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ABSTRACT

Genetic information can be used to improve disease risk estimation as well as to estimate

the number of genes influencing a trait. Here we explore these issues in three parts. 1) For

an informed understanding of a disease risk prediction, the confidence interval of the risk

estimate should be taken into account. But few previous studies have considered it. We

propose a better risk prediction model and provide a better screening strategy considering

the confidence intervals. Risk models are built with varying numbers of genetic risk variants

known as single nucleotide polymorphisms (SNPs). Inclusion in the risk model of SNPs,

sorted in decreasing order by effect size, with smaller effects modestly, shifts the risk but

also increases the confidence intervals. The more appropriate risk prediction model should

not include the small effect SNPs. The newly proposed screening method is superior to the

traditional one as evaluated by net benefit quantity. 2) Many methods have been developed

for associated SNP selection, SNP effect estimation, and risk prediction. A Bayesian method

designed for continuous phenotypes, BayesR, shows good characteristics. Here, we developed

an extension of BayesR (BayesRB), so that the method can be used for binary phenotypes.

For SNP effect estimation, BayesRB shows the unbiasedness and sparseness for the big and

small effect SNPs, respectively. It also performs well on risk prediction, but not on associated

SNP selection. 3) When a recessive forward genetic screening study (RFGSS) is carried out

to detect disease mutations, it is important to estimate the screening saturation so as to
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guide the screening strategy. Here, we develop a simulation-based ”unseen species” method

to estimate the screening saturation in a RFGSS. We simulated a RFGSS process based

on a real study and compared our method to both nonparametric methods and parametric

methods. The proposed method performs better than all the other methods, except an

existing ”unseen species” method. The above three newly proposed methods are helpful

for constructing better risk prediction models and for estimating the number of disease

contributing genes. These methods can be applied to different disease studies and may make

contributions to public health.

Keywords: Risk prediction, Confidence intervals, Bayesian models, Screening

saturation.
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1.0 SPECIFIC AIMS

This research aims to apply genetic statistical methods to solve three research questions in

genetics and shed more light on the statistical methodologies applicable to these questions.

The approaches aim to achieve the following goals: 1) construct a better risk prediction

model and provide a better screening strategy by taking the confidence interval of the es-

timated risk into account using the reported single nucleotide polymorphisms (SNPs); 2)

develop a Bayesian based approach to detect the associated SNPs, estimate the SNP effects

and predict the risks of being affected by a dichotomous phenotype taking into account the

effects of all the SNPs; 3) develop a simulation based ”unseen species” method to estimate

the total number of disease genes in a recessive forward genetic screening study (RFGSS).

Aim 1. Genetic risk models and screening strategies: Influence of model size

on risk estimates and precision

To better construct the risk prediction model and to decide whom to screen, the confi-

dence interval of the disease risk estimate should be taken into account. But few previous

studies have done it. In aim 1, we constructed a better risk prediction model and provided a

better screening strategy by taking the confidence interval of the predicted risk into account.

We studied how risks shift and confidence intervals change as the model sizes (e.g., number

of SNPs in the risk model) increase when adding more SNPs in the order of decreasing effect

size. This was done using simulated data set and two real data sets of abdominal aortic

aneurysms (AAA) and age-related macular degeneration (AMD). We found that if we or-

der SNPs by their effect sizes and build risk models of various sizes by adding in the next

weakest SNP, risk shifts between successive models becomes more and more modest, and the
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confidence intervals of the risk estimates tend to become larger. The best risk prediction

model may not be the model with the biggest model size. We also provided a new screening

strategy taking account the confidence intervals of the risk estimates. We compared it with

the traditional screening strategy using net benefit quantity. The new screening strategy

performs better than the traditional one with lower false negative rates.

Aim 2. Develop a Bayesian approach (BayesRB) to estimate the SNP effects

and predict genetic risk for dichotomous traits

Many methods have been developed for associated SNP selection, SNP effect estimation,

and risk prediction. One of the most popular methods is the genome-wide association study

(GWAS). In GWAS, for dichotomous traits, each SNP effect is typically estimated from a

marginal logistic regression model, which usually only contains the SNP and the covariates

of the clinical traits. It consequently fails to account for the effects of other SNPs, which

decreases the precision and the power to detect true associations [Moser et al., 2015]. BayesR

[Moser et al., 2015] is a more accurate method, which detects the associated SNPs, estimates

the SNP effects and makes the prediction of phenotypes based on all SNPs simultaneously.

It shows good characteristics of unbiasedness, accuracy, sparseness and robustness. However,

this method was designed to be applied to the continuous phenotype data sets. In order to

detect the associated SNPs, estimate the SNP effects and make the prediction of the risk

for the dichotomous phenotype with all the good characteristics that BayesR has, we made

an extension of the BayesR method, called BayesRB, by adding auxiliary variables to the

BayesR model. We applied the BayesRB to pilot simulated data sets to assess convergence

and make sure that BayesRB works. Then, we simulated 50 genome-wide simulated data

sets. We applied BayesRB to the genome-wide simulated data sets to evaluate BayesRB’s

performance of associated SNP identification, SNP effect estimation and the risk prediction

and compare its performance to BayesR, LASSO and logistic regression. Since BayesR was

applied to the Welcome Trust Case Control Consortium (WTCCC) data set in Moser et

al., we also applied BayesRB to it and compared their performance. For SNP effect estima-

tion, BayesRB has similar estimates to the logistic regression for big effect SNPs, and shows
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BayesR’s sparseness characteristic for small effect SNPs. It also has better risk prediction

performance than logistic regression and LASSO, but worse than BayesR. For associated

SNP selection, BayesRB does not perform better than the other three methods.

Aim 3. Develop a simulation-based ”unseen species” method to estimate

the total number of disease genes in a recessive forward genetic screening study

(RFGSS).

Recessive forward genetic screening study (RFGSS) is widely conducted to discover the

disease mutations and detect the disease etiology. Estimating the screening saturation in a

RFGSS guides the screening strategy. To our knowledge, no previous study has estimated

the screening saturation and the total number of disease genes in a RFGSS before. In aim

3, we developed a simulation-based ”unseen species” method to estimate the total number

of disease genes in the RFGSS.

We simulated a RFGSS process based on a real study and applied the proposed method

to the simulated data sets to estimate the total numbers of disease genes and their quantile

intervals. We evaluated the unbiasedness and precision of the estimates. We evaluated the

quantile intervals by the coverage rates. In the RFGSS scenario, we compared the perfor-

mance of the proposed method to both nonparametric methods and parametric methods.

The proposed method performs better than all the other methods except an existing ”unseen

species” method, with mean closest to the truth and with relatively small standard deviation.
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2.0 AIM 1. GENETIC RISK MODELS AND SCREENING STRATEGIES:

INFLUENCE OF MODEL SIZE ON RISK ESTIMATES AND PRECISION

The majority of the text in this chapter comes from a manuscript [Shan et al., 2016] submitted

to Genetic Epidemiology.

2.1 BACKGROUND

Personalized genomics is currently a widely discussed topic [Bloss et al., 2011]. Personalized

genomics companies and many publications [Evans et al., 2009; Morrison et al., 2007; Wray

et al., 2007] have provided disease risk prediction models based on genetic predictors. How-

ever, these risk reports seldom take the confidence interval of the risk estimate into account

[Kalf et al., 2014]. For example, 23andMe presented to its customers a point estimate of the

risk and the average risk of the disease in the population, as well as how much higher the

estimated risk was than the average risk. 23andMe did not present confidence intervals of

the provided risk estimates. In many publications, especially when risk estimates are based

on odds ratios derived by meta-analysis, the confidence intervals of the risk estimates are not

presented nor considered in the evaluation of the risk model. Many studies have applied re-

gression models to a set of risk single-nucleotide polymorphisms (SNPs) to make predictions.

Using the area under the curve (AUC) metric to evaluate their risk models, they conclude

that the more risk SNPs in the risk model, the larger the AUC will be, thus, the better the

ability to predict the risk [De Jager et al., 2009; van Dieren et al., 2012]. However, as we

illustrate here, as the number of risk SNPs in the model increases, the confidence interval of

the risk estimate can widen. In fact, a risk estimate with a larger confidence interval from a
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larger model with more SNPs may not be practically better than a similar risk estimate with

a smaller confidence interval from a smaller model based on fewer SNPs. When presenting

and evaluating risk estimates, it is important to consider the level of uncertainty in the risk

estimate.

In this study, we explore the changes of risk estimates and their 95% confidence interval

widths as more SNPs, in the order of decreasing effect size, are added into the model, based

on both simulated and real data. We also created a reclassification table to evaluate the

effect of the added SNPs predictors, taking the confidence interval of the risk estimate into

account. Finally, we selected the best screening strategy based on the net benefit quantity

and the reclassification rate.

2.2 METHODS

2.2.1 Data Description

In this study, we use three data sets to evaluate and compare our risk models. The first

data set is a simulated one. We simulated a data set of 100,000 people assuming a genetic

model based on 19 independent risk SNPs with odds ratios and allele frequencies matching

those observed in a large meta-analysis of age-related macular degeneration (AMD) [Fritsche

et al., 2013], using the Multiple Gene Risk Prediction Performance (mgrp) R package [Pepe

et al., 2010a]. The reason for the independency of the 19 SNPs is that in most real studies,

the top risk SNPs are far enough from each other to be considered independent. In the large

meta-analysis of AMD, the 19 SNPs were shown to be highly related to AMD. AMD is a

progressive neurodegenerative disease, which constitutes one of the primary causes of visual

impairment and irreversible blindness in the elderly of western countries [Klein et al., 2011].

In our simulation, we assumed that the disease is dichotomous with a prevalence of 0.055,

which is similar to the prevalence of AMD.

The second data set is from a study of abdominal aortic aneurysms (AAA). AAA is the

most common form of aortic aneurysm. In general, the prevalence of AAA 2.9 to 4.9 cm

5



in diameter ranges from 1.3% for men aged 45 to 54 years to up to 12.5% for men 75 to

84 years of age. Comparable prevalence figures for women are 0% and 5.2%, respectively

[Rooke et al., 2011]. Up to 10% of the male population who are more than 65 years old

has AAA, and 80-90% of ruptures lead to sudden death [Assar and Zarins, 2009]. Our

goal was to classify the population into high-risk and low-risk categories, where ”high risk”

is defined as having a risk higher than the population prevalence. Our motivation was to

identify people with high AAA risk for targeted ultrasound screening. The samples were

genotyped at 731K SNPs using the Illumina OmniExpress platform (dbGaP Study Acces-

sion numbers: phs000381.v1.p1, phs000408.v1.p1 and phs000387.v1.p1). AAA cases and

controls were identified by electronic phenotyping [Borthwick et al., 2015]. After imputa-

tion and quality control [Verma et al., 2014], 2,626 samples (733 cases and 1,893 controls)

were available. The imputed data are part of the eMERGE Network Imputed GWAS data

for 41 Phenotypes (the dbGaP eMERGE Phase 1 and 2 Merged data Submission) with an

accession number phs000888.v1.p1. By modeling in a much larger electronic medical record

(EMR)-based clinical data set, seven easy-to-measure clinical predictors (age, smoking sta-

tus, sex, systolic blood pressure, diastolic blood pressure, height and weight) were chosen

for use in our risk models [Smelser et al., 2014]. Based on prior literature [Biros et al., 2011;

Bown et al., 2011; Elmore et al., 2009; Galora et al., 2013; Giusti et al., 2008; Harrison et al.,

2013; Helgadottir et al., 2012; Jones et al., 2013; Saracini et al., 2012],15 SNPs present in

the imputed data were selected with odds ratios in the literature ranging from 0.41 to 2.16

(Table 2.1).

The third data set is from a study of the genetics of AMD [Weeks et al., 2004, 2000].

In our analysis, for 1,015 unrelated individuals (882 cases and 133 controls) high quality

genotypes were available at 14 of the 19 SNPs mentioned above, and these 14 were used

as predictors in the AMD data analysis. The cases in our study were defined according

to the diagnosis criteria of ”Model C” as defined in Weeks, et al. [2004]. Under Model

C, cases are those who are definitely or probably affected with AMD or with a related

maculopathy. Model C also included individuals with endstage disease, in the absence of

any other documentation of macular pathology. The controls had no AMD symptoms with

an age at last exam ≥ 65.
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Table 2.1: The original odds ratios (OR), the odds ratios used for ordering, and

the allele frequencies of the predictors for Abdominal Aortic Aneurysm (AAA)

data analysis.

a. Odds ratios and the adjusted odds ratios of the genetic predictors.

Genetic Predictors Original OR in prior study Adjusted OR Risk allele frequencies
rs8003379 0.41 2.44 0.238
rs3781590 2.16 2.16 0.335
rs4988300 2.16 2.16 0.486
rs326118 0.47 2.13 0.113
rs764522 1.69 1.69 0.192
rs5186 1.60 1.60 0.300
rs679620 1.48 1.48 0.482
rs2252070 1.37 1.37 0.305
rs4353 1.35 1.35 0.462
rs7635818 1.33 1.33 0.458
rs599839 0.81 1.23 0.223
rs3798220 1.23 1.23 0.019
rs7529229 0.84 1.19 0.393
rs12039875 1.18 1.18 0.323
rs1466535 1.15 1.15 0.321

b. Odds ratios and the adjusted odds ratios of the clinical predictors.
Clinical Predictor OR from EMR Adjusted OR
Age (years)a 1.51 1.51
Ever smoker 3.87 3.87
Male sex 1.91 1.91
Systolic blood pressure (mmHg) 1.40 1.40
Diastolic blood pressure (mmHg) 1.56 1.56
Height (ft) 3.83 3.83
Weight (lb) 1.09 1.09

The odds ratios used for ordering the SNPs are obtained by inverting any original odds ratios that
are below 1 to be above 1. The clinical predictors were chosen based on Smelser et al. [2014].
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Table 2.2: The odds ratios and the risk allele frequencies of the SNPs in the

simulation study.

SNP Odds Ratio Risk Allele Frequency

1 2.76 0.297

2 2.43 0.636

3 1.74 0.857

4 1.42 0.202

5 1.31 0.743

6 1.30 0.830

7 1.23 0.097

8 1.22 0.764

9 1.16 0.787

10 1.15 0.512

11 1.15 0.485

12 1.15 0.212

13 1.14 0.312

14 1.13 0.478

15 1.13 0.728

16 1.11 0.614

17 1.10 0.637

18 1.10 0.458

19 1.10 0.443

2.2.2 Data analysis

First, for all the three data sets, we used logistic regression to fit the risk models. To avoid

over fitting, we used four fifths of the data as the training data set and the rest of the

data as the testing data set. We did not include any covariates besides the SNPs when

analyzing the AMD and simulated data sets. But we included seven easy-to-measure clinical

predictors (age, smoking status, sex, systolic blood pressure, diastolic blood pressure, height

and weight) when analyzing the AAA data set. Using the training data set, we fit the largest

model using logistic regression with all the SNPs to estimate an odds ratio for each SNP.
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After flipping odds ratios < 1 to be > 1, we ordered the SNPs according to the adjusted odds

ratios. We fit successively larger models using the training data set, increasing the model size

K by adding in the risk SNP with the next biggest adjusted odds ratio (Table 2.1, Table 2.2).

In the training process, we estimated the natural logarithm of odds ratios: β parameters for

each model. Then we estimated risks for each individual in the testing data set by plugging

in the β’s as estimated from the training set using K SNPs. When estimating risks from a

case/control sample using logistic regression, the resulting risk estimate is not the absolute

risk, but rather depends on the case/control ratio in the sample itself. Accordingly, for the

case/control data sets, risk estimates were adjusted using the methods described in Pyke et

al. [1979]. For each person in the testing data set, we recorded the risk estimate, its 95%

confidence interval, the model size, and the SNP genotypes.

We then explored how the risk shifts as the model size increases using bean plots and risk

trajectory plots. To quantify the magnitudes of the risk shifts, we recorded the maximum of

the absolute risk shifts (MRS) between model k and all bigger models for each individual.

We recorded the maximum, across all individuals, of the MRS when additional SNPs were

added to the model k which we refer to as the ”maxMRS”; and the 95th percentile of the

MRS which we refer to as the ”95PMRS”. To investigate the relationship of the confidence

interval width and the model size, we used Spearman’s rank correlation test and bean plots.

For the AAA and AMD data sets, we evaluated the risk models using reclassification

tables, taking the confidence interval into account, classifying individuals into high-risk and

low-risk groups based on a threshold T corresponding to the population prevalence (we

assumed the prevalence was 0.033 for AAA and 0.055 for AMD). In the traditional reclassifi-

cation tables (which do not take the confidence intervals into account), assignment to either

the low or the high risk classes is defined solely based on the risk threshold T. In order to

take the risk confidence intervals into account, we created confidence interval augmented (CI-

augmented) reclassification tables where we redefined the low*/high* risk classes to contain

individuals whose risk estimates were lower/higher than T and whose confidence interval

did not overlap T (Figure 2.1a). Individuals in these two classes had risk estimates that

were unambiguously either below or above T. Then we added two more classes, denoted as

”{-T}” and ”{+T}” which contain individuals with risk estimates with confidence intervals
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that overlap the threshold T (Figure 2.1a). The individuals in the ”{-T}” class had risk

estimates < T, while those in the ”{+T}” class had risk estimates ≥ T. For individuals in

these two classes, it is not clear if their true risk is above or below T. As the CI-augmented

confidence interval classifies the samples into four categories (low*, {-T}, {+T}, high*),

there are three possible screening strategies: 1. screen the samples in high* risk class only

(defined as {T,1]); 2. screen the samples in both {+T} class and high* risk class (defined as

{+T,1]); 3. screen the samples in {-T}, {+T} and high* risk class (defined as {-T,1]). We

calculated the net benefit [McGeechan et al., 2014], which provides a measure of the num-

ber of people correctly screened as having the outcome, adjusted for the number of people

incorrectly screened as having the outcome. The net benefit formula is:

Net benefit =
True positive

n
− False positive

n
(

T

1− T
),

where n is the sample size, and T is the threshold as indicated above. We defined the

reclassification rate of ”lower risk group⇔higher risk group” as the proportion of individuals

reclassified from the lower risk group to the higher risk group or from the higher risk group

to the lower risk group. Then we calculated the reclassification rate of [0,-T}⇔{+T,1] and

the reclassification rate of low*⇔{-T,1] according to the screening strategies 2 and 3. We

also evaluated the rate of correct reclassifications for the three screening strategies. Correct

reclassification means reclassifying cases from the lower risk group to the higher risk group,

or reclassifying controls from the higher risk group to the lower risk group. We used the

net benefit and the rates of correct reclassification to select the best screening strategy.

Furthermore, in order to explore the influence of model size on the confidence interval width,

we recorded how many confidence interval widths increased and decreased when additional

SNPs were added to the initial model.
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Figure 2.1: Explanation of the notations of ”low*”, ”{-T}”, ”{+T}” and ”high*”

categories.

2.3 RESULTS

First, in each data set, we examined how much the risk shifted when one more SNP with

the next largest adjusted odds ratio was added to the model. To explore the risk shift at

the individual level, we plotted representative risk trajectories as SNPs were added to the

model in the order of decreasing effect sizes (Figure 2.2). As expected, the risks shift less

when SNPs with the smaller odds ratios are added. Figure 2.2 shows, at the individual level,

movement in risk among the smaller models has a marked flattening of the risk trajectories

as the models get larger. We also found that individuals with higher initial risks tend to

have their risks shift more than those with lower initial risks as the model size increases. In

the simulated data set (Figure 2.2a), when the three initial risks are 0.027, 0.068 and 0.161,

the maxMRS’s based on model 1, which is the smallest model with only one SNP, are 0.15,

0.27 and 0.39, and the 95PMRS’s based on model 1 are 0.05, 0.11 and 0.21, respectively. In

AAA and AMD data set, the 95PMRS’s based on model 1 are also bigger when the initial

risks are bigger (Figure 2.2b,c).
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We then explored the risk shift at the population level, as more SNPs are added into

the risk model. Table 2.3 shows that the risks do not shift markedly once the model size

is bigger than a certain level. For example, if we let the ”maxMRS-selected model” be the

smallest model with a maxMRS < 0.06, then in all the three data sets, the 95PMRS of the

models bigger than the maxMRS-selected model were all smaller than 0.025. Furthermore,

if we let Mi represent the model with i SNPs, in all the three data sets, when the model

size is bigger than the maxMRS-selected model, 100% of the Mi+1 risk estimates lay inside

the corresponding Mi confidence interval (Figure 2.3a-c) and 100% of the Mi+1 confidence

intervals overlap with the corresponding Mi confidence interval (Figure 2.3d-e). In addition,

when the model size is bigger than the maxMRS-selected model, all the Mi+1 confidence

intervals overlapped more than 50%, 90% and 95% with the corresponding Mi confidence

intervals, in the simulation data set, AAA data set and AMD data set, respectively. Consis-

tent with these observations, Figure 2.4 shows that when the model size was greater than the

maxMRS-selected model, the risk shift distributions did not change markedly as the model

sizes grew.
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Table 2.3: The maxMRS and 95PMRS measures in the simulation data set, AAA

data set and AMD data set.

Simulation data set AAA data set AMD data set
# of SNPs in Model maxMRS 95PMRS maxMRS 95PMRS maxMRS 95PMRS
1 0.395 0.113 0.221 0.075 0.381 0.227
2 0.311 0.076 0.222 0.070 0.322 0.158
3 0.286 0.067 0.182 0.063 0.307 0.136
4 0.214 0.060 0.133 0.051 0.297 0.128
5 0.209 0.053 0.147 0.041 0.222 0.104
6 0.185 0.050 0.098 0.038 0.164 0.079
7 0.176 0.046 0.070 0.027 0.142 0.066
8 0.163 0.041 0.058 0.022 0.096 0.050
9 0.150 0.036 0.042 0.016 0.064 0.035
10 0.119 0.032 0.039 0.014 0.032 0.021
11 0.103 0.029 0.030 0.011 0.022 0.010
12 0.099 0.025 0.021 0.009 0.007 0.004
13 0.087 0.022 0.020 0.006 0.002 0.001
14 0.069 0.019 0.017 0.005
15 0.060 0.016 0.002 0.001
16 0.043 0.012
17 0.025 0.007
18 0.011 0.003

The bold values indicate the ”maxMRS-selected model” which is the smallest model with maxMRS
less than 0.06.
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Figure 2.2: The representative risk trajectories as SNPs are added to the model

in the order of decreasing effect sizes.

Risk trajectories as categorized by the initial risk for (a) the simulation study, (b) the AAA data
set, and (c) the AMD data set. Each graph contains the trajectories of 30 individuals randomly
chosen from the testing data set. The odds ratios of the added SNPs are shown on the top of each
sub figure. The horizontal black line is the disease prevalence (0.055 for the simulated data set and
the AMD data set; 0.033 for the AAA data set). The maxMRS.m1 is the maxMRS based on model
1, while the 95PMRS.m1 is the 95PMRS based on model 1.
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Figure 2.3: Percentages of Mi+1 risks inside the Mi confidence intervals (a-c), and

percentages of Mi+1 confidence intervals that overlap with the Mi confidence

intervals (d-f), where model Mi+1 is one SNP larger than model Mi. The red bar

shows the maxMRS-selected models.
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Figure 2.4: The distribution of risk shifts as a function of the number of SNPs in

the updated model.

The plots were generated by the beanplot command in the R package of the same name [Kampstra,
2008]. The dark horizontal lines show individual observations. The width of the dark horizontal
lines reveals the number of individuals sharing the same observation, with a fixed maximum bound-
ary. The red lines indicate the means of the observations. The label above the plot is the added
SNP’s odds ratio in the model.
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Figure 2.5: The distribution of the confidence interval widths by model size.

The confidence interval width axis uses the log scale. The label above the bean plot is the added
SNP’s odds ratio in the model. The horizontal line in the middle of each bean plot shows the mean
value.
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We then explored the influence of the model size on the confidence interval width. Figure

2.5 shows that the confidence interval width was positively correlated with model size in all

the three data sets. For all the three data sets, the Spearman’s rank correlation test gives

p values smaller than 0.001, indicating strong positive correlation between the confidence

interval width and model size. Table 2.4, 2.5, 2.6, and 2.7 also show the influence of the

model size on the confidence interval width. More estimates have wider confidence intervals

in the updated model with more SNPs than in the initial model with less SNPs. For the

AAA data set, comparing the M0 with M8, 84.8% of the estimates have wider confidence

intervals in the updated model compared to the initial model; while comparing the M8 with

M16, 96.0% of the estimates have wider confidence intervals in the updated model compared

to the initial model. For the AMD data set, comparing the M1 to the M10, 90.0% of the

estimates have wider confidence intervals in the updated model compared to the initial

model; while comparing the M10 to the M14, 100% of the estimates have wider confidence

intervals in the updated model compared to the initial model.

Furthermore, we determined the reclassification rates based on the screening strategies

2 and 3. The reclassification rates with bigger-effect SNPs in Table 2.4 and Table 2.6

are higher than that with smaller-effect SNPs in Table 2.5 and Table 2.7. But the small-

effect SNPs can still affect the reclassifications. Table 2.5 shows that in the AAA data

set, adding 8 less effective SNPs to the maxMRS-selected model, 19.0% of cases and 0.6%

controls were correctly reclassified; while 0% of cases and 3.5% of controls were mistakenly

reclassified. Table 2.7 shows that in AMD data set, adding 4 less effective SNPs to the

maxMRS-selected model, 21.1% of the cases and 0% of the controls were correctly reclassified;

while 0% of the cases and 13.0% of the controls were mistakenly reclassified. We also found

the correctly reclassified rate of low*⇔{-T,1] is much higher than [0,-T}⇔{+T,1] for cases,

and the correctly reclassified rate of low*⇔{-T,1] is lower than [0,-T}⇔{+T,1] for controls,

in both the AAA data set and the AMD data set.
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Table 2.4: CI-augmented reclassification table for AAA data set, when the initial

model only has the clinical predictors (M0) and the updated model added 7 most

effective SNPs (M7).

Outcome: Unaffected with AAA
Updated Model: clinical predictors +7 SNPs [0, -0.033} LOW*

Initial Model: LOW* {-0.033} {+0.033} HIGH* ⇔ ⇔
clinical predictors [0,0.033} {0.033,1] {+0.033,1] {-0.033,1]

-= + -= + -= + -= + %Reclassified
LOW* [0,0.033} 99 323 0 19 0 1 0 0

2.1
4.5

{-0.033} 5 1 0 12 0 8 0 1
3.7{+0.033} 0 0 5 7 0 9 0 4

11.9
HIGH* {0.033,1] 0 0 0 4 3 10 1 92

Outcome: Affected with AAA
Updated Model: clinical predictors +7 SNPs [0, -0.033} LOW*

Initial Model: LOW* {-0.033} {+0.033} HIGH* ⇔ ⇔
clinical predictors [0,0.033} {0.033,1] {+0.033,1] {-0.033,1]

-= + -= + -= + -= + %Reclassified
LOW* [0,0.033} 2 17 0 4 0 0 0 0

13.9
17.4

{-0.033} 0 2 1 5 0 5 0 0
1.0{+0.033} 0 0 1 4 0 8 0 3

4.3
HIGH* {0.033,1] 0 0 1 2 2 9 6 152

”LOW*”/”HIGH*” class records the number of samples with both risk estimates and the two confidence
interval bounds lower/higher than the threshold, which is the prevalence of the corresponding disease. ”-
threshold” class records the number of samples with risk estimates lower than the threshold, but the higher
confidence interval bounds above the threshold. ”+threshold” class records the number of samples with
risk estimates higher than the threshold, but the lower confidence interval bounds below the threshold. ”%
reclassified” is the percentage of samples that are reclassified from LOW*/HIGH* risk class to HIGH*/LOW*
class. ”-=” means the confidence interval width in the updated model is narrower than or equal to the width
in the initial model. ”+” means the confidence interval width in the updated model is wider than the initial
width.
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Table 2.5: CI-augmented reclassification table for AAA data set, when the initial

model has clinical predictors plus the 7 most effective SNPs (M7) and the updated

model has the clinical predictors plus all the 15 SNPs (M15).

Outcome: Unaffected with AAA
Updated Model: clinical predictors +15 SNPs [0, -0.033} LOW*

Initial Model: LOW* {-0.033} {+0.033} HIGH* ⇔ ⇔
clinical predictors [0,0.033} {0.033,1] {+0.033,1] {-0.033,1]
+ 7 SNPs -= + -= + -= + -= + %Reclassified
LOW* [0,0.033} 29 379 0 15 0 0 0 0

0.6
3.5

{-0.033} 0 1 3 40 0 3 0 0
0.6{+0.033} 0 0 0 4 0 26 0 0

3.1
HIGH* {0.033,1] 0 0 0 0 0 10 0 88

Outcome: Affected with AAA
Updated Model: clinical predictors +15 SNPs [0, -0.033} LOW*

Initial Model: LOW* {-0.033} {+0.033} HIGH* ⇔ ⇔
clinical predictors [0,0.033} {0.033,1] {+0.033,1] {-0.033,1]
+ 7 SNPs -= + -= + -= + -= + %Reclassified
LOW* [0,0.033} 0 17 0 4 0 0 0 0

5.1
19.0

{-0.033} 0 0 1 15 0 2 0 0
0.0{+0.033} 0 0 0 3 0 21 0 0

1.6
HIGH* {0.033,1] 0 0 0 0 0 8 0 151

”LOW*”/”HIGH*” class records the number of samples with both risk estimates and the two confidence
interval bounds lower/higher than the threshold, which is the prevalence of the corresponding disease. ”-
threshold” class records the number of samples with risk estimates lower than the threshold, but the higher
confidence interval bounds above the threshold. ”+threshold” class records the number of samples with
risk estimates higher than the threshold, but the lower confidence interval bounds below the threshold. ”%
reclassified” is the percentage of samples that are reclassified from LOW*/HIGH* risk class to HIGH*/LOW*
class. ”-=” means the confidence interval width in the updated model is narrower than or equal to the width
in the initial model. ”+” means the confidence interval width in the updated model is wider than the initial
width.
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Table 2.6: CI-augmented reclassification table for AMD data set, when the initial

model only has one SNP (M1) and the updated model has 10 most effective SNPs

(M10).

Outcome: Unaffected with AMD
Updated Model: 10 SNPs [0, -0.055} LOW*

Initial Model: LOW* {-0.055} {+0.055} HIGH* ⇔ ⇔
1 SNP [0,0.055} {0.055,1] {+0.055,1] {-0.055,1]

-= + -= + -= + -= + %Reclassified
LOW* [0,0.055} 8 12 0 5 0 6 0 1

21.9
37.5

{-0.055} 0 0 0 0 0 0 0 0
15.0{+0.055} 0 0 0 0 0 0 0 0

55.0
HIGH* {0.055,1] 3 0 1 7 0 5 0 3

Outcome: Affected with AMD
Updated Model: 10 SNPs [0, -0.055} LOW*

Initial Model: LOW* {-0.055} {+0.055} HIGH* ⇔ ⇔
1 SNP [0,0.055} {0.055,1] {+0.055,1] {-0.055,1]

-= + -= + -= + -= + %Reclassified
LOW* [0,0.055} 6 28 0 21 0 23 0 4

32.9
58.5

{-0.055} 0 0 0 0 0 0 0 0
2.0{+0.055} 0 0 0 0 0 0 0 0

15.6
HIGH* {0.055,1] 4 0 1 27 8 38 2 125

”LOW*”/”HIGH*” class records the number of samples with both risk estimates and the two confidence
interval bounds lower/higher than the threshold, which is the prevalence of the corresponding disease. ”-
threshold” class records the number of samples with risk estimates lower than the threshold, but the higher
confidence interval bounds above the threshold. ”+threshold” class records the number of samples with
risk estimates higher than the threshold, but the lower confidence interval bounds below the threshold. ”%
reclassified” is the percentage of samples that are reclassified from LOW*/HIGH* risk class to HIGH*/LOW*
class. ”-=” means the confidence interval width in the updated model is narrower than or equal to the width
in the initial model. ”+” means the confidence interval width in the updated model is wider than the initial
width.
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Table 2.7: CI-augmented reclassification table for AMD data set, when the initial

model has 10 most effective SNPs (M10) and the updated model has the clinical

predictors plus all the 14 SNPs (M14).

Outcome: Unaffected with AMD
Updated Model: 14 SNPs [0, -0.055} LOW*

Initial Model: LOW* {-0.055} {+0.055} HIGH* ⇔ ⇔
10 SNP [0,0.055} {0.055,1] {+0.055,1] {-0.055,1]

-= + -= + -= + -= + %Reclassified
LOW* [0,0.055} 0 20 0 3 0 0 0 0

0.0
13.0

{-0.055} 0 0 0 13 0 0 0 0
0.0{+0.055} 0 0 0 1 0 11 0 0

6.2
HIGH* {0.055,1] 0 0 0 0 0 1 0 3

Outcome: Affected with AMD
Updated Model: 14 SNPs [0, -0.055} LOW*

Initial Model: LOW* {-0.055} {+0.055} HIGH* ⇔ ⇔
10 SNP [0,0.055} {0.055,1] {+0.055,1] {-0.055,1]

-= + -= + -= + -= + %Reclassified
LOW* [0,0.055} 0 30 0 8 0 0 0 0

2.3
21.1

{-0.055} 0 0 0 47 0 2 0 0
0.0{+0.055} 0 0 0 1 0 68 0 0

0.5
HIGH* {0.055,1] 0 0 0 0 0 23 0 108

”LOW*”/”HIGH*” class records the number of samples with both risk estimates and the two confidence
interval bounds lower/higher than the threshold, which is the prevalence of the corresponding disease. ”-
threshold” class records the number of samples with risk estimates lower than the threshold, but the higher
confidence interval bounds above the threshold. ”+threshold” class records the number of samples with
risk estimates higher than the threshold, but the lower confidence interval bounds below the threshold. ”%
reclassified” is the percentage of samples that are reclassified from LOW*/HIGH* risk class to HIGH*/LOW*
class. ”-=” means the confidence interval width in the updated model is narrower than or equal to the width
in the initial model. ”+” means the confidence interval width in the updated model is wider than the initial
width.

Finally, we evaluated the net benefit quantities of the three screening strategies. Table

2.8 shows that in both of the two data sets, the screening strategy of screening the individuals

in the {-T,1] category provides the biggest net benefit quantity among the three strategies.

The full models of both AAA and AMD data sets with {-T,1] screening strategy have the

biggest net benefit quantity.
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Table 2.8: Net benefit of the classification of each model in the AAA data set and

the AMD data set for the three screening strategies.

AAA AMD

Screening strategies M0 M7 M15 M1 M10 M14

Screen individuals in {T,1] 0.201 0.191 0.180 0.601 0.386 0.318

Screen individuals in {+T,1] 0.220 0.218 0.216 0.601 0.587 0.590

Screen individuals in {-T,1] 0.236 0.238 0.242 0.601 0.730 0.753

2.4 DISCUSSION

Due to rapid progress and advancements in sequencing technology, it is now feasible, yet

still expensive, to accurately type all genetic variants for an individual. To construct a risk

estimate from these variants, we could attempt to use all of them or we could order them

by estimated effect size, and use only the strongest predictors. But then the question is

how many of these should be used. Clearly, as the effect size shrinks, adding a single small

effect predictor to the risk model will not shift the risk by much. We explored here how the

risk estimate and its certainty change as variants of decreasing effect size are added into the

risk model, using simulated data and real data of two different complex diseases (AAA and

AMD).

If we order SNPs by decreasing effect sizes and build risk models of various sizes by adding

in the next SNP, we first observe that the risk shifts between successive models become more

and more modest (Figure 2.2, Figure 2.4, Table 2.3) and the confidence intervals of the risk

estimates tend to become larger (Figure 2.5, Table 2.4, Table 2.5, Table 2.6, and Table 2.7).

Then, we observed that when the model size is large enough, if one more variant is added, the

majority of the updated risk estimates will lie within the confidence interval of the preceding

estimate and the confidence intervals of the new and old estimates will overlap substantially
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(Figure 2.3). However, as we add multiple small-effect SNPs to the model simultaneously,

these SNPs can still affect the reclassifications (Table 2.4, 2.5, 2.6, 2.7, and Table 2.8).

The large model with lots of SNPs are not appropriate for the disease risk prediction

model, not only because the small effect SNPs increase the confidence interval of the pre-

diction, while they do not shift the disease risk substantially, but also because the large

prediction models may lead to higher genotyping cost. The higher genotyping cost is due to

two causes: First, as the model size is larger, more SNPs need to be genotyped, which leads

to a higher genotyping cost. Second, since no missing genotype data is allowed and bigger

model has a bigger chance of having missing genotypes, more money has to be spent to fill

in the missing data. Sometimes, another experiment has to be done. Blood may need to be

redrawn and DNA may need to be re-extracted.

We recommend that all individuals with risk estimates above the threshold T or who have

risk estimates with confidence intervals that overlap T (e.g., those in the {-T,1] category)

should be screened, where the threshold T is chosen corresponding to the prevalence. There

are two reasons for this. First, the strategy of screening the individuals in the {-T,1] category

gives the biggest net benefit quantity among all three screening strategies. Second, for the

cases, the correctly reclassified rate of low*⇔{-T,1] is much higher than [0,-T}⇔{+T,1],

although for the controls, the correctly reclassified rate of low*⇔{-T,1] is lower than [0,-

T}⇔{+T,1], in both the AAA data set and the AMD data set. Where screening costs

much less compared to failing to detect the disease, screening the individuals in {-T,1] is the

most appropriate strategy. However, it is important to remember that clinical cost-benefit

analyses are complex and the assumption here is that screening is beneficial, although it

is not necessarily so (for various diseases) if the ”cost” of intervention risks are taken into

account.

In the study, all the results are generated by one single split with 80% individuals in

the training data set and 20% individuals in the testing data set. We then generated 5

more 80/20 random splits of the training and testing data sets to show the results change.

Table 2.9 shows the maxMRS-selected models of each split. In the simulation data set, the

maxMRS-selected models in the 5 testing data sets are similar; while in the AAA and AMD

data sets, the maxMRS-selected models in the 5 testing data sets are variant. This is because
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Table 2.9: The number of SNPs in the maxMRS-selected models of five times

80/20 random splits in simulation data set, AAA data set, and AMD data set.

Cross-validation Simulation AAA AMD

1 16 8 10

2 16 8 11

3 17 9 12

4 17 13 -

5 17 14 -

The ”-” symbol indicates that the maxMRS based on the full model is bigger than 0.06. The 
number of SNPs in the maxMRS-selected model of the five splits are sorted by an increasing 
order in each data set.

the sample size in the simulation data set is as large as 100,000, while the model sizes in the 

AAA and AMD data sets are as small as 2,626 and 1,015, respectively. Therefore, the max-

MRS selected models should be built using data sets with large sample sizes. Otherwise, 

the max-MRS selected models may be affected greatly by the splitting of the training and 

testing data sets.

The main focus of the study is not providing accurate risks, but guiding the screening 

decision relative to a fixed threshold. So in the result section, we built models taking the risk 

shifts and the confidence interval width changes into account, but we did not take the true 

risk into account by evaluating whether the true risk is inside the confidence intervals. Here, 

we calculated the coverage probability of the 95% confidence intervals using the simulation 

data set (Figure 2.6). The maxMRS-selected model is 16 for simulated data set. When the 

model size is 16, the mean coverage probability is 0.64. When the model size increases 1, 

although both the confidence intervals and the risks do not shift much, it still possible that 

the confidence interval covers the true risk after the model size increases, but the confidence
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interval does not cover the true risk before the model size increases. 2,414 individuals out of

20,000 have their confidence intervals covered the true risks using M19, but do not have their

confidence intervals covered the true risk using M18. Two individuals have their confidence

intervals covered the true risks using M18, but do not have their confidence intervals covered

the true risk using M19. Although the coverage probabilities with maxMRS-selected models

are not as high as we expected, the results do not conflict to our conclusion that the risks

and the confidence intervals do not shift much when the model sizes exceed the maxMRS-

selected models. Also, although the maxMRS-selected models may not be the best models

for providing accurate risk estimates, they still can be the models that lead to the best

screening strategies. If a true risk is very far from the threshold T, then even if the estimate

of that risk is a bit inaccurate, this inaccuracy would be unlikely to alter the screening
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Figure 2.6: Coverage probabilities of different model sizes in the simulation data

set.

In our results, the relationship of the risks and the confidence interval widths is consistent

with the binomial distribution property that the confidence interval width increases as the

risk estimate rises to 0.50 and decreases as the risk estimate increases beyond 0.5. Since the

disease prevalence in the simulation study, AAA study, and AMD study were 0.055, 0.033

and 0.055, respectively, most of the risk estimates were much lower than 0.5, in all three data

sets. In the simulation data set, AAA data set and AMD data set, only three, one, and eight

individuals had risk estimates bigger than 0.5, respectively. In all the three data sets, most

of the confidence intervals increased as the risk increased, or decreased as the risk decreased,

when one more SNP with the next largest effect size was added to the model. But there

27



were still some confidence intervals that increased as the risks decreased in the three data

sets and some confidence intervals that decreased as the risks increased in the AAA data set

only. These two scenarios are because of two reasons. The first one is that the confidence

interval widths are not only related to the risk size, but are also related to the model size.

Even though the risks estimated by larger models are smaller, the confidence intervals can

still become bigger if the model sizes are bigger. The second reason is that when the risk

estimate exceeds 0.50, the confidence interval width decreases as the risk increases, and vice

versa.

The risk trajectory plot (Figure 2.2) shows that the higher-initial-risk individuals have

their risks shifted more than the lower-initial-risk individuals as more SNPs are added to

the model. This observation is mainly because of two reasons. First, the risk trajectories

that start with a low initial risk suffer from a lower bound effect - they can not move very

far in the down direction. Second, since the disease prevalence in the three data sets is as

low as 0.055, 0.033 and 0.055, respectively, the majority of people should be in the low risk

category. If the risks in the low category rise up substantially, then the prevalence would

exceed its expectation.

Other previous studies classified individuals using both the risks and the confidence

intervals. Goddard and Lewis [2010] developed a strategy, which has been implemented in

the R package REGENT [Crouch et al., 2013], to classify individuals into risk classes using

the risk and the confidence interval of an average individual to anchor the classification.

With N SNPs, there are 3N genotypes. The ”average individual” is the individual with

a genotype relative risk closest to the average risk, which is the sum across all the 3N

genotypes of the products of their frequencies and relative risks of disease. An estimate with

confidence interval overlapping the confidence interval of the ”average individual” is classified

as ”Average” risk. An estimate with confidence interval below the confidence interval of

the ”average individual” is categorized as ”low” risk. In a similar manner, they also define

”moderate” and ”high” risk categories. Scott et al. [2013] applied the reclassification method

and the REGENT R package to predict the risk of rheumatoid arthritis and its age of onset

with smoking. In Goddard and Lewis [2010] , they observed that when one uses confidence

interval-based risk classification, one can run into the situation where an individual with a
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lower risk is classified into the high risk group because their confidence interval was larger

than an individual with a slightly higher risk who had a narrower confidence interval. This

phenomenon also happens in our AAA and AMD data sets. We recorded the smallest risk

estimate among those whose upper bounds of the confidence intervals are higher than the

threshold. Then, we counted the number of estimates that are higher than this smallest risk

estimate, but with confidence intervals that do not cross the threshold. Using the smallest

model (model 1) and the biggest model (model 16) of the AAA data set, models 1, 11, and

14 of the AMD data set, there are 12, 24, 0, 19 and 9 estimates that meet these criteria,

respectively.

Hart et al. [2013] also built a logistic regression model for risk estimation and took

confidence intervals into account. They used logistic regression to create a new actuarial

risk assessment instrument (ARAI). They categorized the individuals to two groups based

on the ARAI score. They evaluate the ARAI at both group level and the individual level.

Their results at the individual level are similar to our results. The mean width of the 95%

confidence intervals for individual risk estimates in the high risk score category was much

bigger than that of subjects in the low risk category. Confidence intervals for individual risk

estimates overlapped completely within groups, and almost completely across groups.

Consideration of risk estimate uncertainty is important because if the disease risk es-

timates, as well as the confidence intervals are provided, people can make more informed

decisions regarding their screening decisions [Weeks and Ott, 1990]. For example, suppose

an individual has a risk estimate below the threshold, but the upper bound of the confidence

interval is much higher than the threshold. If only the risk estimate is provided, there will be

an unfounded confidence in the estimate and the individual may feel safe, and therefore may

choose to not undergo screening. But if both the risk estimate and its confidence interval

are provided, the individual may no longer feel safe, and probably will undergo screening.

For another example, consider an individual with a risk estimate slightly higher than the

threshold and the lower bound of the confidence interval also above the threshold. If only

the risk estimate is provided, this individual may not undergo screening, because the risk

estimate is only slightly higher than the threshold. However, if the confidence interval shows

that it has 95% certainty that the individual has high risk of getting the disease, then this
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individual may decide to undergo screening. On the other hand, since it is difficult to clearly

convey risk estimates in such a way that they are understood and interpreted correctly, it

may be even more difficult to clearly communicate the information embodied in the confi-

dence intervals around those risk estimates [Lautenbach et al., 2013]. Careful consideration

of how to best communicate these measures of risk estimate uncertainty is merited, lest such

communications lead to increased disease-related anxieties and poorer risk perceptions [Han

et al., 2011; Han, 2013].
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3.0 AIM 2. A BAYESIAN APPROACH FOR SNP EFFECT ESTIMATION

AND GENETIC RISK PREDICTION FOR DICHOTOMOUS TRAITS

3.1 BACKGROUND AND SIGNIFICANCE

Sequencing techniques have been developing quickly in recent years. They help people to

explore our genetics and to learn diseases deeply at the genotype level. Whole genome

sequencing is one of the techniques, which is of low price and is widely used in genetic

research. SNPs are the most common type of genetic variants, which can occur in both

coding regions and non-coding regions of the genome. The SNPs in the coding regions can

alter amino acid coding and thus be considered functional and can cause diseases. SNPs

in non-coding regions can also cause disease. Whole-genome microarrays can detect over

4 million markers per sample, and next-generation sequencing (NGS)-based whole-genome

sequencing provides a base-by-base method for detecting the 3.2 billion bases of the human

genome. SNPs are usually used to study all kinds of phenotypes. But only a few SNPs are

effective and predictive of a given phenotype, while most of the SNPs have no effect or only

small effects on that phenotype. Estimating the SNP effects helps to study those phenotypes

and predict the risk of getting the phenotypes.

Different study designs and different research questions lead to different data types. Data

with dichotomous traits is one of the most common data types. A dichotomous trait has

only two phenotype statuses: affected or not affected. When analyzing quantitative traits,

the methods are based on linear regression models. When analyzing dichotomous traits, the

methods are based on logistic regression models.

There are several existing methods for estimating SNP effects. GWAS is one of the

most widely used methods detecting the disease associated SNPs. In GWAS, regression is
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conducted on each SNP, as well as relevant covariates. GWAS is easy to conduct for data

with both quantitative traits and the dichotomous traits. Therefore, a great many GWAS

and GWAS based meta-analysis have been conducted, since the first GWAS was applied in

2005. However, the drawback of this method is that when evaluating the effect of an SNP,

it usually fails to account for the effects of other SNPs, which decreases the precision and

the power to detect true associations [Moser et al., 2015].

To predict the risk of getting a disease, people build a genetic risk model with a subset

of SNPs. In GWAS, these SNPs are selected based on the corresponding p values that are

below the multiple-comparison threshold. There are other methods detecting and selecting

the predictive SNPs. The features of sparsity and shrinkage of regression coefficients of the

least absolute shrinkage and selection operator (LASSO) method are used for SNP selection

[Feng et al., 2012].

Erbe et al. [2012] proposed a Bayesian mixture model called BayesR, which selects the

predictive SNPs and predicts outcomes. In the MCMC process, Erbe et al. assigned a known

value to the genetic variance. Later on, Moser et al. [2015] changed the BayesR a little bit so

that their genetic variance is informed from the data. BayesR enables the simultaneous fitting

of all the SNPs. It treats the SNP effects as drawn from a prior distribution of a mixture

of normal distributions with mean of zero but different variances. Different variances in

the mixture normal distribution allow the SNP effect prior distribution approaches the true

distribution of the effect sizes. Sparseness is accomplished by setting a zero effect category.

However, BayesR method is designed be applied to data with quantitative traits. When

applying BayesR to a dichotomous trait outcome data set, Moser et al. treats the binary

outcome coded 0/1 as the response in an ordinary linear regression. This may cause the

following problems: 1) when fitting an ordinary linear model, the residuals do not follow

normal distributions, but a standard logistic distribution, which may cause some bias of the

SNP effect estimation and the risk prediction; 2) the SNP odds ratios cannot be calculated

using the estimated SNP effects; 3) it is hard to explain the predicted outcome: the predicted

phenotypes can be bigger than 1, so it cannot be treated as the probability of being a case.

Our extension of BayesR based on Erbe et al. and Moser et al. (BayesRB without and with

genetic variance fixed, respectively) is a better method for analyzing dichotomous traits.
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This new method can be used to select associated SNPs, estimate the SNP effects and make

the prediction of the disease risks, taking account for the effects of all the genotyped SNPs.

Several previous studies have proposed methods on dealing with dichotomous outcome

data. Directly fitting of a Bayesian logistic model is a method that can be used. How-

ever, one drawback of fitting a Bayesian logistic model directly is having no conjugate prior.

Most previous approaches applied Metropolis-Hastings, or otherwise used accept-reject steps

[Chen and Dey, 1998; Gamerman, 1997]. These make each MCMC step complicated and

consumes much computational time. When hundreds of thousands of SNPs are there in the

data sets, it is necessary that each MCMC step runs quickly. Simple Gibbs sampling can

be used when the auxiliary variable models are used. Albert and Chib [1993] proposed an

approximate data-augmentation algorithm. They used the t(8) quantile to approximate the

logistic quantiles. The posterior distributions of all the parameters have standard forms.

Thus, Gibbs sampling can be applied. But this is an approximate method, instead of an

exact one. Polson et al. [2013] proposed another data-augmentation strategy for Bayesian lo-

gistic regression, which is a direct analogue of Albert and Chib construction. Their approach

is based on a newly proposed Polya-Gamma distribution family. But it is not practical in

the Bayesian mixture model. Holmes and Held [2006] proposed an exact data-augmentation

algorithm. One posterior distribution does not have a standard form. They used rejection

sampling to solve the issue. However, adaptive-rejection sampling only updates individual

coefficients, which leads to a poor mixing when coefficients are correlated. Therefore, they

suggested a joint updating of some parameters whose posteriors correlated to each other.

This allows fast mixing in the chain.
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3.2 METHODS

3.2.1 BayesRB Approach

To estimate each SNP effect taking account for all the SNP effects, we constructed a Bayesian

mixture model and assumed the SNP effects come from mixtures of several normal distri-

butions, including one with zero mean and zero variance. We applied the Markov chain

Monte Carlo (MCMC) to estimate the unknown parameters. We used a Gibbs scheme and

Metropolis-Hasting scheme to sample values from each unknown parameter’s conditional

posterior distribution. Then, we made inference of each unknown parameters, including the

effect sizes of the SNPs and the categories the SNPs belongs to.

In a sample with n independent individuals and p independent SNPs, the phenotypes

are related to SNPs with a logistic regression model

log

(
P (y = 1)

1− P (y = 1)

)
= 1nµ+Xβ, (3.1)

where y is an n-dimensional vector of dichotomous phenotypes, P (y = 1) is the probability

of being affected, 1n is an n-dimensional vector of ones, µ is the general mean of the P (y = 1)

in the logit scale, X is a n× p matrix of genotypes coded as 0, 1, or 2 indicating 0, 1, or 2

risk alleles. The vector β is a p-dimensional vector of SNP effects.

To extend the BayesR approach to binary traits, we introduced an auxiliary variable Zi.

Zi = µ+

p∑
j=1

Xijβj + εi, (3.2)

where εi follows a standard logistic distribution. For the SNP j, X.j is standardized with the

mean of 0 and the variance of 1, where X.j is the vector of the number of risk alleles of SNP

j for all the individuals. To keep the conditional conjugacy for updating β, we introduced a

further set of variables, λ, which contains λi, i = 1, ..., n. Then, the model becomes

yi ∼

 1 Zi > 0

0 otherwise
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Zi = µ+

p∑
j=1

Xijβj + εi

εi ∼ N(0, λi)

λi = (2ψi)
2

ψi ∼ KS, (3.3)

where ψi, i = 1, ..., n, are independent variables following the Kolmogorov-Smirnov (KS) dis-

tribution. This model is equivalent to the logistic regression model [Holmes and Held, 2006].

The SNPj’s effect βj is assumed to be a mixture of four zero mean normal distributions.

Pr(βj|π, σg) ∼
4∑

k=1

πkN(0, Ckσ
2
g), (3.4)

where k = (1, 2, 3, 4). (C1, C2, C3, C4) = (0, 10−4, 10−3, 10−2). σ2
g is the genetic variance.

There are two strategies to deal with σ2
g , according to Erbe et al. and Moser et al., re-

spectively: 1) treating σ2
g as fixed; 2) treating σ2

g as random. When treating σ2
g as random,

we set σ2
g follows a uniform non-informative prior with the initial value follows N(0, 200).

π = (π1, π2, π3, π4) are the mixture proportions, which sum up to 1. The prior for π is a

symmetric Dirichlet distribution:

Pr(π1, π2, π3, π4) ∼ D(δ, δ, δ, δ) (3.5)

with δ = 1.

For the MCMC process, the fully conditional posterior distributions of each unknown

parameters are given below. The proof can be found in the appendix. We use |. to represent

conditioned on the data and all other parameters. The dependency diagram treating σ2
g as

fixed can be found in Figure 3.1, and treating σ2
g as random can be found in Figure 3.2.

1. Update {Z and λ} jointly from their joint conditional posterior distribution:

P (Z,λ|.) = P (λ|β, µ,X,Z)P (Z|β, µ,Y ,X) (3.6)
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In this case, the Z|β, µ,Y ,X follows independent truncated logistic distribution as

shown below:

Z|β, µ,Y ,X ∝

 Logistic(µ+
∑p

j=1Xijβj, 1)I(Zi > 0) if yi = 1

Logistic(µ+
∑p

j=1Xijβj, 1)I(Zi ≤ 0) otherwise,
(3.7)

where Logistic(θ, κ) is the density function of the logistic distribution with a mean of θ and

a scale of κ.

The conditional distribution P (λ|β, µ,X,Z) does not have a standard form. Therefore,

we used a rejection sampling process to sample the λ’s.

2. The conditional posterior distribution of the general mean µ is

µ|. ∼ N(n−1

n∑
i=1

(Zi −
p∑
j=1

Xijβj),

∑n
i=1 λi
n2

) (3.8)

µ is sampled from the above distribution for each cycle of the Markov chain.

3. For SNP j, βj and bj are updated jointly from their joint conditional posterior distri-

bution, where b denotes the category that each SNP belongs to. SNP j belongs to cetegory

k (k=1, 2, 3, or 4): bj = k.

P (bj, βj|.)

∝ P (βj|bj,Z, X, σ2
g ,λ, µ,β−j , b−j ,π)P (bj|Z, X, σ2

g ,λ, µ,β−j , b−j ,π), (3.9)

where b−j denotes the vector of categories that all the SNPs expect SNP j belong to. β−j

denotes the vector of effects of all the SNPs expect SNP j. C is the vector (0, 10−4, 10−3,

10−2). Then,

Cbj ∼



0 bj = 1

10−4 bj = 2

10−3 bj = 3

10−2 bj = 4

.

For each SNP, bj is updated first. Set Tk = P (bj = k|X,Z, σ2
g ,λ, µ,β−j , b−j ,π).
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Tk = P (bj = k|X,Z, σ2
g ,λ, µ,β−j , b−j ,π) =

1∑4
l=1 exp(logLjl − logLjk)

, (3.10)

where k is the category SNP j is assigned to. k = (1, 2, 3, 4).

If k 6= 1,

logLjk = −1
2

{
log(

∏n
i=1 λi) + log(

∑n
i=1

X2
ij

λi
Cbjσ

2
g + 1)

}

−1

2

[
−

(
∑n

i=1
Z̃ijXij
λi

)2∑n
i=1

X2
ij

λi
+ 1

Cbjσ
2
g

+
n∑
i=1

Z̃ij
2

λi

]
+ log(πk). (3.11)

If k = 1,

logLj1 = −1

2

{
log(

n∏
i=1

λi)

}
− 1

2

[ n∑
i=1

Z̃ij
2

λi

]
+ log(π1). (3.12)

The SNP j is assigned to category k based on a value h sampled from a uniform distri-

bution.

bj =



1 if 0 < h ≤ T1

2 if T1 < h ≤ T1 + T2

3 if T1 + T2 < h ≤ T1 + T2 + T3

4 if T1 + T2 + T3 < h ≤ 1.

(3.13)

Then, we updated βj:

βj|bj,Z, X, σ2
g ,λ, µ,β−j , b−j ,π ∼


δ(βj) bj = 1

N(
∑n
i=1 Z̃ijXijλ

−1
i∑n

i=1 λ
−1
i X2

ij+
1

Cbj
σ2g

, 1∑n
i=1 λ

−1
i X2

ij+
1

Cbj
σ2g

) bj 6= 1
,

(3.14)

where Z̃ij = Zi − µ −
∑

l 6=j Xilβl, and δ(βj) denotes the dirac delta function with all

probability mass at βj = 0 if bj = 1.

For each cycle of the Markov chain, bj and βj for SNP j are updated using the above

distribution. Then, we repeated step 3 for SNP j + 1, ..., p, and recorded the number of

SNPs being in each category as mk. k = (1, 2, 3, 4).

4. If treating σ2
g as fixed, then skip this step. If estimating the σ2

g , then we set a uniform

prior for σ2
g and updated it using the Metropolis-Hasting sampling for each cycle of the
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Markov chain. We set the truncated normal distribution with variance of θ as the proposal

function. The detail can be found in the Appendix.

5. The conditional posterior distribution of the mixture proportion π follows

π|. ∼ D(m1 + δ,m2 + δ,m3 + δ,m4 + δ), (3.15)

where δ = 1. And π is sampled from the above distribution for each cycle of the Markov

chain.

6. Following Moser et al. [2015], in order to increase mixing, we randomly permuted the

SNP orders. Then, loop back to step 1.

The pseudo code of the above MCMC steps can be found in the appendix.

After the MCMC steps, the parameters can be estimated by calculating the means of

the sampled values from their posterior probabilities. We also recorded the proportion of

iterations that each SNP was assigned to category 2, 3 or 4. If the proportion exceeds the

threshold, the SNP is the BayesRB selected associated SNPs.

Then, we made risk prediction of being affected for the individuals in the testing data

set. We set Wij = (Xij − 2pj)/
√

2pj(1− pj). Xij is the number of copies of the risk alleles

(0, 1, 2) at SNP j for individual i with pj being the frequency of the risk allele in the training

population.

Ẑi = µ̂+
∑
β̂j>0

Wijβ̂j (3.16)

P̂ (Yi = 1) = ilogit(Ẑi), (3.17)

where µ̂ and β̂j are estimated from the MCMC above. P̂ (Yi = 1) is the estimated probability

of being affected for a new individual in the testing data set.
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Figure 3.1: Dependency diagram of the parameters if treating σ2
g as fixed.
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Figure 3.2: Dependency diagram of the parameters if treating σ2
g as random.

3.2.2 Other Approaches

BayesR

BayesR Fortran program [Moser et al., 2015] generates the SNP effect estimates, pre-

dicted outcomes, and the proportion of iterations that each SNP is assigned to each category.

BayesR SNP effect estimates and the predicted outcomes are directly obtained from the out-

put. The BayesR selected associated SNPs are those with the proportions of iterations that

the SNPs are assigned to category 3 or 4 bigger than the threshold (Table 3.1).
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Logistic Regression

We used PLINK [Purcell et al., 2007] to conduct all the logistic regression analysis. The

SNP effects are estimated by the marginal logistic regression method. The logistic regres-

sion selected associated SNPs are those with p values smaller than the Bonferroni-corrected

threshold. Among the logistic regression selected associated SNPs, we selected one SNP with

the smallest p value in each linkage disequilibrium (LD) block to do the prediction.

LASSO

We also used PLINK [Purcell et al., 2007] to conduct all the LASSO analysis. The

LASSO selected associated SNPs are those whose SNP effects are not shrunk to zero with

the shrinkage parameter λ. The SNP effects for the LASSO selected associated SNPs are

estimated using marginal logistic regression. The other SNP effects are zero. The predicted

disease risks are estimated by the logistic regression using all the LASSO selected associated

SNPs.

Table 3.1: An overview of how the BayesRB, BayesR, logistic regression and

LASSO results are generated.

Approaches Criteria to select
associated SNPs

Associated SNPs SNP Effects Risk Prediction

BayesRB Proportion of itera-
tions that a SNP is
assigned to category
2, 3 or 4

SNPs with the pro-
portion bigger than
the threshold

Generated by
bayesRB algo-
rithm

Using all the SNP ef-
fect estimates

BayesR Proportion of itera-
tions that a SNP is
assigned to category
3 or 4

SNPs with the pro-
portion bigger than
the threshold

Generated by
bayesR algorithm

Using all the SNP ef-
fect estimates

Logistic Re-
gression

Bonferroni-corrected
P values

SNPs have the p val-
ues smaller than the
threshold

Generated by
marginal logistic
regression

Among the selected
SNPs, using uncor-
related SNPs with
smallest p values

LASSO SNPs that are not shrunk to 0 None-zero effect
SNP estimates are
re-estimated by
logistic regression

Using all the selected
SNPs
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Figure 3.3: Pilot simulated data sets, genome-wide simulated data sets, and real

data sets description and the study design diagram of Aim 2.

3.2.3 Study Design

In this study, we proposed a Bayesian approach (BayesRB) to select the associated SNPs,

estimate the SNP effects and predict genetic risk for dichotomous traits. We applied the

approach to pilot simulated data sets, genome-wide simulated data sets and real data sets.

There are two pilot simulated data sets. One has unrealistic SNP effects, while the other has

more realistic SNP effects. Using the pilot simulated data sets, we diagnosed the performance

of the BayesRB approach. To examine whether the parameters mix well, we assessed the

convergence of the parameters. We also explored whether it is necessary to infer the genetic
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variance from the data and how genetic variance affects the SNP effect estimation. We

diagnosed the performance of the BayesRB approach with and without genetic variance

fixed. The genome-wide simulated data set is even more like a real data set with some

SNPs correlated to each other, showing realistic linkage disequilibrium patterns. Using the

genome-wide simulated data set, we aimed to measure BayesRB’s performance when the

SNPs are not fully independent of each other. Considering the computational time, we

simulated 50 genome-wide simulated data sets. Each has 3000 individuals. For each one,

we randomly selected 80% of individuals to the training data set, and the rest to the testing

data set, letting equivalent proportions of the cases to the controls in the two data sets. We

selected the associated SNPs and estimated the SNP effects using the training data set and

predicted the risk of being affected using the testing data set. We used the Crohn’s disease

(CD) and bipolar disorder (BD) data set from Welcome Trust Case Control Consortium

(WTCCC) study as the real data sets to investigate the BayesRB approach. We created 20

random 80/20 training and testing splits of the two data sets. The purpose of using these

two WTCCC data sets is to investigate the performance of BayesRB in real data sets.

The data description and the study design diagram of aim 2 can be found in Figure 3.3.

3.3 RESULTS

3.3.1 BayesRB R package

We wrote a BayesRB R package using RCPP. All the following results are generated by the

BayesRB R package. The source code can be found in the following website:

https://github.com/sylviashanboo/BayesRB
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3.3.2 Pilot Simulated data sets

To ensure the program works correctly, we first simulated two pilot simulated data sets. In

both of the data sets, the SNPs are independent and the individuals are independent.

We simulated both data sets with 5,000 individuals and 3,000 SNPs using the Multiple

Gene Risk Prediction Performance (mgrp) R package [Pepe et al., 2010b]. One data set has

unrealistic SNPs effects. The SNP effects were set bigger than those usually seen in a typical

GWAS and matching the prior of β as Moser et al. [2015] did: 50 SNP effects have variance

of 10−2σ2
g , 310 SNP effects have variance of 10−3σ2

g , and 2680 SNP effects have variance of

10−4σ2
g , where σ2

g = 100. The other data set has more realistic SNPs effects based on the

SNP effect distribution of Crohn’s disease indicated in Wu et al. [2013]. We simulated the

data set with dichotomous outcome with the proportion of cases to controls of 0.4. The mi-

nor allele frequencies were randomly sampled from the abdominal aortic aneurysms (AAA)

data set, where AAA data set is a real genotype data of SNPs measured on 3104 individuals.

There are 326,706 minor allele frequencies (MAF), which are ≥ 0.1, that can be sampled

from.

Unrealistic Data

For the unrealistic data set, we ran the the Markov chain for 60,000 cycles with the first

10,000 samples discarded as warm-up. We drew every 50th sample after warming-up. We

first treated σ2
g as random. We tuned the variance of the proposal distribution (θ) manually.

When θ = 1, all the parameters mixed well. Then, we treated σ2
g as fixed. We set different

values of σ2
g : 0.1, 0.5, 1, 2, 5, 10, 30, 50, 100, and 500. Figure 3.4 shows the autocorrelation

of the estimated parameters when σ2
g = 10: µ, three β’s with the biggest absolute value,

two randomly selected λ’s, and two random selected Z’s are all mixed very well. When σ2
g

takes the other values, the autocorrelation plots show similar patterns. Figure 3.5 shows

that when σ2
g < 5, the π parameters do not mix well and have high autocorrelation. But

when σ2
g ≥ 5, the π parameters mixed well.

We compared the BayesRB β estimates to the logistic regression β estimates, which are

considered unbiased. Figure 3.6 shows that when σ2
g is set to a fixed value smaller than

or equal to 10, the β estimates are under estimated, compared to the logistic regression
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estimates. When σ2
g is set to a fixed value bigger than 10 (σ2

g = 30, 50, 100, 500) or is

estimated using Metropolis-Hasting sampling, their β estimates of a given SNP are similar.

In this situation, BayesRB shrunk the small SNP effects to zero, and estimated the bigger

SNP effects similar to the logistic regression estimated β.

From the recorded category that each SNP is assigned to, in each MCMC loop, we found

that the relatively big effect SNPs are more often assigned to the category 2, 3 or 4. Figure 3.7

shows that when σ2
g = 100, more than 90% of the SNPs with the logistic regression estimated

β bigger than 0.25 are assigned more than 95% of the time to category 2, 3 or 4 by BayesRB.

Realistic Data

For the realistic data set, we ran the the Markov chain for 20,000 cycles with the first

10,000 samples discarded as warm-up. We drew every 10th sample after warming-up. We

treated σ2
g as fixed. The autocorrelation plots show similar patterns as that using unrealistic

data. When σ2
g ≥ 5, all the parameters including π mixed well.

We also compared the BayesRB β estimates to the logistic regression β estimates. For

the SNPs with the absolute value of the logistic regression β estimates smaller than 0.1,

their BayesRB β estimates are shrunk to a value close to 0 (Figure 3.8a). For the SNPs with

the absolute value of the logistic regression β estimates bigger than 0.1, the small σ2
g values

(σ2
g ≤ 10) will let the β underestimated, while big σ2

g values (σ2
g = 30, 50, 100, or 500) have

β estimates similar to the logistic regression β estimates. (Figure 3.8c, d).

When the σ2
g is large enough (σ2

g > 10), different values of σ2
g affect the shrinkage level

of the β estimates. Figure 3.9a shows that, for the SNPs with the logistic regression β

estimates smaller than 0.1, the bigger the σ2
g , the smaller the summation of the BayesRB

β estimates squared. In other words, for the SNPs with the logistic regression β estimates

smaller than 0.1, when σ2
g > 10, the bigger the σ2

g , the more the BayesRB β estimates

are shrunk. Figures 3.9b shows that, for the SNPs with the logistic regression β estimates

smaller than 0.1, when σ2
g = 100, the overall distance of BayesRB β estimates and logistic

β estimates is the smallest. In other words, when σ2
g = 100, the BayesRB β estimates for

the big effect SNPs are closest to the logistic β estimates. Therefore, we set the σ2
g = 100

for the BayesRB analysis in genome-wide simulated data set and the real data set.
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Figure 3.4: Autocorrelation of the following parameters: µ, three β’s with the

biggest absolute values, two randomly selected λ’s, two randomly selected Z’s

when σ2
g = 10.
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Figure 3.5: Autocorrelation of π when σ2
g is 0.1 (a), 0.2 (b), 0.5 (c), 1 (d), 5 (e),

and 10 (f).
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Figure 3.6: A comparison of the SNP effect estimates under different σ2
g using the

unrealistic data set.

a. A comparison of the BayesRB β estimates to the logistic regression β estimates. b. A comparison
of the β estimates with σ2

g updated by Metropolis-Hasting sampling to the β estimates with σ2
g

fixed at different values. The solid lines in both plots are the diagonal lines.
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Figure 3.7: The proportion of iterations that each SNP is assigned to category 2,

3 or 4, when σ2
g = 100.

The blue dotted horizontal line indicates the proportion of 95% . The red vertical lines are drawn
at -0.25 and 0.25.
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Figure 3.8: A comparison of the SNP effect estimates under different σ2
g using the

realistic data set.

A comparison of the BayesRB β estimates to the logistic regression β estimates. The x axis label
”logistic” indicates the SNP effects estimated by logistic regression. The y axis label ”BayesRB”
indicates the SNP effects estimated by BayesRB. The solid line in each plot is the diagonal line
showing the equivalent values of logistic regression estimated β and the BayesRB estimated β. The
dotted lines indicate the logistic regression estimated β of 0.1 and -0.1, respectively.
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Figure 3.9: a.
∑P

j=1( ˆβBRB)2, when ˆβLR ≤ 0.1. b.
∑P

j=1( ˆβBRB − ˆβLR)2, when ˆβLR > 0.1.

In the formula, ˆβBRB is the BayesRB estimated SNP effect; and ˆβLR is the logistic regression
estimated SNP effect.
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3.3.3 Genome-wide Simulated data sets

To measure how well BayesRB works on genome-wide data sets with SNPs that are not fully

independent, we applied BayesRB to genome-wide simulated data sets. We first simulated

a population genetic data set containing 16,000 individuals’ genotype data set using the

software GWAsimulator [Li and Li, 2008] based on the HapMap phased CEU data. The

genotype data contains all the 305,054 SNPs in the Illumina HumanHap300 SNP chip. We

filtered out the SNPs in the data set with MAF smaller than 0.1. We assigned 195 causal

SNPs that are not in the same LD blocks in the genome with effects follow a distribution

described in Wu et al. [Wu et al., 2013]. The top 6 biggest effect causal SNPs (absolute

values of the assumed true SNP effects ≥ 0.1) are defined as big effect causal SNPs. The

7 to 21 biggest effect causal SNPs (0.05 ≤ absolute values of the assumed true SNP effects

< 0.1) are defined as the medium+ effect causal SNPs. The 22 to 34 biggest effect causal

SNPs (0.038 ≤ absolute values of the assumed true SNP effects < 0.05) are defined as the

medium- effect causal SNPs. Medium+ effect causal SNPs combined with medium- effect

causal SNPs are medium effect causal SNPs. The rest SNPs (absolute values of the assumed

true SNP effects < 0.038) are small effect causal SNPs. We obtained 1,500 cases and 1,500

controls from all the 16,000 individuals using the software GCTA [Yang et al., 2011], setting

the heritability equal to 0.5 and disease prevalence equal to 0.1. We split each data set to

80/20 training and testing data sets, each with the same proportions of cases and controls.

First, we explored how close the genome-wide simulated data sets are to the real genome-

wide data sets. Figure 3.10 is based on the logistic regression result of one of the genome-wide

simulated data sets. In Figure 3.10a, the SNP effect density is close to real studies shown

in Wu et al. [2013]. Figure 3.10b and c show that the big effect causal SNPs have smallest

p values and the biggest SNP effect estimates. And there are peak towers around the big

effect SNPs due to the LD, which is similar to a real GWAS manhattan plot. Therefore, the

genome-wide simulated data sets are similar to the real genome-wide data sets.

For each BayesRB analysis on genome-wide simulated data sets, we ran the Markov chain

for 15,000 cycles with the first 5,000 cycles as warm-up. We drew every 20 sample after

warming-up. We made diagnostic plots. The autocorrelation plots of most parameters show
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similar patterns as Figure 3.4, which indicates that the parameters are mixed well. But some

do not. A larger number of MCMC loops and the bigger thinned number is required. But

considering the computational time, we still used those estimates in the following analysis,

although they are not ideal to use.

We randomly selected one data set out of 50 and compared the SNP effect estimation

performance of BayesRB to BayesR, logistic regression and LASSO method using this data

set. Since LASSO underestimates the selected associated SNP effects, we reestimated the

SNP effects by using the marginal logistic regression analysis. Then, LASSO and logistic

regression methods provide the same SNP effect estimates. So, we only showed logistic

regression result here. Figure 3.11a shows that BayesRB estimates have a linear relationship

with the BayesR estimates, but BayesR has shrunk estimates. Figure 3.11b shows that

the SNPs with big logistic regression estimates have BayesRB estimates close to logistic

regression estimates. SNPs with small logistic regression estimates have BayesRB estimates

close to 0. The red dots, which indicate the big effect and the medium+ effect causal SNPs,

show that the top 21 biggest effect causal SNPs have relatively big effect estimates. Figure

3.12 shows the proportion of the loops that the SNPs are assigned to the category 2, 3 or

4. All the big effect and the medium+ effect causal SNPs have relatively big proportions,

which are bigger than 0.2.

We also compared the performance of identifying associated SNPs of BayesR, BayesRB,

logistic regression and LASSO. Comparison between methods are assessed on their ability to

identity genomic region of 50 SNPs window containing causal SNPs. The reason we used 50

SNPs window is because we did not have the SNP manifest identifying the SNP locations for

the Illumina HumanHap300 phased data set we used in the GWASimulator software. And on

the Illumina website, they indicated ”Although assays on the Human Hap300 BeadChip were

chosen using tagSNPs, SNPs are evenly spaced across the genome to ensure comprehensive

coverage. On average, there is 1 SNP every 9 kb across the genome (median spacing =

5kb). The average 90th percentile gap on the HumanHap300 BeadChip is 19kb.” Therefore,

it is reasonable to set the window size as that containing 50 SNPs. We calculated the true

positive rate (TPR) and the false positive rate (FPR) of the four methods to detect the

windows containing causal SNPs in each replicate. The TPR is the proportion of windows
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containing causal SNPs that are correctly identified as containing associated SNPs. The

FPR is the proportion of windows not containing causal SNPs but are incorrectly identified

as containing associated SNPs. Figure 3.13 shows that all the methods have mean TPR of 1

to detect the windows containing the five big effect causal SNPs. (One big effect causal SNP

is excluded in the QC process, thus is not shown in the result.) When the FPR < 0.015,

BayesR has the biggest mean TPR to detect the windows containing medium effect causal

SNPs. When the FPR >= 0.015, LASSO has the biggest mean TPR. BayesRB has the

lower, but not much lower, mean TPR compared to the other methods under the same FPR.

Then, we compared the power of BayesR, BayesRB, logistic regression and LASSO of

having each window containing causal SNPs identified within the 50 replicates. The power

is calculated using the number of replicates in which a window containing a given SNP is

identified divided by the total number of replicates where at least one SNP in the window

have genotype data. Figure 3.14a and Figure 3.15a, b, c, and d show that using the thresholds

under the same FPR of 0.001, the power of the four methods are similar. LASSO has slightly

bigger power for the medium+ effect causal SNPs than the others. BayesRB has slightly

bigger power for the medium- effect causal SNPs and the small effect causal SNPs than the

others. Figure 3.14b and Figure 3.15e, f, g, and h show that using the thresholds under the

same FPR of 0.05, LASSO has the biggest power, followed by BayesRB, while BayesR has

the lowest power for all the causal SNPs. The power of all the methods detecting the big

effect SNPs are 1.

At last, we compared the performance of risk prediction of BayesR, BayesRB, logistic

regression and LASSO on the testing data sets by comparing the area under the curves

(AUCs). Figure 3.16 shows that BayesRB and BayesR generate bigger AUCs than LASSO

and logistic regression. But BayesR’s median value of AUC is slightly higher than BayesRB

and BayesR’s prediction is more precise than BayesRB.
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Figure 3.10: Evaluation of the genome-wide simulated data sets by visualizing the

distribution of SNP effect estimates and −log10(P values) generated by logistic

regression method.

a. Density plot of the logistic regression SNP effect estimates. b. Scatter plot of −log10(P values)
generated by logistic regression method. The vertical blue lines indicate the top 21 SNPs with
the biggest causal SNP effects (big effect causal SNPs and the medium+ effect causal SNPs). The
horizontal dotted line indicates −log10(P ) = 5 × 108. c. Scatter plot of SNP effect estimates by
logistic regression method. The vertical blue lines have the same meaning as b.
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Figure 3.11: The comparisons of SNP effect estimates by BayesRB, BayesR, and

logistic regression detected in one of the genome-wide simulated training data

sets.

The red dots indicate the SNP effect estimates of the 21 biggest effect SNPs (big effect causal
SNPs and the medium+ effect causal SNPs). The red solid line is the diagonal line. a. BayesRB
SNP effect estimates vs. BayesR SNP effect estimates. The blue dotted line is the fitted regression
line. b. Logistic regression SNP effect estimates vs. BayesRB SNP effect estimates. c. Logistic
regression SNP effect estimates vs. BayesR SNP effect estimates.
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Figure 3.12: The proportion of the iterations that the SNPs are included in the

model in one of the genome-wide simulated training data sets.

The red dots indicate the 21 biggest effect SNPs (big effect causal SNPs and the medium+ effect
causal SNPs).

57



0.00 0.02 0.04 0.06 0.08

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

●

●

●

●

bayesR
bayesRB
logistic
lasso
big
medium

Figure 3.13: True positive rate vs. false positive rate to detect the windows

containing the big effect causal SNPs and the medium effect causal SNPs in the

genome-wide simulated data sets.

58



a.	
  

b.	
  

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

power to detect 195 causal SNPs

Index

po
we

r

●

●

●

●

logistic
lasso
BayesR
BayesRB

0 50 100 150 200

0.0
0.2

0.4
0.6

0.8
1.0

power to detect 195 causal SNPs

Index

po
we

r

●

●

●

●

logistic
lasso
BayesR
BayesRB

Figure 3.14: Power of the windows containing the causal SNPs being detected
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effect sizes.
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Figure 3.15: Power of the windows containing big effect causal SNPs (a, e),

medium+ effect causal SNPs (b, f), medium- effect causal SNPs (c, g), and

small effect causal SNPs (d, h) being detected within 50 replicates under the

FPR of 0.001 (a, b, c, d) and 0.05 (e, f, g, h) in the genome-wide simulated data

sets.
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Figure 3.16: Area under the curve (AUC) of 50 replicates in the genome-wide

simulated data sets. Logistic regression and LASSO use the thresholds when

FPR = 0.001 (a) and FPR = 0.05 (b).
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3.3.4 WTCCC data sets

We assessed the performance of BayesRB for seven diseases of the WTCCC data set. First,

we converted the data sets to PLINK format using MEGA2 [Mukhopadhyay et al., 2005].

Then, following the analyses of Moser et al., we performed strict quality control (QC) on

SNP data using PLINK [Purcell et al., 2007]. We removed individuals with missing geno-

types greater than 2%. We removed loci with the minor allele frequencies smaller than 1%

and SNPs with missingness bigger than 1% for each of the 7 case data sets and the two

control data sets. We combined each case and the two control sets into 7 trait case-control

studies. We removed the SNPs significant at 5% for differential missingness between cases

and controls and SNPs significant at 5% for Hardy-Weinberg equilibrium. We also took

relatedness testing using a pruned set of SNPs with LD of r2 smaller than 0.05. We used the

software PRIMUS [Staples et al., 2014] to identify a maximum unrelated set of individuals.

We conducted principle component analysis (PCA) using the software GCTA [Yang et al.,

2011] and removed individuals in each disease who had poor clustering by visual inspection.

Then, we used the software BEAGLE [Browning and Browning, 2016] to fill in the missing

genotypes. After QC, the data included 1665 cases of bipolar disorder (BD), 1882 cases of

coronary artery disease (CAD), 1576 cases of Crohn’s disease (CD), 1805 cases of hyperten-

sion (HT), 1721 cases of rheumatoid arthritis (RA), 1850 cases of type 1 diabetes (T1D),

1761 cases of type 2 diabetes (T2D), and 2757 to 2782 controls depending on the traits. The

number of genotypes ranged from 306,702 for BD to 312,035 for CD.

Moser et al. [2015] applied BayesR to all the above seven case-control data sets, treating

the binary outcome as the response in an ordinary linear regression. We only used the CD

and BD data sets. We chose CD and BD data sets for the following two reasons: 1) both

diseases have several significant SNPs contributing to the diseases together, unlike RA or

T1D, who are largely influenced by MHC region [Burton et al., 2007]; 2) in Moser et al.,

BayesR has relatively better performance on these two data sets than the others, except RA

and T1D data sets. For both CD and BD data sets, we split each one to 80/20 training and

testing data sets for 20 replicates with the same proportions of cases and controls.

Before applying BayesRB to the data sets, we diagnosed the two cleaned data sets to

double check the quality control (QC) results. We plotted the Manhattan plots (Figure
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3.17a,c) and the QQ plots (Figure 3.17b,d) for the two data sets, and compared the plots

as well as the significant SNPs to the previous studies. The Manhattan plots and QQ plots,

as well as the significant SNPs match the results in previous studies [Burton et al., 2007;

Bowden and Dudbridge, 2009]. Therefore, the two data sets are good to use.

Both CD and BD data sets have around 45% more individuals and 20% more SNPs than

the genome-wide simulated data sets have. Therefore, considering the computational time,

we ran the Markov chain for 13,000 cycles with the first 5,000 cycles as warm-up. We drew

every 20 sample after warming-up. Then, we made diagnostic plots. Most of the parameters

show similar patterns as Figure 3.4, which indicate that those parameters are mixed well.

But some SNP effects do not mix so well, which require larger number of MCMC loops and

the bigger thinned number. In the following analysis, we still used those estimates, although

they are not ideal to use.

Crohn’s Disease (CD) data set

First, we randomly selected one training data set out of 20 to compare the SNP effect esti-

mation performance and the associated SNP detection performance of BayesRB, BayesR and

logistic regression. Figure 3.18a shows that the BayesRB SNP effect estimates have a linear

relationship with the BayesR estimates, except for two SNPs. The two SNPs are rs7593114

and rs6715049, both located on chromosome 2. Figure 3.18b compares the marginal logis-

tic regression estimates to both BayesRB and BayesR estimates of the top 10 SNPs with

the biggest BayesRB effects. Except for the two SNPs, BayesRB has slightly smaller esti-

mates than marginal logistic regression, while BayesRB has much smaller estimates than the

marginal logistic regression. The two SNPs which do not locate around the diagonal line are

rs11887827 and rs6715049 on chromosome 2. Then, we generated LocusZoom plots [Pruim

et al., 2010] to show the relationship of rs11887827, rs6715049 and rs7593114. Figure 3.19a

shows that the three SNPs are highly correlated (r2 > 0.9), but while rs11887827 has a p

value as small as 1.701 × 10−5, rs6715049 and rs7593114 do not have significant p values.

Then, we conducted the logistic regression conditioning on rs11887827. Figure 3.19b shows

that with rs11887827 conditioned on, rs6715049 and rs7593114 are pumped up with p values
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as small as 7.188 × 10−20 and 9.189 × 10−11, respectively. We recompared the SNP effect

estimates of BayesRB to logistic regression, but with rs11887827 conditioned on. Figure

3.18c shows that all the top 10 SNPs’ BayesRB estimates are close to the logistic regression

estimates, but slightly smaller than the logistic regression estimates. Then, we plotted man-

hattan plots based on the p values from both marginal logistic regression (Figure 3.20a, b )

and logistic regression with rs11887827 conditioned on (Figure 3.20c, d). We explored the

corresponding p values from logistic regression of the top 10 SNPs with the biggest BayesRB

estimates (Figure 3.20a, c) and the biggest BayesR estimates (Figure 3.20b, d). Most of the

top 10 SNPs locate on the top of the manhattan tower. Before rs11887827 is conditioned on,

rs7593114 and rs6715049 locate at the bottom of the manhattan tower. After the rs11887827

is conditioned on, rs7593114 locates on the top of the manhattan tower, while rs6715049 is

halfway up the tower. Table 3.2a shows that while rs11887827 and rs7593114 have perfect

LD in the controls, 115 off diagonal entries in the cases. Table 3.2b shows that while only 5

out of 2225 controls having homozygous rs11887827 mutation and heterozygous rs6715049

mutation, 114 out of 1260 cases having this pattern. In Figure 3.20c, d, it seems that an-

other SNP rs903228 is also halfway up the same tower of rs11887827. But actually, this SNP

is 2,797kb away from rs11887827. We also investigated manhattan towers on chromosome

1 and 16. In Figure 3.20c, rs7515029 on chromosome 1 does not locate on the top of the

manhattan tower. The SNP on the top of the tower is rs2201841, which is one of the top

30 biggest BayesRB estimated SNPs. rs7515029 and rs2201841 have low correlation (Figure

3.21a). In Figure 3.20c and d, two SNPs on the same tower in chromosome 16 have large

BayesRB and BayesR estimates. But according to the Figure 3.21b, although the two SNPs

are close to each other, they locate on different genes with a low correlation (r2 < 0.2).

Therefore, it is reasonable that BayesRB and BayesR generate big estimates for both of the

SNPs.

We calculated the TPR and FPR to detect the 250kb windows containing the 201 previ-

ously reported SNPs. The 201 previously reported SNPs are obtained from GWAS Catalog

[Welter et al., 2014] and Liu at al. [2015]. Only the SNPs reported by studies with European

ancestry samples are included. All 201 SNPs have reported p values smaller than 5× 10−8.

Figure 3.22a and b show that logistic regression has the biggest TPRs, followed by LASSO,
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while BayesR has the lowest TPR, under the same value of FPRs. When the FPR is 0.08,

the TPR is around 0.2 for all the methods.

Then, we compared the power of BayesR, BayesRB, logistic regression and LASSO to

have each window containing causal SNPs identified within the 20 replicates. Figure 3.22c

and d show that using the thresholds under the same FPR of both 0.001 and 0.05, logistic

regression has highest power to detect the previously reported SNPs, and LASSO has the

lowest power. For some SNPs, BayesRB has bigger power than BayesR, but for other SNPs,

it does not.

At last, we compared the performance of risk prediction of BayesR, BayesRB, logistic

regression and LASSO on the testing data set by comparing the AUCs. Figure 3.22e and f

show that BayesRB and BayesR generate bigger AUCs than LASSO and logistic regression.

But BayesR’s median value of AUC is slightly higher than BayesRB. BayesRB’s prediction

is more precise than BayesR.
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Figure 3.17: Manhattan plots (a, c) and the QQ plots (b, d) for the CD data set

(a, b) and the bipolar disorder data set (c, d).
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Figure 3.18: The comparisons of SNP effect estimates by BayesRB, BayesR, and

logistic regression in one of the CD training data sets.

The red solid lines are the diagonal lines. a. Compare the SNP effect estimates of BayesRB to
BayesR. The blue dotted line is the fitted regression line, excluding the estimates of rs6715049
and rs7593114. b. Compare the marginal logistic regression estimates to BayesRB and BayesR
estimates of the top 10 SNPs which have the biggest BayesRB estimates. c. Compare the logistic
regression estimates conditioning on rs11887827 to BayesRB and BayesR estimates of the top 10
SNPs which have the biggest BayesRB estimates.
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Figure 3.19: LocusZoom plots of 400kb region on chromosome 2, centered on

rs11887827.

a. The p values are generated from marginal logistic regression analysis. b. The p values are
generated from logistic regression analysis with rs11887827 conditioned on.
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Figure 3.20: Manhattan plots of one of the CD training data sets before and after

the SNP rs11887827 is conditional on with the top 10 BayesRB and BayesR

estimated SNPs highlighted, respectively.

a. The y axis is the −log10 of the marginal p values. The green dots indicate the 10 SNPs with the biggest
BayesRB SNP effect estimates. b. Same manhattan plot as in a. The green dots indicate the 10 SNPs
with the biggest BayesR SNP effect estimates. c. The y axis is the −log10 of the p values conditioned on
rs11887827. The green dots indicate the 10 SNPs with the biggest BayesRB SNP effect estimates. d. Same
manhattan plot as in c. The green dots indicate the 10 SNPs with the biggest BayesR SNP effect estimates.
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Figure 3.21: LocusZoom plots of 400kb region, centered on rs7515029 and

rs2066843, respectively.

The purple dot indicate the SNP that the plot is centered on. The p values are generated by
marginal logistic regression. a. LocusZoom plot of 400kb region on chromosome 1, centered on
rs7515029. b. LocusZoom plot of 400kb region on chromosome 16, centered on rs2066843.

70



0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

False Positive Rate

Tru
e P

os
itiv

e R
ate

●

●

●

●

bayesR
bayesRB
logistic
lasso

0.00 0.02 0.04 0.06 0.08

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

False Positive Rate

Tru
e P

os
itiv

e R
ate

●

●

●

●

bayesR
bayesRB
logistic
lasso

●

●

BayesR BayesRB lasso logistic

0.6
0

0.6
5

0.7
0

Methods

AU
C

●

BayesR BayesRB lasso logistic

0.6
0

0.6
2

0.6
4

0.6
6

0.6
8

0.7
0

0.7
2

Methods

AU
C

0 50 100 150 200

0.0
0.2

0.4
0.6

0.8
1.0

Index

po
we

r

●

●

●

●

bayesRB
bayesR
lasso
logistic

0 50 100 150 200

0.0
0.2

0.4
0.6

0.8
1.0

Index

po
we

r

●

●

●

●

bayesRB
bayesR
lasso
logistic

a.	
   b.	
  

c.	
   d.	
  

Po
w
er
	
  

False	
  Posi0ve	
  Rate	
  

Index	
  

Tr
ue

	
  P
os
i0
ve
	
  R
at
e	
  

e.	
   f.	
  

AU
C	
  

BayesR	
  	
  	
  	
  	
  	
  BayesRB	
  	
  	
  	
  Lasso	
  	
  	
  	
  	
  	
  	
  	
  Logis0c	
  	
  

False	
  Posi0ve	
  Rate	
  

Tr
ue

	
  P
os
i0
ve
	
  R
at
e	
  

Index	
  

Po
w
er
	
  

AU
C	
  

BayesR	
  	
  	
  	
  	
  	
  BayesRB	
  	
  	
  	
  Lasso	
  	
  	
  	
  	
  	
  	
  	
  Logis0c	
  	
  

Figure 3.22: Comparisons of BayesRB, BayesR, logistic regression and LASSO’s

associated SNP selection performance and risk prediction performance in the

CD data sets.

a. and b. True positive rate vs. false positive rate of detecting the 250kb windows containing
the 201 previously reported SNPs. The black dotted line in b. is the diagonal line. c. and d.
Power to detect the windows containing the 201 previously reported CD associated SNPs in the 20
replicates. The SNPs are sorted by a decreasing order of their BayesRB powers. e. and f. AUCs
of BayesRB, BayesR, LASSO, and logistic regression in 20 replicates. In c and e, The thresholds
of logistic regression and the LASSO are set under the FPR of 0.001. In d and f, The thresholds
of logistic regression and the LASSO are set under the FPR of 0.05.
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Table 3.2: The contingency table of genotypes of rs11887827 and its highly cor-

related SNPs in cases and controls, respectively.

a.

Controls rs7593114

0 1 2

rs11887827

0 236 0 0

1 0 1005 0

2 0 0 984

Cases rs7593114

0 1 2

rs11887827

0 128 0 0

1 0 451 2

2 0 115 564

b.

Controls rs6715049

0 1 2

rs11887827

0 232 4 0

1 6 996 3

2 0 5 979

Cases rs6715049

0 1 2

rs11887827

0 124 4 0

1 0 446 7

2 1 114 564

a The contingency table of rs11887827 and rs7593114 genotypes in cases and controls, respectively.
b The contingency table of rs11887827 and rs6715049 genotypes, in cases and controls, respectively.

Bipolar Disorder (BD) data set

For Bipolar Disorder (BD) data set, we also randomly selected one training data set

out of 20 to compare the SNP effect estimation performance and the associated SNP de-

tection performance of BayesRB, BayesR and logistic regression. Figure 3.23a shows that

the BayesRB SNP effect estimates have a linear relationship of the BayesR estimates, ex-

cept for two SNPs: rs4923955 and rs16957168. And the other two SNPs have much bigger

BayesRB and BayesR SNP effect estimates than other SNPs. The two SNPs are rs12050604

and rs1381855. The four SNPs locate close to each others on chromosome 15. The farthest

two SNPs are only 62.3kb away from each other. Among the four SNPs, only rs12050604

has a significant p value (5.08 × 10−7) in marginal logistic regression analysis. The other

three SNPs all have p value bigger than 0.05. The two green dots locating at the bottom in

chromosome 15 in Figure 3.24a are rs4923955 and rs1381855, which do not have significant
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p value but has top 10 SNP effect estimates of BayesRB. The two green dots locating at

the bottom in chromosome 15 in Figure 3.24b are rs16957168 and rs1381855, which do not

have significant p values but have top 10 SNP effect estimates of BayesR. However, when

we reestimated the SNP effects using logistic regression conditional on rs12050604, both

rs1381855 and rs16957168 are pumped up (Figure 3.25). Figure 3.24c and d show that with

the rs12050604 conditioned on, while both rs12050604 and rs1381855 are on the top of the

manhattan tower, rs4923955 is still at the bottom, and rs16957168 is halfway up the tower.

Figure 3.23b and c show that before the rs12050604 is conditioned on, rs12050604, rs1381855

and rs4923955 have much larger BayesRB effect estimates than logistic regression; however,

after rs12050604 is conditioned on, BayesRB has similar SNP effect estimates of rs12050604

and rs1381855 to logistic regression estimates, but it still has much larger effect estimate

of rs4923955 than logistic regression. Table 3.3 shows the contingency table of rs12050604

and the other three SNPs’ genotypes. While only 14 out of 2224 controls have homozygous

rs16957168 mutations and heterozygous rs12050604 mutations, 374 out of 1332 cases have the

same genotypes. While 193 out of 2224 controls have homozygous rs12050604 mutations and

heterozygous rs4923955 mutations, only 19 out of 1332 cases have the same genotypes. The

joint distributions of rs12050604 and rs1381855 genotypes are similar in cases and controls.

For the BD data set, we also compared the TPR and FPR of BayesRB, BayesR, logistic

regression, and LASSO to detect the 250kb windows containing the previously reported

SNPs; compared the power of the four methods of having each window containing causal

SNPs identified within the 20 replicates; and compared the performance of risk prediction

of the four methods on the testing data set. The 497 previously reported SNPs are obtained

from GWAS catalog [Welter et al., 2014] with reported p values smaller than 5 × 10−8.

Only the SNPs reported by studies with European ancestry samples are included. Figure

3.22a shows that when the FPR is smaller than 0.08, under the same value of FPRs, logistic

regression and LASSO have similar TPRs; BayesRB and BayesR have similar TPRs. The

logistic regression and LASSO have higher TPR than BayesRB and BayesR under the same

value of FPRs. When the FPR is 0.08, the TPR is only around 0.1 for all the methods.

3.22b shows that, all in all, the TPRs are similar for the four methods, but BayesRB has
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slightly lower TPR than the other three under the same FPR. Figure 3.22c and d illustrate

that using the thresholds under the FPR of both 0.001 and 0.05, the four methods have

similar powers. Figure 3.22e and f show that BayesRB and BayesR generate bigger AUCs

than LASSO and logistic regression. But BayesR’s median value of AUCs is higher than

BayesRB. BayesRB and BayesR have similar precise predictions.

74



a.	
   b.	
  

c.	
  
Ba

ye
sia

n	
  
m
et
ho

ds
	
  e
s1
m
at
ed

	
  β
	
  

Ba
ye
sia

n	
  
m
et
ho

d	
  
es
1m

at
ed

	
  β
	
  

Logis1c	
  es1mated	
  β	
  

Logis1c	
  es1mated	
  β	
  

BayesRB	
  es1mated	
  β	
  

Ba
ye
sR
	
  e
s1
m
at
ed

	
  β
	
  

Figure 3.23: The comparisons of SNP effect estimates by BayesRB, BayesR, and

logistic regression in the BD data sets.

The red solid lines are the diagonal lines. a. Compare the SNP effect estimates of BayesRB to
BayesR. The blue dotted line is the fitted regression line, excluding the estimates of rs1381855
and rs4923955. b. Compare the marginal logistic regression estimates to BayesRB and BayesR
estimates of the top 10 SNPs which have the biggest bayesRB estimates. c. Compare the logistic
regression estimates conditional on rs12050604 to BayesRB and BayesR estimates of the top 10
SNPs which have the biggest bayesRB estimates.
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Figure 3.24: Manhattan plots of one of the BD training data sets before and after

the SNP rs12050604 is conditioned on with the top 10 BayesRB and BayesR

estimated SNPs highlighted, respectively.

a. The y axis is the −log10 of the marginal p values of all the SNPs. The green dots indicate the
10 SNPs with the biggest BayesRB SNP effect estimates. b. Same manhattan plot in a. The green
dots indicate the 10 SNPs with the biggest BayesR SNP effect estimates. c. The y axis is the
−log10 of the p values of all the SNPs conditioned on rs12050604. The green dots indicate the 10
SNPs with the biggest BayesRB SNP effect estimates. d. Same manhattan plot in c. The green
dots indicate the 10 SNPs with the biggest BayesR SNP effect estimates.
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Figure 3.25: LocusZoom plots of 400kb region on chromosome 15, centered on

rs12050604.

a. The p values are generated from marginal logistic regression analysis. b. The p values are
generated from logistic regression analysis with rs12050604 conditioned on.
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Figure 3.26: Detection of BayesRB’s associated SNP selection performance and

risk prediction performance in the BD data sets.

a. and b. True positive rate vs. false positive rate of detecting the 250kb windows containing
the 497 previously reported SNPs. The black dotted line in b. is the diagonal line. c. and d.
Power to detect the windows containing the 497 previously reported BD associated SNPs in the 20
replicates. The SNPs are sorted by a decreasing order of their BayesRB powers. e. and f. AUCs
of BayesRB, BayesR, LASSO, and logistic regression in 20 replicates. In c and e, The thresholds
of logistic regression and the LASSO are set under the FPR of 0.001. In d and f, The thresholds
of logistic regression and the LASSO are set under the FPR of 0.05.
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Table 3.3: The contingency table of genotypes of rs12050604 and its highly cor-

related SNPs in cases and controls, respectively.

a.

Cases rs16957168

0 1 2

rs12050604

0 73 93 39

1 2 544 374

2 0 14 1085

Controls rs16957168

0 1 2

rs12050604

0 48 64 19

1 2 365 14

2 0 10 810

b.

Controls rs1381855

0 1 2

rs12050604

0 48 4 0

1 6 996 3

2 0 5 979

Cases rs1381855

0 1 2

rs12050604

0 204 1 0

1 10 908 2

2 0 18 1081

c.

Controls rs4923955

0 1 2

rs12050604

0 33 92 80

1 4 349 567

2 0 19 1080

Cases rs4923955

0 1 2

rs12050604

0 16 65 50

1 0 3 378

2 0 193 627

a. The contingency table of rs12050604 and rs16957168 genotypes in cases and controls, respec-
tively. b. The contingency table of rs12050604 and rs1381855 genotypes, in cases and controls,
respectively. c. The contingency table of rs12050604 and rs4923955 genotypes, in cases and con-
trols, respectively.

3.4 DISCUSSION

When developing our BayesRB method, we investigated two implementations. In the first,

we estimated the genetic variance σ2
g , similar to what Moser et al. [2015] did. We set

a uniform prior for the σ2
g and estimated it using Metropolis-Hasting sampling. In the

second, we fixed the σ2
g as Erbe et al. [2012] did. Based on our results comparing these

two approaches, we decided not to use Metropolis-Hasting sampling to estimate σ2
g for the

realistic pilot simulated data set, genome-wide simulated data sets, and the real data sets

79



for the following two reasons: First, a fixed σ2
g generates similar β estimates as the random

σ2
g does. The unrealistic data set showed that when σ2

g is set to a fixed value bigger than

10 or is estimated using Metropolis-Hasting sampling, the BayesRB β estimates are almost

equivalent to each other (Figure 3.6). Using the Metropolis-Hasting sampling, the variance

of the proposal distribution has to be tuned manually, which has low efficiency for large data

sets. So, it is reasonable to use fixed σ2
g instead. Second, the variance of the SNP effects of

the realistic data set, genome-wide simulated data sets, and the real data sets are all very

small compared to the individual variances λ. The four categories are distinguished by the

four different variances of the normal distributions. Only when the variance is big enough,

the four categories can be distinguished from each other (Figure 3.27a). When the variance

of the SNP effects are very small compared to the λ, it is hard to tell the difference of the

four categories (Figure 3.27b). In this case, σ2
g cannot be estimated well. Therefore, we set

σ2
g fixed for the realistic data set of the pilot simulated data sets, genome-wide simulated

data sets, and the real data sets.

When the σ2
g is small (σ2

g ≤ 10), the β is underestimated. Both the mean and the

variance of the posterior distribution of β is a function of σ2
g . When the σ2

g is small , even

the SNP is assigned to the fourth category, the β prior has a small variance and a zero mean

and the β prior has a large effect on the β posterior distribution according to the Formula

3.14. So the BayesRB β tends to be underestimated. When the σ2
g is large enough (σ2

g > 10),

the β prior does not have a large effect on the β posterior distribution any more. Data then

drives the β posterior distribution.

When the σ2
g is large enough (σ2

g > 10), σ2
g affects the SNP categorization, thus, affects

the shrinkage level of the SNP effect estimation. When the σ2
g is larger, the SNPs are more

likely to be assigned to the categories with smaller variance and a larger proportion of SNPs

are assigned to the category 1, so the BayesRB shrinks the SNP effect more.

We examined the SNP effect estimation performance of BayesRB, BayesR, and logistic

regression. LASSO underestimates the SNP effects [Wu et al., 2009]. Therefore, it is not

included in the comparison. The results in both genome-wide simulated data sets and the

real data sets show that for the large effect SNPs, BayesRB provides similar SNP effect

estimates to the logistic regression estimates, which is unbiased; while for the small effect
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SNPs, BayesRB shrinks their SNP effects to zero (Figure 3.11, Figure 3.18, Figure 3.23).

BayesR underestimated the SNP effects. This result is consistent with Gianola et al. [2013].

In the CD data analysis, from the BayesRB and BayesR SNP effect estimation results,

we discovered that the joint distributions of rs11887827 and two of its highly correlated

SNPs are quite different in cases and in controls (Table 3.2); in the BD data analysis, we

discovered that the joint distributions of rs12050604 and two of its highly correlated SNPs

are quite different in cases and in controls (Table 3.3). In the WTCCC study, the case

data sets and the control data sets were generated separately, according to the WTCCC

website. We made scatter plots using the fluorescent signal intensity data of the two alleles

of rs11887827 and rs12050604 for each individual, as well as their highly correlated SNPs.

Intensity plots of both rs11887827 and rs12050604 show four clusters instead of three (Figure

3.28), which may be caused by duplications [Kumasaka et al., 2011]. All the highly correlated

SNPs show a normal pattern of three clusters (data not shown). Figure 3.28 show that, for

both rs11887827 and rs12050604, different decisions were made in controls and cases when

calling the genotypes in cluster 2. For both SNPs, controls in cluster 2 are treated as having

1/0 genotypes, but cases in cluster 2 are treated as having 1/1 genotypes. Thus, different

decisions on how to call the genotypes in cluster 2 lead to the different joint distributions of

genotypes in cases and controls.

The observation discussed above in the CD and BD data sets are due to batch effects,

however, similar observation could be due to some real signals. In reality, it is possible

that some markers become significant after conditioning on other markers. It is also pos-

sible that some markers are no longer significant after conditioning on other markers. In

GWAS, people often conduct an additional conditional analysis to further investigate the

markers conditional on the significant ones. If the first marker itself is not significant (like

rs11887827 has p value < 10−5 in CD) in marginal logistic regression, then this marker will

not be conditioned on, and thus no other markers can be discovered. BayesRB estimates the

SNP effects simultaneously and makes up the defects of the conventional marginal logistic

regression method. It can save effort to conduct the conditional analysis after discovering the

significant markers. It may not fail to detect the jointly significant markers, nor mistakenly

include the markers in the model that are significant only because they are in LD with more
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significant markers. In addition, BayesRB can help with quality control. For example, in our

analyses, it discovered two SNPs affected by batch effects. These problematic SNPs should

be deleted from the data sets. All in all, the above reasons illustrates the potential value of

the BayesRB approach over the conventional marginal logistic regression method.

We examined the associated SNP selection abilities of BayesRB, BayesR, LASSO, and

logistic regression, using both genome-wide simulated data sets (Figure 3.13) and the real

data sets (Figure 3.22a,b and Figure 3.26a,b). In the genome-wide simulated data sets, we

set the causal SNPs at the beginning of the simulation, therefore, the TPR to detect big

effect causal SNPs can be as large as 1; and the TPR to detect medium effect causal SNPs

can also be larger than 0.6, when the FPR is 0.08. But in the real data sets, it is unknown

which SNPs are the true causal SNPs. So we calculated the TPR and FPR of detecting

the previously reported SNPs. The TPR to detect the previously reported CD and BD

SNPs are as low as around 0.2 and 0.1 respectively, when the FPR is 0.08. In addition, in

the genome-wide simulated study, the proportion of windows containing causal SNPs being

discovered in at least one replicates is much bigger than that in the real data study. The low

TPRs of detecting the previously reported SNPs within 250kb regions, and the low power

of having the windows containing the previously reported SNPs being detected in CD and

BD data sets are because of the following reasons: First, for the real data sets, we calculated

TPR and FPR using all of the previously reported SNPs regardless of how big their effect

size estimates turned out to be in the BayesRB analysis. So, it is reasonable that the TRP is

smaller than only using the big and medium effect SNPs as we did in genome-wide simulated

data sets. Second, some previously reported associated SNPs are discovered from studies

with large sample sizes (> 20, 000). But the sample sizes in the CD and BD training data

sets are only 3,485 and 3,556, respectively. Given the relatively small sample sizes in CD

and BD data sets, only SNPs having relatively big odds ratios are detectable. Third, even if

some SNPs that are discovered to be associated with CD and BD from data sets with similar

sample sizes to those of the WTCCC CD and BD data sets, they may not be detectable using

the WTCCC CD and BD data sets. Fourth, some SNPs are reported to be associated with

CD or BD, but they may not be. The SNPs may be discovered due to some false positive

signals, and thus cannot be replicated using other data sets.
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Based on the results of TPR, FPR and power of identifying windows containing causal

SNPs in the genome-wide simulated data sets (Figure 3.13), and identifying windows contain-

ing previously reported SNPs in the real data sets (Figure 3.22, Figure 3.26), we concluded

that BayesRB does not perform better than the other three methods. However, BayesRB

is still a promising method for identifying associated SNPs in real studies and guiding the

direction of future studies. The BayesRB associated SNPs are those with proportion of

iterations that are assigned to the category 2, 3 or 4 (assignment proportion) bigger than

the threshold. Figure 3.7 and Figure 3.12 shows that the SNPs with bigger logistic regres-

sion estimates have bigger assignment proportions, and thus are likely to be selected as the

BayesRB associated SNPs. This shows BayesRB’s good performance in terms of its ability

to select associated SNPs. Figure 3.7 and Figure 3.12 are slightly different: First, many

more SNPs in Figure 3.7 have big assignment proportions than that in Figure 3.12. This is

because Figure 3.7 is based on the unrealistic data sets, which contains SNPs with bigger

effects than the reality; while Figure 3.12 is based on the genome-wide simulated data sets,

which contains the SNPs with effects similar to the real data sets. Second, in Figure 3.12,

some SNPs have logistic estimates as big as around 0.4, but have assignment proportions

close to 0; while in Figure 3.7, all the big logistic regression estimated SNPs have big assign-

ment proportions. This is due to the reason that in the unrealistic data sets, all the SNPs are

independent of each other; while in the genome-wide simulated data sets, the SNPs are not

fully independent. The SNPs having big logistic regression estimates but small proportions

in the genome-wide simulated data sets may be correlated to some other more significant

SNPs, thus, they are not selected in the model. Table 3.4 shows the detailed information of

the top 10 SNPs with the biggest assignment proportions in the CD data set, excluding the

two SNPs on chromosome 2 affected by the batch effects. 8 out of 10 SNPs locate within

the 500 kb windows of the previously reported CD associated SNPs. Table 3.5 shows the

detailed information of the top 10 SNPs with the biggest assignment proportions in the BD

data set, excluding the three SNPs on chromosome 15 affected by the batch effects. 7 out of

10 SNPs locate within the 500kb windows of the previously reported BD associated SNPs.

While BayesRB can be applied to identify the associated SNPs in the real studies, it also

suggests that, in the future, more studies need to be conducted to assess the two SNPs that
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were not previously reported to be associated with CD and the three SNPs that were not

previously reported to be associated with BD.

We also measured the prediction performance of BayesRB, BayesR, LASSO, and logistic

regression using AUCs. BayesR has the best prediction performance than the other three

methods, followed by BayesRB. In the genome-wide simulated data sets, which are not

affected by the batch effects, when the FPRs of logistic regression and LASSO are 0.001,

BayesR and BayesRB have slightly bigger AUCs than logistic regression and LASSO (Figure

3.16). In the CD and BD data sets, BayesR and BayesRB have much larger AUCs than

logistic regression and LASSO (Figure 3.22e,f and Figure 3.26e,f ). One possible reason is

that in CD and BD data sets, the BayesRB and BayesR models not only contain rs11887827

and rs12050604, respectively, but also contain one of their correlated SNPs. Containing

rs11887827 and rs12050604, respectively, in the models alone, as logistic regression does,

does not fully account for the association signal in CD and BD. Therefore, BayesRB and

BayesR have much better risk prediction performance than logistic regression and LASSO.

The AUCs should be re-compared after more thorough quality control to identify and delete

the SNPs affected by batch effects. But if the data truly contains some jointly significant

markers, BayesRB and BayesR are expected to show better prediction performance than the

conventional approaches.

When calculating the power of identifying the windows that containing the causal SNPs

and calculating the AUCs of logistic regression and LASSO, we use the thresholds with the

FPR equals to 0.001. A multiple comparison adjusted FPR is more appropriate (∼ 10−6),

but we did not use the multiple comparison adjusted FPR in this study. The reason is

justified below. When the FPR is constrained to 0.001, the power of identifying most of

the windows containing the causal SNPs are small. If the FPR were smaller, less SNPs

would be identified as associated SNPs. Thus, the power of identifying the windows that

containing the causal SNPs will be even smaller. In this case, all the four methods performs

equally poor. When FPR is constrained to 0.001, four methods’ associated SNP selection

performance can be better compared with each other. Considering the consistency of the

dissertation, when calculating the AUCs of logistic regression and LASSO, we also set the

thresholds using a FPR of 0.001.
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It is recommended to use BayesRB instead of BayesR for dichotomous outcome data,

even though BayesR has slightly better risk prediction performance than BayesRB. First,

the SNP odds ratios can be estimated by BayesRB, but cannot be estimated by BayesR.

BayesRB is based on a logistic regression model, while BayesR is based on an ordinary

linear model. So, the estimated SNP odds ratios can be calculated by taking the log of the

estimated SNP effects of BayesRB, but cannot be calculated by the estimated SNP effect of

BayesR. Second, BayesRB can predict the risk of getting disease, but BayesR cannot. The

predicted outcome of BayesR is hard to explain. It is not the risk of getting disease, since

the estimated outcome can be bigger than 1.

When applying BayesRB and BayesR, convergence diagnostics should be conducted.

Before applying the BayesRB or BayesR method, it is necessary to try different total numbers

of MCMC loops, as well as numbers of burn-in loops, and select the ones where all the

parameters mix well. But Moser et al. [2015] failed to do so. They used the default setting

of the total number of MCMC loops and the number of burn-in loops of BayesR and they

did not make diagnostic plots of their parameters, so it is not clear whether the parameters

mix well in their MCMC process. In our studies, we conducted the convergence diagnostics

in pilot simulated data analysis, genome-wide simulated data analysis and the real data

analysis. Although, due to the limited computational time, BayesRB was run for less loops

than needed to make all the parameters mix well, the convergence diagnostics still provide

an idea of how well the parameters mixed.

To summarize, for SNP effect estimation, BayesRB has similar estimates to logistic re-

gression for big effect SNPs, and shows BayesR’s sparseness characteristic for small effect

SNPs. It makes up the defects of the conventional marginal logistic regression method and

estimates the SNP effects taking account of the other SNPs. It also has better risk predic-

tion performance than logistic regression and LASSO. Although BayesRB’s risk prediction

performance is not better than BayesR and it does not have better associated SNP selection

performance, BayesRB is still a promising method to use for dichotomous outcome data.
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Figure 3.27: The probability density functions of the normal distributions.

The blue curves represent the N(0, C2σ
2
g); the green curves represent the N(0, C3σ

2
g); and the red

curves represent the N(0, C4σ
2
g), where (C2, C3, C4) = (10−4, 10−3, 10−2), respectively. a. σ2

g = 100.
b. σ2

g = 0.1.
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Figure 3.28: Fluorescent signal intensity plots for rs11887827 and rs12050604 in

controls and cases, respectively.

The x-axis corresponds to the allele A and the y-axis corresponds to the allele B, respectively.
The black dots indicate the individuals with coded genotypes of 0/0. The red dots indicate the
individuals with coded genotypes of 0/1. The green dots indicate the individuals with coded
genotypes of 1/1. The numbers ”1”, ”2”, ”3” and ”4” in the plots indicate the four clusters.
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Table 3.4: Detailed information of the top 10 SNPs with the biggest proportions

to be assigned to the category 2, 3 or 4, excluding the two SNPs on chromosome

2 affected by the batch effects.

SNP CHR BP Propor-
tion

Bayes-
RB

logis-
tic

PR SNPs Conse-
quence

Genes

rs7515029 1 67308393 0.54 -0.340 -0.780 rs2064689 upstream C1orf141
rs11209033 1 67456521 0.522 0.1458 0.307 rs10789230 downstr-

eam
RP11-
131O15.2

rs3828309 2 233962410 0.998 -0.304 -0.321 rs3828309 intron
variant

ATG16L1
SCARNA5

rs903228 2 53603700 0.460 0.222 0.518 - intergenic
variant

-

rs6596075 5 131770127 0.303 -0.096 -0.343 rs6596075 upstream C5orf56
rs17234657 5 40437266 0.993 0.392 0.460 rs17234657 regulatory

region
variant

-

rs4075496 7 69614100 0.542 -0.210 -0.361 - intron
variant

AUTS2

rs2066843 16 49302700 0.765 0.223 0.325 rs2066844 synonym-
ous vari-
ant

NOD2

rs7186163 16 49244058 0.705 0.176 0.275 rs17221417 downstr-
eam

NKD1

rs2542151 18 12769947 0.575 0.172 0.301 rs2542151 upstream RP11-
973H7.1

The column name ”CHR” indicates the chromosome number; ”BP” indicates the SNP position;
”Proportion” indicates the proportion of the iterations that the SNPs are assigned into the category
2, 3 or 4; ”BayesRB” indicates the BayesRB estimated SNP effects; ”logistic” indicates the logistic
estimated SNP effects; ”PR SNPs” indicates the SNPs that are previously reported to be associated
with CD, locating within the 500kb windows of the top 10 SNPs. If there are multiple such SNPs,
only the ones closest to the top 10 SNPs are listed. ”Consequence” indicates the function of the
SNPs. ”downstream” indicates the downstream gene variants. ”upstream” indicates the upstream
gene variants. ”Genes” indicates the genes that the SNPs locate on or close to.
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Table 3.5: Detailed information of the top 10 SNPs with the biggest proportions

to be assigned to the category 2, 3 or 4, excluding the three SNPs on chromosome

15 affected by the batch effects.

SNP CHR BP Propor-
tion

Bayes-
RB

logis-
tic

PR SNPs Conse-
quence

Genes

rs6447534 4 46978809 0.093 0.030 0.338 - Intron
variant

GABRB1

rs17639988 6 37788570 0.320 0.117 0.361 - intergenic
variant

MDGA1

rs10971738 9 33845138 0.102 -0.025 -0.242 rs216345 Intron
variant

WHRN

rs10982256 9 114340388 0.08 -0.017 -0.211 rs10982256 Intron
variant

WHRN

rs11138278 9 79363092 0.078 0.021 0.225 rs914715 intron
variant

RP11-
375O18.2

rs356242 11 126989854 0.268 0.065 0.263 rs11220082
rs548181

intergenic
variant

-

rs1499318 13 67981591 0.090 0.017 0.201 - intergenic
variant

-

rs12979795 19 12578847 0.098 -0.021 -0.240 rs7247513 intergenic
variant

ZNF490

rs10853835 19 56720762 0.080 -0.020 -0.267 rs62110082 intergenic
variant

SIGLEC6

rs7248493 19 63402920 0.135 -0.034 -0.264 rs7247513 intergenic
variant

ZNF274

The column name ”CHR” indicates the chromosome number; ”BP” indicates the SNP position;
”Proportion” indicates the proportion of the iterations that the SNPs are assigned into the category
2, 3 or 4; ”BayesRB” indicates the BayesRB estimated SNP effects; ”logistic” indicates the logistic
estimated SNP effects; ”PR SNPs” indicates the SNPs that are previously reported to be associated
with BD, locating within the 500kb windows of the top 10 SNPs. If there are multiple such SNPs,
only the ones closest to the top 10 SNPs are listed. ”Consequence” indicates the function of the
SNPs. ”Genes” indicates the genes that the SNPs locate on or close to.
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4.0 AIM 3. A SIMULATION BASED ”UNSEEN SPECIES” METHOD TO

ESITMATE THE TOTAL NUMBER OF DISEASE GENES IN A

RECESSIVE FORWARD GENETIC SCREENING STUDY (RFGSS)

4.1 BACKGROUND AND SIGNIFICANCE

Recessive forward genetic screening study (RFGSS) is widely conducted for disease mutation

detection. Figure 4.1 shows the RFGSS process. In RFGSS, animals of generation 0 (G0)

are mutagenized with ethylnitrosourea (ENU) and mated with normal animals to generate

mice of generation 1 (G1). G1 are mated with normal animals to generate mice of generation

2 (G2). G2 daughters are selected at random to backcross to their G1 fathers to generate

generation 3 (G3) mutants with recessive mutations causing the disease. The G3 mutants

with ENU induced homozygous alleles are identified by the observation of having the disease,

and subsequent mapping of the allele within the genome reveals genes that are associated

with the disease. Under the RFGSS scenario, failing to detect a disease gene may due to

the following three reasons: First, the disease genes are not mutagenized by ENU; second,

the G3 animals do not have homozygous mutations in the disease genes; third, people fail

to detect the homozygous mutations in the G3 animals.

It is very necessary to estimate the total number of disease genes in a RFGSS. RFGSS

assesses disease etiology by discovering the disease genes efficiently. Estimation of the total

number of disease genes in a RFGSS sheds light on what percentage of genes have been

detected so far. It will guide the gene screening strategy, which allows for the detection of all

the disease genes and allows a better understanding of the disease. Therefore, it is necessary

to develop a method to estimate the total number of disease genes in a RFGSS.
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Figure 4.1: Recessive forward genetic screening study process.

It is hard to estimate the total number of disease genes based on the RFGSS process

directly, because of the following reasons: First, the distribution of the number of mutations

in G0 animals induced by ENU mutagenesis is unknown; second, the probability of a ho-

mozygous mutation in a diseased G3 animal being detected is unknown. In addition, since

only the diseased G3 animals with at least one disease mutation are screened and only the

genes with at least one mutations are observed, the observed numbers of mutations in the

observed genes of the screened animals are not independent of each other. Therefore, the

likelihood function is hard to derive.
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In previous studies, people conducted parametric methods on the total number estimation

based on the observation. In a large-scale screening study for loss-of-function mutants,

Pollock and Larkin [2004] proposed a parametric method using Bayesian and maximum-

likelihood methods, based on the location and distribution of the detected disease mutations.

Luliana et al. [2009] used a parametric beta-binomial model to estimate the total number

of unseen variants in the human genome.

Sampling genes is analogous to sampling species in ecology, therefore, the ideas from the

”unseen species” methods, which estimate the total species extant in a geographic region,

can be borrowed. The complicated process of obtaining the observed homozygous muta-

tions in G3 animals in the RFGSS can be regarded as the process of animal catching in

the ”unseen species” problem. Some studies have applied this idea to answer the genetic

questions before, although not applied to RFGSS. Chao and Lee [1992] developed a sample

coverage based nonparametric method to estimate the total number of species. Sanders et

al. [2012] and Zaidi et al. [2013] applied the method to estimate the number of genes as-

sociated with autism spectrum disorders risk in a parent-sibling-pair study and to estimate

the number of genes in which de novo mutations contribute to congenital heart disease in

a parent-offspring-trio study, respectively. The sampling coverage based method uses the

observed frequency and the number of detected disease-related genes (or species) to infer the

total number of disease-related genes in the population, including those yet to be observed.

When applying the sample coverage based method, both of the studies assumed the coeffi-

cient of variation of the probability that one or more mutations falls in each gene equals to 1

without sufficient justification. We used the γ to represent the coefficient of variation of the

probability that one or more mutations falls in each gene. Chao [1992] proposed a γ esti-

mator. However, it underestimates the total number of species [Chao and Lee, 1992]. Some

other nonparametric methods are also developed to solve the ”unseen species” problems.

For example, Burnham and Overton [1978; 1979] proposed a jackknife estimator, Chao and

Bunge [2002] proposed an estimator from Poisson-Gamma model, Norris and Pollock [1996;

1998] proposed a nonparametric maximum likelihood estimator, Wang and Lindsay [2005;

2008] proposed a penalized nonparametric maximum likelihood estimator.
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Here, on the basis of Chao and Lee’s sample coverage based method, we proposed a

simulation-based approach, which uses the idea of self consistency of Chao and Lee’s method.

It is a nonparametric method and can be applied to estimate the total number of disease

genes in the RFGSS.

4.2 METHODS

4.2.1 Sample coverage based approach with simulated parameters

The sample coverage C is defined to be the sum of the probabilities of the genes being

observed [Chao and Lee, 1992].

C =
N∑
i=1

piI[Xi > 0],

where N is the total number of disease genes; pi is the probability that a mutation falls into

the ith gene. I[.] is an indicator function. Xi is the number of observed mutations in gene

i. Good [1953] proposed an estimator of C:

Ĉ = 1− f1/n,

where f1 is the number of genes that have 1 mutation in the sample, and n is the number

of observed disease mutations. We applied the formula Chao and Lee proposed for the total

number of genes (species) estimation (N̂):

N̂ =
D

Ĉ
+
n(1− Ĉ)

Ĉ
γ2,

where D =
∑
fi, which is the observed total number of genes. fi is the number of genes that

have i mutation in the sample. γ = [
∑

i(pi− p̄)2/N ]1/2/p̄, which is the coefficient of variation
of pi, i = 1...N . We assumed a constant ENU induced mutation rate across all genes, then
pi = li/

∑N
i=1 li, where li is the length of gene i. However, only the observed genes have pi’s

calculated. γ cannot be directly calculated. Chao and Lee proposed an estimator (γ̃) for γ:

γ̃2 = max

{
max{N̂1

n∑
i=1

i(i− 1)fi/[n(n− 1)]− 1, 0} · {1 + n(1− Ĉ)

n∑
i=1

i(i− 1)fi/[n(n− 1)Ĉ]}, 0

}
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Instead of using the γ̃ to calculate N̂ , we proposed a simulation-based method using the

self-consistency idea in Chao and Lee’s method to infer the likely range of possible values of

total number of disease genes while taking gene lengths into account. We assumed the total

number of disease genes is M, with M in the range of 200 to 3000. Although it is arbitrary

to select 3000 as the upper boundary, it is reasonable. Because in reality, it is unlikely to

have more than 3000 genes contributing to a disease. Then, we randomly sampled M − n

genes with their lengths known, based on the probabilities of having zero observation on the

unobserved genes. Combining the observed gene lengths and the sampled gene lengths, a

temporary γ̂1 can be calculated, thus the corresponding temporary total number of disease

genes (M̂1) can be calculated. We set m as the M closest to the corresponding M̂1. Then we

repeated the process for T times and obtain the median of the T m’s, which is the estimate

of the total number of disease genes (N̂). The 5th and the 95th quantiles of the m construct

an quantile interval for the N̂ . Considering the computational time, T = 100 in our study

(Figure 4.2).
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Figure 4.2: Simulation-based ”unseen species” method.

In the process of randomly sampling M − n genes based on the probabilities of having

zero observation of the true disease genes, we calculated the approximated probabilities

instead of the exact ones. The approximated probabilities are calculated under a thinned

poisson model with the poisson parameters of ν, where ν = gene length × mutation rate

× detection rate × inherited rate. Inherited rate is the probability that, if a G0 has a

disease mutation, at least one of its G3 has at least one homozygous disease mutation. The

exact probabilities of having zero observation on the true disease genes are hard to calculate,

as they do not follow any known distribution. Thus, we used a simulation approach to

access the exact probabilities of having zero observation on the true disease genes. In the

simulation, we conducted the RFGSS process for 1000 times. We recorded the proportion
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of times each disease gene is not observed. Figure 4.3 shows that all the genes’ calculated

approximated probabilities are close to their proportions of times that they are not observed

in the simulation. Thus, it is appropriate to use the calculated approximated probabilities

in the process of randomly sampling M − n genes.
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Figure 4.3: A comparison of the simulation approach and the approximation ap-

proach when calculating the probabilities of having zero observation on the un-

observed genes.

4.2.2 Simulation study

We simulated a RFGSS process based on the information from a real study, which is a mice

RFGSS of congenital heart disease (CHD) [Li et al., 2015]. In this study, the investigators
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ENU-mutagenized 2,651 G0 mice with an estimated mutation rate of 5.5 × 10−7 per base.

They did ultrasound scanning of the G3 fetuses from 2,651 mutant lines and recovered 218

CHD mutant lines. Mutation recovery was conducted with whole-exome sequencing analysis

of a single mutant from 113 mutant lines among the 218 CHD mutant lines. They discovered

91 recessive CHD mutations in 61 genes. 90 mutations were in highly conserved amino

acids. One mutation was suspected to be inherited from the ancestors of the mouse family.

In the simulation, we assumed the number of mutations on the genome follows a Poisson

distribution. Since 90 mutations were discovered in 113 mutant lines, we set a mutation

detection rate of 90/113. We obtained the coding region length of all the genes in the mice

genome from NCBI.

According to the real RFGSS mentioned above, 2,651 G0 mice should be simulated.

Based on the mice family structure, the number of mutations on each CHD gene in each mice

generation should be recorded and 113 G3 mice from those with more than one homozygous

mutation on the CHD genes should be selected. However, this process is less efficient.

The following is a more efficient process: we first simulated 800 G0 mice receiving ENU

mutagenesis with a mutation rate of 5.5× 10−7 per base. The number of mutations in each

CHD gene follows a Poisson distribution with the parameter of mutation rate times the

coding region length. The chance each mutation passes to G1 mice is 0.5. Then, we used

the 137 G1 mice family structure information provided by Li et al. [2015] to continue the

simulation study. We sampled the number of G2 mice that each G1 mouse mates with with

replacement from the family structures. We also sample the number of G3 mice generated

from each G1 father and each G2 mother based on the family structures. The probability each

mutation passed from G1 to G2 is 0.5. And the probability a G3 mouse has a homozygous

mutation is 0.25 if both of its G1 father and G2 mother have the mutation. If in a G0

family there are more than one G3 mice having more than one CHD homozygous mutations,

only one such G3 mouse in the family is selected randomly. If in a G0 family only one G3

mouse having more than one CHD homozygous mutations, the G3 mouse is selected. If the

number of selected G3 mice is bigger than 113, then we randomly select 113 G3 mice to do

the following analysis. If the number of selected G3 mice is smaller than 113, we simulate

100 more G0 mice involving the above RFGSS process and repeat the above process until
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the number of G3 mice with more than one CHD homozygous mutation is bigger than 113.

The reason we simulate 800 G0 mice receiving ENU mutagenesis at the beginning is that 800

G0 mice usually generate selected G3 mice slightly more than 113, which makes the process

more efficient. Then, we performed a detection process on each mutation with a probability

of being detected of 90/113. At last, we recorded the observed number of mutations in each

observed CHD gene of each mouse. The process is shown in Figure 4.4.

1	
  
• Assume	
  the	
  true	
  total	
  number	
  of	
  CHD	
  genes	
  N	
  

2	
  
• Randomly	
  select	
  N	
  CHD	
  genes	
  from	
  mice	
  genome	
  

3	
  
• Simulate	
  800	
  G0	
  mice	
  receiving	
  ENU	
  mutagenesis	
  (mutaFon	
  rate:	
  5.5e-­‐7	
  per	
  base)	
  	
  
• #	
  of	
  mutaFons	
  on	
  each	
  CHD	
  gene	
  ~	
  Poisson(mutaFon	
  rate	
  *	
  coding	
  region	
  length)	
  

4	
  

•  If	
  the	
  number	
  of	
  G3	
  mice	
  with	
  one	
  or	
  more	
  homozygous	
  mutaFons	
  in	
  the	
  CHD	
  genes	
  
(Nm)	
  >	
  113,	
  I	
  randomly	
  select	
  113	
  mice	
  from	
  Nm	
  

• Otherwise,	
  I	
  simulate	
  100	
  more	
  G0	
  mice	
  receiving	
  ENU	
  mutagenesis,	
  unFl	
  Nm>	
  113	
  

5	
  
• Perform	
  a	
  detecFon	
  process	
  on	
  each	
  mutaFon	
  
• Each	
  mutaFon	
  being	
  detected	
  follows	
  Bernoulli	
  (90/113)	
  

6	
  
• Record	
  the	
  observed	
  number	
  of	
  mutaFons	
  in	
  each	
  observed	
  CHD	
  gene	
  of	
  each	
  mouse	
  

7	
  
• EsFmate	
  the	
  total	
  number	
  of	
  CHD	
  genes	
  

2000	
  
Fmes	
  

Figure 4.4: Simulation process of the recessive forward genetic screening study

based on the information from a real study.
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Table 4.1: Mice family structure information.

a.
The number of G2 mice that G1 mice mate with Frequency

1 5
2 11
3 19
4 32
5 46
6 23
10 1

b.
The number of G3 mice generated Frequency

2 66
3 68
4 74
5 46
6 47
7 40
8 35
9 26
10 14
11 10
12 9
13 7
14 5
15 5
16 1
18 2
19 1
20 1
21 3
25 1

The mice family structure information is provided by Li et al. [2015]. a. The contingency table 
shows the number of G2 mice that G1 mice mate with. b. The contingency table shows the number 
of G3 mice generated by their G1 father and G2 mother.

4.2.3 Total Number of Disease Genes Estimation evaluation

We set the true total number of disease genes as 400, 600, and 800, respectively. For each total 

number of disease genes, we simulated the RFGSS process for 2000 times and estimated the 

total number of disease genes in each simulation. We evaluated the accuracy and precision 

of the proposed estimator by taking the average and the standard deviation of the 2000 

estimates. We also evaluated the 90% quantile interval by calculating its coverage rate.
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4.2.4 Methods comparison

With the data being observed in each simulation process, we compared our proposed esti-

mator with the nonparametric estimators first. We compared our proposed estimator with

two estimators proposed by Chao [1984, 1992], a jackknife estimator proposed by Burnham

and Overton [1978; 1979], an estimator derived from Poisson-Gamma model proposed by

Chao and Bunge [2002], a nonparametric maximum likelihood estimator proposed by Norris

and Pollock [1996; 1998], a penalized nonparametric maximum likelihood estimator proposed

by Wang and Lindsay [2005; 2008]. We ran the above methods using SPECIES R package

[Wang et al., 2011]. These methods are also compared with the ”γ = 1 unseen species”

method applied in Sanders et al. [2012] and Zaidi et al. [2013]. We used the estimated

total numbers from these methods to compare with the truth we set at the beginning of the

simulation. Then, we applied the parametric methods that are widely used proposed by Pol-

lock and Larkin [2004] to the data being observed in each simulation process and compared

the results to the proposed method and the truth. The parametric methods generate the

maximum likelihood estimates assuming the mutations on the observed disease genes fol-

low zero-truncated negative binomial distribution, zero-truncated Poisson distribution with

a single mutation rate, zero-truncated mixture Poisson distribution with two different mu-

tation rates, and zero-truncated mixture Poisson distribution with three different mutation

rates, respectively.

4.3 RESULTS

We introduced the comparison of the eight nonparametric methods described in ”Meth-

ods comparison” section. In Table 4.2, Table 4.3, Table 4.4, and Figure 4.5, ”proposed”

represents the proposed simulation-based ”unseen species” method; ”γ=1” represents the

”γ = 1 unseen species” method applied in Sanders et al. [2012] and Zaidi et al. [2013];

”CL1984” and ”CL1992” represent the two methods provided by Chao [1984, 1992], re-
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spectively; ”ChaoBunge” represents Chao and Bunge’s Poisson-Gamma method [Chao and

Bunge, 2002]; ”jackknife” represents Burnham and Overton’s jackknife method [Burnham

and Overton, 1978, 1979]; ”pnpmle” represents Norris and Pollock’s nonparametric maxi-

mum likelihood method [Norris and Pollock, 1996, 1998]; and ”unpmle” represents Wang

and Lindsay’s penalized nonparametric maximum likelihood method [Wang and Lindsay,

2005, 2008]. Table 4.2, Table 4.3 and Figure 4.5 shows that the ”γ = 1 unseen species”

method provide the least biased estimate, whose mean and median values are closest to the

truth, but slightly bigger than the truth. The proposed simulation-based ”unseen species”

method over estimates the total number of disease genes. Jackknife method and the Chao

and Bunge’s Poisson-Gamma method have the most biased estimates compared to the others,

with the mean and median values farthest from the truth. Table 4.4 and Figure 4.5 show

that Jackknife method provides the estimates with the smallest standard deviation. The

proposed simulation-based ”unseen species” method, ”γ = 1 unseen species” method, two

Chao’s method, and Norris and Pollock’s nonparametric maximum likelihood method have

similar standard deviations, bigger than that of jackknife method. Chao and Bunge’s non-

parametric maximum likelihood method and Wang and Lindsay’s penalized nonparametric

maximum likelihood method have much bigger standard deviation than the others.

We also compared the proposed method and the ”γ = 1 unseen species” method to the

parametric methods. Assuming that the mutations on the observed disease genes follow a

zero-truncated negative binomial distribution generates huge and unrealistic total number

of disease genes estimates. So we did not show the result of this method in the dissertation.

In Table 4.5, Table 4.6, Table 4.7, and Figure 4.6, ”proposed” and ”γ = 1” have the same

meaning as above. ”Poisson” represents the parametric method assuming that the mutations

on the observed disease genes follow a zero-truncated Poisson distribution with a single

mutation rate. ”C2” represents the parametric method assuming that the mutations on the

observed disease genes follow a zero-truncated mixture Poisson distribution with two different

mutation rates. ”C3” represents the parametric method assuming that the mutations on

the observed disease genes follow a zero-truncated mixture Poisson distribution with three

different mutation rates. Table 4.5, Table 4.6 and Figure 4.6 show that the parametric

methods underestimate the total number of disease genes a lot. Table 4.7 shows that the
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standard deviations of the parametric methods estimates are also smaller than the proposed

method and the ”γ = 1 unseen species” method.

We evaluated the 90% quantile interval of the proposed simulation based ”unseen species”

estimates by calculating its coverage rate. When the true total numbers of disease genes are

400, 600, and 800, the coverage rates are 0.17, 0.17, and 0.14, respectively.

All the methods, including the parametric ones and the nonparametric ones, generate

some extreme estimates. An ”extreme estimate” is defined as one which is either 1.5 times

interquartile range (IQR) or more above the third quartile or 1.5 times IQR or more below

the first quartile, where the IQR is the difference between the first quartile and the third

quartile. Below, we only explore the extreme estimates for the proposed method and the

”γ = 1 unseen species” method. All corresponding estimates generated by the two methods

are based on the same observed data set. When the true total number of disease genes is

400, 600, and 800, the proposed method generates 155, 169, and 159 extreme estimates,

respectively; while the ”γ = 1 unseen species” method generates 72, 78, and 105 extreme

estimates, respectively. If the true total number of disease genes is 400, 600, and 800, when

”γ = 1 unseen species” estimates are extreme estimates, based on the same observed data,

98.6%, 100% and 100% of the estimates generated by the proposed methods are also extreme

estimates, respectively; when the estimates by the proposed method are extreme estimates,

based on the same observed data, only 45.8%, 46.1% and 66.0% of the ”γ = 1 unseen species”

estimates are also extreme estimates, respectively (Table 4.8).
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Table 4.2: The mean values of 2000 estimates by the eight nonparametric methods.

proposed γ=1 CL1992 jackknife CL1984 ChaoBunge pnpmle unpmle

400 491.182 444.675 348.265 215.017 284.683 80.701 310.565 7454.462

600 744.573 662.996 522.016 220.450 410.834 Inf 477.01 20328.708

800 1014.960 904.577 700.122 220.534 551.186 Inf 731.008 41487.343

Table 4.3: The median values of 2000 estimates by the eight nonparametric meth-

ods.

proposed γ=1 CL1992 jackknife CL1984 ChaoBunge pnpmle unpmle

400 458.300 423.621 301.000 207.000 265.000 177.000 280.000 270.000

600 671.500 606.300 411.000 213.000 366.000 212.000 378.500 361.000

800 914.400 810.188 546.000 215.000 477.000 225.000 496.000 470.000

Table 4.4: The standard deviations of 2000 estimates by the eight nonparametric

methods.

proposed γ=1 CL1992 jackknife CL1984 ChaoBunge pnpmle unpmle

400 158.400 129.102 179.827 45.023 100.971 2931.769 303.147 44304.815

600 279.483 249.557 473.659 52.312 194.441 Inf 917.395 194734.285

800 417.007 430.025 660.495 60.555 317.249 Inf 2189.892 418812.350
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Figure 4.5: Comparisons of the eight nonparametric estimates: the horizontal line

in each box plot shows the median value. The red horizontal line shows the true

total number of disease genes set at the beginning of the simulation.
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Table 4.5: The mean values of 2000 estimates of the proposed method, ”γ=1

unseen species” method, and the three parametric methods.

proposed γ=1 Poisson C2 C3

400 491.182 444.675 231.366 261.739 274.669

600 744.573 662.996 339.389 369.110 384.450

800 1014.960 904.577 459.037 486.595 503.019

Table 4.6: The median values of 2000 estimates of the proposed method, ”γ=1

unseen species” method, and the three parametric methods.

proposed γ=1 Poisson C2 C3

400 458.300 423.621 218.926 252.927 265.576

600 671.500 606.300 314.530 343.880 359.265

800 914.400 810.188 410.035 442.095 458.440

Table 4.7: The standard deviations of 2000 estimates of the proposed method,

”γ=1 unseen species” method, and the three parametric methods.

proposed γ=1 Poisson C2 C3

400 158.400 129.102 65.901 67.067 72.926

600 279.483 249.557 124.989 124.123 126.862

800 417.007 430.025 217.178 212.951 210.941
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Figure 4.6: Comparisons of the proposed method, ”γ=1 unseen species” method,

and the three parametric methods: the horizontal line in each box plot shows

the median value. The red horizontal line shows the true total number of disease

genes set at the beginning of the simulation.

4.4 DISCUSSION

For an RGFSS, a desirable method would have the following properties: 1) it generates the

estimates with mean and median close to the truth (unbiasedness); 2) it generates estimates

with a small standard deviation. Among the 8 nonparametric methods, the proposed method
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performs better than all the others, except the ”γ = 1 unseen species” method. The proposed

method overestimates the total number of disease genes but it provides estimates with rela-

tively small standard deviation. The ”γ = 1 unseen species” method slightly overestimates

the total number of disease genes, but it generates the estimates that are most unbiased

and have relatively small standard deviation. The two Chao’s method [Chao and Lee, 1992;

Chao, 1984], the jackknife estimator proposed by Burnham and Overton [1978; 1979], the

estimator derived from Poisson-Gamma model proposed by Chao and Bunge [2002], the non-

parametric maximum likelihood estimator proposed by Norris and Pollock [1996; 1998], and

the penalized nonparametric maximum likelihood estimator proposed by Wang and Lindsay

[2005; 2008] provide unrealistic results. Therefore, they are not appropriate to be applied to

the RFGSS.

Although in our mice model based simulated RFGSS, the ”γ = 1 unseen species” method

performs better than the proposed method, the proposed method is still a promising method.

The ”γ = 1 unseen species” method may perform better because the true γ is close to 1,

where γ depends on the length of the coding regions of the disease genes. If the RFGSS

is conducted on other animals, the true γ could be much bigger or smaller than 1, and

then ”γ = 1 unseen species” method may no longer work better than the proposed method.

Thus, compared to the ”γ = 1 unseen species” method, the proposed method is more flexible,

because it does not assume a priori that gamma equals 1, and it is appropriate to apply to

other animal based RFGSS.

It is not appropriate to use the parametric methods to estimate the total number of

disease genes in the RFGSS. As Table 4.6 and Figure 4.6 in the ”results” section shown, the

parametric methods underestimate the total number of disease genes.

The 90% coverage rates of the proposed method’s quantile interval are as low as 0.17, 0.17

and 0.14, when the true total numbers of disease genes are 400, 600, and 800, respectively.

The main reason for the low coverage rate is that the proposed method overestimates the

total numbers of disease genes. Thus, the true total number of disease genes are less likely

to be included within the quantile intervals.

From Figure 4.5, all the eight nonparametric methods have some extreme estimates,

and from Figure 4.6, all the three parametric methods have some extreme estimates. The
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distribution of the observed mutations on the observed disease genes may be one possible

cause of the extreme estimates. Here, we discuss the extreme estimates generated from

the ”γ = 1 unseen species” method and the proposed simulation-based ”unseen species”

method. Using the same sets of the observed disease mutations, when the ”γ = 1 unseen

species” estimates are extreme estimates, almost all the proposed simulation-based ”unseen

species” estimates are extreme estimates; but when the proposed simulation-based ”unseen

species” estimates are extreme estimates, only half of the ”γ = 1 unseen species” estimates

are extreme estimates (Table 4.8). The reason may be that the extreme estimates generated

from the ”γ = 1 unseen species” method are due to the distribution of the observed disease

mutations on the observed disease genes, but the the extreme estimates generated from the

proposed method are due to both the distribution of the observed disease mutations on the

observed disease genes, and the simulated unobserved mutations on the sampled unobserved

genes, which generates the extreme γ’s and leads to the extreme estimates. In addition,

while the extreme estimates are a function of the observed data, they could be due to unmet

or inappropriate assumptions of the different methods.

Assessing the patterns of the distributions of the observed mutations on observed genes

that generate the extreme estimates is necessary. Since all the methods generate some

extreme estimates, when people conduct a RFGSS and obtain only one distribution of the

observed mutations on observed genes, it is unclear whether the subsequent single estimate of

the total number of disease genes is an extreme estimate or not. In RFGSS, erroneously large

estimates may lead to an inappropriate screening strategy, thus consuming a large amount

of follow-up effort and money unnecessarily. If people aim to find all the undetected disease

genes, but the estimated total number of them is much more than the truth, expensive

follow-up experiments may be conducted, screening more animals than necessary. Assessing

the patterns of the distributions of the observed mutations on observed genes that generate

the extreme estimates may provide the investigator with information regarding whether they

have a spuriously large estimate, and thus, may guide the usage of the methods to estimate

the total number of disease genes.

Our research provides practical guidance regarding estimating the total number of disease

genes from a RFGSS data set. Given a RFGSS data set, based on what we learned in the

108



study, we would recommend using the ”γ = 1 unseen species” method to estimate the total

number of disease genes. But we would ask people to be cautious that the estimates could

be extreme.
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Table 4.8: Comparisons of the extreme estimates generated by the proposed

method and the ”γ = 1 unseen species” method, when the true total number of

disease genes is 400 (a), 600 (b), 800 (c), respectively.

a.

Truth = 400 Proposed method

Extreme Not extreme Sum up

”γ = 1” method

Extreme 71 1 72

Not extreme 84 1844 1928

Sum up 155 1845 2000

b.

Truth = 600 Proposed method

Extreme Not extreme Sum up

”γ = 1” method

Extreme 78 0 78

Not extreme 91 1831 1922

Sum up 169 1831 2000

c.

Truth = 800 Proposed method

Extreme Not extreme Sum up

”γ = 1” method

Extreme 105 0 105

Not extreme 54 1841 1895

Sum up 159 1841 2000

110



5.0 FUTURE WORK

5.1 GENETIC RISK MODELS AND SCREENING STRATEGIES:

INFLUENCE OF MODEL SIZE ON RISK ESTIMATES AND

PRECISION

This study constructs better risk prediction models and provided a better screening strategy

by taking the confidence interval of the predicted risk into account. The main focus of the

study is not providing accurate risks, but to guide the screening decision relative to a fixed

threshold. From the result of the coverage probabilities, the maxMRS-selected model has

relatively low coverage probabilities (Figure 2.6), thus it may not be the best model to provide

accurate risk estimates. In the future, we would like to further investigate how accurate risk

estimates affect screening decisions, where the accurate risk estimates are those with true

risks locating inside the confidence intervals of the estimates. Accordingly, inaccurate risk

estimates are those with true risks located outside the confidence intervals. Since we know

the true risks in the simulation studies but not in the real studies, this investigation would

be conducted using simulated data sets.

There are eight possible relationships between the inaccurate risk estimates and the ac-

curate risk estimates to the true risk and the screening threshold (Figure 5.1). If the true

risk is bigger than the threshold, the inaccurate risk estimates can have their confidence

intervals’ upper bounds and the lower bounds both bigger than the true risk (Figure 5.1a

situation 1, 2), both smaller than the threshold (Figure 5.1a situation 7, 8), both between

the true risk and the threshold (Figure 5.1a situation 3, 4), or both smaller than the true

risk but overlapped with the threshold (Figure 5.1a situation 5, 6). Accurate risk estimates

can have their confidence interval upper bounds bigger than the true risk and lower bounds
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between the true risk and the threshold (Figure 5.1a situation 1, 3, 5, 7), or upper bounds

bigger than the true risk and lower bounds smaller than the threshold (Figure 5.1a situation

2, 4, 6, 8). Using the screening strategy {-T, 1], in Figure 5.1a situation 1 to 6, the same

screening decisions are made with both accurate and inaccurate risk estimates. Both esti-

mates correctly classified the individual to high risk category. In Figure 5.1a situation 7 and

8, inaccurate risk estimates incorrectly classified the individual and accurate risk estimates

correctly classified the individual. Similarly, if the true risk is smaller than the threshold,

the inaccurate risk estimates can have their confidence intervals’ upper bounds and the lower

bounds both bigger than the threshold (Figure 5.1b situation 7, 8), both smaller than the

true risk (Figure 5.1b situation 1, 2), both between the true risk and the threshold (Figure

5.1b situation 3, 4), or both bigger than the true risk but overlapping the threshold (Figure

5.1b situation 5, 6). The accurate risk estimates can have their confidence interval lower

bounds smaller than the true risk and upper bounds between the true risk and the threshold

(Figure 5.1b situation 1, 3, 5, 7), or lower bounds smaller than the true risk and upper bound

bigger than the threshold (Figure 5.1b situation 2, 4, 6, 8). Using the screening strategy

{-T, 1], in Figure 5.1b situation 1, 3, 6, and 8, the same screening decisions are made with

the accurate and the inaccurate risk estimates. In Figure 5.1b situation 2 and 4, inaccurate

risk estimates correctly classified the individual and accurate risk estimates incorrectly clas-

sified the individual. In Figure 5.1b situation 5 and 7, inaccurate risk estimates incorrectly

classified the individual and accurate risk estimates correctly classified the individual.
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Figure 5.1: Eight possible relationships for the inaccurate risk estimates and the

accurate risk estimates to the true risks and the thresholds for cases (a) and

controls (b), respectively.

The green squares indicate that the inaccurate risk estimates incorrectly classified the individuals,
while the accurate risk estimates correctly classified the individuals. The red squares indicate that
the inaccurate risk estimates correctly classified the individuals, while the accurate risk estimates
incorrectly classified the individuals. The classification is based on the screening strategy {-T, 1].

To explore how accurate risk estimates affect screening decisions, we would collect the

individuals in the simulation data set who have inaccurate risk estimates under the maxMRS-

selected models and have accurate risk estimates under the full model. We would measure

how often the inaccurate risk estimates under the maxMRS-selected models and the accurate

risk estimates under the full models provide the same correct/incorrect screening decisions.

And how often the accurate risk estimates provide the correct/incorrect screening decisions,

while the inaccurate risk estimates provide the incorrect/correct screening decision. Then,

we would generate a 2×2 contingency table and conduct a chi-square test to assess the null

hypothesis that the number of correct screening decisions are made on individuals having

inaccurate estimates under the maxMRS-selected model are not significantly different from

the number of correct screening decisions are made on individuals having accurate estimates
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under the full model. Thus, we can investigate how the accurate risk estimates affect the

screening decisions.

5.2 A BAYESIAN APPROACH FOR SNP EFFECT ESTIMATION AND

GENETIC RISK PREDICTION FOR DICHOTOMOUS TRAITS

In the future, we would like to optimize the BayesRB program to accelerate its computation

speed and improve it to use less memory. The current version of BayesRB program is not

optimal. Currently, on a Red Hat Linux machine with 128 GB of RAM and a 2.1 GHz AMD

Opteron Processor 6272, it takes around 3 days and 14 GB of memory to run 15,000 loops

using data set with 3,000 individuals, where each was genotyped at around 300K SNPs.

BayesR only takes 8 hours and 11.5 GB to process the same data set. There is still a lot

of room for the improvement of the speed and the efficiency of BayesRB. We will optimize

the program by considering the data storage and data reading of C++. For example, since

in C++, high dimensional arrays are stored in one dimensional memory, accessing data in a

sequential fashion as stored in physical memory, can speed up the program.

When applying BayesRB to the genome-wide simulated data sets and the real data sets,

BayesRB only ran 15,000 and 13,000 loops, respectively, both with 5000 loops as warm-up.

Some parameters do not mix well. In the future, after the speeding up of BayesRB, we would

run BayesRB for more iterations to let all the parameters mix well.

What’s more, we would like to improve the BayesRB program to enable it to handle

missing phenotype data. The current version of BayesRB program does not allow either

missing phenotype nor genotype data. In the future, for individuals with missing phenotypes,

BayesRB will be able to detect them and delete them from the input matrix. For the missing

genotypes, we would recommend using high quality imputation software, such as BEAGLE

[Browning and Browning, 2016] or IMPUTE2 [Howie et al., 2009], to fill in any missing

genotypes before running BayesRB.

We would systematically search for all the SNPs that are affected by the batch effects.

This could be complemented by some automated searching of the intensity cluster plots for
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those that did not cluster nicely into the expected three clusters. GWASTools [Gogarten

et al., 2012] from Bioconductor and gPCA [Reese et al., 2013] are possible methods to do

so. In Aim2, BayesRB discovered that rs11887827 in the CD data set and rs12050604 in the

BD data set are affected by batch effects. For both rs11887827 and rs12050604, different

decisions were made in controls and cases when calling the genotypes in cluster 2 (Figure

3.28). For both SNPs, controls in cluster 2 are treated as having 1/0 genotypes, but cases

in cluster 2 are treated as having 1/1 genotypes. We would remove rs11887827 from CD

data set and rs12050604 from BD data set, as well as all the other SNPs affected by the

batch effects, and then measure the bayesRB performance again to allow more accurate

performance comparisons.

5.3 A SIMULATION BASED ”UNSEEN SPECIES” METHOD TO

ESITMATE THE TOTAL NUMBER OF DISEASE GENES IN A

RECESSIVE FORWARD GENETIC SCREENING STUDY (RFGSS)

In this study, both the parametric methods and the nonparametric methods generate extreme

estimates, thus, the distribution of the estimates is skewed. The extreme estimates of all

the methods, except the proposed ”simulation-based unseen species” method, may due to

certain distributions of the number of observed mutations on the observed disease genes.

The extreme estimates of the proposed method may be due to both the distributions of the

number of observed mutations on the observed disease genes and the distributions of the

number of simulated unobserved mutations on the sampled unobserved disease genes. We

could adjust the estimates by transforming the skewed distributions to normal distributions.

We would assess whether the transformation method works by separating the data sets to

80/20 training and testing data sets. We would seek the best transformation method using

the training data sets and test the transformation performance using the testing data sets.

In the future, we would like to assess what patterns in the distributions lead to the

extreme estimates for each method. We would first record the distributions which generate

extreme estimates using each method in the 2000 replicates of the simulation study. Then,
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we would produce some descriptive statistics. We would also visualize the distributions that

generate the extreme estimates using bar plots to assess if there is any pattern in those

distributions. If there is a pattern in those distributions, we would investigate what leads to

the pattern, thus leads to the extreme estimates. Our hypothesis is that, in the simulation,

when genes which are extremely long are selected as the disease genes, after the RFGSS,

the observations tend to generate extreme estimates. We would conduct chi-square tests

to assess this hypothesis. With an idea of what patterns in the observed distributions lead

to the extreme estimates and what lead to the patterns, we may be able to improve the

statistics and the program may be able to output diagnostic information after conducting

RFGSS. Also investigators may be able to decide whether each method is good to use for

their observed distributions.

In addition, our simulation is based on the mouse genome, which may have a true γ close

to 1, thus, leading to the result that ”γ = 1” method performs better than the proposed

method. In the future, we would like to assess whether the true γ is different from 1. Our

null hypothesis is that the true γ’s in the 2000 simulation replicates are not significantly

different from 1. We would record the true γ’s in the 2000 replicates and conduct a t test to

assess the hypothesis. Furthermore, we would like to compare how ”γ = 1” method and the

proposed methods perform when the true γ is different from 1. We would select an organism

where the true γ 6= 1. Then, using the same RFGSS simulation process as that in Aim 3, we

could compare the accuracy and the precision of the total number of disease genes estimation

by the two methods.
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APPENDIX A

DETAILED MCMC STEPS IN THE BAYESRB ALGORITHM

Full conditional distribution for the general mean µ (MCMC step 2)

The logistic regression model can be written as a linear form with the latent variable Zi.

Zi = µ+
∑p

j=1Xijβj + εi, with εi
iid∼ N(0, λi).

So, µ = Zi −
∑p

j=1Xijβj − εi
Then, nµ =

∑n
i=1(Zi −

∑p
j=1Xijβj)−

∑n
i=1 εi, where

∑n
i=1 εi ∼ N(0,

∑n
i=1 λi).

Therefore, the conditional posterior distribution of the general mean µ is

µ|. ∼ N(n−1
∑n

i=1(Zi −
∑p

j=1Xijβj),
∑n
i=1 λi
n2 )

Proof of the full conditional posterior distribution of bj and βj (MCMC step 3)

For SNP j, we update βj right after bj, and then we update them for SNP j + 1, which

means we update βj and bj jointly.

P (bj, βj|.)

= P (bj, βj|Z, X, σ2
g ,λ, µ,β−j , b−j ,π)

∝ P (βj|bj,Z, X, σ2
g ,λ, µ,β−j , b−j ,π)P (bj|Z, X, σ2

g ,λ, µ,β−j , b−j ,π),

where b−j denotes the vector of categories that all the SNPs expect SNP j belong to. β−j

denotes the vector of effects of all the SNPs expect SNP j.

1) First bj is updated by calculating P (bj|Z, X, σ2
g ,λ, µ,β−j , b−j ,π):

P (bj = k|X,Z, σ2
g ,λ, µ,β−j ,π)

=
P (bj=k,Z|X,σ2

g ,λ,µ,β−j ,π)

P (Z|X,σ2
g ,λ,µ,β−j ,π)
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=
P (bj=k,Z|X,σ2

g ,λ,µ,β−j ,π)∑4
l=1 P (bj=l,Z|X,σ2

g ,λ,µ,β−j ,π)
,

where k is the category SNP j is assigned to. k = (1, 2, 3, 4).

Set Ljk = P (bj = k,Z|X, σ2
g ,λ, µ,β−j ,π),

Then, P (bj = k|X,Z, σ2
g ,λ, µ,β−j ,π)

=
Ljk∑k
l=1 Ljl

= 1∑4
l=1 exp(logLjl−logLjk)

.

Ljk is calculated below.

Ljk = P (bj = k,Z|X, σ2
g ,λ, µ,β−j ,π)

= P (Z|X, bj = k, σ2
g ,λ, µ,β−j ,π)P (bj = k|X, σ2

g ,λ, µ,β−j ,π)

= P (Z|X, bj = k, σ2
g ,λ, µ,β−j ,π)P (bj = k|π)

=
∫
βj
P (Z|X, bj = k, σ2

g ,λ, µ,β−j ,π, βj)P (βj|X, bj = k, σ2
g ,λ, µ,β−j ,π)

×P (bj = k|π)dβj

For individual i,

Zi = µ+Xijβj +
∑

l 6=j Xilβl + εi, where εi
iid∼ N(0, λi).

Zi
iid∼ N(µ+Xijβj +

∑
l 6=j Xilβl, λi).

Therefore, P (Z|X, bj = k, σ2
g ,λ, µ,β−j ,π, βj)

=
∏n

i=1

[
1√

2π(λi)
exp{− 1

2λi
(Z̃ij −Xijβj)

2}
]
,

where Z̃ij = Zi − µ−
∑

l 6=j Xilβl.

C is the vector (0, 10−4, 10−3, 10−2). Then,

Cbj ∼



0 bj = 1

10−4 bj = 2

10−3 bj = 3

10−2 bj = 4

.

If bj 6= 1,

P (βj|X, bj = k, σ2
g ,λ, µ,β−j ,π) = P (βj|bj = k, σ2

g) = 1√
2πCbjσ

2
g
exp(− 1

2Cbjσ
2
g
β2
j ),

which is the prior of βj given βj is assigned to the category bj.

Set Vj =
∑n

i=1

X2
ij

λi
+ 1

Cbjσ
2
g
.

Then, P (Z|X, bj = k, σ2
g ,λ, µ,β−j ,π, βj)P (βj|X, bj = k, σ2

g ,λ, µ,β−j ,π)

118



∝
[
(
∏n

i=1 λ
− 1

2
i )(Cbjσ

2
g)
− 1

2

]
exp

{
−1

2

[∑n
i=1

Z̃ij
2−2Z̃ijXijβj+X

2
ijβ

2
j

λi
+

β2
j

Cbjσ
2
g

]}
=

[
(
∏n

i=1 λ
− 1

2
i )(Cbjσ

2
g)
− 1

2

]
exp

{
−1

2

[
(
∑n

i=1

X2
ij

λi
+ 1

Cbjσ
2
g
)β2

j − 2
∑n

i=1
Z̃ijXijβj

λi
+
∑n

i=1
Z̃ij

2

λi

]}
=

[
(
∏n

i=1 λ
− 1

2
i )(Cbjσ

2
g)
− 1

2

]
exp

{
− 1

2 1
Vj

[
β2
j − 2

∑n
i=1

Z̃ijXijβj
λi

Vj
+

∑n
i=1

Z̃ij
2

λi

Vj

]}

=

[
(
∏n

i=1 λ
− 1

2
i )(Cbjσ

2
g)
− 1

2

]
exp

{
− 1

2 1
Vj

[
β2
j − 2

∑n
i=1

Z̃ijXijβj
λi

Vj
+ (

∑n
i=1

Z̃ijXij
λi

Vj
)2

]}

×exp

{
− 1

2 1
Vj

[
− (

∑n
i=1

Z̃ijXij
λi

Vj
)2 +

∑n
i=1

Z̃ij
2

λi

Vj

]}

=

[
(
∏n

i=1 λ
− 1

2
i )(Cbjσ

2
g)
− 1

2

]
exp

{
− 1

2 1
Vj

[
βj −

∑n
i=1

Z̃ijXij
λi

Vj

]2
}

×exp

{
− 1

2 1
Vj

[
− (

∑n
i=1

Z̃ijXij
λi

Vj
)2 +

∑n
i=1

Z̃ij
2

λi

Vj

]}
.

So,
∫
βj
P (Z|X, bj = k, σ2

g ,λ, µ,β−j ,π, βj)P (βj|X, bj = k, σ2
g ,λ, µ,β−j ,π)dβj

=
∫
βj

1√
2π 1

Vj

exp

{
− 1

2 1
Vj

[
βj −

∑n
i=1

Z̃ijXij
λi

Vj

]2
}
dβj

×
√

2π 1
Vj

[
(
∏n

i=1 λ
− 1

2
i )(Cbjσ

2
g)
− 1

2

]
exp

{
− 1

2 1
Vj

[
− (

∑n
i=1

Z̃ijXij
λi

Vj
)2 +

∑n
i=1

Z̃ij
2

λi

Vj

]}

=
√

2π 1
Vj

[
(
∏n

i=1 λ
− 1

2
i )(Cbjσ

2
g)
− 1

2

]
exp

{
− 1

2 1
Vj

[
− (

∑n
i=1

Z̃ijXij
λi

Vj
)2 +

∑n
i=1

Z̃ij
2

λi

Vj

]}
If bj 6= 1,

logLjk = −1
2

{
log(

∏n
i=1 λi) + log(

∑n
i=1

X2
ij

λi
Cbjσ

2
g + 1)

}
− 1

2

[
−

(
∑n
i=1

Z̃ijXij
λi

)2

Vj
+
∑n

i=1
Z̃ij

2

λi

]
+

log(πk).

If bj = 1,

logLj1 = −1
2
{log(

∏n
i=1 λi)} −

1
2

[∑n
i=1

Z̃ij
2

λi

]
+ log(π1).

Set Tk = P (bj = k|Z, X, σ2
g ,λ, µ,β−j , b−j ,π)

The SNP j is assigned to category k based on a value h sampled from a uniform distribution.

updated bj =



1 if 0 < h ≤ T1

2 if T1 < h ≤ T1 + T2

3 if T1 + T2 < h ≤ T1 + T2 + T3

4 if T1 + T2 + T3 < h ≤ 1.

2) Then, we update βj by calculating P (βj|bj,Z, X, σ2
g ,λ, µ,β−j , b−j ,π):
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P (βj|bj,Z, X, σ2
g ,λ, µ,β−j , b−j ,π)

=
P (Z|βj ,bj ,X,σ2

g ,λ,µ,β−j ,b−j ,π)P (βj |bj ,X,σ2
g ,λ,µ,β−j ,b−j ,π)

P (bj ,Z,X,σ
2
g,λ,µ,β−j ,b−j ,π)

P (bj ,X,σ
2
g,λ,µ,β−j ,b−j ,π)

=
P (Z|βj ,bj ,X,σ2

g ,λ,µ,β−j ,b−j ,π)P (βj |bj ,X,σ2
g ,λ,µ,β−j ,b−j ,π)

P (Z|bj ,X,σ2
g ,λ,µ,β−j ,b−j ,π)

∝ P (Z|βj, bj, X, σ2
g ,λ, µ,β−j , b−j ,π)P (βj|bj, X, σ2

g ,λ, µ,β−j , b−j ,π)

= P (Z|βj, X, µ,λ,β−j)P (βj|σ2
g , bj)

∝ exp{−1
2

∑n
i=1 λ

−1
i (Z̃ij −Xijβj)

2}exp{− 1
2Cbjσ

2
g
β2
j }

∝ exp{−1
2
(
∑n

i=1 Z̃ij
2
λ−1
i − 2

∑n
i=1 Z̃ijXijβjλ

−1
i +

∑n
i=1 X

2
ijβ

2
jλ
−1
i )− 1

2Cbjσ
2
g
β2
j }

∝ exp{− 1
2· 1∑n

i=1
X2
ij
λ−1
i

+ 1
Cbj

σ2g

[
β2
j −

2
∑n
i=1 Z̃ijXijλ

−1
i∑n

i=1X
2
ijλ
−1
i + 1

Cbj
σ2g

βj +Const

]
}, where Const denotes a con-

stant.

∝ exp{− 1
2· 1∑n

i=1
X2
ij
λ−1
i

+ 1
Cbj

σ2g

[
βj −

∑n
i=1 Z̃ijXijλ

−1
i∑n

i=1X
2
ijλ
−1
i + 1

Cbj
σ2g

]2

}, if bj 6= 1.

Therefore, the conditional posterior distribution of the effect of SNP j, which belongs to

category bj, is

βj|bj,Z, X, σ2
g ,λ, µ,β−j , b−j ,π ∼


δ(βj) bj = 1

N(
∑n
i=1 Z̃ijXijλ

−1
i∑n

i=1 λ
−1
i X2

ij+
1

Cbj
σ2g

, 1∑n
i=1 λ

−1
i X2

ij+
1

Cbj
σ2g

) bj 6= 1
,

where δ(βj) denotes the dirac delta function with all probability mass at βj = 0 if bj = 1.

Full conditional distribution for the relative variance for each mixture component

σ2
g (MCMC step 4)

We assumed the SNPs are independent. From the dependency diagram,

P (σ2
g |.)

= P (σ2
g |b,β)

=
P (β|σ2

g ,b)P (σ2
g |b)

P (β|b)

∝ P (β|σ2
g , b)P (σ2

g)

∝
∏4

k=1

[∏
j:bj=k

P (βj|bj = k, σ2
g)

]
P (σ2

g).

We use the uniform non-informative prior for σ2
g . Then, σ2

g ∝ 1.

P (σ2
g |.) ∝ (

∏4
k=1(σ2

g)
− 1

2
mk)exp

{
−1

2

∑4
k=1[C−1

k σ−2
g

∑
j:bj=k

β2
j ]
}

,

which is not a density function of any known distribution. Therefore, we used a Metropolis-

Hasting sampling to update σ2
g . The initial value of σ2

g (σ2
g

(0)
) is sampled from N(0, U).
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The steps are shown below:

1) Proposal function: Jt(σ
2
g

(∗)|σ2
g

(t)
) ∼ N(σ2

g
(t)
, θ) truncated at 0.

Jt(σ
2
g

(∗)|σ2
g

(t)
) = 1√

2πθ
exp[− 1

2θ
(σ2

g
(∗) − σ2

g
(t)

)2]/Φ(
σ2
g
(t)

√
θ

)

Jt(σ
2
g

(t)|σ2
g

(∗)
) = 1√

2πθ
exp[− 1

2θ
(σ2

g
(∗) − σ2

g
(t)

)2]/Φ(
σ2
g
(∗)
√
θ

)

2) r =
P (σ2

g
(∗)|.)/Jt(σ2

g
(∗)|σ2

g
(t)

)

P (σ2
g
t|.)/Jt(σ2

g
(t)|σ2

g
(∗))

=
P (σ2

g
(∗)|.)Φ(

σ2g
(t)

√
θ

)

P (σ2
g
t|.)Φ(

σ2g
(∗)
√
θ

)

=
(σ2
g
(∗)

)−
1
2

∑4
k=2mkexp{− 1

σ2g
(∗) [ 1

2

∑4
k=2(C−1

k

∑
j:bj=k

β2
j )]}Φ(

σ2g
(t)

√
θ

)

(σ2
g
(t))
− 1

2
∑4
k=2

mkexp{− 1

σ2g
(t)

[ 1
2

∑4
k=2(C−1

k

∑
j:bj=k

β2
j )]}Φ(

σ2g
(∗)
√
θ

)

3) Sample v ∼ unif(0, 1)

4) Update σ2
g

(t+1)
=

 σ2
g

(t)
if v > r

σ2
g

(∗)
if v ≤ r

In the above steps, U and θ are tuned manually. Using the unrealistic data set, U = 200

and θ = 1.
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APPENDIX B

PSEUDO CODE OF BAYESRB

%% Set initial values

C[1 : 4]← (0, 10−4, 10−3, 10−2)

µ← 1

%% Initial value is when loop r=1

λ[ , 1]← 1n

σg[1]← 1

π[1] = 0.5

temp[2 : 4] = 1/C[2 : 4]

π[2 : 4] = 0.5× temp[2:4]∑4
k=2 temp[k]

%% Initial value of βj’s are estimated from a regular marginal logistic regression.

%% Initial value of µ is estimated by taking the average of the intercepts in the marginal

logistic regressions.

%% We record the initial value of βj and µ as β[j, r] and µ[r], where r = 1.

%% β[j, r] records the effect of SNP j in the rth iteration.

%% Initial value of σ2
g is sampled from a uniform distribution

U = 2000

σ2
g [1] ∼ Unif(0, U)

θ = 1

m[1 : 4]← 0

%% Finish setting the initial values
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%% Start the MCMC steps:

FOR r = 2 to the number of MCMC iterations

%% draw values of Z and λ for each individual

FOR i = 1 to number of individuals n

temp1← X[i, ]β[, r − 1]T + µ[r − 1]

%% draw Z[i] from truncated logistic

Z[i]← logistic(temp1, 1)

%% define Y = 1 as affected

IF Y [i] = 1

WHILE Z[i] < 0

Z[i]← logistic(temp1, 1)

END WHILE

ELSE

WHILE Z[i] ≥ 0

Z[i]← logistic(temp1, 1)

END WHILE

END IF

%% draw new values for mixing variance

R← Z[i]− temp1

λ[i, r] ∼ π(λ|R2)

%% λ[i, r] records the λ value of individual i in the rth iteration.

%% The procedure of sampling the λ[i, r] can be found in Holmes et al. [2006]

appendix A4.

END FOR

%% draw new value of µ

µ[r] ∼ N
(

1
n

∑n
i=1(Z[i]−X[i, ]β[, r − 1]T , 1

n2

∑n
i=1 λ[i, r]

)
vara← 0

FOR j = 1 to number of SNPs p

FOR i = 1 to number of number of individuals n

Z̃[i, j]← Z[i]− µ[r]−
∑

l 6=j X[i, l]β[l, r − 1]
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END FOR

FOR k = 1 to number of categories (4)

IF k = 1

logL[k] = log(π[k])

ELSE

logL[k] = −1
2

{
log(

∑n
i=1

X[i,j]2

λ[i,r]
C[k]σ2

g [r − 1] + 1)
}

−1
2

[
−

(
∑n
i=1

˜Z[i,j]X[i,j]
λ[i,r]

)2∑n
i=1

X[i,j]2

λ[i,r]
+ 1

C[k]σ2g [r−1]

]
+ log(π[k])

END FOR

FOR k = 1 to number of categories (4)

T [k] = 1∑4
l=1 exp(logL[l]−logL[k])

END FOR

h ∼ UNIF (0, 1)

IF h ≤ T [1]

%% draw new values for SNP effects

β[j, r] = 0

m[1]← m[1] + 1

%% b[j, r] is the category SNP j belongs to

b[j, r] = 1

ELSE IF h ≤ T [1] + T [2]

β[j, r] ∼ N
( ∑N

i=1 Z̃[i,j]X[i,j]λ[i,r]−1∑N
i=1 λ[i,r]−1X[i,j]2+(C[2]σ2

g [r−1])−1
, 1∑N

i=1 λ[i,r]−1X[i,j]2+(C[2]σ2
g [r−1])−1

)
m[2]← m[2] + 1

b[j, r] = 2

vara← vara+ β[j, r]2/(2 · C[2])

ELSE IF h ≤ T [1] + T [2] + T [3]

β[j, r] ∼ N
( ∑N

i=1 Z̃[i,j]X[i,j]λ[i,r]−1∑N
i=1 λ[i,r]−1X[i,j]2+(C[3]σ2

g [r−1])−1
, 1∑N

i=1 λ[i,r]−1X[i,j]2+(C[3]σ2
g [r−1])−1

)
m[3]← m[3] + 1

b[j, r] = 3

vara← vara+ β[j, r]2/(2 · C[3])

ELSE
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β[j, r] ∼ N
( ∑N

i=1 Z̃[i,j]X[i,j]λ[i,r]−1∑N
i=1 λ[i,r]−1X[i,j]2+(C[4]σ2

g [r−1])−1
, 1∑N

i=1 λ[i,r]−1X[i,j]2+(C[4]σ2
g [r−1])−1

)
m[4]← m[4] + 1

b[j, r] = 4

vara← vara+ β[j, r]2/(2 · C[4])

END IF

END FOR

%% Update σ2
g using Metropolis-Hasting sampling

σ2
g

(∗) ∼ N(σ2
g [r − 1], θ)

WHILE σ2
g

(∗) ≤ 0

σ2
g

(∗) ∼ N(σ2
g [r − 1], θ)

END WHILE

RR =
(σ2
g
(∗)

)−
1
2

∑4
k=2m[k]exp{− 1

σ2g
(∗) [ 1

2

∑4
k=2(C[k]−1

∑
j:bj=k

β[j,r]2)]}Φ(
σ2g [r−1]
√
θ

)

(σ2
g [r−1])

− 1
2

∑4
k=2

m[k]
exp{− 1

σ2g [r−1]
[ 1
2

∑4
k=2(C[k]−1

∑
j:bj=k

β[j,r]2)]}Φ(
σ2g

(∗)
√
θ

)

%% Sample v from uniform distribution

v ∼ unif(0, 1)

IF v > RR

σ2
g [r] = σ2

g [r − 1]

ELSE

σ2
g [r] = σ2

g
(∗)

%% draw a new value for π

π ∼ D(m[1] + 1,m[2] + 1,m[3] + 1,m[4] + 1)

END
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APPENDIX C

RCPP CODE OF BAYESRB R PACKAGE

The BayesRB source code can be found in the Github website:

https://github.com/sylviashanboo/BayesRB.

1

2

3 #i n c l u d e <R. h>
4 #i n c l u d e <Rmath . h>
5 #i n c l u d e <Rcpp . h>
6 #i n c l u d e <g s l / g s l math . h>
7 #i n c l u d e <g s l / g s l r n g . h>
8 #i n c l u d e <g s l / g s l sum . h>
9 #i n c l u d e <g s l / g s l r a n d i s t . h>

10 #i n c l u d e <g s l / g s l p e rmu t a t i o n . h>
11 #i n c l u d e <i o s t r eam>
12 #i n c l u d e <math . h>
13 #i n c l u d e <s t d i o . h>
14 #i n c l u d e <vec to r>
15 #i n c l u d e <numeric>
16 #i n c l u d e <cmath>
17 #i n c l u d e <a l go r i t hm>
18 u s i n g namespace s td ;
19 u s i n g namespace Rcpp ;
20

21 i n t r i g h tmo s t ( doub l e u , doub l e lam )
22 {
23 doub l e z=1;
24 doub l e x = exp (−0.5∗ lam ) ;
25 i n t j = 0 ;
26 i n t OK;
27 wh i l e (1 )
28 {
29 j ++;
30 z = z − ( j +1)∗( j +1)∗pow( x , ( j +1)∗( j +1)−1);
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31

32 i f ( z > u ){
33 OK = 1 ;
34 break ;
35 }
36 j ++;
37 z = z + ( j +1)∗( j +1)∗pow( x , ( j +1)∗( j +1)−1);
38 i f ( z < u ){
39 OK = 0 ;
40 break ;
41 }
42 }
43 r e t u r n (OK) ;
44 }
45

46 i n t l e f tmo s t ( doub l e u , doub l e lam )
47 {
48 con s t doub l e c p i = 3.141592653589793238463;
49 doub l e H = 0.5∗ l o g (2 ) + 2.5∗ l o g ( c p i ) − 2 .5∗ l o g ( lam )
50 − pow( c p i , 2 ) / ( 2∗ lam ) + 0.5∗ lam ;
51 doub l e l u = l og ( u ) ;
52 doub l e z=1;
53 doub l e x = exp(−1∗pow( c p i , 2 ) / ( 2∗ lam ) ) ;
54 doub l e k = lam/pow( c p i , 2 ) ;
55 i n t j =0;
56 i n t OK;
57 wh i l e (1 ){
58 j ++;
59 z = z − k∗pow( x , j ∗ j −1);
60

61 i f (H+log ( z)> l u ){
62 OK=1;
63 break ;
64 }
65 j ++;
66 z = z + ( j +1)∗( j +1)∗pow( x , ( j +1)∗( j +1)−1);
67 i f (H+log ( z)< l u ){
68 OK=0;
69 break ;
70 }
71 }
72 r e t u r n (OK) ;
73 }
74

75 L i s t BayesRF ( i n t seed , i n t MCMC inte , i n t bu r n i n t e e , i n t th inn ,
76 Numer icMatr ix X, Numer icVector Y, Numer icVector b e t a i n i t i a l ,
77 doub l e s igma2 ){
78

79 // gene r a t e the random seed r ;
80 g s l r n g ∗ r ;
81 r = g s l r n g a l l o c ( g s l r ng mt19937 ) ;
82 g s l r n g s e t ( r , s eed ) ;
83

84 //N i s the number o f i n d i v i d u a l s
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85 //P i s the number o f SNPs
86 s i z e t N = X. nrow ( ) ;
87 s i z e t P = X. nco l ( ) ;
88

89 // S t anda r d i z e the genotype s
90 f o r ( i n t i = 0 ; i < P ; i ++){
91 X( , i ) = (X( , i ) − mean (X( , i ) ) ) / sd (X( , i ) ) ;
92 }
93

94 // i n i t i a l v a l u e s o f mu and beta ’ s :
95 Numer icVector lambda (N) ;
96 Numer icVector Z(N) ;
97 Numer icVector beta (P ) ;
98 f o r ( i n t i =1; i<=P; i ++){
99 beta [ i −1] = b e t a i n i t i a l [ i ] ;

100 }
101 doub l e mu=b e t a i n i t i a l [ 0 ] ;
102

103 // Set up Ck :
104 Numer icVector Ck ( 4 ) ;
105 Ck [ 0 ] = 0 ;
106 Ck [ 1 ] = 0 . 0001 ;
107 Ck [ 2 ] = 0 . 0 0 1 ;
108 Ck [ 3 ] = 0 . 0 1 ;
109

110 // i n i t i a l v a l u e o f p i :
111 doub l e ∗ p i = NULL ;
112 p i = new doub l e [ 4 ] ;
113 doub l e temp , s igma2k ;
114 doub l e sumup = 1/Ck [ 1 ] + 1/Ck [ 2 ] + 1/Ck [ 3 ] ;
115 p i [ 0 ]=0 . 5 ;
116 f o r ( i n t i =1; i <=3; i ++){
117 temp=1/Ck [ i ] ;
118 p i [ i ]=0.5∗ temp/sumup ;
119 }
120 Numer icVector m( 4 ) ;
121 Numer icVector x b e t a i n d i (N) ;
122 Numer icMatr ix Z t i l (N, P ) ;
123 Numer icVector data (P ) ;
124 f o r ( i n t i =0; i<P ; i ++){
125 data [ i ] = i ;
126 }
127 Numer icVector b j (P ) ;
128

129 // Set up some o th e r v a r i a b l e s :
130 i n t r e s t = MCMC inte − b u r n i n t e e ;
131 i n t mod = r e s t\% th i nn ;
132 i n t s to re num = ( r e s t − mod)/ th i nn ;
133 Numer icMatr ix r b e t a ( store num ,P ) ;
134 Numer icMatr ix r b j ( store num ,P ) ;
135 Numer icMatr ix r l ambda ( store num ,N) ;
136 Numer icMatr ix r Z ( store num ,N) ;
137 Numer icVector r mu ( store num ) ;
138 Numer icMatr ix r p i ( store num , 4 ) ;
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139 Numer icMatr ix r m ( store num , 4 ) ;
140 doub l e xbeta , a l l x b e t a , l o c t , r r , yy , uu , lambda temp , temp a ,
141 temp b , temp1 , temp2 , h , rsam , b e t a p r e ;
142 i n t snp j , num pi , num m ;
143 Numer icVector t h r e s h ( 4 ) ;
144 Numer icVector l ogL ( 4 ) ;
145 Numer icVector beta mu ( 4 ) ;
146 Numer icVector b e t a v a r ( 4 ) ;
147 doub l e ∗ temp d = NULL ;
148 temp d = new doub le [ 4 ] ;
149 i n t num o f s t o r e = 0 ;
150 cout << ”# of i n d i v i d u a l s : ” <<N<<”\n” ;
151 cout << ”# of SNPs : ” << P << ”\n” ;
152 g s l p e rmu t a t i o n ∗ permut p = g s l p e rm u t a t i o n a l l o c (P ) ;
153 g s l p e r m u t a t i o n i n i t ( permut p ) ;
154

155 // S t a r t MCMC loop :
156 f o r ( i n t mcnum=1; mcnum < MCMC inte ; mcnum++){
157 cout << ”mcmcnum : ”<<mcnum <<”\n” ;
158

159 // S t a r t MCMC s t ep 1 :
160 f o r ( i n t i n d i =0; i n d i < N; i n d i++){
161 // c a l c u l a t e sum j ( X i j ∗ beta [ j ] )
162 xbeta = sum(X( i n d i , )∗ beta ) ;
163 x b e t a i n d i [ i n d i ] = xbeta ;
164 l o c t = mu + xbeta ;
165 rsam = g s l r a n l o g i s t i c ( r , 1 ) ;
166 Z [ i n d i ] = rsam + l o c t ;
167 i f (Y [ i n d i ]==1){
168 wh i l e (Z [ i n d i ]<0){
169 rsam = g s l r a n l o g i s t i c ( r , 1 ) ;
170 Z [ i n d i ] = rsam + l o c t ;
171 }
172 }
173 e l s e {
174 wh i l e (Z [ i n d i ]>=0){
175 rsam = g s l r a n l o g i s t i c ( r , 1 ) ;
176 Z [ i n d i ] = rsam + l o c t ;
177 }
178 }
179 // f i n i s h updat i ng Z
180 // /////////////////////////////////////
181 i n t OK=0;
182 r r = abs ( rsam ) ;
183 i f ( r r < 0 .00001){
184 r r = 0 . 00001 ;
185 }
186 wh i l e (OK==0){
187 yy = g s l r a n g a u s s i a n ( r , 1 ) ;
188 yy = yy∗ yy ;
189 yy = 1 + ( yy−s q r t ( yy ∗(4∗ r r+yy ) ) ) /
190 (2∗ r r ) ;
191 wh i l e ( yy==−1 | | yy== 0){
192 yy = g s l r a n g a u s s i a n ( r , 1 ) ;
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193 yy = yy∗ yy ;
194 yy = 1 + ( yy−s q r t ( yy ∗(4∗ r r
195 +yy ) ) ) / ( 2∗ r r ) ;
196 }
197 i f ( yy <= 0){
198 yy = 0 . 00001 ;
199 }
200 uu = g s l r n g u n i f o rm p o s ( r ) ;
201

202 i f ( uu <= 1/(1+yy ) ){
203 lambda temp = r r / yy ;
204 } e l s e {
205 lambda temp = r r ∗ yy ;
206 }
207 uu = g s l r n g u n i f o rm p o s ( r ) ;
208 i f ( lambda temp > 4/3){
209 OK = r i gh tmos t ( uu , lambda temp ) ;
210 } e l s e {
211 OK = l e f tmo s t ( uu , lambda temp ) ;
212 }
213 }
214 lambda [ i n d i ] = lambda temp ;
215 // f i n i s h lambda ;
216 }
217 // f i n i s h l oop o f i n d i v i d u a l ;
218 // f i n i s h s t ep 1 ;
219 // //////////////////////////////////////////////
220

221 // S t a r t MCMC step2 :
222 a l l x b e t a = sum( x b e t a i n d i ) ;
223 temp a = (sum(Z)− a l l x b e t a )/N;
224 temp b = sum( lambda )/pow(N, 2 ) ;
225 mu = g s l r a n g a u s s i a n ( r , temp b)+temp a ;
226 // f i n i s h mu;
227 // f i n i s h s t ep 2 ;
228 // //////////////////////////////////////////////
229

230 // S t a r t MCMC s t ep 3 :
231 f o r (num m=0;num m<4;num m++){
232 m[ num m ] = 0 ;
233 }
234 // permute the SNP o rd e r :
235 g s l r a n s h u f f l e ( r , permut p−>data , P , s i z e o f ( s i z e t ) ) ;
236 f o r ( i n t s n p j i =0; s n p j i<P ; s n p j i ++){
237 s np j = g s l p e rmu t a t i o n g e t ( permut p , s n p j i ) ;
238 Z t i l ( , s n p j ) = Z − mu − x b e t a i n d i
239 + X( , s np j )∗ beta [ s np j ] ;
240 temp1 = sum(pow(X( , s np j ) , 2 )/ lambda ) ;
241 temp2 = sum( Z t i l ( , s n p j ) ∗ X( , s np j ) / lambda ) ;
242 f o r ( i n t k = 0 ; k < 4 ; k++){
243 i f ( k==0){
244 l ogL [ k ] = l og ( p i [ k ] ) ;
245 beta mu [ k ] = 0 ;
246 b e t a v a r [ k ] = 0 ;
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247 } e l s e {
248 s igma2k = sigma2 ∗Ck [ k ] ;
249 beta mu [ k ] = temp2 /( temp1
250 + 1/ sigma2k ) ;
251 b e t a v a r [ k ] = 1/( temp1
252 + 1/ sigma2k ) ;
253 l ogL [ k ] = l og ( p i [ k ] )
254 −0.5∗ l o g ( temp1∗ s igma2k+1)
255 +0.5∗( beta mu [ k ]∗ temp2 ) ;
256 }
257 }
258 f o r ( i n t k = 0 ; k < 4 ; k++){
259 t h r e s h [ k ] = 1/sum( exp ( logL − l ogL [ k ] ) ) ;
260 }
261 b e t a p r e = beta [ s np j ] ;
262 h = g s l r n g u n i f o rm p o s ( r ) ;
263 i f ( h<=th r e s h [ 0 ] ) {
264 beta [ s np j ] = 0 ;
265 m[0]+=1;
266 b j [ s np j ]=1;
267 } e l s e i f ( h<= th r e s h [ 0 ] + t h r e s h [ 1 ] ) {
268 beta [ s np j ] = g s l r a n g a u s s i a n ( r ,
269 b e t a v a r [1 ] )+ beta mu [ 1 ] ;
270 m[1]+=1;
271 b j [ s np j ]=2;
272 } e l s e i f ( h<= th r e s h [ 0 ] + t h r e s h [ 1 ] +
273 t h r e s h [ 2 ] ) {
274 beta [ s np j ] = g s l r a n g a u s s i a n ( r ,
275 b e t a v a r [2 ] )+ beta mu [ 2 ] ;
276 m[2]+=1;
277 b j [ s np j ]=3;
278 } e l s e {
279 beta [ s np j ] = g s l r a n g a u s s i a n ( r ,
280 b e t a v a r [3 ] )+ beta mu [ 3 ] ;
281 m[3]+=1;
282 b j [ s np j ]=4;
283 }
284 x b e t a i n d i = x b e t a i n d i − X( , s np j )
285 ∗ b e t a p r e + X( , s np j )∗ beta [ s np j ] ;
286 }
287 cout << ”m[ 0 , 1 , 2 , 3 ] : ”<<m[0]<<” , ”<<m[ 1 ]
288 <<” , ”<<m[2]<<” , ”<<m[3]<<”\n” ;
289 // /////////////////////////////////////////////////////
290 // f i n i s h updated beta and b j .
291 // f i n i s h MCMC s t ep 3 .
292

293 // I f s e t s igma g ˆ2 as a f i x e d va lue ,
294 // then s k i p the MCMC s t ep 4 shown below :
295 // S t a r t MCMC s t ep 4 :
296 //MH samp l ing :
297 s igma2 temp = g s l r a n g a u s s i a n ( r , t h e t a )+sigma2 ;
298 wh i l e ( s igma2 temp <= 0){
299 s igma2 temp = g s l r a n g a u s s i a n ( r , t h e t a )+sigma2 ;
300 }
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301 cout << ” sigma2 temp : ” << s igma2 temp << ”\n” ;
302 temp1 = R : : pnorm ( sigma2/ s q r t ( t h e t a ) , 0 , 1 , 1 , 0 ) ;
303 temp2 = R : : pnorm ( s igma2 temp/ s q r t ( t h e t a ) , 0 , 1 , 1 , 0 ) ;
304 l o g r r r = −0.5∗(m[1]+m[2]+m[3 ] )∗ ( − l o g ( s igma2 )
305 + log ( s igma2 temp ) ) − va ra ∗(−1/ sigma2 + 1/ sigma2 temp )
306 + ( l og ( temp1 ) − l o g ( temp2 ) ) ;
307 cout << ” l o g r r r : ” << l o g r r r <<”\n” ;
308 u = g s l r n g u n i f o rm p o s ( r ) ;
309 i f ( l o g r r r >= 0){
310 s igma2 = sigma2 temp ;
311 } e l s e i f ( exp ( l o g r r r )>=u){
312 s igma2 = sigma2 temp ;
313 }
314 i f ( s igma2==0){
315 cout << ” break , s i n c e s igma g ˆ2 = 0\n” ;
316 break ;
317 }
318 cout << ” sigma2 : ” << s igma2 << ”\n” ;
319 // /////////////////////////////////////////////////////
320 // f i n i s h e d s t ep 4 : s igma g ˆ2 .
321

322 // S t a r t MCMC step5 :
323 // updat i ng p i
324 f o r ( i n t k=0;k<4;k++){
325 temp d [ k ] = m[ k ]+1;
326 }
327 g s l r a n d i r i c h l e t ( r , 4 , temp d , p i ) ;
328 // /////////////////////////////////////////////////////
329 // f i n i s h e d upda t i ng p i
330 // f i n i s h e d MCMC s t ep 5 .
331

332 // Steps f o r t h i n n i n g :
333 i f (mcnum == bu r n i n t e e+th i nn ∗ num o f s t o r e+th inn −1){
334 // r b e t a :
335 r b e t a ( num of s to r e , ) = beta ;
336 // r b j
337 r b j ( num of s to r e , ) = b j ;
338

339 // r lambda
340 r l ambda ( num of s to r e , ) = lambda ;
341 // r Z :
342 r Z ( num of s to r e , ) = Z ;
343 // r mu :
344 r mu [ num o f s t o r e ] = mu;
345 // r p i
346 f o r ( num pi = 0 ; num pi<4; num pi++){
347 r p i ( num of s to r e , num pi ) = p i [ num pi ] ;
348 }
349 // r m :
350 r m ( num of s to r e , ) = m;
351 num o f s t o r e++;
352 }
353 //Loop back to s t ep 1
354 }
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355

356 g s l p e rm u t a t i o n f r e e ( permut p ) ;
357 // cout << ” f i n i s h e d mcmc loop !\ n ” ;
358 r e t u r n L i s t : : c r e a t e ( [ ” r b e t a ” ] = r be t a , [ ” r b j ” ] = r b j ,
359 [ ” r l ambda ” ] = r lambda , [ ” r Z ” ] = r Z , [ ” r mu” ] = r mu ,
360 [ ” r p i ” ] = r p i , [ ” r m” ] = r m ) ;
361 }
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APPENDIX D

R CODE FOR THE RFGSS SIMULATION

1

2 l i b r a r y ( a s t e r )
3 l i b r a r y ( s t a t s )
4 l i b r a r y ( r a s t e r )
5 l i b r a r y ( Rlab )
6 r e q u i r e ( ggp l o t 2 )
7 r e q u i r e ( SPECIES )
8 r e q u i r e ( r e shape )
9 l i b r a r y ( robustHD )

10 l i b r a r y ( ”DEoptim” )
11 l i b r a r y (doMC)
12 reg is terDoMC (2)
13 l i b r a r y ( f o r e a c h )
14 l i b r a r y ( p l y r )
15

16 Args <− commandArgs ( )
17 s e t . s eed ( as . numer ic ( Args [ 6 ] ) )
18

19 ##some f u n c t i o n s
20 func <− f u n c t i o n ( x , mut r ) {
21 r e t u r n ( r p o i s (1 , x ∗ mut r ∗ 0 . 5 ) )
22 }
23 g1 pas s g3 <− f u n c t i o n ( x , g2 num , num g3 l i s t ){
24 #x i s a v e c t o r ( row o f mut countG1 2651) f o r one G1 mice
25 #s e l e c t e d g2 i s the number o f g2 daughte r each g1 mates w i th
26 i f ( sum( x)==0){
27 r e t u r n ( ( x ) )
28 } e l s e {
29 n=which ( x==1)
30 m=which ( x>1)
31 x [m] = 1
32 n=c (n ,m)
33 g3 a l l 1=rep (0 , l e n g t h ( x ) )
34 s e l e c t e d g2=sample ( g2 num , s i z e =1, r e p l a c e=T)
35

36 #f o r the genes w i th 1 mutat ions :
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37 f o r ( i i n 1 : s e l e c t e d g2 ){
38 #c a l c l a t e g2 :
39 g2 pas sed = sapp l y ( x [ n ] , rbinom , s i z e =1, prob =0.5)
40 #f i n i s h e d g2
41

42 g3 n = sample (num g3 l i s t , s i z e =1, r e p l a c e=T)
43 g3 mat r i x=mat r i x ( r ep ( x , each=g3 n ) , n co l=g3 n , nrow=l e ng t h ( x ) ,
44 byrow = T)
45

46 #one mutat ion on one gene
47 i f ( sum( g2 pas sed + x [ n ] ==2) !=0){
48 #i f g2 have at l e a s t one mutat ion from g1 :
49 t t = which ( ( g2 pas sed + x [ n ] ==2))
50 #the number o f g3 t h i s g2 g e n e r a t e s i s :
51 one g3 = as . numer ic ( g2 pas sed + x [ n]==2)
52 f o r ( j i n 1 : g3 n ){
53 g3 pas sed=sapp l y ( one g3 [ t t ] , rbinom , s i z e =1, prob =0.25)
54 g3 mat r i x [ n [ t t ] , j ] = g3 pas sed
55 g3 mat r i x [ n[− t t ] , j ] = 0
56 }
57 } e l s e {
58 g3 mat r i x=c ( )
59 }
60 g3 a l l 1 = cb ind ( g3 a l l 1 , g3 mat r i x )
61 }
62 }
63

64 un l = u n l i s t ( g3 a l l 1 )
65 nr = dim ( g3 a l l 1 ) [ 1 ]
66 nc = dim ( g3 a l l 1 ) [ 2 ]
67 #m i s the u n l i s t e d mat r i x o f g3 a l l
68 m = mat r i x ( unl , nrow = nr , n co l=nc )
69 d i s g3 num = app l y ( (m) , 2 , sum)
70 i f ( sum( d i s g3 num)==0){
71 r e t u r n ( ( r ep (0 , l e n g t h ( x ) ) ) )
72 } e l s e {
73 #re t u r n the d i s e a s e d g3 genome
74 n temp=sample ( which ( d i s g3 num!=0) , s i z e =1)
75 r e t u r n ( (m[ , n temp ] ) )
76 }
77 }
78

79 p r e t fun <− f u n c t i o n ( pretL , undet l , obs l , prob0 , c , c1 , d ){
80 p r e tn = pre tL − l e n g t h ( obs l )
81 p r e t l = sample ( undet l , p re tn , r e p l a c e = F , prob = prob0 )
82 p r e t t o t a l l = c ( p r e t l , obs l )
83 p r e t p i = p r e t t o t a l l /sum( p r e t t o t a l l )
84 p r e t g = cv ( p r e t p i ) /100
85 p r e t N = (C . t o t a l ( c , c1 , d , p r e t g ) ) $C
86 p r e t N d i f f = p r e t N − p r e tL
87 r e t u r n ( l i s t ( p r e t g=p r e t g , p r e t N=p r e t N, p r e t N d i f f=p r e t N d i f f ) )
88 }
89

90 C . t o t a l <− f u n c t i o n ( c , c1 , d , g ) {
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91 # c i s the number o f ob s e r v ed r i s k−a s s o c i a t e d genes
92 # c1 i s the number o f genes mutated once
93 # d i s the t o t a l number o f r i s k−a s s o c i a t e d mutat ions
94 # g i s the v a r i a t i o n i n e f f e c t s i z e o f i n d i v i d u a l de novo mutat i ons
95 u <− 1 − c1/d
96 # p r o b a b i l i t y t ha t newly added mutat ion h i t s a p r e v i o u s l y mutated
97 # gene
98 C <− c/u + gˆ2 ∗ d ∗ (1 − u ) /u
99 z e r o c l a s s <− (C − c ) /C

100 r e t u r n ( l i s t (C = C, z e r o c l a s s = ze ro c l a s s ) )
101 }
102 l o ad ( ”/ ihome/dweeks / y i s 2 9 /mice p r o j e c t / f am i l y r e v i s e d 0 425 / t a l l . Rdata” )
103 n rep=2
104 #n rep=2
105 mut r a t e = 1/ (1 . 82 ∗ 1e+06)
106 p d e t e c t = 90/113
107 #n sim=100
108 n sim=100
109 #nmice i s the number o f G3 mice tha t one G0 mice g e n e r a t e s .
110

111 fam = read . c sv ( ”/ ihome/dweeks / y i s 2 9 /mice p r o j e c t / f am i l y r e v i s e d 0 425 /
112 YingLineSummary . c sv ” , heade r = T)
113 f a t h num=l e ng t h ( un ique ( fam [ , 2 ] ) )
114 moth num=ddp ly ( fam , . ( Mother . ID ) , nrow ) [ , 2 ]
115 g3 num = moth num [ which (moth num>1)]
116 g2 num temp = ddp ly ( fam , . ( Fa the r . ID , Mother . ID ) , nrow ) [ , c ( 1 , 2 ) ]
117 g2 num = ddp ly ( g2 num temp , . ( Fa the r . ID ) , nrow ) [ , 2 ]
118

119 LL <− seq (400 , 800 , by = 200)
120 r e s u l t a r r = a r r a y (NA, dim = c (14 , n rep , l e n g t h (LL ) ) ,
121 dimnames = c ( ”method” , ” nrep ” , ”L” ) )
122 new method simu = a r r a y (NA, dim = c (3 , n rep , l e n g t h (LL ) ) ,
123 dimnames = c ( ” q u a n t i l e ” , ” nrep ” , ”L” ) )
124

125

126 l i s t r e s u l t<−f o r e a c h ( f e ch num=1:4) \%dopar\%{
127 nL = 0
128 f o r (L i n LL ) {
129 nL <− nL + 1
130 r ep = 0
131 r e p e a t {
132 t ime0 <− proc . t ime ( )
133 t o t a l l <− sample ( t a l l , L , r e p l a c e = F)
134 # Se l e c t 113 mice wi th one or more mutat ions f o r exome sequenc i ng
135 mut countG1 400 <− mat r i x ( nrow = L , n co l = 800)
136 f o r ( nmice i n 1 : 800 ) {
137 mut countG1 400 [ , nmice ]<− s a pp l y ( t o t a l l ,
138 func , mut r = mut r a t e )
139 }
140 mut countALL = app l y (mut countG1 400 , 2 , g1 pas s g3 , g2 num ,
141 g3 num)
142

143 mut countG1 100 <− ( mat r i x ( nrow = L , n co l = 100))
144 wh i l e ( sum( colSums (mut countALL ) > 0) < 113){

136



145 #mutat ions i n G1
146 f o r ( nmice i n 1 : 100 ) {
147 mut countG1 100 [ , nmice ]<− s a pp l y ( t o t a l l , func , mut r=mut r a t e )
148 }
149 mut countALL100=(app l y (mut countG1 100 , 2 , g1 pas s g3 , g2 num ,
150 g3 num) )
151 mut countALL = cb ind (mut countALL , mut countALL100 )
152 }
153 r ep = rep + 1
154

155 n113 <− sample ( which ( colSums (mut countALL ) > 0) , s i z e = 113 ,
156 r e p l a c e = FALSE)
157 #leng t h ( which ( rowSums (mut countALL ) > 0) )
158 # de t e c t i o n s t ep :
159 m113 <− data . f rame ( mat r i x (NA, nrow = 113 , n co l = L ) )
160 j = 0
161 f o r ( i i n n113 ) {
162 j = j + 1
163 temp = mut countALL [ , i ]
164 f o r ( kk i n which ( temp != 0) ) {
165 temp [ kk ] = sum( s app l y ( temp [ kk ] , rbinom , s i z e = 1 ,
166 p = p de t e c t ) )
167 }
168 m113 [ j , ] = temp
169 }
170 # a f t e r the d e t e c t i o n s t ep . The obse r v ed mat r i x .
171 names (m113) <− t o t a l l
172 n obs c o l = which ( colSums (m113) > 0)
173

174 obs maxtr = m113 [ , n obs c o l ]
175 # obs maxtr i s a mat r i x t ha t we can obse r v ed
176 # the rows o f the mat r i x i s ob s e r v ed mice
177 # the columns o f the mat r i x i s the ob s e r v ed CHD genes
178 # the r e a r e 90 columns o f the ’ obs maxtr ’ i n Dr . Lo ’ s expe r imen t
179

180 # obs l i s the l e n g t h o f the ob se r v ed gene l e n g t h
181 obs l = as . numer ic ( names ( n obs c o l ) )
182

183

184 ###############################
185

186 ###########################
187

188 ###########################
189

190 # undet l i s the gene l e n g t h o f a l l the genes o th e r than the
191 # obse r v ed genes i n the mice genome
192 undet l <− t a l l
193 f o r ( aa i n 1 : l e n g t h ( obs l ) ) {
194 undet l <− undet l [−(( which ( undet l == obs l [ aa ] ) ) [ 1 ] ) ]
195 }
196

197 ###################
198 # unseen s p e c i e s

137



199 c = l e ng t h ( obs maxtr [ 1 , ] )
200 c1 = sum( app l y ( obs maxtr , 2 , sum) == 1)
201 d = sum( app l y ( obs maxtr , 2 , sum ) )
202 u = 1 − c1/d
203 ca t = seq (max (200 , l e n g t h ( n obs c o l ) ) , max (3000 ,
204 l e n g t h ( n obs c o l ) ) , by = 20)
205 e s t N es t im3 = rep (NA, n sim )
206 nnrep = 0
207 i n d e x =1: l e n g t h ( ca t )
208

209 #Sta r t the proposed method :
210 mean n2 = mean ( g2 num)
211 mean n3 = mean ( g3 num)
212 #pp i n h e r i = 1−P(G1 i s not muated ) − (P(G2 i s not mutated )
213 #+ P(G2 i s mutated ) ∗P(G2 i s not homozygous )ˆ(#ofG3 ))ˆ(#ofG2 )
214 pp i n h e r i =1−0.5−(0.5∗ ( 0 . 7 5 ) ˆmean n3 + 0 . 5 ) ˆmean n2
215 #i t i s p r oo f ed tha t t h i s s t e p i s e q u i v a l e n t to po i s s o n+d e t e c t i o n
216 prob0=(dpo i s (0 , undet l ∗ mut r a t e ∗ p d e t e c t ∗ pp i n h e r i ) )ˆ113
217 r e p e a t {
218 p r e t mat= sapp l y ( cat , p r e t fun , undet l , obs l , prob0 , c , c1 , d )
219 co lnames ( p r e t mat ) = cat
220 p r e t N d i f f = u n l i s t ( p r e t mat [ 3 , ] )
221 nnrep=nnrep+1
222 e s t N es t im3 [ nnrep ] = as . numer ic ( names ( p r e t N d i f f [ which . min (
223 abs ( p r e t N d i f f ) ) ] ) )
224 p r i n t ( pa s t e ( ” f i n i s h e d sma l l l oop : ” , nnrep ) )
225 i f ( nnrep >= n sim ){
226 break
227 }
228

229 } # Loop on nnrep i n 1 :100
230 r e s u l t a r r [ 1 , rep , nL ] = mean ( e s t N est im3 , na . rm = T)
231 e s t q = q u a n t i l e ( e s t N est im3 , c ( 0 . 0 5 , 0 . 5 , 0 . 9 5 ) , na . rm = T)
232 # we use the 5 , 95 q u a n t i l e to c o n s t r u c t a i n t e r v a l
233 r e s u l t a r r [ 2 , rep , nL ] = e s t q [ 1 ]
234 r e s u l t a r r [ 3 , rep , nL ] = e s t q [ 2 ]
235 r e s u l t a r r [ 4 , rep , nL ] = e s t q [ 3 ]
236

237 ########
238 ## The o th e r 7 non−pa r ame t r i c methods :
239 data = data . f rame ( t a b u l a t e ( app l y ( obs maxtr , 2 , sum ) ) )
240 data $ j <− as . i n t e g e r ( rownames ( data ) )
241 data <− data [ , c (2 , 1 ) ]
242 names ( data ) <− c ( ” j ” , ”n j ” )
243 e s t N ChaoLee1992 <− ChaoLee1992 ( data ) $Nhat [ 2 ]
244 r e s u l t a r r [ 5 , rep , nL ] <− e s t N ChaoLee1992
245 e s t N j a c k k n i f e <− j a c k k n i f e ( data ) $Nhat
246 r e s u l t a r r [ 6 , rep , nL ] <− e s t N j a c k k n i f e
247 e s t N Chao1984 <− chao1984 ( data ) $Nhat
248 r e s u l t a r r [ 7 , rep , nL ] <− e s t N Chao1984
249 e s t N ChaoBunge <− ChaoBunge ( data , t = 10) $Nhat
250 r e s u l t a r r [ 8 , rep , nL ] <− e s t N ChaoBunge
251 e s t N pnpmle <− pnpmle ( data , t = 15 , C = 0 , b = 200) $Nhat
252 r e s u l t a r r [ 9 , rep , nL ] <− e s t N pnpmle
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253 e s t N unpmle <− unpmle ( data , t = 15 , C = 0 , b = 200) $Nhat
254 r e s u l t a r r [ 1 0 , rep , nL ] <− e s t N unpmle
255 r e s u l t a r r [ 1 1 , rep , nL ] <− (C . t o t a l ( c , c1 , d , 1 ) ) $C
256

257 ##pa r ame t r i c methods :
258 temp = rep (0 ,100)
259 names ( temp ) = 1:100
260 temptab=t a b l e ( app l y ( obs maxtr , 2 , sum ) )
261 nametemptab = names ( temptab )
262 temp [ nametemptab ] = temptab
263 f o r ( i i n 1 : 100){
264 i f ( sum( temp [ ( i +1):100])==0){
265 paper2 = temp [ 1 : i ]
266 break
267 }
268 }
269 paper1 = as . numer ic ( names ( paper2 ) )
270 a l l o c i <− sum( paper2 )
271 paper <− r b i n d ( paper1 , paper2 )
272 papernum <− c ( )
273 f o r ( i i n 1 : l e n g t h ( paper2 ) ){
274 papernum <− c ( papernum , rep ( paper1 [ i ] , t imes=paper2 [ i ] ) )
275 }
276 # Truncated Po i s son d i s t r i b u t i o n :
277 p o i s l n L <− f u n c t i o n ( lam){−1∗ l o g (1 − (1 / exp ( lam ) ) )
278 ∗ l e n g t h ( papernum)+ sum( l og ( dpo i s ( papernum , lam ) ) ) }
279 x <− seq ( 0 . 1 , 10 , l e n =500)
280 y <− s a pp l y ( x , p o i s l n L )
281 f i t p o i <− op t im i z e ( po i s l nL , c (0 , 1000) ,maximum = T)
282 #f i t p o i
283 a l l o c i <− sum( paper2 )
284 po i s y 1 <− dpo i s ( paper1 , f i t p o i $maximum)
285 po i a l l num <− a l l o c i /sum( po i s y 1 )
286 r e s u l t a r r [ 1 2 , rep , nL ] <− po i a l l num
287

288 # Truncated n e g a t i v e b i n om i a l d i s t r i b u t i o n :
289 #f <− f u n c t i o n ( k ){
290 # the f u n c t i o n i s w r i t t e n a c co r d i n g to the paper
291 # a <− k [ 1 ]
292 # b <− k [ 2 ]
293 # z <− ( ( b+1)ˆ(−1∗a ) ) ∗ f a c t o r i a l ( papernum+a−1)/
294 ( f a c t o r i a l ( papernum ) ∗ f a c t o r i a l ( a−1))∗ ( ( b/ ( b+1))ˆ papernum )
295 # sum( l og ( z ))− l o g (1−(b+1)ˆ(−1∗a ) ) ∗ l e n g t h ( papernum )
296 #}
297 #f i t n e g a <− optim ( c ( 1 , 1 ) , f , c o n t r o l= l i s t ( f n s c a l e =−1),
298 l owe r=c ( 0 . 0 01 , 0 . 0 0 01 ) , upper=c (10 ,10000) , method=”L−BFGS−B” )
299 #a <− f i t n e g a $ par [ 1 ]
300 #b <− f i t n e g a $ par [ 2 ]
301 #nby1 <− ( ( b+1)ˆ(−1∗a ) ) ∗ f a c t o r i a l ( paper1+a−1)/ ( f a c t o r i a l ( paper1 )
302 ∗ f a c t o r i a l ( a−1))∗ ( ( b/ ( b+1))ˆ paper1 )
303 #nbal lnum <− a l l o c i /sum( nby1 )
304 ##nbal lnum i s too u n r e a l i s t i c . So , we wont use t h i s method .
305

306 ##2C method :
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307 po i s l n L 2 <− f u n c t i o n ( lam ){
308 lam1 <− lam [ 1 ]
309 lam2 <− lam [ 2 ]
310

311 sum( l og (
312 dpo i s ( papernum , lam1 ) /2/(1−(1/ exp ( lam1 ) ) )
313 +dpo i s ( papernum , lam2 ) /2/(1−(1/ exp ( lam2 ) ) )
314 ) )
315

316 }
317 f i t p o i 2 <− optim ( c ( 1 , 3 ) , po i s l nL2 , c o n t r o l= l i s t ( f n s c a l e =−1),
318 l owe r=c (1 e−15 ,0 .01) , upper=c (10 ,10000) , method=”L−BFGS−B” )
319 lam1=f i t p o i 2 $ par [ 1 ]
320 lam2=f i t p o i 2 $ par [ 2 ]
321 c2y1 <− dpo i s ( paper1 , lam1 ) /2+dpo i s ( paper1 , lam2 ) /2
322 c2a l lnum <− a l l o c i /sum( c2y1 )
323 r e s u l t a r r [ 1 3 , rep , nL ] <− c2a l lnum
324

325 #3C model :
326 po i s l n L 3 <− f u n c t i o n ( lam ){
327 lam1 <− lam [ 1 ]
328 lam2 <− lam [ 2 ]
329 lam3 <− lam [ 3 ]
330 sum( l og (
331 dpo i s ( papernum , lam1 ) /3/(1−(1/ exp ( lam1 ) ) )
332 +dpo i s ( papernum , lam2 ) /3/(1−(1/ exp ( lam2 ) ) )
333 +dpo i s ( papernum , lam3 ) /3/(1−(1/ exp ( lam3 ) ) )
334 ) )
335

336 }
337 f i t p o i 3 <− optim ( c ( 1 , 3 , 5 ) , po i s l nL3 , c o n t r o l= l i s t ( f n s c a l e =−1),
338 l owe r=c ( 0 . 0 1 , 0 . 0 1 , 0 . 0 1 ) , upper=c (10 ,10000 ,10000) ,
339 method=”L−BFGS−B” )
340 lam1=f i t p o i 3 $ par [ 1 ]
341 lam2=f i t p o i 3 $ par [ 2 ]
342 lam3=f i t p o i 3 $ par [ 3 ]
343 c3y1 <− dpo i s ( paper1 , lam1 ) /3+dpo i s ( paper1 , lam2 ) /3
344 +dpo i s ( paper1 , lam3 ) /3
345 c3a l lnum <− a l l o c i /sum( c3y1 )
346 r e s u l t a r r [ 1 4 , rep , nL ] <− c3a l lnum
347

348 i f ( r ep >= n rep ) {
349 break
350 }
351 p r i n t ( pa s t e ( ” f i n i s h e d b i g l oop : ” , rep , sep=” ” ) )
352 proc . t ime ( ) − t ime0
353 } # repe a t up to n rep
354 } # Loop on L i n LL
355

356 r e s u l t a r r
357 }#fo r e a c h
358 #l i s t r e s u l t
359

360 s f name = pas t e ( ”/ ihome/dweeks / y i s 2 9 /mice p r o j e c t / f am i l y r e v i s e d 0 425 /
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361 l i s t r e s u l t ” , as . numer ic ( Args [ 6 ] ) , ” . Rdata” , sep=”” )
362 save ( l i s t r e s u l t , f i l e=s f name )
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