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In this work, we utilize numerical models to investigate the importance of poroelasticity in Fluid- 

Structure Interaction, and to establish a connection between the apparent viscoelastic behavior of 

the structure part and the intramural filtration flow. We discuss a loosely coupled computational 

framework for modeling multiphysics systems of coupled flow and mechanics via finite element 

method. Fluid is modeled as an incompressible, viscous, Newtonian fluid using the Navier-

Stokes equations and the structure domain consists of a thick poroelastic material, which is 

modeled by the Biot system. Physically meaningful interface conditions are imposed on the 

discrete level via mortar finite elements or Nitsche's coupling. We also discuss the use of our 

loosely coupled non-iterative time-split formulation as a preconditioner for the monolithic 

scheme.  

We further investigate the interaction of an incompressible fluid with a poroelastic 

structure featuring possibly large deformations, where the assumption of large deformations is 

taken into account by including the full strain tensor. We use this model to study the influence of 

different parameters on energy dissipation in a poroelastic medium. The numerical results show 

the effects of poroelastic parameters on the pressure wave propagation, filtration of the 

incompressible fluid through the porous media, and the structure displacement.  
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1.0  INTRODUCTION 

Poroelastic materials consist of a porous elastic solid phase, filled with fluid. When the 

poroelastic material deforms, the volume of the pore fluid changes. In this thesis, we consider the 

problem of interaction between the viscous flow with a deformable poroelastic medium. Such a 

problem is of a great importance in a wide range of applications. The filtration of fluids through 

porous media occurs in industrial process involving air or oil filters, in cross-flow filtration 

procedures, and in geophysical applications such as modeling groundwater flow in fractured 

poroelastic media through the rocks and sands. Another example of this type of problem is the 

area of biology. Since all soft tissues consist of water for a large fraction, poroelastic models 

required to obtain more realistic simulations. Porous media formulation has been used for 

modeling blood flow in the myocardium tissue [1], study drug transport and lipid (LDL) in the 

blood vessel walls [2-5], and interstitial fluid in articular cartilage [6] and intervertebral discs [7]. 

The theory of the poroelastic material has been studied extensively, however only a few 

studies have included poroelastic material in FSI simulations, see [4, 8] and references therein. 

This is probably due to an undeniable inherent mathematical difficulty involved in these 

problems. Theoretical results on existence of the solution for FSI problems can be found only for 

certain reduced systems.  Therefore, computational models play a significant role in this area as 

they can predict properties of the Fluid- Porous Structure Interaction (FPSI) system; such as 
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interstitial fluid velocity, that are extremely difficult to validate with experimental evidence or 

analytical solutions. 

One interesting biological application of FPSI problems is the coupling of flow with mass 

transport. This is a significant potential application, since mass transport provides nourishment, 

remove wastes, affects pathologies and allows to deliver drugs to arteries [9].  In the context of 

hemodynamics, considering arterial wall as an elastic structure is a common assumption in Fluid-

Structure Interaction (FSI) simulations; but it neglects realistic arterial wall model. In reality, 

arterial wall like other soft tissues is viscoelastic and it shows poroelastic behavior as well. Both 

low- and high density lipoproteins (LDL and HDL) can enter the intima from the plasma [10]. 

The experimental results show the significant increase in the volume of plasma in the intima in 

hypertension, which supports the idea that the plasma enters intima as a unit [11]. This could 

occur by leakage through the endothelial cell junctions presumably [12].  

Another practical application of FPSI formulation is in modeling the arterial grafts. Using 

FPSI model is crucial to investigate how the prosthetic graft behaves in different configurations 

from implantation to matured artery, as well as in estimating the risk of both mechanical 

mismatch in the initial stages and the eventual rupture. This is motivated by the fact that in 

animal experiments, many grafts fail inside the body after implantation, especially in larger 

animals because of the unreliable mechanical properties. Computational models can predict 

hemodynamics and mechanical stresses by solving fluid structure interaction for graft in in-vivo 

condition and therefore guide a robust and reliable design of grafts suitable mechanical 

properties. 

 Earlier numerical models used to predict blood flow are based on rigid geometries [13] 

in which only the arterial lumen needs to be reconstructed and discretized, yielding results in a 
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relatively short time. However, the rigid wall assumption precludes pressure wave propagation 

and overestimates wall shear stress. In 2006, Hughes et al [14] developed a FSI model capable of 

coupling incompressible fluids with non-linear elastic solids and allowing for large structural 

displacements, and applied it to the problems of arterial blood flow. The new approach is 

evaluated on a patient specific abdominal aorta. This paper proposed that future developments 

should address the extensions to hyperelastic materials including viscoelasticity, which are 

capable of representing more physically realistic behavior of the arterial wall. Moreover, recent 

in vivo studies, have identified viscoelastic arterial wall properties over a cardiac cycle [15]. 

Although the material properties of arteries have been widely studied [16-19], to our knowledge, 

only a few constitutive models for the arterial wall have been deeply analyzed in the time 

dependent domain, when coupled with the pulsation induced by the heartbeat. This is one of our 

motivations for this research.  

We study the effect of using a poroelastic material model in the interaction between the 

fluid flow and a deformable structure that can represent the arterial wall. To model the free fluid, 

we consider Navier- Stokes equations, under the assumptions of incompressible and Newtonian 

rheology. A well-accepted model for characterizing the behavior of a poroelastic material is 

provided by the Biot equations. The Biot system consists of the governing equations for the 

deformation of an elastic skeleton, which is completely saturated with fluid. The average 

velocity of the fluid in the pores is modeled using the Darcy equation, complemented with an 

additional term that depends on the volumetric deformation of the porous matrix. Indeed, this 

term accounts for the poroelastic coupling. In this work we focus on the coupling of the Navier- 

Stokes and Biot models, for phenomena where time and space dependence of the unknowns play 

a significant role. 
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The numerical discretization of the problem at hand features several difficulties. Loosely 

coupled schemes for fluid–structure interaction may turn out to be unconditionally unstable, 

under a particular range of the physical parameters of the model [20]. This is the so called added-

mass effect. An additional difficulty is combining the Eulerian description of the moving fluid 

domain with the typical Lagrangian parametrization of the structure [21]. Concerning the 

analysis, the coupled problem and in particular the formulation of appropriate interface 

conditions has been studied in [22]. Depending on the field of application, different formulations 

are available to couple a free flow with a saturated poroelastic material. In the context of 

geosciences, this coupled problem is used to model the interaction of the material with fractures, 

as in [22-24]. In the context of biomedical applications, FSI studies involving poroelastic 

materials are scanty. Among the available contributions, we mention [25] and [2].  

This dissertation is organized as follows: In Chapter 2.0 , the computational model for the 

interaction between the viscous fluid and a poroelastic material using Nitsche’s method, with the 

assumption of having small deformations, is considered. The work presented in this chapter has 

been presented at APS-DFD [26]  and is published in CMAME journal [27] and proceeding of 

ICBME proceeding [28, 29]  . Moreover, the sensitivity analysis have been performed to analyze 

the effect of poroelasticity on FSI model, published in [8]. In Chapter 3.0 , the energy 

distribution in the coupled FSI problem for different constitutive models of the wall is discussed. 

At the end of this chapter I justify the motivation to extend the work to the finite elasticity 

formulation. The results of this chapter are published in [30]. In Chapter 4.0 , the nonlinear 

model for FSI is developed to analyze how poroelasticity can affect the energy dissipation in the 

porous media when it undergoes large deformations. Parts of this chapter has been presented at 
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APS-DFD [31] and [32]. In Chapter 5.0 , some final remarks are made with some suggestions for 

future research. 
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2.0  LINEAR MODEL FOR FPSI 

The objective of this chapter is to develop and analyze a loosely coupled numerical solver for the 

coupled Biot–Stokes system. In this chapter, we consider only fixed domains 𝛺𝛺𝑓𝑓 and 𝛺𝛺𝑝𝑝 

representing the reference (Lagrangian) configuration of the fluid and solid domains, 

respectively. As a consequence of the fixed domain assumption, the computational model that 

we propose is suitable in the range of small deformations. This approach is adopted here to 

simplify the complexity of the fluid–structure–porous interaction and it is a common assumption 

for fluid–structure interaction problems when we are in the regime of small deformations. 

Although simplified, this problem still retains the main difficulties associated with the fluid–

porous media coupling. We note that in recent work [17] we have also studied the differences 

between the fixed and the moving domain approaches in small deformation regime. The results, 

indicate that in this particular case the effect of geometric and convective nonlinearities is 

negligible. 

In numerical modeling there are only a few rigorous contributions to this type of 

problems. The coupling between a fluid and a single layer poroelastic structure has been 

previously studied in [4, 33]. In particular, the work in [4] is based on the modeling and a 

numerical solution of the interaction between an incompressible, Newtonian fluid, described 

using the Navier Stokes equations, and a poroelastic structure modeled as a Biot system. 
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We design a time advancing scheme, which allows us to independently solve the 

governing equations of the system at each time step. Resorting to time splitting approaches 

mitigates the difficulty to identify appropriate solvers for the coupled system and reduces the 

need of large memory storage. The main drawback of loosely coupled splitting schemes is 

possible lack of stability and accuracy. To overcome these natural limitations, we adopt a non-

standard approach for the approximation of the coupling conditions, which is inspired by 

Nitsche’s method for the enforcement of boundary conditions, and it consists of adding 

appropriate interface operators to the variational formulation of the problem. Using time-lagging, 

the variational coupled problem can be split into three independent subproblems involving the 

elasticity equation, Darcy equation for flow in porous media and the Stokes problem, 

respectively. The stability analysis of the resulting scheme shows how to design appropriate 

stabilization terms that guarantee the stability of the time advancing algorithm. The Nitsche’s 

coupling approach allows for treating the mixed form of Darcy flow and thus provides accurate 

approximation to the filtration velocity. This is an alternative to the Lie-splitting scheme 

developed in [31], which is suitable for the pressure formulation of Darcy flow. 

This chapter is organized as follows. In Section 2.1 we present the governing equations of 

the prototype problem at hand, complemented by initial, boundary and interface conditions. The 

numerical discretization scheme, and in particular the approximation of the interface conditions 

is presented in Section 2.1.1. Section 2.3 is devoted to the development and analysis of the 

loosely coupled scheme and discusses the use of the loosely coupled scheme as a preconditioner 

for the monolithic scheme. Numerical experiments and convergence analysis of the benchmark 

test are discussed in Section 2.4. The corresponding results support and complement the 

available theory. 
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2.1 FORMULATION 

We consider the flow of an incompressible, viscous fluid in a channel bounded by a thick 

poroelastic medium. In particular, we are interested in simulating flow through the deformable 

channel with a two-way coupling between the fluid and the poroleastic structure. We assume that 

the channel is sufficiently large so that the non-Newtonian effects can be neglected. The fluid is 

modeled as an incompressible, viscous, Newtonian fluid using the Navier-Stokes equations in a 

deformable domain 𝛺𝛺𝑓𝑓(𝑡𝑡): 

𝜌𝜌𝑓𝑓 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣.  𝛻𝛻𝛻𝛻� = 𝛻𝛻.𝜎𝜎𝑓𝑓                            𝑖𝑖𝑖𝑖 𝛺𝛺𝑓𝑓 (2.1) 
 

𝛻𝛻. 𝑣𝑣 = 0                                                          𝑖𝑖𝑖𝑖 𝛺𝛺𝑓𝑓 (2.2) 
 

Here v and 𝜌𝜌𝑓𝑓 stand for fluid velocity vector field and fluid density, respectively, and 

𝜎𝜎𝑓𝑓 = −𝑝𝑝𝑓𝑓𝐼𝐼 + 2𝜇𝜇𝑓𝑓𝐷𝐷(𝑣𝑣) is the fluid Cauchy stress tensor where 𝑝𝑝𝑓𝑓 is fluid pressure, 𝜇𝜇𝑓𝑓 is fluid 

dynamic viscosity and fluid strain rate tensor is defined as 𝐷𝐷(𝑣𝑣) = 1
2

(∇𝑣𝑣 + ∇𝑣𝑣𝑇𝑇). 

We consider problem configurations as the channel extends to the external boundary, see 

Figure 1. This configuration is suitable for FSI in arteries. In this case, denote the inlet and outlet 

fluid boundaries by Γ𝑓𝑓𝑖𝑖𝑖𝑖 and Γ𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜, respectively.  

 

Figure 1. Schematic of the problem configuration 
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At the inlet and outlet boundary we prescribe the following conditions:  

𝜎𝜎𝑓𝑓𝑛𝑛𝑓𝑓 = −𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)𝑛𝑛𝑓𝑓 or 𝑣𝑣 = 𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡)                 on Γ𝑓𝑓𝑖𝑖𝑖𝑖 × (0,𝑇𝑇) (2.3) 

  𝜎𝜎𝑓𝑓𝑛𝑛𝑓𝑓 = 0                                                                   on Γ𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 × (0,𝑇𝑇) (2.4) 

where 𝑛𝑛𝑓𝑓 is the outward normal unit vector to the fluid boundaries and 𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡) is the 

pressure increment with respect to the ambient pressure surrounding the channel. The fluid 

domain is bounded by a deformable porous matrix consisting of a skeleton and connecting pores 

filled with fluid, whose dynamics is described by the Biot model. In particular, we consider the 

problem formulation analyzed in [34] and addressed in [24] for geomechanics.   

To model the poroelastic properties of the wall, we use the Biot system [24, 35] that 

describes the mechanical behavior of a homogeneous and isotropic elastic skeleton, and 

connecting pores filled with fluid. We assume that the fluid flow through the porous medium is 

modeled using the Darcy equation. Hence; the Biot system for a poroelastic material consists of 

the momentum equation for balance of total forces (2.5), Darcy’s law (2.6) and the storage 

equation (2.7) for the fluid mass conservation in the pores of the matrix: 

𝜌𝜌𝑝𝑝
𝜕𝜕2𝑈𝑈
𝜕𝜕𝑡𝑡2

− 𝛻𝛻. �𝜎𝜎𝑆𝑆 − 𝛼𝛼𝑝𝑝𝑝𝑝𝐼𝐼� = 0     𝑖𝑖𝑖𝑖 𝛺𝛺𝑝𝑝   (2.5) 

      𝑘𝑘−1𝑞𝑞 = −𝛻𝛻𝑝𝑝𝑝𝑝            𝑖𝑖𝑖𝑖 𝛺𝛺𝑝𝑝   (2.6) 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑠𝑠0𝑝𝑝𝑝𝑝 + 𝛼𝛼𝛼𝛼.𝑈𝑈� + 𝛻𝛻. 𝑞𝑞 = 0    𝑖𝑖𝑖𝑖 𝛺𝛺𝑝𝑝 (2.7) 

 

In equation (2.6), the relative velocity of the fluid within the porous wall is denoted by q, 

Pp is the fluid pressure. And hydraulic conductivity of the porous matrix is denoted by k. the 

coefficient 𝑠𝑠0 in (2.7) is the storage coefficient, and the Biot-Willis constant α is the pressure-

storage coupling coefficient.  𝜎𝜎𝑆𝑆 denotes the elasticity stress tensor.  
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We assume that the poroelastic structure is fixed at the inlet and outlet boundaries:  

 𝑈𝑈 = 0 on Γ𝑝𝑝𝑖𝑖𝑖𝑖 ∪ Γ𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 (2.8) 

that the external structure boundary Γ𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒 is exposed to external ambient pressure  

 𝑛𝑛𝑝𝑝 ⋅ 𝜎𝜎𝐸𝐸𝑛𝑛𝑝𝑝 = 0 on Γ𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒 (2.9) 

where 𝑛𝑛𝑝𝑝 is the outward unit normal vector on 𝜕𝜕Ω𝑝𝑝, and that the tangential displacement 

of the exterior boundary is zero:  

 𝑈𝑈 ⋅ 𝑡𝑡𝑝𝑝 = 0 on Γ𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒 (2.10) 

where 𝑈𝑈 ⋅ 𝑡𝑡𝑝𝑝 denotes the tangential component of the vector 𝑈𝑈. On the fluid pressure in 

the porous medium, we impose following boundary conditions:  

 𝑝𝑝𝑝𝑝 = 0 on Γ𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒,  𝑞𝑞 ⋅ 𝑛𝑛𝑝𝑝 = 0 on Γ𝑝𝑝𝑖𝑖𝑖𝑖 ∪ Γ𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 (2.11) 

At the initial time, the fluid and the poroelastic structure are assumed to be at rest, with 

zero displacement from the reference configuration  

 𝑣𝑣 = 0,  𝑈𝑈 = 0, 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, 𝑝𝑝𝑝𝑝 = 0. (2.12) 

The fluid and poroelastic structure are coupled via the following interface conditions, 

where we denote by 𝑛𝑛 the outward normal to the fluid domain and by 𝑡𝑡 the tangential unit vector 

on the interface Γ. We assume that 𝑛𝑛,  𝑡𝑡 coincide with the unit vectors relative to the fluid domain 

Ω𝑓𝑓. For mass conservation, the continuity of normal flux implies (2.13).   

 (𝑣𝑣 −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

) ⋅ 𝑛𝑛 = 𝑞𝑞 ⋅ 𝑛𝑛 on Γ (2.13) 

We point out that the fluid velocity field is allowed to have a non-vanishing component 

transversal to the interface Γ, namely 𝑣𝑣 ⋅ 𝑛𝑛. This velocity component accounts for the small 

deformations of the fluid domain around the reference configuration Ω𝑓𝑓. We also note that the 

displacement of the solid domain 𝑈𝑈 doesn’t have to be equal to zero on the interface. There are 
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different options to formulate a condition relative for the tangential velocity field at the interface. 

A no-slip interface condition is appropriate for those problems where fluid flow in the tangential 

direction is not allowed,  

 𝑣𝑣 ⋅ 𝑡𝑡 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

⋅ 𝑡𝑡 on Γ. (2.14) 

Concerning the exchange of stresses, the balance of normal components of the stress in 

the fluid phase gives:  

 𝑛𝑛 ⋅ 𝜎𝜎𝑓𝑓𝑛𝑛 = −𝑝𝑝𝑝𝑝 on Γ. (2.15) 

The conservation of momentum describes balance of contact forces. Precisely, it says that 

the sum of contact forces at the fluid-porous medium interface is equal to zero:  

 𝑛𝑛 ⋅ 𝜎𝜎𝑓𝑓𝑛𝑛 − 𝑛𝑛 ⋅ 𝜎𝜎𝑝𝑝𝑛𝑛 = 0 on Γ, (2.16) 

 𝑡𝑡 ⋅ 𝜎𝜎𝑓𝑓𝑛𝑛 − 𝑡𝑡 ⋅ 𝜎𝜎𝑝𝑝𝑛𝑛 = 0 on Γ. (2.17) 

2.1.1 What is the Nitsche’s method? 

One original feature of the proposed research is to approximate the complex interface 

conditions between the fluid, the porous medium and the structure mechanics using the Nitsche’s 

method Figure 2. Originally Nitsche’s method was designed for imposing essential boundary 

conditions weakly, at the level of variational formulation, but it can be used for handling internal 

interface conditions as well [36] and also in the particular case of fluid-structure interaction [37]. 

A Nitsche’s coupling has been proposed in [37, 38] for the interaction of a fluid with an elastic 

structure. Here, we extend those ideas to the case where a porous media flow is coupled to the 

fluid and the structure. The advantage of the Nitsche’s method is that it provides flexibility of 
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implementation on unstructured grids. Because there is no need to choose conforming fluid and 

structure meshes at the interface. 

 

Figure 2. Schematic of the interface conditions in FPSI system 

 

Nitsche’s method is utilized in this work to overcome the difficulty of the loosely coupled 

method in stability and accuracy. In particular, we have selected Nitsche’s method for enforcing 

coupling condition (2.13). Strong enforcement cannot handle (2.13) since it is a multi-variable 

equation that cannot be enforced into the finite element space directly. In contrast, Nitsche’s 

method can do it since it is a weak enforcement. A simple example of how to apply Nitsche’s 

method is provided using Poisson equation (2.18).  

−∆𝑢𝑢 = 𝑓𝑓   𝑖𝑖𝑖𝑖 𝛺𝛺              𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢 = 0 𝑜𝑜𝑜𝑜  𝜕𝜕𝜕𝜕  (2.18) 

In strong enforcement we define 𝑉𝑉𝑔𝑔 = {𝑣𝑣 ∈ 𝐻𝐻1(𝛺𝛺)  𝑣𝑣 = 0 𝑜𝑜𝑜𝑜 𝜕𝜕𝜕𝜕} and we seek 𝑢𝑢 ∈ 𝑉𝑉𝑔𝑔 

such that  (𝛻𝛻𝛻𝛻,𝛻𝛻𝛻𝛻)𝛺𝛺 = (𝑓𝑓, 𝑣𝑣)𝛺𝛺          ∀𝑣𝑣 ∈ 𝑉𝑉0. While, if we want to impose this essential boundary 

condition weakly, with Nitsche method: we find 𝑈𝑈 ∈ 𝑉𝑉ℎ ∁ 𝐻𝐻1(𝛺𝛺)  such that    𝑎𝑎(𝑈𝑈, 𝑣𝑣) =

(𝑓𝑓, 𝑣𝑣)𝛺𝛺          ∀𝑣𝑣 ∈ 𝑉𝑉ℎ ,  and we have: 
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𝑎𝑎ℎ(𝑈𝑈, 𝑣𝑣) = �𝛻𝛻𝛻𝛻.  𝛻𝛻𝛻𝛻 𝑑𝑑𝑑𝑑
𝛺𝛺

− �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

.  𝑣𝑣 𝑑𝑑𝑑𝑑 − �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

.  𝑈𝑈 𝑑𝑑𝑑𝑑 +
𝛾𝛾
ℎ
�𝑈𝑈. 𝑣𝑣 𝑑𝑑𝑑𝑑            
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 

 

(2.19) 

where γ is a positive constant. The main advantage is that the finite element space and is 

not affected by the interface conditions.  

In [39] a similar problem to what we are addressing here has been solved using Lagrange 

multiplier. It has been shown that the convergence rates are the same, however the continuity of 

flux across the interface is enforced in a stronger way with the use of Lagrange multiplier. More 

precisely, we get pointwise continuity on the interface, while penalization as done in Nitsche 

leads to a weaker imposition of this interface condition. Nitsche coupling conditions are more 

loose.  The resulting scheme can be split or preconditioned, so in the end we may use iterative 

solver to solve the system. Lagrange multiplier method does not allow for it, so we have a 

monolithic scheme which we have to solve using a direct solver. 

2.2 WEAK FORMULATION 

For the spatial discretization, we exploit the finite element method.  Let 𝑇𝑇ℎ
𝑓𝑓 and 𝑇𝑇ℎ

𝑝𝑝 be 

fixed, quasi-uniform meshes defined on the domains Ω𝑓𝑓 and Ω𝑝𝑝. We require that Ω𝑓𝑓 and Ω𝑝𝑝 are 

polygonal or polyhedral domains and that they conform at the interface Γ. We also require 

thatthe edges of each mesh lay on Γ. We denote with 𝑉𝑉ℎ
𝑓𝑓 ,𝑄𝑄ℎ

𝑓𝑓 the finite element spaces for the 

velocity and pressure approximation on the fluid domain Ω𝑓𝑓, with 𝑉𝑉ℎ
𝑝𝑝,𝑄𝑄ℎ

𝑝𝑝 the spaces for velocity 

and pressure approximation on the porous matrix Ω𝑝𝑝 and with 𝑋𝑋ℎ
𝑝𝑝, 𝑋̇𝑋ℎ

𝑝𝑝 the approximation spaces 
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for the structure displacement and velocity, respectively. We assume that all the finite element 

approximation spaces comply with the prescribed Dirichlet conditions on external boundaries 

𝜕𝜕Ω𝑓𝑓 ,  𝜕𝜕Ω𝑝𝑝. The bilinear forms relative to the structure, are defined as:  

𝑎𝑎𝑠𝑠(𝑈𝑈ℎ,𝜑𝜑𝑝𝑝,ℎ) ≔ 2𝜇𝜇𝑝𝑝 � 𝐷𝐷
Ω𝑝𝑝

(𝑈𝑈ℎ):𝐷𝐷(𝜑𝜑𝑝𝑝,ℎ)𝑑𝑑𝑑𝑑 + 𝜆𝜆𝑝𝑝 � (
Ω𝑝𝑝

𝛻𝛻 ⋅ 𝑈𝑈ℎ)(𝛻𝛻 ⋅ 𝜑𝜑𝑝𝑝,ℎ)𝑑𝑑𝑑𝑑, 

𝑏𝑏𝑠𝑠(𝑝𝑝𝑝𝑝,ℎ,𝜑𝜑𝑝𝑝,ℎ): = 𝛼𝛼� 𝑝𝑝𝑝𝑝,ℎ
Ω𝑝𝑝

𝛻𝛻 ⋅ 𝜑𝜑𝑝𝑝,ℎ𝑑𝑑𝑑𝑑. 

(2.20) 
 

For the fluid flow, and the filtration through the porous matrix, the bilinear forms are:  

𝑎𝑎𝑓𝑓�𝑣𝑣ℎ,𝜑𝜑𝑓𝑓,ℎ� ≔ 2𝜇𝜇𝑓𝑓 � 𝐷𝐷
Ω𝑓𝑓

(𝑣𝑣ℎ):𝐷𝐷�𝜑𝜑𝑓𝑓,ℎ�𝑑𝑑𝑑𝑑, 

𝑎𝑎𝑝𝑝(𝑞𝑞ℎ, 𝑟𝑟ℎ) ≔ � 𝜅𝜅−1
Ω𝑝𝑝

𝑞𝑞ℎ ⋅ 𝑟𝑟ℎ𝑑𝑑𝑑𝑑, 

𝑏𝑏𝑓𝑓�𝑝𝑝𝑓𝑓,ℎ,𝜑𝜑𝑓𝑓,ℎ� ≔ � 𝑝𝑝𝑓𝑓,ℎ
Ω𝑓𝑓

𝛻𝛻 ⋅ 𝜑𝜑𝑓𝑓,ℎ𝑑𝑑𝑑𝑑, 

𝑏𝑏𝑝𝑝(𝑝𝑝𝑝𝑝,ℎ, 𝑟𝑟ℎ): = � 𝑝𝑝𝑝𝑝,ℎ
Ω𝑝𝑝

𝛻𝛻 ⋅ 𝑟𝑟ℎ𝑑𝑑𝑑𝑑 

(2.21) 
 

After integrating by parts the governing equations, in order to distribute over test 

functions the second spatial derivatives of velocities and displacements as well as the first 

derivatives of the pressure, resorting to the dual-mixed weak formulation of Darcy’s problem, the 

following interface terms appear in the variational equations,  

𝐼𝐼Γ = �(
Γ
𝜎𝜎𝑓𝑓,ℎ𝑛𝑛 ⋅ 𝜑𝜑𝑓𝑓,ℎ − 𝜎𝜎𝑝𝑝,ℎ𝑛𝑛 ⋅ 𝜑𝜑𝑝𝑝,ℎ + 𝑝𝑝𝑝𝑝,ℎ𝑟𝑟ℎ ⋅ 𝑛𝑛) (2.22) 

Starting from the expression of 𝐼𝐼Γ, Nitsche’s method allows us to weakly enforce the 

interface conditions. More precisely, we separate 𝐼𝐼Γ into the normal and tangential components 

with respect to Γ and we use balance of stress over the interface, namely (2.15), (2.16), (2.17) to 

substitute the components of 𝜎𝜎𝑓𝑓,ℎ into 𝜎𝜎𝑝𝑝,ℎ and 𝑝𝑝𝑝𝑝,ℎ.  
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As a result, 𝐼𝐼Γ can be rewritten as,  

𝐼𝐼Γ = �𝑛𝑛
Γ
⋅ 𝜎𝜎𝑓𝑓,ℎ(𝑣𝑣ℎ,𝑝𝑝𝑓𝑓,ℎ)𝑛𝑛 (𝜑𝜑𝑓𝑓,ℎ − 𝑟𝑟ℎ − 𝜑𝜑𝑝𝑝,ℎ) ⋅ 𝑛𝑛 + �𝑡𝑡

Γ
⋅ 𝜎𝜎𝑓𝑓,ℎ(𝑣𝑣ℎ,𝑝𝑝𝑓𝑓,ℎ)𝑛𝑛(𝜑𝜑𝑓𝑓,ℎ − 𝜑𝜑𝑝𝑝,ℎ) ⋅ 𝑡𝑡. 

Since the expression of the interface terms involves the stresses only on the fluid side, 

this formulation can be classified as a one-sided variant of Nitsche’s method for interface 

conditions. We refer to [36] for an overview of different formulations. The enforcement of the 

kinematic conditions (2.13) and (2.14) using Nitsche’s method is based on adding to the 

variational formulation of the problem appropriate penalty terms. This results in the transformed 

integral,  

 

−𝐼𝐼Γ∗(𝑣𝑣ℎ, 𝑞𝑞ℎ,𝑝𝑝𝑓𝑓,ℎ,𝑝𝑝𝑝𝑝,ℎ,𝑈𝑈ℎ;𝜑𝜑𝑓𝑓,ℎ, 𝑟𝑟ℎ,𝜓𝜓𝑓𝑓,ℎ,𝜓𝜓𝑝𝑝,ℎ,𝜑𝜑𝑝𝑝,ℎ) = 

−�𝑛𝑛
Γ
⋅ 𝜎𝜎𝑓𝑓,ℎ(𝑣𝑣ℎ,𝑝𝑝𝑓𝑓,ℎ)𝑛𝑛 (𝜑𝜑𝑓𝑓,ℎ − 𝑟𝑟ℎ − 𝜑𝜑𝑝𝑝,ℎ) ⋅ 𝑛𝑛 − �𝑡𝑡

Γ
⋅ 𝜎𝜎𝑓𝑓,ℎ(𝑣𝑣ℎ,𝑝𝑝𝑓𝑓,ℎ)𝑛𝑛(𝜑𝜑𝑓𝑓,ℎ − 𝜑𝜑𝑝𝑝,ℎ) ⋅ 𝑡𝑡 

+�𝛾𝛾𝑓𝑓
Γ

𝜇𝜇𝑓𝑓ℎ−1[(𝑣𝑣ℎ − 𝑞𝑞ℎ − 𝜕𝜕𝑡𝑡𝑈𝑈ℎ) ⋅ 𝑛𝑛 (𝜑𝜑𝑓𝑓,ℎ − 𝑟𝑟ℎ − 𝜑𝜑𝑝𝑝,ℎ) ⋅ 𝑛𝑛 + (𝑣𝑣ℎ − 𝜕𝜕𝑡𝑡𝑈𝑈ℎ) ⋅ 𝑡𝑡 (𝜑𝜑𝑓𝑓,ℎ − 𝜑𝜑𝑝𝑝,ℎ) ⋅ 𝑡𝑡], 

where 𝛾𝛾𝑓𝑓 > 0 denotes a penalty parameter that will be suitably defined later on. 

Furthermore, in order to account for the symmetric, incomplete or skew-symmetric variants of 

Nitsche’s method, see [36], we introduce the following additional terms:  

 

−𝑆𝑆Γ
∗,𝜍𝜍(𝑣𝑣ℎ, 𝑞𝑞ℎ,𝑝𝑝𝑓𝑓,ℎ,𝑝𝑝𝑝𝑝,ℎ,𝑈𝑈ℎ;𝜑𝜑𝑓𝑓,ℎ, 𝑟𝑟ℎ,𝜓𝜓𝑓𝑓,ℎ,𝜓𝜓𝑝𝑝,ℎ,𝜑𝜑𝑝𝑝,ℎ) = 

−�𝑛𝑛
Γ
⋅ 𝜎𝜎𝑓𝑓,ℎ(𝜍𝜍𝜑𝜑𝑓𝑓,ℎ,−𝜓𝜓𝑓𝑓,ℎ)𝑛𝑛 (𝑣𝑣ℎ − 𝑞𝑞ℎ − 𝜕𝜕𝑡𝑡𝑈𝑈ℎ) ⋅ 𝑛𝑛 − �𝑡𝑡

Γ
⋅ 𝜎𝜎𝑓𝑓,ℎ(𝜍𝜍𝜑𝜑𝑓𝑓,ℎ,−𝜓𝜓𝑓𝑓,ℎ)𝑛𝑛(𝑣𝑣ℎ − 𝜕𝜕𝑡𝑡𝑈𝑈ℎ) ⋅ 𝑡𝑡, 

which anyway do not violate the consistency of the original scheme because they vanish 

if the kinematic constraints are satisfied. The flag 𝜍𝜍 ∈ (1,0,−1) determines if we adopt a 

symmetric, incomplete or skew symmetric formulation, respectively.  
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For any 𝑡𝑡 ∈ (0,𝑇𝑇), the coupled fluid/solid problem consists of finding 𝑣𝑣ℎ ,𝑝𝑝𝑓𝑓,ℎ, 𝑞𝑞ℎ,𝑝𝑝𝑝𝑝,ℎ ∈

𝑉𝑉ℎ
𝑓𝑓 × 𝑄𝑄ℎ

𝑓𝑓 × 𝑉𝑉ℎ
𝑝𝑝 × 𝑄𝑄ℎ

𝑝𝑝 and 𝑈𝑈ℎ, 𝑈̇𝑈ℎ ∈ 𝑋𝑋ℎ
𝑝𝑝 × 𝑋̇𝑋ℎ

𝑝𝑝 such that for any 𝜑𝜑𝑓𝑓,ℎ,𝜓𝜓𝑓𝑓,ℎ, 𝑟𝑟ℎ,𝜓𝜓𝑝𝑝,ℎ ∈ 𝑉𝑉ℎ
𝑓𝑓 × 𝑄𝑄ℎ

𝑓𝑓 ×

𝑉𝑉ℎ
𝑝𝑝 × 𝑄𝑄ℎ

𝑝𝑝 and 𝜑𝜑𝑝𝑝,ℎ, 𝜑̇𝜑𝑝𝑝,ℎ ∈ 𝑋𝑋ℎ
𝑝𝑝 × 𝑋̇𝑋ℎ

𝑝𝑝 we have,  

 

𝜌𝜌𝑝𝑝 � 𝜕𝜕𝑡𝑡
Ω𝑝𝑝

𝑈̇𝑈ℎ ⋅ 𝜑𝜑𝑝𝑝,ℎ𝑑𝑑𝑑𝑑 + 𝜌𝜌𝑝𝑝 � (
Ω𝑝𝑝

𝑈̇𝑈ℎ − 𝜕𝜕𝑡𝑡𝑈𝑈ℎ) ⋅ 𝜑̇𝜑𝑝𝑝,ℎ𝑑𝑑𝑑𝑑

+ 𝜌𝜌𝑓𝑓 � 𝜕𝜕𝑡𝑡
Ω𝑓𝑓

𝑣𝑣ℎ ⋅ 𝜑𝜑𝑓𝑓,ℎ𝑑𝑑𝑑𝑑 + 𝑠𝑠0 � 𝜕𝜕𝑡𝑡
Ω𝑝𝑝

𝑝𝑝𝑝𝑝,ℎ𝜓𝜓𝑝𝑝,ℎ𝑑𝑑𝑑𝑑 + 𝑎𝑎𝑠𝑠(𝑈𝑈ℎ,𝜑𝜑𝑝𝑝,ℎ)

− 𝑏𝑏𝑠𝑠(𝑝𝑝𝑝𝑝,ℎ,𝜑𝜑𝑝𝑝,ℎ) + 𝑏𝑏𝑠𝑠(𝜓𝜓𝑝𝑝,ℎ,𝜕𝜕𝑡𝑡𝑈𝑈ℎ) + 𝑎𝑎𝑝𝑝(𝑞𝑞ℎ, 𝑟𝑟ℎ) − 𝑏𝑏𝑝𝑝(𝑝𝑝𝑝𝑝,ℎ, 𝑟𝑟ℎ)

+ 𝑏𝑏𝑝𝑝(𝜓𝜓𝑝𝑝,ℎ,𝑞𝑞ℎ) + 𝑎𝑎𝑓𝑓(𝑣𝑣ℎ,𝜑𝜑𝑓𝑓,ℎ) − 𝑏𝑏𝑓𝑓(𝑝𝑝𝑓𝑓,ℎ,𝜑𝜑𝑓𝑓,ℎ) + 𝑏𝑏𝑓𝑓(𝜓𝜓𝑓𝑓,ℎ,𝑣𝑣ℎ)

− (𝐼𝐼Γ∗ + 𝑆𝑆Γ
∗,𝜍𝜍)(𝑣𝑣ℎ, 𝑞𝑞ℎ,𝑝𝑝𝑓𝑓,ℎ,𝑝𝑝𝑝𝑝,ℎ,𝑈𝑈ℎ;𝜑𝜑𝑓𝑓,ℎ, 𝑟𝑟ℎ,𝜓𝜓𝑓𝑓,ℎ,𝜓𝜓𝑝𝑝,ℎ,𝜑𝜑𝑝𝑝,ℎ)

= 𝐹𝐹(𝑡𝑡;𝜑𝜑𝑓𝑓,ℎ, 𝑟𝑟ℎ,𝜓𝜓𝑓𝑓,ℎ,𝜓𝜓𝑝𝑝,ℎ,𝜑𝜑𝑝𝑝,ℎ). 

(2.23) 

Problem (2.23) is usually called the semi-discrete problem (SDP). Equation (2.23) must 

be complemented by suitable initial conditions and 𝐹𝐹(⋅) accounts for boundary conditions and 

forcing terms. We set 𝑝𝑝𝑖𝑖𝑖𝑖 ≠ 0 or 𝑣𝑣𝑖𝑖𝑖𝑖 ≠ 0 on Γ𝑓𝑓𝑖𝑖𝑖𝑖. The corresponding forcing term is: 

𝐹𝐹(𝑡𝑡;𝜑𝜑𝑓𝑓,ℎ) = −� 𝑝𝑝𝑖𝑖𝑖𝑖
Γ𝑓𝑓
𝑖𝑖𝑖𝑖

(𝑡𝑡) 𝜑𝜑𝑓𝑓,ℎ ⋅ 𝑛𝑛𝑓𝑓 

We now address the time discretization. Let 𝛥𝛥𝛥𝛥 denote the time step, 𝑡𝑡𝑛𝑛 = 𝑛𝑛𝛥𝛥𝛥𝛥, 0 ≤ 𝑛𝑛 ≤

𝑁𝑁. For the time discretization of the coupled problem, we have adopted the Backward Euler (BE) 

method for both the flow and the structure problem. We define the first order (backward) discrete 

time derivative be defined as:  

𝑑𝑑𝜏𝜏𝑢𝑢𝑛𝑛: =
𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛−1

𝛥𝛥𝛥𝛥
. 
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The fully discrete coupled fluid-solid problem is to find, at each 𝑡𝑡𝑛𝑛, 𝑣𝑣ℎ𝑛𝑛,𝑝𝑝𝑓𝑓,ℎ
𝑛𝑛 , 𝑞𝑞ℎ𝑛𝑛,𝑝𝑝𝑝𝑝,ℎ

𝑛𝑛 ∈

𝑉𝑉ℎ
𝑓𝑓 × 𝑄𝑄ℎ

𝑓𝑓 × 𝑉𝑉ℎ
𝑝𝑝 × 𝑄𝑄ℎ

𝑝𝑝 and 𝑈𝑈ℎ𝑛𝑛, 𝑈̇𝑈ℎ𝑛𝑛 ∈ 𝑋𝑋ℎ
𝑝𝑝 × 𝑋̇𝑋ℎ

𝑝𝑝 such that for any 𝜑𝜑𝑓𝑓,ℎ,𝜓𝜓𝑓𝑓,ℎ, 𝑟𝑟ℎ,𝜓𝜓𝑝𝑝,ℎ ∈ 𝑉𝑉ℎ
𝑓𝑓 × 𝑄𝑄ℎ

𝑓𝑓 ×

𝑉𝑉ℎ
𝑝𝑝 × 𝑄𝑄ℎ

𝑝𝑝 and 𝜑𝜑𝑝𝑝,ℎ, 𝜑̇𝜑𝑝𝑝,ℎ ∈ 𝑋𝑋ℎ
𝑝𝑝 × 𝑋̇𝑋ℎ

𝑝𝑝 we have,  

 

𝜌𝜌𝑝𝑝 � 𝑑𝑑𝜏𝜏
Ω𝑝𝑝

𝑈̇𝑈ℎ𝑛𝑛 ⋅ 𝜑𝜑𝑝𝑝,ℎ𝑑𝑑𝑑𝑑 + 𝜌𝜌𝑝𝑝 � (
Ω𝑝𝑝

𝑈̇𝑈ℎ𝑛𝑛 − 𝑑𝑑𝜏𝜏𝑈𝑈ℎ𝑛𝑛) ⋅ 𝜑̇𝜑𝑝𝑝,ℎ𝑑𝑑𝑑𝑑

+ 𝜌𝜌𝑓𝑓 � 𝑑𝑑𝜏𝜏
Ω𝑓𝑓

𝑣𝑣ℎ𝑛𝑛 ⋅ 𝜑𝜑𝑓𝑓,ℎ𝑑𝑑𝑑𝑑 + 𝑠𝑠0 � 𝑑𝑑𝜏𝜏
Ω𝑝𝑝

𝑝𝑝𝑝𝑝,ℎ
𝑛𝑛 𝜓𝜓𝑝𝑝,ℎ𝑑𝑑𝑑𝑑 + 𝑎𝑎𝑠𝑠(𝑈𝑈ℎ𝑛𝑛,𝜑𝜑𝑝𝑝,ℎ)

− 𝑏𝑏𝑠𝑠(𝑝𝑝𝑝𝑝,ℎ
𝑛𝑛 ,𝜑𝜑𝑝𝑝,ℎ) + 𝑏𝑏𝑠𝑠(𝜓𝜓𝑝𝑝,ℎ,𝑑𝑑𝜏𝜏𝑈𝑈ℎ𝑛𝑛) + 𝑎𝑎𝑝𝑝(𝑞𝑞ℎ𝑛𝑛, 𝑟𝑟ℎ) − 𝑏𝑏𝑝𝑝(𝑝𝑝𝑝𝑝,ℎ

𝑛𝑛 , 𝑟𝑟ℎ)

+ 𝑏𝑏𝑝𝑝(𝜓𝜓𝑝𝑝,ℎ,𝑞𝑞ℎ𝑛𝑛) + 𝑎𝑎𝑓𝑓(𝑣𝑣ℎ𝑛𝑛,𝜑𝜑𝑓𝑓,ℎ) − 𝑏𝑏𝑓𝑓(𝑝𝑝𝑓𝑓,ℎ
𝑛𝑛 ,𝜑𝜑𝑓𝑓,ℎ) + 𝑏𝑏𝑓𝑓(𝜓𝜓𝑓𝑓,ℎ, 𝑣𝑣ℎ𝑛𝑛)

− (𝐼𝐼Γ∗ + 𝑆𝑆Γ
∗𝜍𝜍)(𝑣𝑣ℎ𝑛𝑛, 𝑞𝑞ℎ𝑛𝑛,𝑝𝑝𝑓𝑓,ℎ

𝑛𝑛 ,𝑝𝑝𝑝𝑝,ℎ
𝑛𝑛 ,𝑈𝑈ℎ𝑛𝑛;𝜑𝜑𝑓𝑓,ℎ, 𝑟𝑟ℎ,𝜓𝜓𝑓𝑓,ℎ,𝜓𝜓𝑝𝑝,ℎ,𝜑𝜑𝑝𝑝,ℎ)

= 𝐹𝐹(𝑡𝑡𝑛𝑛;𝜑𝜑𝑓𝑓,ℎ). 

(2.24) 

We denote problem (2.24) as the (fully) discrete problem with implicit coupling between 

the fluid and the structure sub-problems.  

2.3 NUMERICAL PROCEDURE 

The challenges of numerical discretization of the FSI problem in hemodynamics are associated 

with the added-mass effect and high nonlinearity of the problem. In case of poroelasticity an 

additional difficulty is with the fluid-porous media coupling. Also these kinds of problems have 

high computational costs since there are more unknowns; and also more equations are coupled. 

So we may have memory problems as well. It motivates our numerical work. 

The numerical approaches in solving FSI problems are classified into the partitioned and 

the monolithic approach. Partitioned approach treats the fluid and structure problems as two 
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computational fields, which can be solved using two distinct solvers. The interface conditions 

between the fluid and structure are solved through loosely or strongly coupled algorithms. 

Monolithic approach treats the fluid and the structure as a single system and the interfacial 

conditions are implicit in the solution procedure.  

We have addressed both approaches for solving this problem. Indeed, it is expensive to 

solve this complex system by using the traditional monolithic methods even though they are 

usually stable and accurate. Hence, it is important to develop new methods to solve it in 

decoupled ways. Since splitting of the problem degrades the approximation properties, we first 

propose a loosely coupled method and then we suggest that the loosely coupled scheme serve as 

a preconditioner for the global monolithic solution approach. At the best of our knowledge, it is 

the first time that this approach is adopted for fluid porous structure interaction problems. 

2.3.1 Partitioned scheme 

When enforced by Nitsche’s method, the interface conditions appear in the variational 

formulation in a modular form. As a result, using time lagging, it is straightforward to design 

various loosely coupled algorithms to solve each equation of the problem independently from the 

others. If we finally proceed to solve all the problems independently, we obtain the explicit 

algorithm reported below. We also formulate explicitly the governing and interface conditions 

that are enforced in practice when each sub-problem is solved. The stability analysis is provide in 

[27]. 
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Sub-problem 1: given 𝑣𝑣ℎ𝑛𝑛−1,𝑝𝑝𝑓𝑓,ℎ
𝑛𝑛−1, 𝑞𝑞ℎ𝑛𝑛−1,𝑝𝑝𝑝𝑝,ℎ

𝑛𝑛−1 find 𝑈𝑈ℎ𝑛𝑛, 𝑈̇𝑈ℎ𝑛𝑛 in Ω𝑝𝑝 such that:  

𝜌𝜌𝑝𝑝 � 𝑑𝑑𝜏𝜏
Ω𝑝𝑝

𝑈̇𝑈ℎ𝑛𝑛 ⋅ 𝜑𝜑𝑝𝑝,ℎ + 𝜌𝜌𝑝𝑝 � (
Ω𝑝𝑝

𝑈̇𝑈ℎ𝑛𝑛 − 𝑑𝑑𝜏𝜏𝑈𝑈ℎ𝑛𝑛) ⋅ 𝜑̇𝜑𝑝𝑝,ℎ + 𝑎𝑎𝑠𝑠(𝑈𝑈ℎ𝑛𝑛,𝜑𝜑𝑝𝑝,ℎ) + �𝛾𝛾𝑓𝑓
Γ

𝜇𝜇𝑓𝑓ℎ−1𝑑𝑑𝜏𝜏𝑈𝑈ℎ𝑛𝑛 ⋅ 𝑡𝑡𝑝𝑝 𝜑𝜑𝑝𝑝,ℎ

⋅ 𝑡𝑡𝑝𝑝  + �𝛾𝛾𝑓𝑓
Γ

𝜇𝜇𝑓𝑓ℎ−1𝑑𝑑𝜏𝜏𝑈𝑈ℎ𝑛𝑛 ⋅ 𝑛𝑛𝑝𝑝 𝜑𝜑𝑝𝑝,ℎ ⋅ 𝑛𝑛𝑝𝑝

= 𝑏𝑏𝑠𝑠(𝑝𝑝𝑝𝑝,ℎ
𝑛𝑛−1,𝜑𝜑𝑝𝑝,ℎ) −�𝑛𝑛𝑝𝑝

Γ
⋅ 𝜎𝜎𝑓𝑓,ℎ

𝑛𝑛−1𝑛𝑛𝑝𝑝 (−𝜑𝜑𝑝𝑝,ℎ) ⋅ 𝑛𝑛𝑝𝑝 − �𝑡𝑡𝑝𝑝
Γ

⋅ 𝜎𝜎𝑓𝑓,ℎ
𝑛𝑛−1𝑛𝑛𝑝𝑝(−𝜑𝜑𝑝𝑝,ℎ) ⋅ 𝑡𝑡𝑝𝑝

+ �𝛾𝛾𝑓𝑓
Γ

𝜇𝜇𝑓𝑓ℎ−1𝑣𝑣ℎ𝑛𝑛−1 ⋅ 𝑡𝑡𝑝𝑝 𝜑𝜑𝑝𝑝,ℎ ⋅ 𝑡𝑡𝑝𝑝 + �𝛾𝛾𝑓𝑓
Γ

𝜇𝜇𝑓𝑓ℎ−1(𝑣𝑣ℎ𝑛𝑛−1 − 𝑞𝑞ℎ𝑛𝑛−1) ⋅ 𝑛𝑛𝑝𝑝 𝜑𝜑𝑝𝑝,ℎ ⋅ 𝑛𝑛𝑝𝑝. 

This problem is equivalent to solving the elastodynamics equation, namely (2.5), where 

the pressure term has been time-lagged, complemented with the following Robin-type boundary 

condition on Γ:  

𝑛𝑛𝑝𝑝 ⋅ 𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑝𝑝 = 𝑛𝑛𝑝𝑝 ⋅ (𝜎𝜎𝑓𝑓)𝑛𝑛−1𝑛𝑛𝑝𝑝 − 𝛾𝛾𝑓𝑓𝜇𝜇𝑓𝑓ℎ−1(𝑑𝑑𝜏𝜏𝑈𝑈𝑛𝑛 − 𝑣𝑣𝑛𝑛−1 + 𝑞𝑞𝑛𝑛−1) ⋅ 𝑛𝑛𝑝𝑝, on Γ, 

𝑡𝑡𝑝𝑝 ⋅ 𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑝𝑝 = 𝑡𝑡𝑝𝑝 ⋅ (𝜎𝜎𝑓𝑓)𝑛𝑛−1𝑛𝑛𝑝𝑝 − 𝛾𝛾𝑓𝑓𝜇𝜇𝑓𝑓ℎ−1(𝑑𝑑𝜏𝜏𝑈𝑈𝑛𝑛 − 𝑣𝑣𝑛𝑛−1) ⋅ 𝑡𝑡𝑝𝑝, on Γ. 

Also the terms involving stress in the fluid are evaluated at the previous time step, to 

improve the stability of the explicit coupling. 

Sub-problem 2: given 𝑣𝑣ℎ𝑛𝑛−1,𝑝𝑝𝑓𝑓,ℎ
𝑛𝑛−1 and 𝑈𝑈ℎ𝑛𝑛, find 𝑞𝑞ℎ,𝑝𝑝𝑝𝑝,ℎ

𝑛𝑛  in Ω𝑝𝑝 such that:  

𝑠𝑠0 � 𝑑𝑑𝜏𝜏
Ω𝑝𝑝

𝑝𝑝𝑝𝑝,ℎ
𝑛𝑛 𝜓𝜓𝑝𝑝,ℎ𝑑𝑑𝑑𝑑 + 𝑎𝑎𝑝𝑝(𝑞𝑞ℎ𝑛𝑛, 𝑟𝑟ℎ) − 𝑏𝑏𝑝𝑝�𝑝𝑝𝑝𝑝,ℎ

𝑛𝑛 , 𝑟𝑟ℎ� + 𝑏𝑏𝑝𝑝�𝜓𝜓𝑝𝑝,ℎ, 𝑞𝑞ℎ𝑛𝑛�

+ 𝑠𝑠𝑓𝑓,𝑞𝑞�𝑑𝑑𝜏𝜏𝑞𝑞ℎ ⋅ 𝑛𝑛𝑝𝑝, 𝑟𝑟ℎ ⋅ 𝑛𝑛𝑝𝑝� + �𝛾𝛾𝑓𝑓
Γ

𝜇𝜇𝑓𝑓ℎ−1𝑞𝑞ℎ𝑛𝑛 ⋅ 𝑛𝑛𝑝𝑝 𝑟𝑟ℎ ⋅ 𝑛𝑛𝑝𝑝

= −𝑏𝑏𝑠𝑠�𝜓𝜓𝑝𝑝,ℎ,𝑑𝑑𝜏𝜏𝑈𝑈ℎ𝑛𝑛� + �𝛾𝛾𝑓𝑓
Γ

𝜇𝜇𝑓𝑓ℎ−1(𝑣𝑣ℎ𝑛𝑛−1 − 𝑑𝑑𝜏𝜏𝑈𝑈ℎ𝑛𝑛−1) ⋅ 𝑛𝑛𝑝𝑝 𝑟𝑟ℎ ⋅ 𝑛𝑛𝑝𝑝

+ �𝑛𝑛𝑝𝑝
Γ

⋅ 𝜎𝜎𝑓𝑓,ℎ
𝑛𝑛−1𝑛𝑛𝑝𝑝 𝑟𝑟ℎ ⋅ 𝑛𝑛𝑝𝑝. 
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This problem consists of the dual-mixed weak form of Darcy equations (2.6)-(2.7) 

complemented with the following boundary condition,  

𝑝𝑝𝑝𝑝𝑛𝑛 = −𝑛𝑛𝑝𝑝 ⋅ (𝜎𝜎𝑓𝑓)𝑛𝑛−1𝑛𝑛𝑝𝑝 − 𝛾𝛾𝑓𝑓𝜇𝜇𝑓𝑓ℎ−1(𝑣𝑣𝑛𝑛−1 − 𝑑𝑑𝜏𝜏𝑈𝑈𝑛𝑛−1 − 𝑞𝑞ℎ𝑛𝑛) ⋅ 𝑛𝑛𝑝𝑝,  on Γ. 

Sub-problem 3: given 𝑞𝑞ℎ𝑛𝑛,𝑝𝑝𝑝𝑝,ℎ
𝑛𝑛 ,𝑈𝑈ℎ𝑛𝑛, find 𝑣𝑣ℎ𝑛𝑛, 𝑝𝑝𝑓𝑓,ℎ

𝑛𝑛  in Ω𝑓𝑓 such that:  

𝜌𝜌𝑓𝑓 � 𝑑𝑑𝜏𝜏
Ω𝑓𝑓

𝑣𝑣ℎ𝑛𝑛 ⋅ 𝜑𝜑𝑓𝑓,ℎ𝑑𝑑𝑑𝑑 + 𝑎𝑎𝑓𝑓(𝑣𝑣ℎ𝑛𝑛,𝜑𝜑𝑓𝑓,ℎ) − 𝑏𝑏𝑓𝑓(𝑝𝑝𝑓𝑓,ℎ
𝑛𝑛 ,𝜑𝜑𝑓𝑓,ℎ) + 𝑏𝑏𝑓𝑓(𝜓𝜓𝑓𝑓,ℎ, 𝑣𝑣ℎ𝑛𝑛)

+ 𝑠𝑠𝑓𝑓,𝑝𝑝(𝑑𝑑𝜏𝜏𝑝𝑝𝑓𝑓,ℎ,𝜓𝜓𝑓𝑓,ℎ) + 𝑠𝑠𝑓𝑓,𝑣𝑣(𝑑𝑑𝜏𝜏𝑣𝑣ℎ𝑛𝑛 ⋅ 𝑛𝑛𝑓𝑓 ,𝜑𝜑𝑓𝑓,ℎ ⋅ 𝑛𝑛𝑓𝑓)

−�𝜎𝜎𝑓𝑓,ℎ
Γ

(𝜍𝜍𝜑𝜑𝑓𝑓,ℎ,−𝜓𝜓𝑓𝑓,ℎ)𝑛𝑛𝑓𝑓 ⋅ 𝑣𝑣ℎ𝑛𝑛 + �𝛾𝛾𝑓𝑓
Γ

𝜇𝜇𝑓𝑓ℎ−1𝑣𝑣ℎ𝑛𝑛 ⋅ 𝜑𝜑𝑓𝑓,ℎ

= 𝐹𝐹(𝑡𝑡𝑛𝑛;𝜑𝜑𝑓𝑓,ℎ) + �𝜎𝜎𝑓𝑓,ℎ
𝑛𝑛−1

Γ
𝑛𝑛𝑓𝑓 ⋅ 𝜑𝜑𝑓𝑓,ℎ − �𝑡𝑡𝑓𝑓

Γ
⋅ 𝜎𝜎𝑓𝑓,ℎ(𝜍𝜍𝜑𝜑𝑓𝑓,ℎ,−𝜓𝜓𝑓𝑓,ℎ)𝑛𝑛𝑓𝑓𝑑𝑑𝜏𝜏𝑈𝑈ℎ𝑛𝑛 ⋅ 𝑡𝑡𝑓𝑓

− �𝑛𝑛𝑓𝑓
Γ

⋅ 𝜎𝜎𝑓𝑓,ℎ(𝜍𝜍𝜑𝜑𝑓𝑓,ℎ,−𝜓𝜓𝑓𝑓,ℎ)𝑛𝑛𝑓𝑓 (𝑞𝑞ℎ𝑛𝑛 + 𝑑𝑑𝜏𝜏𝑈𝑈ℎ𝑛𝑛) ⋅ 𝑛𝑛𝑓𝑓 + �𝛾𝛾𝑓𝑓
Γ

𝜇𝜇𝑓𝑓ℎ−1(𝑞𝑞ℎ𝑛𝑛

+ 𝑑𝑑𝜏𝜏𝑈𝑈ℎ𝑛𝑛) ⋅ 𝑛𝑛𝑓𝑓 𝜑𝜑𝑓𝑓,ℎ ⋅ 𝑛𝑛𝑓𝑓 + �𝛾𝛾𝑓𝑓
Γ

𝜇𝜇𝑓𝑓ℎ−1𝑑𝑑𝜏𝜏𝑈𝑈ℎ𝑛𝑛 ⋅ 𝑡𝑡𝑓𝑓 𝜑𝜑𝑓𝑓,ℎ ⋅ 𝑡𝑡𝑓𝑓 . 

where 𝑠𝑠𝑓𝑓,𝑝𝑝(𝑑𝑑𝜏𝜏𝑝𝑝𝑓𝑓,ℎ,𝜓𝜓𝑓𝑓,ℎ) is a stabilization term proposed in [37] acting on the free fluid 

pressure, that helps to restore the stability of the explicit time advancing scheme. 

𝑠𝑠𝑓𝑓,𝑝𝑝(𝑑𝑑𝜏𝜏𝑝𝑝𝑓𝑓,ℎ,𝜓𝜓𝑓𝑓,ℎ): = 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
ℎ𝛥𝛥𝛥𝛥
𝛾𝛾𝑓𝑓𝜇𝜇𝑓𝑓

�𝑑𝑑𝜏𝜏
Γ

𝑝𝑝𝑓𝑓,ℎ
𝑛𝑛  𝜓𝜓𝑓𝑓,ℎ . 

Before time-lagging of the term 𝜎𝜎𝑓𝑓,ℎ
𝑛𝑛−1𝑛𝑛𝑓𝑓 ⋅ 𝜑𝜑𝑓𝑓,ℎ, this problem corresponds to the fluid 

equations (2.1)-(2.2), where the kinematic conditions (2.25), have been enforced using the 

classical Nitsche’s method formulation for boundary conditions [36]. 

 𝑣𝑣𝑛𝑛 ⋅ 𝑛𝑛𝑓𝑓 = (𝑞𝑞𝑛𝑛 + 𝑑𝑑𝜏𝜏𝑈𝑈𝑛𝑛) ⋅ 𝑛𝑛𝑓𝑓 ,  𝑣𝑣𝑛𝑛 ⋅ 𝑡𝑡𝑓𝑓 = 𝑑𝑑𝜏𝜏𝑈𝑈𝑛𝑛 ⋅ 𝑡𝑡𝑓𝑓 on Γ, (2.25) 
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We observe that new stabilization terms 𝑠𝑠𝑓𝑓,𝑣𝑣, 𝑠𝑠𝑓𝑓,𝑞𝑞 have been introduced into the problem 

formulation. Their role is to control the increment of 𝑣𝑣ℎ𝑛𝑛, 𝑞𝑞ℎ𝑛𝑛 over two subsequent time steps, 

namely: 

𝑠𝑠𝑓𝑓,𝑞𝑞(𝑑𝑑𝜏𝜏𝑞𝑞ℎ𝑛𝑛 ⋅ 𝑛𝑛, 𝑟𝑟ℎ ⋅ 𝑛𝑛) = 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠′ 𝛾𝛾𝑓𝑓𝜇𝜇𝑓𝑓
𝛥𝛥𝛥𝛥
ℎ
�𝑑𝑑𝜏𝜏
Γ

𝑞𝑞ℎ𝑛𝑛 ⋅ 𝑛𝑛𝑟𝑟ℎ ⋅ 𝑛𝑛 , 

𝑠𝑠𝑓𝑓,𝑣𝑣(𝑑𝑑𝜏𝜏𝑣𝑣ℎ𝑛𝑛 ⋅ 𝑛𝑛,𝜑𝜑𝑓𝑓,ℎ ⋅ 𝑛𝑛) = 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠′ 𝛾𝛾𝑓𝑓𝜇𝜇𝑓𝑓
𝛥𝛥𝛥𝛥
ℎ
�𝑑𝑑𝜏𝜏
Γ

𝑣𝑣ℎ𝑛𝑛 ⋅ 𝑛𝑛𝜑𝜑𝑓𝑓,ℎ ⋅ 𝑛𝑛 . 

2.3.2 Monolithic scheme 

The main drawback of loosely coupled methods, in spite of their significant advantage in 

terms of computational efficiency compare to the monolithic scheme, is poor accuracy. So, to 

improve the accuracy of our solver, we also consider its application as a preconditioner for the 

solution of the fully coupled (monolithic) FSI problem formulation.  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡(𝑀𝑀𝑓𝑓 + 𝐴𝐴𝑓𝑓 + 𝛤𝛤𝑓𝑓ᵞ + 𝛤𝛤𝑓𝑓𝜎𝜎 + ᶳ�𝛤𝛤𝑓𝑓𝜎𝜎�

𝑇𝑇) �𝐵𝐵𝑝𝑝𝑝𝑝 + 𝛤𝛤𝑝𝑝𝑝𝑝�
𝑇𝑇 𝛤𝛤𝑞𝑞𝑞𝑞𝑇𝑇

�𝐵𝐵𝑝𝑝𝑝𝑝 + 𝛤𝛤𝑝𝑝𝑝𝑝� 𝑆𝑆𝑝𝑝 𝛤𝛤𝑞𝑞𝑞𝑞𝑇𝑇

𝛤𝛤𝑞𝑞𝑞𝑞 𝛤𝛤𝑞𝑞𝑞𝑞 �𝐴𝐴𝑞𝑞 + 𝛤𝛤𝑞𝑞�

0 𝛤𝛤𝑠𝑠𝑠𝑠𝑇𝑇 0
0 𝛤𝛤𝑠𝑠𝑠𝑠𝑇𝑇 0

−𝐵𝐵𝑝𝑝𝑝𝑝𝑇𝑇 𝛤𝛤𝑠𝑠𝑠𝑠𝑇𝑇 0

    0                   0 𝐵𝐵𝑝𝑝𝑝𝑝
    𝛤𝛤𝑠𝑠𝑠𝑠                      𝛤𝛤𝑠𝑠𝑠𝑠 𝛤𝛤𝑠𝑠𝑠𝑠
    0                    0 0

     𝑀𝑀𝑝𝑝 𝐵𝐵𝑠𝑠𝑠𝑠𝑇𝑇    0
     𝐵𝐵𝑠𝑠𝑠𝑠 (𝐴𝐴𝑠𝑠 + 𝛤𝛤𝑠𝑠) 𝑀𝑀𝑠𝑠

   0 −𝑀𝑀𝑠𝑠 𝑀𝑀𝑠𝑠
. ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

.

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑣𝑣𝑛𝑛

𝑃𝑃𝑓𝑓𝑛𝑛

𝑞𝑞𝑛𝑛

𝑃𝑃𝑝𝑝𝑛𝑛

𝑈𝑈𝑛𝑛

𝑈𝑈.𝑛𝑛⎦
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡𝐹𝐹

(𝑡𝑡𝑛𝑛)
0
0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎡ (𝑀𝑀𝑓𝑓 + 𝑆𝑆𝑓𝑓) 0 0

0 𝑆𝑆𝑝𝑝 0
0 0 𝑆𝑆𝑞𝑞

0 𝛤𝛤𝑠𝑠𝑠𝑠𝑇𝑇 0
0 𝛤𝛤𝑠𝑠𝑠𝑠𝑇𝑇 0
0 𝛤𝛤𝑠𝑠𝑠𝑠𝑇𝑇 0

0 0 0
0 0 0
0 0 0

    𝑀𝑀𝑝𝑝  𝐵𝐵𝑠𝑠𝑝𝑝𝑇𝑇    0
  0 𝛤𝛤𝑠𝑠 𝑀𝑀𝑠𝑠
   0 −𝑀𝑀𝑠𝑠 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

.

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑣𝑣

𝑛𝑛−1

𝑃𝑃𝑓𝑓𝑛𝑛−1

𝑞𝑞𝑛𝑛−1

𝑃𝑃𝑝𝑝𝑛𝑛−1

𝑈𝑈𝑛𝑛−1

𝑈𝑈.𝑛𝑛−1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

   

(2.26) 
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In this way, we blend the computational efficiency of the loosely couples scheme with 

the accuracy of the monolithic ones. The block structure of the algebraic monolithic problem is 

illustrated (2.26). 

The loosely coupled scheme is equivalent to the following upper block triangular system 

(2.27) according to the fact that each sub-problem can be solved independently, but to insure 

stability they must be addressed in a precise order, 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡(𝑀𝑀𝑓𝑓 + 𝐴𝐴𝑓𝑓 + 𝛤𝛤𝑓𝑓ᵞ + 𝑆𝑆𝑓𝑓 + ᶳ�𝛤𝛤𝑓𝑓𝜎𝜎�

𝑇𝑇) �−𝐵𝐵𝑝𝑝𝑝𝑝�
𝑇𝑇 𝛤𝛤𝑞𝑞𝑞𝑞𝑇𝑇

�𝐵𝐵𝑝𝑝𝑝𝑝 + 𝛤𝛤𝑝𝑝𝑝𝑝� 𝑆𝑆𝑝𝑝 𝛤𝛤𝑞𝑞𝑞𝑞𝑇𝑇

0 0 �𝐴𝐴𝑞𝑞 + 𝛤𝛤𝑞𝑞 + 𝑆𝑆𝑞𝑞�

0 𝛤𝛤𝑠𝑠𝑠𝑠𝑇𝑇 0
0 𝛤𝛤𝑠𝑠𝑠𝑠𝑇𝑇 0

−𝐵𝐵𝑝𝑝𝑝𝑝𝑇𝑇 𝛤𝛤𝑠𝑠𝑠𝑠𝑇𝑇 0

   0             0 𝐵𝐵𝑝𝑝𝑝𝑝
   0              0 0
   0              0 0

     𝑀𝑀𝑝𝑝 𝐵𝐵𝑠𝑠𝑠𝑠𝑇𝑇    0
     0 (𝐴𝐴𝑠𝑠 + 𝛤𝛤𝑠𝑠) 𝑀𝑀𝑠𝑠
      0 −𝑀𝑀𝑠𝑠 𝑀𝑀𝑠𝑠

. ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

.

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑣𝑣𝑛𝑛

𝑃𝑃𝑓𝑓𝑛𝑛

𝑞𝑞𝑛𝑛

𝑃𝑃𝑝𝑝𝑛𝑛

𝑈𝑈𝑛𝑛

𝑈𝑈 .𝑛𝑛⎦
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝐹𝐹(𝑡𝑡𝑛𝑛)

0
0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎡ (𝑀𝑀𝑓𝑓 + 𝑆𝑆𝑓𝑓) 𝛤𝛤𝑝𝑝𝑓𝑓𝑇𝑇 0

0 𝑆𝑆𝑝𝑝 0
𝛤𝛤𝑞𝑞𝑞𝑞 𝛤𝛤𝑞𝑞𝑞𝑞 𝑆𝑆𝑞𝑞

0 𝛤𝛤𝑠𝑠𝑠𝑠𝑇𝑇 0
0 𝛤𝛤𝑠𝑠𝑠𝑠𝑇𝑇 0
0 𝛤𝛤𝑠𝑠𝑠𝑠𝑇𝑇 0

0 0 0
𝛤𝛤𝑠𝑠𝑠𝑠 𝛤𝛤𝑠𝑠𝑠𝑠 𝛤𝛤𝑠𝑠𝑠𝑠
0 0 0

    𝑀𝑀𝑝𝑝  𝐵𝐵𝑠𝑠𝑠𝑠𝑇𝑇    0
  𝐵𝐵𝑠𝑠𝑠𝑠 𝛤𝛤𝑠𝑠 𝑀𝑀𝑠𝑠
   0 −𝑀𝑀𝑠𝑠 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

.

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑣𝑣

𝑛𝑛−1

𝑃𝑃𝑓𝑓𝑛𝑛−1

𝑞𝑞𝑛𝑛−1

𝑃𝑃𝑝𝑝𝑛𝑛−1

𝑈𝑈𝑛𝑛−1

𝑈𝑈.𝑛𝑛−1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

(2.27) 

 

Now if we consider A as FSI monolithic system matrix from equation (2.26) and P as FSI 

partitioned system matrix from (2.27), we can use P as a preconditioner for solving system of 

equations in (2.26) as following: 

                    𝐴𝐴.𝑋𝑋 = 𝑏𝑏            →    𝑃𝑃−1.𝐴𝐴.𝑋𝑋 = 𝑃𝑃−1. 𝑏𝑏                                       
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Where:      

𝑃𝑃

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡(𝑀𝑀𝑓𝑓 + 𝐴𝐴𝑓𝑓 + 𝛤𝛤𝑓𝑓ᵞ + 𝑆𝑆𝑓𝑓 + ᶳ�𝛤𝛤𝑓𝑓𝜎𝜎�

𝑇𝑇) �−𝐵𝐵𝑝𝑝𝑝𝑝�
𝑇𝑇 𝛤𝛤𝑞𝑞𝑞𝑞𝑇𝑇

�𝐵𝐵𝑝𝑝𝑝𝑝 + 𝛤𝛤𝑝𝑝𝑝𝑝� 𝑆𝑆𝑝𝑝 𝛤𝛤𝑞𝑞𝑞𝑞𝑇𝑇

0 0 �𝐴𝐴𝑞𝑞 + 𝛤𝛤𝑞𝑞 + 𝑆𝑆𝑞𝑞�

0 𝛤𝛤𝑠𝑠𝑠𝑠𝑇𝑇 0
0 𝛤𝛤𝑠𝑠𝑠𝑠𝑇𝑇 0

−𝐵𝐵𝑝𝑝𝑝𝑝𝑇𝑇 𝛤𝛤𝑠𝑠𝑠𝑠𝑇𝑇 0

   0             0 𝐵𝐵𝑝𝑝𝑝𝑝
   0              0 0
   0              0 0

     𝑀𝑀𝑝𝑝 𝐵𝐵𝑠𝑠𝑠𝑠𝑇𝑇    0
     0 (𝐴𝐴𝑠𝑠 + 𝛤𝛤𝑠𝑠) 𝑀𝑀𝑠𝑠
      0 −𝑀𝑀𝑠𝑠 𝑀𝑀𝑠𝑠

. ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

(2.28) 

 

𝐴𝐴

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡(𝑀𝑀𝑓𝑓 + 𝐴𝐴𝑓𝑓 + 𝛤𝛤𝑓𝑓ᵞ + 𝛤𝛤𝑓𝑓𝜎𝜎 + ᶳ�𝛤𝛤𝑓𝑓𝜎𝜎�

𝑇𝑇) �𝐵𝐵𝑝𝑝𝑝𝑝 + 𝛤𝛤𝑝𝑝𝑝𝑝�
𝑇𝑇 𝛤𝛤𝑞𝑞𝑞𝑞𝑇𝑇

�𝐵𝐵𝑝𝑝𝑝𝑝 + 𝛤𝛤𝑝𝑝𝑝𝑝� 𝑆𝑆𝑝𝑝 𝛤𝛤𝑞𝑞𝑞𝑞𝑇𝑇

𝛤𝛤𝑞𝑞𝑞𝑞 𝛤𝛤𝑞𝑞𝑞𝑞 �𝐴𝐴𝑞𝑞 + 𝛤𝛤𝑞𝑞�

0 𝛤𝛤𝑠𝑠𝑠𝑠𝑇𝑇 0
0 𝛤𝛤𝑠𝑠𝑠𝑠𝑇𝑇 0

−𝐵𝐵𝑝𝑝𝑝𝑝𝑇𝑇 𝛤𝛤𝑠𝑠𝑠𝑠𝑇𝑇 0

    0                   0 𝐵𝐵𝑝𝑝𝑝𝑝
    𝛤𝛤𝑠𝑠𝑠𝑠                      𝛤𝛤𝑠𝑠𝑠𝑠 𝛤𝛤𝑠𝑠𝑠𝑠
    0                    0 0

     𝑀𝑀𝑝𝑝 𝐵𝐵𝑠𝑠𝑠𝑠𝑇𝑇    0
     𝐵𝐵𝑠𝑠𝑠𝑠 (𝐴𝐴𝑠𝑠 + 𝛤𝛤𝑠𝑠) 𝑀𝑀𝑠𝑠

   0 −𝑀𝑀𝑠𝑠 𝑀𝑀𝑠𝑠
. ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

(2.29) 

 

The preconditioner divides the problem into 3 sub-problems that can be solved with 

backward substitution: 

    �
𝐹𝐹𝐹𝐹 𝐹𝐹𝐹𝐹 𝐹𝐹𝐹𝐹
0 𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀
0 0 𝑆𝑆𝑆𝑆

� . �
𝑥𝑥𝑓𝑓
𝑥𝑥𝑚𝑚
𝑥𝑥𝑠𝑠
� = �

𝑏𝑏𝑓𝑓
𝑏𝑏𝑚𝑚
𝑏𝑏𝑠𝑠
�  (2.30) 

Step 1         𝑏𝑏𝑠𝑠 = 𝑆𝑆𝑆𝑆/𝑥𝑥𝑠𝑠 

Step 2        𝑏𝑏𝑚𝑚 =  𝑀𝑀𝑀𝑀 ∗ 𝑥𝑥𝑚𝑚 + 𝑀𝑀𝑀𝑀 ∗ 𝑥𝑥𝑠𝑠     → 𝑥𝑥𝑚𝑚 = (𝑏𝑏𝑚𝑚 −  𝑀𝑀𝑀𝑀 ∗ 𝑥𝑥𝑠𝑠)/𝑀𝑀𝑀𝑀 

Step 3       𝑏𝑏𝑓𝑓 =  𝐹𝐹𝐹𝐹 ∗ 𝑥𝑥𝑓𝑓 + 𝐹𝐹𝐹𝐹 ∗ 𝑥𝑥𝑚𝑚 + 𝐹𝐹𝐹𝐹 ∗ 𝑥𝑥𝑠𝑠   →  𝑥𝑥𝑓𝑓 = (𝑏𝑏𝑓𝑓 − 𝐹𝐹𝐹𝐹 ∗ 𝑥𝑥𝑚𝑚 + 𝐹𝐹𝐹𝐹 ∗ 𝑥𝑥𝑠𝑠)/𝐹𝐹𝐹𝐹 
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2.4 NUMERICAL SIMULATIONS 

In this section we present some numerical results with the aim of testing the methodologies 

proposed in previous section. All simulations are obtained using a fixed mesh algorithm and 

movement of the fluid domain is not taken into account; but we have performed some additional 

simulations using a deformable fluid computational domain and the physiological parameters of 

Table 1. The results (published in [40]), confirm that for the considered test case the deformation 

of the computational mesh do not play a significant role on the calculated blood flow rate and the 

arterial wall displacement.  

The approximation space for the fluid flow is based on P2-P1 approximations for velocity 

and pressure respectively that ensures inf-sup stability of the scheme and the same finite element 

spaces are used for intramural filtration velocity and pressure in the poroelastic wall. We also use 

P2 finite elements for the discretization of the structure displacement. Time discretization is 

performed using backward Euler scheme and the time step is 1.e-4 second. Also, we have used 

the following values: 𝛾𝛾𝑓𝑓 = 2500, 𝛾𝛾𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡 = 1, 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠′ = 0.  

All the numerical computations have been performed using the Finite Element code 

Freefem++ [41]. For Fluid-Structure Interaction problem in poroelastic media, the solution of 

equations for general parameters and problem configuration needs advanced computational tools 

and can hardly be handled by commercial packages. So, we tested different language 

environment (FEniCS, FreeFem++) and finally we chose FreeFem++ because it has less 

complication in writing variational formulations and also it is flexible for enforcing interface 

conditions thanks to automatic interpolation from a mesh to another one. We use this 

interpolation is for transferring data between fluid and structure grids.  
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2.4.1 FSI analysis of pulsatile flow in a compliant channel 

We consider a classical benchmark problem used for FSI problems problem that has been used in 

several works [37, 42]. We adopt a geometrical model that consists of a 2D poroelastic structure 

superposed to a 2D fluid channel. The model represents a straight vessel of radius 0.5 cm, length 

6 cm, and the surrounding structure has a thickness of 0.1 cm. This numerical experiment 

consists in studying the propagation of a single pressure wave with amplitude comparable to the 

pressure difference between systolic and diastolic phases of a heartbeat.  

 𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡) = �
𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

2
�1 − cos �

2𝜋𝜋𝜋𝜋
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

��    𝑖𝑖𝑖𝑖  𝑡𝑡 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

0                                                𝑖𝑖𝑖𝑖  𝑡𝑡 > 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
, (2.31) 

 

Table 1. Fluid and structure parameters 

Symbol Unit Values 

𝜌𝜌𝑝𝑝 g/cm3 1.1 

𝜆𝜆𝑝𝑝 dyne/cm2 4.28×106 

𝜇𝜇𝑝𝑝 dyne/cm2 1.07×106 

𝛼𝛼 mmHg 1 

𝜇𝜇𝑓𝑓 poise 0.035 

𝜌𝜌𝑓𝑓 g/cm3 1.1 

s0 cm2/dyne 5×10-6 

κ cm3 s/g 5×10-9 

𝜉𝜉 dyne / cm4 5×107 
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At the outlet of the channel, we prescribe the stress free boundary condition, and at the 

inlet pressure boundary condition is applied. The fluid structure interaction in this benchmark 

problem is excited by a time-dependent pressure function based on (2.31), prescribed at the 

inflow of the channel, where  pmax= 13334 dyne/cm2 and Tmax= 0.003s; and the propagation of 

the pressure wave is analyzed over the time interval [0, 0.006] s.   

we also slightly modify the governing equation for elastic skeleton as (2.32), the 

additional term 𝜉𝜉𝜉𝜉 comes from the axially symmetric formulation, accounting for the recoil due 

to the circumferential strain. Namely, it acts like a spring term, keeping the top and bottom 

structure displacements connected in 2D, see,e.g., [33].  

 𝜌𝜌𝑝𝑝
𝜕𝜕2𝑈𝑈
𝜕𝜕𝑡𝑡2

+ 𝜉𝜉𝜉𝜉 − 𝛻𝛻 ⋅ 𝜎𝜎𝑝𝑝 = 0 (2.32) 

The physical parameters used in this study fall within the range of physiological values 

for blood flow and are reported in Table 1. The propagation of the pressure wave is analyzed 

over the time interval [0,0.006] s. The final time is selected such that the pressure wave barely 

reaches the outflow section. In this way, the non-physical reflected waves that will originate at 

the outflow section for longer simulation times do not pollute the considered results.  

 
Figure 3. Result for pressure in fluid and displacement in structure 
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Some visualizations of the solution, calculated using the settings addressed below, are 

reported in Figure 3, and Figure 4. The former, qualitatively shows the propagation of a pressure 

wave along the channel, together with the corresponding deformation of the fluid domain at 

times 𝑡𝑡1 = 1.5,  𝑡𝑡2 = 3.5,  𝑡𝑡3 = 5.5 ms. For visualization purposes, the vertical displacement is 

magnified 100 times in Figure 3. In Figure 4, top panel, we show the vertical displacement of the 

interface along the longitudinal axis of the channel. These plots show that the variable inflow 

pressure combined with the fluid-structure interaction mechanisms, generates a wave in the 

structure that propagates from left to right. 

 

   

   
Figure 4. Top panel: displacement of the fluid-structure interface at times 1.5, 3.5 and 5.5 ms from left to right. 

Bottom panel: intramural flow q.n at different planes in the arterial wall, located at the interface, at the 

intermediate section and at the outer layer 
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On the bottom panel, we show intramural flow 𝑞𝑞ℎ ⋅ 𝑛𝑛 at different planes cutting the 

arterial wall in the longitudinal direction. These planes are located at the interface, at the 

intermediate section and at the outer layer. These plots show that the peaks of the intramural 

flow coincide with the ones of structure displacement and the corresponding peak of arterial 

pressure. Furthermore, we notice that the intramural velocity, 𝑞𝑞ℎ ⋅ 𝑛𝑛, decreases as far as the fluid 

penetrates further into the wall. This is a consequence of (2.7), which prescribes that 𝛻𝛻 ⋅ 𝑞𝑞ℎ is not 

locally preserved, but depends on the rate of change in pressure and volumetric deformation of 

the structure. Indeed, this is how the poroelastic coupling shows up in the results.  

Moreover, the extension to the 3d model is performed in two different geometries: (1) A 

straight vessel of radius 0.5 cm and length 5 cm, the surrounding structure has a thickness of 0.1 

cm; (2) A curved vessel of radius 1.5 cm, the surrounding structure has a thickness of 0.3 cm. 

The fluid structure interaction in this benchmark problem is excited by pressure profile (2.31), 

prescribed at the inflow of the channel and the propagation of the pressure wave is analyzed over 

the time interval [0, 0.02] s.  

 

  

Figure 5. Snapshots of the pressure and solid deformation at 2ms, 4ms, and 6ms from left to right for 

straight cylinder 
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Figure 6. Snapshots of the pressure and solid deformation at 2ms, 4ms, and 6ms from left to right for 

curved vessel 

Figure 5 and Figure 6 show the fluid pressure and solid deformation at the time instants t 

= 0.002, 0.004, 0.006 s. For visualization purpose, the vertical displacement is magnified 100 

times. As expected, stable pressure wave propagation along the channel is observed in both 

problem configurations. We observe that the variable inflow pressure combined with the fluid-

structure interaction mechanism generate a wave in the structure that propagates from left to 

right.  

2.4.2 Performance analysis of loosely coupled scheme as a preconditioner 

In order to simplify the management of the algebraic degrees of freedom related to the finite 

element spaces, for this test case we adopt a P1-P1 approximations for velocity and pressure 

respectively. It is well known that this choice does not satisfy the inf–sup stability condition [43]. 

Resorting to a pressure stabilization method on the whole fluid domain is mandatory. Owing to 

its simplicity of implementation, we opt for the Brezzi–Pitkaranta scheme [44], that is: 

 𝑠𝑠𝑓𝑓,𝑝𝑝�𝑝𝑝𝑓𝑓,ℎ
𝑛𝑛 ,𝜓𝜓𝑓𝑓,ℎ�: = 𝛾𝛾𝑝𝑝ℎ2 � ∇

𝛺𝛺𝑓𝑓
𝑝𝑝𝑓𝑓,ℎ
𝑛𝑛 .∇ 𝜓𝜓𝑓𝑓,ℎ 𝑑𝑑𝑑𝑑 . (2.33

) 

where the stabilization parameter is selected as 𝛾𝛾𝑝𝑝 = 10−2on the basis of numerical 

experiments. The same types of spaces are used for the intramural filtration and pressure. Since 
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(2.7) is not enforcing the divergence-free constraint exactly, but the material turns out to be 

slightly compressible, equal order approximation is stable. We also use P1 finite elements to 

approximate the structure velocity and displacement. 

The performance of matrix (2.28) used as a preconditioner of (2.29) is quantified by the 

numerical experiments reported in Table 2. As an indicator of the system conditioning, we look 

at the number of GMRES iterations required to reduce below a given tolerance the relative 

residual. The values are calculated on the basis of the first 10 time steps of the simulation. 

In the special case of positive definite matrices, the number of iterations (# GMRES) 

required to reduce the relative residual of a factor 10𝑃𝑃, can be estimated as # GMRES ≃

 𝑝𝑝�𝐾𝐾 ( 𝑃𝑃−1 𝐴𝐴), where K (·) is the spectral condition number. Since the initial relative residual is 

one, by definition, (# GMRES) is equivalent to the number of iterations performed until the 

relative residual is less than 10−𝑃𝑃. In the experiments that follow, we have used p = 6. As a 

result, knowing that the conditioning of the FEM stiffness matrices scales as the square of the 

number of degrees of freedom, we expect that # GMRES linearly scales with the number of 

degrees of freedom in absence of preconditioners. Optimal preconditioners are those where the 

number of GMRES iterations becomes independent of the dimension of the discrete problem. 

The results of Table 2 nicely agree with the general GMRES convergence theory, and 

confirm that (2.28) behaves as an optimal preconditioner for (2.29). Not only the number of 

iterations to solve the preconditioned system is nearly insensitive with respect to the mesh 

characteristic size, and consequently the number of degrees of freedom of the discrete problem, 

but the number of iterations is significantly smaller than in the non-preconditioned case. 

Reminding that the inversion of (2.28) is a relatively inexpensive operation, the preconditioned 

algorithm turns out to be a very effective solution method. Table 2 also suggests that the 
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conditioning of the monolithic problem slightly increases when the time step is refined, 

especially for coarse meshes, while the good preconditioner performance seems to be unaffected. 

It indeed slightly improves, according to the fact that the loosely coupled scheme, and 

the related preconditioner, becomes more accurate and effective when the time 

discretization step decreases. We have tested this algorithm also using quadratic finite elements, 

P2, for all velocities and displacement fields. In the case of the coarsest mesh h = 0.05 cm, 

GMRES converges in 613.5 (average) iterations, while solving the preconditioned only requires 

11 iterations. The preconditioner seems to scale well also with respect to the FEM polynomial 

degree. The good results on preconditioner performance also correspond to a decrease in the 

computational time. For h = 0.05, Δt = 10−4, the calculation of 60 time steps of the monolithic 

scheme require 4.73 s, while for the preconditioned method the time is 1.85 s. For Δt = 10−5 and 

600 time steps the computational times are respectively, 65.8 and 14.6 s. 

 

Table 2. Average number of GMRES iterations for different time steps 

Δt=10-4 h=0.05 h=0.025 h=0.0125 

#GMRES (monolithic) 211.4 446.4 1282.9 

#GMRES (preconditioner) 10.9 12 13.9 

Δt=10-5 h=0.05 h=0.025 h=0.0125 

#GMRES (monolithic) 362.1 498.3 1194.4 

#GMRES (preconditioner) 8 10 12.9 
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2.4.3 Convergence analysis 

In this section, we perform the convergence analysis to support the theoretical results on 

the accuracy of the numerical scheme provided in section 2.3 . Theoretical results for accuracy of 

the proposed scheme are given in Theorem 3 in our paper [27] which shows that the main 

drawback of the scheme is related to the splitting of the equations within each time step that 

decrease the accuracy. For this purpose, we start our investigation for variation of the time step 

Δt. 

Since the analytical one is not available in this case, we use the numerical solution 

calculated using the monolithic scheme with a small time step equal to Δt = 10−6 s, as reference 

solution. This way, we make sure that the splitting error is not polluting the solution, and the 

approximation error related to the time discretization scheme is negligible. This solution will be 

denoted with the subscript 𝑟𝑟𝑟𝑟𝑟𝑟. To guarantee a sufficient spatial resolution as well as inf-sup 

stability, we use P2-P1 approximations for velocity and pressure in the blood flow, combined 

with P2-P1 approximation of Darcy’s equation and P2 approximation of the structure 

displacement and velocity. We investigate the convergence properties of the scheme in the norm 

||| ⋅ |||♥, 𝑁𝑁
2  that is used in Theorem 3 in [27]. More precisely, we split it in four parts:  

 

ℰ𝑓𝑓,ℎ
𝑁𝑁 ≔ 𝜌𝜌𝑓𝑓 ∥ 𝑣𝑣ℎ𝑁𝑁 − 𝑣𝑣ℎ

𝑁𝑁,𝑟𝑟𝑟𝑟𝑟𝑟 ∥𝐿𝐿2�Ω𝑓𝑓�
2 ,  

ℰ𝑝𝑝,ℎ
𝑁𝑁 (𝑎𝑎) ≔ 𝜌𝜌𝑝𝑝 ∥ 𝑈̇𝑈ℎ𝑁𝑁 − 𝑈̇𝑈ℎ

𝑁𝑁,𝑟𝑟𝑟𝑟𝑟𝑟 ∥𝐿𝐿2�Ω𝑝𝑝�
2 , 

 ℰ𝑝𝑝,ℎ
𝑁𝑁 (𝑏𝑏): = 2𝜇𝜇𝑝𝑝 ∥ 𝐷𝐷(𝑈𝑈ℎ𝑁𝑁 − 𝑈𝑈ℎ

𝑁𝑁,𝑟𝑟𝑟𝑟𝑟𝑟)||𝐿𝐿2(Ω𝑝𝑝)
2 + 𝜆𝜆𝑝𝑝||𝛻𝛻 ⋅ (𝑈𝑈ℎ𝑁𝑁 − 𝑈𝑈ℎ

𝑁𝑁,𝑟𝑟𝑟𝑟𝑟𝑟)||𝐿𝐿2(Ω𝑝𝑝)
2 , 

ℰ𝑝𝑝,ℎ
𝑁𝑁 (𝑐𝑐): = 𝑠𝑠0 ∥ 𝑝𝑝𝑝𝑝,ℎ

𝑁𝑁 − 𝑝𝑝𝑝𝑝,ℎ
𝑁𝑁,𝑟𝑟𝑟𝑟𝑟𝑟 ∥𝐿𝐿2(Ω𝑝𝑝)

2 , 

(2.34) 



 33 

corresponding to the fluid kinetic energy, the structure kinetic energy, the structure elastic 

stored energy and the pressure, respectively. We calculate the error between the reference 

solution and solutions obtained using Δt,Δt/2,Δt/4,Δt/8 with Δt = 10−4 for simulations up to 

the final time 𝑇𝑇 = 10−3 s. The mesh discretization step is ℎ = 0.05 cm for all cases.  

In Table 3 we show the convergence rate relative to the error indicators above calculated 

using both the monolithic and the loosely coupled scheme. We observe that, as expected, the 

error indicators scale as 𝐶𝐶𝛥𝛥𝛥𝛥 when the monolithic scheme is used. Looking at the error of the 

loosely coupled scheme, we notice that for each of the indicators the magnitude of the error 

increases with respect to the monolithic scheme. This is the contribution of the splitting error. 

However, we observe that the total error of the loosely coupled scheme scales as 𝐶𝐶𝛥𝛥𝛥𝛥.  

 

Table 3. Convergence in time of the monolithic and the partitioned scheme 

Monolithic �𝜀𝜀𝑓𝑓,ℎ
𝑛𝑛  Rate �𝜀𝜀𝑝𝑝,ℎ

𝑛𝑛 (𝑎𝑎) Rate �𝜀𝜀𝑝𝑝,ℎ
𝑛𝑛 (𝑏𝑏) Rate �𝜀𝜀𝑝𝑝,ℎ

𝑛𝑛 (𝑐𝑐) Rate 

Δt=10-4 2.14E-01  1.48E-01  5.24E-01  1.96E-02  

Δt/2 1.05E-01 1.02 7.89E-02 0.91 2.82E-01 0.90 6.95E-03 0.92 

Δt/4 5.13E-02 1.04 4.03E-02 0.97 1.44E-01 0.97 3.53E-03 0.98 

Δt/8 2.45E-02 1.07 1.98E-02 1.03 7.07E-02 1.03 1.72E-03 1.03 

Partitioned �𝜀𝜀𝑓𝑓,ℎ
𝑛𝑛  Rate �𝜀𝜀𝑝𝑝,ℎ

𝑛𝑛 (𝑎𝑎) Rate �𝜀𝜀𝑝𝑝,ℎ
𝑛𝑛 (𝑏𝑏) Rate �𝜀𝜀𝑝𝑝,ℎ

𝑛𝑛 (𝑐𝑐) Rate 

Δt=10-4 2.87E-01  1.84E-01  7.71E-01  1.96E-02  

Δt/2 1.49E-01 0.94 9.91E-02 0.89 4.15E-01 0.90 1.01E-02 0.95 

Δt/4 7.58E-02 0.98 5.16E-02 0.94 2.13E-01 0.96 5.09E-03 0.99 

Δt/8 3.75E-02 1.01 2.59E-02 0.99 1.06E-01 1.01 2.49E-03 1.03 
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2.4.4 Absorbing boundary condition 

In this section we want to study the improvements obtained by using absorbing boundary 

conditions. To this purpose, we apply the absorbing boundary condition to the outflow of the 

same 3D test case shown in Section 2.4.1 for the straight cylinder. The outflow boundary 

condition is particularly delicate because it has to accurately capture the propagation of the 

pressure waves. Inappropriate modeling of the flow at the outlet may generate spurious pressure 

waves that propagate backwards. For this reason, at the outlet, we will use an absorbing 

boundary condition, proposed in [45] which relates implicitly the flow rate and the mean 

pressure. In particular, at the outlet we impose:  

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = ��
2

2√2
𝑄𝑄𝑛𝑛

𝐴𝐴𝑛𝑛
+ �𝛽𝛽�𝐴𝐴0 � − 𝛽𝛽�𝐴𝐴0� (2.35) 

Where Q is the flow rate, A is the cross-sectional area related to the mean pressure P and 

the parameter β is calculated using the independent ring model as follows, 

𝛽𝛽 =
ℎ𝑠𝑠𝐸𝐸

1 − 𝜈𝜈2
1
𝑅𝑅2

 (2.36) 

Replacing the values for the artery material properties into (2.36) we obtain β=1.43e6 

dyne/cm. Since flow rate is unknown, we can treat it in an explicit way, interpreting the mean 

pressure boundary condition (2.35) as a normal stress, constant in space. This leads to the 

following absorbing Neumann boundary condition at the outlet: 

𝜎𝜎𝑓𝑓𝑛𝑛+1𝑛𝑛 = ���
2

2√2
𝑄𝑄𝑛𝑛

𝐴𝐴𝑛𝑛
+ �𝛽𝛽�𝐴𝐴0 � − 𝛽𝛽�𝐴𝐴0�𝑛𝑛� (2.37) 
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Imposing condition (2.37) significantly reduces spurious reflections that pollute the 

solution and makes it possible to solve the problem for long time period over cardiac cycles. It is 

known that the choice of avoiding any reflection is not physiological, since reflections may be 

generated by the peripheral system. However, in absence of data concerning the downstream 

cardiovascular tree, the choice of imposing absorbing boundary conditions seems to be the best 

available option. 

Figure 7 shows the solutions computed with and without prescribing the absorbing 

boundary condition at the outlet. In particular, in the latter case we have imposed a standard 

stress free outflow condition. We observe that at t=2ms the pressure wave has not yet reached the 

end of the domain and therefore the two solutions coincide, while at t=8ms, the reflection has 

been started and the two solutions differ significantly. Moreover, Figure 8 shows the mean 

pressure in two cases. The one with absorbing boundary condition is plotted with the dashed line. 

We notice a significant reduction of the spurious reflections by imposing the absorbing 

condition.   

t=2ms t=2ms 

 t=8ms t=8ms 

Figure 7. Pressure obtained with (right) and without (left) prescribing absorbing boundary condition for the 

outflow at t = 2ms (up) and t = 8ms(bottom). 
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Figure 8. Mean fluid pressure with (dashed line) and without (solid line) absorbing boundary condition for 

outflow 

2.4.5 Sensitivity analysis of poroelastic parameters 

The aim of this section is assessing the influence of poroelasticity using the algorithm 

developed in Section 2.3.1. From the inspection of the Biot model, we observe that k and s0 are 

the parameters that describe the influence of poroelasticity on the mechanical behavior of the 

poroelastic media. Using the available algorithm, we perform a sensitivity analysis of the effects 

of these parameters on FSI results. In particular, we are interested to qualitatively characterize 

how the presence of intramural flow coupled to the wall deformation affects the displacement 

field as well as the propagation of pressure waves. More precisely, by means of a collection of 

numerical experiments, we qualitatively analyze how the poroelastic phenomena affect the 

propagation of pressure waves and the poroelastic wall displacement. 

The numerical results, obtained for a slightly different test problem than the one 

considered in Section 2.4.1, including the effect of an elastic membrane at the interface of the 
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fluid with the thick poroelastic structure. The volume of the thin elastic membrane is negligible 

and cannot store fluid, but allows the flow through it in the normal direction.  The details for the 

problem formulation including an elastic membrane are provided in our paper [8].   

A theoretical analysis complements the numerical investigation. This analysis arises from 

the qualitative comparison of the governing equations for a poroelastic material with the ones for 

pure linear elasticity. In particular, the Biot model, namely equations (2.5), (2.6), (2.7) can be 

reformulated as a one single equation (2.41) below. As a result, we will be able to compare this 

equivalent representation of Biot model with a simple elasticity equation (2.42). 

To manipulate Biot model such that it can be represented into the one single expression, 

we multiply (2.5) by the operator 𝑠𝑠0𝐷𝐷(. )/𝐷𝐷𝐷𝐷 and we V as the velocity of the poroelastic wall, 

namely we have 𝑉𝑉 ∶= 𝐷𝐷(𝑈𝑈)/𝐷𝐷𝐷𝐷.  

We obtain, 

𝑠𝑠0 𝜌𝜌𝑝𝑝
𝐷𝐷2𝑉𝑉
𝐷𝐷𝑡𝑡2

− 𝑠𝑠0 𝜇𝜇𝑝𝑝𝛻𝛻.𝐷𝐷(𝑉𝑉) − 𝑠𝑠0 𝜆𝜆𝑝𝑝𝛻𝛻(𝛻𝛻.𝑉𝑉) + 𝑠𝑠0𝛼𝛼 
𝐷𝐷
𝐷𝐷𝐷𝐷

(𝛻𝛻𝑝𝑝𝑝𝑝) = 0 (2.38) 

Then, we apply the operator 𝛼𝛼𝛼𝛼 to (2.7): 

𝛼𝛼𝛼𝛼
𝐷𝐷
𝐷𝐷𝐷𝐷

�𝑠𝑠0𝑝𝑝𝑝𝑝� + 𝛼𝛼.𝛼𝛼𝛼𝛼(𝛻𝛻.𝑈𝑈) + 𝛼𝛼𝛼𝛼(𝛻𝛻. 𝑞𝑞) = 0  (2.39) 

Also, since based on (2.6), 𝑘𝑘−1𝑞𝑞 = −𝛻𝛻𝑝𝑝𝑝𝑝  and k is assumed to be a scalar function, we 

observer that 𝛻𝛻 × 𝛻𝛻 × 𝑞𝑞 = 0 and therefore we have:  

𝛻𝛻(𝛻𝛻. 𝑞𝑞) = ∆𝑞𝑞 + 𝛻𝛻 × 𝛻𝛻 × 𝑞𝑞 = ∆𝑞𝑞 (2.40) 

By replacing (2.40) and (2.39) into (2.38) and dividing by 𝑠𝑠0, we obtain (2.41), which can 

be compared term by term to the following equivalent expression of the standard elastodynamic 

equation (2.42), for a material characterized by the same Lamé parameters as the ones used for 

the poroelastic model.  
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𝐷𝐷2𝑉𝑉
𝐷𝐷𝑡𝑡2

− 𝜇𝜇𝑝𝑝𝛻𝛻.𝐷𝐷(𝑉𝑉) − (𝜆𝜆𝑝𝑝 +
𝛼𝛼2

𝑠𝑠0
)𝛻𝛻(𝛻𝛻.𝑉𝑉) =

𝛼𝛼
𝑠𝑠0

  ∆𝑞𝑞 (2.41) 

𝜌𝜌𝑝𝑝
𝐷𝐷2𝑉𝑉
𝐷𝐷𝑡𝑡2

− 𝜇𝜇𝜇𝜇.𝐷𝐷(𝑉𝑉) − 𝜆𝜆𝜆𝜆(𝛻𝛻.𝑉𝑉) = 0     (2.42) 

Two major considerations emerge: First, by comparing equations (2.41) and  (2.42) we 

can see that, poroelasticity introduces an additional term Δq on the right hand side of (2.41), 

which breaks the energy conservation principle relative to the standard elastodynamic equation. 

We also remark that the magnitude of ∆q is proportional to the hydraulic conductivity k. 

Therefore, this term affects the energy, at a rate which is directly proportional to k. Second, by 

comparing equations (2.41) and (2.42) we observe that poroelasticity affects the phenomena that 

are governed by the second Lame constant of the material, λ and this effect is related to the 

magnitude of 𝑠𝑠0 in the poroelastic model. More precisely, the poroelastic material is equivalent 

to a purely elastic one with an augmented second Lame parameter (2.43). 

𝜆𝜆 = 𝜆𝜆𝑝𝑝 +
𝛼𝛼2

𝑠𝑠0
       (2.43) 

We explain and support these qualitative conclusions on the basis of numerical 

simulations. More precisely, we discuss a collection of numerical experiments aiming at 

clarifying and supporting the qualitative considerations on the role of poroelasticity on FSI.  

We compare the results obtained using three exponentially increasing values of the 

hydraulic conductivity k=5×10−9,5×10−7,5×10−5, starting from the reference values of Table 1. In 

Figure 9, we analyze the displacement of the fluid-wall interface at the intermediate time t = 

3.5ms when the peak of the pressure wave is located almost at the center of the arterial segment. 

The results show that the amplitude of the pressure wave inversely depends on the hydraulic 

conductivity. Based on this observation, we can also conclude that the forcing term ∆𝑞𝑞  
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dissipates energy, at a rate which is directly proportional to k, and as a result, we conclude that 

increasing the hydraulic conductivity decreases the amplitude of pressure wave in the domain.  

 
Figure 9. Displacement of the fluid-wall interface for different k values at t=3.5ms 

 

Moreover, as it has been discussed in (2.43), we expect that changing s0 corresponds to 

modifying the second Lamé parameter characterizing the poroelastic wall. However, it is not 

straightforward to determine what the role of 𝜆𝜆 is, on the fluid-structure interaction. The 

numerical simulations based on the proposed FSI scheme turn out to be effective also in this 

respect. More precisely, we have simplified the discrete scheme (2.24) in order to model the 

interaction of a viscous fluid with a purely elastic impermeable structure. We notice that the 

resulting scheme is exactly the one proposed in [37]. Using this tool, we have performed a 

simple sensitivity analysis of the parameter 𝜆𝜆 on a model that describes the interaction of a 

viscous fluid with an elastic impermeable structure.  We observe that decreasing λ slightly slows 

down the propagation of the pressure waves (Figure 10). Using this result, we can then proceed 

to test the validity of our hypothesis on the effect of s0. To this purpose, we now use the FSI 

scheme for the poroelastic model where 𝜆𝜆 is set to the reference value of Table 1, but the value 

0 1 2 3 4 5 6
-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-3

Length (cm)

W
al

l D
is

pl
ac

em
en

t (
cm

)

 

 
k=5.e-9
k=5.e-7
k=5.e-5



 40 

of the mass storativity is varied as s0 = 5×10−7,5×10−6,10−5. The results shown in Figure 11, 

shows that increasing s0 has similar effect on wave speed, since it corresponds to decreasing the 

second Lame constant. More precisely, increasing s0 from 5×10−6 to 10−5 corresponds to decrease 

𝜆𝜆, which in turn slows down the pressure wave propagation. Conversely, decreasing the mass 

storativity corresponds to increase the equivalent second Lamé parameter. As a result, the 

pressure wave speeds up. 

 

Figure 10. Displacement of the fluid-wall interface at t=3.5ms for λ = 4.28×106 and λ = 4.28×105      

 

 

Figure 11. Displacement of the fluid-wall interface at t=3.5ms for different values of storativity 
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2.5 SUMMARY 

We have studied the interaction of a free fluid with a poroelastic material with the 

assumption of having small deformations. After setting appropriate governing equations on 

adjacent domains and discussing the corresponding interface conditions, we have considered the 

discretization of the problem in the framework of the finite element method. Particular attention 

must be devoted to the approximation of the interface conditions, which are non-standard with 

respect to the ones that arise in the coupling of homogenous partial differential equations. We 

have shown that the Nitsche’s method, used for the weak approximation of boundary and 

interface conditions for elliptic or parabolic problems, is appropriate to enforce the interface 

constraints in the variational formulation. Since all the interface conditions correspond to 

suitable operators in the variational problem, time-lagging allows to split the fully coupled 

problem into subproblems, relative to the main governing equations, such as free fluid flow, 

Darcy filtration and elastodynamics. Also the resulting loosely coupled problem formulation 

turns out to be stable, provided that it is combined with suitable stabilization operators. This 

solution approach is very effective from the computational standpoint, but suffers from low 

accuracy. In order to merge the computational efficiency of the loosely coupled scheme with the 

good accuracy and stability properties of the monolithic formulation, we develop a numerical 

solver where the former scheme acts as a preconditioner for the latter. The theory and the 

numerical results suggest that this approach is very effective because the loosely coupled scheme 

behaves as an optimal preconditioner for the monolithic formulation. This solution algorithm 

turns out to be very robust with respect to the characteristic physical parameters of the problem. 

Indeed, we have successfully applied it to the analysis of a problem related to blood flow in 

arteries as well as to the study of subsurface flow and deformation of a fractured reservoir [27].  



 42 

3.0  ENERGY DISTRIBUTION IN THE COUPLED FSI PROBLEMS 

The present chapter analyzes the distribution and dissipation of the energy in the coupling 

between the pulsatile flow and a deformable structure. The objective is to determine new criteria, 

based on the energy distribution, for the assessment of constitutive models of the structure part in 

a fluid-structure interaction framework. A computational model of blood flow and arterial 

deformation is used to examine the behavior of different constitutive models of the arterial wall. 

In particular, we consider poroelastic and viscoelastic descriptions of the artery. Energy 

estimates are derived for each constitutive model of the arterial wall from the weak formulation 

of the fluid/solid coupled problem and are applied to assess energy exchange between different 

compartments of the model. Two-dimensional numerical experiments are presented to illustrate 

the energy distribution within the fluid and solid model compartments. Results highlight the 

importance of including both poroelasticity and viscoelasticity in modeling fluid-structure 

interaction in large arteries. Our results show that both viscoelastic and poroelastic models for 

the arterial walls absorb part of the input energy flowing to the artery, but the underlying 

mechanisms are substantially different. 
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3.1 BACKGROUND 

A comprehensive understanding of pressure and flow pulse wave propagation in the 

cardiovascular system can provide valuable information for clinical diagnosis and treatment. 

Computational models of arteries play a significant role in current vascular research as they can 

predict properties of the cardiovascular system that cannot be measured in vivo [46].  Moreover, 

in vivo measurements of hemodynamic parameters are expensive and limited to easily accessible 

arteries. However, due to the complexity of the cardiovascular system, simplifying assumptions 

need to be taken into account when studying the interaction between blood flow and vessel wall. 

Assuming that the arterial wall is an elastic structure is a common assumption in FSI modeling. 

However, arterial walls, like other soft tissues, consist primarily of water [47]. They exhibit both 

viscoelastic and poroelastic behavior. In particular, poroelasticity plays an important role in the 

regulation of plasma and solute transport across the wall.  

Viscoelasticity is the major mechanical characteristic of soft tissue. It accounts for a 

combined fluid like (viscous) and solid like (elastic) behavior. Due to its role in physiological 

and pathophysiological function of soft tissues, important information can be obtained by using 

computational methods that characterize these phenomena and model their underlying 

mechanisms. In [48] two different microscopic mechanisms responsible for macroscopic 

viscoelastic effects have been considered, one is the intrinsic viscoelasticity of the collagen 

matrix and the other is due to the interphase drag between extracellular matrix and fluid phase, 

better known as poroelasticity.  Considering poroelasticity is important because almost all 

biological tissues contain connective tissues and cells surrounded by fluid-filled extracellular 

space and both components consist primarily of water [49]. Poroelastic phenomena become 
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crucial when modeling the mass transport in arteries, which is a mechanism that provides 

nourishment, removes waste and delivers drugs to the inner layers of large arteries [50].  

Earlier numerical models used to predict blood flow are based on rigid geometries [13] in 

which only the arterial lumen needs to be reconstructed and discretized, yielding results in a 

relatively short time. However, the rigid wall assumption precludes pressure wave propagation 

and overestimates the wall shear stress. There exist a variety of methods to include the effects of 

the moving wall in computations, the most prevalent being the arbitrary Lagrangian–Eulerian 

(ALE) approach. Applications of the ALE to hemodynamics are discussed in [51-53] and 

references therein. For example, the work in [14] focuses on developing FSI numerical methods 

for the interaction between incompressible fluids and non-linear elastic solids, with application 

to the arterial blood flow. The new approach is evaluated on a patient specific abdominal aorta. 

The paper proposes that future developments should address extensions to hyperelastic materials 

with viscoelasticity, which represent more accurately the behavior of the arterial wall.  

Energy distribution in one heart cycle has been studied in the seminal works by Skalak 

[54, 55] for pulmonary artery at rest and in exercise conditions. Also, Bertram [56] presented 

methods using Womersley’s theory for calculating viscous and viscoelastic energy dissipation as 

a function of time for a segment of canine carotid artery in-vivo. However, their work does not 

account for the poroelasticity of the arterial wall. Tsaturyan et al. [57] suggested that 

extracellular fluid flow dominates the apparent viscoelastic properties of passive cardiac muscle. 

The authors claimed that actual tissue viscoelasticity plays a relatively minor role. The dominant 

role of poroelasticity in the mechanics of articular cartilage is generally accepted in [57], 

constructing a relatively strong case for the same being true for myocardium [49, 58, 59]. In [59] 

Taber discussed the viscoelastic type effect due to nonlinear poroelasticity and examined the role 
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of extracellular fluid flow in the apparent viscoelastic behavior of cardiac muscle. In [59] 

comparison of theoretical and published experimental results showed that poroelasticity can 

account for several measured myocardial features; including the relative insensitivity of the 

stress strain curve to loading rate and of the stress relation curve to the muscle stretch. The study 

by Taber also compared the experimental and computed hysteresis loops and observed that they 

differ significantly, concluding that poroelastic effects alone cannot justify hysteresis. Thus, it 

was suggested that both poroelastic and viscoelastic effects must be considered in biomechanical 

studies of passive cardiac muscle.  

Modeling fluid-structure interaction in porous media is a challenging and 

computationally demanding task. The coupling between a fluid and a single layer poroelastic 

structure has been previously studied in [4, 33]. In particular, the work in [4] develops a 

computational model of the interaction between an incompressible, Newtonian fluid, described 

using the Navier-Stokes equations, and a poroelastic structure modeled as a Biot system. The 

problem was solved using both a monolithic and a partitioned approach.  In [35]  a new 

partitioned strategy for the solution of coupled Navier-Stokes and Biot systems is presented. This 

approach is based on Nitsche’s method for enforcing fluid/solid interface conditions and 

provides an efficient solution method for these complex equations. In [29] the results were 

extended to idealized 3D models of arteries, such as straight and bent cylinders. 

Experimental measurements of arterial wall indicate that arteries exhibit a viscoelastic 

behavior [60, 61]. Canic et al. [17, 62] modeled blood flow in compliant artery using linear 

viscoelastic membrane equations to model mechanical properties of arterial walls and compared 

theoretical results obtained from Kelvin-Voigt model with experimental results in Armentano et 

al. [16]; however those results were obtained under the assumption that the model is one 
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dimensional. Bukac et al. [63] extended the work of [17, 62] by presenting a two dimensional 

model capturing the radial and longitudinal displacement of the linearly viscoelastic Koiter shell 

for the underlying fluid structure interaction problem. The results were comparable with the 

monolithic scheme proposed in [64] as well as viscoelastic model in [65]. In particular, the effect 

of aging on the phase difference between the pressure and flow-rate waveforms in the carotid 

artery was studied in [65].  

In the present work we pursue two general objectives. Firstly, we develop a 

computational model of pulsatile blood flow in large arteries that embraces different constitutive 

models for the arterial wall. In particular, we focus on a poro-viscoelastic description of the 

arterial tissue. Secondly, we apply the model to compare poroelastic and viscoelastic behaviors 

on the basis of energetic criteria derived from the energy balance of fluid-structure interaction. In 

particular, we aim to identify and compare the sources of energy dissipation in the arterial wall. 

Determining the nature of this dissipation mechanism is important for understanding how well 

viscoelasticity and poroelasticity capture the natural behavior of the artery. More precisely, we 

pursue the following quantitative objectives. One is to quantify the dissipative behavior of a 

linear viscoelastic model for arterial wall on the fluid structure interaction under pulsatile blood 

flow in arteries. The other is to evaluate the role of the extracellular fluid flow in the apparent 

viscoelastic behavior of arterial wall.  

3.2 FORMULATION 

We consider the blood flow in a compliant channel bounded by a thick material representing the 

arterial wall, with a two way coupling between the fluid and the structure. We assume that the 



 47 

vessel is sufficiently large so that the non-Newtonian effects can be neglected. The fluid is 

modeled as an incompressible, viscous, Newtonian fluid using the Navier-Stokes equations in a 

deformable domain 𝛺𝛺𝑓𝑓(𝑡𝑡): 

𝜌𝜌𝑓𝑓 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣.  𝛻𝛻𝛻𝛻� = 𝛻𝛻.𝜎𝜎𝑓𝑓                            𝑖𝑖𝑖𝑖 𝛺𝛺𝑓𝑓(𝑡𝑡) (3.1) 

𝛻𝛻. 𝑣𝑣 = 0                                                          𝑖𝑖𝑖𝑖 𝛺𝛺𝑓𝑓(𝑡𝑡) (3.2) 

Here v and 𝜌𝜌𝑓𝑓 stand for fluid velocity vector field and fluid density, respectively, and 

𝜎𝜎𝑓𝑓 = −𝑝𝑝𝑓𝑓𝐼𝐼 + 2𝜇𝜇𝑓𝑓𝐷𝐷(𝑣𝑣) is the fluid Cauchy stress tensor where 𝑝𝑝𝑓𝑓 is fluid pressure, 𝜇𝜇𝑓𝑓 is fluid 

dynamic viscosity and the symmetric part of fluid velocity gradient is defined as 𝐷𝐷(𝑣𝑣) = 1
2

(∇𝑣𝑣 +

∇𝑣𝑣𝑇𝑇). 

We model the arterial wall as a thick structure, which accounts for the media and the 

adventitia. We consider different constitutive models for the wall: elastic, viscoelastic and 

poroelastic. Even though these models will be used separately, for the sake of generality we 

present here the description of a poro-visco-elastic arterial wall. We assume that the arterial wall 

is incompressible and isotropic. To model the poroelastic properties of the arterial wall, we use 

the Biot system [24, 35] that describes the mechanical behavior of a homogeneous and isotropic 

elastic skeleton, and connecting pores filled with fluid. We assume that the fluid flow through 

the porous medium is modeled using the Darcy equation. Hence; the Biot system for a 

poroelastic material consists of the momentum equation for balance of total forces (3.3), Darcy’s 

law (3.4) and the storage equation (3.5) for the fluid mass conservation in the pores of the 

matrix: 

𝜌𝜌𝑠𝑠
𝐷𝐷2𝑈𝑈
𝐷𝐷𝑡𝑡2

− 𝛻𝛻. �𝜎𝜎𝑆𝑆 − 𝛼𝛼𝑝𝑝𝑝𝑝𝐼𝐼� = 0     𝑖𝑖𝑖𝑖 𝛺𝛺𝑝𝑝(𝑡𝑡) (3.3) 
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      𝑘𝑘−1𝑞𝑞 = −𝛻𝛻𝑝𝑝𝑝𝑝            𝑖𝑖𝑖𝑖 𝛺𝛺𝑝𝑝(𝑡𝑡)  (3.4) 

𝐷𝐷
𝐷𝐷𝐷𝐷

�𝑠𝑠0𝑝𝑝𝑝𝑝 + 𝛼𝛼𝛼𝛼.𝑈𝑈� + 𝛻𝛻. 𝑞𝑞 = 0    𝑖𝑖𝑖𝑖 𝛺𝛺𝑝𝑝(𝑡𝑡) (3.5) 

In equation (3.4), the relative velocity of the fluid within the porous wall is denoted by 𝑞𝑞 

and 𝑝𝑝𝑝𝑝 is the fluid pressure. Hydraulic conductivity of the porous matrix is denoted by k, the 

coefficient 𝑠𝑠0 is the storage coefficient, and the Biot-Willis constant α is the pressure-storage 

coupling coefficient. In equation (3.5), D/Dt is material derivative, 𝜌𝜌𝑠𝑠 is arterial wall density and 

σs denotes the visco-elasticity stress tensor. In the general viscoelastic formulation for the 

arterial wall, it is assumed that the stress tensor consists of two parts,  𝜎𝜎𝐸𝐸and 𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣: 

𝜎𝜎𝐸𝐸 = 2𝜇𝜇𝑝𝑝𝐷𝐷(𝑈𝑈) +  𝜆𝜆𝑝𝑝𝛻𝛻 ∙ 𝑈𝑈 𝐼𝐼 (3.6) 

𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝜂𝜂 𝐷𝐷�𝑈̇𝑈� +
𝜂𝜂
2

(𝛻𝛻 ∙ 𝑈̇𝑈) (3.7) 

In (3.6), 𝜎𝜎𝐸𝐸  describes the purely elastic stress that is given by the linear elasticity model, 

where λp and μp are the Lame coefficients of the wall. The symmetric part of deformation 

gradient for the structure is denoted by D(U). Under the hypothesis of small deformations, we 

define 𝐷𝐷(𝑈𝑈) = 1
2

(∇𝑈𝑈 + ∇𝑈𝑈𝑇𝑇). The second part of the Cauchy stress tensor, namely  𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 

accounts for the viscoelastic properties of the vessel walls. It is obtained by utilizing a simple 

linear viscoelastic model based on the Kelvin-Voigt viscoelasticity model where a dashpot is 

arranged in parallel with a spring. We denote 𝑈̇𝑈 = 𝐷𝐷𝐷𝐷
 𝐷𝐷𝐷𝐷

.  The constitutive model for the 

viscoelastic case can be written as ( where variable 𝜂𝜂 is the viscous modulus of the arterial wall: 

𝜎𝜎𝑆𝑆 = 𝜎𝜎𝐸𝐸 + 𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 2𝜇𝜇𝑝𝑝𝐷𝐷(𝑈𝑈) +  𝜆𝜆𝑝𝑝𝛻𝛻 ∙ 𝑈𝑈 𝐼𝐼 + 𝜂𝜂 𝐷𝐷�𝑈̇𝑈� +
𝜂𝜂
2

(𝛻𝛻 ∙ 𝑈̇𝑈) (3.8) 

and the poro-visco-elastic stress is defined as: 

𝜎𝜎𝑝𝑝 = 𝜎𝜎𝑆𝑆 − 𝛼𝛼𝑝𝑝𝑝𝑝𝐼𝐼 (3.9) 
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With the assumption of axial symmetry, we use the model for the arterial wall in 

cylindrical coordinates (r, Ө, z), with z being the distance on the longitudinal axis. The 

displacement vector is written in the form of 𝑈𝑈 =  [𝑈𝑈𝑟𝑟 ,𝑈𝑈𝜃𝜃,𝑈𝑈𝑧𝑧] and tensor D becomes:  

𝐷𝐷(𝑈𝑈) =

⎢
⎢
⎢
⎢
⎢
⎡

𝜕𝜕𝑈𝑈𝑟𝑟
𝜕𝜕𝜕𝜕

0
1
2

(
𝜕𝜕𝑈𝑈𝑧𝑧
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑈𝑈𝑟𝑟
𝜕𝜕𝜕𝜕

)

0
𝑈𝑈𝑟𝑟
𝑟𝑟

0

1
2

(
𝜕𝜕𝑈𝑈𝑧𝑧
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑈𝑈𝑟𝑟
𝜕𝜕𝜕𝜕

) 0
𝜕𝜕𝑈𝑈𝑧𝑧
𝜕𝜕𝜕𝜕 ⎥

⎥
⎥
⎥
⎥
⎤

 (3.10) 

At the inlet and outlet boundaries of the fluid domain, we use the Neumann boundary 

conditions provided in (3.11) and (3.12) using values of static pressure: 

𝜎𝜎𝑓𝑓𝑛𝑛𝑓𝑓 = −𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)𝑛𝑛𝑓𝑓      on Γ𝑓𝑓𝑖𝑖𝑖𝑖 × (0,𝑇𝑇) (3.11) 

𝜎𝜎𝑓𝑓𝑛𝑛𝑓𝑓 = −𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)𝑛𝑛𝑓𝑓        on Γ𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 × (0,𝑇𝑇) (3.12) 

The challenges of the numerical discretization of FSI problems in hemodynamics are 

associated with the added-mass effect and the high nonlinearity of the problem [66]. In the case 

when the structure is poroelastic, one encounters an additional difficulty due to the fluid-porous 

media coupling. 

The Biot system is coupled to the fluid by prescribing coupling conditions at the interface 

Γ. In particular, we impose the continuity of the velocity and of the normal stress at the interface 

via the kinematic (no-slip and conservation of mass) and dynamic (conservation of momentum) 

interface conditions. Denoting by 𝑛𝑛𝑓𝑓 the outward normal to the fluid domain and by 𝑡𝑡𝑓𝑓 the 

corresponding tangential vector, the coupling conditions read as follows: 

𝑣𝑣. 𝑡𝑡𝑓𝑓 =
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

. 𝑡𝑡𝑓𝑓                          𝑜𝑜𝑜𝑜  𝛤𝛤(𝑡𝑡) (3.13) 

𝑣𝑣.𝑛𝑛𝑓𝑓 = �
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

+ 𝑞𝑞� .𝑛𝑛𝑓𝑓                𝑜𝑜𝑜𝑜    𝛤𝛤(𝑡𝑡) (3.14) 

𝑛𝑛𝑓𝑓 .𝜎𝜎𝑓𝑓 𝑛𝑛𝑓𝑓 = −𝑝𝑝𝑝𝑝                          𝑜𝑜𝑜𝑜    𝛤𝛤(𝑡𝑡) (3.15) 
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𝑛𝑛𝑓𝑓 .𝜎𝜎𝑓𝑓 𝑛𝑛𝑓𝑓 − 𝑛𝑛𝑓𝑓 .𝜎𝜎𝑝𝑝𝑛𝑛𝑓𝑓 = 0                 𝑜𝑜𝑜𝑜    𝛤𝛤(𝑡𝑡)  (3.16) 

𝑡𝑡𝑓𝑓 .𝜎𝜎𝑓𝑓 𝑛𝑛𝑓𝑓 − 𝑡𝑡𝑓𝑓 .𝜎𝜎𝑝𝑝𝑛𝑛𝑓𝑓 = 0                  𝑜𝑜𝑜𝑜    𝛤𝛤(𝑡𝑡) (3.17) 

3.2.1 Energy estimation 

In order to obtain the energy estimation, we proceed as in [35, 67, 68]. In particular, for blood 

flow, we multiply equations (3.1) and (3.2) by v and, pf, respectively. The energy of the Biot 

system is obtained by multiplying equation (3.3) by 𝑈̇𝑈, equation (3.4) by q and equation (3.5) by 

𝑝𝑝𝑝𝑝. The algebraic identity (3.18) will be systematically used in the derivations. As a result, we 

derive the following energy equality (3.19) for the coupled problem. 
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Where ‖∙‖ denotes the Euclidean norm when applied to a vector or the Frobenius norm 

when applied to a tensor.  

We define Ef as the fluid kinetic energy and Es as the structure kinetic and stored energy 

given by (3.20). 
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The right hand side of (3.19) represents the kinetic and stored energy of the initial state 

and the power of external forces.  The left hand side of (3.19) represents the different forms of 

the system internal energy. On the left hand side of (3.19), we identify the following expressions, 

which define the total energy in the elastic, viscoelastic and poroelastic cases respectively.      
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         𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)

= 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡) + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) + � � 𝑘𝑘−1 ∥ 𝑞𝑞 ∥2
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0
 

(3.23) 

Where Estorage is the energy stored into the porous matrix because of pore deformation.  

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �
1
2Ω𝑝𝑝(𝑡𝑡)
�𝑆𝑆0�𝑝𝑝𝑝𝑝�

2
� (3.24) 
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In the case when a fluid is coupled with an “elastic” structure, (3.21) shows that the only 

dissipative mechanism is viscous dissipation of the fluid.  For the viscoelastic model we have 

additional energy damping due to the viscoelasticity of the wall. For the poroelastic model, in 

addition to the dissipation due to the fluid viscosity, another energy exchange mechanism 

appears due to the permeability of the porous matrix and corresponding filtration velocity.  

 

 

Figure 12. Computational approach; (a) poro-viscoelastic model of the arterial wall (left), schematic of the 

fluid and structure domains (right); (b) inflow/outflow pressure waves and choice of snapshot times (left); 

computational mesh (middle), Coupling conditions in Fluid-poroviscoelastic structure interaction (right). 
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3.3 NUMERICAL PROCEDURE 

We have adopted the partitioned, loosely coupled algorithm that we developed in Section 2.3.1 . 

The partitioned solve is based on weak enforcement of interface conditions using Nitsche’s 

method , and allows us to independently solve the equations for each problem, at each time step. 

Namely, structure mechanics, the intramural filtration and the blood flow problem are solved 

separately, once at each time step, denoted with the generic index n. The stability of the 

partitioned algorithm is a very delicate question. Stability is guaranteed for our solver thanks to 

the introduction of the pressure stabilization operator proposed in [37] and provided that several 

penalty parameters are appropriately selected [69]. Here the steps are explained for poroelastic 

model. Similar approach for viscoelastic model is performed. The only difference is that steps 

1,2,3 are solved when the poroelastic model is adopted; in the elastic and viscoelastic cases only 

step 1 (solving for the displacement solely) and 3 are necessary because the arterial wall is 

considered to be impermeable. 

Step1: We first solve the elastodynamics equation for the structure, where the pressure 

term has been time-lagged. 

    𝜌𝜌𝑝𝑝
𝐷𝐷2𝑈𝑈
𝐷𝐷𝑡𝑡2

− 𝛻𝛻. �𝜎𝜎𝑠𝑠 − 𝛼𝛼𝑝𝑝𝑝𝑝𝑛𝑛−1𝐼𝐼� = 0     𝑖𝑖𝑖𝑖 𝛺𝛺𝑝𝑝 

This equation is complemented with the following Robin-type boundary condition on Γ, 

where 𝛾𝛾𝑓𝑓 is a parameter that should be chosen sufficiently large to guarantee stability and it is 

inversely proportional to the space discretization mesh characteristic size h, 

 𝑛𝑛𝑝𝑝𝜎𝜎𝑝𝑝𝑛𝑛𝑝𝑝 = 𝑛𝑛𝑝𝑝𝜎𝜎𝑓𝑓𝑛𝑛−1𝑛𝑛𝑝𝑝 − 𝛾𝛾𝑓𝑓(ℎ−1)𝜇𝜇𝑓𝑓 �
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

− 𝑣𝑣𝑛𝑛−1 + 𝑞𝑞𝑛𝑛−1� . 𝑛𝑛𝑝𝑝 

 𝑡𝑡𝑝𝑝𝜎𝜎𝑝𝑝𝑛𝑛𝑝𝑝 = 𝑡𝑡𝑝𝑝𝜎𝜎𝑓𝑓𝑛𝑛−1𝑛𝑛𝑝𝑝 − 𝛾𝛾𝑓𝑓(ℎ−1)𝜇𝜇𝑓𝑓 �
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

− 𝑣𝑣𝑛𝑛−1� . 𝑡𝑡𝑝𝑝 

(3.25) 
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Step 2: The second problem consists of Darcy equations, Complemented with the 

boundary condition (3.26): 

    𝑘𝑘−1𝑞𝑞 = −𝛻𝛻𝑝𝑝𝑝𝑝                                     𝑖𝑖𝑖𝑖 𝛺𝛺𝑝𝑝  

   
𝐷𝐷
𝐷𝐷𝐷𝐷

�𝑠𝑠0𝑝𝑝𝑝𝑝 + 𝛼𝛼𝛼𝛼.𝑈𝑈� + 𝛻𝛻. 𝑞𝑞 = 0    𝑖𝑖𝑖𝑖 𝛺𝛺𝑝𝑝 

𝑝𝑝𝑝𝑝 = −𝑛𝑛𝑝𝑝𝜎𝜎𝑓𝑓𝑛𝑛−1𝑛𝑛𝑝𝑝 − 𝛾𝛾𝑓𝑓(ℎ−1)𝜇𝜇𝑓𝑓 �𝑣𝑣𝑛𝑛−1 − �
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

�
𝑛𝑛−1

− 𝑞𝑞� .𝑛𝑛𝑝𝑝 (3.26) 

Step 3: Finally, the third problem corresponds to the fluid equations:  

       𝜌𝜌𝑓𝑓 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣.  𝛻𝛻𝛻𝛻� = 𝛻𝛻.𝜎𝜎𝑓𝑓                       𝑖𝑖𝑖𝑖 𝛺𝛺𝑓𝑓 

          𝛻𝛻. 𝑣𝑣 = 0                                                    𝑖𝑖𝑖𝑖 𝛺𝛺𝑓𝑓 

                             𝑣𝑣.𝑛𝑛𝑓𝑓 = �
𝐷𝐷𝐷𝐷
𝜕𝜕𝜕𝜕

+ 𝑞𝑞� .𝑛𝑛𝑓𝑓 ,            𝑣𝑣. 𝑡𝑡𝑓𝑓 =
𝐷𝐷𝐷𝐷
𝜕𝜕𝜕𝜕

. 𝑡𝑡𝑓𝑓          𝑜𝑜𝑜𝑜  𝛤𝛤 (3.27) 

where the kinematic conditions (26) have been enforced using the classical Nitsche’s 

method formulation for the boundary conditions. 

The non-linearity in the Navier-Stokes equations due to the convective term has been 

linearized using the Picard method, namely, 𝑣𝑣𝑛𝑛+1.  𝛻𝛻𝑣𝑣𝑛𝑛+1 ≈  𝑣𝑣𝑛𝑛.  𝛻𝛻𝑣𝑣𝑛𝑛+1. Moreover, Streamline 

Upwind/Petrov-Galerkin (SUPG) formulation is used to stabilize the convection term [70]. To 

minimize the numerical dissipation, we adopt the Newmark scheme for the wall discretization. 

The continuity equation for the poroelastic pressure is discretized using the Backward Euler 

scheme. For the discretization of the blood flow equations we adopt P2 −P1 approximations for 

velocity and pressure, respectively, which ensures inf-sup stability of the scheme. The same 

types of spaces are used for the intramural filtration and pressure. In addition, we use P2 finite 

elements for the discretization of the structure displacement field. 



 55 

3.4 NUMERICAL SIMULATIONS 

In this section, we perform numerical experiments on the simplified 2D/axial symmetric 

problems representing blood-vessel systems. Our aim is to clarify the importance of including 

arterial wall poroelastic and viscoelastic behaviors in the vascular FSI. The analysis of 

simulations will be performed using the general energy estimation (3.19). Namely, we analyze 

the energy exchange between different compartments of the elastic, poroelastic and viscoelastic 

model. To illustrate the behavior of the models, we consider two examples. The first test, 

corresponds to the benchmark problem that has been used in several works [35, 37, 42] for 

testing the results of fluid-structure interaction algorithms for blood flow. The flow is driven by a 

pressure wave imposed at the inlet boundary for a short amount of time, which then propagates 

through the domain. The viscoelasticity modulus in this problem is small compared to its 

physiological value [71]. Choosing viscous modulus in this range allows reasonable wave 

propagation in the channel and avoids backflow from inlet boundary. The second test problem 

concerns a healthy common carotid artery. Model parameters are centered in the range relevant 

to cardiovascular applications. The viscoelasticity coefficient is physiologically reasonable, and 

higher than in the previous example. In this example, we show that our computational model 

gives rise to physiologically reasonable solutions by comparing our results with experimental 

data.  In both numerical examples, the initial energy of the fluid and structure is defined to be 

zero; namely both are at rest. 𝐸𝐸𝑓𝑓(0) = 𝐸𝐸𝑠𝑠(0) = 0. 
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3.4.1 Benchmark 1: FSI analysis for short pressure wave  

Benchmark problem described in detail in Section 2.4.1, is employed. The thick structure 

equations are written in cylindrical coordinates to naturally account for the circumferential 

strains, and coupled with Cartesian equations for the fluid. Model dimension and physical 

parameters for this example are provided in Table 4. The problem domain is discretized with a 

mesh of 7200 triangles and the propagation of the pressure wave is analyzed over the time 

interval [0, 0.005] sec. The final time is smaller than the time necessary for the pressure wave to 

reach the outflow. In this way, the unphysical reflected waves that may originate at the outflow 

because of homogeneous Neumann conditions do not pollute the considered results. Also, the 

velocity at the outlet remains small for the entire simulation time. For this reason, energy loss to 

the exterior is minimized. Figure 13 shows a snapshot of the pressure wave moving along the 

channel, together with the contour plot of the radial displacement of the artery. The visualization 

clearly shows the coupling between the two domains. More precisely, the pressure wave, travels 

from left to right, displacing the thick structure. 

Table 4. Physical and numerical parameters for benchmark problem 1 

Parameters values Parameters values 

Radius (cm) 0.5 Lame coeff. μp (dyne/cm2) 1.07×106 

Length (cm) 15 Mass storativity , s0 (cm2/dyne) 5×10-6 

Wall thickness (cm) 0.1 Hydraulic conductivity ,k (cm3 s/g) 5×10-9 

Wall density(g/cm3 ) 1.1 Biot-Willis constant, 𝛼𝛼 1 

Fluid density (g/cm3) 1 𝛾𝛾𝑓𝑓, 𝛾𝛾𝑠𝑠 2500 

Dynamic viscosity (poise) 0.035 Viscous modulus  𝜂𝜂 (dyne.s/cm2) 100 

Lame coeff . λp (dyne/cm2) 4.28×106 Time step Δt 10-5 sec 
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Figure 13. A snapshot of the pressure wave traveling from left to right coupled with the radial component 

of the structure displacement. The legend shows the values for the pressure (bottom scale) and displacement (top 

scale) 

 

For this test case, we also compare the results obtained using the proposed FSI scheme 

with other results available in literature. In particular we refer to the simulations of [72, 73] 

obtained using the data of Table II in [38]. Excellent agreement is observed among the results of 

the tree methods, reported in Figure 14.  This test serves as verification of the software used for 

the simulations and as validation of the method. 

Figure 15 shows time evolution of the energy components of the system for elastic, 

viscoelastic and poroelastic structures; precisely: 𝐸𝐸𝑓𝑓𝑁𝑁 ,𝐸𝐸𝑠𝑠𝑁𝑁 and 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁  for 𝑛𝑛 = 1, … ,𝑁𝑁 where N is 

the number of time steps. 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 corresponds to the viscous loss in fluid, the loss due to the 

viscoelasticity of the arterial wall and the filtration velocity in the poroelastic model. We observe 

that the total energy (sum of fluid kinetic energy and elastic kinetic and stored energy, including 

viscous energy loss) reaches a constant plateau equal to the total energy input. This indicates that 

the mass balance is accurately satisfied.  
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Figure 14. Fluid–structure interface displacement (left panel) and mean pressure (right panel) versus z, at 

t= 4, 8, 12 ms, computed with the monolithic scheme by Quaini [73] (time step =e-4; dashed line) and with operator-

splitting scheme [72] (time step=5e-5; dotted line). Our result is plotted using a solid line. 

 

Figure 15. Time evolution of the energy in each component for elastic (top, left), viscoelastic (top, right) 

and poroelastic cases with k= 5×10-6 cm
3
s/g  (left) and k= 5×10-9 cm

3
s/g (right) in benchmark problem 1. 
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The first plot in Figure 17 shows the available energy distributed in different components 

for each poroelastic, viscoelastic and elastic cases at final time t=0.005 sec. The results confirm 

that for the pressure impulse problem, characterized by high wall accelerations, viscoelastic 

losses dominate. The pressure peak is too short to generate a significant intramural flow. The 

percentage of fluid viscous dissipation in all cases is almost the same. The stored energy (Es) in 

the elastic case in slightly larger than in the other cases since it has no other way for being 

dissipated.  

3.4.2 Benchmark 2: FSI analysis under physiological condition  

In this case, we apply our scheme to model blood flow under physiological conditions. We 

consider blood flow in a 2D straight, uniform channel representing a section of a common 

carotid artery, and with the assumption of axial symmetry, we solve for upper half of the domain. 

For the inflow and outflow boundary conditions we use physiological pressure waves taken from 

[65], assuming that the pressure waveform is periodic. We perform computations for several 

cardiac cycles starting from the homogeneous initial conditions, until a time-periodic solution is 

achieved. A mesh consisting of 4800 tetrahedral cells was created for the fluid and structure 

domains. 

Our choice of parameters used in this example falls within the range of physiological 

values for blood flow and is reported in Table 5. The wall viscosity constant obtained from [71] 

for carotid artery was used for viscoelastic model simulations. This choice of viscoelastic 

parameters has also been used in other references [65, 74] and is well within the range of 

measured viscous moduli of blood vessels reported in [60]. In order to assess the impact of 
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viscous modulus on the energy dissipation and compare our work with [54, 55], we perform an 

additional simulation using 𝜂𝜂 =1×104 dyne.s/cm2 for pulmonary artery obtained from [75]. 

 

Table 5. Physical and numerical parameters for benchmark problem 2 

Parameters values Parameters values 

Radius (cm) 0.3 storativity , s0 (cm
2
/dyne) 5×10-6   [24, 35] 

Length (cm) 10 
Hydraulic cond., k (cm

3
 s/g) 5×10-12 - 5×10-9 [76] 

Wall thickness (cm) 0.07 

Wall density(g/cm
3

 ) 1.1 Biot-Willis constant, 𝛼𝛼 1 

Fluid density (g/cm
3
) 1 𝛾𝛾𝑓𝑓, 𝛾𝛾𝑠𝑠 2500 

Dynamic viscosity (poise) 0.035 𝜂𝜂 (dyne.s/cm2) 104– 3×104 

Lame coeff . λp (dyne/cm
2
) 4.28×106 Final time 1sec(each cycle) 

Lame coeff. μp (dyne/cm
2
) 1.07×106 Time step Δt 10-4 sec 

 

For the hydraulic conductivity we consider a range of admissible values. The lower 

bound represents the behavior of a healthy artery, while the upper bound is applicable to the case 

of injured endothelium, since the dilated, damaged or inflamed arterial wall has higher 

permeability (and therefore higher hydraulic conductivity) [77, 78]. More precisely, the value of 

the hydraulic conductivity k=5×10-12 cm
3
s/g has been used in several publications [76, 79-81] for 

modeling the arterial wall, but we have also tested the higher value for hydraulic conductivity 

k=5×10-9cm
3
s/g, obtained from [76], which corresponds to intraluminal thrombosis .  
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3.4.3 Energy balance analysis 

Figure 16 shows the distribution of the total input energy of the viscoelastic model in the 

second and third cycle, with viscous coefficient 𝜂𝜂=3×104 dyne.s/cm2. The analysis of Figure 16 

shows that the periodicity of blood flow is verified, because elastic and kinetic energies initial 

and final values at each cycle almost coincide. In addition, it shows that the energy estimate 

(3.19) is accurately satisfied in the computations, because the right hand side of (3.19) denoted 

by Etot and the total energy input to the system, namely, the left hand side of (3.19) are almost 

equivalent.  More precisely, energy balance for a periodic cycle states that the net input work 

done on the system is equal to the energy losses for each constitutive model. Losses arise from 

the action of energy dissipation, due either to blood viscosity, filtration exchange, or wall 

viscoelasticity. Namely at the end of each cycle, (3.19) can be written as: 

� � 2𝜇𝜇𝑓𝑓 ∥ 𝐷𝐷(𝑣𝑣) ∥2
Ω𝑓𝑓(𝑠𝑠)

𝑡𝑡

0
+ � � 𝜂𝜂 ∥ 𝐷𝐷�𝑈̇𝑈� ∥2

Ω𝑝𝑝(𝑠𝑠)

𝑡𝑡

0
+ � �

𝜂𝜂
2
∥ ∇. 𝑈̇𝑈 ∥2

Ω𝑝𝑝(𝑠𝑠)

𝑡𝑡

0

+ � � 𝑘𝑘−1 ∥ 𝑞𝑞 ∥2
Ω𝑝𝑝(𝑠𝑠)

𝑡𝑡

0

=  −� 𝑝𝑝𝑖𝑖𝑖𝑖
𝛤𝛤𝑓𝑓
𝑖𝑖𝑖𝑖

(𝑡𝑡) 𝑣𝑣𝑓𝑓 ⋅ 𝑛𝑛𝑓𝑓 − � 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜
𝛤𝛤𝑓𝑓
𝑖𝑖𝑖𝑖

(𝑡𝑡) 𝑣𝑣𝑓𝑓 ⋅ 𝑛𝑛𝑓𝑓

+ �−� � 𝜌𝜌𝑓𝑓
𝛤𝛤𝑓𝑓
𝑖𝑖𝑖𝑖

∥ 𝑣𝑣 ∥2

2
 𝑣𝑣 ⋅ 𝑛𝑛𝑓𝑓

𝑡𝑡

0
− � � 𝜌𝜌𝑓𝑓

𝛤𝛤𝑓𝑓
𝑜𝑜𝑜𝑜𝑜𝑜

∥ 𝑣𝑣 ∥2

2
 𝑣𝑣 ⋅ 𝑛𝑛𝑓𝑓

𝑡𝑡

0
� 

(3.28) 

 

We observe from Figure 16 that, for the viscoelastic model, there is only 2.5% 

discrepancy between the left and right hand sides of (3.28). This confirms the accuracy of our 

numerical scheme in approximating the energy balance. 
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Figure 16. Time evolution of energy components for viscoelastic case with 𝜼𝜼 =3×104 dyne.s/cm2; The plot 

shows kinetic and stored energy in wall (circle), fluid kinetic energy (dash-dot line) , fluid viscous dissipation 

(dotted line), wall viscoelastic loss (dashed line), total energy (star), and total input energy to the system (solid line); 

for the straight tube (top panel) and stenosed tube (bottom panel) 
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Using energy data obtained similarly for elastic and poroelastic model simulations, we 

calculate the different energy components for the poroelastic, viscoelastic and elastic cases at 

three different times. The choice of the snapshot times is shown in Figure 12. The first time 

interval, from [0-0.1] sec, is called systole phase. The second phase, called early diastole, is 

between [0.1-0.5] sec, and the last interval, from [0.5-0.9] sec, is called late diastole. 

Plots in Figure 17 compare the energy distribution among kinetic energy, stored energy 

and losses for the elastic, viscoelastic and poroelastic models at these three snapshot times. The 

results in Figure 17 show that at systole all losses are small and the artery behaves nearly as an 

elastic structure for all models. The wall elastic energy stored in the arterial walls is the 

predominant component of the energy in the system, which drives blood flow during diastole. In 

early diastole phase, energy losses in fluid are significant. The viscoelastic loss is small 

compared to the flow, while intramural flow is non non-negligible for the higher hydraulic 

conductivity value. In the late diastole phase, the dissipation predominates and most of the 

energy is dissipated in overcoming the viscous resistance of blood flow. For small permeability 

values, we barely notice any contribution related to intramural filtration. We also observe that the 

energy dissipated in the wall is a small fraction of that dissipated by the blood.  Our results for 

predicted energy distribution are coherent to those of [54]. By defining total dissipation as the 

sum of fluid the viscous dissipation and the viscoelastic loss at the end of one cycle, our 

calculations show that 93% of total dissipation takes place in the in blood flow and only 7% of it 

is related to the vascular wall.  
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Figure 17. Available energy at the final time (5ms) in each component for different constitutive models in 

benchmark problem 1 (first plot from top); energy distribution at the snapshot times for elastic, viscoelastic 

(𝜼𝜼=3×104 dyne.s/cm2) and poroelastic models. 
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Figure 18. Energy dissipation rate (relative to systole) for viscous loss (top), viscoelastic loss (middle) and 

filtration energy loss (bottom) during one heart cycle. 

 

In [54] it is estimated that 97% of dissipation relates to the blood flow and 3% to the 

vascular wall. The discrepancy between our results and the ones in [11] might be due to the 

difference in geometry or in the pressure drop. Since we use a smaller pressure drop and a 

smaller artery than in [54] we expect that in our case the arterial wall will weigh more in the 



 66 

energy balance. To validate the robustness of the method with respect to geometries different 

than a straight tube, we consider a variation of this benchmark case consisting of a mildly 

stenosed artery (see Figure 16 for a representation of the domain). For this case, the results of 

simulation for time evolution of energy components is shown in bottom panel of Figure 16. The 

similarity of these results with the ones obtained in the case of straight tube suggests that the 

conclusions of this work remain qualitatively valid also for more general configurations of the 

computational domain. 

Starting from the data of Figure 16, we quantify the rates of energy dissipation. Figure 18 

informs us about the rate of energy loss in one heartbeat. For each source of energy dissipation 

(e.g. viscous dissipation in Figure 18(a), viscoelastic dissipation (b) and intramural filtration (c)), 

we define rate of energy loss as the total amount of dissipation over a period of time, divided by 

the time interval. Furthermore, we renormalize the dissipation rates by the value obtained in 

systole. 

In Figure 18 we see that for fluid viscous dissipation rate, the major contribution is in 

systole. The contributions of the second and third interval are less significant, because fluid 

velocity and velocity gradient are small. Since the highest acceleration of the arterial wall take 

place in systole, it plays a key role also in generating viscoelastic loss (middle plot), while the 

contributions of two other intervals are almost negligible. The results in Figure 18 (bottom plot) 

show that energy flow to intramural filtration is more uniformly distributed among the heartbeat 

phases. This behavior can be interpreted observing that the intramural flow energy depends on 

the filtration velocity (q), which is more persistent during the cardiac cycle. It should be noted 

that in the energy distribution plots the total amount of energy dissipation in systole is the 

smallest with respect to the other parts of the heart cycle. The discrepancy between energy 
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dissipation and its rate of variation can be explained observing that the energy dissipation is 

cumulative and results from a gradual building up proportional to the total duration of each 

phase. As a result, it is lower at systole (the shortest time interval) compared to diastole. 

3.4.4 Viscoelastic model analysis 

Viscoelasticity causes time lag between pressure wave and arterial wall displacement. 

When a cyclically varying stress is applied to a material, the resulting strain stays in phase if the 

material is purely elastic. However, if it has viscoelastic properties the strain lags behind the 

stress. This lag corresponds to generating a hysteresis loop, which is the indicator of the energy 

loss. The area between ascending and descending parts of the loop quantifies the magnitude of 

hysteresis and corresponds to the energy dissipation due to the viscous properties of the arterial 

wall. 

 Figure 19 (left panel) shows time lag between normalized pressure and radial 

displacement for different values of the wall viscous modulus in the viscoelastic model. The 

phase lag is a measure of the amount of viscous damping that takes place in the vessel wall 

during each cycle. The viscoelastic effect is also visible in the pressure-displacement relationship 

of the arterial wall shown in Figure 19 (right panel). This plot visualizes the hysteresis effects 

related to the viscoelastic behavior of the artery. The viscoelastic hysteresis loop obtained by our 

numerical simulations is in reasonable quantitative agreement with the published in-vivo data of 

the human common carotid artery [65, 74]. To quantify the hysteresis behavior one can calculate 

the Energy Dissipation Ratio (EDR), which is a measure of the area inside the pressure-

displacement loop relative to the measure of areas inside and under the loop (see [65] for 

details).  
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Figure 19. Time lag in viscoelastic model between normalized pressure in the channel (solid line) and 

normalized wall radial displacement (dashed line) at the midpoint of the channel for different values of wall viscous 

modulus , 𝜼𝜼 =3×104 dyne.s/cm2 (top), η =1×104 dyne.s/cm2 (middle), and poroelastic model (bottom) are shown in 

left panel, corresponding hysteresis plots for each case obtained by plotting the fluid pressure at the center of the 

channel versus the radial wall displacement are provided in right panel. 
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Figure 20. Analysis of energy flow (top); Energy diagram in poroelastic and viscoelastic models (bottom) 

 

From the data reported in Figure 19, we calculated wall energy dissipation rate of 9.4% 

compared to 8.5% in [74] and 7.8% in [65] for 𝜂𝜂=3×104 dyne.s/cm2, suggesting an slightly 

overestimation in our calculated dissipation rate. These effects are compared to the hysteresis of 

the poroelastic model (bottom right). Our model suggests that poroelasticity does not generate 

any hysteresis, under physiological conditions. On one hand, this analysis confirms that 

incorporating the viscoelastic effects into the model is necessary for the accurate representation 

of the phase delay between the pressure and radial wall displacement. Moreover, it shows that 

walls with higher viscoelasticity have larger hysteresis loop. On the other hand, we observe that 

poroelasticity does not introduce any hysteresis effects. 
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3.4.5 Poroelastic Model Analysis 

The poroelastic model enables us to study the filtration velocity and therefore coupling 

blood flow with mass transport is a potential application of this model. However, we should 

consider that for the range of permeability values of healthy arteries, considering intramural 

filtration is significant only when we look at the problem over long time scales. Indeed, in 

benchmark problem 2 we barely see any effect for poroelasticity when comparing it to the elastic 

one. For larger values of permeability, our results confirm that the poroelastic model appreciably 

changes the displacement and wave propagation speed in structure as well as the energy 

distribution. Figure 15 reports the results of a simulation is performed using k=5×10-6 cm3s/g 

which is 1000 times larger than its value provided in Table 4. We observe that increasing 

hydraulic conductivity for short time simulation (benchmark problem 1) affects energy 

exchange. Our results show that we do not observe hysteresis loops when a poroelastic 

constitutive law is applied to the artery. Hysteresis is an outcome of the fact that some part of the 

stored energy gets dissipated into a change of natural configuration of the material and cannot be 

recovered. Our results confirm that, since for small deformations poroelasticity is a linear model, 

it only transforms energy from one kind to another, which is in particular the term related to 

intramural flow. Hence, poroelasticity does not contribute to hysteresis in the pressure-diameter 

relationship. A sketch of the different behavior of poroelastic and viscoelastic models is shown 

in Figure 20. The results by Taber in [59] stated that theoretical hysteresis loop for poroelastic 

materials exist, although they are small. However it should be noted that the results in [59] are 

based on a nonlinear elasticity formulation for large deformations. Hence, we hypothesize that 

large deformations and nonlinear material behavior enhance the effect of poroelasticity. Also 

Taber’s results are based on strain dependent permeability. Thus, another possible explanation is 
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that since during large deformation the tissue permeability changes significantly, poroelastic 

effects are playing a more relevant role, while at low strain the elastic response dominates.  

3.5 SUMMARY 

The assumption of negligible viscoelastic and poroelastic response has been routinely made in 

the analysis of cardiovascular fluid dynamics. This paper presents fluid–structure interaction 

simulations incorporating different constitutive models for vascular tissue to assess the 

importance of this simplification. By applying the fluid–structure interaction model to an 

idealized (carotid) artery under pulsatile flow, we have demonstrated its capability of predicting 

the poroelastic and viscoelastic wall behaviors. The results indicate that in physiological 

conditions poroelasticity barely affects the energy distribution of an arterial segment. Since soft 

tissues are biphasic materials, with water comprising the majority of the weight, poroelasticity 

may be an important mechanism at longer time scales. Poroelasticity cannot reproduce 

hysteresis, but it transforms energy of the fluid into intramural flow. Viscoelasticity is 

responsible for hysteresis and changes the pressure wave propagation. Being directly derived 

from the fundamental laws of flow and energy, the model relies on general foundations and it is 

prone to be extended in different directions. For example, we are currently generalizing the 

problem formulation based on linear elasticity to finite elasticity, which enables us to account for 

large deformations. This improvement will be also combined with the application of patient 

specific geometries to this analysis. I extracted this chapter with permission of Springer from the 

paper: " computational analysis of energy distribution of coupled blood flow and arterial 

deformation ", and my collaborators for this paper were M. Bukac and P. Zunino. 
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4.0  NONLINEAR MODEL FOR FPSI 

The main contribution of this chapter is the development of a nonlinear poroelastic structural 

model in the context of fluid-porous structure interaction. The general idea is to use this model to 

study the influence of different parameters on energy dissipation in a poroelastic medium.  

Most of the papers focused on nonlinear elasticity for FSI problems, have used 

monolithic scheme for solving FSI system in nonlinear case, with some kinds of preconditioners 

[82, 83]. In [82] the authors studied finite elasticity for interaction between blood flow and 

elastic arterial wall using a monolithic approach. The design of partitioned algorithms for 

uncoupling the solution of the three sub-problems in the interaction between pulsatile flow and 

poroelastic material (FPSI) is still partially unexplored. In [84], the authors investigate the FPSI 

problem for a viscous fluid and a thick poroelastic structure with small displacement. In our 

previous works [8, 27-30] a loosely coupled scheme have been successfully developed and 

analyzed for this problem.  

To the best of our knowledge, the only previous work in the direction of modeling fluid-

porohyperelastic structure interaction can be found in [5], where the interaction between blood 

flow and porohyperelastic arterial model is coupled with mass transport analysis. The present 

study attempts to investigate the interaction of blood flow with a porohyperelastic vessel wall 

and analyze the role of extracellular fluid flow in the apparent viscoelastic behavior of the 

arterial wall. The main novelties are in the design of a Nitsche’s splitting strategy, which 
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separates the fluid from the structure sub-problems for FPSI system undergoing large 

deformations, and in the fact that we also study a new benchmark test specifically designed to 

investigate the effect of poroelasticity on large deformations. 

Many modeling and computational difficulties arise in the numerical simulation of an 

incompressible fluid interacting with a poroelastic structure featuring possibly large 

deformations. The complex interplay among large solid deformations and fluid flow in a 

dynamic setting have been addressed in this study by using porous media theory combined with 

advanced computational tool for FSI.  We use finite elements for the spatial approximation and 

Backward Euler time stepping for time discretization. Since the model is complex, efficiency of 

the scheme is a fundamental issue. To reduce the computational cost, the coupled problem is 

split among its components and solved using a partitioned approach. We adopt a moving mesh 

algorithm, based on Arbitrary Lagrangian Eulerian (ALE) method. There exist a variety of 

methods to include the effect of the moving wall in computations, the most prevalent being the 

arbitrary Lagrangian–Eulerian (ALE) approach. Applications of ALE method to hemodynamics 

are discussed in [51-53] and references therein.  Discretization using finite elements leads to a 

system of non-linear equations. For this reason, we also discuss the strategy of linearizing such 

system of equations by the Newton’s method. In summary, the general objective can be split into 

two specific aims: (1) Developing a mathematical model for FPSI with large deformations and 

(2) Defining a numerical approximation scheme for the problem at hand.  

We use the computational model to perform numerical experiments of FPSI. The 

numerical experiments are designed to elucidate the dynamic response of a poroelastic material 

under a variety of loading conditions. Our objective is exploring in what condition poroelastic 

model is dissipative and examining the range of model parameters that generate a pressure 
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relaxation loop in FPSI. In our previous paper [30] we suggested that poroelastic effects alone 

cannot justify hysteresis. More precisely, we observed that poroelasticity does not contribute to 

any loop in pressure-diameter relation for small deformation model. However, In [59] Taber 

examined the role of extracellular fluid flow in the apparent viscoelastic behavior of cardiac 

muscle and results by Taber stated that theoretical hysteresis loop for poroelastic material in 

myocardium exists, although they are small. Taber extended the formulation based on 

consolidation theory in [85], to study deformation of porous elastic plates and shells saturated 

with a viscous fluid, undergoing large axisymmetric deformation. The results in Taber’s paper 

are based on finite elasticity formulation for large deformation. So we hypothesize that large 

deformation behavior or loading conditions may enhance the effect of poroelasticity.  

There is very little information on how energy loss (hysteresis etc.) depends on the rate of 

loading or of deformation. The relative contributions of the fluid-solid phase effects 

(poroelasticity) and intrinsic solid phase viscoelasticity to this behavior are not known. An 

understanding of the nature of these contributions may be used to design implants that behave 

more physiologically over a broad range of applied frequencies. One good example is the 

intervertebral disc. In [86] , the authors measured the frequency-dependent stiffness and energy 

absorption of human lumbar intervertebral discs to determine whether these properties differ due 

to fluid-flow dependent behavior.  

This chapter is organized as follows. Section 4.1 deals with the description of constitutive 

framework for FSI problem at finite strains, namely we first consider the fluid and the structure 

as a continuous medium and discuss the governing equations in the fixed configuration. Then we 

split the domain into two parts and explore the structure domain in a Lagrangian description by 

imposing the conservation laws in the reference configuration and using an arbitrary Lagrangian 



 75 

Eulerian (ALE) formulation to describe the fluid domain. In Section 4.2, the partitioned 

algorithm used to solve the fully discrete FSI problem is presented. In Section 4.3, we propose 

numerical simulations on two benchmark problems and discuss the relevant numerical results 

obtained.  

4.1 FORMULATION 

We consider a continuous medium, which occupies a moving domain Ω(t) in its current 

configuration. It is made of a fluid in motion in the region Ωf(t) and a deformable structure Ωs(t) 

and we have 𝛺𝛺𝑓𝑓(𝑡𝑡) ∪ 𝛺𝛺𝑠𝑠(𝑡𝑡) =  𝛺𝛺(𝑡𝑡). The problem consists in finding the time evolution of the 

domain and the velocity fields within the fluid and the structure. 

  

Figure 21. Geometric configuration, reference (left) and present (right) 

 

For this purpose, we use the fundamental conservation laws of continuum mechanics 

written on the present configuration Ω(t), namely conservation of mass and conservation of 

linear momentum. Here in these equations, 𝑈𝑈𝐷𝐷 is the velocity field at any point of the continuum, 

∫ 𝜌𝜌𝜌𝜌 𝑑𝑑𝑑𝑑Ω(𝑡𝑡)  defines net body forces and ∫ 𝑡𝑡 𝑑𝑑𝑑𝑑∂Ω(𝑡𝑡)  is the net surface forces on the surface ∂Ω(𝑡𝑡). 
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We set the following equations for mass and momentum balance: 

𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝜌𝜌 𝑑𝑑𝑑𝑑
Ω(𝑡𝑡)

= 0 

𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝜌𝜌𝑈𝑈𝐷𝐷 𝑑𝑑𝑑𝑑
Ω(𝑡𝑡)

= � 𝜌𝜌𝜌𝜌 𝑑𝑑𝑑𝑑
Ω(𝑡𝑡)

+ � 𝑡𝑡 𝑑𝑑𝑑𝑑
∂Ω(𝑡𝑡)

 

(4.1) 

For conservation of momentum it can be written using Cauchy stress definition and 

divergence theorem as: 

𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝜌𝜌𝑈𝑈𝐷𝐷 𝑑𝑑𝑑𝑑
Ω(𝑡𝑡)

= � 𝜌𝜌𝜌𝜌 𝑑𝑑𝑑𝑑
Ω(𝑡𝑡)

+ � 𝛻𝛻. (𝜎𝜎) 𝑑𝑑𝑑𝑑
Ω(𝑡𝑡)

 

If we ignore body forces and by using Reynolds transport theorem: 

𝑑𝑑
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Ω𝑓𝑓(𝑡𝑡)

 

We can write conservation equations as following: 

�
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+ 𝛻𝛻. (𝜌𝜌𝑈𝑈𝐷𝐷) = 0
Ω(𝑡𝑡)

 

�
𝜕𝜕𝜌𝜌𝑈𝑈𝐷𝐷
𝜕𝜕𝜕𝜕

+ 𝛻𝛻. (𝜌𝜌𝑈𝑈𝐷𝐷⊗ 𝑈𝑈𝐷𝐷) −� 𝛻𝛻.σ = 0
Ω(𝑡𝑡)Ω(𝑡𝑡)

 

(4.2) 

Where ⊗ is the tensor product or the dyad of vectors 𝑢𝑢 and 𝑣𝑣 denoted by 𝑢𝑢⊗𝑣𝑣 . Because 

of the large displacements, the configuration Ω(t) is time dependent. To overcome this difficulty, 

and to evaluate the strain field or write the elastic constitutive laws inside the structure, it is very 

convenient to transport the conservation laws on a fixed configuration 𝛺𝛺� . For this purpose, one 

must introduce a continuous mapping T which maps any point x0 of the fixed configuration 𝛺𝛺�  to 

its image x(x0,t) in the present configuration Ω(t). The choice of the configuration 𝛺𝛺0 and the 

map T may be arbitrary; hence the name of ALE formulation is given to the resulting equations. 

To simplify the calculation, it is advisable to choose a material configuration for the structural 
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part of the domain. In other words, on Ωs the point x(x0,t) corresponds to the present position of 

the material point which was located in x0 at time t. this implies then that the configuration (or 

grid) velocity is always equal to the real velocity of the structure in any point of Ωs.  

𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕

|𝑥𝑥0 = 𝑤𝑤 

The conservation laws on Ω(t) can now be directly transported on the fixed domain by 

Piola identity and with Reynolds transport theorem using the following transport equations [87]: 

� 𝛻𝛻. (𝐴𝐴⊗𝑈𝑈𝐷𝐷) 𝑑𝑑Ω
Ω(𝑡𝑡)

= �∇�. (𝐽𝐽𝐽𝐽⊗𝑈𝑈𝐷𝐷 .𝐹𝐹−𝑇𝑇)𝑑𝑑𝛺𝛺�
𝛺𝛺�

 

�
𝜕𝜕𝐴𝐴
𝜕𝜕𝜕𝜕

 𝑑𝑑Ω
Ω(𝑡𝑡)

=  �
𝜕𝜕𝐴𝐴𝐴𝐴
𝜕𝜕𝜕𝜕

− ∇�. (𝐽𝐽.𝐴𝐴⊗𝑈𝑈𝐷𝐷 .𝐹𝐹−𝑇𝑇)𝑑𝑑𝛺𝛺�
𝛺𝛺�

 

(4.3) 

 Here, F is the deformation gradient and 𝐽𝐽 = det (𝐹𝐹). Applying formulas (4.3) that is also 

provided in [4], to the original conservation laws (mass and momentum) reduces them to the 

global ALE conservation laws, written on the fixed configuration 𝛺𝛺0. It should be noted that if  

𝑤𝑤 = 𝑈𝑈𝐷𝐷 we get the Eulerian description and if  𝑤𝑤 = 0 we get the Lagrangian description. 

 

�
𝜕𝜕𝜌𝜌0
𝜕𝜕𝜕𝜕

|𝑥𝑥0 + ∇�. (𝜌𝜌0(𝑈𝑈𝐷𝐷 − 𝑤𝑤) ).𝐹𝐹−𝑇𝑇 = 0              𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝛺𝛺�

 

�
𝜕𝜕𝜌𝜌0𝑈𝑈𝐷𝐷
𝜕𝜕𝜕𝜕

|𝑥𝑥0 + ∇�. (𝜌𝜌0𝑈𝑈𝐷𝐷⊗ (𝑈𝑈𝐷𝐷 − 𝑤𝑤)).𝐹𝐹−𝑇𝑇 − � ∇�.𝑃𝑃 = 0
𝛺𝛺0𝛺𝛺�

 

�
𝜕𝜕𝜌𝜌0𝑈𝑈𝐷𝐷
𝜕𝜕𝜕𝜕

|𝑥𝑥0 + ∇�. (𝜌𝜌0𝑈𝑈𝐷𝐷⊗ (𝑈𝑈𝐷𝐷 − 𝑤𝑤)).𝐹𝐹−𝑇𝑇 − �∇�. (𝐽𝐽𝐽𝐽𝐹𝐹−𝑇𝑇) = 0          𝐿𝐿𝐿𝐿
𝛺𝛺�𝛺𝛺�

 

(4.4) 

In this chapter, we consider the flow in a compliant channel bounded by a thick wall, 

with a two way coupling between the fluid and the structure. In the next section, we describe the 

governing equations for each domain. 
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4.1.1 Fluid model in the ALE form 

We assume that the vessel is sufficiently large so that the non-Newtonian effects can be 

neglected. The fluid is modeled as an incompressible, viscous, Newtonian fluid using the Navier-

Stokes equations, i.e., the equations describing conservation of mass and momentum.  

�
𝜕𝜕𝜌𝜌0
𝜕𝜕𝜕𝜕

|𝑥𝑥0 + ∇�. (𝜌𝜌0(𝑣𝑣 − 𝑤𝑤) ).𝐹𝐹−𝑇𝑇 = 0
𝛺𝛺�

 

�
𝜕𝜕𝜌𝜌0𝑣𝑣
𝜕𝜕𝜕𝜕

|𝑥𝑥0 + ∇�. (𝜌𝜌0𝑣𝑣⊗ (𝑣𝑣 − 𝑤𝑤)).𝐹𝐹−𝑇𝑇 − �∇�. (𝐽𝐽𝐽𝐽𝐹𝐹−𝑇𝑇) = 0
𝛺𝛺�𝛺𝛺�

 

(4.5) 

In these expressions it is simpler to compute the partial time derivatives on the fixed 

reference configuration and all other stress terms on the present configuration. These equations 

are a particular case of the ones presented in section 2.1. They are obtained by replacing 𝑈𝑈𝐷𝐷 by 

𝑣𝑣, that denotes here the velocity of the fluid.  

We recall that 𝜌𝜌0 = 𝐽𝐽𝐽𝐽𝑓𝑓 ,  

Therefore, we can write the first equation in (4.5) as:  

�
𝜕𝜕𝐽𝐽𝐽𝐽𝑓𝑓
𝜕𝜕𝜕𝜕

|𝑥𝑥0 + ∇�. �𝐽𝐽𝐽𝐽𝑓𝑓(𝑣𝑣 − 𝑤𝑤) �.𝐹𝐹−𝑇𝑇 = 0
𝛺𝛺�

 

We compute the partial time derivative on the fixed reference configuration. Using 

transport equations (4.3), and since 𝐽𝐽 =   𝑑𝑑𝑑𝑑/𝑑𝑑𝑥𝑥� : 

�
𝜕𝜕𝐽𝐽𝐽𝐽𝑓𝑓
𝜕𝜕𝜕𝜕

|𝑥𝑥0 + ∇�. �𝐽𝐽𝐽𝐽𝑓𝑓(𝑣𝑣 − 𝑤𝑤) �.𝐹𝐹−𝑇𝑇 =
𝛺𝛺�

 �
𝜕𝜕𝐽𝐽𝐽𝐽𝑓𝑓
𝜕𝜕𝜕𝜕

|𝑥𝑥0
𝛺𝛺�

+ �∇�. �𝐽𝐽𝐽𝐽𝑓𝑓(𝑣𝑣 − 𝑤𝑤) �.𝐹𝐹−𝑇𝑇
𝛺𝛺�

 

= �
𝜕𝜕𝐽𝐽𝐽𝐽𝑓𝑓
𝜕𝜕𝜕𝜕

|𝑥𝑥0
𝛺𝛺�

+ � 𝛻𝛻. �𝜌𝜌𝑓𝑓(𝑣𝑣 − 𝑤𝑤) �
𝛺𝛺𝑓𝑓(𝑡𝑡)

 

= � 𝐽𝐽−1
𝜕𝜕𝐽𝐽𝐽𝐽𝑓𝑓
𝜕𝜕𝜕𝜕

|𝑥𝑥0
𝛺𝛺𝑓𝑓(𝑡𝑡)

+ � 𝛻𝛻. �𝜌𝜌𝑓𝑓(𝑣𝑣 − 𝑤𝑤) �
𝛺𝛺𝑓𝑓(𝑡𝑡)
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By applying same procedure to the second equation in (4.5)  ,we finally have: 

 

� 𝐽𝐽−1
𝜕𝜕𝐽𝐽𝐽𝐽𝑓𝑓
𝜕𝜕𝜕𝜕

|𝑥𝑥0 + 𝛻𝛻. �𝜌𝜌𝑓𝑓(𝑣𝑣 − 𝑤𝑤) � = 0
𝛺𝛺𝑓𝑓(𝑡𝑡)

 

� 𝐽𝐽−1
𝜕𝜕𝐽𝐽𝐽𝐽𝑓𝑓𝑣𝑣
𝜕𝜕𝜕𝜕

|𝑥𝑥0 + 𝛻𝛻. �𝜌𝜌𝑓𝑓𝑣𝑣⊗ (𝑣𝑣 − 𝑤𝑤)� − � 𝛻𝛻. (𝜎𝜎𝑓𝑓) = 0
𝛺𝛺𝑓𝑓(𝑡𝑡)𝛺𝛺𝑓𝑓(𝑡𝑡)

 

(4.6) 

Here w is the velocity of the mesh, required to deform the fluid mesh in a way that it 

matches structure mesh always. After integration by part, the above ALE formulation of the fluid 

problem takes the form of the following PDE: 

𝐽𝐽−1
𝜕𝜕𝐽𝐽𝐽𝐽𝑓𝑓𝑣𝑣
𝜕𝜕𝜕𝜕

|𝑥𝑥0 + 𝛻𝛻. �𝜌𝜌𝑓𝑓𝑣𝑣⊗ (𝑣𝑣 − 𝑤𝑤) − 𝜎𝜎𝑓𝑓� = 0        𝑖𝑖𝑖𝑖 𝛺𝛺𝑓𝑓(𝑡𝑡) 
 

Taking into account mass conservation, one can also reduce this equation to the non-

conservative form. This is the fluid model, namely the Navier-Stokes equation in ALE form, is 

written as: 

𝜌𝜌𝑓𝑓 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝑣𝑣 − 𝑤𝑤).  𝛻𝛻𝛻𝛻� = 𝛻𝛻.𝜎𝜎𝑓𝑓                           𝑖𝑖𝑖𝑖 𝛺𝛺𝑓𝑓(𝑡𝑡) (4.7) 

𝛻𝛻. 𝑣𝑣 = 0                                                                    𝑖𝑖𝑖𝑖 𝛺𝛺𝑓𝑓(𝑡𝑡) (4.8) 

Here v and 𝜌𝜌𝑓𝑓 stand for fluid velocity vector field and fluid density, respectively, and 

𝜎𝜎𝑓𝑓 = −𝑝𝑝𝑓𝑓𝐼𝐼 + 2𝜇𝜇𝑓𝑓𝐷𝐷(𝑣𝑣) is the fluid Cauchy stress tensor where 𝑝𝑝𝑓𝑓 is fluid pressure, 𝜇𝜇𝑓𝑓 is fluid 

dynamic viscosity and the symmetric part of fluid velocity gradient is defined as 𝐷𝐷(𝑣𝑣) = 1
2

(∇𝑣𝑣 +

∇𝑣𝑣𝑇𝑇). 
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4.1.2 Lagrangian formulation of the structure model  

Since the fixed configuration 𝛺𝛺�  is also the fixed configuration for structure, the structure 

velocity is equal to the material velocity on the structure domain and we have  𝑈̇𝑈 = 𝑤𝑤     𝑜𝑜𝑜𝑜 𝛺𝛺�𝑠𝑠    

Based on this result, the conservation laws for structure part of the domain simply reduce 

to the following: 

𝜕𝜕𝜌𝜌0
𝜕𝜕𝜕𝜕

|𝑥𝑥0 = 0     𝑜𝑜𝑜𝑜 𝛺𝛺�𝑠𝑠    

𝜌𝜌𝑠𝑠
𝜕𝜕2𝑈𝑈
𝜕𝜕𝑡𝑡2

− ∇� . (𝑃𝑃) = 0     𝑖𝑖𝑖𝑖 𝛺𝛺�𝑠𝑠 

Here, 𝜎𝜎 is the Cauchy stress tensor, F is the deformation gradient and “∇�” is the nabla 

operator with respect to the material with respect to the material coordinates in the reference 

domain. P is the first Piola stress defined as 𝑃𝑃 = 𝐽𝐽𝐽𝐽𝐹𝐹−𝑇𝑇.  Using the relationship 𝜎𝜎 = 𝐽𝐽−1𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇 

between Cauchy stress and 2nd Piola stress tensor S, the model for elastic wall in Lagrangian/ 

reference configuration 𝛺𝛺�𝑠𝑠 is: 

𝜌𝜌𝑠𝑠
𝜕𝜕2𝑈𝑈
𝜕𝜕𝑡𝑡2

− 𝛻𝛻. (𝐽𝐽𝐽𝐽𝐹𝐹−𝑇𝑇) = 0  

𝜌𝜌𝑠𝑠
𝜕𝜕2𝑈𝑈
𝜕𝜕𝑡𝑡2

− 𝛻𝛻. (𝐽𝐽 (𝐽𝐽−1𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇) 𝐹𝐹−𝑇𝑇) = 0  

𝜌𝜌𝑠𝑠
𝜕𝜕2𝑈𝑈
𝜕𝜕𝑡𝑡2

− 𝛻𝛻. (𝐹𝐹𝐹𝐹) = 0    𝑜𝑜𝑜𝑜 𝛺𝛺�𝑠𝑠   

We use the St. Venant-Kirchhoff hyperelastic constitutive model for the solid matrix for 

which the strain energy function is: 

𝑊𝑊 =
𝜆𝜆𝑝𝑝
2
𝑡𝑡𝑡𝑡(𝐸𝐸2) + 𝜇𝜇𝑝𝑝𝐸𝐸:𝐸𝐸 (4.9) 
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This yields following expression for 2nd Piola stress tensor, where second order tensor I is 

the Kronecker delta function and 𝐸𝐸(𝑈𝑈) denotes Green strain tensor. 

𝑆𝑆 = 2𝜇𝜇𝑝𝑝𝐸𝐸(𝑈𝑈) +  𝜆𝜆𝑝𝑝𝛻𝛻 ∙ 𝑈𝑈 𝐼𝐼               , 𝐸𝐸(𝑈𝑈) =
1
2

(∇𝑈𝑈 + ∇𝑈𝑈𝑇𝑇 + (∇𝑈𝑈) ∇𝑈𝑈𝑇𝑇) 

To express the filtration flow as well as pressure gradient in the wall, we model the 

structure as a saturated porohyperelastic material according to the mixture theory. To model the 

poroelastic properties of the structure domain, Biot's theory [24, 35] is employed. This 

formulation assumes that the porous material is constructed so that the solid phase forms an 

elastic structure that contains statistically distributed small pores filled with a Newtonian-viscous 

compressible fluid. The bulk material is assumed to be homogeneous on a macroscopic scale, 

and the pores to be interconnected. This model has also been used in  [88] , [84] and [89].  

We assume that the fluid flow through the porous medium is modeled using the Darcy 

equation. Hence; the Biot system for a poroelastic material consists of the momentum equation 

for balance of total forces, Darcy’s law and the storage equation for the fluid mass conservation 

in the pores of the matrix. Therefore, the equations governing the deformation of the saturated 

poroelastic material are defined as:  

𝜌𝜌𝑝𝑝
𝜕𝜕2𝑈𝑈
𝜕𝜕𝑡𝑡2

− 𝛻𝛻. �𝐹𝐹𝐹𝐹 − 𝐽𝐽𝑝𝑝𝑝𝑝𝐹𝐹−𝑇𝑇� = 0                            𝑖𝑖𝑖𝑖 𝛺𝛺�𝑝𝑝 (4.10) 

             𝑘𝑘−1𝑞𝑞 = −𝛻𝛻𝑝𝑝𝑝𝑝                                                     𝑖𝑖𝑖𝑖 𝛺𝛺𝑝𝑝(𝑡𝑡) (4.11) 

          
𝐷𝐷
𝐷𝐷𝐷𝐷

�𝑠𝑠0𝑝𝑝𝑝𝑝 + 𝛼𝛼𝛼𝛼.𝑈𝑈� + 𝛻𝛻. 𝑞𝑞 = 0                            𝑖𝑖𝑖𝑖  𝛺𝛺𝑝𝑝(𝑡𝑡) (4.12) 

In equation (4.11), the relative velocity of the fluid within the porous wall is denoted by 𝑞𝑞 

and 𝑝𝑝𝑝𝑝 is the fluid pressure. More precisely, q is the relative volumetric flux to the skeleton 

defined as the velocity of the pore fluid minus velocity of the skeleton, which is termed filtration 

velocity in the following text. We define 𝜌𝜌𝑝𝑝 as the poroelastic structure density. Hydraulic 
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conductivity of the porous matrix is denoted by k, the coefficient 𝑠𝑠0 is the storage coefficient, 

and the Biot-Willis constant α is the pressure-storage coupling coefficient.  

We also use a consistent ‘effective stress’ measure for the solid matrix response where 

𝜎𝜎𝑆𝑆𝑆𝑆 is the Cauchy stress tensor of the skeleton, and 𝑝𝑝𝑝𝑝 is the mean pore pressure. 𝜎𝜎𝑃𝑃 denotes the 

elasticity stress tensor which is defined as 𝜎𝜎𝑃𝑃 = 𝜎𝜎𝑆𝑆𝑆𝑆 − 𝛼𝛼𝑝𝑝𝑝𝑝𝐼𝐼.  The Cauchy effective stress tensor 

of the skeleton is transformed to the 2nd Piola-Kirchhoff stress tensor S as  𝑆𝑆𝑃𝑃 = 𝑆𝑆𝑆𝑆𝑆𝑆 − 𝐽𝐽𝑝𝑝𝑝𝑝𝐶𝐶−1, 

where 𝐶𝐶 = 𝐹𝐹𝑇𝑇𝐹𝐹.  

4.1.3 Coupling conditions over the interface 

The fluid and poroelastic structure problems must be coupled by imposing three interface 

coupling conditions: on velocity, stress, and geometry. Denoting by 𝑛𝑛𝑓𝑓 the outward normal to the 

fluid domain and by 𝑡𝑡𝑓𝑓 the corresponding tangential vector, the requirements for compatibility 

and the no-slip condition require the following: 

𝑣𝑣. 𝑡𝑡𝑓𝑓 =
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

. 𝑡𝑡𝑓𝑓                          𝑜𝑜𝑜𝑜  𝛤𝛤(𝑡𝑡) (4.13) 

𝑣𝑣.𝑛𝑛𝑓𝑓 = �
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

+ 𝑞𝑞� .𝑛𝑛𝑓𝑓                𝑜𝑜𝑜𝑜    𝛤𝛤(𝑡𝑡) (4.14) 

𝑛𝑛𝑓𝑓 .𝜎𝜎𝑓𝑓 𝑛𝑛𝑓𝑓 = −𝑝𝑝𝑝𝑝                          𝑜𝑜𝑜𝑜    𝛤𝛤(𝑡𝑡) (4.15) 

𝑛𝑛𝑓𝑓 .𝜎𝜎𝑓𝑓 𝑛𝑛𝑓𝑓 − 𝑛𝑛𝑓𝑓 .𝜎𝜎𝑝𝑝𝑛𝑛𝑓𝑓 = 0                 𝑜𝑜𝑜𝑜    𝛤𝛤(𝑡𝑡)  (4.16) 

𝑡𝑡𝑓𝑓 .𝜎𝜎𝑓𝑓 𝑛𝑛𝑓𝑓 − 𝑡𝑡𝑓𝑓 .𝜎𝜎𝑝𝑝𝑛𝑛𝑓𝑓 = 0                  𝑜𝑜𝑜𝑜    𝛤𝛤(𝑡𝑡) (4.17) 

In Equation (4.13) and (4.14) velocity continuity is enforced across the fluid-solid 

interface, in particular equation (4.14) describes the continuity of normal flux over the interface, 

which corresponds to the conservation of mass principle. Balance of the normal components of 
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stress in the fluid phase gives Equation (4.15). Moreover, for traction continuity, we need to 

ensure the balance of stresses on the interface. Considering continuity of the both normal and 

tangential components of stress, is served by conservation of momentum in (4.17) and (4.16). 

We also have the kinematic constraint between solid and mesh displacements. It means 

the velocity of the mesh is able to deform the fluid mesh in a way that it matches structure mesh 

always. 

 𝑈̇𝑈 =
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= 𝑤𝑤                   𝑜𝑜𝑜𝑜 𝛤𝛤(𝑡𝑡) (4.18) 

4.2 NUMERICAL PROCEDURE 

For fluid-porous-solid interaction, a two-way coupled model must be used, wherein the 

fluid flow and the solid deformations mutually affect each other. A common approach to dealing 

with this problem is to separate the two models and solve each one independently by means of an 

iterative loop. The two algorithms communicate through the coupling conditions on the interface. 

Solving the separated problems serially multiple times is referred to as a “partitioned approach”. 

Nitsche’s method has been used for enforcing the interface conditions between non-conforming 

meshes in the fluid and structure domains. Formulation of Nitsche’s method for a “FSI only” 

system is provided in  [37] and has been applied in a similar manner for FPSI system in [27] for 

enforcing interface conditions, where the interface conditions (4.13)-(4.17) appear in the 

variational formulation in a modular form. Therefore, it is straightforward to design a partitioned 

algorithm to solve each equation of the problem independently using time lagging. 
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The use of an ALE formulation for the fluid, together with a Lagrangian frame for the 

structure, yields an FPSI problem that is composed by four subproblems, namely the fluid 

problem, which allows for the computation of the velocity and pressure inside the fluid domain, 

the elasticity problem, which describes the deformation of the vessel wall, the Darcy problem, 

which allows for the computation of the velocity and pressure inside the porous medium and the 

ALE map update, which accounts for the change in time of the computational fluid domain. The 

numerical approach is described below in details. 

4.2.1 Spatial discretization using finite elements 

The coupled fluid/ poroelastic structure problem consists of finding the solution for the velocity 

and pressure field in fluid domain denoted by (𝑣𝑣,𝑝𝑝𝑓𝑓) and also the velocity and pressure field in 

the porous media defined by (𝑞𝑞,𝑝𝑝𝑝𝑝) as well as displacement and velocity of the wall (𝑈𝑈, 𝑈̇𝑈). The 

finite element method (FEM) was applied to solve the coupled system of equations.  

We denote with 𝑉𝑉ℎ
𝑓𝑓 ,𝑄𝑄ℎ

𝑓𝑓 the finite element spaces for the velocity and pressure approximation on 

the fluid domain Ω𝑓𝑓, with 𝑉𝑉ℎ
𝑝𝑝,𝑄𝑄ℎ

𝑝𝑝 the spaces for velocity and pressure approximation of the 

porous domain Ω𝑝𝑝 and with 𝑋𝑋ℎ
𝑝𝑝, 𝑋̇𝑋ℎ

𝑝𝑝 the approximation spaces for the structure displacement and 

velocity, respectively. We assume that all the finite element approximation spaces comply with 

the prescribed Dirichlet conditions on external boundaries 𝜕𝜕Ω𝑓𝑓 ,  𝜕𝜕Ω𝑝𝑝. 

Then we define the bilinear forms for each for each sub-problem. To obtain the bilinear 

form for nonlinear elasticity equation, we use the principle of minimum potential energy. The 

bilinear form relative to the pure elastic behavior of the structure, namely equation (4.10), is:  
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𝑎𝑎𝑠𝑠(𝑈𝑈ℎ,𝜑𝜑𝑝𝑝,ℎ): = � 𝜑𝜑𝑝𝑝,ℎ�−𝛻𝛻. (𝐹𝐹𝐹𝐹)�
𝛺𝛺�𝑝𝑝

= � 𝐹𝐹𝐹𝐹:𝛻𝛻𝜑𝜑𝑝𝑝,ℎ
𝛺𝛺�𝑝𝑝

= � (𝐼𝐼 + ∇𝑈𝑈ℎ) 𝑆𝑆:𝛻𝛻𝜑𝜑𝑝𝑝,ℎ
𝛺𝛺�𝑝𝑝

= �  𝑆𝑆:𝐷𝐷𝐷𝐷(𝑈𝑈ℎ)[𝜑𝜑𝑝𝑝,ℎ] 𝑑𝑑𝑥𝑥�
𝛺𝛺�𝑝𝑝

 

(4.19) 

Where 𝐷𝐷𝐷𝐷(𝑈𝑈ℎ)[𝜑𝜑𝑝𝑝,ℎ] is the Gateaux derivative of 𝜀𝜀 at 𝑈𝑈 in the direction of 𝜑𝜑𝑝𝑝 . 

𝐷𝐷𝐷𝐷(𝑈𝑈ℎ)�𝜑𝜑𝑝𝑝,ℎ� = lim
𝛥𝛥𝛥𝛥→0

𝜀𝜀�𝑈𝑈ℎ + 𝛥𝛥𝛥𝛥 𝜑𝜑𝑝𝑝,ℎ� − 𝜀𝜀(𝑈𝑈ℎ)
𝛥𝛥𝛥𝛥

 

 𝐷𝐷𝐷𝐷(𝑈𝑈ℎ)[𝜑𝜑𝑝𝑝,ℎ]  =
1
2

(∇𝜑𝜑𝑝𝑝,ℎ + ∇𝜑𝜑𝑝𝑝,ℎ
𝑇𝑇 + ∇𝜑𝜑𝑝𝑝,ℎ ∇𝑈𝑈ℎ𝑇𝑇 + ∇𝑈𝑈ℎ ∇𝜑𝜑𝑝𝑝,ℎ

𝑇𝑇) 

(4.20) 

Also we also have:  

𝑏𝑏𝑠𝑠�𝑝𝑝𝑝𝑝,ℎ,𝜑𝜑𝑝𝑝,ℎ�: = 𝛼𝛼� 𝐽𝐽 𝑝𝑝𝑝𝑝,ℎ
𝛺𝛺�𝑝𝑝

𝐹𝐹−𝑇𝑇: (𝛻𝛻𝜑𝜑𝑝𝑝,ℎ)𝑑𝑑𝑥𝑥� (4.21) 

For the Darcy problem in a poroelastic medium we have two other terms, which account 

for the filtration through the porous matrix, equations (4.11)-(4.12), defined as: 

𝑎𝑎𝑝𝑝(𝑞𝑞ℎ, 𝑟𝑟ℎ): = � 𝜅𝜅−1
𝛺𝛺𝑝𝑝

𝑞𝑞ℎ ⋅ 𝑟𝑟ℎ𝑑𝑑𝑑𝑑,         𝑏𝑏𝑝𝑝(𝑝𝑝𝑝𝑝,ℎ, 𝑟𝑟ℎ): = � 𝑝𝑝𝑝𝑝,ℎ
𝛺𝛺𝑝𝑝

𝛻𝛻 ⋅ 𝑟𝑟ℎ𝑑𝑑𝑑𝑑 

For the flow equations (4.7)-(4.8), the trilinear and bilinear forms are:  

𝑎𝑎𝑓𝑓�𝑣𝑣ℎ, 𝑣𝑣ℎ,𝜑𝜑𝑓𝑓,ℎ�: = 2𝜇𝜇𝑓𝑓 � 𝐷𝐷
Ω𝑓𝑓

(𝑣𝑣ℎ):𝐷𝐷�𝜑𝜑𝑓𝑓,ℎ�𝑑𝑑𝑑𝑑 + 𝜌𝜌𝑓𝑓 � (𝑣𝑣ℎ.𝛻𝛻)𝑣𝑣ℎ ⋅ 𝜑𝜑𝑓𝑓,ℎ𝑑𝑑𝑑𝑑
Ω𝑓𝑓

,

𝑏𝑏𝑓𝑓(𝑝𝑝𝑓𝑓,ℎ,𝜑𝜑𝑓𝑓,ℎ): = � 𝑝𝑝𝑓𝑓,ℎ
Ω𝑓𝑓

𝛻𝛻 ⋅ 𝜑𝜑𝑓𝑓,ℎ𝑑𝑑𝑑𝑑,
 

The forcing term for boundary conditions is: 

 𝐹𝐹�𝑡𝑡;𝜑𝜑𝑓𝑓,ℎ� = −� 𝑝𝑝𝑖𝑖𝑖𝑖
Γ𝑓𝑓
𝑖𝑖𝑖𝑖

(𝑡𝑡) 𝜑𝜑𝑓𝑓,ℎ ⋅ 𝑛𝑛𝑓𝑓 

And finally, the following interface terms appear in the variational equations,  

𝐼𝐼Γ = �(
Γ
𝜎𝜎𝑓𝑓,ℎ𝑛𝑛 ⋅ 𝜑𝜑𝑓𝑓,ℎ − 𝜎𝜎𝑝𝑝,ℎ𝑛𝑛 ⋅ 𝜑𝜑𝑝𝑝,ℎ + 𝑝𝑝𝑝𝑝,ℎ𝑟𝑟ℎ ⋅ 𝑛𝑛) (4.22) 
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Starting from the expression of 𝐼𝐼Γ, Nitsche’s method allows us to weakly enforce the 

interface conditions (4.13)-(4.17). Details for interface bilinear form can be found in [35]. Based 

on the assumption that the solution of the system and the chosen test functions are regular 

enough, for any 𝑡𝑡 ∈ (0,𝑇𝑇), we have semi-discrete coupled fluid/solid problem as the following 

equation, considering that 𝑈̇𝑈ℎ𝑛𝑛 = 𝑑𝑑𝜏𝜏𝑈𝑈ℎ𝑛𝑛.  

𝜌𝜌𝑝𝑝 � 𝑑𝑑𝜏𝜏
𝛺𝛺�𝑝𝑝

𝑈̇𝑈ℎ ⋅ 𝜑𝜑𝑝𝑝,ℎ𝑑𝑑𝑥𝑥� + 𝜌𝜌𝑝𝑝 � (
𝛺𝛺�𝑝𝑝

𝑈̇𝑈ℎ − 𝑑𝑑𝜏𝜏𝑈𝑈ℎ) ⋅ 𝜑̇𝜑𝑝𝑝,ℎ𝑑𝑑𝑥𝑥� + 𝑎𝑎𝑠𝑠�𝑈𝑈ℎ,𝜑𝜑𝑝𝑝,ℎ�

+ 𝜌𝜌𝑓𝑓 � 𝜕𝜕𝑡𝑡
Ω𝑓𝑓

𝑣𝑣ℎ ⋅ 𝜑𝜑𝑓𝑓,ℎ𝑑𝑑𝑑𝑑 + 𝑠𝑠0 � 𝐷𝐷𝑡𝑡
𝛺𝛺𝑝𝑝

𝑝𝑝𝑝𝑝,ℎ𝜓𝜓𝑝𝑝,ℎ𝑑𝑑𝑑𝑑 − 𝑏𝑏𝑠𝑠(𝑝𝑝𝑝𝑝,ℎ,𝜑𝜑𝑝𝑝,ℎ)

+ 𝑏𝑏𝑠𝑠(𝜓𝜓𝑝𝑝,ℎ,𝐷𝐷𝑡𝑡𝑈𝑈ℎ) + 𝑎𝑎𝑝𝑝(𝑞𝑞ℎ, 𝑟𝑟ℎ) − 𝑏𝑏𝑝𝑝(𝑝𝑝𝑝𝑝,ℎ, 𝑟𝑟ℎ) + 𝑏𝑏𝑝𝑝(𝜓𝜓𝑝𝑝,ℎ, 𝑞𝑞ℎ)

+ 𝑎𝑎𝑓𝑓�𝑣𝑣ℎ, 𝑣𝑣ℎ,𝜑𝜑𝑓𝑓,ℎ� − 𝑏𝑏𝑓𝑓�𝑝𝑝𝑓𝑓,ℎ,𝜑𝜑𝑓𝑓,ℎ� + 𝑏𝑏𝑓𝑓�𝜓𝜓𝑓𝑓,ℎ,𝑣𝑣ℎ� − �(
Γ
𝜎𝜎𝑓𝑓,ℎ𝑛𝑛

⋅ 𝜑𝜑𝑓𝑓,ℎ − 𝜎𝜎𝑝𝑝,ℎ𝑛𝑛 ⋅ 𝜑𝜑𝑝𝑝,ℎ + 𝑝𝑝𝑝𝑝,ℎ𝑟𝑟ℎ ⋅ 𝑛𝑛) = 𝐹𝐹(𝑡𝑡;𝜑𝜑𝑓𝑓,ℎ) 

(4.23) 

4.2.2 Time discretization  

We now address the time discretization. Let 𝛥𝛥𝛥𝛥 denote the time step, 𝑡𝑡𝑛𝑛 = 𝑛𝑛𝛥𝛥𝛥𝛥, 0 ≤ 𝑛𝑛 ≤

𝑁𝑁, and let the first order (backward) discrete time derivative be defined as:   

𝑑𝑑𝜏𝜏𝑈𝑈𝑛𝑛: =
𝑈𝑈𝑛𝑛 − 𝑈𝑈𝑛𝑛−1

𝛥𝛥𝛥𝛥
. 

It should be noted that the difference approximation for time derivative of the wall 

velocity is obtained using the common three-point second-derivative approximation for the 

uniform time grid: 

𝑑𝑑𝜏𝜏𝑈̇𝑈𝑛𝑛: =
𝑈𝑈𝑛𝑛 − 2𝑈𝑈𝑛𝑛−1 + 𝑈𝑈𝑛𝑛−2

𝛥𝛥𝛥𝛥2
. 
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   Using the Backward Euler (BE) method for the time discretization of both the flow and 

the structure problem, the fully discrete coupled fluid-solid problem consists of finding 

𝑣𝑣ℎ𝑛𝑛,𝑝𝑝𝑓𝑓,ℎ
𝑛𝑛 , 𝑞𝑞ℎ𝑛𝑛,𝑝𝑝𝑝𝑝,ℎ

𝑛𝑛 ∈ 𝑉𝑉ℎ
𝑓𝑓 × 𝑄𝑄ℎ

𝑓𝑓 × 𝑉𝑉ℎ
𝑝𝑝 × 𝑄𝑄ℎ

𝑝𝑝 and 𝑈𝑈ℎ𝑛𝑛 ∈ 𝑋𝑋ℎ
𝑝𝑝, at each 𝑡𝑡𝑛𝑛, such that for any 

𝜑𝜑𝑓𝑓,ℎ,𝜓𝜓𝑓𝑓,ℎ, 𝑟𝑟ℎ,𝜓𝜓𝑝𝑝,ℎ ∈ 𝑉𝑉ℎ
𝑓𝑓 × 𝑄𝑄ℎ

𝑓𝑓 × 𝑉𝑉ℎ
𝑝𝑝 × 𝑄𝑄ℎ

𝑝𝑝 and 𝜑𝜑𝑝𝑝,ℎ ∈ 𝑋𝑋ℎ
𝑝𝑝 we have,  

𝜌𝜌𝑝𝑝
𝛥𝛥𝛥𝛥2

� (
𝛺𝛺�𝑝𝑝

𝑈𝑈ℎ𝑛𝑛 − 2𝑈𝑈ℎ𝑛𝑛−1 + 𝑈𝑈ℎ𝑛𝑛−2).𝜑𝜑𝑝𝑝,ℎ 𝑑𝑑𝑥𝑥� + 𝑎𝑎𝑠𝑠�𝑈𝑈ℎ𝑛𝑛,𝜑𝜑𝑝𝑝,ℎ� + 𝜌𝜌𝑓𝑓 � 𝜕𝜕𝑡𝑡
Ω𝑓𝑓

𝑣𝑣ℎ𝑛𝑛 ⋅ 𝜑𝜑𝑓𝑓,ℎ𝑑𝑑𝑑𝑑

+ 𝑠𝑠0 � 𝐷𝐷𝑡𝑡
𝛺𝛺𝑝𝑝

𝑝𝑝𝑝𝑝,ℎ
𝑛𝑛 𝜓𝜓𝑝𝑝,ℎ𝑑𝑑𝑑𝑑 − 𝑏𝑏𝑠𝑠(𝑝𝑝𝑝𝑝,ℎ

𝑛𝑛 ,𝜑𝜑𝑝𝑝,ℎ) + 𝑏𝑏𝑠𝑠(𝜓𝜓𝑝𝑝,ℎ,𝐷𝐷𝑡𝑡𝑈𝑈ℎ𝑛𝑛)

+ 𝑎𝑎𝑝𝑝(𝑞𝑞ℎ𝑛𝑛, 𝑟𝑟ℎ) − 𝑏𝑏𝑝𝑝(𝑝𝑝𝑝𝑝,ℎ
𝑛𝑛 , 𝑟𝑟ℎ) + 𝑏𝑏𝑝𝑝(𝜓𝜓𝑝𝑝,ℎ,𝑞𝑞ℎ𝑛𝑛) + 𝑎𝑎𝑓𝑓(𝑣𝑣ℎ𝑛𝑛, 𝑣𝑣ℎ𝑛𝑛,𝜑𝜑𝑓𝑓,ℎ)

− 𝑏𝑏𝑓𝑓(𝑝𝑝𝑓𝑓,ℎ
𝑛𝑛 ,𝜑𝜑𝑓𝑓,ℎ) + 𝑏𝑏𝑓𝑓(𝜓𝜓𝑓𝑓,ℎ,𝑣𝑣ℎ𝑛𝑛) −�(

Γ
𝜎𝜎𝑓𝑓,ℎ
𝑛𝑛 𝑛𝑛 ⋅ 𝜑𝜑𝑓𝑓,ℎ − 𝜎𝜎𝑝𝑝,ℎ

𝑛𝑛 𝑛𝑛 ⋅ 𝜑𝜑𝑝𝑝,ℎ

+ 𝑝𝑝𝑝𝑝,ℎ
𝑛𝑛 𝑟𝑟ℎ.𝑛𝑛) = 𝐹𝐹(𝑡𝑡;𝜑𝜑𝑓𝑓,ℎ) 

(4.24) 

Since both the deformation gradient F and the 2nd Piola stress tensor S in the bilinear 

form 𝑎𝑎𝑠𝑠 depend on the displacement of the structure U, the finite element discretization leads to a 

system of non-linear equations. At each iteration, the coupled FSI problem needs to be 

linearized. The linearization is performed iteratively by the Newton method (similar to the 

approach used in [90], [7] and [91]).   

4.2.3 Structure problem 

Given 𝑣𝑣ℎ𝑛𝑛−1,𝑝𝑝𝑓𝑓,ℎ
𝑛𝑛−1, 𝑞𝑞ℎ𝑛𝑛−1,𝑝𝑝𝑝𝑝,ℎ

𝑛𝑛−1 find 𝑈𝑈ℎ𝑛𝑛 in 𝛺𝛺�𝑠𝑠 such that (4.25): 

It should be noted that by considering the equilibrium of stress over the interface namely 

conditions (4.16) and (4.17), we can replace 𝜎𝜎𝑝𝑝 with 𝜎𝜎𝑓𝑓. Therefore, normal stresses computed 
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from the fluid iterate at the previous time step will be used to obtain the structure displacement 

from (4.25). 

 

𝜌𝜌𝑝𝑝
𝛥𝛥𝛥𝛥2

� (
𝛺𝛺�𝑝𝑝

𝑈𝑈ℎ𝑛𝑛 − 2𝑈𝑈ℎ𝑛𝑛−1 + 𝑈𝑈ℎ𝑛𝑛−2).𝜑𝜑𝑝𝑝,ℎ + � 𝑆𝑆�𝜀𝜀(𝑈𝑈ℎ𝑛𝑛)�:𝐷𝐷𝐷𝐷(𝑈𝑈ℎ𝑛𝑛)�𝜑𝜑𝑝𝑝,ℎ�
𝛺𝛺�𝑝𝑝

+ � 𝜉𝜉
𝛺𝛺�𝑝𝑝

𝑈𝑈ℎ𝑛𝑛 ⋅ 𝜑𝜑𝑝𝑝,ℎ + �𝛾𝛾𝑓𝑓
𝛤𝛤�

𝜇𝜇𝑓𝑓ℎ−1𝑑𝑑𝜏𝜏𝑈𝑈ℎ𝑛𝑛 ⋅ 𝑡𝑡𝑝𝑝 𝜑𝜑𝑝𝑝,ℎ ⋅ 𝑡𝑡𝑝𝑝  

+ �𝛾𝛾𝑓𝑓
𝛤𝛤�

𝜇𝜇𝑓𝑓ℎ−1𝑑𝑑𝜏𝜏𝑈𝑈ℎ𝑛𝑛 ⋅ 𝑛𝑛𝑝𝑝 𝜑𝜑𝑝𝑝,ℎ ⋅ 𝑛𝑛𝑝𝑝 − � 𝐽𝐽𝑠𝑠�𝜎𝜎𝑓𝑓,ℎ
𝑛𝑛−1𝐹𝐹�𝑠𝑠

−𝑇𝑇𝑛𝑛𝑝𝑝�𝜑𝜑𝑝𝑝,ℎ�
𝛤𝛤�

= 𝑏𝑏𝑠𝑠(𝑝𝑝𝑝𝑝,ℎ
𝑛𝑛−1,𝜑𝜑𝑝𝑝,ℎ) + �𝛾𝛾𝑓𝑓

𝛤𝛤�
𝜇𝜇𝑓𝑓ℎ−1𝑣𝑣ℎ𝑛𝑛−1 ⋅ 𝑡𝑡𝑝𝑝 𝜑𝜑𝑝𝑝,ℎ ⋅ 𝑡𝑡𝑝𝑝

+ �𝛾𝛾𝑓𝑓
𝛤𝛤�

𝜇𝜇𝑓𝑓ℎ−1(𝑣𝑣ℎ𝑛𝑛−1 − 𝑞𝑞ℎ𝑛𝑛−1) ⋅ 𝑛𝑛𝑝𝑝 𝜑𝜑𝑝𝑝,ℎ ⋅ 𝑛𝑛𝑝𝑝. 

(4.25) 

 

This problem is equivalent to solving the elastodynamics equation, where the pressure 

term has been time-lagged, complemented with the following Robin-type boundary condition on 

the interface:  

𝜎𝜎𝑝𝑝𝑛𝑛𝑝𝑝 = 𝜎𝜎𝑓𝑓𝑛𝑛−1𝑛𝑛𝑝𝑝 − 𝛾𝛾𝑓𝑓𝜇𝜇𝑓𝑓ℎ−1 �
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

− 𝑣𝑣𝑛𝑛−1 + 𝑞𝑞𝑛𝑛−1�                                    𝑜𝑜𝑜𝑜   𝛤𝛤 

Or equivalently:  

𝐹𝐹�𝑠𝑠𝑆𝑆.𝑁𝑁𝑝𝑝 =  𝐽𝐽𝑠𝑠�𝜎𝜎𝑓𝑓𝑛𝑛−1𝐹𝐹�𝑠𝑠
−𝑇𝑇𝑁𝑁𝑝𝑝 −  𝛾𝛾𝑓𝑓(ℎ−1)𝜇𝜇𝑓𝑓 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝑣𝑣𝑛𝑛−1 + 𝑞𝑞𝑛𝑛−1�                𝑜𝑜𝑜𝑜   𝛤𝛤� 

Where 𝑁𝑁𝑝𝑝 is defined as the normal vector to the structure domain in the reference 

configuration and, 𝑛𝑛𝑝𝑝 is the equivalent vector in the current configuration.  
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4.2.3.1 Newton’s method 

A Newton–Raphson iterative strategy has been adopted here to solve the residual 

equation through consistent linearization at each time step. In newton method for solving 

nonlinear elasticity, we define residual as R=𝑎𝑎𝑠𝑠�𝑈𝑈,𝜑𝜑𝑝𝑝� − 𝐿𝐿(𝜑𝜑𝑝𝑝) .  

𝐽𝐽 ∆𝑈𝑈𝑘𝑘 = −𝑓𝑓(𝑥𝑥𝑘𝑘)     𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐽𝐽 =
𝜕𝜕𝜕𝜕𝑇𝑇

𝜕𝜕𝑥𝑥𝑘𝑘
 

𝑓𝑓(𝑥𝑥𝑘𝑘) = 𝑎𝑎𝑠𝑠�𝑈𝑈𝑘𝑘,𝜑𝜑𝑝𝑝� − 𝐿𝐿�𝜑𝜑𝑝𝑝� 

𝜕𝜕𝜕𝜕𝑇𝑇

𝜕𝜕𝑥𝑥𝑘𝑘
 ∆𝑈𝑈𝑘𝑘 = 𝐿𝐿[𝑓𝑓] = 𝑎𝑎∗�𝑈𝑈𝑘𝑘,∆𝑈𝑈𝑘𝑘,𝜑𝜑𝑝𝑝� →    𝑈𝑈𝑘𝑘+1 = 𝑈𝑈𝑘𝑘 − ∆𝑈𝑈𝑘𝑘 

Also we denote the linearization of 𝑎𝑎𝑠𝑠�𝑈𝑈,𝜑𝜑𝑝𝑝� as 𝑎𝑎𝑠𝑠∗�𝑈𝑈,∆𝑈𝑈,𝜑𝜑𝑝𝑝�: 

𝑎𝑎𝑠𝑠∗�𝑈𝑈,∆𝑈𝑈,𝜑𝜑𝑝𝑝�

= �  𝒞𝒞:𝐷𝐷𝐷𝐷(𝑈𝑈)�𝜑𝜑𝑝𝑝�: 𝐷𝐷𝐷𝐷(𝑈𝑈)[∆𝑈𝑈]
𝛺𝛺�𝑝𝑝

+  𝑆𝑆�𝜀𝜀(𝑈𝑈)�:𝐷𝐷2𝜀𝜀(𝑈𝑈)�𝜑𝜑𝑝𝑝,∆𝑈𝑈�

=  �  𝒞𝒞:𝐷𝐷𝐷𝐷(𝑈𝑈)�𝜑𝜑𝑝𝑝�: 𝐷𝐷𝐷𝐷(𝑈𝑈)[∆𝑈𝑈]
𝛺𝛺�𝑝𝑝

+  𝒞𝒞: 𝜀𝜀(𝑈𝑈):𝐷𝐷2𝜀𝜀(𝑈𝑈)�𝜑𝜑𝑝𝑝,∆𝑈𝑈� 

(4.26) 

The coefficients of the Lagrangian elasticity tensor emerges as: 

𝒞𝒞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑝𝑝𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑘𝑘𝑘𝑘 + 𝜇𝜇𝑝𝑝(𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗) 

In the context of hyper elasticity, by defining 𝑊𝑊 as stored energy density function, we 

can write: 

𝑆𝑆 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                   𝜋𝜋(𝑢𝑢) = �  𝑊𝑊�𝜀𝜀(𝑈𝑈)�
𝛺𝛺�𝑝𝑝

 

𝐷𝐷𝐷𝐷(𝑈𝑈)[𝜑𝜑𝑝𝑝] = �  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

:𝐷𝐷𝐷𝐷(𝑈𝑈)[𝜑𝜑𝑝𝑝]
𝛺𝛺�𝑝𝑝

 (4.27) 



 90 

 

𝐷𝐷2𝜋𝜋(𝑈𝑈)�𝜑𝜑𝑝𝑝,∆𝑈𝑈�

= �  
𝜕𝜕2𝑊𝑊
𝜕𝜕𝜀𝜀2

:𝐷𝐷𝐷𝐷(𝑈𝑈)�𝜑𝜑𝑝𝑝�: 𝐷𝐷𝐷𝐷(𝑈𝑈)[∆𝑈𝑈]
𝛺𝛺�𝑝𝑝

+  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

:𝐷𝐷2𝜀𝜀(𝑈𝑈)�𝜑𝜑𝑝𝑝,∆𝑈𝑈�

= �  𝒞𝒞:𝐷𝐷𝐷𝐷(𝑈𝑈)�𝜑𝜑𝑝𝑝�: 𝐷𝐷𝐷𝐷(𝑈𝑈)[∆𝑈𝑈]
𝛺𝛺�𝑝𝑝

+  𝑆𝑆�𝜀𝜀(𝑈𝑈)�:𝐷𝐷2𝜀𝜀(𝑈𝑈)�𝜑𝜑𝑝𝑝,∆𝑈𝑈� 

(4.28) 

 

𝒞𝒞 = �
2𝜇𝜇𝑝𝑝 + 𝜆𝜆𝑝𝑝 0 𝜆𝜆𝑝𝑝

0 𝜇𝜇𝑝𝑝 0
𝜆𝜆𝑝𝑝 0 2𝜇𝜇𝑝𝑝 + 𝜆𝜆𝑝𝑝

� 

𝐷𝐷2𝜀𝜀(𝑈𝑈)�𝜑𝜑𝑝𝑝,∆𝑈𝑈� =
1
2

(∇𝜑𝜑𝑝𝑝 ∇𝑈𝑈𝑇𝑇 + ∇𝑈𝑈 ∇𝜑𝜑𝑝𝑝𝑇𝑇) 

𝐷𝐷2𝜀𝜀(𝑈𝑈)�𝜑𝜑𝑝𝑝,∆𝑈𝑈� =  𝑙𝑙𝑙𝑙𝑙𝑙
𝛥𝛥𝛥𝛥→0

𝐷𝐷𝐷𝐷(𝑈𝑈 + 𝛥𝛥𝛥𝛥 ∆𝑈𝑈)[𝜑𝜑𝑝𝑝]− 𝐷𝐷𝐷𝐷(𝑈𝑈)[𝜑𝜑𝑝𝑝]
𝛥𝛥𝛥𝛥

 

(4.29) 

We solve the solution satisfying: 

𝑎𝑎𝑠𝑠∗�𝑈𝑈𝑘𝑘,∆𝑢𝑢𝑘𝑘,𝜑𝜑𝑝𝑝� = 𝑅𝑅(𝑈𝑈𝑘𝑘,𝜑𝜑𝑝𝑝) 

Update the displacement              𝑈𝑈𝑘𝑘+1 = 𝑈𝑈𝑘𝑘 − ∆𝑈𝑈𝑘𝑘 

Break the loop if                               ‖∆𝑢𝑢𝑘𝑘‖ ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

Therefore, the set of linearized residual equations are written as:  

𝑎𝑎∗�𝑈𝑈𝑘𝑘,∆𝑈𝑈𝑘𝑘,𝜑𝜑𝑝𝑝� − 𝑎𝑎�𝑈𝑈,𝜑𝜑𝑝𝑝� + 𝐿𝐿�𝜑𝜑𝑝𝑝� = 0 
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𝜌𝜌𝑝𝑝
𝛥𝛥𝛥𝛥2

� ∆𝑈𝑈𝑘𝑘 ⋅ 𝜑𝜑𝑝𝑝,ℎ
𝛺𝛺�𝑝𝑝

+ �  𝒞𝒞:𝐷𝐷𝐷𝐷�𝑈𝑈ℎ𝑛𝑛
𝑘𝑘��𝜑𝜑𝑝𝑝,ℎ�: 𝐷𝐷𝐷𝐷�𝑈𝑈ℎ𝑛𝑛

𝑘𝑘�[∆𝑈𝑈𝑘𝑘]
𝛺𝛺�𝑝𝑝

+ � 𝜉𝜉
𝛺𝛺�𝑝𝑝

∆𝑈𝑈𝑘𝑘

⋅ 𝜑𝜑𝑝𝑝,ℎ + � 𝑆𝑆 �𝜀𝜀�𝑈𝑈ℎ𝑛𝑛
𝑘𝑘�� :𝐷𝐷2𝜀𝜀�𝑈𝑈ℎ𝑛𝑛

𝑘𝑘��𝜑𝜑𝑝𝑝,ℎ,∆𝑈𝑈𝑘𝑘�
𝛺𝛺�𝑝𝑝

−
𝜌𝜌𝑝𝑝
𝛥𝛥𝛥𝛥2

� (
𝛺𝛺�𝑝𝑝

𝑈𝑈ℎ𝑛𝑛
𝑘𝑘 − 2𝑈𝑈ℎ𝑛𝑛−1 + 𝑈𝑈ℎ𝑛𝑛−2).𝜑𝜑𝑝𝑝,ℎ − � 𝜉𝜉

𝛺𝛺�𝑝𝑝
𝑈𝑈ℎ𝑛𝑛

𝑘𝑘 ⋅ 𝜑𝜑𝑝𝑝,ℎ

− � 𝑆𝑆 �𝜀𝜀�𝑈𝑈ℎ𝑛𝑛
𝑘𝑘�� :𝐷𝐷𝐷𝐷�𝑈𝑈ℎ𝑛𝑛

𝑘𝑘�[𝜑𝜑𝑠𝑠]
𝛺𝛺�𝑝𝑝

− �𝛾𝛾𝑓𝑓
𝛤𝛤�

𝜇𝜇𝑓𝑓ℎ−1𝑑𝑑𝜏𝜏𝑈𝑈ℎ𝑛𝑛
𝑘𝑘 ⋅ �𝜑𝜑𝑝𝑝,ℎ�

+ � 𝐽𝐽𝑠𝑠�𝜎𝜎𝑓𝑓,ℎ
𝑛𝑛−1𝐹𝐹�𝑠𝑠

−𝑇𝑇𝑛𝑛𝑝𝑝�𝜑𝜑𝑝𝑝,ℎ� + �𝛾𝛾𝑓𝑓
𝛤𝛤�

𝜇𝜇𝑓𝑓ℎ−1𝑣𝑣ℎ𝑛𝑛−1 𝜑𝜑𝑝𝑝,ℎ
𝛤𝛤�

+ 𝑏𝑏𝑠𝑠�𝑝𝑝𝑝𝑝,ℎ
𝑛𝑛−1,𝜑𝜑𝑝𝑝,ℎ� + �𝛾𝛾𝑓𝑓

𝛤𝛤�
𝜇𝜇𝑓𝑓ℎ−1𝑣𝑣ℎ𝑛𝑛−1 ⋅ 𝑡𝑡𝑝𝑝 𝜑𝜑𝑝𝑝,ℎ ⋅ 𝑡𝑡𝑝𝑝

+ �𝛾𝛾𝑓𝑓
𝛤𝛤�

𝜇𝜇𝑓𝑓ℎ−1(𝑣𝑣ℎ𝑛𝑛−1 − 𝑞𝑞ℎ𝑛𝑛−1) ⋅ 𝑛𝑛𝑝𝑝 𝜑𝜑𝑝𝑝,ℎ ⋅ 𝑛𝑛𝑝𝑝 = 0 

(4.30) 

4.2.4 Darcy problem 

Given 𝑣𝑣ℎ𝑛𝑛−1,𝑝𝑝𝑓𝑓,ℎ
𝑛𝑛−1 and 𝑈𝑈ℎ𝑛𝑛, find 𝑞𝑞ℎ,𝑝𝑝𝑝𝑝,ℎ

𝑛𝑛  in 𝛺𝛺𝑝𝑝 such that: 

𝑠𝑠0 � 𝐷𝐷𝑡𝑡
𝛺𝛺𝑝𝑝

𝑝𝑝𝑝𝑝,ℎ
𝑛𝑛 𝜓𝜓𝑝𝑝,ℎ𝑑𝑑𝑑𝑑 + 𝑎𝑎𝑝𝑝(𝑞𝑞ℎ𝑛𝑛, 𝑟𝑟ℎ) − 𝑏𝑏𝑝𝑝�𝑝𝑝𝑝𝑝,ℎ

𝑛𝑛 , 𝑟𝑟ℎ� + 𝑏𝑏𝑝𝑝�𝜓𝜓𝑝𝑝,ℎ,𝑞𝑞ℎ𝑛𝑛�

+ �𝛾𝛾𝑓𝑓
𝛤𝛤

𝜇𝜇𝑓𝑓ℎ−1𝑞𝑞ℎ𝑛𝑛 ⋅ 𝑛𝑛𝑝𝑝 𝑟𝑟ℎ ⋅ 𝑛𝑛𝑝𝑝 + 𝑠𝑠𝑓𝑓,𝑞𝑞�𝑑𝑑𝜏𝜏𝑞𝑞ℎ ⋅ 𝑛𝑛𝑝𝑝, 𝑟𝑟ℎ ⋅ 𝑛𝑛𝑝𝑝�

= −𝑏𝑏𝑠𝑠(𝜓𝜓𝑝𝑝,ℎ,𝐷𝐷𝑡𝑡𝑈𝑈ℎ𝑛𝑛) + �𝛾𝛾𝑓𝑓
𝛤𝛤

𝜇𝜇𝑓𝑓ℎ−1(𝑣𝑣ℎ𝑛𝑛−1 − 𝐷𝐷𝑡𝑡𝑈𝑈ℎ𝑛𝑛−1) ⋅ 𝑛𝑛𝑝𝑝 𝑟𝑟ℎ

⋅ 𝑛𝑛𝑝𝑝 + �𝑛𝑛𝑝𝑝
𝛤𝛤

⋅ 𝜎𝜎𝑓𝑓,ℎ
𝑛𝑛−1𝑛𝑛𝑝𝑝 𝑟𝑟ℎ ⋅ 𝑛𝑛𝑝𝑝. 

(4.31) 
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This problem consists of the dual-mixed weak form of Darcy equations complemented 

with the following interface condition:   

𝑝𝑝𝑝𝑝𝑛𝑛 = −𝑛𝑛𝑝𝑝 ⋅ 𝜎𝜎𝑓𝑓,ℎ
𝑛𝑛−1𝑛𝑛𝑝𝑝 − 𝛾𝛾𝑓𝑓𝜇𝜇𝑓𝑓ℎ−1(𝑣𝑣𝑛𝑛−1 − 𝐷𝐷𝑡𝑡𝑈𝑈𝑛𝑛−1 − 𝑞𝑞ℎ𝑛𝑛) ⋅ 𝑛𝑛𝑝𝑝,  on   𝛤𝛤 

Based on conditions (4.16), the pressure in the porous media 𝑝𝑝𝑝𝑝𝑛𝑛 has been replaced by the 

normal component of stress in the fluid phase 𝜎𝜎𝑓𝑓,ℎ
𝑛𝑛−1 , computed at the previous time step to 

improve stability.  

4.2.5 Fluid problem 

Given 𝑞𝑞ℎ𝑛𝑛,𝑝𝑝𝑝𝑝,ℎ
𝑛𝑛 ,𝑈𝑈ℎ𝑛𝑛, find 𝑣𝑣ℎ𝑛𝑛,𝑝𝑝𝑓𝑓,ℎ

𝑛𝑛  in Ω𝑓𝑓 such that: 
 
 

𝜌𝜌𝑓𝑓 � 𝑑𝑑𝜏𝜏
Ω𝑓𝑓

𝑣𝑣ℎ𝑛𝑛 ⋅ 𝜑𝜑𝑓𝑓,ℎ𝑑𝑑𝑑𝑑 + 𝑎𝑎𝑓𝑓(𝑣𝑣ℎ𝑛𝑛−1, 𝑣𝑣ℎ𝑛𝑛,𝜑𝜑𝑓𝑓,ℎ) − 𝑏𝑏𝑓𝑓(𝑝𝑝𝑓𝑓,ℎ
𝑛𝑛 ,𝜑𝜑𝑓𝑓,ℎ) + 𝑏𝑏𝑓𝑓(𝜓𝜓𝑓𝑓,ℎ,𝑣𝑣ℎ𝑛𝑛) + 𝑠𝑠𝑓𝑓,𝑝𝑝(𝑑𝑑𝜏𝜏𝑝𝑝𝑓𝑓,ℎ,𝜓𝜓𝑓𝑓,ℎ)

+ 𝑠𝑠𝑓𝑓,𝑣𝑣(𝑑𝑑𝜏𝜏𝑣𝑣ℎ𝑛𝑛 ⋅ 𝑛𝑛𝑓𝑓 ,𝜑𝜑𝑓𝑓,ℎ ⋅ 𝑛𝑛𝑓𝑓) −�𝜎𝜎𝑓𝑓,ℎ
Γ

(𝜍𝜍𝜑𝜑𝑓𝑓,ℎ,−𝜓𝜓𝑓𝑓,ℎ)𝑛𝑛𝑓𝑓 ⋅ 𝑣𝑣ℎ𝑛𝑛 + �𝛾𝛾𝑓𝑓
Γ

𝜇𝜇𝑓𝑓ℎ−1𝑣𝑣ℎ𝑛𝑛 ⋅ 𝜑𝜑𝑓𝑓,ℎ

= −� 𝑝𝑝𝑖𝑖𝑖𝑖
Γ𝑓𝑓
𝑖𝑖𝑖𝑖

(𝑡𝑡) 𝜑𝜑𝑓𝑓 ⋅ 𝑛𝑛𝑓𝑓 + �𝜎𝜎𝑓𝑓,ℎ
𝑛𝑛−1

Γ
𝑛𝑛𝑓𝑓 ⋅ 𝜑𝜑𝑓𝑓,ℎ − �𝑡𝑡𝑓𝑓

Γ
⋅ 𝜎𝜎𝑓𝑓,ℎ(𝜍𝜍𝜑𝜑𝑓𝑓,ℎ,−𝜓𝜓𝑓𝑓,ℎ)𝑛𝑛𝑓𝑓𝑑𝑑𝜏𝜏𝑈𝑈ℎ𝑛𝑛 ⋅ 𝑡𝑡𝑓𝑓

− �𝑛𝑛𝑓𝑓
Γ

⋅ 𝜎𝜎𝑓𝑓,ℎ(𝜍𝜍𝜑𝜑𝑓𝑓,ℎ,−𝜓𝜓𝑓𝑓,ℎ)𝑛𝑛𝑓𝑓 (𝑞𝑞ℎ𝑛𝑛 + 𝑑𝑑𝜏𝜏𝑈𝑈ℎ𝑛𝑛) ⋅ 𝑛𝑛𝑓𝑓 + �𝛾𝛾𝑓𝑓
Γ

𝜇𝜇𝑓𝑓ℎ−1(𝑞𝑞ℎ𝑛𝑛 + 𝑑𝑑𝜏𝜏𝑈𝑈ℎ𝑛𝑛)

⋅ 𝑛𝑛𝑓𝑓 𝜑𝜑𝑓𝑓,ℎ ⋅ 𝑛𝑛𝑓𝑓 + �𝛾𝛾𝑓𝑓
Γ

𝜇𝜇𝑓𝑓ℎ−1𝑑𝑑𝜏𝜏𝑈𝑈ℎ𝑛𝑛 ⋅ 𝑡𝑡𝑓𝑓 𝜑𝜑𝑓𝑓,ℎ ⋅ 𝑡𝑡𝑓𝑓 . 

 
Here 𝑠𝑠𝑓𝑓,𝑝𝑝(𝑑𝑑𝜏𝜏𝑝𝑝𝑓𝑓,ℎ,𝜓𝜓𝑓𝑓,ℎ) is a stabilization term proposed in [7] acting on the free fluid 

pressure, that helps to restore the stability of the explicit time advancing scheme, and the role of 

𝑠𝑠𝑓𝑓,𝑣𝑣 is to control the increment of 𝑣𝑣ℎ𝑛𝑛 over two subsequent time steps, namely we have:  
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𝑠𝑠𝑓𝑓,𝑝𝑝(𝑑𝑑𝜏𝜏𝑝𝑝𝑓𝑓,ℎ,𝜓𝜓𝑓𝑓,ℎ): = 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
ℎ𝛥𝛥𝛥𝛥
𝛾𝛾𝑓𝑓𝜇𝜇𝑓𝑓

�𝑑𝑑𝜏𝜏
Γ

𝑝𝑝𝑓𝑓,ℎ
𝑛𝑛  𝜓𝜓𝑓𝑓,ℎ (4.32) 

𝑠𝑠𝑓𝑓,𝑣𝑣(𝑑𝑑𝜏𝜏𝑣𝑣ℎ𝑛𝑛 ⋅ 𝑛𝑛,𝜑𝜑𝑓𝑓,ℎ ⋅ 𝑛𝑛) = 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠′ 𝛾𝛾𝑓𝑓𝜇𝜇𝑓𝑓
𝛥𝛥𝛥𝛥
ℎ
�𝑑𝑑𝜏𝜏
Γ

𝑣𝑣ℎ𝑛𝑛 ⋅ 𝑛𝑛𝜑𝜑𝑓𝑓,ℎ ⋅ 𝑛𝑛  (4.33) 

4.2.6 Mesh movement 

Knowing the displacement of the structure interface, classical harmonic extension 

approach has been proposed to update the fluid mesh in fluid–structure interaction problem. 

Harmonic extension is explained in [92].  

We employ solving diffusion of the interface displacements into the mesh by solving the 

Laplace equation for each component of the node position in the undeformed configuration 𝛺𝛺�𝑓𝑓. 

Where w is the mesh deformation velocity from the original position and γ is a variable diffusion 

coefficient [6]. The idea is to harmonically expand the evolution of the boundary onto the whole 

of 𝛺𝛺�𝑓𝑓. Here basically the fluid field is taken as solution of a homogeneous Laplace problem with 

boundary conditions imposed by the real solid displacement. 

∇. (𝛾𝛾∇𝑤𝑤) = 0                            𝑖𝑖𝑖𝑖 𝛺𝛺�𝑓𝑓 (4.34) 

It is common to consider diffusion coefficient as a constant [9]. In the numerical tests of 

this chapter, we assume γ=1 and we solve for (4.35): 

𝛻𝛻2𝑤𝑤 = 0                                  𝑖𝑖𝑖𝑖 𝛺𝛺�𝑓𝑓 

                                  𝑤𝑤.𝑛𝑛 = 0                                𝑜𝑜𝑜𝑜 𝜕𝜕𝛺𝛺�𝑓𝑓\ 𝛤𝛤�   , Γ�𝑓𝑓𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 Γ�𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 

               𝑤𝑤 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑                              𝑜𝑜𝑜𝑜 𝛤𝛤� = 𝛺𝛺�𝑓𝑓 ∩ 𝛺𝛺�𝑝𝑝 

 

(4.35) 
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Remark: what is the role of γ? With the Laplacian method, mesh lines cross and negative 

volumes occur so the problem cannot be completed. To fix this problem, several authors have 

proposed a modification to the Laplace method in which a variable diffusivity is introduced [5]. 

Near the interface the diffusivity is increased making the mesh stiffer. It was found that 

increasing the diffusivity as the inverse of the square of the mesh length scale was the most 

effective method.  

4.3 NUMERICAL SIMULATIONS 

In this section we discuss some numerical experiments aiming at supporting the FPSI algorithm 

addressed in the previous section. We have implemented the mathematical methods previously 

described into a numerical solver. For the spatial approximation of the fluid and structure 

equations we exploit the finite element method. In order to achieve a stable discretization of the 

divergence- free constraint, we use inf-sup stable mixed finite elements, i.e. P2-P1 

approximation of the velocity and pressure fields, respectively. The system of algebraic 

equations arising from the finite element method is solved by means of a direct method, which is 

convenient since the number of degrees of freedom is not exceedingly large. In the stopping 

criterion for the Newton’s method, tolerance of 1e-5 is adopted. For the time discretization, we 

use Backward Euler finite difference method. Due to the fast dynamics of the solution and semi-

explicit treatment of the fluid convective term (𝑣𝑣𝑛𝑛+1.  𝛻𝛻𝑣𝑣𝑛𝑛+1 ≈  𝑣𝑣𝑛𝑛.  𝛻𝛻𝑣𝑣𝑛𝑛+1), we have to use 

very small time step ( ∆𝑡𝑡=1.e-5 sec, is used). All computations have been performed using an in 

house finite element solver written in Freefem++ [41]. For stabilization, the SUPG method is 

employed [70], discussed also in [93] . 
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We perform numerical experiments on the idealized geometries that can represent blood-

tissue systems. Benchmark problem 1 shows the ability of our proposed methodology to capture 

large deformations in the FPSI problem and is motived by FSI problems between blood flow and 

the arterial walls. Next, the proposed methodology is used in benchmark problem 2 to study 

energy dissipation in the FPSI framework.  The geometrical model in this example can resemble 

2D model of the left ventricle (LV), similar to the presented LV model in [94] . 

4.3.1 Benchmark 1: FSI analysis of pulsatile flow in a compliant channel  

Our first test case is a variant of the 2D benchmark problem for the flow in a straight tube 

presented in detail in Section 2.4.1.  

In order to assess the impact of extending the study to finite elasticity we have performed 

two simulations, using hyperelastic model and linear elasticity model for the elastic skeleton of 

the porous media in the arterial wall. More precisely, in one simulation we simplify the Green 

strain tensor to its linear part as  𝐸𝐸(𝑈𝑈) = 1
2

(𝛻𝛻𝛻𝛻 + 𝛻𝛻𝑈𝑈𝑇𝑇) for the structure; and the second one we 

use the complete Green strain tensor , 𝐸𝐸(𝑈𝑈) = 1
2

(∇𝑈𝑈 + ∇𝑈𝑈𝑇𝑇 + (∇𝑈𝑈) ∇𝑈𝑈𝑇𝑇).  For each model 

(linear and nonlinear) we study the propagation of a single pressure wave following pressure 

profile, with 2 different values for  Pmax ; one using reference value for Pmax = 13334 dyne/cm2 

which generates small deformation in the structure called the “weak” wave, and the other one 

using 10 × Pmax   that can produce large deformation in the wall.  

𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡) = �
𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

2
�1 − cos �

2𝜋𝜋𝜋𝜋
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

��    𝑖𝑖𝑖𝑖  𝑡𝑡 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

0                                                𝑖𝑖𝑖𝑖  𝑡𝑡 > 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
 (4.36) 
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The inlet pressure pulse generates a wave that inflates the channel near the inlet, travels 

through the channel, and hits the outlet of the tube. We consider a point at the middle of the wall 

and plot displacement of this point vs. time, depicted in the upper panel of the plots in Figure 22.  

The lower panel shows magnified displacement of the wall at t=3ms; when the pressure wave is 

almost at the middle of the channel, for a qualitative comparison that illustrates the differences 

between the two cases. When the applied pressure and the strains are small (left panel of  Figure 

22), the linear and nonlinear solutions nearly coincide and we have one to one match for the 

displacement. However, when the strains become large (right panel), nonlinear effects become 

significant and we notice observable differences in the displacement magnitude. We observe that 

the amplitudes of the displacement predicted by the small deformation model is consistently 

smaller than that predicted by the finite deformation model. 

  

  

Figure 22. Left (weak pressure wave), right (strong pressure wave), Attached plots shows comparison for 

displacement at the middle of the wall for linear (dashed) and nonlinear (solid line) elasticity.  
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4.3.2 Benchmark 2: FSI analysis of the flow in a cross-section model 

In this example the dynamical behavior of a poroelastic material subjected to a time 

dependent loading from the fluid, is investigated. We describe new benchmark settings for the 

evaluation of the energy loss in FPSI problems. We consider the problem of injecting an 

incompressible fluid in a poroelastic medium with a uniform cross-section, which results in 

expansion of the structure. We identify the area occupied by the fluid region, and the structure 

region as depicted in Figure 23. The cross section is considered to be a circular sector made of 

nonlinear, poroelastic, isotropic, and nearly incompressible material with the following 

dimensions: inner radius Ri, outer radius equal to Ro. The fluid and structure regions are 

separated by an interface. The geometry dimensions are provided in Table 6.  

 

Figure 23. Schematic of the geometrical model for benchmark problem 2.  

 

A source term g will be considered in (4.38) to model the injection. This injection phase 

is needed in order to inflate/deflate the geometry.  

𝜌𝜌𝑓𝑓 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣.  𝛻𝛻𝛻𝛻� = 𝛻𝛻.𝜎𝜎𝑓𝑓                            𝑖𝑖𝑖𝑖 𝛺𝛺𝑓𝑓(𝑡𝑡) (4.37) 

𝛻𝛻. 𝑣𝑣 = g                                                          𝑖𝑖𝑖𝑖 𝛺𝛺𝑓𝑓(𝑡𝑡) (4.38) 

𝑞𝑞
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The flow is driven by the injection of the fluid into a circle (2D) that represents the fluid 

domain. Then fluid is drained out of the media. All presented simulations in this part have been 

performed using a sine-type source term with the amplitude of 30 𝑠𝑠−1. We choose a simple sine 

function according to: 

𝑔𝑔(𝑡𝑡) = 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 �sin �
𝜋𝜋𝜋𝜋
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

��    𝑖𝑖𝑖𝑖  𝑡𝑡 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 (4.39) 

𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 = 30 𝑠𝑠−1       𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 0.003 𝑠𝑠      𝑄𝑄(𝑡𝑡) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) × 𝑔𝑔(𝑡𝑡)    → 𝑔𝑔 =
𝑄𝑄(𝑡𝑡)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)
 

 

Table 6. Physical and numerical parameters for benchmark problem 1 

Parameters values Parameters values 

Ri (cm) 0.5 Lame coeff. μp (dyne/cm
2
) 1.07×106 

Ro (cm) 0.4 Lame coeff . λp (dyne/cm
2
) 4.28×106 

wall thickness (cm) 0.1 k (cm
3
 s/g) 5×10-9 

wall density(g/cm
3

 ) 
1.1 s0 (cm

2
/dyne) 5×10-6 

Fluid density (g/cm
3
) 1 𝛾𝛾𝑓𝑓, 𝛾𝛾𝑠𝑠 2500 

Dynamic viscosity (poise) 0.035 Final time 6ms 

 

The formulation also accounts for detailed variations in fluid pressure and flow across the 

thickness. Plots in Figure 25 show the filtration velocity and porous media pressure through the 

thickness of the wall, due to steadily increasing internal pressure. Since fluid pressure is 

constrained to be zero at the outer radial surface, Darcy pressure starts from zero at exterior and 

reaches its maximum at interior (inside channel), as expected. 
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Figure 24. Snapshot for fluid and wall during expansion phase in the model at 2ms; colors represent fluid 

pressure and wall displacement 

 

 

 

 

Figure 25. Filtration velocity through the wall and Darcy pressure at t=2ms for the test case with loading 

rate=6ms and k=5×10-6 
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In order to determine the optimal mesh size to use, a mesh sensitivity analysis has been 

carried out on the 2D cross sectional model. We solved several test cases with different mesh 

sizes of the structure using the reference values provided in Table 6.  

  

Figure 26. Hysteresis loop for different mesh size (left), Schematic of the measuring indicator used in the 

sensitivity analysis (right) 

 

Table 7. Mesh sensitivity results 

 # of cell in 𝛺𝛺𝑠𝑠 Pf × 104  (dyne/cm2) Time step size Pf × 104  (dyne/cm2) 

Mesh 1 1788 2.40 ∆t 2.48 

Mesh 2 3992 2.48 ∆t/2 2.49 

Mesh 3 9194 2.51   

 

We compared the difference in the hysteresis loop between the three different mesh sizes 

presented in the left panel of Figure 26. To this purpose, we define an indicator as the pressure in 

the loading curve at 0.01 cm value for the displacement (right panel of Figure 26). The results 

are provided in Table 7 and Figure 27. The mesh sensitivity analysis shows that after Mesh2 

results are almost insensitive to increasing the number of nodes. For this reason, we conclude 
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that Mesh 2 has an optimal size to evaluate the hysteresis loop with good accuracy. Therefore, 

this mesh density has been used for all the following tests. 

 

Figure 27. Mesh sensitivity analysis plots for different mesh sizes (left) and time steps (right) 

4.3.3 Sensitivity analysis of model parameters 

In order to show the importance of including the poroelastic model for the structure region, we 

investigate the effects of the material properties of the poroelastic region on the fluid pressure vs 

the structure deformation loop; called hysteresis loop in this study, when porous media 

characteristics depart from the values reported in Table 6. We show that different values of the 

storativity coefficient and permeability lead to differences in the hysteresis loop. We also look at 

the dependence hysteresis loop on the stiffness of the poroelastic skeleton and loading rate.  

4.3.3.1 Loading rate and source term amplitude  

We consider three different amplitude of the sine-type source term. We change amplitude 

such that we inject same amount of fluid at different loading rates.  That is, Tmax assumes the 

following values 3ms, 6ms, 12ms in order to study the sensitivity.  
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Figure 28. Different source terms g 

 

In Figure 29 and Figure 30, the hysteresis loop for different loading rate values and 

different amplitudes of the source term are analyzed. In these simulations the hydraulic 

conductivity has been set to the value of k=5×10-6. We observe that the fluid pressure dissipates 

more in the high loading regime i.e by increasing g the size of hysteresis loop increases 

significantly. 

 

Figure 29. Comparing loops for different values of loading rate, with k=5e-6  

 

Figure 31 shows the comparison of the fluid and Darcy pressure as well as the 

displacement and filtration velocity vectors obtained in different loading rate regimes. In the case 

of high loading rate (3ms), plots in Figure 31 show that time variation of Darcy pressure, namely 

dPp/dt, is bigger and so there exists large pore pressure gradient (dPp/dx) from the beginning as 
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well. Hence, the filtration velocity can attain high velocity quickly; as thus the energy loss occurs 

much quicker than small loading rate (12 ms) due to the rapid fluid flow. When there is small 

pressure gradient (dPp/dx), the filtration fluid flow (q) is not able to achieve a high velocity in 

the short time due to the high damping. 

 

Figure 30. Comparing hysteresis loop for different values of the source term g 

 

Figure 31. Comparing fluid pressure, wall displacement, Darcy pressure and filtration velocity for different 

values of loading rate, 3ms (dashed), 6ms (dotted), and 12ms (solid) lines 
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4.3.3.2 Young’s modulus   

We investigate the influence of Young’s modulus E on the pressure relaxation loop. We 

use k=5×10-6  and the loading rate of 6ms for these simulations. Then, we study the behavior of 

the system when we increase and decrease the Young modulus 10 times from its reference value.  

 

Figure 32. Comparing hysteresis loop for different values of Young’s modulus 

  

  

 

Figure 33. Comparing fluid pressure, wall displacement, Darcy pressure and filtration velocity for different 

values of Young’s modulus,𝟎𝟎.𝟏𝟏 × 𝑬𝑬 (dashed), 𝑬𝑬 (dotted), and 𝟏𝟏𝟏𝟏 × 𝑬𝑬 (solid) lines 
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In Figure 32, we analyze the effect of changing Young modulus of the elastic skeleton on 

energy dissipation. For the same simulations, pressure values in the fluid and porous media as 

well as velocity and displacement fields are shown in Figure 33. Results clearly show that for 

very stiff material, the intramural flow squeezes out so hard and quick that the material behaves 

as in a single phase elastic material.  

4.3.3.3 Storage coefficient  

To complete the description of elastic response under fluid infiltration, we also need to 

specify how the storage of fluid within material elements changes due to stressing and 

pressurization. We assume full saturation of all connected pore space. We observe that changing 

the storativity coefficient, which is related to the compressibility of the poroelastic system, 

causes a significant difference in the hysteresis loop.in other words, increasing s0 leads to 

increase in the fluid mass content by changing the porosity and pressure, which results in more 

dissipation.   

 

Figure 34. Comparing hysteresis loop for different values of storage coefficient s0 
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4.3.3.4 Hydraulic conductivity  

Figure 35 informs us about the sensitivity of hysteresis loop with respect to hydraulic 

conductivity. We observe that, as expected; increasing hydraulic conductivity, increases the 

dissipation and we have bigger loop.  

 

Figure 35. Comparing hysteresis loop for different values of hydraulic conductivity 

 

The sensitivity analysis of hydraulic conductivity may help to give interpretation of the 

mechanical behavior of tissue engineered vascular grafts (TEVGs). These grafts are porous [95] 

and in [96] , the hydraulic conductivity of k=10-7 cm2.s/g is considered for the arterial graft 

which is in the range of k for our sensitivity study. Using FPSI model is crucial to investigate 

how the prosthetic graft behaves in different configurations from implantation (initial time) to 

matured artery, as well as in estimating the risk of both mechanical mismatch in the initial stages 

and the eventual rupture. 
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4.4 DISCUSSION 

In the benchmark problem 2, after the poroelastic structure expands to attain equilibrium strain, 

pore fluid flow arises within the structure. Both the magnitude of the deformation of the material 

and the energy loss associated with its deformation are affected by the flow of the viscous fluid 

within the structure, that we call filtration velocity. Using our FPSI model, we investigate the 

variation of the filtration velocity inside the poroelastic structure. A remarkable feature of the 

numerical results is that the velocity field in the porous matrix has a large variation in the radial 

direction. Indeed, in Figure 25 we observe that the filtration velocity changes through the 

thickness and so div(q)≠0. For an incompressible flow in a rigid porous matrix that behavior 

would be impossible, because it violates the divergence free constraint, arising from the mass 

conservation law.  

 

Figure 36. Time variation of mass conservation terms in the Biot model through the wall thickness 

 

However, in a poroelastic material this effect may be possible. For this reason, we aim to 

validate the expressions ( 𝐷𝐷
𝐷𝐷𝐷𝐷
�𝑠𝑠0𝑝𝑝𝑝𝑝 + 𝛻𝛻.𝑈𝑈� + 𝛻𝛻. 𝑞𝑞 = 0) in the Biot model, derived under the mass 

conservation assumption inside the pores of the porous medium. Figure 36 shows the time 
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variation of the different components of this expression for benchmark problem 2. This plot 

confirms that div(q) is remarkably large. Also, we observe that the residual of this equation is 

almost zero, which confirms that mass conservation in average is satisfied in the porous matrix. 

An important contribution of this chapter is the use of porohyperelastic structural model 

in fluid structure interaction to elaborate on energy dissipation in the poroelastic media. The 

energy loss in the poroelastic media has been determined by solving Biot's complete equations of 

poroelasticity for the case of the interaction between the fluid and a poroelastic structure. 

Dissipation in porous media depends only on the relative motion between the pore fluid and the 

skeleton. More precisely, the dissipation vanishes when there is no relative motion of fluid and 

solid [97].  According to  [98] and [86] viscous forces retard the filtration velocity within the 

structure and the relative fluid movement might cause significant energy loss. We have analyzed 

the influence of the model parameters on these effects. 

Our results suggest that energy loss depends both on the fluid filtration speed (q) and on 

the poroelastic parameters (hydraulic conductivity k and storativity s0).  When the load frequency 

is low, the fluid flows slowly through the porous medium, so that little energy is lost in a cycle 

due to viscosity of the fluid filling the pores. Therefore, the behavior of the system approaches 

that of an elastic system. The same is true for very small permeability values. In the opposite 

situation, if load is applied abruptly to a poroelastic material, the energy dissipation is significant 

since the flow through the wall increases. In our simulations, in the case of high loading rates 

(3ms), plots in Figure 31 show that dPp/dt is higher and there exists larger pore pressure from the 

beginning of the loading phase. So the filtration velocity can attain higher values more rapidly. 

as thus the energy loss occurs much quicker than slower loading rate (12 ms) due to the rapid 

fluid flow. This observation is in agreement with results obtained in [99]  for studying the 
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dynamic stability of the poroelastic medium. The idea of dependency of the energy loss to the 

load frequency is also investigated in Yeh-Tyai [100]. They evaluated the complex dynamic 

modulus of the poroelastic media which is a measure of damping in the system, which shows 

that there is a frequency at which maximum loss modulus occurs and it depends on the 

dissipation coefficient and the length to thickness ratio of the poroelastic slab. 

Lastly, by comparing the time-dependent deformation properties of the poroelastic 

medium in the FPSI framework with viscoelastic model, one can identify the relative 

contributions of poroelasticity and solid matrix viscoelasticity in these time-dependent behaviors. 

indeed, the study of the time-dependent deformation properties of the poroelastic medium in the 

FPSI framework helps to identify the similarities between poroelasticity and solid matrix 

viscoelasticity. In [5] it is stated that a porous model has the viscoelastic character of a living 

tissue because of the motion of the pore fluid.  The hysteresis exhibited by viscoelastic materials 

is an outcome of the fact that some part of the stored energy in these materials during loading 

gets dissipated and cannot be recovered. Therefore, these materials will come back to their initial 

configuration through a different unloading path. The dissipative behavior that we observe for 

poroelastic model for high loading rates, is similar to the hysteresis loop in the viscoelastic 

model (such as Figure 19, top and middle panel). More precisely, poroelasticity and 

viscoelasticity may result in the similar energy dissipation in experiments, and this work gives a 

mechanistic explanation of this analogy. 

The magnitude of displacement has significant effect on the energy loss in the poroelastic 

model, and the dynamic behavior (rate effect, i.e how fast the loading is applied) excites the loss. 

In other words, when the model is subject to high internal pressure gradients, which are 

producing large filtration fluid flow such as in benchmark 2, then poroelastic material behavior 
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and energy dissipation are noticeable. For the benchmark 1 case, volume change (dilation) is 

small and filtration velocity is negligible. Hence, the poroelastic model features time-dependent 

behavior associated primarily with the solid-phase deformation and the effect of poroelasticity on 

hysteresis loop is negligible. 

We also study the sensitivity of the amplitude of the pressure-displacement hysteresis 

cycle with respect to some parameters, namely storativity, permeability, loading frequency and 

young modulus. To this purpose we define a quantitative indicator of the hysteresis cycle 

amplitude that we call for simplicity the hysteresis amplitude (HA). It measures the amplitude of 

the cycle as the difference of pressure in the loading and unloading curves at 75% of maximum 

displacement (Figure 37). In all charts, this indicator ranges between 2000 and 30000 dyne/cm2. 

Using the numerical experiments of Figure 29-Figure 35, we have studied the variation of HA 

when each parameter is varied individually. The outcome of the analysis is reported in Figure 38. 

For a better comparison of the different charts, the parameters are normalized with respect to a 

reference values that are chosen as follows: s0=5×10-6, k=5×10-6, loading frequency = 1/0.006, 

E=1×107. The data points corresponding to the reference value are highlighted in red. 

 

 

Figure 37. Schematic of the measuring indicator used in the sensitivity analysis 
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Figure 38. Sensitivity results for dependence of hysteresis loop to the model parameters 

 

We observe that the amplitude of the hysteresis cycle increases with the storativity, 

permeability and loading frequency. We also observe that the dependence of the hysteresis 

amplitude from the parameters is nonlinear. Since the data for storativity, permeability and 

loading frequency feature a similar increasing trend, we have fitted them using a power law 
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model, namely 𝑦𝑦 = 𝑐𝑐. 𝑥𝑥𝑝𝑝, where (p) is the exponent that quantifies the sensitivity of the quantity 

of interest (y) with respect to the control parameter (x) and 𝑐𝑐 is a scaling constant.   

We observe that, thanks to the renormalization, all the charts show a similar behavior and 

the scaling constants are comparable, but the exponents of the power law are different. In 

particular, the loading frequency shows the maximum impact on the hysteresis, followed by the 

storativity and the permeability (Table 8). 

The dependence of the hysteresis cycle form the Young modulus is of difficult 

interpretation. We believe that our analysis substantially shows that the pressure-displacement 

cycle is barely affected by the stiffness of the material. 

  

Table 8. Exponent of the power law for different parameters on the sensitivity analysis 

Parameter value of the exponent (p) in 𝑦𝑦 = 𝑐𝑐. 𝑥𝑥𝑝𝑝 

Loading rate 1.4505 

Storativity 0.4401 

permeability 0.1206 

  

The last column of plots shows the variation of the pressure-displacement cycle when we 

vary the amplitude of the source term. This analysis is performed for two different loading rates. 

In both cases we observe a linear dependence of the hysteresis amplitude from the source term 

magnitude. This would be the observed trend for any linear partial differential equation, which 

sets a linear dependence of the solution from the right hand side. However, the model adopted 

here is nonlinear, especially in the regime of large deformations. More precisely, we observe up 

to 10% displacement for higher amplitude of the source term, which is for sure in the regime of 
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large deformations and therefore we need large deformation formulation to handle this problem. 

Indeed, the results confirm that this is when we have significant poroelastic coupling effect and 

hysteresis loop. However, we observe that by increasing the loading amplitude the hysteresis 

indicator shows linear increase with respect to the loading amplitude which says that the 

response of the model to variation of the load is still linear.  
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5.0  CONCLUSION 

In the context of hemodynamics, we have developed a computational model for the 

interaction between pulsatile fluid flow in a channel, confined with a thick poroelastic wall. In 

order to approximate this problem, we have proposed and analyzed a partitioned, loosely coupled 

finite element solver based on weak enforcement of interface conditions using Nitsche’s method 

that allows us to independently solve the equations at each time step. Namely, structure 

mechanics, the intramural filtration and the fluid flow problem are solved separately at each time 

step. In this way, we uncouple the original problem into the parts defined on separate sub-

regions, which leads to a more efficient calculation of the numerical solution. This method can 

accommodate a mixed formulation for the Darcy’s equations and it guarantees stability as well, 

provided that several penalty and stabilization parameters are appropriately selected. To improve 

the accuracy of the scheme, we have also considered its application as a preconditioner for the 

fully coupled (monolithic) FSI problem formulation, with very encouraging results both for 

performance and accuracy of the method. The theoretical results have been complemented by 

numerical simulations. We have tested our algorithm on 2D and 3D idealized geometries to 

simulate the propagation of the pressure waves and the related wall deformation. Also, our 

computational method allowed us get an accurate representation of the intramural flow within 

the wall.  
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Also, we have performed a sensitivity analysis of the effects of poroelastic parameters on 

FSI results. More precisely, by means of a collection of numerical experiments, we qualitatively 

analyze how the poroelastic phenomena affect the propagation of pressure waves and the wall 

displacement. We conclude that increasing the hydraulic permeability (leaky domain) decreases 

the amplitude of pressure wave, which means that we have more dissipation.  

In order to enhance our understanding of the underlying phenomena of poroelasticity, we 

have analyzed the role of intramural fluid flow in the apparent viscoelastic behavior of the 

poroelastic wall.  To this aim, we have studied the energy exchange in the interaction between 

the blood flow and the arterial wall, to investigate the distribution and dissipation of the energy 

delivered to the artery during one heart cycle. We have compared the energy distribution when 

the wall is modeled using different constitutive models: namely elastic, viscoelastic and 

poroelastic. Although this analysis has informed us about qualitative energy exchange due to 

conductivity of the pores and corresponding filtration velocity, we haven’t observed any 

hysteresis loop for the poroelastic model. Therefore, based on the hypothesis that large 

deformations and nonlinear elasticity may trigger the poroelastic effects, we have moved to finite 

elasticity formulation of the poroelastic media in a FSI framework. 

We have investigated numerically the effects of poroelasticity parameters, as well as 

loading rate and loading magnitude, on the energy dissipation. Namely, we distinguish a fast 

loading rate, a high storativity and a high permeability case in the Darcy equations, and the 

obtained hysteresis loops are compared for different values of each model parameter. By 

employing finite elasticity in our FPSI solver, the results show that the energy loss differs 

substantially between poroelastic model and elastic wall models, and confirmed that accurate 
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representation of the structure model as a poroelastic medium is essential for low loading 

frequencies, and high hydraulic conductivity and storativity.   

Both poroelasticity and viscoelasticity are coupled solid-fluid problems but in different 

ways. Perhaps the most interesting feature of the model studied in this work is its capability of 

explicitly capturing these two distinct phenomena. Namely, one is the influence of fluid viscosity 

on the vessel wall dynamics (poroelasticity), and a separate one is the vessel wall viscoelastic 

mechanical properties that is modeled by utilizing a linearly viscoelastic model based on Kelvin-

Voigt viscoelasticity. It is shown that the mechanism of the energy dissipation of the poroelastic 

material is different from that of a conventional solid material because of the interaction between 

the fluid and solid phase. In the poroelastic material, the energy dissipation and related hysteresis 

loop is not primarily because of effects within the material of the skeleton itself. It is because the 

skeleton is permeated with fluid. Therefore, we conclude that the effect of the transmural flow in 

the total structure stress should be accounted depends on poroelastic parameters value. In 

summary, the results in this thesis highlight the importance of including both poroelasticity and 

viscoelasticity in modeling fluid-structure interaction. 

All the previous results illustrate the role of poroelasticity on the mechanics of soft 

tissues in general. For the specific case of cardiovascular applications, some partially conclusive 

results are available in Chapter 3. There, we have performed a test case that resembles a medium 

size artery, see in particular Section 3.4.2 “Benchmark 2: FSI analysis under physiological 

condition”. This test case highlights some characteristic features on the poro-visco-elastic 

behavior of an artery, which are outlined below: 

• The dissipative effect of intramural flow on the mechanical energy of the artery, is 

relevant for high hydraulic conductivities of the arterial wall. These values are 
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significantly larger than the physiological permeability of healthy arteries (see 

Table 5). Indeed, in Section 3.4.2, benchmark problem 2, we barely see any effect 

for poroelasticity when comparing it to the elastic one for the physiological range 

of permeability parameter. For larger values of permeability, our results confirm 

that the poroelastic model appreciably changes the displacement and wave 

propagation speed in structure as well as the energy distribution. 

• In the physiological range of material parameters, the viscous dissipation in the 

blood flow is the dominant dissipative term during a heartbeat. Only in the range 

of high vascular permeability and in the late diastole phase, intramural filtration 

dissipates comparable amount of energy (see Figure 17 of Chapter 3). For small 

permeability values, we barely notice any contribution related to intramural 

filtration. We also observe that the energy dissipated in the wall is a small fraction 

of that dissipated by the fluid.   

• If a viscoelastic behavior is accounted for, non-negligible energy losses can be 

observed even in the case of healthy tissue (see Figure 17). 

• Viscoelasticity is responsible for establishing a hysteresis loop in the pressure vs 

displacement plots. In contrast, poroelasticity does not generate any hysteresis, 

under physiological conditions (see Figure 19).  

• The results of Chapter 4 (more precisely Figures 29-35) also suggest that high 

deformation rates in the solid matrix trigger effects of hysteresis in the poroelastic 

material. However, to observe these effects, the deformations rates that we use are 

remarkably higher than the physiological ones. 
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These conclusions will be further strengthened when a few limitations of this work will 

be overcome: 

• The computational results are affected by significant uncertainty on the 

physiological parameters characterizing the poro-visco-elastic behavior of an 

artery. To our best knowledge, the parameters that describe a healthy artery are 

collected in Table 5. Better experiments or more advanced modeling approaches 

based on mathematical homogenization might in future fill this knowledge gap. 

• We did not explore the variations of the geometric configuration of the artery, but 

we are aware that the conclusions of this study may no longer apply to small 

arteries, such as the cerebral arteries, for example. 

• At the level of numerical methods, more accurate discretization schemes may be 

adopted, in order to improve the mass and energy conservation properties of the 

simulator. 

For future work, the main focus will be to minimize the computational cost due to the 

iterations between the fluid and solid sub problems, especially in the nonlinear solver.  

Decreasing computational cost, makes us able to solve for more complicated geometries which is 

particularly important for the biomedical applications of this work, namely for the interaction 

between the blood flow and the arterial wall, to reach the goal of simulating realistic vascular 

districts. Another interesting application of this work will be to simulate LDL transport or drug 

delivery through the arterial walls, with pulsatile blood flow. In this case, a mass transfer model, 

coupled to the FPSI problem shall be implemented. In [101, 102] a mathematical model has been 

developed to capture the interplay between blood perfusion, fluid exchange with the interstitial 

volume, and mass transport in the capillary bed, through the capillary walls and into the 
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surrounding tissue. Our model can be combined with [101] to provide a poroelastic description 

of the interstitial tissue, in order to capture the interplay of mechanical deformations and 

transport phenomena. 
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