 5. Analytical lower bound for uncertainty in the last data point. Now consider
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Figure 17: (a) Numerical estimates ε̃S,“ ε̃SN (red) and ε̃U (blue) for the data depicted. (b)

Stable trajectory (red) through the data d and unstable trajectory (blue) through perturbed

data d̃ P Cpd, εUq.

the case where the data points x0 and x1 are fixed at the same values as in Examples 1-4 and

we seek to find the maximum uncertainty εU allowed in the last data point x2 such that for

any x̃2 P cpx2, εUq, there is a unique A that gives the data d̃ “ px0, x1, x̃2q at equally spaced

time points. Let x2 “ p3.679,´3.459qT . We find the numerical estimate ε̃U “ 0.423 and the

analytical estimates ε1U “ 0.07 and ε8U “ 0.187 (using Theorem 33). In this case, the difference

between the numerical and analytical lower bounds is much improved from Example 1, and

the lower bound, which is the only easily computable bound in higher dimensions, becomes

quite useful. Pictured in Figure 18 are the boundaries of the sets cpx2, ε̃Uq (red) and cpx2, ε
8
U q

(green) along with the functions dividing the plane into regions where x2 may lie such that

the parameter A that produces that data is unique or non-unique. As expected, we observe

that cpx2, ε̃Uq and cpx2, ε
8
U q are contained in the region corresponding to a unique A.
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Figure 18: The square regions surrounding the data point x2 represent numerical (red) and

analytical (green)

estimates of the maximum uncertainty in that data point that allows for a unique inverse.

3.6 REMARK ON NONUNIFORM SPACING OF DATA

In the results presented so far we have assumed that the data available about the system (2.3)

were spaced uniformly in time, i.e., that d contains the data points x0, x1, x2, . . . , xn P Rn

where xj “ xpj;A, bq “ eAjb. In this section we shall make few remarks on how the results

can be extended to the case in which data are spaced non-uniformly, with the restriction

that the sampling times are still integer multiples of some ∆t, assumed without loss of

generality to be equal to 1. Such situations occur frequently for medical data, which are

usually collected more frequently during the early course of a disease and less frequently

during recovery.

The following lemma relates the eigenvalues of Φ “ eA to the data d “ pxj0 , xj1 , xj2 , . . . , xjnq:

Lemma 42. Assume that for i “ 0, . . . , n, xji “ Φjib where ji are integers such that 0 “

j0 ă j1 ă ¨ ¨ ¨ ă jn. Let X0 “ rxj0 | . . . |xjn´1s and assume that X0 is invertible and Φ is
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nonsingular. Let y “ X´1
0 xjn be a vector with entries y1, y2, ..., yn. Then λ is an eigenvalue

of Φ only if λ is a root of the polynomial

λjn ´ ynλ
jn´1 ´ ¨ ¨ ¨ ´ y2λ

j1 ´ y1 “ 0. (3.9)

Proof. Since y “ X´1
0 xjn , it follows that xjn “ X0y, i.e.,

Φjnb “
n´1
ÿ

i“0

yi`1Φjib. (3.10)

The assumption that X0 is invertible is equivalent to the statement that the vectors txjiu
n´1
i“0

are not confined to a proper subspace of Rn and hence, if xji “ Φjib “ eAjib, b is not

confined to a proper Φ-invariant subspace of Rn. Thus b, when decomposed in the basis of

ordinary and generalized eigenvectors of Φ, has a nonzero component along the ordinary or

generalized eigenvector for every eigenvalue of Φ. Let v be the eigenvector corresponding to

the eigenvalue λ of Φ. If b has a nonzero component along v, then (3.10) implies that

λjnv “
n´1
ÿ

i“0

yi`1λ
jiv,

which proves the statement. If the component of b along v is zero but b has a nonzero

component along u such that pA´λIqk´1u ‰ 0 and pA´λIqku “ 0, then (3.10) implies that

λjn`ku “
n´1
ÿ

i“0

yi`1λ
ji`ku,

which for nonzero λ reduces to the previous case.
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Lemma 42 is employed in solving the inverse problem as follows: First, the vector y is

computed from the data d “ pxj0 , xj1 , xj2 , . . . , xjnq. Second, all roots of the polynomial (3.9)

are found using numerical techniques. Third, a combination of n distinct roots is chosen from

the collection of roots. Fourth, the companion matrix Φ̂ of Φ is formed from the chosen roots

and a set of vectors zji , i “ 0, 1, ..., n´1 is computed by taking z0 “ e1 and zji`1
“ Φ̂ji`1´jizji .

Finally, the matrix Φ is found as Φ “ P´1Φ̂P where P is the (unique) n ˆ n matrix such

that Pxji “ zji for i “ 0, 1, ..., n´ 1.

The procedure outlined above can find any matrix Φ that is robust, in the sense of

Corollaries (27)-(29). The condition that X0 be invertible (i.e., b not be confined to a proper

Φ-invariant subspace) is essential for identifiability of Φ, as we have already observed in

Chapter 2 for the special case of ji “ i. If the indices ji differ by more than 1 then the

polynomial (3.9) has more roots than the matrix Φ has eigenvalues. Arbitrary combinations

of such roots will lead to different alternative matrices Φ and hence to non-uniqueness of

solutions of the inverse problem. By an appropriate choice of the roots that make up the

eigenvalues of Φ, one may be able to control the properties of the matrix Φ and, in turn,

the existence, uniqueness, and stability properties of the parameter matrix A of the system

(2.3).

3.7 DISCUSSION

We have analyzed the inverse problem for linear dynamical systems, i.e., the problem of find-

ing the value of the parameter matrix for which a linear system generates a given discrete

data set consisting of points equally spaced in time on a single trajectory. Our results estab-

lish regions in data space that give solutions with particular properties, such as uniqueness

or stability, and give bounds on the maximal allowable uncertainty in the data set that can

be tolerated while maintaining these characteristics.

Three types of bounds on uncertainties are presented: analytical lower bounds, below

which properties are guaranteed to hold for all perturbations of data; analytical upper

bounds, which provide proven perturbations of data for which properties are guaranteed
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to be lost; and numerical bounds, derived from direct sampling of data points. Our results

indicate that the upper bounds, when optimized over all potential eigenvalues, provide ex-

cellent agreement with the numerical estimates The numerical methods are hypothetically

applicable to systems of arbitrary size; however, the combinatorial problem of pairing to-

gether all possible data points along grid points can pose a challenge as the dimension of

the system increases. Similarly, the computation of the analytical upper bound (via (3.6)

or (3.8)) requires optimization that becomes computationally expensive for larger systems.

Although the analytical lower bound significantly underestimates the maximal permissible

uncertainty, it provides a bound that is immediately accessible for systems of higher dimen-

sion, without increased computation. Since we focused on the derivation of these bounds,

the question of how these bounds scale with system size remains open for future investiga-

tion. Furthermore, in this work, we have considered only random perturbations of the data

matrix Φ. Due to the special construction of the matrix Φ, it may be possible to improve

the analytical lower bound by considering structured matrix perturbations. Many results

have been established concerning the bounds on eigenvalues for structured perturbations of

matrices [42, 39] that may prove useful in this effort.

A variety of earlier works considered identification of linear systems or parameter matrices

from discrete data. Allen and Pruess proposed a method for approximating A in system

(2.3) from a discrete collection of data points [2]. Their approach begins by defining an

approximating function for the data (e.g., a cubic spline approximation), and they use equally

spaced points along this curve to compute a matrix Â that approximates the true parameter

matrix A. A key distinction between their work and the initial analysis presented here is

that they use points on an approximation of the trajectory, while we assume that the data

represent exact points on the actual trajectory; their results also do not treat uncertainty in

data.

In other past work, Singer and Spilerman investigated the problem of identifying the

matrix Q in the Markov model P 1 “ QP where P and Q are n ˆ n matrices [73]. They

derive conditions for P “ eQ to have a unique solution. Their results are consistent with the

findings of Culver, but with additional constraints to account for the requirement that the

model is a continuous time Markov structure. They additionally comment on the case of
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identifying Q from noisy observations and suggest exploring in a neighborhood of P in order

to detect non-uniqueness of the matrix logarithm through observations on the eigenvalues of

the matrices in this neighborhood.

It is of interest to note that much work has been done in determining the maximal

allowable uncertainty in the parameter matrix A such that the solution to (2.3) remains

stable [39]. This well known bound is called the stability radius. In our investigation of the

inverse problem, εS has an analogous meaning, but we quantify the uncertainty in the data

space rather than in parameter space.

Our results also include bounds on regions of data space where the inverse problem

cannot be solved. The utility of such results is that they can provide an approach for model

rejection. That is, suppose we have a data set d acquired from measurements of some physical

phenomenon that we believe can be modeled with a linear system of differential equations.

Perhaps it is known that the measurement error for any data point xi is approximately given

by ε. If we find that there is no real matrix A that yields the collected data d and further

find that εDNE ą ε, then we can conclude with certainty that the data cannot come from a

system that can be modeled with a linear system of differential equations, and thus we can

reject the linear model.

Our work is also related to the important problem of determining identifiability in pa-

rameter estimation. The connection to identifiability is apparent if we consider the set in

parameter space defined by F´1pCpd, εUqq. On this set we have that F´1pd1q ‰ F´1pd2q im-

plies d1 ‰ d2 P Cpd, εUq, which is to say that two distinct parameter sets must yield distinct

data. So, F´1pCpd, εUqq defines a set in parameter space on which the model is identifiable.

In the next chapter, important aspects of parameter estimation from a collection of single

trajectory data will be investigated. In this practical setting, we will study improvements to

Monte Carlo techniques used in Bayesian parameter estimation.
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4.0 THE JACOBIAN PRIOR IMPROVES PARAMETER ESTIMATION

WITH THE METROPOLIS-HASTINGS ALGORITHM

4.1 INTRODUCTION

Once a model structure is fixed and experimental data is collected, the problem of determin-

ing the unknown model parameters must be confronted. In a Bayesian inference approach to

parameter estimation, a posterior distribution of parameters which describes the probability

of a parameter governing the system given the available data, is sought. Markov chain Monte

Carlo methods provide a means to sample this distribution. One widely used computational

method which employs this approach is the Metropolis-Hastings algorithm. Implementation

of this algorithm for Bayesian parameter estimation requires the prescription of a prior den-

sity of parameters, which reflects any previously known information about the parameters.

The choice of a prior may greatly impact the posterior obtained from the algorithm and has

been a topic of debate among practitioners [10, 32, 68, 74]. In this chapter, we introduce

a new informative prior which does not rely on previous information about the parameters

alone, but exploits knowledge of the fixed model structure.

The presentation of the chapter is as follows: In the first section, the notation for the

models of interest and other important constructs that will be used in this chapter are

defined. In Section 4.2.2, background on Bayesian inference for parameter estimation is dis-

cussed, followed by an introduction to the Metropolis-Hastings algorithm. In Section 4.3,

we present the theoretical derivation of the Jacobian prior. We then work to systemati-

cally analyze the accuracy of the posteriors obtained using this newly proposed prior in the

Metropolis-Hastings algorithm. In Section 4.4.1, the known solution to systems of linear dif-

ferential equations is exploited and the analysis of Chapter 3 is utilized in order to define the
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parameter density explicitly. This provides the exact solution to the parameter estimation

problem as a means for comparison to the posteriors obtained from the Metropolis-Hastings

algorithm. Two different systematic approaches for analyzing the accuracy of the posteriors

are presented. Through a series of several examples, we find that using the Jacobian prior

results in posteriors that closely match the parameter density and frequently yields more ac-

curate results than with other commonly used priors. In Section 4.4.2, we conduct a similar

analysis of comparison between the parameter density and the computed posteriors, instead

for a nonlinear system of differential equations. The chapter concludes with a discussion in

Section 4.5.

4.2 PRELIMINARIES

4.2.1 Model and notation

The model of interest is formulated as an initial-value problem for a system of ordinary

differential equations,

9xptq “ gpxptq,Λq

xp0q “ b.
(4.1)

In equation (4.1), xptq P Rn is the state of the system at time t, Λ is a vector of parameters,

and b P Rn is the initial condition. The initial condition or a subset of its components may

be unknown and thus considered as parameters. Then, the model parameters, denoted by

a P Rp, is a vector comprised of Λ and any parameter elements of b. For notational simplicity,

the parameter space will be called A.

We shall assume that model (4.1) is well posed and the solution (or trajectory), denoted

by xpt; Λ, bq, is unique for all Λ and b. We assume that data for all of the state variables is

available and denote by Y , the data space consisting of a set of m-tuples y “ px1, x2, . . . , xmq

of points xj P Rn, representing observations of the system at times t1, t2, . . . tm. Observations

of the trajectory xpt; Λ, bq at times t1, t2, . . . , tm yields an element of Y , namely an m-tuple

of points xj “ xptj; Λ, bq P Rn, j “ 1, . . . ,m. In this work, we will require p “ nm. The
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term solution map will refer to the map F : A Ñ Y from parameter space to data space,

defined as F paq “ px1, x2, . . . , xmq “ y for a choice of txju sampled from xpt; Λ, bq.

Y will denote the available data for the system which will be used in the inverse problem

of determining the model parameters. In the case of a collection of single trajectory data,

Y “ ty1, y2, . . . yNu with yj P Y may represent N repeated observations of the system or

N subjects from which experimental measurements are drawn. Alternatively, Y may be

provided as a set of mean values tx̄1, . . . , x̄mu and standard deviations tσ1, . . . σmu, or in an

idealized setting, Y may be a density on the data space, denoted by Y “ ηpyq.

A number of approaches have been developed for parameter estimation of differential

equation models. In traditional parameter fitting techniques, a cost function, which quanti-

fies the agreement between the measured data and the model predicted values of the output,

is constructed. For example, if the data Y are assumed to be normally distributed random

variables with mean values tx̄1, . . . , x̄mu and standard deviations tσ1, . . . σmu, then the cost

function may be represented as a sum of squared residuals between the measured data and

the model trajectory:

Epa, Y q “
ÿ

i

ÿ

j

pxjpti, aq ´ x̄i,jq
2

2σ2
i,j

.

The solution to the parameter estimation problem is the parameter a˚ which minimizes

the cost function. The vector a˚ is called the maximum likelihood estimate of the parame-

ters. One commonly employed algorithm for minimizing the cost function is the Levenberg-

Marquardt scheme [51].

Another parameter estimation approach is the multiple shooting algorithm. In this

method, the initial value problem is converted to multiple boundary value problems that

are solved for segments of the full trajectory [12, 85]. This method is particularly useful for

stiff or chaotic systems. Another popular approach is the Kalman filter technique. Here,

a recursive algorithm updates the parameters by minimizing the discrepancy between the

model predicted output and the data as successive data points are incorporated [49]. There

are several variations and extensions of the Kalman filter for nonlinear systems [87].

Each of the methods discussed above produces a single parameter vector as the solution

to the inverse problem. Alternatively, probabilistic approaches, such as Bayesian inference,

output a distribution of parameters rather than a unique set of parameters. Such an approach
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may be especially relevant in biological modeling. In this setting, the model parameters may

represent biological quantities that naturally vary from individual to individual. In this

case, the parameter distribution represents parameter variability between individuals in a

population. Together, the parameter distribution and the system of differential equations

form a collection of models often referred to as an ensemble. A discussion of ensemble

modeling for biological systems may be found in [77]. The objective is then to find the best

approximation to the density ρpaq that describes the parameter distribution.

4.2.2 Bayesian inference for parameter estimation

In a Bayesian inference approach to parameter estimation, one aims to approximate the

parameter density ρpaq with a posterior density ρpa|Y q, which makes use of the available

data. Given a fixed model structure and the data Y , the posterior density of the parameters

ρpa|Y q quantifies the probability that the system is governed by the parameters a given

the data Y . Fundamental theory of Bayesian inference and its applications to parameter

estimation are discussed in [33, 74]. Bayes’ Theorem provides a crucial relation between the

unknown posterior density and a known likelihood function LpY |aq and prior density πpaq.

Bayes’ Theorem: ρpa|Y q “
LpY |aqπpaq

ş

LpY |aqπpaqda
. (4.2)

The likelihood function LpY |aq quantifies the deviation of the model with parameters a from

the available data, Y . The function LpY |aq (with a as the dependent variable and Y fixed)

is defined by the statistical model of the data (where the error comes from and what is the

distribution of the error). For example, suppose the data observations xi are assumed to be

normally distributed random variables, and Y is provided as a set of mean observation values

tx̄1, . . . , x̄mu and standard deviations tσ1, . . . σmu. If the errors in the data measurements

are independent and identically distributed, then the likelihood function can be defined as

LpY |aq “
ź

i

Lipx̄i|aq

where,

Lipx̄i|aq “
ź

j

1

σi,j
?

2π
e
´
pxjpti;aq´x̄i,jq

2

2σi,j
2

.
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Alternatively, in an idealized setting, the data Y could be given as a density function ηpyq.

The solution to model (4.1) is unique and due to the absence of error in the forward model

solution, it holds that the likelihood can be defined as Lpη|aq “ ηpF paqq ([79], page 35).

Several other likelihood functions may be defined based upon properties of the data available,

for example by taking into account covariances in the data. Thoughtful selection of the

likelihood function is important because the data informs the posterior only through the

likelihood.

The prior density πpaq reflects any information that is known about the parameters before

data is considered. This information may include bounds on the values of the parameters

which are obtained from literature (e.g. biological experiments) or from qualitative analysis

of the system (e.g. analysis of existence and stability of equilibria).

A noninformative prior (also commonly referred to as an objective or flat prior) may be

used when no information about the parameter values is known. This prior is flat relative to

the likelihood, thus minimizing its impact on the posterior distribution. A uniform density

posed on the support of the parameters is a commonly used noninformative prior [74]; for

example πpaq “ χ
r0,8q

paq is a uniform prior density for a positive parameter (this is an

improper prior because its integral is infinite). Jeffreys prior is an objective prior based

on the Fisher information matrix [45]. This prior does not vary much over the region in

which the likelihood is significant and does not take on large values outside that range, thus

satisfying the local uniformity property [29]. It also has the property of scale invariance,

meaning that it is invariant under reparameterization by injective transformations. An

informative prior can be used when characteristics of the parameters are known a priori.

Unlike noninformative priors, this prior is not dominated by the likelihood.

The choice of a prior is a topic of debate among practitioners of Bayesian inference

[10, 32, 68, 74]. The possible dangers of employing an informative prior are illustrated by

Smith in [74]. He shows that a poorly chosen informative prior can degrade the accuracy of

the posterior far more than an objective prior and recommends that unless good previous

information is known, an objective prior should be used. This chapter represents a contri-

bution to the investigation of prior density selection by introducing a new informative prior

which is specifically relevant for Bayesian inference in the setting of parameter estimation.
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4.2.3 Metropolis-Hastings algorithm

In practice, a sample of the posterior density ρpa|Y q can be obtained using Markov chain

Monte Carlo (MCMC) techniques. In the setting of Bayesian inference, the Metropolis-

Hastings algorithm constructs a Markov chain a1, a2, . . . , aM with the posterior density as

its limiting distribution [35, 61]. This approach to parameter estimation is widely used in

practice and the Metropolis-Hastings algorithm has been referred to as one of the top ten

algorithms of the twentieth century [74]. Accessible introductions to the algorithm can be

found, for example, in [74, 81]. In each iteration of the algorithm, ρpâ|Y q will be computed

using Theorem 4.2 with the normalization constant omitted, as will be discussed below.

Given the model (4.1) and the available data Y , the algorithm is formulated as follows:

1. Choose an initial parameter value a1 satisfying ρpa1|Y q ą 0.

2. For k “ 1, . . .M ,

(i) Propose a new parameter value â from a proposal (jumping) distribution qpâ|akq.

(ii) Using â, solve the ODE system (4.1) and compute ρpâ|Y q “ LpY |âqπpâq.

(iii) Set

ak`1
“

$

&

%

â , with probability min
!

1, ρpâ|Y qqpak|âq
ρpak|Y qqpâ|akq

)

pâ acceptedq

ak, otherwise pâ rejectedq.

The proposal distribution q for selecting â is based only on the previous parameter ak, thus

creating a Markov process. In the case that q is symmetric, it follows that qpak|âq “ qpâ|akq

and the probability of accepting â as ak`1 in step 2(iii) simplifies to

min

"

1,
ρpâ|Y q

ρpak|Y q

*

.

The variance of the proposal distribution greatly influences the exploration in parameter

space. Large variance may cause most of the proposals to be rejected due to small likelihoods,

thus the resulting chain remains stationary for many iterations. If the variance is chosen to

be too small, the acceptance ratio will be high, but the exploration of the parameter space

will be slow. Additionally, estimating an anisotropic posterior using an isotropic proposal

distribution will decrease the efficiency of the exploration of the space [74]. It is recommended

83



that the variance of the proposal distribution should be chosen so that on average, 25% of

the proposals are accepted [77].

Step 2(ii) of the algorithm provides the connection to Bayes’ Theorem. The likelihood

function LpY |aq and the prior πpaq must be prescribed, and the resulting posterior may

be highly influenced by this choice, as will be revealed in later examples. Note that in

the computation of ρpâ|Y q “ LpY |âqπpâq, the normalization constant is omitted. It is

unnecessary to include this constant because in the ratio of posteriors used for the acceptance

criterion, it is eliminated.

The acceptance criteria in step 2(iii) provides a means through which the chain can escape

a local maximum in ρpa|Y q. In the case of a symmetric proposal density, if ρpâ|Y q ě ρpak|Y q

then â is accepted with probability 1, otherwise when ρpâ|Y q ă ρpak|Y q the probability of

accepting â decreases as ρpâ|Y q decreases.

The sequence a1, a2, . . . , aM produced by the algorithm is a Markov chain that, in the

limit of M Ñ 8, has the posterior density as its stationary distribution. How long the

chains must be run to converge and sufficiently sample from the posterior is a challenging

question, and analytic convergence and stopping criteria are lacking [74]. A burn in period,

where the first j elements of the chain are thrown out, is often employed because in the

initial part of the algorithm, the proposals are not sampled from the stationary distribution.

Several techniques have been introduced to improve exploration of the space and speed

up convergence. For example, parallel tempering makes use of several Markov chains run

simultaneously with different variances in the proposal distribution [20]. Swapping between

the chains allows for refined sampling in regions near extrema and improved mixing, so

that chains do not become stuck in local extrema. This approach can be computationally

expensive. A less sophisticated, but useful means of improving mixing is to introduce a

random proposal â selected from a uniform distribution on the parameter support every X

iterations of the algorithm (e.g. X “ 10). This approach allows the chain to escape local

extrema and increases the convergence rate of the chain.
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4.3 THEORETICAL DERIVATION OF THE JACOBIAN PRIOR

In this section, we assume that the data is given as the distribution ηpyq and derive a prior

density that will facilitate exact solution of the inverse problem when Bayesian inference is

employed. We will propose the use of this prior in the Metropolis-Hastings algorithm and

examples will be presented in following sections.

As defined in section (4.2.1), A is the parameter space, Y is the data space of observations,

and F : AÑ Y represents the forward solution map from model parameters to data. Define

ρpaq to be the parameter density, representing the distribution of parameters for the model.

Let ηpyq be a density on the data space, such that for any measurable Ω Ď A, we have that

F pΩq Ď Y and
ż

F pΩq

ηpyqdy “

ż

Ω

ρpaqda. (4.3)

If Ω is any subset of A (of positive measure) on which F is injective, then by the well known

change of variables formula (Theorem 2.47 [26]),

ż

F pΩq

ηpyqdy “

ż

Ω

ηpF paqq| detDaF paq|da “

ż

Ω

ηpF paqqJpaqda where Jpaq “ | detDaF paq|.

Thus, from equation (4.3), for any Ω Ď A on which F is injective,

ż

Ω

ρpaqda “

ż

Ω

ηpF paqqJpaqda,

and therefore,

ρpaq “ ηpF paqqJpaq. (4.4)

In the Bayesian inference approach, the posterior density is determined by making use

of the available data. The density ηpyq on the data provides an ideal setting, in which full

information about the data is known. The Bayes relation (4.2) with Y “ ηpyq, gives that

the posterior density, ρpa|ηq, is proportional to the likelihood times the prior. That is,

ρpa|ηq “ kLpη|aqπpaq,

where πpaq is the prior density on the parameters, Lpη|aq is the likelihood of the data given

an element a of the parameter space, and k is a normalization constant. In the absence of
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error in the forward model solution, it holds that Lpη|aq “ ηpF paqq, ([79], page 35) and thus,

ρpa|ηq “ kηpF paqqπpaq. (4.5)

In order for the posterior ρpa|ηq to be equal to the parameter density ρpaq, it follows from

equations (4.4) and (4.5), that the prior should be chosen as

πpaq “
Jpaq

k
. (4.6)

We will refer to Jpaq as the Jacobian prior, following the conventional terminology in

which DaF paq is called the Jacobian. We note that the term Jacobian prior has appeared

previously [78], in the computation of a marginal with a change of variables, however the

context is different and it does not appear to be a commonly used term. This informative

prior is not simply based on previous knowledge of the parameters, but rather, on prior

knowledge of the model structure and the connection between model parameters and the

data (i.e. the solution map F ). This derivation relies heavily on the injectivity of F , which

is guaranteed when the model (4.1) is identifiable. In the following section, we will use the

analysis of Chapter 3, where explicit sets on which F´1 exists were established, in order to

systematically study the accuracy of the posterior densities obtained by using the Jacobian

prior in the Metropolis-Hastings algorithm.

4.4 SYSTEMATIC ANALYSIS OF THE INFLUENCE OF THE PRIOR

In this section, a systematic approach will be used to demonstrate the superiority of the

performance of the Jacobian prior in the Metropolis-Hastings algorithm with that of other

commonly used priors. In particular, the parameter density ρpaq will be constructed for

comparison with the posterior densities ρpa|ηq obtained from implementing the Metropolis-

Hastings algorithm with various priors.

Model (4.1) is selected to be locally identifiable, thus guaranteeing the injectivity of

F . We will assume there is full knowledge of the data, given by the density ηpyq. The

injectivity of F directly relates ηpyq to a parameter density ρpaq by equation (4.3). With
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Figure 19: Visual summary of the method used to compare the parameter density ρpaq to the

posteriors ρpa|ηq obtained using various priors πpaq in the Metropolis-Hastings algorithm.

this construction, ρpaq is the parameter density of the system under consideration (to be

determined from the data). Using ηpyq for the data, the Metropolis-Hastings algorithm is

implemented with various priors πpaq to produce the corresponding estimates of the posterior

density ρpa|ηq. The posteriors obtained using the various priors can then be compared to the

parameter density ρpaq and to each other. Figure 19 provides a schematic diagram describing

this systematic approach.

In the Bayes relation (4.2), the data directly informs the posterior only through the

likelihood. Using ηpyq as the data we have seen that Lpη|aq “ ηpF paqq (due to the absence

of error in the forward model solution). This eliminates uncertainty in the estimation of

ρpa|ηq due to the data and isolates the prior as the primary source of error, thus truly

revealing the effect of the prior.

In the following section, we will use the approach introduced above to study the effective-

ness of the Jacobian prior in obtaining accurate estimates of the posterior density with the

Metropolis-Hastings algorithm. In the case of linear systems of ordinary differential equa-

tions, we will use the analysis of Chapter 3 in order to explicitly define the density ηpyq. In

other circumstances, ηpyq cannot be defined exactly and must be estimated. Two different

approaches will be presented in order to address both of these situations.
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4.4.1 Linear systems

Consider the linear system of differential equations defined as

9xptq “ Λxptq

xp0q “ b
(4.7)

where xptq P Rn is the state of the system at time t, Λ P Rnˆn is a matrix of parameters,

and b P Rn is the initial condition, which is now taken as a fixed known value rather

than a free parameter. Since the initial condition is independent of the parameters, the

model parameters are the entires of the matrix Λ written as a vector a P Rn2
and the

parameter space is A “ Rn2
. As in Chapter 3, the data will be observed at n equally

spaced time intervals (without loss of generality ∆t “ 1) tj “ j, j “ 1, . . . , n, yielding

y “ px1, . . . , xnq P Y with xj P Rn. Using n time points ensures that DaF paq is a square

matrix.

Defining model (4.1) to be a linear system of differential equations provides several

advantages in using our systematic approach to study the Jacobian prior. In Chapter 3,

the existence of sets in the data space Y on which F´1 exists for the linear dynamical

system (4.7) was established. Due to the injectivity of F , the Jacobian, Jpaq, can be used

as the prior in the Metropolis-Hastings algorithm. The invertibility of F will be exploited to

construct a direct sample of the parameter density ρpaq, which will be used to compare with

the posteriors obtained by employing various priors in the Metropolis-Hastings algorithm.

4.4.1.1 Comparison of priors: Approach 1 Implementation of the systematic ap-

proach described by Figure 19, in practice, requires sampling of the densities and additional

modifications from the abstract setting. The following description details our first method

for applying this approach and Figure 20 provides a corresponding schematic diagram.

1. Fix y P Y such that F´1pyq “ a is unique (i.e. y such that the associated Φ “

rx1 | . . . |xn sr b |x1 | . . . |xn´1 s
´1 has n positive distinct eigenvalues (Corollary 28)).

2. Numerically estimate Cpy, εUq using the technique introduced in Chapter 3, and define

ηpyq to be a uniform density on Cpy, εUq.
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3. Sample ηpyq to obtain Y “ ty1, y2, . . . yNu, yj P Y and compute the associated parameter

values (via F´1, employing the techniques of Chapter 3). Denote this sample by A “

ta1, a2, . . . aNu, aj P A. Since F : A Ñ Y is a bijection, A is, by construction, a sample

of the parameter density ρpaq.

4. Implement the Metropolis-Hastings algorithm using various priors π to obtain samples,

Mπ, of the posterior density ρpa|ηq.

5. Compare Mπ, a sample of the posterior ρpa|ηq obtained through from the Metropolis-

Hastings algorithm, to A, a sample of the parameter density ρpaq.

Figure 20: Visual summary of the method used to construct a sample of the parameter

density ρpaq to order to compare with posteriors ρpa|ηq obtained using various priors πpaq

in the Metropolis-Hastings algorithm. The red coloring indicates the first density that is

defined to begin the approach.

4.4.1.2 Notes on the implementation of Approach 1 and the Jacobian prior

in the Metropolis-Hastings algorithm Implementation of the Metropolis-Hastings

algorithm requires the prescription of the likelihood function, proposal distribution, and

prior density. In the case of Approach 1, the data are supplied with full knowledge of the
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density ηpyq, which is defined as a uniform density over the set Cpy, εUq. For a given a P A,

the solution F paq is uniquely defined and free from uncertainty, thus Lpη|aq “ ηpF paqq. In

step 2(ii) of the Metropolis-Hastings algorithm, the ODE is solved with parameter â and the

likelihood is given by,

LpY |âq “

$

&

%

1, F pâq P Cpy, εUq

0 otherwise
.

At the kth step of the algorithm, the proposal distribution is defined to be a multivariate

Gaussian with mean ak, specifically â „ N pak, γIq, where I is the pˆ p the identity matrix.

The variance γ is tailored to achieve a proposal acceptance of approximately 25%.

In this study three priors will be employed, the uniform prior, Jeffreys prior, and the

Jacobian prior. Jeffreys prior is defined to be πpaq “ p1{a1, 1{a2, . . . , 1{apq. It is important

to note that Jeffreys prior is only valid when the signs of the parameters are fixed, hence it

will only be used in such cases. The mixing procedure described in section 4.2.3 is used in

order to speed up convergence; proposals are selected randomly one of every ten iterations of

the algorithm. When bounds on the parameter values are known a priori, this information

can be included in addition to the Jacobian prior. In practice, bounds on the parameter

values are imposed during the parameter proposal step of the algorithm. Including this prior

knowledge is also helps to improve convergence rates. Here, parameter bounds were imposed

by broadening the observed bounds on A.

Since the use of the Jacobian prior in the Metropolis-Hastings algorithm is being proposed

for the first time, the details of its inclusion in the algorithm will be discussed here. For a

map F : Rp Ñ Rp, the Jacobian determinant is classically defined as detpDaF paqq, where

DaF paq is the pˆ p matrix of partial derivatives with components,

DaF paqij “
BFi
Baj
paq.

The inclusion of the Jacobian prior in the Metropolis-Hastings algorithm occurs in the appli-

cation of Bayes’ Theorem in step 2(ii), when ρpâ|Y q “ LpY |âqπpâq is computed. Although

equation (4.6) suggests that the prior should be chosen as Jpaq{k, in practice, the inclusion of

the normalization constant k is not necessary because it cancels in the ratio ρpâ|Y q{ρpak|Y q

within the acceptance criterion. Thus, we take πpaq “ Jpaq with the division by k omitted.
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Here, Jpâq “ |detpDaF pâqq|, and DaF pâq can be numerically estimated can be numerically

estimated using, for example,

BF

Baj
pâq “

F pâ` ε ejq ´ F pâq

ε
,

where ej a standard basis vector in Rp and ε is positive number very close to 0 (note that

this equation estimates the jth column of DaF pâq). This approximation will be used in the

computation of Jpaq in the Metropolis-Hastings algorithm for the examples presented in the

subsequent sections.

As a final note, the phrasing “sample the density ηpyq” means to sample the distribution

represented by the density function ηpyq.

4.4.1.3 Approach 1 examples In this section, several examples of Approach 1 will be

presented to study the accuracy of the posterior densities obtained when the Jacobian prior

is used. For ease of visualization, model (4.7) will be restricted to the case of two-dimensional

linear systems. All numerical codes were written and implemented using MATLAB.

Example 1. Select the initial condition b and the data y to be

b “

»

–

10

2

fi

fl and y “ px1, x2q “

¨

˝

»

–

5

´2.3

fi

fl ,

»

–

´4

´2.2

fi

fl

˛

‚

representing observations of the system at times t “ 1, 2. The corresponding matrix Φ has

two distinct positive eigenvalues, thus F´1pyq “ a is unique. For this choice of b and y, the

parameter vector a “ pλ11, λ12, λ21, λ22q gives a linear system (4.7) with a stable node fixed

point at the origin. Numerical computation of the maximal permissible uncertainty in the

data such that uniqueness of the inverse is maintained yields εU “ 0.12. Note that because the

initial condition b is a fixed value, Cpy, εUq “ tbuˆcpx1, εUqˆcpx2, εUq as defined in Chapter 3.

Define the data density η to be a uniform density on the set Cpy, εUq. N “ 800, 000 random

elements from Cpy, εUq are selected to obtain a sample of η denoted by Y “ ty1, y2, . . . yNu.

Figure 21 (a) depicts squares bounding the sets cpx1, εUq and cpx2, εUq in the phase plane,

with the sample Y shown in green (the boxes appear to be colored solid simply due to the

large number of samples, N .) Figure 21 (b) shows the marginalized density function ηpyq
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in black and marginals of the sample Y are displayed with histograms. The notation xi,j is

used to denote the jth coordinate of the ith observation xi.
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Figure 21: (a) In the phase plane, boundaries of the sets cpx1, εUq and cpx2, εUq are shown in

black, and the sample Y is depicted in green. (b) The marginalized density function ηpyq is

displayed black, and the blue histograms depict marginals of the sample Y .

The inverses F´1pyjq “ aj are computed to form A “ ta1, a2, . . . aNu, a sample of the

parameter density ρpaq. N was chosen to be large to obtain an accurate representation of

ρpaq. Next, the Metropolis-Hastings algorithm is implemented and Jeffreys prior, the uni-

form prior, and the Jacobian prior are employed to obtain samples of the posterior ρpa|ηq,

denoted by MJeff , MUnif , and MJac, respectively. The algorithm was run for 2.5 million

parameter proposals and convergence was checked through multiple runs. Figure 22 repre-

sents marginalized histograms of A, MJeff , MUnif , and MJac, where the curves are defined

by the bin centers and heights (i.e. a frequency polygon). As is common in practice, only

every 100th element of the posterior sample M is included in the histogram to reduce the

effects of correlation inherent in MCMC sampling. In this and all subsequent examples, the

following colors will be used, A is red, MJeff is blue, MUnif is black, and MJac is green.

Thus, for the sample of the posterior obtained from the Metropolis-Hastings algorithm to

accurately represent the parameter density, we seek to match the red curve. In this figure,

A, MJeff , and MJac overlap nicely, with a slightly better matching between MJac and A in
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the last two parameters. Thus, employing both the Jacobian and Jeffreys priors provides

good representation of the parameter density. However, in this example, the uniform prior

does not yield an accurate estimate of ρpaq, as seen in the vastly different curves for A (red)

and MUnif (black).

Visual comparison of the marginals of A and Mπ provides an effective way to view the

shapes of the posteriors and analyze their similarity. Histograms depends greatly on the

bin width, so in addition to this comparison, a two-sample Kolmogorov-Smirnov test was

performed on the marginals to determine if the samples A and Mπ are drawn from the same

continuous distribution. For a significance level α, the Bonferroni correction for testing

4 hypotheses is α{4. Using the kstest2 function in MATLAB, the computed p-values for

MJeff and MUnif were all less than 1 ˆ 10´30 and the p-values for MJac were computed as

t0.05, 0.08, 0.31, 0.68u for the parameters tλ11, λ12, λ21, λ22u respectively. As in the histogram

representations, the only every 100th element of the posterior sample Mπ was included in the

computation of the p-values in order to de-emphasize the false correlations in the chain due

to the random walk procedure. The p-values indicate that MJac is the most likely to have

been drawn from the same distribution as A.
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Figure 22: Example 1: Curves representing marginalized histograms for A (red), MJeff

(blue), MUnif (black), and MJac (green).

Example 2. Select the initial condition b and the data y to be

b “

»

–

10

2

fi

fl and y “ px1, x2q “

¨

˝

»

–

6.1

´4.4

fi

fl ,

»

–

7

´10

fi

fl

˛

‚.
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In this example, the unique matrix a “ F´1pyq corresponds to a linear system with a saddle

fixed point at the origin. Numerical computation of the maximal permissible uncertainty

in the data such that uniqueness of the inverse is maintained yields εU “ 1.08. Using the

same procedures as in Example 1, A, MUnif , and MJac are computed and are pictured in

Figure 23. In this case, the Jeffreys prior should not be used because the parameters do not

have a fixed sign. Here, we find that the Jacobian prior produces a posterior which nicely

matches the parameter density and again, the uniform prior yields an inaccurate estimate.

The computed p-values for MJac are t0.05, 0.02, 0.004, 0.002u and essentially 0 for MUnif (less

than 1ˆ 10´200).

-1.5 -1 -0.5

λ
11

0

0.5

1

1.5

2

-1.5 -1 -0.5

λ
12

0

0.5

1

1.5

-1.5 -1

λ
21

0

0.5

1

1.5

2

2.5

-1 -0.5 0 0.5

λ
22

0

0.5

1

1.5

Figure 23: Example 2: Curves representing marginalized histograms for A (red), MUnif

(black), and MJac (green).

Example 3. Select the initial condition b and the data y to be

b “

»

–

5

15

fi

fl and y “ px1, x2q “

¨

˝

»

–

10

10

fi

fl ,

»

–

30

´15

fi

fl

˛

‚,

so that the unique matrix a “ F´1pyq corresponds to a linear system with an unstable node

fixed point at the origin. Numerical estimation gives εU “ 1.03. Using the same procedures

as in Example 1, A, ,MJeff , MUnif , and MJac are computed and are pictured in Figure 24.

Here, the the posteriors using the Jacobian prior approximate the parameter density well

in all four parameters and the posterior using the uniform prior gives good approximations

in the first three parameters. In this example, the Jeffreys prior yields poor estimates.
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The computed p-values for MJeff and MUnif are all less than 1 ˆ 10´16, and for MJac are

t0.26, 0.15, 0.22, 0.006u.
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Figure 24: Example 3: Curves representing marginalized histograms for A (red), MJeff

(blue), MUnif (black), and MJac (green).

In this series of examples, employing the Jacobian prior consistently produced good

approximations of parameter density, while accuracy resulting from using the Jeffreys and

uniform priors varied from case to case. Visual inspection of the marginals showed instances

where the uniform and Jeffreys priors seemed to give results comparable to the Jacobian

prior, however, the computed p-values indicate that the posterior sample M is most likely

to be drawn from the parameter distribution when the Jacobian prior is used.

The ability to explicitly define the data density ηpyq was ideal because it eliminated error

in the posterior estimation due to uncertainty about the available data. In applications,

experimental measurements are sparse in the data space and it is not possible to determine

the data density exactly. In the following section, we will introduce a second approach

and use it to study the accuracy of the posteriors obtained with the Jacobian prior in this

practical setting.

4.4.1.4 Comparison of priors: Approach 2 Typically, the data that will be used to

estimate the parameters of a system of ordinary differential equations are a finite collection

of experimental observations taken at incremented time intervals. The available data Y may

then be supplied as a collection of N repeated observations, ty1, y2, . . . yNu. In this case,
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decisions must be made concerning how to represent the data in order to define the likelihood

function LpY |aq. The more accurately the data can be represented, the more reliable will

be the estimated posterior density. To study the influence of the prior in this setting, the

following approach will be used. This technique is again an adaptation of the systematic

approach described in Figure 19, while accounting for practical limitations. The following

description details our method for applying the second approach and Figure 25 provides a

corresponding schematic diagram.

1. Define a density ρpaq on the parameters.

2. Sample ρpaq to obtain A “ ta1, a2, . . . aNu, aj P A, restricting the sampling so that F is

injective on A.

3. Fix the time points for observation as t1, . . . , tn and compute the forward solution F pajq “

yj for all j, yielding the collection of simulated data Y “ ty1, y2, . . . yNu, yj P Y . Since

F : A Ñ Y is a bijection, A is, by construction, a sample of the parameter density that

we wish to approximate with the Metropolis-Hastings algorithm.

4. Use a density estimation method (such as multivariate kernel density estimation) to

represent the sample Y with a density function η̃pyq.

5. Implement the Metropolis-Hastings algorithm using various priors π to obtain samples,

Mπ, of the posterior density ρpa|η̃q.

6. Compare Mπ, a sample of the posterior ρpa|η̃q obtained through from the Metropolis-

Hastings algorithm, to A, a sample of the parameter density.

4.4.1.5 Notes on the implementation of Approach 2 A few comments will be made

here to explain how the steps outlined in Approach 2 shall be implemented. The initial

condition b is chosen as a fixed, known value and thus the parameters of the model are the

entries of the matrix Λ. Then, a P Rn2
is the parameter vector consisting of the matrix

entries of Λ. ρpaq is defined as a multivariate Gaussian distribution a „ N pā,Σq with mean

vector ā and covariance matrix Σ “ σ2I where I is the n2 ˆ n2 the identity matrix. Then,

the density function is defined to be

ρpaq “
1

a

p2πq4|Σ|
exp

ˆ

´1

2
pa´ āqJΣ´1

pa´ āq

˙

.
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Figure 25: Visual summary of approach 2. The red coloring indicates the first density that

is defined to begin the approach. KDE refers to the kernel density estimation of Y with a

density η̃pyq.

When, the sample the A “ ta1, a2, . . . aNu is randomly drawn from the density ρpaq, we

restrict to parameters for which the data is uniquely produced by that parameter (for a P A,

F paq “ y and there is no other b P A such that F pbq “ y). This can easily be achieved

in practice by selecting a mean parameter ā with real, distinct eigenvalues and taking σ to

be small. Even if σ is small, aj drawn from a Gaussian distribution might fail to have real,

distinct eigenvalues, in theory. Only aj with real, distinct eigenvalues are included in the

sample. The solution map F is then used to find the corresponding data F pajq “ yj, which

yields the sample Y “ ty1, y2, . . . yNu. Due to the restriction on the sampling, it follows that

F : A Ñ Y is a bijection as desired. The value N is chosen to be large, to gain as much

information about the structure of the data density as possible.

We aim to diminish the error in the posterior sample, M , resulting from the choice of
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how the data are represented and which likelihood function is used. In order to achieve

this objective, we seek a density function which is as close as possible to the underlying

distribution that generated the sample Y . For the finite sample of observed data, density

estimation constructs an estimate of the underlying probability density function everywhere,

including where no data are observed. Histograms are of the most simple density estimators;

however, they are not smooth and the choice of bin width leads to a constant struggle between

bias and variance [72]. Kernel density estimation is a more sophisticated alternative. In this

approach, a kernel function is centered at each data point, so that a discrete data point is

smoothed over the region surrounding it. The kernels are then summed, resulting in single

function that is the estimated density function. Background on kernel density estimation is

provided in Appendix B.

In MATLAB, the built in function ‘ksdensity’ performs a kernel density estimation for

finite sets of univariate and bivariate data. In the setting of this work, the data have

dimension nm, which will be larger than 2 in all of the following examples. MATLAB

code for multivariate kernel density estimation based on the papers [54, 55] has been made

freely available by the authors. One desirable feature of this toolbox is that the bandwidth

does not need to be prescribed and is optimally determined within the program. It can also

handle large data sets and performs a pre-clustering in order to do so. This code, with minor

modifications, was used for all density estimates presented in this work. Figure 26 shows a

4-dimensional kernel density estimate obtained using this code. In this figure, marginals of

the data are represented by blue histograms and marginals of the density estimate are given

by the red curves. The small nest of black curves depict marginals of the individual kernels

that were summed for the density estimate.

Using the same data set as Figure 26, two-dimensional projections of the data and density

estimate are given in Figure 27. In part (a), projections of the discrete data set are depicted

and in part (b), two-dimensional projections of the density estimate are shown, with the third

dimension represented by a color shading. Both of these figures indicate that the density

estimate produces an accurate representation of the data.

Returning to the implementation of Approach 2, an approximate density of sample Y is

constructed with multivariate kernel density estimation, using the freely available MATLAB
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Figure 26: Example kernel density estimate for 4-dimensional data. Marginal histograms of

the data are shown in blue, marginals of the density estimate are given by the red curves,

and marginals of the kernels surrounding the data points are given by the black curves.
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Figure 27: Example kernel density estimate for 4-dimensional data. Two dimensional pro-

jections of the discrete data set are pictured in (a) and projections of the kernel density

estimate are given in (b).

code from [54] and is denoted by η̃pyq. Next, the Metropolis-Hastings algorithm is performed

and Jeffreys prior, the uniform prior, and the Jacobian prior are employed in order to obtain

MJeff , MUnif , and MJac, respectively.

In the implementation of the Metropolis-Hastings algorithm, the density estimate η̃pyq
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will be used in the computation of the likelihood in the same manner that the exact data

density ηpyq was used in Approach 1, namely Lpη̃|aq “ η̃pF paqq. The proposal density and

the numerical estimation of the Jacobian will be the same as presented in section 4.4.1.2.

The accuracy of the kernel density estimate reduces the error in the posterior estimate

due to incomplete knowledge of the data and the choice of likelihood, and therefore the effect

of the prior density will be revealed.

4.4.1.6 Approach 2 examples In this section, several examples of Approach 2 will be

presented in order study the accuracy of the posterior densities obtained when the Jacobian

prior is used. For ease of visualization, model (4.7) will again be restricted to the case of

two-dimensional linear systems.

Example 4. This example follows the steps outlined in Approach 2 and discussed in

section 4.4.1.5. The initial condition is fixed as b “ p10, 2qJ. The parameters are the entries

of the matrix Λ written as a vector, a “ pλ11, λ12, λ21, λ22q. The mean parameter vector used

to define ρpaq is ā “ p´1,´1.5,´1,´2q, and the observation times are set as t1 “ 1 and

t2 “ 2. Here, the mean parameter value corresponds to a linear system with a stable node

equilibrium. A series of three examples is presented with increasing values for σ across all

three. The following values are used in each example: (a) σ “ 0.15, (b) σ “ 0.2, and (c)

σ “ 0.25. Y was sampled from ρpaq using N “ 5000. In Figure 28, the marginals of Y

are pictured as histograms and overlaying each is the marginalization of η̃pyq drawn as a

red curve. The individual kernels, which were summed over in the density estimation, are

depicted by the (nest of) black curves. As σ increases, the spread of the data increases and

in each case, the kernel density estimate η̃pyq appears to accurately represent the data.

The Metropolis-Hastings algorithm is the implemented to obtain MJeff , MUnif , and

MJac. In the same manner as the examples for Approach 1, Figure 29 displays the marginal-

ized histograms of A, MJeff , MUnif , and MJac. As before, we seek to match the red curve

which depicts A, the sample of the parameter distribution.

In part (a), MJac andAmatch very closely, whileMJeff andMUnif are quite similar to one

another, but do approximate A as well. As σ increases in parts (b) and (c), we observe that

the MJac continues to approximate A well, but the accuracy of MJeff and MUnif degrades
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Figure 28: Marginal histograms of Y are pictured, along with marginalizations of the density

η̃pyq obtained from kernel density approximation, which are displayed as red curves. The

black curves represent the individual kernels which are summed in the density estimation.

In part (a) σ “ 0.15, (b) σ “ 0.2, and (c) σ “ 0.25, all with the same mean parameter

ā “ p´1,´1.5,´1,´2q.

severely. In part (c) we finally see a difference between MJeff and MUnif with Jeffreys

performing slightly better in the last parameter. The marginals for MJeff in part (c) for the

parameters λ12 and λ21 increase near zero due to properties of Jeffreys prior. Jeffreys prior is
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Figure 29: Curves representing marginalized histograms for A (red), MUnif (black), and

MJac (green). In part (a) σ “ 0.15, (b) σ “ 0.2, and (c) σ “ 0.25, all with the same mean

parameter ā “ p´1,´1.5,´1,´2q.

uniform in the log scale and must be bounded away from zero, as an infinite likelihood occurs

there. The p-values were computed using a two-sample Kolmogorov-Smirnov test comparing

A with the various samples Mπ to determine the likelihood that the samples were drawn

from the same distribution. The p-values are reported in Table 2. They further indicate that
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employment of the Jacobian prior produces the most accurate estimates of the parameter

density.

(a) (b) (c)

MJac t0.14, 0.63, 0.44, 0.02u t0.09, 0.51, 0.28, 0.16u t0.99, 0.05, 0.52, 0.1u

MJeff t0, 0, 0, 0u t0, 0, 0, 0u t0, 0, 0, 0u

MUnif t0, 0.0005, 0, 0u t0, 0, 0, 0u t0, 0, 0, 0u

Values less than 1ˆ 10´5 were rounded to 0.

Table 2: Two sample Kolmogorov-Smirnov test computed p-values comparing the marginals

of A with the marginals of Mπ for the parameters tλ11, λ12, λ21, λ22u.

Example 5. Choosing how to represent the available data and selecting a likelihood

function are important issues that must be confronted in order to implement the Metropolis-

Hastings algorithm. Given a collection of N observations Y “ ty1, . . . yNu, there are several

alternatives for how to represent these data. One option is to compute the mean and stan-

dard deviations at each time t1, t2, . . . , tm, denoting them by tx̄1, . . . , x̄mu and tσ1, . . . σmu,

respectively. Then the point averaged likelihood function can be defined as

LpY |aq “
ź

i

Lipx̄i|aq

where,

Lipx̄i|aq “
ź

j

1

σi,j
?

2π
e
´
pxjpti;aq´x̄i,jq

2

2σi,j
2

.

Vital characteristics of the data may be lost in selecting this representation. Addition-

ally, summarizing the data in this way, inherently assumes that the data at each time point

are normally distributed, which may not be accurate. This representation of the data is

frequently used by practitioners of the Metropolis-Hastings algorithm for parameter estima-

tion.

An alternative to summarizing the data Y “ ty1, . . . yNu with these statistical quantities,

is to represent it using a multidimensional histogram. This approach is most relevant when

the system size, n, and the number of time points, m, in which the data are collected are
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small, and the number of repeated observations, N , is large. In this case, an nm-dimensional

histogram could be used to summarize the data. If the histogram is normalized to represent

a probability density, then the likelihood function can be easily defined using the bin heights.

As is the case with one dimensional histograms, the bin widths must be prescribed and may

greatly affect the structure of the histogram. After the bin widths are selected and the

normalized histogram is constructed, it can be used to define the likelihood for use in the

Metropolis-Hastings algorithm in the following way: for a proposed parameter â, the data

F pâq is computed and the histogram bin containing that data point is identified, then the

likelihood LpY |âq is the height of that bin.

As we have seen, kernel density estimation provides an accurate representation of the

data, and the likelihood is the evaluation of the estimated probability density function,

Lpη̃|âq “ η̃pF pâqq.

In Approach 2, we aimed to study the effect of the prior on the accuracy of the posterior

obtained from the Metropolis-Hastings algorithm. In order to minimize the error in posterior

due to the representation of the data, we employed kernel density estimation to define the

density η̃pyq. In this example we would like to explore the effect of the choice of data rep-

resentation and likelihood function on the posteriors obtained from the Metropolis-Hastings

algorithm.

As in Example 4(a), we fix b “ p10, 2qJ, ā “ p´1,´1.5,´1,´2q, tt1, t2u “ t1, 2u,

and σ “ 0.15. The data Y “ ty1, . . . yNu are constructed using N “ 10, 000 obser-

vations at times t1, 2u. Y is then represented using the three different alternatives de-

scribed above as shown in Figure 30. Here, the green curves depict the marginalized normal

density used to describe the data in the point averaged approach, with computed means

tx̄1,1, x̄1,2, x̄2,1, x̄2,2u “ t5.2,´2.4, 4.3,´2, 4u and standard deviations t0.85, 0.56, 1.41, 0.85u.

Marginalizations of the 4-dimensional histogram, constructed with 30 bins in each dimension,

are shown in yellow. Lastly, the blue curves represent the marginalized probability density

function obtained from the kernel density estimation. There is a clear discrepancy between

the point averaged and kernel density estimation representations. The Metropolis-Hastings

algorithm is then implemented with the Jacobian prior, and the appropriate likelihood func-

tion is employed in each case. Figure 31 compares the marginals of MJac computed using
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Figure 30: Marginalizations of the three different representations of the data are shown.

The point averaged representation is depicted by the green curve, the probability density

function from the kernel density estimation is depicted by the blue curve, and the histograms

are shown in yellow

three different representations of the data. The marginals for A are depicted in red. The

marginals of MJac are green for the point averaged approach, yellow for the 4-dimensional

histogram, and blue for the kernel density estimation approach. In this example, the point
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Figure 31: Marginal histograms for A (red) and three estimates MJac obtained employing

kernel density estimation (blue), point averaged (green), and multidimensional histogram

(yellow).

averaged approach resulted in the poorest estimate of the parameter density. The histogram
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approach incorporates more information than simply using means and standard deviations,

thus, as expected, the estimate of the posterior improved. The kernel density estimate clearly

provided the best estimate of A and minimized the error in the posterior estimate due to

uncertainty in the representation of the data.

4.4.2 Jacobian prior with nonlinear systems of differential equations

In this section, the use of the Jacobian prior for parameter estimation in a nonlinear system

of differential equations will be studied. The system that will be used to conduct this study

is a model for influenza A virus infection from [6]:

9V “ rI ´ cV

9H “ ´βHV

9I “ βHV ´ δI

(4.8)

where V is the concentration of infectious viral particles with units TCID50{ml, H is the

number of uninfected target cells, and I is the number of productively infected cells. By

shedding viral titers, infected cells increase the concentration of viral particles at a rate

of r per cell, and free viral particles are cleared at a rate of c per day. Uninfected cells

interact with virus particles and become infected at a rate βHV . The infected cells die

at a rate of δ per cell (where 1{δ is the average life span of an infected cell). The initial

number of infected cells is taken to be zero, and the initial viral concentrations, V p0q “ V0,

and initial number of target cells, Hp0q “ H0, are considered as parameters. Then, the

vector of model parameters is a “ pV0, H0, β, r, c, δq P R6 “ A, with units pTCID50{ml, cells,

pTCID50{mlq´1day´1, pTCID50{mlqday´1,day´1,day´1
q, respectively.

Approach 2 again provides a systematic way to study which prior makes the posterior a

better approximation of the parameter density. Figure 25 gives a roadmap for the approach

and the details for this specific setting are discussed here. The parameter density ρpaq is

defined to be a normal multivariate density with mean parameter vector ā and covariance

matrix Σ “ diag ppā1σ1q
2, pā2σ2q

2, . . . , pā6σ6q
2q. In the examples below, ρpaq is constructed

by prescribing ā and the vector σ “ pσ1, σ2, . . . , σ6q. As before, ρpaq is sampled to obtain

A “ ta1, a2, . . . aNu, aj P A. The number of observation times for the data will be taken
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to be m “ 2 (so that p “ mn “ 6 and DaF paq is a square matrix). With this setup, for a

fixed a, the solution map gives, F paq “
`

pV pt1q, Hpt1q, Ipt1qq
J, pV pt2q, Hpt2q, Ipt2qq

J
˘

“ y.

The forward solution, F pajq “ yj, is computed for all j, yielding the collection of data

Y “ ty1, y2, . . . yNu, yj P Y . As in the previous treatment, multivariate kernel density

estimation is used to represent the sample Y with a density function η̃pyq, and the Metropolis-

Hastings algorithm is implemented using various priors, to obtain Mπ. The posteriors, Mπ,

will be compared to the A, the sample of the parameter density, and to each other. A series

of four examples using this approach is now presented.

Example 6. In this example, ρpaq is constructed by selecting ā “ p0.093, 4 ˆ 108, 2.7 ˆ

10´5, 0.012, 3.0, 4.0q and σ “ p0.01, 0.05, 0.01, 0.05, 0.02, 0.01q. Here, the mean parameter

values are chosen to be the average of the best-fit parameter values from [6] and σ was

prescribed to contain small values. The observation times are taken to be tt1, t2u “ t1, 2u,

and the number of samples for A and Y is N “ 1000. In Figure 32 (a), the solution to the

system for the mean parameter ā is given by the blue curves, and the box plots represent

the sample of data Y , graphed at the associated time points for the corresponding variables.

The figure shows that there is a large spread in the data for this selection of σ. Part (b) of

Figure 32 shows marginal histograms of Y , and marginals of the kernel density estimate are

given by the red curves. Finally, in part (c) of the figure, A is compared to the posterior

samples MJeff , MUnif , and MJac obtained from the Metropolis-Hastings algorithm. We can

see that MJac most accurately approximates A for the parameters H0, β, r, and δ. None of

the posteriors approximate the marginals for V0 or c well. The parameter c is related to the

virus clearance; we can see from Figure 32, that for this choice of t1 and t2, the data do not

capture any information about the decay of the virus. As before, a two sample Kolmogorov-

Smirnov test was conducted, however the p-values were too small in each of the cases to

provide any useful insight in comparing MJeff , MUnif , and MJac; thus we will rely on the

marginal depictions for comparison. This will also be the case in the subsequent examples.

Example 7. In this example, everything is the same as Example 6, but the value of σ is

increased to σ “ p0.05, 0.05, 0.05, 0.1, 0.04, 0.02q for the construction of ρpaq. Figure 33 (a)

again shows the solution for the mean parameter and the box plot representations of Y . As

expected, the broadness in the spread of the data is increased. In Figure 33 (b), we compare
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Figure 32: Example 6: (a) Solutions curves from the mean parameter value and box plot

representations of Y . The box plots at t “ 1 for V and I are difficult to see because they

are tight relative to the figure scale. (b) marginal histograms of Y and the kernel density

estimate, (c) curves representing marginalized histograms for A (red), MJeff (blue), MUnif

(black), and MJac (green).

A, MJeff , MUnif , and MJac and see that again, MJac most accurately approximates A for the

parameters H0, β, r, and δ. In this example, there is a more pronounced discrepancy between

MUnif and MJeff and A than in Example 6. The observation times remained the same; still

no information is gathered about the decay rate of the virus, and thus the marginal for c is

not approximated well by any of the posteriors.

Example 8. In this example, different time points are chosen in an effort to obtain more

information about c. Let ā and N be the same as the previous two examples, and choose
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Figure 33: Example 7: (a) Solutions curves from the mean parameter value and box plot

representations of Y . The box plots at t “ 1 for V and I are difficult to see because they

are tight relative to the figure scale. (b) curves representing marginalized histograms for A

(red), MJeff (blue), MUnif (black), and MJac (green).

σ “ p0.01, 0.02, 0.01, 0.01, 0.02, 0.01q and tt1, t2u “ t2, 3u. Figure 34 (a) shows the solution

for the mean parameter and the box plot representations of Y . The new observation times

now capture data in both the increasing and decreasing portions of the V solution. Figure

34 (b) depicts marginals of A, MJeff , MUnif , and MJac. There is a vast improvement in

the estimation of c. We find that all of the priors produce very similar posteriors, and all

of the marginals approximate A well, except for V0. In this example, the accuracy of the

approximation of the parameter density between the different priors is indistinguishable.

Example 9. For the final example, the mean parameter used to define ρpaq is changed to

ā “ p0.25, 4ˆ108, 1.4ˆ10´2, 2.7ˆ10´5, 3.2, 3.2q, from [77]. We choose σ “ p0.01, 0.0001, 0.01,

0.05, 0.02, 0.01q, N “ 1000, and tt1, t2u “ t1, 2u. As before, Figure 35 (a) shows the solution

for the mean parameter ,ā, and the box plot representations of Y , and (b) depicts marginals of

A, MJeff , MUnif , and MJac. In a similar manner as Example 8, the observation times capture

data in both the increasing and decreasing portions of the V solution, so the posteriors for
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Figure 34: Example 8: (a) Solutions curves from the mean parameter value and box plot

representations of Y . The box plot at t “ 3 for H is difficult to see because it is tight

relative to the figure scale. (b) curves representing marginalized histograms for A (red),

MJeff (blue), MUnif (black), and MJac (green).

c are meaningful. In the marginals of the posteriors, we see that both initial condition

parameters are not approximated well with any of the three priors. For the remaining

parameters, the marginals of MJeff , MUnif , and MJac are all quite similar to each other.

A is matched well for the parameters β, c, δ, but less accurately for r. Again, we cannot

distinguish between the performance of the three priors.

4.5 CONCLUSION AND DISCUSSION

In this chapter, a new informative prior was introduced as an alternative prior density to

employ in the Metropolis-Hastings algorithm. The Jacobian prior does not solely rely on

previous information about the parameters, but instead, exploits the known structure of the
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Figure 35: Example 9: (a) Solutions curves from the mean parameter value and box plot

representations of Y . The box plot at t “ 2 for H is difficult to see because it is tight

relative to the figure scale. (b) curves representing marginalized histograms for A (red),

MJeff (blue), MUnif (black), and MJac (green).

differential equation model. This prior may not have been previously considered in the setting

of Bayesian inference, because it is specific to the problem of parameter estimation. The

model solution provides the map F , which does not appear in Bayes’ Theorem explicitly. F is

introduced in the Bayesian inference approach to parameter estimation through the likelihood

function, which makes the connection between available data and the model solution for a

given parameter.

Two systematic approaches were used to study which prior makes the posterior a better

approximation of the parameter density. In each approach, a sample of the parameter den-

sity was constructed in order to compare with the posteriors obtained by implementing the

Metropolis-Hastings algorithm with various priors. In the case of linear systems of ordinary

differential equations, we found that the Jacobian prior consistently produced better approx-

imations of the parameter density than both the uniform and Jeffreys priors. In our study

using the nonlinear influenza model, the results were less conclusive. We obtained better ap-
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proximations of the parameter density using the Jacobian prior in two examples, and found

that the performance of the Jeffreys, Jacobian, and uniform priors was indistinguishable in

the other two examples. Analysis with additional nonlinear models is needed.

In the case of linear systems of differential equations, the theory of Chapter 3 guaranteed

the invertibility of F . In the influenza model, we were unable to verify the invertibility of

F ; some inaccuracy in the approximation may be due to this. The parameters β, r, c, δ of

model (4.8) were shown to be globally identifiable from 3 measurements of V , 2 of H, and

2 of T in [63]; however, they did not consider any initial conditions as parameters. Further

investigations are needed to determine the importance of the invertibility of F in practice.

It may be the case that local identifiability (local invertibility) is sufficient.

In this chapter, we required that p “ nm (number of parameters is equivalent to the

number of model equations multiplied by the number of observation times). This restric-

tion was imposed to ensure that the Jacobian matrix DaF paq was square. A natural next

step would be to relax this constraint and study the use of the Jacobian prior with more

observation times. In this case, a restriction of F may need to be imposed.

Finally, we note that the numerical approximation of the Jacobian determinant increases

computation time in the algorithm. For example, one iteration of the Metropolis-Hastings

algorithm with the Jacobian prior averaged 0.0225 seconds, while with the uniform and

Jeffreys priors, it was 0.01 sec.
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5.0 CONCLUSIONS

In this work, several aspects concerning the estimation of parameters for dynamical sys-

tems using single trajectory data were addressed. The first investigation of this dissertation

confronted the question of identifiability. Specifically, we studied whether the parameters

of a linear, or linear-in-parameters, dynamical system can be uniquely determined from a

single error free trajectory of data. Several equivalent characterizations of the identifiability

criterion, were presented. For linear systems, this yielded an identifiability condition solely

based on geometric properties of the known trajectory, namely whether or not the trajectory

is confined to a proper subspace of the phase space. This criterion provides practical utility,

since it can be applied using what is known about the trajectory, without knowledge of the

structure of the parameter matrix. Several examples were presented to illustrate identifia-

bility for various systems and initial conditions. Additional results for linear systems include

a link between identifiability from single trajectory with initial condition b and the linear

independence of tb, Ab, ..., An´1bu, several characterizations of the linear independence of

tb, Ab, ..., An´1bu including a condition on the Jordan form of A. A straightforward exten-

sion was made to the case of linear-in-parameters systems, where now the geometry of the

image of the orbit in the flux space determined identifiability. Although a further extension

to the general class of nonlinear systems of differential equations would be desirable, the lack

of a unifying parameter structure within the class of these models would cause the need for

a different analytical approach than ours. We then shifted our focus to investigate identifi-

ability from a discrete collection of points along the trajectory and showed that some linear

models are identifiable from a complete trajectory but not from a finite set of data. Other

works which investigate identifiability of linear dynamical systems, typically include an input

which serves as a control for the system. Identifiability is then addressed with full access to
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the set of all admissible controls. Our treatment is more geared toward the case of single

trajectory data. Without access to a set of controls, resulting in a variety of observations for

the system, we have only a single initial condition, and thus one trajectory, from which to

determine the parameters. This work complements this existing literature and approaches

the identifiability problem in a uniquely different way.

We continued with the theme of discrete data in Chapter 3, where we investigated the

robustness of the solution to the inverse problem. By considering a collection of data ob-

served at equally spaced time intervals along a trajectory, we sought to define the largest

allowable uncertainty in the data that could be tolerated such that properties of the inverse

solution, such as uniqueness and equilibrium stability, were maintained. We first proved that

such properties could be maintained in a neighborhood of the data, and subsequently worked

to define bounds on the maximal permissible uncertainty. Three types of bounds on uncer-

tainties were presented: analytical lower bounds, below which properties are guaranteed to

hold for all perturbations of data; analytical upper bounds, which provide proven perturba-

tions of data for which properties are guaranteed to be lost; and numerical bounds, derived

from direct sampling of data points. Our results indicate that the upper bounds, when

optimized over all potential eigenvalues, provide excellent agreement with the numerical es-

timates. All three of the bound types are hypothetically applicable to systems of arbitrary

size; however, the numerical and analytical upper bounds become computationally expen-

sive for larger systems. Although the analytical lower bound significantly underestimates

the maximal permissible uncertainty, it provides a bound that is immediately accessible for

systems of higher dimension, without increased computation. Further analysis is needed to

determine whether a more accurate analytical lower bound can be obtained using structured

perturbations. Several illustrative examples were presented and additional extensions were

developed for the case of two-dimensional linear systems. Additionally, the ability to define

the set, Cpd, εUq, on which a unique solution to the inverse problem is guaranteed at each

point, became a vital tool in the analysis conducted in Chapter 4. The results of this chap-

ter provide a useful contribution to identifiability in parameter estimation. Often, a model

can be determined to be identifiable either globally in all of parameter space or locally, in

a neighborhood of a point in parameter space. Defining the set Cpd, εUq and applying the
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inverse map, provides an explicitly defined set in parameter space on which the model is

identifiable, that is neither an arbitrarily small neighborhood or the entire parameter space.

Additionally, our results also include bounds on regions of data space where the inverse

problem cannot be solved. The utility of such results is that they can provide an approach

for model rejection.

In Chapter 4, our focus shifts to practical aspects encountered in estimating the pa-

rameters of a dynamical system from a collection of discrete single trajectory data. In this

case, the parameter estimation problem is addressed by seeking an approximation to the

parameter density, given in the Bayesian inference approach by a posterior density. A new

informative prior was introduced as an alternative prior density to employ in the computa-

tion of the posterior with the Metropolis-Hastings algorithm. The Jacobian prior does not

solely rely on previous information about the parameters, but instead, exploits the known

structure of the differential equation model. Two systematic approaches were used to study

which prior makes the posterior a better approximation of the parameter density. In each

approach, a sample of the parameter density was constructed in order to compare with the

posteriors obtained by implementing the Metropolis-Hastings algorithm with various priors.

In the case of linear systems of ordinary differential equations, we found that the Jacobian

prior consistently produced better approximations of the parameter density than both the

uniform and Jeffreys priors. In our study using the nonlinear influenza model, the results

were less conclusive, however in our examples, that the Jacobian prior performed at least

as well as the uniform and Jeffreys priors and in a few cases, better. These findings will

be submitted as a paper to a peer-reviewed journal. This chapter provides an important

first step for introducing the use of the Jacobian prior in the Metropolis-Hastings algorithm,

however further studies are needed. An analysis with additional nonlinear models where F

is known to be invertible is our next task. A deeper look into the requirement of the injec-

tivity of F and the importance of model identifiability in practice is needed. An extension

to the case of a non-square Jacobian needs to be addressed. In this case, a restriction of F

to gain injectivity may be necessary, and defining the Jacobian as the product of nonzero

eigenvalues, may be the correct formulation in this case.

Although the models employed in this dissertation were all systems of differential equa-
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tions, when we consider the setting of discrete data sampled from a trajectory at a sequence

of incremented time points, the systems are in fact discrete dynamical systems. There may

be more existing theory for discrete dynamical systems which can be drawn from to extend

some of our results to additional systems or classes of systems.

Throughout this work, linear systems of differential equations provided a convenient set-

ting where properties of the principal matrix solution could be exploited to develop insightful

theoretical results. The structure of these systems also allowed for an extension to nonlinear

systems which are linear in parameters. Although a system of linear equations has a simple

formulation as an ODE, the solution to the system is highly nonlinear in the parameters

and thus provides a nontrivial investigation in the setting of parameter estimation. It is

also the case that many biological systems are modeled using linear systems of differential

equations. Although the analysis of Chapter 3 is exclusive to linear systems of differential

equations, these results provided an important means to study the accuracy of the posteriors

obtained in the Metropolis-Hastings algorithm. This algorithm can be used for parameter

estimation for both linear and nonlinear differential equations. In biological modeling in

particular, Bayesian inference provides a means to represent parameter variability in a pop-

ulation. Standard parameter fitting techniques result in a single optimal parameter value as

a solution to the inverse problem; however, parameters with biological relevance are likely

to differ between individuals. Ensemble models arising from estimation of parameter den-

sities with Bayesian techniques are highly useful for biological modeling. Due to the wide

use and popularity of the Metropolis-Hastings algorithm for Bayesian parameter inference,

an advancement in improving the accuracy of the algorithm, I believe, would be the most

impactful contribution of this dissertation to the modeling community.
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APPENDIX A

DETERMINING THE NUMBER OF REAL DISTINCT ROOTS OF A

POLYNOMIAL

A method for determining the number of real distinct roots of a polynomial was presented

by Yang [91], based on results of Gantmacher [27]. For a polynomial

pptq “ y1 ` y2t` ¨ ¨ ¨ ` ynt
n´1

´ tn, (A.1)

one defines the p2n` 1q ˆ p2n` 1q discrimination matrix

∆ “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

´1 yn yn´1 yn´2 . . . y1 0 0 0 . . . 0

0 ´n pn´ 1qyn pn´ 2qyn´1 . . . y2 0 0 0 . . . 0

0 ´1 yn yn´1 yn´2 . . . y1 0 0 . . . 0

0 0 ´n pn´ 1qyn pn´ 2qyn´1 . . . y2 0 0 . . . 0
. . .

0 0 . . . 0 0 ´1 yn yn´1 yn´2 . . . y1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(A.2)

comprised of alternating rows of two types.

Let Dk “detp∆1:2k,1:2kq for k “ 1, . . . , n where ∆1:2k,1:2k is the upper left 2k ˆ 2k sub-

matrix of ∆. Define sk “ signpDkq and call S “ rs1, s2, . . . , sns the sign list. If, within

S, there is some subsequence rsi`1, si`2, . . . , si`j´1s of zero entries, with j ě 3 and with

si, si`j ‰ 0, replace rsi`1, si`2, . . . , si`j´1s with r´si,´si, si, si,´si, . . . s. After all such re-

placements are made, the resulting list is termed the revised sign list.
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Using the revised sign list, we can determine the number of real distinct roots of pptq

from the following theorem.

Theorem 43 (Yang). The number ν of sign changes in the revised sign list equals the number

of pairs of complex conjugate roots of pptq. Furthermore, if the number of non-zero entries

in the revised sign list is l, then the number of distinct real roots is l ´ 2ν.

Hence, if the revised sign list has no sign changes and no zero entries, then the roots of

pptq are all real and distinct.

In addition to Yang’s theorem, Descartes’ rule of signs can be used the determine whether

the roots are positive. That is, given that the roots are all real, Descartes’ rule of signs with

the criterion that the maximum number of negative roots is zero gives necessary and sufficient

conditions for positivity of the roots. Namely, if yk ą 0 for k “ n, n ´ 2, n ´ 4, . . . and

yk ă 0 for k “ n´ 1, n´ 3, n´ 5, . . . for yk as defined in equation (A.1), then the roots of

pptq are real, positive, and distinct.

A.0.1 2ˆ 2 Case

The polynomial pptq “ y1 ` y2t´ t
2 has discrimination matrix

∆ “

»

—

—

—

—

—

—

—

—

—

–

´1 y2 y1 0 0

0 ´2 y2 0 0

0 ´1 y2 y1 0

0 0 ´2 y2 0

0 0 ´1 y2 y1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Here D1 “ 2 ą 0, D2 “ y2
2 ` 4y1, and S “ r1, signpD2qs. The revised sign list will have

no sign changes and no zero entries as long as y2
2 ` 4y1 ą 0. In order to ensure that the

roots are positive, Descartes’ rule of signs requires y2 ą 0 and y1 ă 0.

In summary, pptq has distinct, real, positive roots iff y2 ą 0 and ´y2
2 ă 4y1 ă 0.
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A.0.2 3ˆ 3 Case

The polynomial pptq “ y1 ` y2t` y3t
2 ´ t3 has discrimination matrix

∆ “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´1 y3 y2 y1 0 0 0

0 ´3 2y3 y2 0 0 0

0 ´1 y3 y2 y1 0 0

0 0 ´3 2y3 y2 0 0

0 0 ´1 y3 y2 y1 0

0 0 0 ´3 2y3 y2 0

0 0 0 ´1 y3 y2 y1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Here D1 “ 3 ą 0, D2 “ 2y2
3 ` 6y2, D3 “ ´27y2

1 ´ p4y
3
3 ` 18y2y3qy1 ` 4y3

2 ` y2
2y

2
3, and

S “ r1, signpD2q, signpD3qs. The revised sign list will have no sign changes and no zero entries

as long as D2 ą 0 and D3 ą 0. In order to ensure that the roots are positive, Descartes’ rule

of signs requires y3 ą 0, y2 ă 0, and y1 ą 0.

In summary, pptq has distinct, real, positive roots iff y3 ą 0, ´y3
2 ă 3y2 ă 0, and

maxp0,´b ´ 2
?
Cq ă 27y1 ă ´b ` 2

?
C, where b “ 2y3

3 ` 9y2y3 and C “ y6
3 ` 9y2y

4
3 `

27y2
2y

2
3 ` 27y3

2.
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APPENDIX B

KERNEL DENSITY ESTIMATION

For a finite sample of observed data, density estimation constructs an estimate of the un-

derlying probability density function everywhere, including where no data are observed.

Histograms are of the most simple density estimators; however, they are not smooth and

the choice of bin width leads to a constant struggle between bias and variance [72]. Kernel

density estimation is a more sophisticated alternative. In this approach, a kernel function is

centered at each data point, so that a discrete data point is smoothed over the region sur-

rounding it. The kernels are then summed, resulting in single function that is the estimated

density function.

A kernel density estimation in one dimension is depicted in Figure 36 (a). The discrete

collection of data points are plotted as stars along the x-axis and the individual kernels are

pictured in blue. The density estimate resulting from summing these kernels is represented

by the black curve. The case of kernel density estimation in two dimensions is pictured in

Figures 36 (b) and (c) as presented in [72]. The contours represent the individual kernels

surrounding the data points in part (b), and the resulting density estimate in part (c).

The mathematical formulation for the multivariate kernel density estimation is as follows:

Given n data points w1, w2, . . . wn in Rd, the estimated density function is given by

f̂Hpwq “
1

n

n
ÿ

i“1

KHpw ´ wiq.
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Figure 36: Kernel density estimation in (a) one dimension, and (b), (c) two dimensions.

The bandwidth matrix, H P Rdˆd, is symmetric positive definite.

KHpwq “ |H|´1{2KpH´1{2wq,

where Kpwq is the kernel function. The standard multivariate normal kernel Kpwq “

p2πq´d{2 expp´1
2
wTwq is often employed, however other kernel functions are also used. Selec-

tion of the bandwidth matrix is the most important task as it controls the orientation and

the amount of smoothing and thus the accuracy of the density estimate [71].
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[8] R. Bellman and K. J. Åström, On structural identifiability, Math. Biosci., 7 (1970),
pp. 329–339.

[9] G. Bellu, M. P. Saccomani, S. Audoly, L. D’Angiò, DAISY: a new software
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