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A general mathematical framework, Multiresolution Molecular Mechanics (MMM), is proposed 

to consistently coarse-grain molecular mechanics at different resolutions in order to extend the 

length scale of nanoscale modeling of crystalline materials.  MMM is consistent with molecular 

mechanics in the sense that the constitutive description such as energy and force calculations is 

exactly the same as molecular mechanics and no empirical and phenomenological constitutive 

relationships in continuum mechanics are employed. As such, MMM can converge to full 

molecular mechanics naturally. 

As many coarse-graining approaches, MMM is based on approximating the total potential 

energy of a full atomistic model. Analogous to quadrature rules employed to evaluate energy 

integrals in finite element method (FEM), a summation rule is required to evaluate finite energy 

summations. Most existing summation rules are specifically designed for the linear interpolation 

shape function and their extensions to high order shape functions are currently not clear. What 

distinguishes MMM from existing works is that MMM proposes a novel summation rule 

framework SRMMM that is valid and consistent for general shape functions. The key idea is to 

analytically derive the energy distribution of the coarse-grained atomistic model and then choose 

some quadrature-type (sampling) atoms to accurately represent the derived energy distribution 

for a given shape function. The optimal number, weight and position of sampling atoms are also 

determined accordingly, similar to the Gauss quadrature in FEM. The governing equations are 

then derived following the variational principle. 

MULTIRESOLUTION MOLECULAR MECHANICS: THEORY AND APPLICATIONS 

Qingcheng Yang, Ph.D. 

University of Pittsburgh, 2016
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The proposed SRMMM is verified and validated numerically and compared against many 

other summation rules such as Gauss-quadrature-like rule. And SRMMM demonstrates better 

performance in terms of accuracy and computational cost. The convergence property of MMM is 

also studied numerically and MMM shows FEM-like behavior under certain circumstance. In 

addition, MMM has been applied to solve problems such as crack propagation, atomic sheet 

shear, beam bending and surface relaxations by employing high order interpolation shape 

functions in one (1D), two (2D) and three dimensions (3D) . 
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1.0  INTRODUCTION 

Material response of crystalline solids is characterized by the nucleation and dynamics of defects 

such as point defect (vacancies, interstitials, impurities) (Figure 1.1a), line defects (dislocations 

in Figure 1.2) and planar defects (grain boundaries, surfaces, crack, etc.) (Figure 1.1b). Material 

defects usually exist in localized regions but affect the overall mechanical behavior of materials. 

Such localized areas always involve more complicated deformations such as bond breaking and 

rearrangement and thus require atomistic modeling to resolve the details of the deformation 

mechanisms. For example, grain boundary (GB) strengthening mechanism [1-4] can be used to 

increase material yield strength by changing their average grain size. This mechanism is based 

on the observation that GB boundaries impede dislocation movement and the amount of 

dislocations within a grain affect how easily dislocations can move across GB boundaries and 

travel from gain to grain. This strengthening mechanism is described by the Hall-Petch 

relationship (Figure 1.3) [1, 2]. Decreasing grain size can dramatically increase the yield strength 

until a critical point where grain size is around 10 nanometers (nm). However, the dependency of 

yield stress on grain size is still not well understood below this critical grain size. Modelling 

approaches are called for to fully understand deformation mechanisms in materials across 

different length scales.  
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Figure 1.1: Schematic illustration of point defect (a) and grain boundary (b) 

 

 

Traditional single scale approaches such as molecular dynamics (MD) and continuum 

mechanics have proven to be inadequate for modeling material deformations across multiple 

length scales. One the one hand, atomistic simulation is limited by the size of the model 

simulated [5-7]. The largest atomistic simulations performed with one of the fastest 

supercomputers in the world are on the order of 1013 atoms in 2015. However, there are around 

1020 atoms in a metal cube with side length of 1 millimeter (mm). On the other hand, continuum 

mechanics techniques are developed for macroscale problems by describing the macroscale 

material behavior with empirical constitutive relationships whose parameters are obtained from 

macroscale experiments. The constitutive relationships require that variables such as 

temperature, displacement, and stress can be defined by an averaging process and that these 

variables are assumed to be smoothly varying continuous functions of position. Hence they 

represent the collective behavior of atoms, and thus continuum mechanics cannot accurately 

capture the deformation of discrete atoms. The mechanical deformation and failure of many 
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engineering materials are characterized at multiple scales and the observed macroscopic behavior 

is governed by physics that occur on many different scales. Since atomistic simulations have the 

size limitation of scaling up to macroscale systems and continuum mechanics cannot accurately 

scale down to the atomistic description, a novel approach that combines the best of these two 

approaches to simulate the behavior of materials at scales ranging from atomistic to macroscopic 

scales motivates the development of multiscale methods.  

 

 

 

Figure 1.2: Schematic of edge dislocation migration due to applied shear force 

1.1 EXISTING MULTISCALE APPROACHES 

Many multiscale methods have been developed to bridge different spatial and time scales from 

Angstroms and femtoseconds to meters and seconds [8-50]. Capturing interaction of different 

scales is of main concern in multiscale modeling. Sequential or hierarchical multiscale models 

perform the simulations with step-by-step fashion in a bottom-up approach [17, 51, 52]. The 

simulations are performed independently of each other at each scale, and a complete separation 

Edge 
dislocation 
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of both length and time scales is achieved. Iterative parameter passing between different length 

scale simulations are employed in sequential methods, which is best suited for coupling scales 

with weak dependences [52] where a clear separation of scales can be assumed. Concurrent 

multiscale methods employ the domain decomposition strategy and couple the atomistic region 

and continuum domain simultaneously [53]. The continually information exchange from one 

scale to another is to ensure consistency of filed variables between the subdomains. 

 

 

 

Figure 1.3: Hall-Petch Strengthening is constrained by the size of dislocations. Once the grain 

size d reaches around 10 nanometers, GB-based mechanism occurs to decrease the yield stress. 

 

 

Most concurrent coupling schemes employ a region where information passing between 

atomistic region and continuum domain is achieved.  This region is usually referred to as the 

transition region or ‘handshake region’. It is in this region that requires special treatment due to 
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the inherent incompatibility of the two subdomains: the non-local interaction of atomistics such 

as molecular mechanics (MM) and the local interaction of continuum mechanics such as finite 

element method (FEM). And various concurrent multiscale methods differ in the ways the 

approximations are made in the transition region [53, 54]. 

In general, concurrent methods can be further classified into (i) energy-based and (ii) 

force-based schemes. Energy-based schemes generally have a well-defined energy functional 

consisting of energy contributions from each subdomain to minimize to derive the force 

equilibrium equations analytically. This category includes the bridging domain method (BDM) 

[15, 21], the bridging scale method (BSM) [16, 23, 24, 27], the atomic-scale finite element 

method (AFEM) [18], the coupling of length scale method (CLS) [12], the local quasicontinuum 

(QC) method [9] and its energy-based variants [34, 37, 41, 44, 55-60] and the newly presented 

multiresolution molecular mechanics (MMM) [43, 45, 61], to name a few. Force-based 

approaches, in contrast, generally derive the force equilibrium equations directly on carefully 

chosen set of degrees of freedom without minimizing a corresponding energy functional. Among 

the force-based coupling schemes are the coupled atomistic and discrete dislocations (CADD) 

[14, 20], the atomic-to-continuum method (Atc) [28, 29], the finite element-atomistic method 

(FEAt) [8], the force-based variants of the quasicontinuum method [13, 46, 62], and the recently 

proposed atom collocation method (ACM) [40], just to name a few. As pointed out by R. E. 

Miller and E.B. Tadmor in [53], the disadvantage of the energy-based method is that the non-

physical side effects of the combined energy functional, usually termed “ghost force”, is 

extremely difficult to eliminate.  On the other hand, the drawbacks of the force-based approach 

are that it can be slow to equilibrate, can converge to unstable equilibrium states, are non-
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conservative, and can be unstable numerically. Several excellent review papers [51-54, 63-65] 

address the details of various multiscale models and the existing challenging issues. 

The constitutive description employed in the coarse-grained region plays a key role of 

determining the performance of a specific multiscale model since it directly relates to the 

treatment of interface between subdomains and thus to the information exchange. One popular 

approach to build up the constitutive model is the well-known Cauchy-Born (CB) rule, as first 

employed in the local QC approach [9]. However, there are two main disadvantages: (I) in nature, 

CB rule is a local continuum constitutive description that is incompatible with the non-locality of 

atomic interaction; thus it causes the local-nonlocal mismatch at the interface [54]; (II) CB rule 

requires sufficiently homogeneous deformation of the underlying crystal and is no longer valid 

(and thus inaccurate) if the deformation becomes inhomogeneous [66]. The local-nonlocal 

mismatch causes the so-called “ghost” force problem and has motived the development of many 

ghost force correction techniques and the force-based multiscale models [53]. The inaccurate 

description of nonhomogeneous deformation has motived the development of high-order CB 

rules [67-69]. 

On the other hand, the direct employment of the atomistic constitutive description or the 

interatomic potential in the coarse-grained region can avoid the aforementioned drawbacks of the 

CB rule [13, 34-37, 40, 41, 43-45]. Since the constitutive relationships employed in the atomistic 

and coarse-grained domains are the same, the interface mismatch does not exist. And since the 

atomic constitutive description has no requirement of the deformation smoothness of underlying 

crystal, the second disadvantage mentioned above is circumvented. In addition, the direct 

employment of atomic constitutive description in the coarse-grained region can also help capture 
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surface size on mechanical properties of nanosized structures, which is an important topic in the 

field of multiscale modeling.  

1.2 SURFACE EFFECT ON NANOSIZED STRUCTURES 

Materials with decreased size and dimensionality such as nanowires, nanotubes, nanofilms and 

nanoparticles may present exceptional properties, i.e., optical, mechanical, electrical and thermal, 

compared to those of the corresponding macroscopic materials. These size-dependent material 

properties have been experimentally viewed in [70-77] and computationally observed in [78-83]. 

For example, by In situ tensile testing, Young’s modulus, yield strength and ultimate tensile 

strength are found to increase as the diameter of silver nanowire decreases [76]. Through large-

scale atomistic simulations, the tensile yield strength increase and compressive yield strength 

decrease are observed by decreasing the diameter of metallic glass samples [80] 

Nanotechnologies such as nanoscale resonant sensors, micro- and nano-electro-

mechanical systems (M/NEMS), and stretchable nano-electronics, can be improved by a better 

understanding of size-dependent mechanical properties of nanostructures [84]. Applications 

range from mass and force detection [85-87], frequency synthesis [88, 89] to mechanical 

switches [90], etc. 

The key factor in which nanostructures are different from their macroscopic counterpart 

lies in that the increasing surface-to-volume ratio at nanoscale is significantly larger than that at 

macroscopic scale. The presence of abundant free surfaces at nanoscale alters the effective 

material behavior in both the elastic region and beyond. In particular, surface relaxation changes 

the local atomic configuration close to the surface due to the lack of bonding neighbors, which in 
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turn alter the atomic interactions and thus affect the effective elastic moduli. Since the 

percentage of surface atoms increases with the increasing surface-to-volume ratio that 

characterizes nanomaterials, the surface effects become significant with decreasing material 

dimensionality. 

The challenge in modelling surface effects for nanosized structures is that on the one 

hand, continuum hypothesizes that represent bulk material behavior cannot be applied directly 

but have to be modified to incorporate surface effects; on the other hand, traditional molecular 

mechanics is limited by the model size due to the demanding computational costs.  A wide range 

of existing approaches have been proposed to solve this challenge. In general, existing models 

may be classified into three groups: (I) enhanced classical continuum mechanics [78, 91-99], (II) 

atomic-based continuum analysis [100-104] and (III) coarse-grained atomistic approaches [13, 

34, 56, 105, 106]. 

Some of the works based on enhanced classical continuum model depend on further 

development of the surface elasticity formulation proposed by Gurtin and Murdoch [107]. In the 

theory of surface elasticity, a surface is normally considered as a two-dimensionally (2D) 

heterogeneous thin film bonded perfectly to the bulk material such that their displacements are 

continuous across the interface. The general idea is to introduce a surface stress tensor to 

augment the bulk stress tensor typically employed in continuum mechanics. As such, the 

conventional boundary conditions need to be modified to account for the presence of surface 

stresses. One major shortcoming of these models is that surface stress components perpendicular 

to or out-of-surface plane may not be able to be captured due to the equilibrium required between 

bulk and surface [108]. 
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This has motivated the development of atomic-based continuum analysis. The well-

known surface Cauchy-Born (SCB) theory proposed by Park in [100-102, 108, 109] is a 

representative in this category. The boundary Cauchy-Born (BCB) model is similar to SCB 

except that BCB also considers corner and edge effects [103, 104, 110, 111]. The main 

difference of models in group II from approaches in category I lies in that the derivation of the 

constitutive description in group II is from an underlying atomic structure and interatomic 

potential, rather than empirical rules and phenomenological models as employed in group I. The 

key feature of SCB to capture surface effects is based on decomposing the potential energy into 

bulk and surface components to naturally form a variational framework work that can be directly 

incorporated into standard nonlinear finite element analysis. Recently thermal effect was 

considered into SCB based on employing temperature-dependent interatomic potentials [112]. 

However, SCB cannot be directly applied to model surface-defect interaction due to that SCB is 

a continuum based on framework in nature, which makes it not universally applicable. 

This aforementioned drawback calls for a powerful multiscale model that may not depend 

on continuum framework such as constitutive stress-strain relationship but pure atomistic 

description, which motivated the development of coarse-grained atomistic models [13, 34, 37, 

44, 56, 57, 59, 61, 106, 113, 114] in group III. The nonlocal QC method [13, 34, 37, 44, 56, 57, 

59] is a typical representative and has been recently applied to study surface effect in nanoscale 

structures based on newly proposed summation rules in [56]. A more detailed discussion on 

models regarding size-dependent mechanical properties can be found in several review papers 

[115-117]. 
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1.3 RESEARCH OBJECTIVE AND OUTLINE 

1.3.1 Research objective 

The main challenging issue arises when using the atomic constitutive description in the coarse-

grained region is that an accurate summation rule is needed to approximate the energy 

contribution from the coarse-grained domain, as shown in Figure 1.4 (the meaning of different 

symbols will be explained in Section 2.1). In general, the employed summation rule has to 

answer three questions: the optimal number, position and weight of each quadrature type 

(sampling) atom. The main merit of employing CB rule in the coarse-grained area is that the 

energy calculation can be put into the continuum framework that is rather mature and convenient 

to accurately estimate the energy contribution using quadrature rules. To overcome this 

challenging issue with employing the atomic constitutive description, Ortiz first proposed the 

node-based summation rule [13]. However, it caused rank-deficiency and instability problem, 

and the cluster-based summation rule was developed to overcome the drawbacks of node-based 

summation rule within the framework of the nonlocal QC method [13]. Luskin and Ortner 

performed the mathematical error analysis of the cluster summation rule [13, 34] and pointed out 

that even for the case of nearest neighbor interaction, the cluster-based summation rule may 

cause large errors in energy that is independent of cluster size when used with graded meshes 

[118]. This drawback has motivated the development of quadrature-type summation rule by 

Gunzburgh [35, 36] and the summation rules employed in the nonlocal QC variants [37, 41, 43-

45, 61] . 
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Figure 1.4: Schematically Overview of the MMM methodology in analogy to Finite Element 

Method (FEM): FEM for continuum modeling (a) and MMM for discrete modeling (b). The 

meaning of different symbols will be explained in Section 2.1. 

 

 

Since the proposed summation rules employed in nonlocal QC framework are 
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experiments are widely employed to identify the size-dependent mechanical properties of 

nanosized materials, there is a need to develop a coarse-grained atomistic framework that is 

universally applicable to generally types of interpolation shape functions and deformations. 

The primary research objective of this dissertation is to establish a new coarse-grained 

atomistic framework, named Multiresolution Molecular Mechanics (MMM) by designing a new 

summation rule SRMMM to mathematically determine the optimal number, position and weight of 

each quadrature-type (sampling) atom for linear to any high order interpolation shape function, 

analogous to Gauss quadrature that is widely employed in conventional finite element method 

(FEM). In addition, the proposed SRMMM has the ability to naturally and accurately capture 

surface effects. We point out that though SRMMM has similarity with the proposed summation 

rules in [37, 41, 56, 57] with respect to linear interpolation shape function, SRMMM is 

fundamentally different from others in that it can be consistently derived for any order of shape 

function, as will be shown later. Mathematically, the main advantages of SRMMM are: (1) it is 

derived consistently with any interpolation shape function employed; (2) it provides a theoretical 

foundation to analyze and design different summation rules. It is worth to note that though 

spatial and temporal coarse-graining are equally important, the present work will focus on 

coarse-graining in space for statics. Techniques employed to coarse-grain temporal scale at finite 

temperatures in [42, 119-121] may be applied to the present work. 

1.3.2 Outline  

This dissertation is organized as follows. Analogous to finite element method in continuum 

mechanics, the theory and framework of MMM is given in details in Chapter 2.0 . The proposed 

summation rule SRMMM is based on mathematically deriving the order or distribution of finite 
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energy summations involved in coarse-grained atomistic model and then reproduces this 

distribution accurately to determine the number, position and weight for each quadrature-type 

(sampling) atom. SRMMM is then consistently decomposed into the bulk summation rule SRB and 

surface summation rule SRS. This decomposition lies in the observation that the derived energy 

distribution of surface area is different from that of bulk region. Physically, the difference is 

caused by the fact that surface atoms are lack of neighboring bonding. As such, SRS and SRB are 

employed for surface and bulk domains, respectively. 1D quadratic, 2D bilinear and 3D 

hexahedral finite elements are employed as representative interpolation shape functions on how 

to derive SRMMM in detail.  

In Chapter 3.0 , we first identify two different error sources (discretization error and 

sampling error) and then define errors norms in displacement and energy fields, as inspired by 

the corresponding counterparts in classical FEM, in order to quantify the performance of MMM. 

The defined norms are employed to verify and validate the bulk summation rule SRB with 

respect to linear, bilinear and quadratic elements in 1D and 2D. SRB is also compared against 

different summation rules such as Gauss-quadrature-like rule. It is observed that SRB 

outperforms other summation rules employed. The interface compatibility of MMM and several 

existing approaches are also compared against each other by employing a benchmark test. In 

addition, MMM has been applied to problems such as high-order tensile, shear and bending 

deformations. The ability of MMM to capture crack propagation is also demonstrated.  

Chapter 4.0 specifically focuses on applying MMM to capture surface effect by the 

employment of the surface summation rule SRS. Numerical examples using the respective 4-node 

quadrilateral and 8-node hexahedral meshes are employed to solve surface relaxation problems 

in 2D and 3D. It is shown that MMM with SRMMM (SRS+SRB) can accurately capture corner, 
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edge and surface effects, compared against full atomistic (FA) simulation. The accuracy of FA 

simulation can be reasonably reproduced by employing MMM with 0.3% less in the number of 

degrees of freedom of the original atomistic system. 

Chapter 5.0  numerically studies the convergence property and error structure of MMM 

for linear interpolation shape by employing relatively comprehensive numerical examples. Four 

different sampling schemes within the framework of SRMMM are defined and studied. The 

convergence analysis is performed by reducing the size of a uniform mesh by half at each time, 

as in convention FEM. The effects of the regularity and smoothness of the exact solution and the 

nonlinearity of interatomic potential on the convergence behavior of MMM are considered. The 

error structure analysis is performed by numerically analyzing how the discretization error and 

sampling error behave at different element sizes. It is observed that MMM demonstrates FEM-

like convergence behavior under certain circumstance. 

Chapter 6.0  summarizes the dissertation with the main contributions and proposes future 

works with discussions in several directions such as iso-parametric and adaptive analysis, 

temporal scale acceleration and parallel implementation.  
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2.0  MULTIRESOLUTION MOLECULAR MECHANICS 

In this chapter, analogous to the well-known finite element method (FEM) in conventional 

continuum mechanics, the general framework of Multiresolution Molecular Mechanics (MMM) 

is presented with the introduction of the proposed novel summation rule SRMMM for general 

interpolation shape functions. Several examples on how to derive the specific form of SRMMM are 

given in detail with respect to 1D, 2D and 3D interpolation shape functions. Much of this section 

is from recent work in [40, 43, 45, 61, 113].  

2.1 OVERVIEW 

In Figure 1.4a, a finite element with shape function 𝜙𝜙 is introduced to approximate the original 

continuum model and the potential energy 𝐸𝐸𝑐𝑐 can be approximated as: 

 𝐸𝐸𝑐𝑐 = ∫ 𝑊𝑊𝑊𝑊Ω𝑐𝑐 
Ω𝑐𝑐 ≅ 𝐸𝐸�𝑐𝑐 = ∑ 𝑤𝑤𝑖𝑖

𝑐𝑐𝑊𝑊𝑖𝑖𝑖𝑖∈𝒩𝒩𝑄𝑄   (2.1) 

where W is potential energy density, Ω𝑐𝑐 denotes the continuum domain, 𝒩𝒩𝑄𝑄 represents the index 

set of 𝑁𝑁𝑄𝑄 quadrature points and 𝑤𝑤𝑖𝑖
𝑐𝑐 is the associated weight for a quadrature point 𝑖𝑖 ∈ 𝒩𝒩𝑄𝑄. In the 

present work, calligraphic letter 𝒩𝒩 represents index set and the corresponding Roman letter N 

defines its cardinality. 
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In general, Gauss quadrature is widely employed to evaluate the energy integral in 

Eq.(2.1) and there is a standard way to determine the optimal number of quadrature points 

needed, the position and weight for each employed quadrature point. Similarly, in Figure 1.4b, a 

finite element is also employed to reduce the degrees of freedom of the original atomistic model 

and the potential energy 𝐸𝐸𝑎𝑎 is approximated as: 

 𝐸𝐸𝑎𝑎 = ∑ 𝐸𝐸𝑖𝑖𝑖𝑖∈𝒩𝒩𝐴𝐴 ≅ 𝐸𝐸�𝑎𝑎 = ∑ 𝑤𝑤𝑖𝑖
𝑎𝑎𝐸𝐸𝑖𝑖𝑖𝑖∈𝒩𝒩𝑆𝑆   (2.2) 

where 𝒩𝒩𝐴𝐴 is the index set of the NA atoms in the original atomistic model, Ei is the atomic site 

energy of an atom 𝑖𝑖 ∈ 𝒩𝒩𝐴𝐴, 𝒩𝒩𝑠𝑠 denotes the index set of the chosen NS sampling or quadrature-type 

atoms and 𝑤𝑤𝑖𝑖
𝑎𝑎 is the associated weight for a sampling atom 𝑖𝑖 ∈ 𝒩𝒩𝑆𝑆. The red dots in Figure 1.4 are 

either the conventional finite element nodes for continuum mechanics or the representative atoms 

(rep-atoms) or nodal atoms for atomistic modeling. And the blue dots represent either a 

quadrature point to evaluate an integral or a sampling atom to calculate a finite summation. Since 

the energy of gray atoms in Figure 1.4b is not considered explicitly but sampled by the energy of 

blue dots (sampling atoms), as the gray area in Figure 1.4a, we call these gray atoms non-

sampling atoms (NSAs). 

As conventional finite element nodes and nodal atoms play similar roles in their 

respective modeling method, we do not differentiate the coloring approach between coarse-

grained continuum and atomistic model, so is the same for quadrature and quadrature-type dots. 

This coloring scheme will be consistently employed in this work if not otherwise mentioned. We 

note that if a quadrature point coincides with a finite element node, as it may occur for high order 

elements, we will clearly point it out. In addition, any symbol with a subscript or superscript “c” 

employed for continuum model has the same physical meaning as the same symbol with a 

subscript or superscript “a” utilized for atomistic system. 
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The key problem in Eq. (2.2) is to develop a standard and systematic theory to determine 

the optimal number NS, weight 𝑤𝑤𝑖𝑖
𝑎𝑎  and position for each sampling atom for general finite 

element shape functions, as Gauss quadrature in continuum mechanics. 

2.2 MMM SUMMATION RULE SRMMM 

In conventional FEM, it is well-known that the order of employed quadrature rule is shape-

function dependent [122]. In the following derivation, we will show that the order of employed 

SRMMM also depends on shape functions, which is different from the summation rule proposed in 

[57] where it is mentioned that the calculation of weight 𝑤𝑤𝑖𝑖
𝑎𝑎  is independent of employed 

interpolation scheme. 

For simplicity, external loads are not considered and linear elasticity model is assumed 

for continuum mechanics. Then the potential energy approximation 𝐸𝐸�𝑐𝑐  in Eq. (2.1) can be 

expressed in the form of Eq. (2.3) as: 

 𝐸𝐸�𝑐𝑐 = 1
2
∑ ∑ 𝐮𝐮𝑖𝑖𝑐𝑐

𝑇𝑇K𝑖𝑖𝑖𝑖
𝑐𝑐 𝐮𝐮𝑗𝑗𝑐𝑐𝑗𝑗∈𝒩𝒩𝑛𝑛𝑐𝑐

 
𝑖𝑖∈𝒩𝒩𝑛𝑛𝑐𝑐  (2.3) 

where 𝒩𝒩𝑛𝑛
𝑐𝑐 is the index set of 𝑁𝑁𝑛𝑛𝑐𝑐 finite element nodes, 𝐮𝐮𝑖𝑖𝑐𝑐 is the nodal displacement vector for a 

node 𝑖𝑖 ∈ 𝒩𝒩𝑛𝑛
𝑐𝑐  and K𝑖𝑖𝑖𝑖

𝑐𝑐  represents the nodal stiffness matrix for nodes i and j. K𝑖𝑖𝑖𝑖
𝑐𝑐  can be 

formulated as: 

 K𝑖𝑖𝑖𝑖
𝑐𝑐 = ∫ B𝑖𝑖

𝑇𝑇D𝑐𝑐B𝑗𝑗
 
Ω𝑐𝑐 𝑑𝑑Ω𝑐𝑐  (2.4) 

where Dc is a matrix of material constants that describes the continuum constitutive behavior, Bi 

is the strain matrix for node i and can be defined in 3D as: 
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 B𝑖𝑖 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜙𝜙𝑖𝑖,𝑥𝑥 0 0

0 𝜙𝜙𝑖𝑖,𝑦𝑦 0
0 0 𝜙𝜙𝑖𝑖,𝑧𝑧
𝜙𝜙𝑖𝑖,𝑦𝑦 𝜙𝜙𝑖𝑖,𝑥𝑥 0

0 𝜙𝜙𝑖𝑖,𝑧𝑧 𝜙𝜙𝑖𝑖,𝑦𝑦
𝜙𝜙𝑖𝑖,𝑧𝑧 0 𝜙𝜙𝑖𝑖,𝑥𝑥⎦

⎥
⎥
⎥
⎥
⎥
⎤

  (2.5) 

From Eq. (2.5) we note that the order of employed quadrature rule to evaluate 𝐸𝐸�𝑐𝑐 or 𝐾𝐾𝑖𝑖𝑖𝑖𝐶𝐶  

depends on the product order of two shape function derivatives.  In particular, let Π𝑖𝑖𝑖𝑖𝑐𝑐  denote the 

product of shape functions derivatives in 1D, as follows: 

 Π𝑖𝑖𝑖𝑖𝑐𝑐 = 𝜙𝜙𝑖𝑖,𝑥𝑥𝜙𝜙𝑗𝑗,𝑥𝑥  (2.6) 

From Eqs. (2.3)-(2.6), we point out that the distribution of 𝐸𝐸�𝑐𝑐 is determined by the order 

of function bases in Π𝑖𝑖𝑖𝑖𝑎𝑎 . As an example, let 𝜙𝜙 be the one-dimensional quadratic shape function. 

Then, by a simple calculation, one can see that the solid line in Figure 2.1a that describes the 

distribution of 𝐸𝐸�𝑐𝑐 can be defined as: 

 f 𝑐𝑐(𝑥𝑥𝑐𝑐) = 𝑏𝑏𝑐𝑐0 + 𝑏𝑏𝑐𝑐1𝑥𝑥𝑐𝑐 + 𝑏𝑏𝑐𝑐2𝑥𝑥𝑐𝑐2
   (2.7) 

where 𝑏𝑏𝑐𝑐𝑖𝑖 , i = 0-2 are constants in terms of nodal displace vector 𝐮𝐮𝑖𝑖𝑐𝑐, 𝑖𝑖 ∈ 𝒩𝒩𝑛𝑛
𝑐𝑐  and material 

constants in matrix D, xc is a material point position that continuously spans continuum domain 

Ω𝑐𝑐 .Then 𝐸𝐸�𝑐𝑐 can be evaluated as: 

 𝐸𝐸�𝑐𝑐 = ∫ f 𝑐𝑐(𝑥𝑥𝑐𝑐)dΩ𝑐𝑐 
Ω𝑐𝑐   (2.8) 

Since f 𝑐𝑐(𝑥𝑥𝑐𝑐) is a continuous quadratic function, then the optimal number of quadrature 

point 𝑁𝑁𝑄𝑄  is 2 and their corresponding weight 𝑤𝑤𝑖𝑖
𝑐𝑐  in Eq. (2.1) can be determined by Gauss 

quadrature rule, which shows how the employed shape function derivatives determine the order 

of selected quadrature rule in conventional FEM. Next, we will show how SRMMM is derived and 

related to a given shape function differences. 
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Similarly, for an atomistic model, a nonlocal linear spring potential is assumed for 

interatomic interaction to ease the demonstration of the general picture in SRMMM. Then the 

potential energy approximation 𝐸𝐸�𝑎𝑎 in Eq. (2.2) can be expressed as: 

 𝐸𝐸�𝑎𝑎 = 1
2
∑ ∑ 𝐮𝐮𝑖𝑖𝑎𝑎

𝑇𝑇K𝑖𝑖𝑖𝑖
𝑎𝑎 𝐮𝐮𝑗𝑗𝑎𝑎𝑗𝑗∈𝒩𝒩𝑛𝑛𝑎𝑎

 
𝑖𝑖∈𝒩𝒩𝑛𝑛𝑎𝑎   (2.9) 

where K𝑖𝑖𝑖𝑖
𝑎𝑎  is defined as: 

 K𝑖𝑖𝑖𝑖
𝑎𝑎 = 1

2
∑ ∑ B𝑖𝑖

𝑎𝑎𝑇𝑇
𝛽𝛽∈𝒩𝒩𝛼𝛼 

 
𝛼𝛼∈𝒩𝒩𝐴𝐴 D𝑎𝑎B𝑗𝑗𝑎𝑎  (2.10) 

 B𝑖𝑖
𝑎𝑎 = [𝜙𝜙𝑖𝑖(𝐫𝐫𝛼𝛼0) −𝜙𝜙𝑖𝑖�𝐫𝐫𝛽𝛽0�]𝐈𝐈  (2.11) 

where 𝒩𝒩𝛼𝛼
  is the index set of 𝑁𝑁𝛼𝛼  atoms that interacts with atom 𝛼𝛼 ∈ 𝒩𝒩𝐴𝐴, 𝐫𝐫𝛼𝛼0 denotes the initial 

position vector of atom 𝛼𝛼  and D𝑎𝑎  is the material constants or the local stiffness matrix that 

describes the interatomic interaction in each direction. For linear spring potentials in 3D, I is 3 

by 3 identity matrix. Note that B𝑖𝑖
𝑎𝑎 is different from B𝑖𝑖

𝑐𝑐 since there is no shape function directive 

involved and we do not have shear strain in the interatomic potential. Physically, this difference 

is due to the fact that the constitutive relationship in continuum mechanics generally contains six 

strains; however, the interatomic potential in atomistic modeling depends on pair distance 

difference in x, y and z directions. 

 For lattice or crystal structures, 𝐫𝐫𝛽𝛽0 can be determined in terms of 𝐫𝐫𝛼𝛼0, as follows: 

 𝐫𝐫𝛽𝛽0 =  𝐫𝐫𝛼𝛼0 +  𝐂𝐂(𝑎𝑎0)  (2.12) 

where 𝐂𝐂 is a non-zero constant vector in terms of the lattice constant 𝑎𝑎0. If Eq. (2.12) is plugged 

back into Eq. (2.10), we note that the evaluation of K𝑖𝑖𝑖𝑖
𝑎𝑎  is determined by the product of employed 

shape function difference calculated at an atom 𝛼𝛼 ∈ 𝒩𝒩𝐴𝐴 . For example, let 𝜙𝜙  be the one-

dimensional quadratic shape function. Then I is 1 and Da is the pair-wise spring constant. Let Π𝑖𝑖𝑖𝑖𝑎𝑎  

denote the shape function difference product as follows: 
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 Π𝑖𝑖𝑖𝑖𝑎𝑎 = [𝜙𝜙𝑖𝑖(𝐫𝐫𝛼𝛼0) − 𝜙𝜙𝑖𝑖(𝐫𝐫𝛼𝛼0 +  𝐂𝐂(𝑎𝑎0))][𝜙𝜙𝑗𝑗(𝐫𝐫𝛼𝛼0) − 𝜙𝜙𝑗𝑗(𝐫𝐫𝛼𝛼0 +  𝐂𝐂(𝑎𝑎0))]  (2.13) 

By a simple calculation, one can see that Π𝑖𝑖𝑖𝑖𝑎𝑎  is also quadratic in terms of components of 

𝐫𝐫𝛼𝛼0. Then, from Eqs. (2.9)-(2.13), we note that the dashed line in Figure 2.1b that describes the 

distribution of  𝐸𝐸�𝑎𝑎 can also be defined as: 

 f𝑎𝑎(𝑥𝑥𝑎𝑎) = 𝑏𝑏𝑎𝑎0 + 𝑏𝑏𝑎𝑎1𝑥𝑥𝑎𝑎 + 𝑏𝑏𝑎𝑎2𝑥𝑥𝑎𝑎2
   (2.14) 

where 𝑏𝑏𝑎𝑎𝑖𝑖 , i = 0-2 are constants in terms of nodal displace vector 𝐮𝐮𝑖𝑖𝑎𝑎, 𝑖𝑖 ∈ 𝒩𝒩𝑛𝑛
𝑎𝑎  and material 

constants in the employed linear spring potential, xa is an atomic position that discretely spans 

atomic domain Ω𝑎𝑎 .  Then 𝐸𝐸�𝑎𝑎 can be evaluated as: 

 𝐸𝐸�𝑎𝑎 = ∑ f𝑎𝑎(𝑥𝑥𝑎𝑎𝑖𝑖 ) 
𝑖𝑖∈𝒩𝒩𝐴𝐴   (2.15) 

where 𝑥𝑥𝑎𝑎𝑖𝑖  is the atomic position of an atom 𝑖𝑖 ∈ 𝒩𝒩𝐴𝐴 . We note that the difference between the 

energy of a surface atom and that of a bulk atom is not distinguished so far for the sake of 

simplifying the general idea of SRMMM. From Figure 2.1, one can see that the similarity between 

𝐸𝐸�𝑐𝑐 and 𝐸𝐸�𝑎𝑎 lies in that they have the same distribution order. The main difference between them is 

that f 𝑐𝑐(𝑥𝑥𝑐𝑐) is a continuous function (solid line) in terms of xc but f𝑎𝑎(𝑥𝑥𝑎𝑎) is a set of discrete 

points in terms of xa that pass through the dashed line. As such, three sampling or quadrature-

type atoms are required to exactly represent the dashed energy distribution line. Then the optimal 

number for sampling atoms NS is 3 and the corresponding weight 𝑤𝑤𝑖𝑖
𝑎𝑎  in Eq. (2.2) can be 

determined as in any curve-fitting process. For example, as the dashed line in Figure 2.1b has a 

quadratic form, three sampling atoms (2 blue dots and the interior red node) are selected.  Then 

the dashed line can be expressed as: 

 f𝑎𝑎(𝑥𝑥𝑎𝑎) = ∑ Φ𝑖𝑖(𝑥𝑥𝑎𝑎)𝐸𝐸𝑖𝑖𝑖𝑖∈𝒩𝒩𝑆𝑆   (2.16) 

where Φ𝑖𝑖 is defined as: 

 Φ𝑖𝑖 = ∏ 𝑥𝑥𝑎𝑎−𝑥𝑥𝑎𝑎
𝑗𝑗

𝑥𝑥𝑎𝑎𝑖𝑖 −𝑥𝑥𝑎𝑎
𝑗𝑗𝑖𝑖≠𝑗𝑗,𝑖𝑖 ∈𝒩𝒩𝑆𝑆,𝑗𝑗 ∈𝒩𝒩𝑆𝑆   (2.17) 
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As can be seen from Eq. (2.17), Φ𝑖𝑖  satisfies partition of unity and the Kronecker delta 

property, as follows: 

 ∑ Φ𝑖𝑖(𝑥𝑥𝑎𝑎𝑘𝑘)𝑖𝑖∈𝒩𝒩𝑆𝑆 = 1,∀ 𝑘𝑘 ∈ 𝒩𝒩𝐴𝐴  (2.18) 

 Φ𝑖𝑖�𝑥𝑥𝑎𝑎
𝑗𝑗� = 𝛿𝛿𝑖𝑖𝑖𝑖 ,∀𝑖𝑖 , 𝑗𝑗 ∈ 𝒩𝒩𝑆𝑆  (2.19) 

Then the energy summation 𝐸𝐸�𝑎𝑎  in Eq. (2.15) at the discrete atoms is calculated as:  

 𝐸𝐸�𝑎𝑎 = ∑ f(𝑥𝑥𝑎𝑎
𝑗𝑗)𝑗𝑗∈𝒩𝒩𝐴𝐴 = ∑ ∑ Φ𝑖𝑖(𝑥𝑥𝑎𝑎

𝑗𝑗)𝐸𝐸𝑖𝑖𝑖𝑖∈𝒩𝒩𝑆𝑆𝑗𝑗∈𝒩𝒩𝐴𝐴 = ∑ ∑ Φ𝑖𝑖�𝑥𝑥𝑎𝑎
𝑗𝑗�𝑗𝑗∈𝒩𝒩𝐴𝐴 𝐸𝐸𝑖𝑖  𝑖𝑖∈𝒩𝒩𝑆𝑆   (2.20) 

Comparing Eqs. (2.20) and (2.2), we note that: 

 𝑤𝑤𝑖𝑖
𝑎𝑎 = ∑ Φ𝑖𝑖�𝑥𝑥𝑎𝑎

𝑗𝑗�𝑗𝑗∈𝒩𝒩𝐴𝐴   (2.21) 

The above curve-fitting-like process to determine the optimal number of sampling atoms NS and 

the corresponding weight 𝑤𝑤𝑖𝑖
𝑎𝑎  forms the MMM summation rule SRMMM, which clearly shows 

how SRMMM is related to the employed shape function differences.  
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Figure 2.1: Schematically illustration of energy distributions for coarse-grained continuum 

model (a) and coarse-grained atomistic model (b). Solid line denotes a continuous curve and 

dashed line a curve passing through discrete energy point for each atom. The solid x axis means 

xc continuously spans the continuum domain (a) and the dashed x axis represents that xa 

discretely spans the space (b). 
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2.3 SRMMM DECOMPOSITION SRB AND SRS 

2.3.1 Why the decomposition is needed 

In this sub-section, we will explain why there is a need to distinguish the difference between the 

energy of a surface atom and that of a bulk atom and as such to decompose SRMMM into the bulk 

summation rule SRB and the surface summation rule SRS. 

We note that 𝒩𝒩𝛼𝛼
  in Eq. (2.10)  is the index set of 𝑁𝑁𝛼𝛼  neighboring atoms that interacts 

with an atom 𝛼𝛼 ∈ 𝒩𝒩𝐴𝐴. Physically, the fundamental difference between surface atoms and bulk 

counterpart is that surface atoms are not fully coordinated and are lack of bonding neighbors. As 

such, 𝑁𝑁𝛼𝛼𝑆𝑆, the number of neighboring atoms of a surface atom 𝛼𝛼 that belongs the index set of 

surface atoms 𝒩𝒩𝐴𝐴
𝑆𝑆, is different from 𝑁𝑁𝛼𝛼𝐵𝐵, the number of neighboring atoms that interacts with a 

bulk atom 𝛼𝛼 that resides in the index set of bulk atoms 𝒩𝒩𝐴𝐴
𝐵𝐵. As a result, the energy distribution 

of surface atoms, f𝑆𝑆𝑎𝑎(𝑥𝑥𝑎𝑎), will be different from that of bulk atoms, f𝐵𝐵𝑎𝑎(𝑥𝑥𝑎𝑎), even though they 

both reserve the quadratic form in Eq. (2.14) for the one-dimensional quadratic shape function 

considered in Section 2.2. Mathematically, this is because the coefficient 𝑏𝑏𝑎𝑎𝑖𝑖 , i = 0-2, in Eq. (2.14) 

take different values for f𝑠𝑠𝑎𝑎(𝑥𝑥𝑎𝑎) and f𝐵𝐵𝑎𝑎(𝑥𝑥𝑎𝑎), respectively. This is schematically demonstrated in 

Figure 2.2 where the energy of surface atoms (empty circles in rectangle boxes) does not follow 

the bulk energy distribution curve (dashed line). 
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Figure 2.2: Energy distribution for atoms in bulk region and atoms in surface areas. 

 

 

For the reasons discussed above, SRMMM is decomposed to SRB and SRS. Basically, SRB 

is employed to treat bulk atoms and SRS is used to treat surface atoms to accurately represent the 

energy distribution over the whole atomic domain Ω𝑎𝑎 . The methodology to determine the 

optimal number of sampling atom NS and their respective weights 𝑤𝑤𝑖𝑖
𝑎𝑎 in SRB and SRS are exactly 

the same as how they are determined in SRMMM in Section 2.2. 

2.3.2 Examples of employed bulk and surface summation rules 

In this sub-section, we will use 4-node quadrilateral and 8-node hexahedral elements as 

representative examples to demonstrate how to design the bulk and surface summation rules for a 

certain type of interpolation shape function in 2D and 3D. 
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From Section 2.2, we know that a key step to derive SRMMM is to determine f𝑎𝑎(𝑥𝑥𝑎𝑎) in Eq. 

(2.14). For the 4-node quadrilateral element in 2D, the shape function 𝜙𝜙𝑖𝑖  for a node 𝑖𝑖 ∈ 𝒩𝒩𝑛𝑛
𝑎𝑎 

takes the following form: 

 𝜙𝜙𝑖𝑖(𝑥𝑥, 𝑦𝑦) = 𝑎𝑎𝑖𝑖0 + 𝑎𝑎𝑖𝑖1𝑥𝑥 + 𝑎𝑎𝑖𝑖2𝑦𝑦 +  𝑎𝑎𝑖𝑖3𝑥𝑥𝑥𝑥  (2.22) 

where x and y are the respective projection of position vector 𝐫𝐫 = �
𝑥𝑥
𝑦𝑦� of an arbitrary atom in x 

and y directions, 𝑎𝑎𝑖𝑖𝛼𝛼, α = 0-3 are constants in terms of the chosen nodal positions to construct 𝜙𝜙𝑖𝑖. 

Let Cx and Cy be the projection of the non-zero constant vector 𝐂𝐂 = �
C𝑥𝑥
C𝑦𝑦
� in Eq. (2.12) in x and y 

directions, respectively. Then 𝜙𝜙𝑖𝑖(𝐫𝐫 + 𝐂𝐂) in Eq. (2.13) is calculated as: 

 𝜙𝜙𝑖𝑖�𝑥𝑥 + C𝑥𝑥,𝑦𝑦 + C𝑦𝑦� = 𝑎𝑎𝑖𝑖0 + 𝑎𝑎𝑖𝑖1(𝑥𝑥 + C𝑥𝑥) + 𝑎𝑎𝑖𝑖2(𝑦𝑦 + C𝑦𝑦) +  𝑎𝑎𝑖𝑖3(𝑥𝑥 + C𝑥𝑥)(𝑦𝑦 + C𝑦𝑦)  (2.23) 

such that the shape function difference is expressed as: 

 𝜙𝜙𝑖𝑖(𝑥𝑥, 𝑦𝑦)  − 𝜙𝜙𝑖𝑖�𝑥𝑥 + C𝑥𝑥,𝑦𝑦 + C𝑦𝑦� =  𝑏𝑏𝑖𝑖0 + 𝑏𝑏𝑖𝑖1𝑥𝑥 + 𝑏𝑏𝑖𝑖2𝑦𝑦  (2.24) 

where 𝑏𝑏𝑖𝑖𝛼𝛼, α = 0-2 are given in terms of 𝑎𝑎𝑖𝑖𝛼𝛼, α = 0-3 and constants Cx and Cy. Then, Π𝑖𝑖𝑖𝑖𝑎𝑎  in Eq. 

(2.13) is defined as: 

 Π𝑖𝑖𝑖𝑖𝑎𝑎 = 𝑐𝑐𝑖𝑖𝑖𝑖0 + 𝑐𝑐𝑖𝑖𝑖𝑖1 𝑥𝑥 + 𝑐𝑐𝑖𝑖𝑖𝑖2 𝑦𝑦 + 𝑐𝑐𝑖𝑖𝑖𝑖3 𝑥𝑥𝑥𝑥 + 𝑐𝑐𝑖𝑖𝑖𝑖4 𝑥𝑥2 + 𝑐𝑐𝑖𝑖𝑖𝑖5 𝑦𝑦2  (2.25) 

where 𝑐𝑐𝑖𝑖𝑖𝑖𝛼𝛼 , α = 0-5, are constants given in terms of 𝑏𝑏𝑖𝑖𝛼𝛼 and 𝑏𝑏𝑗𝑗𝛼𝛼, α = 0-2. Finally, f𝑎𝑎(𝑥𝑥𝑎𝑎) in Eq. 

(2.14) takes the following form: 

 f𝑎𝑎(𝑥𝑥𝑎𝑎) = 𝑏𝑏𝑎𝑎0 + 𝑏𝑏𝑎𝑎1𝑥𝑥 + 𝑏𝑏𝑎𝑎2𝑦𝑦 + 𝑏𝑏𝑎𝑎3𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑎𝑎4𝑥𝑥2 + 𝑏𝑏𝑎𝑎5𝑦𝑦2  (2.26) 

where 𝑏𝑏𝑎𝑎𝑖𝑖 , i = 0-5 are constants in terms of nodal displace vector 𝐮𝐮𝑖𝑖𝑎𝑎, 𝑖𝑖 ∈ 𝒩𝒩𝑛𝑛
𝑎𝑎  and material 

constants in the employed linear spring potential and the coefficients in the given bilinear shape 

function. 

From Eq. (2.26), we note that the optimal number of sampling atoms 𝑁𝑁𝑆𝑆𝐵𝐵 for SRB is 6 and 

Φ𝑖𝑖  in Eq. (2.17) also has a fully quadratic form and can be determined in a curve-fitting-like 
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process, as discussed in Section 2.2, such that  𝑤𝑤𝑖𝑖
𝑎𝑎  is also identified correspondingly in Eq. 

(2.21). 

The derivation of f𝑎𝑎(𝑥𝑥𝑎𝑎) for the employed 8-node hexahedral element in 3D follows 

exactly the same ways as for the 4-node quadrilateral element in 2D. We find that f𝑎𝑎(𝑥𝑥𝑎𝑎) 

reserves a fully quadratic order plus some mixed high order terms for the employed 8-node 

element in 3D. In this thesis, we will discard the mixed terms and assume f𝑎𝑎(𝑥𝑥𝑎𝑎) takes the 

following form: 

 f𝑎𝑎(𝑥𝑥𝑎𝑎) = 𝑏𝑏𝑎𝑎0 + 𝑏𝑏𝑎𝑎1𝑥𝑥 + 𝑏𝑏𝑎𝑎2𝑦𝑦 + 𝑏𝑏𝑎𝑎3𝑧𝑧 + 𝑏𝑏𝑎𝑎4𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑎𝑎5𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑎𝑎6𝑦𝑦𝑦𝑦 + 𝑏𝑏𝑎𝑎7𝑥𝑥2 + 𝑏𝑏𝑎𝑎8𝑦𝑦2 + 𝑏𝑏𝑎𝑎9𝑧𝑧2  (2.27) 

such that 𝑁𝑁𝑆𝑆𝐵𝐵  is 10 and Φ𝑖𝑖  and 𝑤𝑤𝑖𝑖
𝑎𝑎  can be determined correspondingly, following the above 

discussed curve-fitting-like process. 

So far, the optimal number of sampling atoms 𝑁𝑁𝑆𝑆𝐵𝐵 and their corresponding weight 𝑤𝑤𝑖𝑖
𝑎𝑎 in 

bulk summation rule SRB are discussed and determined. Next, we will show how 𝑁𝑁𝑆𝑆𝑆𝑆, the optimal 

number of sampling atoms in SRS, and their corresponding weight 𝑤𝑤𝑖𝑖
𝑎𝑎 are identified. 

For the rectangle triangular lattice in 2D, as shown in Figure 2.3, we note that either x or 

y is constant for the respective surface edge and non-bulk edges. As such, f𝑎𝑎(𝑥𝑥𝑎𝑎) in Eq. (2.26) 

can be reduced to fewer terms. For instance, for the surface edge on the left hand side, y is 

constant such that f𝑠𝑠𝑎𝑎(𝑥𝑥𝑎𝑎) can be reformed as: 

 f𝑆𝑆𝑎𝑎(𝑥𝑥𝑎𝑎) = 𝜀𝜀𝑎𝑎0 + 𝜀𝜀𝑎𝑎1𝑥𝑥 + 𝜀𝜀𝑎𝑎2𝑥𝑥2  (2.28) 

where 𝜀𝜀𝑎𝑎𝑖𝑖 , i = 0-2 are constants in terms of 𝑏𝑏𝑎𝑎𝑖𝑖  in Eq. (2.26) and y. Then from Eq. (2.28), it is 

clearly seen that 𝑁𝑁𝑆𝑆𝑆𝑆  is 3 and 𝑤𝑤𝑖𝑖
𝑎𝑎  in SRS can be calculated as in SRB. If a non-bulk layer is 

considered, the same SRS can also be applied, as in the employed 2D example in Section 4.0 . 

Figure 2.3 schematically demonstrates the idea about how SRMMM (SRS + SRB) is employed for 

the four-node quadrilateral element with (Figure 2.3a and Figure 2.3c) and without a corner atom 
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(Figure 2.3c and Figure 2.3d). In order to distinguish the aforementioned sampling atoms from 

secondary sampling atoms (SSAs) that will be introduced later in this section, we name these 

sampling atoms primary sampling atoms (PSAs) (blue dots in Figure 1.4-Figure 2.3). In addition, 

the PSAs where SRS is applied are named surface PSAs (SPSAs) and PSAs inside the dashed 

rectangle where SRB is applied are called bulk PSAs (BPSAs). 

 

 

 

Figure 2.3: Employed SRMMM (SRB+ SRS) in 2D for the selected 4-node quadrilateral element: 

SRMMM for an element that contains a corner atom (a); SRMMM for an element that contains only 
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one surface edge (b); SRMMM for an element that contains a corner atom and non-bulk layers 

(dashed line) (c); SRMMM for an element that contains one surface edge and one non-bulk layer 

(d). SRB is employed for bulk non-sampling atoms (NSAs) and SRS for surface and non-bulk 

NSAs. Dished rectangle denotes the element bulk region. 

 

 

The same idea can be applied to a face-centered cubic (FCC) lattice in 3D. For each of 

the surface and non-bulk layers, either x, y or z is constant such that f𝑎𝑎(𝑥𝑥𝑎𝑎) in Eq. (2.27) can also 

be trimmed to fewer terms.  For example, for the surface layer on the bottom, z is a constant such 

that f𝑠𝑠𝑎𝑎(𝑥𝑥𝑎𝑎) can be redefined as: 

 f𝑆𝑆𝑎𝑎(𝑥𝑥𝑎𝑎) = 𝑏𝑏𝑎𝑎0 + 𝑏𝑏𝑎𝑎1𝑥𝑥 + 𝑏𝑏𝑎𝑎2𝑦𝑦 + 𝑏𝑏𝑎𝑎3𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑎𝑎4𝑥𝑥2 + 𝑏𝑏𝑎𝑎5y2  (2.29) 

where the summation rule SRMMM in 2D can be directly applied such that 𝑁𝑁𝑆𝑆𝑆𝑆  and 𝑤𝑤𝑖𝑖
𝑎𝑎 can be 

determined accordingly. We note that, mathematically, SRS in 3D is, in fact, the SRMMM (SRB+ 

SRS) in 2D and the SRS in 2D is actually the SRMMM (SRB+ SRS) in 1D. This is understandable 

since, physically, it is obvious that the surfaces of 3D model are 2D and the edges of 2D are 1D.  

Note that the 2D surface or 1D edge could be curved. In the present work, we focus on regular 

shapes. Surfaces and edges with curvature will be considered in our future work. 

For positions of primary sampling atoms, we note that different selections of primary 

sampling atoms in SRB (thus called bulk sampling atoms) may not produce a significant 

difference as long as they are selected from the bulk region such that they are not coplanar. This 

is understandable from the perspective of curve-fitting process. For instance, a 2D quadratic 

surface can be represented by 6 selected points provided that they are not copular. The same 

conclusion applies to the selection of surface primary sampling atoms in SRS. Numerical 
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examples in Chapter 3.0 will discuss more about the PSAs selection effect on the performance of 

SRMMM. 

It is worth to note that the energy of corner atoms does not exactly follow f𝑆𝑆𝑎𝑎(𝑥𝑥𝑎𝑎) or 

f𝐵𝐵𝑎𝑎(𝑥𝑥𝑎𝑎) for the reason that the neighbors of corner atoms are located on more surfaces than that of 

surface or bulk atoms. Similarly, the energy of atoms that coincide with 𝑁𝑁𝑛𝑛𝑎𝑎 finite element nodes 

(called nodal atoms) and energy of atoms near element edges (called element edge atoms) within 

a potential cut-off distance (rcut) also do not exactly follow f𝑆𝑆𝑎𝑎(𝑥𝑥𝑎𝑎)  or f𝐵𝐵𝑎𝑎(𝑥𝑥𝑎𝑎)  due to that 

neighbors of these atoms are located in more finite elements. As will be shown in Chapter 3.0 , 

the assumption that the energy of element edge atoms follows f𝑆𝑆𝑎𝑎(𝑥𝑥𝑎𝑎)  or f𝐵𝐵𝑎𝑎(𝑥𝑥𝑎𝑎)  may not 

introduce significant errors. However, the energy of nodal atoms will be considered explicitly 

instead of being sampled by energy of primary sampling atoms. For this reason, we call the 

atoms whose energy are considered explicitly secondary sampling atom (SSA) to represent their 

own energies (such that the weight 𝑤𝑤𝑖𝑖
𝑎𝑎is 1 for each SSA). A more detailed explanation and atom 

classification will be discussed in Section 2.5. 

2.3.3 Discussion of several summation rules 

In this sub-section, the proposed summation rule SRMMM will be qualitatively compared with 

several proposed summation rules within the Quasicontinuum (QC) method in terms of 

employed constitutive model, energy distribution and element type in the coarse-grained region 

(Figure 2.4). 

For different summation rules employed in Figure 2.4, two linear elements are utilized in 

the coarse-grained region to schematically show the idea of each employed summation rule. In 

the local QC framework [9], the well-known Cauchy-Born (CB) rule is used (Figure 2.4a). The 
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Cauchy-Born rule is based on the assumption that the underlying atomic unit cell at a quadrature 

point (blue dots in Figure 2.4a) deforms uniformly according to the deformation gradient F that 

is evaluated at the corresponding quadrature point (Figure 2.5). The stored potential energy in the 

deformed unit cell divided by its volume is then taken as the continuum strain energy density. 

CB assumption is valid for linear element where deformation gradient F is constant. And for 

high order elements, CB rule is inaccurate to evaluate the continuum strain energy since the 

variation of deformation gradient F is not captured. In addition, CB framework is, in nature, a 

continuum-based description such that the employed constitutive relationship in the coarse-

grained region is local, which is incompatible with the nonlocal constitutive model in the 

atomistic domain, as described by the employed interatomic potential. Thus an unphysical 

phenomenon, usually called “ghost force”, will occur near the interface between atomistic and 

coarse-grained regions. 

This aforementioned interface mismatch has motivated the development of the nonlocal 

Quasicontinuum framework [13, 34, 37, 57]. In the nonlocal QC approach, atomistic description 

is consistently used in both atomistic region and coarse-grained domain. The energy and force 

calculations in the coarse-grained domain are exactly the same as what we do for full atomistic 

description. The only difference is that the gray atoms (gray dots in Figure 2.4) are not degrees 

of freedoms (DOFs) of the system anymore. The information of these gray atoms can be 

determined by interpolating the information of the nodal atoms (red dots in Figure 2.4). The 

main challenge within the nonlocal QC method or coarse-grained atomistic framework is how to 

efficiently and accurately evaluate the potential energy for the coarse-grained region, as shown in  

Eq.(2.2). 
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Figure 2.4: Schematically illustration of Quasicontinuum method with the respectively Cauchy-

Born rule (a), cluster rule (SRCR) (b), quadrature-type rule (SRQR) and MMM with SRMMM, using 

two 1D linear elements in the coarse-grained region 

 

 

To overcome this challenge, the nodal summation rule was first proposed to efficiently 

calculate the potential energy [13]. The proposed nodal summation rule is similar to the nodal 

integration rule in numerical integration and it caused numerical instability issue due the 

inaccurate approximation of the potential energy. And to remove the instability problem, the 

cluster summation rule (SRCR) was designed. The basic idea of SRCR is to use the energy of 

clusters with a certain radius (circles in Figure 2.4b) to sample the energy of each element in 

Cluster 

Atomistic Coarse-grained region 

(a) QC with Cauchy-Born (CB) rule 

(b) QC with cluster rule (SRCR)  

(c) QC with quadrature-type rule (SRQR)  

(d) MMM with SRMMM 
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Section 2.3.2. And in order to determine the weight of each cluster, the assumption that the 

energy distribution of a piece-wise linear element is also piece-wise linear is made. Then the 

weight for each cluster is determined by reproducing the assumed piece-wise linear energy 

distribution for each element. However, from our analysis in Section 2.3.2, we know that atoms 

in each cluster, similar to element edge atoms, have very different energy distribution from that 

of element bulk atoms. Since large elements are usually used to efficiently coarse-grain atomistic 

models, the number of bulk atoms dominates the number of atoms in each cluster. As such, SRCR 

will introduce large errors in approximating the potential energy for coarse-grained region, as has 

been mathematically shown in [118]. In addition, SRCR was originally designed for linear 

element in [13]. Though some work has been done using high order elements with SRCR, the way 

to determine the weight for each cluster was the same as for linear element, following the piece-

wise energy distribution assumption [69]. As such, the relationship about how the employed 

element type or interpolation shape function affects SRCR is not clear. 

 

 

 

Figure 2.5: A schematically illustration of the Cauchy-Born rule in 2D: an atomic unit cell 

centered at a quadrature point (blue dot) is assumed to deform uniformly according to the 

deformation gradient F at the quadrature point 
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The quadrature-type summation rule was proposed in [35, 36] to avoid drawbacks of 

SRCR. The general idea of SRQR is to firstly select some quadrature-type or sampling atoms (blue 

dots in Figure 2.4c). And the energy of selected sampling atoms is then employed to sample the 

energy of each element. Similar to SRCR, the weight for each sampling atom is determined by 

assuming that the energy distribution of each piece-wise linear element is also piece-wise linear. 

As such, two sampling atoms are selected in each linear element (Figure 2.4c). To determine 

position of sampling atoms, the atoms nearest to L/3 and 2L/3 are selected where L is the length 

of a1D linear element. SRQR was originally employed in 1D linear element in [35] and its 

extension to high order element is not clearly stated. 

The proposed SRMMM in Section 2.2 is also based on the coarse-grained atomistic 

framework such that atomistic description is consistently used across the whole system. The 

distinguishing feature of SRMMM is that the energy distribution of each element can be 

analytically derived for harmonic potentials. As such, the optimal (minimum) number of 

sampling atoms and their weights can be analytically formulated. For instance, based on the 

proposed SRMMM, the energy distribution of element bulk atoms in the employed linear element 

is piece-wise constant (see Table 2.2) such that only one sampling atom is selected (Figure 2.4d). 

It is worth to note that similarity exists between SRMMM and the summation rules proposed in [37, 

57] with respect to linear element type. However, what distinguishes SRMMM from other 

summation rules is that SRMMM is derived for general element types. In that sense, the proposed 

MMM with SRMMM is the generalization of the nonlocal Quasicontinuum method. Table 2.1 

summarizes the comparison of several summation rules discussed in this section in terms of the 

employed constitutive model, energy distribution and originally applied element types in the 

coarse-grained region.  
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Table 2.1: A qualitatively comparison of several different summation rules 

Method Constitutive model Energy distribution Element type 

QC-CB Continuum description Piece-wise constant Linear 

QC-SRCR Atomistic description Piece-wise linear (assumed) Linear 

QC-SRQR Atomistic description Piece-wise linear (assumed) Linear 

MMM-SRMMM Atomistic description 
Analytical (for harmonic 

potentials) 
General 

 

2.4 REMARKS OF SRMMM ON NONLINEAR POTENTIALS 

In conventional FEM, the selected order of quadrature rule to evaluate the energy (Eq. (2.3)) or 

stiffness integral (Eq. (2.4)) is generally determined by the accuracy of Gauss quadrature for 

linear elasticity. For nonlinear continuum constitutive relationships, a relatively higher order of 

Gauss quadrature may be employed, especially for large deformation problems. 

Similarly, SRMMM has been introduced by assuming a nonlocal harmonic spring potential, 

as mentioned earlier. However, since any nonlinear interatomic potential can be well-

approximated by a harmonic spring within its convex region, SRMMM may be expected to be 

effective for nonlinear potentials, as will be demonstrated in Chapters 3.0 and 4.0 . In fact, the 

proposed SRMMM framework is interatomic-potential independent. As such, we do not employ a 

specific form for the assumed harmonic spring potential in the derivation of SRMMM. The 

proposed SRMMM can be directly applied to a general form of pair or many-body potential. For 
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cases where large deformation is expected, a relatively higher order of SRMMM may be employed, 

as quadrature rules in FEM. 

Note that for atomistic regions where interatomic potential is within its non-convex 

domain, full molecular mechanics can be employed since defects are likely to occur in that 

region. Since MMM is a fully coarse-grain atomistic model and no continuum description is 

introduced, full molecular mechanics can be directly and organically incorporated into MMM 

without any modification. Table 2.2 summarizes the employed bulk summation rule SRB for 

several element types.  
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Table 2.2: The employed bulk summation rule SRB for different element types 

Element type Function basis 
of SRB 

Optimal number 
of PSAs 

      

1D 

Linear element  1 1 
    
Quadratic 
element   1, x, x2 3 

   
     

2D 

Linear triangle 
element 

 

1 1 

    

Bilinear 
quadrilateral 
element 

 

1, x, y, xy, x2, 
y2 6 

    

Quadratic 
triangle element 

 

1, x, y, xy, x2, 
y2 6 

     
     

3D 
Tri-linear 
hexahedral 
element 

 

1, x, y, z, xy, 
xz, yz, x2, y2, 
y2 

10 
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2.5 SUMMARY OF ATOM CLASSIFICATION 

So far, different atom types such as primary sampling atoms (PSAs), secondary sampling atoms 

(SSAs) and non-sampling atoms (NSAs) have been introduced from the perspective of energy 

sampling in the coarse-grained region. In this section, atoms will be classified from the point of 

view of degrees of freedom (DOFs) for the case that both atomistic and coarse-grained regions 

exist. Then the definition and role of each atom type will be summarized. 

Figure 2.6 shows a comprehensive MMM model where molecular mechanics is 

employed around the crack in the middle of the panel and the proposed summation SRMMM 

(SRB+ SRS) is used in the coarse-grained region and surface that are away from the crack. In this 

thesis, atoms in the atomistic region will be colored black. Note that only the information of 

atoms (black dots) in the atomistic region and nodal atoms (red dots) that coincide with element 

nodes are the DOFs of the MMM model. As such, these atoms (black and red dots) are named as 

representative atoms (rep-atoms) and the rest atoms are called ghost atoms. In addition, since 

only the nodal atoms play a role in the interpolation shape function, the nodal atoms are also 

called interpolating rep-atoms and the atoms in the atomistic region non-interpolating rep-atoms. 

In addition, since the atoms in the atomistic region behave in the same war as in full 

atomistic simulation, their energy is considered explicitly. As such, from the point of view of 

energy sampling, they belong to secondary sampling atoms (SSAs). Since nodal atoms also 

belong to SSAs, all the rep-atoms are SSAs. 
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Figure 2.6: A MMM model where both atomistic and coarse-grained regions exist. Molecular 

mechanics (black area) is employed to capture crack propagation and SRMMM is employed in the 

coarse-grained region far away from the crack. 

 

 

To summarize, atoms are classified into rep-atoms and ghost atoms from the perspective 

of DOFs and atoms are grouped into PSAs, SSAs, and NSAs from the angle of energy sampling. 

The definition and role of each atom type from different points of view are presented in Table 

2.3 and Table 2.4, respectively. 
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Table 2.3: Classification of different atom types in MMM from the perspective of degrees of 

freedom (DOFs) 

 

Rep-atom: atom: whose 

information is the DOFs of the 

coarse-grained system 

Interpolating rep-atom: rep-

atom that takes part in 

constructing shape function 

Atom classification: 

from the perspective 

of DOFs 

Non-interpolating atom: rep-

atoms that resides in the 

atomistic region 

 Ghost atom: atom whose 

coordinate is given by 

interpolation 

 

 

 

Table 2.4: Classification of different atom types in MMM from the perspective of energy 

sampling 

Atom classification: 

from the point of 

view of energy 

sampling 

Primary sampling 

atom: an atom whose 

energy is employed to 

represent the energy of 

itself and the non-

sampling atoms  

Secondary sampling 

atom: an atom whose 

energy is used to 

represent the energy of 

itself only and  is 

explicitly calculated  

Non-sampling atom: 

an atom whose 

energy is represented 

by the energy  of a 

primary sampling 

atom 

2.6 GOVERNING EQUATIONS 

In this section, the governing equations of MMM employing SRMMM (SRB+ SRS) will be 

derived from the potential energy approximation 𝐸𝐸�𝑎𝑎  following the variational principle.  As 



 40 

mentioned in Section 2.4, we do not assume a specific form of the interatomic potential Ei 

employed below. 

Since atoms are classified into PSAs, SSAs and NSAs from the perspective of energy 

sampling, then 𝐸𝐸�𝑎𝑎 in Eq. (2.2) can be reformed as: 

 𝐸𝐸�𝑎𝑎 = ∑ 𝑤𝑤𝑖𝑖
𝑎𝑎𝐸𝐸𝑖𝑖𝑖𝑖∈𝒩𝒩𝑆𝑆 = ∑ 𝐸𝐸𝑖𝑖𝑖𝑖∈𝒩𝒩𝑆𝑆𝑆𝑆𝑆𝑆 + ∑ wi

aEii∈𝒩𝒩PSA   (2.30) 

where 𝒩𝒩𝑆𝑆𝑆𝑆𝑆𝑆 and 𝒩𝒩𝑃𝑃𝑃𝑃𝑃𝑃 are the respective index set of SSAs and PSAs. Note that 𝑤𝑤𝑖𝑖
𝑎𝑎 = 1 for each 

SSA and 𝑤𝑤𝑖𝑖
𝑎𝑎 is determined in SRMMM except that Eq. (2.21) has to be modified to account for the 

introduction of SSAs, as follows: 

 𝑤𝑤𝑖𝑖
𝑎𝑎 = ∑ Φ𝑖𝑖�𝑥𝑥𝑎𝑎

𝑗𝑗�𝑗𝑗∈(𝒩𝒩𝐴𝐴\𝒩𝒩𝑆𝑆𝑆𝑆𝑆𝑆)   (2.31) 

Let Ua denote the displacement vector for all the 𝑁𝑁𝑛𝑛𝑎𝑎 nodal atoms and 𝐟𝐟𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 be an external 

force vector applied to an atom 𝛼𝛼 ∈ 𝒩𝒩𝐴𝐴 . Following the variational principle to derive the 

equilibrium equations of an MMM model, the negative derivative of 𝐸𝐸�𝑎𝑎 with respect to the nodal 

displace vector 𝐮𝐮𝑖𝑖𝑎𝑎 , 𝑖𝑖 ∈ 𝒩𝒩𝑛𝑛
𝑎𝑎, which are the degrees of freedom in MMM as in FEM, must be zero. 

Then we have: 

𝐅𝐅𝑖𝑖𝑎𝑎(𝐔𝐔𝒂𝒂) = −∑ ∂𝐸𝐸𝑗𝑗(𝐔𝐔𝒂𝒂)
∂𝐮𝐮𝑖𝑖

𝑎𝑎𝑗𝑗∈𝒩𝒩𝑆𝑆𝑆𝑆𝐴𝐴 − ∑ 𝑤𝑤𝑘𝑘𝑎𝑎
∂𝐸𝐸𝑘𝑘(𝐔𝐔𝒂𝒂)
∂𝐮𝐮𝑖𝑖

𝑎𝑎𝑘𝑘∈𝒩𝒩𝑃𝑃𝑃𝑃𝑃𝑃 + ∑ 𝜙𝜙𝑖𝑖(𝐫𝐫 = 𝐫𝐫𝛼𝛼0)𝐟𝐟𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒𝛼𝛼∈𝒩𝒩𝐴𝐴 = 𝟎𝟎,∀ 𝑖𝑖 ∈ 𝒩𝒩𝑛𝑛
𝑎𝑎  (2.32) 

where 𝐟𝐟𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 is partitioned to a nodal atom as in FEM. Eq. (2.32) is the governing equations of 

MMM for statics in general. 

2.7 SUMMARY 

To summarize, the framework of the proposed multiresolution molecular mechanics (MMM) is 

introduced by analogy to the well-known finite element method (FEM). The novelty of MMM 
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lies in the proposed summation rule SRMMM to determine the optimal number, weight and 

position for quadrature-type (sampling) atoms to evaluate finite energy summations in coarse-

grained molecular mechanics model, similar to quadrature rules to evaluate integrals involved in 

FEM .  

The derivation of SRMMM is valid for general interpolation shape functions. The idea is to 

analytically derive the energy distribution of the coarse-grained region for harmonic interatomic 

potential, and then accurately represents the energy distribution by selecting sampling atoms in a 

curve-fitting-like process. SRMMM is then consistently decomposed into the bulk summation rule 

SRB and the surface summation rule SRS. Mathematically, this decomposition is based on the 

observation that the energy distribution of surface area is different from that of the bulk domain. 

Physically, the difference is due to the fact that surface atoms lack bonding neighbors and are not 

fully coordinated compared with their bulk counterpart. In addition, the effectiveness of SRMMM 

for nonlinear potentials is also discussed. 

The definitions of different atom types are clearly tabulated for referencing convenience, 

and the governing equations are derived following the variational principle. This chapter lays 

down the theoretical foundations for the following chapters. 
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3.0  NUMERICAL VALIDATION OF BULK SUMMATION RULE: SRB 

In this Chapter, in order to quantify the performance of MMM, error norms, as inspired by the L2 

and H1 norm in continuum mechanics to analyze the performance of FEM, are defined in the 

respective displacement and energy field. Then different error sources (discretization error and 

sampling error) are identified and quantified by the defined norm. The defined sampling error 

can serve as a good indicator of the accuracy of any proposed summation rule. To validate the 

proposed bulk summation rule SRB and compare SRB with other summation rules, a harmonic 

interatomic potential is employed first. Then the extension to non-harmonic interatomic potential 

is presented by taking the standard Lennard-Jones (LJ) potential as a representative. Numerical 

examples such as high order atomic sheet shear and beam bending are considered by employing 

linear, bilinear and quadratic interpolation shape functions. A crack propagation problem is 

employed to show the capability of MMM to capture material defects.  

3.1 ERROR SOURCES 

It is well-known that there are two different types of error in conventional FEM: (I)  

discretization error that relates to the employed element size and shape function order and (II) 

numerical integration error that relates to the quadrature rule utilized to evaluate involved 

integrals. Similarly, there are also two different error sources in MMM: (I) discretization error as 
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in FEM and (II) sampling error that relates to the employed summation rules to evaluate 

involved finite summations. 

As a simple example, let UFA be the displacement solution vector from full atomistic 

simulation (Model A in Figure 3.1) and UMMM be the one from MMM calculation (Model B in 

Figure 3.1). In addition, in order to quantify the discretization error, a special MMM model 

(Model C in Figure 3.1) is designed. In Model C, after using finite elements to coarse-grain full 

atomistic model, the energy of each atom is considered explicitly such that each atom is taken as 

a second sampling atom (SSA), denoted as green dots in this thesis. We note that nodal atoms 

(red dots in Figure 3.1) belong to SSA. Since they also represent degrees of freedom, we stay 

with color red for them. In Model C, there is only discretization error and no any other error is 

introduced. As such, model c is, in general, the most accurate and of course, the most 

computationally intensive model one can have for a given discretization. Since there is no 

primary sampling atom (PSA) in Model C, we denote the displacement field gained from it as 

𝐔𝐔0p∗sMMM with “0p” meaning no PSA and “*s” representing SSA everywhere. 

As such, for displacement field, the distance between Mode A and Model B, 𝑒𝑒𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡 can be 

decomposed as: 

 𝐔𝐔FA − 𝐔𝐔MMM =  𝐔𝐔FA − 𝐔𝐔0p∗sMMM���������
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

+ 𝐔𝐔0p∗sMMM − 𝐔𝐔MMM�����������
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

  (3.1) 

where 𝐔𝐔FA − 𝐔𝐔0p∗sMMM is the distance between Model A and Model C, named as discretization 

error 𝑒𝑒𝑈𝑈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  and 𝐔𝐔0p∗sMMM − 𝐔𝐔MMM  is the distance between Model C and Model B, named as 

sampling error 𝑒𝑒𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠 . The different types of error are schematically shown in Figure 3.1 

For a given discretization, the discretization error 𝑒𝑒𝑈𝑈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is fixed. Then a good indicator to 

estimate the performance of a coarse-grained model or a summation rule is to identify the 
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sampling error. As many other coarse-grained models do not clearly differentiate and quantify 

different error sources, we note that the identification of different error types is important, 

especially when spatial convergence is performed, as will be shown in Chapter 5.0 . 

 

 

 

Figure 3.1: Schematically demonstration of error sources and types: Model A: full atomistic 

model; Model B: a general MMM model with SRMMM; Model C: a specifically designed model 

𝐔𝐔FA − 𝐔𝐔MMM 
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(a) Model A: 𝐔𝐔FA (b) Model B:  𝐔𝐔MMM 

(a) Model A:  𝐔𝐔FA (c) Model C:  𝐔𝐔0p∗sMMM 

(c) Model C:  𝐔𝐔0p∗sMMM (b) Model B: 𝐔𝐔MMM 
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where the energy of each atom is explicitly considered. Discretization error is fixed for a given 

mesh. 

3.2 ERROR NORMS 

It is well-known that the following L2 and H1 error norms are widely employed to quantify the 

performance of FEM in continuum mechanics [122]: 

 𝑒𝑒𝑈𝑈 = �∫ (𝐔𝐔exact − 𝐔𝐔FEM)𝑇𝑇 
Ωc (𝐔𝐔exact − 𝐔𝐔FEM)dΩc�

1
2�   (3.2) 

 𝑒𝑒𝐸𝐸 = �∫ (𝛆𝛆exact − 𝛆𝛆FEM)𝑇𝑇 
Ωc (𝛆𝛆exact − 𝛆𝛆FEM)dΩc�

1
2�   (3.3) 

where 𝑒𝑒𝑈𝑈 and 𝑒𝑒𝐸𝐸 are the errors in displacement and energy fields, respectively, 𝐔𝐔exact and 𝛆𝛆exact 

are the respective displacement and strain fields from exact solution. 

Similarly, inspired by the L2 and H1 norms in continuum mechanics, the following two 

norms are defined to quantify the accuracy of MMM in atomistic modeling: 

 𝑒𝑒𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  = �
∑ �𝐮𝐮𝑖𝑖

FA−𝐮𝐮𝒊𝒊 
MMM�

T
�𝐮𝐮𝑖𝑖

FA−𝐮𝐮𝒊𝒊 
MMM� 

𝑖𝑖∈𝒩𝒩𝐴𝐴

∑ �𝐮𝐮𝑖𝑖
FA�

T
𝐮𝐮𝑖𝑖
FA 

𝑖𝑖∈𝒩𝒩𝐴𝐴

�

1
2�

=
�𝐔𝐔FA−𝐔𝐔 

MMM�2
�𝐔𝐔FA�2

  (3.4) 

 𝑒𝑒𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  = �
∑ ∑ �(𝐫𝐫𝑖𝑖𝑖𝑖

FA−𝐫𝐫𝑖𝑖𝑖𝑖
0 )−(𝐫𝐫𝑖𝑖𝑖𝑖

MMM−𝐫𝐫𝑖𝑖𝑖𝑖
0 )�

T
�(𝐫𝐫𝑖𝑖𝑖𝑖

FA−𝐫𝐫𝑖𝑖𝑖𝑖
0 )−(𝐫𝐫𝑖𝑖𝑖𝑖

MMM−𝐫𝐫𝑖𝑖𝑖𝑖
0 )� 

𝑗𝑗∈𝒩𝒩𝑖𝑖
  

𝑖𝑖∈𝒩𝒩𝐴𝐴

∑ ∑ �(𝐫𝐫𝑖𝑖𝑖𝑖
FA−𝐫𝐫𝑖𝑖𝑖𝑖

0 )�
T
�(𝐫𝐫𝑖𝑖𝑖𝑖

FA−𝐫𝐫𝑖𝑖𝑖𝑖
0 )� 

𝑗𝑗∈𝒩𝒩𝑖𝑖
  

𝑖𝑖∈𝒩𝒩𝐴𝐴

�

1
2�

  (3.5) 

where 𝐮𝐮𝑖𝑖FA and 𝐮𝐮𝒊𝒊 
MMMare the displacement vectors from full atomistic calculation and a MMM 

model, respectively, for an atom 𝑖𝑖 ∈ 𝒩𝒩𝐴𝐴; 𝒩𝒩𝑖𝑖
 is the index set of neighbors of the ith atom, 𝐫𝐫𝑖𝑖𝑖𝑖FA and 

𝐫𝐫𝑖𝑖𝑖𝑖MMM denote the pair distance vector from each model and 𝐫𝐫𝑖𝑖𝑖𝑖0  represents the initial pair distance 

vector. Note that all the errors are normalized by the solution from full atomistic model. 
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In linear elasticity, the potential energy of a continuum model is a function in terms of 

strain fields 𝛆𝛆 such that Eq. (3.3) defines error in energy field. For an atomistic model, the strain 

field is not defined here. Instead, the pair distance vectors are measured for the reason that 

interatomic (pair) potential energy is a function in terms of pair distance, analogous to the strain 

defined in continuum mechanics. We note that even for many-body potentials, the difference in 

each pair distance vector is a good error indicator in potential energy. As such, the differences in 

strain vector field and in pair distance vector field are good error indicators in energy for the 

respective continuum and atomistic modeling. 

We note that in many of the existing works, errors are always measured in such a way 

that the displacement vectors U or pair distance vector 𝐫𝐫𝑖𝑖𝑖𝑖  from different models are first 

operated to generate a scalar and then the difference between generated scalars is employed as 

the error. For instance, let 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝐹𝐹𝐹𝐹  and 𝐸𝐸�𝑡𝑡𝑡𝑡𝑡𝑡 be the respective total potential energy scalar from 

atomistic modeling and any other model generated by operations on the respective 𝐫𝐫𝑖𝑖𝑖𝑖  or U from 

each model, then the error is calculated as: 

 𝑒𝑒𝑒𝑒𝑒𝑒 =  �𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡
𝐹𝐹𝐹𝐹−𝐸𝐸�𝑡𝑡𝑡𝑡𝑡𝑡 

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝐹𝐹𝐹𝐹 �  (3.6) 

We comment that this is not a good error indicator because there are cases that the 

difference, for instance, in displacement field is significant but err is quite small, as 

schematically shown in Figure 3.2. In contrast, the error norms defined in Eqs. (3.4)-(3.5) can 

eliminate this possibility. 
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Figure 3.2: Schematically illustration of the possibility in an error estimator that the distance 

between different displacement fields could be very large even though they produce the same 

potential energy scalar E0: UFA is from full atomistic simulation and 𝐔𝐔�  from any other 

approximation 

 

 

Then using the error norms defined in Eq.(3.4), the discretization error 𝑒𝑒𝑈𝑈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑and sampling 

error 𝑒𝑒𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠 in displacement field are quantified as: 

 𝑒𝑒𝑈𝑈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �
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  (3.7) 

 𝑒𝑒𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠  = �
∑ �𝐮𝐮0p∗s𝑖𝑖
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�𝐔𝐔0p∗sMMM−𝐔𝐔MMM�
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�𝐔𝐔FA�2

  (3.8) 

Note that 𝑒𝑒𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 𝑒𝑒𝑈𝑈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  and 𝑒𝑒𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠   are all normalized by �𝐔𝐔FA�
2

 such that they are 

comparable to each other. 

Energy  
 

𝐔𝐔 

𝐸𝐸0 

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝐹𝐹𝐹𝐹(𝐔𝐔) 

𝐸𝐸�𝑡𝑡𝑡𝑡𝑡𝑡 (𝐔𝐔) 

𝐔𝐔FA 𝐔𝐔�   



 48 

Similarly, the discretization error 𝑒𝑒𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and sampling error 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠  in energy field are 

defined as: 

 eE𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  = �
∑ ∑ �(r𝑖𝑖𝑖𝑖
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  (3.10) 

The errors defined in this section will be employed to quantify the performance of MMM 

consistently throughout this thesis. 

3.3 DEFINITIONS OF COMPARED SUMMATION RULES 

In this section, different summation rules such as Gauss-quadrature-like rule are defined in order 

to compare against the proposed bulk summation rule SRB. In this chapter, all surface atoms are 

treated as SSAs for all the summation rules employed such that SRS is not employed. We name 

such a scheme as Scheme “#p~s”. The character “#” in front of “p” means the optimal number of 

PSAs in SRB with “~” representing surfaces and “s” SSA. For instance, Scheme #p~s is 

equivalent to Scheme 1p~s for MMM with linear element since only one primary sampling atom 

is selected for each element (Figure 3.3a). Thus the weights of all employed summation rules are 

adjusted accordingly. The surface summation rule SRS will be employed in Chapter 4.0 to 

specifically capture surface effects  

Let hx and hy denote the nearest nodal spacing for different orders of element in x and y 

directions, respectively. Let “Gauss1”, “Gauss2”, “Gauss3”, “Gauss4” and “Gauss5” represent 
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the first five orders of Gauss-quadrature-like rule employed. For 1D linear element, they denote 

how many quadrature points are employed; for instance, “Gauss3” means 3 Gauss quadrature 

points are selected. For 2D bilinear element, they represent the number of Gauss quadrature 

points selected in each direction; e.g., “Gauss3” means 3x3 Gauss quadrature. For 2D triangular 

element, they denote the first, second, third, fourth and fifth order Gauss quadrature, respectively. 

Note that if a prescribed Gauss quadrature point location does not align with an atom location, 

and then the nearest atom is selected instead. 

Let SRB-1, SRB-2 and SRnaive represent three different choices of positions of PSAs within 

the framework of SRB. SRB-1 is designed to directly compare with the corresponding Gauss 

quadrature (if possible). SRB-2 is designed to compare with SRB-1 to study the effect of the PSA 

positions on the accuracy of SRB. SRnaive is designed to show the potential drawbacks of an 

inaccurate summation rule due to the naive choice of PSA.  

For 1D linear element (2 linear elements in Figure 3.3), “Gauss1” (SRB-1) (Figure 3.3a), 

SRB-2 (Figure 3.3b) and SRnaive (Figure 3.3c) are employed respectively. Note that Gauss1 and 

SRB-1 are identical in this case. 
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Figure 3.3: Schematic illustrations of primary sampling atom selections for different summation 

rules employed for 1D linear element: Gauss1 and SRB-1 (a), SRB-2 (b), SRnaive (c) and Scheme 

0p*s (d). 

 

 

For 1D quadratic element (one quadratic element in Figure 3.4), eight different 

summation rules are used: four different orders of Gauss quadrature; two proposed bulk 

summation rules (SRB-1 and SRB-2) and two other summation rules (“bisection” and “quartering” 

defined below) inspired from numerical integration. The PSA selections for Gauss1, Gauss 2, 

Gauss 3 and Gauss 4 are shown in Figure 3.4a, Figure 3.4b, Figure 3.4e and Figure 3.4f, 

respectively. To compare with “Gauss2”, two of the three interior points that quarters an element 

(Figure 3.4c) are selected as PSAs and the corresponding weight for each is determined by 

evenly dividing the numbers of NSAs within that element. This summation rule is named 

“bisection”, which means that the PSAs bisects the nearest nodal spacing. Note that “bisection” 

and “Gauss2” have the same number of quadrature points by design. To directly compare with 

“Gauss3”, SRB-1 employs the same PSA selection as used in “Gauss3” (Figure 3.4e). The 

(a) 

(b) 

(c) 

(d) 
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selected PSAs for SRB-2 are shown in Figure 3.4d. To compare with “Gauss4”, four of the seven 

interior points that evenly divide an element (Figure 3.4g) are taken as PSAs and the associated 

weight for each is assigned through averaging the NSA number residing in that element. This 

summation rule is named “quartering”, which means that the PSAs quarters the nearest nodal 

spacing. Note that “quartering” and “Gauss4” have the same number of quadrature points by 

design. The summation rules shown in Figure 3.4 are presented in the order of number of 

quadrature points employed for each summation rule. 
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Figure 3.4: Schematic illustrations of primary sampling atom selections for different summation 

rules employed for 1D quadratic element: Gauss1 (a), Gauss2 (b), Bisection (c), SRB-2 (d), SRB-

1 (e), Gauss4 (f), quartering (g) and Scheme 0p*s (h) 

  



 53 

In 2D, for linear triangle element (T3) (two T3s in Figure 3.5), “Gauss1” (SRB-1), SRB-2 

and SRnaive are shown in Figure 3.5. For bilinear element (Q4), “bisection” defined in the 1D 

case is extended in y direction to compare with “Gauss2” (Figure 3.6a), as shown in Figure 3.6c. 

To compare with “Gauss3” (Figure 3.6b), “trisection” is defined in a similar way “bisection” is 

determined except that three of the five points that evenly divide hx and hy in each direction are 

employed as PSAs, as shown in Figure 3.6d. SRB-1 and SRB-2 are illustrated in Figure 3.7. For 

quadratic triangle element (T6) (two T6s in Figure 3.8 and Figure 3.9), different summation rules 

are illustrated in Figure 3.8 and Figure 3.9. Note that SRB-1 and “Gauss4” share the same 

selection of PSAs. 
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Figure 3.5: Schematic illustrations of primary sampling atom selections for different summation 

rules employed for 2D linear triangle element (T3): Gauss1 and SRB-1 (a), SRB-2 (b), SRnaive (c) 

for spring model and SRnaive (d) for LJ model.  

(a) (b) 

(c) (d) 
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Figure 3.6: Schematic illustrations of primary sampling atom selections for different summation 

rules employed for 2D bilinear element (Q4). Part I: Gauss2 (a), Gauss3 (b), Bisection (c) and 

Trisection(d). 

(a) (b) 

(c) (d) 
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Figure 3.7: Schematic illustrations of primary sampling atom selections for different summation 

rules employed for 2D bilinear element (Q4). Part II: SRB-1 (a) and SRB-2 (b). 

(a) (b) 
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Figure 3.8: Schematic illustrations of primary sampling atom selections for different summation 

rules employed for 2D quadratic triangle element (T6). Part I: Gauss1 (a), Gauss2 (b), Gauss3(c), 

Gauss4 and SRB-1(d). 

(a) (b) 

(c) (d) 
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Figure 3.9: Schematic illustrations of primary sampling atom selections for different summation 

rules employed for 2D quadratic triangle element (T6). Part II: Gauss5 (a) and SRB-2 (b). 

3.4 VALIDATION FOR SPRING POTENTIAL 

In this section, the proposed bulk summation rule SRB will be validated and compared to the 

summation rules defined in Section 3.3 for a harmonic potential by employing linear, bilinear 

and quadratic elements. 

3.4.1 1D quadratic tensile deformation 

The 1D nonlocal spring model consists of 33 atoms with a harmonic potential considering the 

first and second nearest neighbor interactions. The atoms are initially placed as ri = ir0, i = 1-33, 

where r0 is the zero-force spring length for the first neighbor springs. Let k1 and k2 represent the 

spring constants for the nearest-neighbor interaction and the second-neighbor interaction, 

(a) (b) 
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respectively. The zero-force spring lengths for the first neighbor spring and second neighbor 

spring are assumed to be r0 and 2r0, respectively. In the numerical simulations, 1.0, 0.25, and 1.0 

are assigned to be the values of k1, k2, r0, respectively. 

The quadratic deformation field employed in [61, 123] to study the convergence of FEM, 

meshfree methods with linear element is used to validate SRB. The quadratic deformation field 

takes the following form: 

 𝒖𝒖 =  −1
2
𝑋𝑋2 + 𝑙𝑙0𝑋𝑋  (3.11) 

where u is the displacement and X represents the original atomic coordinate. Three steps are 

taken to generate such a deformation distribution: (I) Eq. (3.11) is used to generate the final 

deformation for each atom by substituting in its original coordinate; (II) the force required to 

balance each atom can be calculated with the given final deformation; (III) the forces from step 

II are employed as external forces and are applied to the atomic chain to generate the 

deformation given step I. The same three steps are also taken for the other simulations with a 

given displacement field other than Eq. (3.11). For boundary conditions, the atomic chain is 

fixed at the left end. The quadratic deformation defined above will also be employed to study the 

convergence behavior of MMM in Chapter 5.0 . 

Linear and quadratic elements are employed with Scheme #p~s to verify SRB. hx is taken 

to be 16r0 for both linear and quadratic element, as shown in Figure 3.3 and Figure 3.4 . As a first 

step to perform the simulations, the function bases for SRB are determined to be 1 for linear 

element and 1, x, x2 for quadratic element, respectively, as shown in Table 2.2. Thus, only one 

primary sampling atom is needed for linear element and three PSAs are required for quadratic 

element under the framework of SRB. Based on this observation, the interpolant Φ𝑖𝑖 for a primary 

sampling atom i in Eq. (2.16) is the constant 1 for linear element and is a quadratic function for 
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quadratic element. Then the corresponding weight can be determined by Eq. (2.21). To complete 

SRB, the positions of the PSAs have to be determined. Since the global stiffness for the spring 

model employed is constant and thus is independent of atom positions, we claim that the SRB is 

independent of the positions of PSAs as long as the selected primary sampling atom 𝑖𝑖 ∈  𝒩𝒩𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑒𝑒  

and are not coplanar, where 𝒩𝒩𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑒𝑒  means the index set of atoms that reside in the bulk region of 

an element. This claim will be verified by numerical simulations by choosing different positions 

of PSAs. The MMM models with linear and quadratic element using SRB and different 

summation rules are illustrated in Figure 3.3 and Figure 3.4. 

Table 3.1 shows results from different summation rules with linear element. Since 

“Gauss1” and SRB-1 (Figure 3.3a) are the same for linear element, they produce the same results. 

With different choices of PSAs, SRB-1 and SRB-2 (Figure 3.3b) also yield the same accuracy. 

This shows that SRB is independent of PSA positions as long as the selected primary sampling 

atom  𝑖𝑖 ∈  𝒩𝒩𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑒𝑒 . In SRnaive (Figure 3.3c), 𝑖𝑖 ∈ 𝒩𝒩𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑒𝑒  is violated, which causes accuracy to 

deteriorate significantly. This shows the significance of  having a robust summation rule with 

appropriate choice of PSAs and partially explains the performance the node-based and cluster-

based summation rules, as pointed out in [118].  Note that the sampling error for SRB-1 and SRB-

2 is not zero since that the energy of edge atoms are assumed to follow the bulk energy 

distribution inside each element, as mentioned in Sub-section 2.3.2.  This introduces some error 

across the element interface. In this case, only 0.3% and 0.69% extra errors are introduced in the 

respective displacement error norm and energy error norm, compared to the most accurate 

scheme (Scheme 0p*s) given by Figure 3.3d. 
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Table 3.1: Errors in the solution of the 1D non-local spring problem obtained via different 

summation rules and different choices of positions of primary sampling atoms with linear 

element. 

Summation rules 
Relative displacement errors Relative energy errors 
𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝐸𝐸 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

       
Gauss1(SRB-1) 6.41% 0.31% 6.16% 24.96% 0.69% 24.95% 
       
SRB-2 6.41% 0.31% 6.16% 24.96% 0.69% 24.95% 
       
SRnaive 11.25% 5.60% 6.16% 25.81% 6.59% 24.95% 
       

 

 

For quadratic element, 8 different summation rules are employed as shown in Figure 3.4. 

Table 3.2 gives the results for the respective summation rule. Several interesting phenomena are 

observed: (I) high-order Gauss quadrature may give worse accuracy than low-order Gauss 

quadrature; for instance, “Gauss2” outperforms “Gauss3”; (II) “bisection” and “quartering” 

perform better than  the corresponding Gauss quadrature rule that has the same number of 

quadrature points; (III) SRB-1 and SRB-2 again give the same and best results and the sampling 

errors are numerically zero; this observation validates SRB and the claim that SRB is independent 

of PSA positions as long as the selected primary sampling atom 𝑖𝑖 ∈ 𝒩𝒩𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑒𝑒 , where 𝒩𝒩𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑒𝑒  is the 

index set of element bulk atoms (atoms in the dashed rectangle in Figure 2.3). Note that due to 

the discrete nature of atomistic modeling, the theoretical foundation for Gauss quadrature, which 

depends on continuum modeling and integral form, does not hold any more. Therefore, Gauss 

quadrature may not outperform other numerical techniques, which explains the first two 

observations above. In contrast, the proposed SRB provides a theoretical foundation explaining 

the third observation. Note that SRB can produce the same accuracy as the most accurate model 
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(Figure 3.4h) does with much less computation cost. The magnitude of the discretization errors 

indicates that the quadratic element can reproduce the quadratic deformation field exactly if there 

is no sampling error and thus is second-order consistent. It is worth to note that “Gauss3” and 

SRB-1 share the same positions of PSAs and that the interior rep-atom is selected as a primary 

sampling atom in SRB-1 and SRB-2. 

 

 

Table 3.2: Errors in the solution of the 1D non-local spring problem obtained via different 

summation rules and different choices of positions of primary sampling atoms with quadratic 

element.  

Summation rules Relative displacement errors Relative energy errors 
𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝐸𝐸 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Gauss1 41.78% 41.78% 5.91e-15 84.75% 84.75% 1.52e-14 
Gauss2 3.75% 3.75% 5.91e-15 7.62% 7.62% 1.52e-14 
Bisection 0.24% 0.24% 5.91e-15 0.49% 0.49% 1.52e-14 
Gauss3 4.11% 4.11% 5.91e-15 8.35% 8.35% 1.52e-14 
Gauss4 3.04% 3.04% 5.91e-15 7.00% 7.00% 1.52e-14 
Quartering 3.56% 3.56% 5.91e-15 7.25% 7.25% 1.52e-14 
SRB-1 5.91e-15 0 5.91e-15 1.52e-14 0 1.52e-14 
SRB-2 5.91e-15 0 5.91e-15 1.52e-14 0 1.52e-14 
 

 

For all the simulations in 1D, the discretization errors in displacement error norm are 

smaller than the discretization errors in energy error norm, which is consistent with the 

observation in FEM in continuum mechanics in that the accuracy in L2 is generally better than 

that in H1. 
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3.4.2 2D non-homogeneous shear deformation 

The 2D atomic model that is subjected to shear deformation consists of 49 by 49 atoms (2377 

atoms in total) on a triangular lattice shown in Figure 3.5 and Figure 3.6. The harmonic spring 

potential with constant stiffness is employed here to describe the interatomic interaction. A zero-

force spring length of 𝑟𝑟0 = 1 is assumed for the first-nearest neighbor springs and of √3𝑟𝑟0 for the 

second-nearest neighbor springs. The parameters employed in the 1D case are also used here. 

The non-homogeneous shear deformation employed in [66] to study the validity of CB 

rule is taken here to validate SRB and make comparison with different summation rules. The 

deformation field is obtained by adding a quadratic term to the simple shear deformation field as 

follows: 

 �𝑥𝑥𝑦𝑦� = �𝑋𝑋+𝐵𝐵𝐵𝐵+𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌 �  (3.12) 

where X and Y are reference coordinates in horizontal and vertical directions and x and y are the 

current coordinates. In the implementation, B is chosen to be 0.001 and A to be 1.5. For boundary 

conditions, the lower left corner is fixed in both horizontal and vertical directions and the lower 

right corner is fixed in horizontal direction. 

For the linear triangle element (T3) in 2D, the function base for SRB is unity and thus 

only one primary sampling atom is needed. For bilinear element (Q4), the function bases for SRB 

are determined to be 1, x, y, xy, x2 and y2, which is a complete second order base of polynomials 

in 2D. Interestingly, the quadratic triangle element T6 has the same function bases as Q4, as 

shown in Table 2.2. Thus 6 PSAs are needed for each Q4 and T6. Then the interpolant Φ𝑖𝑖 in Eq. 

(2.16) is a complete quadratic polynomial. The MMM models with linear element (T3), bilinear 

element (Q4) and quadratic triangle element (T6) employing different summation rules are 
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shown in Figure 3.5, Figure 3.6, Figure 3.7, Figure 3.8, and Figure 3.9. Table 3.3 gives the 

results for linear element with “Gauss1” (SRB-1) (Figure 3.5a), SRB-2 (Figure 3.5b) and SRnaive 

(Figure 3.5c). As has been observed in the 1D case, SRB-1and SRB-2 gives the same results 

while SRnaive has the worst accuracy out of the three rules. The sampling errors are not zero 

because of the employment of SRB across the element edge. Extra errors of 0.49% and 0.75% are 

introduced in displacement and energy error norms with SRB only with respect to the most 

accurate Scheme 0p*s, showing the robustness of SRB. The discretization errors are due to the 

inability of linear element to reproduce a bilinear deformation filed. 

 

 

Table 3.3: Errors in the solution of the 2D non-local spring shear problem obtained via different 

summation rules and different choices of positions of primary sampling atoms with linear 

element. 

Summation rules Relative displacement errors Relative energy errors 
𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝐸𝐸 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Gauss1(SRB-1) 27.14% 0.49% 26.81% 50.57% 0.75% 50.57% 
SRB-2 27.14% 0.49% 26.81% 50.57% 0.75% 50.57% 
SRnaive 29.65% 12.46 26.81% 52.77% 14.87% 50.57% 

 

 

For bilinear element, 7 different summation techniques are used, as shown respectively in 

Figure 3.6 and Figure 3.7. As shown in Table 3.4, “Gauss 2” (Figure 3.6a) and “Gauss 3” (Figure 

3.6b) generate comparable accuracy and outperform “Gauss1”. Note that in continuum 

mechanics, “Gauss2” is required for the exact integration for bilinear element. “Bisection” 

(Figure 3.6c) gives less accurate results compared to “Gauss2”. Interestingly, “Trisection” 

performs better than “Gauss3”. The justification used in the 1D can also be employed here. In 

contrast, SRB-1 and SRB-2 outperform all the other summation rules. Note that 6 and 9 PSAs are 
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used in SRB and “Gauss3”, respectively. Thus, SRB is more accurate and efficient when 

compared to “Gauss3”. SRB-1 and SRB-2 produce almost the same results and the sampling error 

is negligible, which again validates SRB and shows the effectiveness of SRB. The slight 

difference and small sampling errors may be due to round-off errors.  The magnitude of 

discretization errors indicates the ability of bilinear element (Q4) in reproducing the bilinear 

deformation field. 

 

 

Table 3.4: Errors in the solution of the 2D non-local spring shear problem obtained via different 

summation rules and different choices of positions of primary sampling atoms with bilinear 

element Q4. 

Summation rules Relative displacement errors Relative energy errors 
𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝐸𝐸 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Gauss1 25.83% 25.83% 2.51e-14 39.14% 39.14% 8.92e-14 
Gauss2 2.35% 2.35% 2.51e-14 3.43% 3.43% 8.92e-14 
Bisection 3.05% 3.05% 2.51e-14 4.50% 4.50% 8.92e-14 
Gauss3 2.12% 2.12% 2.51e-14 3.08% 3.08% 8.92e-14 
Trisection 0.80% 0.80% 2.51e-14 0.63% 0.63% 8.92e-14 
SRB-1 1.60e-14 1.02e-14 2.51e-14 8.75e-14 7.07e-14 8.92e-14 
SRB-2 2.61e-14 1.93e-15 2.51e-14 8.78e-14 4.61e-14 8.92e-14 
 

 

For quadratic triangular element (T6), 7 different summation rules are employed and 

respectively shown in Figure 3.8 and Figure 3.9. As shown in Table 3.5, “Gauss 4” and “Gauss 5” 

give less accurate results compared to “Gauss3”. As has been observed with bilinear element, 

SRB-1and SRB-2 outperforms Gauss quadrature. Note that “Gauss 4” and SRB-1 have the same 

selection of the 6 selected PSAs and “Gauss 5” employs 7 PSAs, which shows the robustness of 

SRB. The same results from SRB-1and SRB-2 verify the proposed SRB. Since there is an interface 
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between the two employed T6 elements, an extra error of 0.89% and 1.41% are introduced in the 

respective displacement and energy error norm. 

As observed in the 1D case, the accuracy in displacement field is also better than that in 

energy field in 2D. 

 

 

Table 3.5: Errors in the solution of the 2D non-local spring shear problem obtained via different 

summation rules and different choices of positions of primary sampling atoms with quadratic 

triangle element T6. 

Summation rules Relative displacement errors Relative energy errors 
𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝐸𝐸 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Gauss1 31.64% 31.64% 2.21e-14 76.80% 76.80% 9.13e-14 
Gauss2 3.00% 3.00% 2.21e-14 7.37% 7.37% 9.13e-14 
Gauss3 2.53% 2.53% 2.21e-14 7.78% 7.78% 9.13e-14 
Gauss4 3.30% 3.30% 2.21e-14 9.14% 9.14% 9.13e-14 
Gauss5 2.61% 2.61% 2.21e-14 7.34% 7.34% 9.13e-14 
SRB-1 0.89% 0.89% 2.21e-14 1.41% 1.41% 9.13e-14 
SRB-2 0.89% 0.89% 2.21e-14 1.41% 1.41% 9.13e-14 

 

3.5 SRB EXTENSION AND VALIDATION FOR LENNARD-JONES POTENTIAL 

In general, interatomic potentials employed in atomistic simulations are non-convex and the 

atom-wise stiffness (i.e. the negative second derivative of the interatomic potential with respect 

to atomic positions) is not constant. Since the SRB is derived for the nonlocal harmonic spring 

model, the performance of MMM with SRB for non-convex potentials has to be tested. In this 

section, MMM with SRB will be extended and validated for the standard Lennard-Jones (LJ) 

potential, i.e. ULJ=4ε[(σ/r)12-(σ/r)6], where r is the interatomic distance with the initial value 
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r0=21/6 and potential parameters σ=ε=1. The first and second nearest neighbor interactions are 

taken to describe the interaction between atoms. MMM models employing linear (T3), bilinear 

(Q4) and quadratic triangle (T6) elements with SRB and other summation rules will be tested by 

the numerical examples as used for the spring potentials in Section 3.4.  Note that for MMM 

models with different summation rules, the function bases of SRB for different elements are the 

same as in the corresponding spring case. The only difference is that the LJ potential is used 

instead of the spring potential. 

3.5.1 1D quadratic tensile deformation 

The same atomic chain and boundary condition used in the previous spring case is employed 

here except that LJ potential is taken to describe the interatomic interaction. The same 

deformation field in the corresponding spring case scaled by a factor α = 3.07e-5 is used to give 

the quadratic deformation field. 

Linear elements with “Gauss1” (SRB-1), SRB-2 and SRnaive are shown in Figure 3.3a, 

Figure 3.3b and Figure 3.3c, respectively. The results with the respective summation rule are 

shown in Table 3.6. Interestingly, SRB-1 and SRB-2 produce the same results; although there is a 

difference in the 10th digit after the decimal point, SRB is still valid. The sampling errors with 

SRB-1 and SRB-2 are due to the employment of SRB across the element interface. The magnitude 

of the sampling errors indicates that SRB is accurate even across linear element edges. In contrast, 

SRnaive introduces large sampling errors and lose significant accuracy as observed and explained 

in the corresponding spring case, which again demonstrates the importance of the right selection 

of PSA positions for anharmonic potentials. 
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Table 3.6: Errors in the solution of the 1D non-local LJ problem obtained via different 

summation rules and different choices of positions of primary sampling atoms with linear 

element. 

Summation rules Relative displacement errors Relative energy errors 
𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝐸𝐸 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Gauss1(SRB-1) 6.18% 0.01% 6.19% 27.20% 0.03% 27.20% 
SRB-2 6.18% 0.01% 6.19% 27.20% 0.03% 27.20% 
SRnaive 42.81% 37.76% 6.19% 91.14% 91.44% 27.20% 

 

 

Figure 3.4 shows the primary sampling atom selections of the respective summation rule 

for the employed quadratic element, as used in the spring case. In addition, the standard Cauchy-

Born (CB) rule is also employed in the comparison. Since the deformation gradient is no longer 

constant for quadratic elements, the deformation gradient at a Gauss quadrature point is 

employed when reconstructing the deformed crystal cell structure underneath. Different orders of 

Gauss quadrature have been implemented with CB rule to consider the effect of non-constant 

deformation gradient. The “#” in “CB#” means the number of Gauss quadrature points employed 

in the CB rule. To perform the error decomposition for CB rule, after the displacements at the 

element nodes have been determined, they are interpolated to determine the displacements of the 

ghost atoms such that the errors defined in Section 3.2 can be calculated.  

The phenomena observed in the corresponding spring case are also seen here in Table 3.7. 

For instance, “Gauss4” has significant errors and the sampling errors from SRB-1and SRB-2 are 

the same up to the 7th decimal point. Note that in the corresponding spring case, the sampling 

errors are the same and numerically zero to the computer precision. The difference is due to that 

SRB is exact for the spring model and is an accurate and efficient approximation for the LJ 

potential. The standard CB rule produces less accurate results when compared to other 
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summation rules and “CB4” performs worse than “CB2” and “CB3”. The inaccuracy of the 

standard CB rule may be due mainly to the inaccurate description of non-homogenous 

deformations.  

Based on the observations from both linear and quadratic elements in 1D for the LJ case, 

it is safe to say that the position of PSAs may not affect the accuracy of SRB significantly as long 

as the selected PSAs belongs to 𝒩𝒩𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑒𝑒 , though there is a slightly difference between SRB-1and 

SRB-2. 

 

 

Table 3.7: Errors in the solution of the 1D non-local LJ problem obtained via different 

summation rules and different choices of positions of primary sampling atoms with quadratic 

element. 

Summation rules Relative displacement errors Relative energy errors 
𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝐸𝐸 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Gauss1 37.05% 37.05% 1.04e-13 75.88% 75.88% 3.59e-12 
Gauss2 3.62% 3.62% 1.04e-13 7.41% 7.41% 3.59e-12 
CB2 11.88% 11.88% 1.04e-13 14.09% 14.09% 3.59e-12 
Bisection 0.23% 0.23% 1.04e-13 0.48% 0.48% 3.59e-12 
Gauss3 3.97% 3.97% 1.04e-13 8.13% 8.13% 3.59e-12 
CB3 11.89% 11.89% 1.04e-13 14.09% 14.09% 3.59e-12 
Gauss4 21.22% 21.22% 1.04e-13 29.46% 29.46% 3.59e-12 
CB4 21.85% 21.85% 1.04e-13 43.91% 43.91% 3.59e-12 
Quartering 3.45% 3.45% 1.04e-13 7.06% 7.06% 3.59e-12 
SRB-1 3.90e-7 3.90e-7 1.04e-13 7.96e-7 7.96e-7 3.59e-12 
SRB-2 5.01e-7 5.01e-7 1.04e-13 1.02e-6 1.02e-6 3.59e-12 
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3.5.2 2D non-homogeneous shear deformation 

The same 2D atomic sheet with the same boundary conditions and non-homogeneous shear 

deformation used in the spring case are employed for the LJ potential. 

“Gauss1” (SRB-1), SRB-2 and SRnaive for the linear element are shown in Figure 3.5a, 

Figure 3.5b and Figure 3.5d, respectively. Table 3.8 shows the results from the respective 

summation rule. Again, as observed in the corresponding 2D spring case and the 1D LJ model, 

the sampling errors from SRB-1 and SRB -2 are the same up to the 12th decimal point and the 

discretization errors dominate the sampling errors. 

 

 

Table 3.8: Errors in the solution of the 2D LJ shear problem obtained via different summation 

rules and different choices of positions of primary sampling atoms with linear element. 

Summation rules Relative displacement errors Relative energy errors 
𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝐸𝐸 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Gauss1(SRB-1) 41.22% 0.55% 41.06% 56.28% 1.00% 56.30% 
SRB-2 41.22% 0.55% 41.06% 56.28% 1.00% 56.30% 
SRnaive 41.36% 0.78% 41.06% 56.35% 1.43% 56.30% 

 

 

For bilinear element (Q4), the primary sampling atom selections of the corresponding 

summation rules are also demonstrated in Figure 3.6 and Figure 3.7. As in the corresponding 

spring case, similar pattern in accuracy among the different summation rules are observed in 

Table 3.9. Note that due to the approximation property of SRB for non-convex potentials, the 

difference between SRB-1and SRB-2 is clearly observed. However, the difference is still 

relatively small (i.e. only 2.53% in displacement error norm). It is worth to note that SRB even 
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outperforms “Gauss3” with less PSAs, which again shows the robustness of SRB over Gauss 

quadrature. 

 

 

Table 3.9: Errors in the solution of the 2D LJ shear problem obtained via different summation 

rules and different choices of positions of primary sampling atoms with bilinear element Q4. 

Summation rules Relative displacement errors Relative energy errors 
𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝐸𝐸 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Gauss1 40.51% 40.51% 1.58e-12 52.57% 52.57% 2.39e-12 
Gauss2 3.18% 3.18% 1.58e-12 3.90% 3.90% 2.39e-12 
Bisection 3.63% 3.63% 1.58e-12 5.49% 5.49% 2.39e-12 
Gauss3 3.08% 3.08% 1.58e-12 3.79% 3.79% 2.39e-12 
Trisection 1.18% 1.18% 1.58e-12 1.12% 1.12% 2.39e-12 
SRB-1 0.77% 0.77% 1.58e-12 1.19% 1.19% 2.39e-12 
SRB-2 0.79% 0.79% 1.58e-12 1.08% 1.08% 2.39e-12 

 

 

For quadratic triangle element (T6), Figure 3.8 and Figure 3.9 show primary sampling 

atom selections of the 7 different summation rules employed, respectively. In Table 3.10, as has 

been observed before, SRB-1 and SRB-2 outperform all the other summation rules and the 

advantage is more significant when examining the energy errors. Note that “Gauss4” and SRB-1 

have the same PSAs selection and “Gauss5” employs 7 quadrature atoms. 
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Table 3.10: Errors in the solution of the 2D non-local LJ shear problem obtained via different 

summation rules and different choices of positions of primary sampling atoms with quadratic 

triangle element T6. 

Summation rules Relative displacement errors Relative energy errors 
𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝐸𝐸 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Gauss1 66.03% 66.03% 6.62e-11 84.94% 84.94% 1.13e-10 
Gauss2 4.20% 4.20% 6.62e-11 12.66% 12.66% 1.13e-10 
Gauss3 3.66% 3.66% 6.62e-11 12.22% 12.22% 1.13e-10 
Gauss4 5.45% 5.45% 6.62e-11 16.32% 16.32% 1.13e-10 
Gauss5 3.98% 3.98% 6.62e-11 12.30% 12.30% 1.13e-10 
SRB-1 1.14% 1.14% 6.62e-11 2.35% 2.35% 1.13e-10 
SRB-2 1.26% 1.26% 6.62e-11 2.22% 2.22% 1.13e-10 

 

 

The simulations employing the LJ potential show that SRB is still accurate and 

outperforms Gauss quadrature and other summation rules. As long as the selected PSAs belong 

to 𝒩𝒩𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑒𝑒 , the different choices of PSAs in SRB may not affect the accuracy dramatically. As 

expected, the errors in energy error norm are relatively larger compared to those in displacement 

error norm. Compared to the corresponding spring models, the error is relatively larger when the 

LJ model is employed. 

3.6 COMPARISON OF INTERFACE COMPATIBILITY 

In this section, the interface compatibility of MMM and some existing methods are compared 

through some 1D benchmark problems devised by Curtin and Miller in an excellent review paper 

about multiscale method development [54]. 

The original QC method [9], CLS approach [12], QC-GFC scheme [11], FEAt method 

[8], CADD approach [14, 20], and MMM are applied to solve these benchmark problems and 
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compared against full atomistics. The model utilized for these problems consists of 101 atoms 

positioned as ri = ia, i = 0-100. The concurrent coupling model is with the interface at i = 50, the 

region from the left end to the interface is the atomistic region and that from i = 50 to i = 100 is 

the continuum region or coarse-grained region for all the multiscale methods. It is worth to point 

out that a uniform mesh with the size reduced to the atomistic distance is adopted for the QC, 

CLS, QC-GFC, FEAt and CADD models in the continuum region. In contrast, a uniform mesh 

with size = 25a (Figure 3.10a) is used in the coarse-grained area in MMM. Three loading 

conditions including uniform deformation, non-uniform deformation, and single point force are 

considered. The left end is fixed and the right end is subject to a unit load for all the loading 

conditions. 

For the uniform deformation condition, Figure 3.10b demonstrates the local strain (ui-ui-

1)/a between neighboring atoms or nodes near the interface of the full atomistic model as well as 

all the multiscale models. In Figure 3.10b, as pointed out in [54], unphysical deformations of the 

atoms/nodes in the transition region arise in QC/CLS models due to the existence of ghost forces. 

The results of CADD are qualitatively similar, but quantitatively different from that of the 

QC/CLS model. In contrast, the QC-GFC, FEAt and MMM models show perfect agreement of 

strain distribution in full atomistics. Note that the uniform deformation assumption in both the 

CB rule and energy-sampling scheme is satisfied in this loading condition. However, the QC 

method needs further computation to correct the ghost force. In contrast, MMM directly gives 

accurate solution without any heuristic modification. 
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Figure 3.10: Comparison between full atomistics, MMM and several other multiscale methods 

for the 1D non-local spring model under uniform deformation: MMM model (a), strain 

distribution of different methods near the interface (b) 

 

 

For inhomogeneous deformation, additional forces of magnitude f = 0.1 are applied to 

atoms/nodes i-2, i-1, i, i+1, i+2 with i=50 across the transition region while the unit force applied 

on the right end is maintained. Figure 3.11b shows the deformation of each method. In this 

loading condition, there is presence of inhomogeneous deformation. Thus, the basic uniform 

deformation does not hold, and none of the presented methods reproduce the exact results. 

However, the same trends in Figure 3.10b are also observed in Figure 3.11b. The QC-GFC, FEAt 

and MMM models still agree well with full atomistics. 

(a) 

(b) 
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Figure 3.11: Comparison between full atomistics, MMM and several other multiscale methods 

for the 1D non-local spring model under inhomogeneous deformation: MMM model (a), strain 

distribution of different methods near the interface (b) 

 

 

For the third loading condition, a single point force of magnitude f = 1 is applied to the 

atom or node at the interface while maintaining the overall applied unit force at the right end. 

The deformation distributions of each method are shown in Figure 3.12b. The QC-GFC and 

FEAt behaves differently from their performance in the former two loading cases. As mentioned 

in [54], because the errors caused by each of the individual point forces cancel each other, the 

QC-GFC and FEAt present reasonable results in the case of inhomogeneous deformation. 

However, a long-range error under the interface point force is introduced in QC-GFC and FEAt 

(a) 

(b) 
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because no strict requirement of self-equilibrium of the local forces in the QC-GFC and FEAt 

models. Their discontinuity in treatment of the atoms and nodes leads to unbalanced forces that 

are then balanced by long-range forces. In contrast, MMM still agrees quite well with full 

atomistics even with the coarse mesh employed in the continuum region. 

 

 

 

Figure 3.12: Comparison between full atomistics, MMM and several other multiscale methods 

for the 1D non-local spring model under point force at interface: MMM model (a), strain 

distribution of different methods near the interface (b) 

 

 

(a) 

(b) 
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In summary, the QC-GFC and FEAt approaches show excellent results under uniform 

deformation but introduce long-range errors under sharp deformation gradients. The QC, CLS 

and CADD methods do not cause errors in the long-range fields in the presence of deformation 

gradients but show a permanent distortion near the interface. In contrast, MMM demonstrates 

good agreement with full atomistics in all three loading cases. 

3.7 SOME APPLICATIONS 

In this section, 2D atomic LJ models undergoing high-order tensile, shear and bending 

deformations are employed to test the robustness of MMM by employing more element 

interfaces with SRB only and with other numerical integration techniques. A crack propagation 

problem is also employed to show the ability of MMM to capture material defects locally. 

3.7.1 2D atomic sheet tensile model 

The 2D atomic LJ sheet employed in Section 3.5 is considered. The applied tensile deformation 

is given as follows: 

 𝑢𝑢𝑥𝑥 = 𝛼𝛼[−(𝐿𝐿 − 𝑥𝑥)2 + 𝐿𝐿2]   (3.13a) 

 𝑢𝑢𝑦𝑦 = −𝛾𝛾𝛾𝛾𝛾𝛾(𝐿𝐿 − 𝑥𝑥)  (3.14b) 

In the implementation, α = 5e-4 and γ = 0.3 are employed. The displacement filed is 

motived by a 2D continuum model which has a quadratic deformation in x direction under a 

tensile loading. The displacement in y direction is determined by Poisson effect with γ being the 

Poisson ratio. The atomic sheet is fixed at the middle point of the left end in x and y directions 
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and at the left bottom corner in x direction to eliminate rigid body motion. Bilinear element Q4 

and quadratic triangle element T6 are employed with hx =12r0 and hy = 6√3 r0. 

Seven different summation rules employed before are used here for bilinear element. 

Figure 3.13 shows the selection of PSAs for SRB-1and SRB-2. As can be seen from Table 3.11, 

SRB-1 and SRB-2 outperforms the other summation rules. The results from SRB-1and SRB-2 are 

identical up to the 6th decimal digit, which is similar to what has been observed in Section 3.5. 

 

 

Table 3.11: Errors in the solution of the 2D LJ tensile problem obtained via different summation 

rules and different choices of positions of primary sampling atoms with bilinear element Q4.  

Summation rules Relative displacement errors Relative energy errors 
𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝐸𝐸 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Gauss1 8.79% 6.91% 2.45% 18.83% 14.24% 11.81% 
Gauss2 8.48% 6.73% 2.45% 18.15% 12.94% 11.81% 
Bisection 7.42% 5.68% 2.45% 16.90% 11.97% 11.81% 
Gauss3 8.40% 6.58% 2.45% 17.82% 12.44% 11.81% 
Trisection 8.44% 6.69% 2.45% 18.10% 12.90% 11.81% 
SRB-1 4.56% 2.25% 2.45% 13.07% 4.25% 11.81% 
SRB-2 4.56% 2.25% 2.45% 13.07% 4.25% 11.81% 
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Figure 3.13: Schematic illustrations of primary sampling atom selections for the MMM models 

with bilinear element (Q4) and summation rules SRB-1 (a) and SRB-2 (b).   

(a) 

(b) 
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For quadratic triangle element T6, 5 different orders of Gauss quadrature rules are used 

and compared with SRB. Figure 3.14 demonstrates the PSAs selections of the two SRB rules 

employed. Note that “Gauss4” and SRB-1 share the same PSA selection. As shown in Table 3.12, 

SRB-1 and SRB-2 produce much better accuracy than Gauss quadrature. The merit of employing 

the SRB can be clearly observed from the distribution of errors in energy error norm. As expected, 

the difference between SRB-1and SRB-2 is observed due to the different selection of PSAs. Again, 

the difference is relatively small (1.39% in displacement error norm and 0.8% in energy error 

norm). 

 

 

Table 3.12: Errors in the solution of the 2D LJ tensile problem obtained via different summation 

rules and different choices of positions of primary sampling atoms with quadratic triangle 

element T6. 

Summation rules Relative displacement errors Relative energy errors 
𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝐸𝐸 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Gauss1 37.25% 37.25% 2.09e-10 107.56% 107.56% 4.26e-10 
Gauss2 8.77% 8.77% 2.09e-10 23.30% 23.30% 4.26e-10 
Gauss3 8.80% 8.80% 2.09e-10 23.23% 23.23% 4.26e-10 
Gauss4 8.34% 8.34% 2.09e-10 21.88% 21.88% 4.26e-10 
Gauss5 6.89% 6.89% 2.09e-10 19.84% 19.84% 4.26e-10 
SRB-1 2.16% 2.16% 2.09e-10 6.28% 6.28% 4.26e-10 
SRB-2 2.13% 2.13% 2.09e-10 6.33% 6.33% 4.26e-10 
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Figure 3.14: Schematic illustrations of primary sampling atom selections for the MMM models 

with quadratic triangle element (T6) and summation rules SRB-1 (a) and SRB-2 (b).  

(a) 

(b) 
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3.7.2 2D atomic sheet shear model 

The shear deformation considered in Section 3.5 employs a bilinear deformation term such that 

the bilinear element Q4 and quadratic triangle element T6 both can exactly reproduce the bilinear 

shear. The shear deformation considered here employs a biquadratic term such that none of Q4 

and T6 can regenerate it, and hence there will be discretization errors for both Q4 and T6.  The 

shear deformation is given as: 

�
𝑥𝑥
𝑦𝑦
� = �

𝑋𝑋 + 𝐴𝐴𝑋𝑋2𝑌𝑌2

𝑌𝑌
� 

where A is taken to be 1e-7 in the numerical implementation. The same atomic sheet with the 

same boundary conditions as used in the case of bilinear shear deformation is also employed here. 

Different summation rules used in the above tensile deformation case are also taken here for both 

bilinear element and quadratic element. 

The selection of PSAs for SRB-1and SRB-2 are sown in Figure 3.13 and Figure 3.14 for 

bilinear and triangle elements, respectively. As shown in Table 3.13 and Table 3.14, similar 

trends observed previously are shown again here for both bilinear element and quadratic triangle 

element. Again, SRB produces the best accuracy. 
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Table 3.13: Errors in the solution of the 2D LJ shear problem obtained via different summation 

rules and different choices of positions of primary sampling atoms with bilinear element Q4. 

Summation rules Relative displacement errors Relative energy errors 
𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝐸𝐸 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Gauss1 27.99% 23.49% 6.74% 23.61% 20.52% 12.81% 
Gauss2 23.38% 18.86% 6.74% 18.38% 13.14% 12.81% 
Bisection 41.69% 36.19% 6.74% 21.77% 16.17% 12.81% 
Gauss3 19.51% 15.03% 6.74% 16.76% 10.75% 12.81% 
Trisection 23.61% 19.09% 6.74% 18.43% 13.20% 12.81% 
SRB-1 3.84% 3.66% 6.74% 13.89% 6.07% 12.81% 
SRB-2 3.84% 3.67% 6.74% 13.90% 6.08% 12.81% 

 

 

Table 3.14: Errors in the solution of the 2D LJ shear problem obtained via different summation 

rules and different choices of positions of primary sampling atoms with quadratic triangle 

element T6. 

Summation rules Relative displacement errors Relative energy errors 
𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝐸𝐸 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Gauss1 80.47% 79.97% 2.61% 174.16% 173.87% 7.65% 
Gauss2 15.86% 14.75% 2.61% 22.61% 21.60% 7.65% 
Gauss3 15.16% 14.01% 2.61% 22.40% 20.87% 7.65% 
Gauss4 14.31% 13.31% 2.61% 19.86% 18.35% 7.65% 
Gauss5 14.93% 13.87% 2.61% 21.99% 20.36% 7.65% 
SRB-1 3.75% 2.87% 2.61% 12.03% 9.39% 7.65% 
SRB-2 3.77% 2.79% 2.61% 12.09% 9.56% 7.65% 

 

3.7.3 2D atomic beam bending model 

The 2D atomic beam model consists of 97 by 25 atoms (2,413 atoms in total), placed on a 

triangular lattice as used in Ref. [61]. The displacement field is as follows: 

 𝑢𝑢(𝑋𝑋,𝑌𝑌) = − 𝑃𝑃
6𝐸𝐸𝐸𝐸

�(6𝐿𝐿 − 3𝑋𝑋)𝑌𝑌 + (2 + 𝜐𝜐) �𝑌𝑌2 − 𝐷𝐷2

4
��  (3.15a) 
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 𝜈𝜈(𝑋𝑋,𝑌𝑌) = − 𝑃𝑃
6𝐸𝐸𝐸𝐸

�3𝜐𝜐𝑌𝑌2(𝐿𝐿 − 𝑋𝑋) + (4 + 5𝜐𝜐) 𝐷𝐷
2𝑋𝑋
4

+ (3𝐿𝐿 − 𝑋𝑋)𝑋𝑋2�  (3.16b) 

where L and D are the length and height of the beam, respectively. The motivation of employing 

such a deformation field is from the commonly used continuum beam bending problem in Refs. 

[123, 124] to study the behavior of FEM and meshfree methods. In this study, with the 

parameters P =1000, E = 3×105, 𝜐𝜐 = 0.3 and I = 𝐷𝐷
3

12
, the atomic beam is fixed at the left lower and 

upper corners in x direction and at the middle of the left edge in y direction. Linear triangle 

element T3 and quadratic element T6 are employed here with SRB and other summation rules. 

The primary sampling atom selections for SRB-1and SRB-2 are the same as used in Section 3.5. 
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Table 3.15 and Table 3.16 show the results of different summation rules employed for 

both T3 and T6 elements, respectively. Again, SRB-1 and SRB-2 generate almost the same results 

for linear element T3 and the difference is clearer for quadratic element T6. As expected, SRB 

gives better accuracy compared to other summation rules and the advantage is significant in the 

energy error norm. Since the energy error norm defined in Eq. (3.5) actually measures the 

accuracy of the relative positions of the atoms in the final configuration and thus reflects the 

performance of representing the final microstructure, the merit of utilizing SRB in energy error 

norm may be significant. 
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Table 3.15: Errors in the solution of the 2D LJ beam bending problem obtained via different 

summation rules and different choices of positions of primary sampling atoms with linear 

element T3 

Summation rules Relative displacement errors Relative energy errors 
𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝐸𝐸 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Gauss1(SRB-1) 7.80% 0.87% 7.05% 17.32% 5.90% 14.99% 
SRB-2 7.80% 0.87% 7.05% 17.32% 5.90% 14.99% 

 

 

Table 3.16: Errors in the solution of the 2D LJ beam bending problem obtained via different 

summation rules and different choices of positions of primary sampling atoms with quadratic 

triangle element T6 

Summation rules Relative displacement errors Relative energy errors 
𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝐸𝐸 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Gauss1 14.24% 14.54% 0.80% 83.92% 84.00% 2.63% 
Gauss2 3.22% 3.75% 0.80% 17.31% 17.33% 2.63% 
Gauss3 3.32% 2.76% 0.80% 12.37% 12.09% 2.63% 
Gauss4 1.96% 2.40% 0.80% 12.35% 12.27% 2.63% 
Gauss5 4.15% 4.71% 0.80% 21.05% 21.10% 2.63% 
SRB-1 1.03% 0.41% 0.80% 3.66% 2.54% 2.63% 
SRB-2 0.92% 0.37% 0.80% 3.68% 2.60% 2.63% 

 

3.7.4 2D crack propagation 

A 2D crack problem is solved by full atomistics and two MMM models shown in Figure 3.15b 

and Figure 3.16b. In the simulation, LJ potential with parameters equal to unity and a cutoff 

distance of 2.3 in LJ units is employed. The model consists of 1057 atoms with an initial spacing 

r0=21/6σ and has a notch placed in the middle of the rectangular model and oriented perpendicular 

to the applied displacement loading on the ends (Figure 3.15a and Figure 3.16a). Two layers of 



 87 

atoms located on the left and right ends of the model are initially fixed for static relaxation, 

followed by displacement load application. 

The simulation is composed of several steps. Prior to each step, incremental tensile 

displacement loading of 0.002 distance units is applied to the ends in opposite directions. Stress 

is then calculated at the end of each step by taking the average of the forces of the boundary 

atoms. The simulation is run successively until the models fracture into two distinct parts along 

the middle. Collecting data from each step, the stress-strain curve is obtained. 

 

 

 

Figure 3.15: Snapshots from crack propagation of full atomistic (left) and MMM model I (right) 

simulations 

 

 

In both models employed in the MMM simulations (Figure 3.15b and Figure 3.16b), 4 

interpolating rep-atoms (0.75% of the total number of atoms) arranged in the shape of a rectangle 

are selected on each side of the notch. A triangular mesh with 4 elements is created using these 

(a) (b) 
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rep-atoms and its size is 14r0 in x direction and 13r0 in y direction. The atoms in the middle of 

each element are set to be primary sampling atoms (0.38%). 4 layers of atoms from the surfaces, 

6 layers of atoms from the notch are modeled as non-interpolating rep atoms (63%).  Rest of the 

atoms is designated as non-sampling atoms (28% in Figure 3.15b and 23% in Figure 3.16b). The 

difference between the MMM models in Figure 3.15b and Figure 3.16b is that additional 

secondary sampling atoms (5%) within the cutoff distance of interpolating rep-atoms are 

considered in Figure 3.16b. The MMM model in Figure 3.16b is expected to more accurate since 

it employs more secondary sampling atoms. See the initial state at the top of the right panels of 

Figure 3.15 and Figure 3.16. 

 

 

 

Figure 3.16: Snapshots from crack propagation of full atomistic (left) and MMM model II (right) 

simulations 

 

 

(a) (b) 
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Three snapshots from the simulations of full atomistics and the respective MMM model 

are shown in Figure 3.15 and Figure 3.16. The top and bottom parts of both panels show the 

initial and final configurations of each model, respectively. In the middle, snapshots from the 

crack propagation are shown. It is clear that the crack propagation path is captured by both 

MMM simulations very well. The stress-strain curves (Figure 3.17 and Figure 3.18) prove the 

ability of MMM to reasonably capture the crack propagation together with surface effects. In 

comparison, the model in Figure 3.16b gives better agreement with full atomistics in terms of 

capturing the stress-strain curve, as expected. 

 

Figure 3.17: Stress-strain curves of full atomistic and MMM model I simulations of crack 

propagation 
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Figure 3.18: Stress-strain curves of full atomistic and MMM model II simulations of crack 

propagation 

3.8 IRREGULAR ELEMENTS 

To this end, all the elements employed in numerical examples have regular shapes (rectangles 

and right-angled triangles). In this section, the proposed summation rule SRB will be applied with 

irregular bilinear elements. Note that the shape functions of these irregular elements are built 

directly from the global coordinate such that iso-parametric analysis for mapped elements is not 

considered. 
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3.8.1 2D irregular atomic sheet shear model 

A 2D Lennard-Jones sheet with a shape of trapezoid undergoing the biquadratic shear 

deformation with the same boundary condition, as employed in Section 3.7, is considered. 

To verify the proposed summation rule SRB for irregular element, the trapezoidal element 

with SRB-1 (Figure 3.19a) and SRB-2 (Figure 3.19b) is used. As shown in Table 3.17, both SRB-

1 and SRB-2 introduce little sampling errors and the difference between the two summation rules 

is small (i.e. less than 1%). 

To reduce the discretization errors, the element size is decreased.  Four irregular bilinear 

elements with SRB-1 (Figure 3.20a) and SRB-2 (Figure 3.20b) are used. As can be seen from 

Table 3.18, again, SRB-1 and SRB-2 produce similar accuracy. As expected, the discretization 

errors are reduced significantly. Even though the sampling errors increase by a certain amount, 

the discretization errors still dominate. 
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Figure 3.19: Schematic illustrations of primary sampling atom selections for the MMM models 

using irregular bilinear element (Q4) with relatively large element size and summation rules 

SRB-1 and SRB-2 employed in Section 5: SRB-1 (a) and SRB-2 (b). 

  

(a) 

(b) 
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It is worthwhile to note that the total edge sizes for irregular elements may be larger 

compared to that of regular elements. Thus, the number of atoms within a potential cut-off 

distance from the edges may increase. This may cause the increase of sampling errors and an 

edge summation rule SRedge may be needed and employed to reduce the sampling errors. The 

formulation of SRedge to handle irregular elements is our ongoing work and will be reported in 

the near future. 

 

 

Table 3.17: Errors in the solution of the 2D LJ biquadratic shear problem obtained via the 

proposed summation rules SRB with different choices of positions of primary sampling atoms 

using irregular bilinear element Q4 with relatively large element size 

Summation rules Relative displacement errors Relative energy errors 
𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝐸𝐸 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

SRB-1 61.90% 0.78% 62.52% 54.32% 0.31% 54.40% 
SRB-2 62.51% 0.03% 62.52% 54.40% 0.04% 54.40% 

 

 

Table 3.18: Errors in the solution of the 2D LJ biquadratic shear problem obtained via the 

proposed summation rules SRB with different choices of positions of primary sampling atoms 

using irregular bilinear element Q4 with relatively small element size 

Summation rules Relative displacement errors Relative energy errors 
𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝐸𝐸 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

SRB-1 21.64% 7.95% 20.50% 27.01% 7.00% 25.86% 
SRB-2 21.61% 7.95% 20.50% 26.99% 7.00% 25.86% 
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Figure 3.20: Schematic illustrations of primary sampling atom selections for the MMM models 

using irregular bilinear element (Q4) with relatively small element size and summation rules 

SRB-1 and SRB-2 employed in Section 5: (a) SRB-1 and (b) SRB-2 

  

(a) 

(b) 
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3.8.2 Mapped elements 

Note that in sub-Section 3.8.1, the irregular quadrilateral elements used are not the mapped 

bilinear element as generally employed in FEM. An important reason that mapped elements in 

FEM are widely used is that numerical integration is difficult to be performed with respect to 

distorted or curved elements [125]. However, since there is no integral but only summation in 

MMM, the above difficulty does not exist. The proposed summation rule SRB can be directly 

conducted with respect to global coordinates, as has been used in the above simulation. 

Another reason that mapped elements is popular in FEM is to overcome the difficulty that 

the direct construction of shape functions that satisfy consistency requirements for high-order 

elements with curved boundaries becomes increasingly complicated [125]. The consistency 

across element boundaries is often required in FEM due to the better convergence and accuracy 

since integration over discontinuity is invalid. However, as mentioned earlier, since no 

integration is involved in MMM and when the element size is reduced to interatomic spacing, 

MMM can automatically converge to full atomistics, the consistency requirement may be 

“unnecessary” or relatively “weaker” in MMM as compared to FEM. In addition, non-

conformity is employed in many cases even in FEM [125]. In fact, the shape functions for the 

irregular bilinear elements in sub-Section 3.8.1 are constructed directly from the global 

coordinate system. 

In the future, mapped elements will be formulated for MMM and compared to cases 

where they are not used in MMM. A key question to be answered is whether 𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃  is still optimal 

for mapped elements. It is worthwhile to note that the order of numerical integration is often 

determined by the order of shape functions in local coordinates [125] in FEM. Analogously, the 

proposed summation rule SRB can still be determined based on the shape functions defined via 
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the “parent” elements such that the calculation performed in Section 2.3 may still be valid when 

it is performed with respect to local coordinates. Thus, the proposed summation rule may be 

reasonably expected to have good performance for mapped elements. 

3.9 SUMMARY 

In summary, this chapter primarily presents the validation of the proposed bulk summation rule 

SRB in Chapter 2.0  by employing numerical examples with respect to harmonic (spring) and 

non-harmonic (Lennard-Jones) potentials.  To analyze the performance of any summation rule, 

different error sources are identified and the total error is decomposed into discretization and 

sampling errors. Discretization error is related to the element size and shape function order 

employed, as in FEM. Sampling error depends only on the summation rule, analogous to the 

numerical integration error with a quadrature rule in FEM. Since discretization error is fixed for 

a given mesh, sampling error is a good indicator of the performance of any proposed summation 

rule. 

Rigorous error norms, as inspired by the L2 and H1 norms to quantify FEM accuracy in 

continuum mechanics, are defined to quantify the defined discretization and sampling errors in 

displacement and energy fields, respectively. The effectiveness of the proposed summation rule 

is demonstrated by employing linear, bilinear and quadratic elements to tensile, shear, bending 

and crack propagation problems. Compared to other summation rules, such as Gauss-quadrature 

rule, SRB shows better performance in terms of accuracy and computational cost. 
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In addition, the interface compatibility of MMM and several other existing approaches 

are compared against each other. MMM shows a better interface compatibility under all tested 

loading conditions. The employment of MMM with irregular elements also introduces small 

sampling errors.  
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4.0  NUMERICAL VALIDATION OF SURFACE SUMMATION RULE SRS 

In this Chapter, the proposed surface summation rule SRS in Section 2.3 will be specifically  

employed to capture surface effects in 2D triangular lattice and 3D face-centered cubic lattice 

(FCC) by using the respective 4-node quadrilateral and 8-node hexahedral finite elements. Note 

that SRB will be additionally employed for the bulk region of considered lattices, as in Chapter 

3.0 , such that both SRS and SRB are utilized to complete SRMMM. The performance of SRMMM 

will be quantified by the error norms in Chapter 3.0 .  

4.1 2D SURFACE RELAXATION 

In the following numerical example, the employed 2D triangle lattice (Figure 4.1) consists of 97 

by 97 atoms (9361 atoms in total) interacting via the standard Lennard-Jones (LJ) potential, i.e., 

ULJ=4ε[(σ/r)12-(σ/r)6] where r is the interatomic distance with the initial nearest interatomic 

spacing r0=21/6 and potential parameters σ = ε =1. The interatomic interaction is modelled up to 

the second nearest neighbor interaction. For boundary conditions, the lower-left corner atom is 

fixed in both x and y directions and the upper-left corner atom is fixed in x direction to eliminate 

rigid body motion. The lattice model is coarse-grained by a regular quadrilateral mesh (dashed 

lines) with 16 4-node quadrilateral elements. The mesh has 25 nodes or nodal atoms and takes 

only 0.27% over the original full atomistic (FA) degrees of freedom (DOFs), corresponding to an 
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element size hx = 24 r0 in x direction and hy = 12√3𝑟𝑟0 in y direction. The 2D lattice model is 

relaxed using a non-linear Newton solver. 

Since the second nearest neighbor interaction is considered, there are one surface edge 

and one non-bulk layer in the direction perpendicular to the bottom and top of the lattice, 

respectively. And there are one surface edge and three non-bulk layers in the direction 

perpendicular to the left and right of the lattice. As such, the surface summation rule SRS is 

employed for each edge and non-bulk layer and the bulk summation rule SRB is taken for the 

bulk region, as schematically shown in Figure 4.1. 
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Figure 4.1: The employed 4-node quadrilateral mesh (dashed line) and summation rule SRMMM 

for the 2D surface relaxation problem: SRB for the bulk region and SRS for the surface and non-

bulk region 

 

 

A comparison of displace field distributions from FA model and from the proposed 

MMM calculation is shown in Figure 4.2. The figure clearly illustrates that the proposed MMM 

with SRMMM captures the displacement tendencies in x (Figure 4.2a and Figure 4.2b) and y 

(Figure 4.2c and Figure 4.2d) directions exhibited from atomistic simulation, both qualitatively 

and quantitatively. In order to show the capability of MMM to capture corner and edge effect, 

the displace fields of the upper-right corner and the middle of the edge on the right hand side, 

from the respective FA and MMM models, are tabulated in Table 4.1, where the accuracy of 

MMM is demonstrated. 

 

 

Table 4.1: Normalized displacement comparison between full atomistic (FA) simulation and 

MMM calculation at the upper right corner and the middle of the edge at the right hand side 

Method Corner Middle of edge 
ux uy ux uy 

FA 1 1 1 1 
MMM 1.04 0.94 1.02 0.94 
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Figure 4.2: Comparison of displacement distributions from full atomistic (FA) calculation and 

MMM: the x-displacement distributions from FA (a) and MMM (b); the y-displacement 

distributions from FA (c) and MMM (d) 

 

 

In addition, the different error types defined in Section 3.2 are presented in Table 4.2. As 

mentioned in Section 3.2, the discretization error is determined for a given mesh. Thus the 

sampling error is a good (if not best) indicator about the performance of a proposed summation 

rule. In general, to minimize the total error 𝑒𝑒𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, the sampling error 𝑒𝑒𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠 has to be minimized. 

x 

y 

x 

y 

(a) (b) 

(c) (d) 
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As can be seen from Table 4.2, the introduced 𝑒𝑒𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠  and 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠  are 0.04% and 0.0006% in 

displacement and energy field, respectively, with the proposed SRMMM. The small sampling 

errors quantify the good performance of MMM. 

 

 

Table 4.2: Different types of errors in displacement and energy field in the 2D example 

Summation rule 𝑒𝑒𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑈𝑈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  𝑒𝑒𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 
SRMMM(SRB +SRS) 4.85% 4.82% 0.04% 0.0006% 
     

4.2 3D SURFACE RELAXATION 

The numerical example considered next is the free surface relaxation of an FCC crystal lattice. 

The FCC lattice consists of 24 by 24 by 24 unit cells in the x, y and z directions, corresponding to 

58825 atoms as shown in Figure 4.3. The same interatomic potential employed in 2D surface 

relaxation example is also used here. The atomic interaction is truncated after the third shell of 

the nearest neighbors. To eliminate rigid body motions, the boundary conditions in [100] are 

employed. Let the cubic center be the origin and L be the length of the cube edge. The corner at 

(-L /2, -L /2, -L /2) is fixed in all directions, the corner at (L /2, -L /2, -L /2) is fixed in y and z 

directions and the corner at (-L /2, L /2, -L /2) is fixed in the z direction. 
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Figure 4.3: The employed 8-node quadrilateral mesh (dashed line) for the 3D problem: the blue 

dots on the free surfaces and edges shows the applied SRS; SRS and SRB are also utilized for the 

non-bulk layers and bulk layers, respectively, and are invisible 

 

 

To coarse grain the FCC lattice, a regular hexahedral mesh (dashed lines) with 27 8-node 

hexahedral elements is introduced, as shown in Figure 4.3. The mesh has 64 nodal atoms with an 

element size h = 8√2r0 in each direction, which takes only 0.11% of the original FA DOFs. 

Since the atomic interaction is modelled up to the third shell of nearest neighbors, there is one 

free surface and one non-bulk layer in the direction perpendicular to each cubic side surface, as 

shown in Figure 4.4. Then SRS is applied to both the free surface and the non-bulk layer, as 

z 

y x 
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illustrated in Figure 4.3. Note that SRS applied to the non-bulk layer is invisible in Figure 4.3. 

The employed SRB is schematically shown in Figure 4.5, as mentioned in Section 2.3. 

 

 

 

Figure 4.4: The respective free surface, non-bulk and bulk layers of the 3D example:  SRS is 

applied to both free surface and non-bulk layers and SRB is employed for bulk layers 

 

 

Figure 4.6-Figure 4.8 show the displacement distribution comparison between FA 

modeling and MMM simulation. As can be seen, MMM accurately captures the distribution 

trend in each (positive or negative) direction, as what has been observed in 2D. The expansion or 

contraction of a surface is clearly matched in x, y and z directions. In order to compare the 

distribution inside the cube, the models in Figure 4.6-Figure 4.8 are cut through by x= 0, y=0 and 

z=0 planes, respectively. As shown in Figure 4.9-Figure 4.11, very good agreement has been 

achieved. The purpose of showing the distribution pattern in each direction is to demonstrate that 

MMM has uniform accuracy in each direction and no direction preference is observed, as will be 

shown in Table 4.3. 

Free 
surface 

Non-bulk 
layer 

Bulk 
layer 
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The displacement fields for the corner at (L /2, L /2, L /2), the atom at the middle of the 

edge connecting corners at (L /2, -L /2, L /2) and (L /2, L /2, L /2), and the atom at the center of 

+x free surface are presented in Table 4.3 to show the capability of MMM to capture corner, 

edge and surface effects in 3D. The uniform accuracy of MMM in each direction is clearly 

demonstrated in Table 4.3. 

 

 

 

Figure 4.5: Schematically demonstration of the employed SRB with 8-node hexahedral element 

for bulk layers: red dots are the nodal atoms and blue dots represent the selected primary 

sampling atoms (PSAs) 

 

 

Table 4.3: Normalized displacement comparison between full atomistic (FA) simulation and 

MMM calculation at corner, middle of edge and face center in the 3D example 

Method Corner Middle of edge Face center 
ux uy uz ux uy uz ux uy uz 

FA 1 1 1 1 1 1 1 1 1 
MMM 0.89 0.90 0.89 0.92 0.91 0.92 0.95 0.91 0.90 
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To more rigorously understand the performance of MMM in 3D, 𝑒𝑒𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  , 𝑒𝑒𝑈𝑈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠 and 

𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 are presented in Table 4.4. The introduced 𝑒𝑒𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠  and 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠  are 0.71% and 0.086%, 

respectively. As what has been observed in 2D, the good performance of MMM lies in that 

SRMMM accurately represents and reproduces the energy distribution of coarse-grained atomistic 

model with solid mathematical foundation. 

 

 

Table 4.4: Different types of errors in displacement and energy field in the 3D example 

Summation rule 𝑒𝑒𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑈𝑈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  𝑒𝑒𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 
SRMMM(SRB +SRS) 9.92% 10.30% 0.71% 0.086% 
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Figure 4.6: Comparison of x-displacement distributions on surfaces from full atomistics (FA) and 

MMM: +x-displacement from FA (a) and MMM (b); -x-displacement from FA (c) and MMM (d) 
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Figure 4.7: Comparison of y-displacement distributions on surfaces from full atomistics (FA) and 

MMM: +y-displacement from FA (a) and MMM (b); -y-displacement from FA (c) and MMM (d) 
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Figure 4.8: Comparison of z-displacement distributions on surfaces from full atomistics (FA) and 

MMM: +z-displacement from FA (a) and MMM (b); -z-displacement from FA (c) and MMM (d) 
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Figure 4.9: Comparison of x-displacement distributions from bulk along the plane x = 0 from full 

atomistics (FA) (a) and MMM (b) 

 

Figure 4.10: Comparison of y-displacement distributions from bulk along the plane y = 0 from 

full atomistics (FA) (a) and MMM (b) 
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Figure 4.11: Comparison of z-displacement distributions from bulk along the plane z = 0 from 

full atomistics (FA) (a) and MMM (b) 

4.3 SUMMARY 

This chapter specifically applies the surface summation rule SRS proposed in Chapter 2.0  to 

capture surface effects in nanosized structures.   

For both the 2D triangle lattice and 3D FCC model, the proposed SRS qualitatively and 

quantitatively captures the mechanical response as demonstrated in the two surface relaxation 

examples, using the respective 4-node quadrilateral and 8-node hexahedral meshes. The 

contraction or expansion of a surface clearly matches with the FA simulation results. A 

comprehensive comparison between displacement results from FA simulation and MMM shows 

similar and uniform accuracy of MMM in x, y and z directions. Corner and edge effects are also 

accurately captured. Furthermore, the proposed SRMMM introduces very small sampling errors as 

z 

y 

x 

z=0 
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quantified by the error norms defined in both the displacement and energy fields. As such, full 

FA results can be accurately reproduced by MMM with 0.3% less in the number of degrees of 

freedom of the original atomistic system.  The good performance of SRS is expected and is easy 

to understand since SRS in 3D is, in fact, SRB in 2D and SRS in 2D is actually in SRB 1D. 

Physically, this is because that for cubes, the boundary of 3D model is two-dimensional surface 

and the edge of a 2D surface is one-dimensional line. 
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5.0  NUMERICAL CONVERGENCE AND ERROR STRUCTURE ANALYSIS 

In this Chapter, the convergence behavior of MMM will be numerically studied with respect to 

linear element using the norms defined in Section 3.2. To explain the observed convergence 

behavior of MMM, the discretization and sampling errors defined in Section 3.1 are numerically 

analyzed with respect to different element size. The effect of exact solution smoothness and 

regularity and the nonlinearity of interatomic potential are also considered. It is observed that 

MMM demonstrates FEM-like behavior under certain circumstance. 

5.1 CONVERGENCE STUDY 

Four different MMM models (Figure 5.1) with different sampling schemes, as demonstrated in 

[43], are employed here to perform the convergence study. Note that SRB is employed for all the 

MMM models such that 𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃 is 1 for linear element. The difference among different sampling 

schemes is how the secondary sampling atoms (SSAs) (green dots) are employed. For the 

purpose of standardization and convenience of referencing, the four schemes will be denoted as 

follows. In scheme I, only one primary sampling atom (PSA) and no secondary sampling atoms 

(SSA) are employed in each element, and thus scheme I will be denoted as 1p0s (Figure 5.1a) 

with “p” meaning PSAs and “s” SSAs. In scheme II, one PSA in each element is considered with 

surface ghost atoms taken as SSAs, and this scheme is named 1p~s (Figure 5.1b) with “~” 
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representing surface, as mentioned in Chapter 3.0 . In scheme III, one PSA in each element is 

employed with the neighbors of rep-atoms treated as SSAs, and scheme III is named 1p@s 

(Figure 5.1c) with “@” representing neighbors of nodal atoms. In scheme IV, all ghost atoms are 

taken as SSAs and no PSAs is used, and this scheme is denoted as 0p*s (Figure 5.1d). In 

summary, these schemes are denoted based on how to choose SSAs (green dots). In fact, the 

freedom of choosing SSAs gives much flexibility using MMM in optimizing between efficiency 

and accuracy.  As mentioned in Section 3.1, MMM model with Scheme 0p*s is, in general, the 

most accurate and, of course, the most computationally intensive model. The purpose of 

employing scheme 0p*s is for comparison with the other three schemes and for error structure 

analysis.  

 

 

 

Figure 5.1: Four different MMM models with the corresponding sampling schemes with an 

element size of 16r0 (r0 is the initial atomic spacing): scheme 1p0s (a); scheme 1p~s (b); scheme 

1p@s (c) and scheme 0p*s (d) 

 

 

(a) 

(b) 

(c) 

(d) 
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It is well-known in continuum mechanics that the regularity and smoothness of the exact 

solution have a significant effect on the convergence of FEM and that the optimal convergence 

order is reached only if the exact solution has enough smoothness [126]. To study the effect of 

the exact solution smoothness of atomistic models on MMM convergence, three different types 

of external force loadings are applied to the atomic models, respectively. The external force 

loadings are: (1) the quadratic-deformation force loading; (2) the uniformly distributed force 

loading and (3) the random force loading of uniform distribution. Note that the exact 

displacement solutions of atomistic models are given by discrete points instead of a function, 

because of finite degrees of freedom. We say the exact solution of an atomistic model is smooth 

only if the discrete points fall exactly on a smooth function and is less smooth if not. The 

quadratic-deformation force loading is employed to generate quadratic displacement fields, as 

motivated by commonly used 1D string model and 2D beam model in solid mechanics to test the 

convergence of FEM and meshfree method [123, 127]. Then the exact solutions under quadratic-

deformation loadings are smooth. With the second and third force loadings mentioned above to 

atomic models, the true displacement field generated, in general, is less smooth. 

The error norms defined in Eq. (3.4) and (3.5) are employed to quantify the convergence 

rate in displacement and energy field, respectively. 

5.1.1 1D convergence test 

The 1D nonlocal spring model consists of 67 atoms with a harmonic potential of interaction 

forces for both the first and second nearest neighbors. These atoms are positioned as ri = ir0, i = 

1-67, where r0 is the zero-force spring length for the first neighbor springs. The consideration of 

second-neighbor interaction gives the non-locality of typical atomistic models. The spring 
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constant for the nearest-neighbor interaction is represented by k1 and that for the second-

neighbor interaction by k2.  A zero-force spring length of r0 is assumed for the first neighbor 

springs and of 2r0 for the next-nearest neighbor springs. In the numerical implementation, 1.0, 

0.25, and 1.0 are assigned to be the values of k1, k2, r0, respectively. For MMM spring models, 

different element sizes are tested and normalized by r0.  The normalized element sizes h are 64, 

32, 16, 8, 4, 2, and 1, respectively. 

To study the effect of nonlinearity of interatomic interaction on the convergence of 

MMM models in 1D, the same 1D atomic chain above is employed except that the Lennard-

Jones (LJ) potential (i.e. ULJ=4ε[(σ/r)12-(σ/r)6] where r is the interatomic distance) with potential 

parameters σ=ε=1 and the second nearest neighbor interactions is taken to describe the 

interaction between atoms. The atoms are placed initially with interatomic distance r0=21/6σ. As 

in the harmonic case, the MMM LJ models with the normalized element size h equal to 64, 32, 

16, 8, 4, 2, 1, are employed, respectively. Three different force loadings mentioned are applied to 

both the spring and LJ models. The exact solutions from full atomistics (FA) of the respective 

force loading conditions for 1D for spring and LJ models are shown in Figure 5.2 and Figure 5.3, 

respectively. The displacements are normalized by the respective r0. 
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Figure 5.2: Exact solutions from atomistics for the 1D spring model for the quadratic-

deformation loading (black), the uniform force loading (blue) and the random force loading of 

uniform distribution (red) 

 

Figure 5.3: Exact solutions from atomistics for the 1D LJ model for the quadratic-deformation 

loading (black), the uniform force loading (blue) and the random force loading of uniform 

distribution (red)  
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5.1.1.1 Quadratic-deformation force loading: harmonic potential 

The quadratic-deformation force loading generates a quadratic displacement field as 

motivated by a commonly used 1D loaded string model with a length of 𝑙𝑙0 to test the 

convergence of FEM and mesh-free methods [123]: 

 𝐄𝐄𝐮𝐮,𝑥𝑥𝑥𝑥 + 𝒇𝒇(𝑥𝑥)  =  0, 𝑥𝑥 ∈ (0, 𝑙𝑙0)  (5.1a) 

 𝒖𝒖(0) =  0  (5.1b) 

 𝒖𝒖,𝑥𝑥(𝑙𝑙0) =  0  (5.1c) 

The quadratic displacement field takes the following form with E =1 and 𝒇𝒇(𝑥𝑥) = 𝑥𝑥 : 

 𝒖𝒖 =  −1
2
𝑥𝑥2 + 𝑙𝑙0𝑥𝑥  (5.2) 

where u represents the displacement and x is the coordinate. To generate a quadratic deformation 

field for the 1D nonlocal atomic spring model, besides the same boundary conditions are 

employed as in the 1D continuum case, three more steps are taken: (I) the quadratic-deformation 

field given by Eq. (5.2)scaled by a factor of 100 is employed to generate the final deformation 

for each atom by substituting in the original coordinate of each atom; (II) having the final 

deformation of each atom, the force needed to equilibrate each atom can be calculated; (III) 

applying the forces calculated from step II as the external forces to the 1D spring model to 

generate the quadratic-deformation field given in step I. The extension to the 1D LJ potential 

follows the same three steps except that the quadratic-deformation field given by Eq. (5.3) is 

employed. The main purpose to employ such a quadratic displacement field for the discrete 

atomic model in this loading case is to investigate the effect of displacement smoothness on the 

performance of MMM. 

Figure 5.4a and Figure 5.4b show the convergence in the error norms defined above for 

all the four MMM schemes for the atomic spring chain. MMM models converge to molecular 
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statics monotonically when the element size decreases to atomic spacing and the zero-error point 

is not shown in the log-log plots. As expected, scheme 0p*s gives the most accurate results and it 

shows a linear convergence with a slope of 2.007 (R2=1.0000) in the displacement error norm 

and with a slope of 1.034 (R2=0.9993) in the energy error norm. Note that scheme 1p@s 

demonstrates similar accuracy and linear convergence. Thus MMM with scheme 0p*s and 1p@s 

shows FEM-like behavior in this convergence test with respect to the convergence order. 

Schemes 1p0s and 1p~s show similar performance as Schemes 0p*s and 1p@s for large element 

size. However, for some small element sizes, discrepancy between the schemes is observed. We 

will explain the performance of each scheme and the discrepancy between them from a point of 

view of error structure analysis in next section. 

 

 

 

Figure 5.4: Convergence of the 1D spring model subject to the corresponding quadratic-

deformation force loading in the relative displacement error norm (a) and the relative energy 

(a) 

(c) 

(b) 

(d) 
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error norm (b); convergence of the 1D LJ model subject to the corresponding quadratic-

deformation force loading in the relative displacement error norm (c) and the relative energy 

error norm (d) 

 

 

5.1.1.2 Quadratic-deformation force loading: Lennard-Jones potential 

As mentioned in [13, 128], if the interatomic distances of some pairs of nearest neighbors 

are located outside the convex region of the LJ potential, where the second derivative of the 

potential is negative, the convergence analysis may be problematic since the solution may not be 

unique. Thus for the non-harmonic LJ potential, we constrain the deformation field such that all 

nearest pairs are in the convex region. This is achieved in two steps: (I) find the inflection point 

of LJ potential, i.e., the critical interatomic distance rc; (II) multiply Eq. (5.2) by some constant α 

less than unity such that the corresponding maximum strain is 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 ≤
𝑟𝑟𝑐𝑐 𝑟𝑟0� .  In this study, α is 

chosen to be 1.52x10-4 and the constrained displacement field is given as: 

 𝒖𝒖 = 𝛼𝛼(−1
2
𝑥𝑥2 + 𝑙𝑙0𝑥𝑥)  (5.3) 

The above quadratic displacement field is employed for the atomic LJ chain. 

Figure 5.4c and Figure 5.4d show the convergence in the error norms defined above for 

all the four MMM schemes for the atomic LJ chain. As observed in the corresponding harmonic 

spring case, scheme 0p*s gives the most accurate results and it shows a linear convergence with 

a slope of 2.007 (R2=1.0000) in the displacement error norm and with a slope of 1.023 

(R2=0.9990) in the energy error norm with scheme 1p@s demonstrating similar accuracy and 

linear convergence. Thus MMM with scheme 0p*s and 1p@s still shows FEM-like behavior 

with nonlinearity of interatomic interaction from the point of view of convergence order in this 
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convergence test. The comparison between the four schemes is similar to what is seen in the 

spring case. 

In Figure 5.4, for both the 1D spring and LJ models, it can be seen that the convergence 

trend and the magnitude of relative errors of each MMM scheme are similar. The discrepancy 

between schemes for the LJ model may be slightly larger than that for the spring model for small 

element size in this loading case. 

5.1.1.3 Uniformly distributed force loading: harmonic potential 

A uniformly distributed loading fx = 0.0148 is applied to the atomic spring chain with the 

same boundary conditions used in the corresponding quadratic-deformation force loading case. 

The sum of fx is equal to the sum of external forces that generate the corresponding quadratic-

deformation field in the previous spring case. Note that the resulting displacement field is not as 

smooth as that for the quadratic loading. 

Figure 5.5a and Figure 5.5b demonstrate the convergence of MMM models in 

displacement error norm and energy error norm with uniformly distributed loading for the spring 

model.  All the four MMM models converge to molecular statics monotonically as the element 

size approaches the atomic spacing. Compared with Figure 5.4a and Figure 5.4b, convergence is 

less linear for any of the schemes.  In Figure 5.5a and Figure 5.5b, the last three data points from 

scheme 0p*s form a linear curve with a slope of 0.7092 (R2=0.9978) and 0.2788 (R2=0.9962) in 

the displacement error and energy error norm plot, respectively, which are smaller than the 

values from the quadratic loading study. The observation here is consistent with what has been 

proved and observed in continuum mechanics to study the convergence of FEM in the sense that 

the convergence order is reduced if the exact solution is not smooth enough [126]. The 

discrepancy between different schemes is relatively smaller in this case. 
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Figure 5.5: Convergence of the 1D spring model subject to the corresponding uniformly 

distributed force loading in the relative displacement error norm (a) and the relative energy error 

norm (b); convergence of 1D LJ model subject to the corresponding uniformly distributed force 

loading in the relative displacement error norm (c) and the relative energy error norm (d) 

5.1.1.4 Uniformly distributed force loading: Lennard-Jones potential 

A uniformly distributed loading fx = 0.0024 is applied to the LJ atomic chain with the 

same boundary conditions used in the corresponding quadratic-deformation loading case. The 

sum of fx is equal to the sum of external forces that generate the quadratic-deformation field in 

the previous LJ case. 

Figure 5.5c and Figure 5.5d demonstrate the convergence of MMM models in 

displacement error and energy error norms with the uniformly distributed loading for the LJ 

model.  As in Figure 5.5a and Figure 5.5b in the corresponding spring models, all four MMM 

models converge to molecular statics monotonically as the element size approaches the atomic 

(a) 

(c) 

(b) 

(d) 
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spacing and less linear convergence rate is observed for any of the schemes. In Figure 5.5c and 

Figure 5.5d, the last three data points for scheme 0p*s form a linear curve with a slope of 0.9168 

(R2=0.9995) and 0.3481 (R2=0.9590) in the displacement error and energy error norm plot, 

respectively, which is consistent with the observation in continuum mechanics to study of effect 

of displacement smoothness on the convergence of FEM. The discrepancy between different 

schemes is relatively smaller in this loading case, compared to the previous one. 

In Figure 5.5, as what is observed in Figure 5.4 in the quadratic-deformation loading case, 

for both models, MMM shows similar convergence trend. Scheme 1p@s shows the same order 

of accuracy as scheme 0p*s gives, which demonstrates the effectiveness of MMM sampling 

framework. Note that the convergence rate will decrease or increase depending on different 

element size and scheme, which will be explained in the next section from analyzing the error 

structure. 

5.1.1.5 Random force loadings of uniform distribution: harmonic and LJ potentials 

A random loading with uniform distribution is applied to the atomic spring chain with the 

same boundary conditions used in the previous two cases.  The mean value of the random load fx 

is equal to the one in the corresponding uniformly distributed loading case. The main purpose in 

employing such a loading is to investigate the convergence behavior of MMM in a more general 

case. 

A random force loading with uniform distribution is applied to the atomic LJ chain with 

the same boundary conditions used in the previous two cases.  The mean value of the random 

load fx is equal to the one in the corresponding uniformly distributed loading case for the LJ 

model. 
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Figure 5.6 shows the convergence of MMM schemes for the respective 1D spring and LJ 

model. The convergence curves look similar to those in Figure 5.5, and thus the analysis in the 

uniformly distributed loading case holds here. Note that from Figure 5.2 and Figure 5.3 we can 

see that the resulted displacement fields for the uniformly distributed loading and the random 

loading of uniform distribution are similar, though not the same. This may suggest that MMM 

shows similar performance when the displacement fields have similar smoothness. 

 

 

 

Figure 5.6: Convergence of the 1D spring model subject to the corresponding random force 

loading of uniform distribution in the relative displacement error norm (a) and the relative energy 

error norm (b); convergence of the 1D LJ model subject to the corresponding random force 

loading of uniform distribution in the relative displacement error norm (c) and the relative energy 

error norm (d) 

(a) 

(c) 

(b) 

(d) 
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5.1.2 2D convergence test 

The 2D non-local beam model consists of 97 by 25 atoms, (2,413 atoms in total) placed on a 

triangular lattice with nearest neighbor interatomic distance r0 as shown in Figure 5.7. Three 

different potentials are introduced to describe the interactions between atoms, for purpose that 

will become clear later. The definitions of the two different harmonic potentials (i.e. spring 

models) are given below by Eq. (5.4) and (5.5), respectively: 

 𝑈𝑈𝑠𝑠1 = ∑ 1
2
𝑘𝑘𝑖𝑖�(𝑟𝑟𝑥𝑥 − 𝑟𝑟𝑥𝑥0)2 + (𝑟𝑟𝑦𝑦 − 𝑟𝑟𝑦𝑦0)2�𝑁𝑁

𝑖𝑖   (5.4) 

 𝑈𝑈𝑠𝑠2 = ∑ 1
2
𝑘𝑘𝑖𝑖(𝑟𝑟 − 𝑟𝑟0)2𝑁𝑁

𝑖𝑖   (5.5) 

where N is the number of spring pairs considered; 𝑘𝑘𝑖𝑖 is the stiffness constant associated with the 

ith spring pair; 𝑟𝑟𝑥𝑥 and 𝑟𝑟𝑦𝑦 denote the projection of the current pair distance 𝑟𝑟 in x and y directions , 

respectively; 𝑟𝑟𝑥𝑥0  and 𝑟𝑟𝑦𝑦0  represent the projection of the initial pair distance  𝑟𝑟0 in x and y 

directions, respectively. The difference between the two spring potentials is that the global 

stiffness matrix for the system is constant for the first spring model but is a function of the 

displacements for the second spring model. This non-constant property of stiffness matrix can be 

easily verified by considering the second order derivatives of the spring potential. Note that this 

difference disappears in the 1D case where 𝑈𝑈𝑠𝑠1 = 𝑈𝑈𝑠𝑠2   and that  𝑈𝑈𝑠𝑠1  is actually a fictitious 

potential in that it does not exist in the way that atoms interact with each other in 2D and 3D 

problems. The main purpose to employ such a fictitious potential here is to study the possibly 

different effects of constant and non-constant stiffness matrices on the convergence behavior of 

MMM. 

For both the spring models, N in Eq. (5.4) is chosen to be 2. A zero-force spring length of 

𝑟𝑟0 = 1  is assumed for the first-nearest neighbor springs and of √3𝑟𝑟0  for the second-nearest 
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neighbor springs. Three different external loads mentioned above are applied to the 2D spring 

models, respectively. 

To study the effect of non-harmonic potentials on the convergence of MMM models in 

2D, the Lennard-Jones model employed is the same as the 2D spring models except that the 

Lennard-Jones (LJ) potential (i.e. ULJ=4ε[(σ/r)12-(σ/r)6], where r is the interatomic distance) with 

potential parameters σ=ε=1 and the second nearest neighbor interaction is used. The atoms are 

placed initially with interatomic distance r0=21/6σ. Three different types of external loads 

mentioned above are also applied to the 2D LJ model, respectively. 

In all the tests below, the 2D atomic beams are fixed at the left upper and lower corner in 

x direction and in the middle of the left edge in y direction.  Let hx and hy denote the element size 

in x and y direction, respectively, where the normalized element size is calculated by ℎ =

�ℎ𝑥𝑥2 + ℎ𝑦𝑦2/𝑟𝑟0.  Ten different combinations of (hx, hy) are considered in the 2D convergence study. 

Figure 5.7 shows a model with the combination of (24r0, 6√3 r0) for scheme 1p0s. 

 

 

 

Figure 5.7: 2D mesh with uniform element size hx = 24r0 and hy = 6√3r0 for scheme 1p0s: 

interpolating rep-atoms, primary sampling atoms, non-sampling atoms are represented as red, 

blue and gray dots, respectively. 



 127 

5.1.2.1 Atomic spring beam with the corresponding quadratic-deformation force loading 

The quadratic-deformation loads will generate a quadratic displacement field for both the 

𝑈𝑈𝑠𝑠1-spring and 𝑈𝑈𝑠𝑠2-spring model, respectively, motivated by a commonly used continuum beam 

model in 2D to test the convergence of FEM and meshfree methods. The continuum beam model 

(Figure 5.8) is fixed at the left upper and lower corners in x direction and at the middle of the left 

edge in y direction. The external force P is distributed as a parabola at the right end of the beam.  

In this study, with the parameters P =1000, E = 3×105, 𝜐𝜐 = 0.3 and I = 𝐷𝐷
3

12
, the analytical 

displacement solution is given by [124]: 

 𝑢𝑢(𝑥𝑥,𝑦𝑦) = − 𝑃𝑃
6𝐸𝐸𝐸𝐸

�(6𝐿𝐿 − 3𝑥𝑥)𝑥𝑥 + (2 + 𝜐𝜐) �𝑦𝑦2 − 𝐷𝐷2

4
��  (5.6) 

 𝜈𝜈(𝑥𝑥,𝑦𝑦) = − 𝑃𝑃
6𝐸𝐸𝐸𝐸

�3𝜐𝜐𝑦𝑦2(𝐿𝐿 − 𝑥𝑥) + (4 + 5𝜐𝜐) 𝐷𝐷
2𝑥𝑥
4

+ (3𝐿𝐿 − 𝑥𝑥)𝑥𝑥2�  (5.7) 

where L and D  are the length and height of the beam, respectively 

To generate the deformation given by Eq. (5.6) and (5.7) for the 2D atomistic spring 

beams, the same three steps employed in the corresponding 1D case are also employed here with 

the same boundary conditions employed in the continuum beam bending model. The 

enforcement of quadratic deformation for the 2D atomistic LJ beam is achieved in the same 

manner. 
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Figure 5.8: A 2D beam commonly employed in solid mechanics to test the convergence of FEM 

 

 

As can be seen from Figure 5.9a, Figure 5.9b, Figure 5.9c and Figure 5.9d, all four 

MMM models converge to molecular statics when the element size coincides with atomic 

spacing (the zero-error point is not shown in the log-log plot) for both spring models. As 

expected, scheme 0p*s gives the most accurate results. For the 𝑈𝑈𝑠𝑠1 -spring model, the 

convergence in the energy error norm is more linear compared to that in the displacement error 

norm. If the curves are linearized with respect to all the points in Figure 5.9a and Figure 5.9b, 

respectively, scheme 0p*s gives a convergence order of 2.022 (R2 = 0.9602) in the displacement 

error norm and an order of 1.136 (R2 = 0.9965) in the energy error norm. For the 𝑈𝑈𝑠𝑠2-spring 

model, if the curves are linearized with respect to the last four points in Figure 5.9c and Figure 

5.9d, respectively, it shows a linear convergence with a slope of 1.357 (R2=0.9979) in the 

displacement error norm and with a slope of 1.164 (R2=0.9993) in the energy error norm, which 

is different from what is observed in the corresponding 1D spring case. This shows the effect of 

non-constant stiffness matrix on the convergence of MMM. However, it is worth to note that the 

convergence curves (Figure 5.9a and Figure 5.9b) with MMM are still not the same as typical 

FEM convergences curves for linear problems in continuum mechanics. In fact the 𝑈𝑈𝑠𝑠1-spring 

model with the nearest neighbor interaction (N=1 in Eq. (5.4)) is also studied and it produces 
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similar convergence curves as with the N = 2 case. Note that even though only the first nearest 

neighbor interaction is considered, the constitutive description for atomistic models is still 

nonlocal. The difference between the convergence of MMM and FEM may be due to the fact 

that the interatomic interaction is nonlocal in nature; however, the constitutive laws for typical 

continuum problems are local. 

 

 

 

Figure 5.9: Convergence of the 2D 𝑈𝑈s1-spring model subject to the corresponding quadratic-

deformation force loading in the relative displacement error norm (a) and the relative energy 

(a) 

(c) 

(e) 

(b) 

(d) 

(f) 
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error norm (b); convergence of the 2D 𝑈𝑈s2-spring model subject to the corresponding quadratic-

deformation force loading in the relative displacement error norm (c) and the relative energy 

error norm (d); convergence of the 2D LJ model subject to the corresponding quadratic-

deformation force loading in the relative displacement error norm (e) and the relative energy 

error norm (f) 

5.1.2.2 Atomic LJ beam with the corresponding quadratic-deformation force loading 

The same quadratic deformation field used in the 2D spring models is employed where 

all pair distances between nearest neighbors are within the convex region. Figure 5.9e and Figure 

5.9f demonstrate convergence in displacement error norm and energy error norm defined above, 

respectively. When the element size decreases to certain point, it shows a linear convergence 

with a slope of 1.48 (R2=0.9849) in the displacement error norm and with a slope of 1.074 

(R2=0.9996) in the energy error norm, which is different from what is observed in the 

corresponding 1D LJ case. 

In Figure 5.9, as a whole, MMM shows similar convergence trend for both the  𝑈𝑈𝑠𝑠2-

spring and LJ models, as is observed in the 1D case; however MMM with the 𝑈𝑈𝑠𝑠1-spring shows 

an overall more linear convergence curves. Note that the discrepancy between different schemes 

is small for elements of larger sizes and is larger for elements with some small sizes and that the 

errors may increase slightly with scheme 1p0s and1p~s for certain element sizes. We will 

explain this observation in the next section from the point of view of error structure analysis. 

In the following two different loadings cases and the error structure analysis in Section 

5.2, it is found that both 𝑈𝑈𝑠𝑠1 and 𝑈𝑈𝑠𝑠2springs show similar behaviors. Since  𝑈𝑈𝑠𝑠1 is also fictitious, 

the results from the 𝑈𝑈𝑠𝑠1-spring model is not presented. 
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5.1.2.3 Atomic beams with uniformly distributed force loadings: spring and LJ potentials 

A uniformly distributed force loading fx =0.00005 and fy = -0.00005 in x and y directions, 

respectively, are applied to the 2D atomic 𝑈𝑈𝑠𝑠2-spring beam. 

A uniformly distributed force loading fx  = 0.0001 and fy = -0.0001in x and y directions, 

respectively, are applied to the 2D atomic LJ beam. 

In Figure 5.10, compared with Figure 5.9, less linear convergence is observed for any of 

the schemes when the element size is small and the discrepancy between different schemes is 

relatively smaller. This shows the effect of displacement smoothness on the convergence of 

MMM models. As in Figure 5.9 in the quadratic-deformation loading case for both models, 

MMM shows similar convergence trend. Similar to the results shown in Figure 5.5 in the 

corresponding 1D case, for both the 2D  𝑈𝑈𝑠𝑠2-spring and LJ models, all the four MMM models 

converge to molecular statics as the element size approaches the atomic spacing, monotonically. 

What is different from Figure 5.5 is that the convergence rate increases as the element size 

decreases. We will explain this in Section 5.2. 
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Figure 5.10: Convergence of 2D 𝑈𝑈s2 -spring model subject to the corresponding uniformly 

distributed force loading in the relative displacement error norm (a) and the relative energy error 

norm (b); convergence of 2D LJ model subject to the corresponding uniformly distributed force 

loading in the relative displacement error norm (c) and the relative energy error norm (d) 

5.1.2.4  Atomic beams with random force loadings of uniform distribution: spring and LJ 

potentials 

A random force loading with uniform distribution is applied to the atomic 𝑈𝑈𝑠𝑠2-spring 

beam.  The mean value of the random load fx and  fy are equal to the ones in the second loading to 

the 𝑈𝑈𝑠𝑠2-spring model in x and y directions, respectively. 

A random force loading with uniform distribution is applied to the atomic LJ beam.  The 

mean value of the random load fx and  fy are equal to the ones in the second loading to the LJ 

model in x and y directions, respectively. 

(a) 

(c) 

(b) 

(d) 
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Figure 5.11 shows the convergence of MMM schemes for the respective 2D 𝑈𝑈𝑠𝑠2-spring 

and LJ models. Compared with Figure 5.10, MMM behaves similarly. Thus, the analysis in the 

uniformly distributed loading case holds here. 

 

 

 

Figure 5.11: Convergence of 2D 𝑈𝑈𝑠𝑠2-spring model subject to the corresponding random force 

loading of uniform distribution in the relative displacement error norm (a) and the relative energy 

error norm (b); convergence of 2D LJ model subject to the corresponding random force loading 

of uniform distribution in the relative displacement error norm (c) and the relative energy error 

norm (d) 
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(b) 
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5.2 ERROR STRUCTURE ANALYSIS 

In Section 5.1, we have observed that the smoothness of the solution has a larger effect on the 

convergence performance of MMM schemes than the nonlinearity of interatomic interaction, 

since MMM domonstrates similar performance for both 𝑈𝑈𝑠𝑠2-spring models and LJ models in 

general. We also have observed the discrepancy between different MMM schemes. In this 

section, we will explain the performance  of scheme 1p0s, 1p~s and 1p@s for each case studied 

in Section 5.1 from the results of an error stucture analysis. 

The error structure analysis is performed based on the error decomposition defined in 

Section 3.1. The discretization and sampling errors for each tested case in Section 5.1 are 

quantified by the defined displacement and energy norms in Section 3.2. As mentioned earlier, 

the discretization error is determined by Scheme 0p*s and is fixed for a given discretization. The 

performance of a sampling scheme depends on the sampling error introduced. For Scheme 1p0s, 

1p~s and 1p@s, the total errors, discrtetization errors and sampling errors will be presented in 

the same plot. 

5.2.1 Error structure analysis of 1D atomic models  

5.2.1.1 Quadratic-deformation loadings 

Figure 5.12 and Figure 5.13 show the errors structures of scheme 1p0s ((a) and (b)), 1p~s ((c) 

and (d)) and scheme 1p@s ((e) and (f)) for the respective 1D spring and LJ models with the 

corresponding quadratic-deformation force loading. It can be seen that the respective 

dicretization errors in displacement and energy error norms converge at a respective constant rate 

of 2 and 1 for each scheme. However, the sampling error for each scheme has different trends. 
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For scheme 1p@s, the sampling error stays almost constant and the discretization error is at least 

5 orders larger in magnitude. In Figure 5.12e and Figure 5.12f, the sampling error is numerically 

zero for scheme 1p@s. This is why scheme 1p@s shows similar results with scheme 0p*s. This 

is consistent with our expectation since scheme 1p@s has more secondary sampling atoms 

around the interpolating rep-atoms and thus has less sampling error based on the error definition 

above. However, for scheme 1p0s and 1p~s, the sampling errors may increase. When the element 

size is large, the discretization error dominates the sampling error for all the schemes and that 

when the element size is reduced below certain point, the sampling error may be larger compared 

to the discretization error for scheme 1p0s and 1p~s. This is why the convergence rate changes 

and the dicrepancy between different schemes occurs. Note that all the schemes converge to 

molecular stactics where sampling error drops to zero (the zero-error points are not shown). 
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Figure 5.12: Error structure analysis of scheme 1p0s ((a) and (b)), 1p~s ((c) and (d))and 1p@s 

((e) and (f)) for the 1D spring model with the corresponding quadratic-deformation force loading 
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(d) 

(f) 
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Figure 5.13: Error structure analysis of scheme 1p0s ((a) and (b)), 1p~s  ((c) and (d))and 1p@s 

((e) and (f))for the 1D LJ model with the corresponding quadratic-deformation force loading 

5.2.1.2  Uniformly distributed force loadings 

Figure 5.14 and Figure 5.15 show the error structure of scheme 1p0s ((a) and (b)), 1p~s 

((c) and (d)) and scheme 1p@s ((e) and (f)) for the 1D spring and LJ models with the uniformly 

distributed force loadings, respectively.  Note that the resulted displacement fields are less 

smooth. 

(a) 

(c) 

(e) 

(b) 

(d) 

(f) 
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The respective discretization errors in displacement and energy error norms converge at a 

decreasing order. For scheme 1p@s, as what has been observed in Figure 5.12 and Figure 5.13 in 

the 1D quadratic-deformation force loading case, the sampling error is, at least 5 orders smaller 

than the discretization error (LJ model) or even zero numerically (spring model) for the same 

element size.  For scheme 1p0s and 1p~s, the discretization error dominates in the case of larger 

element sizes, but for elements of certain small sizes, the sampling error may be larger. However, 

since the decrease of discretization error is larger than the increase of sampling error, the total 

error still drops for these small element sizes.  Thus, for elements of large sizes, discretization 

error is of main concern. 

By comparing Figure 5.12 and Figure 5.14 as well as Figure 5.13 and Figure 5.15, the 

errors are relatively larger and deccrease slower with the same element size for the less smooth 

displacement field, compared with the quadratic deformation field. The reason for this is because 

using interpolation to approximate smooth functions is more accurate than to appriximate less 

smooth functions, with the same number of degrees of freedom and shape functions. This 

comparison shows the effects of smoothness of the displacements on the error structures of 

MMM schemes in 1D. 
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Figure 5.14: Error structure analysis of scheme 1p0s ((a) and (b)), 1p~s ((c) and (d)) and 1p@s 

((e) and (f)) for the 1D spring model with the corresponding uniformly distributed force loading 
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Figure 5.15: Error structure analysis of scheme 1p0s ((a) and (b)), 1p~s ((c) and (d)) and 1p@s 

((e) and (f)) for the 1D LJ model with the corresponding uniformly distributed force loading 

5.2.1.3  Random force loadings of uniform distribution 

Figure 5.16 and Figure 5.17 show the error structures of scheme 1p0s ((a) and (b)), 1p~s 

((c) and (d)) and scheme 1p@s ((e) and (f)) for the 1D spring and LJ models with the 

corresponding random force loadings of uniform distribution, respectively. It can be seen that 

similar performance of MMM is observed when compared to the one in Figure 5.14 and Figure 
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(e) 

(b) 

(d) 

(f) 



 141 

5.15 in uniformly distributed loading case. Thus, the analysis in sub-Section 5.2.1.2 is applicable. 

Note that the displacement fields have similar smoothness for the uniformly distributed loading 

and random loading of uniform distribution. This means that similar displacement smoothness 

will lead to similar error structure with MMM in 1D. 
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Figure 5.16: Error structure analysis of scheme 1p0s ((a) and (b)), 1p~s ((c) and (d)) and 1p@s 

((e) and (f)) for the 1D spring model with the corresponding random force loading of uniform 

distribution  
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Figure 5.17: Error structure analysis of scheme 1p0s ((a) and (b)), 1p~s ((c) and (d)) and 1p@s 

((e) and (f)) for the 1D LJ model with the corresponding random force loading of uniform 

distribution 
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5.2.2 Error structure analysis of 2D atomic models 

5.2.2.1 Quadratic-deformation loadings 

Figure 5.18 and Figure 5.19 show the error structures of scheme 1p0s ((a) and (b)), 1p~s 

((c) and (d)) and scheme 1p@s ((e) and (f)) for the respective 2D 𝑈𝑈𝑠𝑠2-spring and LJ models with 

the corresponding quadratic-deformation  force loadings. 

It can be seen that the respective discretization errors in displacement and energy error 

norm converge at an increasing rate at first and then shows linear convergence when the element 

size reduces to some point. 

The sampling errors for all the three schemes are simliar and discretization error 

dominates for larger element sizes. For scheme 1p0s and 1p~s, when the element size decreases 

to certain point, the sampling error in energy error norm may increase and the sampling error in 

displacemen error norm may go up or down slightly; however, for scheme 1p@s, the sampling 

error drops in both displacement and energy error norms. This is because scheme 1p@s is closer 

to scheme 0p*s for small element sizes, and hence secondary sampling atoms are around each 

interpolating repatoms to capture the non-local interaction between the elements more accurately. 

This sampling errror distribution for each scheme explains the observation in Section 5.1.2 for 

the corresponding loading case. 
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Figure 5.18: Error structure analysis of scheme 1p0s ((a) and (b)), 1p~s ((c) and (d)) and 1p@s 

((e) and (f)) for the 2D 𝑈𝑈𝑠𝑠2-spring model with the corresponding quadratic-deformation force 

loading 
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Figure 5.19: Error structure analysis of scheme 1p0s ((a) and (b)), 1p~s ((c) and (d)) and 1p@s 

((e) and (f)) for the 2D LJ model with the corresponding quadratic-deformation force loading 

5.2.2.2 Uniformly distributed force loadings 

Figure 5.20 and Figure 5.21 show the error structures of scheme 1p0s ((a) and (b)), 1p~s 

((c) and (d)) and scheme 1p@s ((e) and (f)) for the 2D 𝑈𝑈𝑠𝑠2-spring and LJ models with the 

uniformly distributed force loadings, respectively. Note that the resulted displacement fields are 

less smooth. 
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The respective discretization errors in displacement and energy error norms converge at a 

slightly increasing rate, which is different from the corresponding 1D case where the 

discretization errors converge at a slightly decreasing rate. It is clearly shown that the 

discretization error dominates sampling error for all the schemes over all element sizes. Thus, the 

sampling errors play a less important role and discretization error becomes the main concern.  In 

fact, the sampling errors for all the three schemes are similar for larger element sizes and there is 

a slight difference when the element size is small. Thus, overall, the performance of each scheme 

is similar or the discrepancy between different schemes is small, which is consistent with the 

observation from the corresponding loading case in Section 5.1.2. 

From the comparison of Figure 5.18 and Figure 5.20 and the comparison of Figure 5.19 

and Figure 5.21, it can be seen that the sampling errors are relative smaller or at the same order 

and the discretization error are relatively larger with the same element size for the less smooth 

displacement field, compared with the quadratic deformation field. As explained in the 

corresponding 1D case, using interpolation to appriximate functions of higher smoothness is 

more accurate with the same number of degrees of freedom and shape functions. This 

comparason shows the effect of displacement smoothness on the error structures of MMM 

schemes in 2D. 
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Figure 5.20: Error structure analysis of scheme 1p0s ((a) and (b)), 1p~s ((c) and (d)) and 1p@s 

((e) and (f)) for the 2D 𝑈𝑈𝑠𝑠2-spring model with the corresponding uniformly distributed force 

loading 
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Figure 5.21: Error structure analysis of scheme 1p0s ((a) and (b)), 1p~s ((c) and (d)) and 1p@s 

((e) and (f)) for the 2D LJ model with the corresponding uniformly distributed force loading 

5.2.2.3 Random force loadings of uniform distribution 

Figure 5.22 and Figure 5.23 show the error structures of scheme 1p0s ((a) and (b)), 1p~s 

((c) and (d)) and scheme 1p@s ((e) and (f)) for the 2D 𝑈𝑈𝑠𝑠2-spring and LJ models with the 

corresponding random force loadings of uniform distribution, respectively.  As in Figure 5.20 
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and Figure 5.21 for the uniformly distributed loading case, similar performamce of MMM is 

shown. Thus, the analysis in sub-Section 5.2.2.2 is applicable. 

 

Figure 5.22: Error structure analysis of scheme 1p0s ((a) and (b)), 1p~s ((c) and (d)) and 1p@s 

((e) and (f)) for the 2D 𝑈𝑈𝑠𝑠2 -spring model with the corresponding random force loading of 

uniform distribution 
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Figure 5.23: Error structure analysis of scheme 1p0s ((a) and (b)), 1p~s ((c) and (d)) and 1p@s 

((e) and (f)) for the 2D LJ model with the corresponding random force loading of uniform 

distribution 

5.2.3 An analysis of sampling errors 

As can be seen from the 5.2.2, the discretization error decreases when the element size is reduced. 

This is because more interpolating atoms or more degrees of freedom are added with smaller 
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element size. Thus, the interpolation by shape functions is more accurate to determine the 

information of ghost atoms, which is similar to that using smaller element sizes give better 

accuracy for FEM to solve problems in continuum mechanics. However, the behavior of 

sampling error for each scheme is more complicated. It may decrease or increase for different 

element sizes. The sampling error for each scheme is affected in two opposite directions when 

shrinking element sizes: (1) the number of primary sampling atoms increases with the decrease 

of element size.  Thus the energy of non-sampling atoms in an element that are at least one cutoff 

distance away from element edges (element bulk atoms) are better represented by the energy of 

the primary sampling atom within the same element, compared to coarser element sizes; this will 

increase the accuracy of sampling errors; (2) on the other hand, the number of non-sampling 

atoms that are within the cutoff distance from element edges (element edge atoms) increase with 

smaller element size. This introduces larger sampling errors since the assumption that the energy 

of edge atoms follows the energy distribution of bulk atoms is less valid, as explained in Section 

2.3.2. Thus whether the sampling error decrease or increase depends which factor dominates. 

Note that the sampling error can be minimized or removed by making these non-sampling atoms 

that are within a cutoff distance away from element edges as secondary sampling atoms. In fact, 

the number and the distribution of secondary sampling atoms of each scheme determine the 

performance of that scheme. 

It can be concluded from Section 5.1 and Section 5.2 that the sampling error plays a key 

role in the performance of MMM schemes for a given mesh. As such, the comparison of the 

sampling errors of MMM schemes for a given mesh will be informative to combine MMM 

schemes in pratice to optimize accuracy and efficiency. Figure 5.24 shows the sampling error 

comparison of the four MMM schemes in displacement and energy error norm, respectivly, for 



 153 

the representative model and loading case chosen above. Note that the sampling error in scheme 

0p*s is zero. In Figure 5.24, when the element size is large (>10r0),  the displacement sampling 

error norms for scheme 1p0s and 1p@s are almost the same and so is the energy sampling error 

norm. Scheme 1p~s shows better sampling errors with large element sizes because the surface 

energy is better represented, as the surface ghost atoms are made to be secondary sampling atoms. 

When the element size is small (<10r0),  scheme 1p@s shows good performance. Based on the 

observation above, for a given mesh, it is suggested that the MMM schemes should be combined 

in the following ways in optimizaing accuracy and efficiency: (1) scheme 1p0s is employed for 

elements with larger sizes (>10r0). Since in a multiscale model, large elements dominate the 

coarse-grained region with small deformation and that only one primary sampling atom is 

employed in scheme 1p0s, the efficiency of MMM can be imagined; (2) scheme 1p@s is 

suggested for the elements with an element size that is small (<10r0) in the coarse-grained region. 

 

 

 

Figure 5.24: Sampling error norm comparasion of the four MMM schemes for the 2D LJ model 

with the corresponding random force loading of uniform distrbution in displacement error norm 

(a) and energy error norm (b) 

 

 

(a) (b) 
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The above suggestion is drawn based on the study of the LJ beam model with special 

element sizes and shapes. Note that the cutoff distance of different potentials and element shapes 

will affect the two factors mentioned above and thus will affect the sampling error behavior. A 

more comprehensive study on how the cutoff distance of different potentials and element size 

and shape affect the sampling error behavior will be left for future research. In addition, the 

employement of both SRB and SRS will be considered for convegence study in 2D and 3D in the 

future. 

5.3 SUMMARY 

We have performed numerical convergence study and error structure analysis of four sampling 

schemes with respect to linear element in the proposed MMM framework. The effects of 

linearity of the interatomic interaction and smoothness of the displacement field on the 

convergence characteristics have been studied and analyzed. In particular, we have shown that: 

(1) All four sampling schemes, in general, show similar convergence trend for both the 

spring and LJ models for all the loading conditions in 1D and 2D.  The accuracy of each scheme 

for the spring models is slightly higher than that for the corresponding LJ models. All the MMM 

schemes tested show similar accuracy for large element sizes under all the loading cases, which 

demonstrates the effectiveness of the MMM method. 

(2) The smoothness of displacement field has a significant impact on the convergence 

behavior of each sampling scheme, which is similar to past results obtained in convergence study 

of FEM.  Only for the quadratic-deformation force loading case when the resulting displacement 

field is smooth, the schemes 1p@s and 0p*s demonstrate FEM-like behavior with convergence 
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orders of 1 and 2 in the displacement and energy error norms, respectively, in 1D and also shows 

linear convergence property with certain orders in 2D.  The discrepancy between the four 

schemes is relatively larger for more smooth displacement field than that for less smooth 

deformation. 

(3) Under the quadratic-deformation loading case in 2D, the 𝑈𝑈𝑠𝑠1-spring model where the 

stiffness matrix is constant behaves closer to FEM in terms of convergence behavior. The 

difference in the convergence property between MMM and FEM may be due to the fact that 

interatomic interaction is nonlocal in nature; however, the constitutive laws for typical 

continuum problems are local, which may not show up significantly in the  corresponding 1D 

cases. 

(4) The smoothness of displacement filed has a significant impact on the error structure 

of each sampling scheme. For the quadratic-deformation loading when the resulting 

displacement field is smooth, the discretization errors dominate sampling errors for large element 

size for all four schemes.  The sampling error may dominate discretization error for small 

element size only for scheme 1p0s and 1p~s.  For the other two loading conditions when the 

deformation is less smooth, the discretization error dominates the sampling errors for each 

scheme over all the element sizes. For the uniformly distributed loading and the random loading 

of uniform distribution, the MMM schemes show similar performance when the resulting 

displacement fields have similar smoothness. 
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6.0  CONCLUSIONS AND OUTLOOK 

6.1 CONTRIBUTIONS 

The main achievements of this dissertation are summarized as follows: 

(1) Proposed a novel energy-based coarse-grained molecular mechanics, named 

Multiresolution Molecular Mechanics (MMM), with a novel and general summation rule 

framework SRMMM that is valid for general interpolation shape functions. The general idea 

of SRMMM is to analytically derive the energy distribution of coarse-grain atomistic model for 

harmonical potential. Then the energy distribution is well represented by the energy of selected 

quadrature-type (sampling) atoms in a curve-fitting-like process. The optimal number, weight 

and position of sampling atoms are formulated and are shown to be shape-function dependent, 

similar to, for instance, which order of Gauss quadrature is employed for a given shape function. 

(2) Consistently decomposed SRMMM into the bulk summation rule SRB and the 

surface summation rule SRS. Mathematically, this decomposition is based on the observation 

that the energy distribution of the bulk region is different from that of the surface area. 

Physically, the energy distribution difference between the bulk and surface regions is caused by 

the fact that surface atoms are not fully-coordinated and are lack of bonding neighbors compared 

to their bulk counterpart. The optimal number, weight and position of sampling atoms for the 
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respective SRB and SRS are exactly same as proposed in the general framework SRMMM. The 

only difference is that are SRB and SRS are employed for bulk and surface regions, respectively. 

(3) Clearly identified and rigorously quantified different error sources, i.e. 

discretization and sampling errors, by novel error norms inspired by the corresponding 

counterparts in continuum mechanics. The discretization error is related to the element size 

and the order of employed shape functions, as in FEM. The sampling error only depends on the 

summation rule employed, similar to the numerical integration error introduced with each 

quadrature rule. Since discretization is fixed for a given discretization, the sampling error has to 

be minimized in order to minimize the total error. As such, the defined sampling error norms can 

be selected as a key indicator to quantify the performance of a proposed summation rule. 

(4) Numerically validated and compared the designed bulk summation rule SRB and 

its extension to nonlinear (Lennard-Jones) potential with other summation rules such as 

Gauss-quadrature-like rule, where SRB demonstrates its effectiveness in terms of accuracy 

and computational cost. The validation and comparison are firstly performed with respect to 

harmonic spring potential in 1D and 2D by employing linear, bilinear and quadratic elements to 

solve tensile, shear and bending deformations. Then the standard Lennard-Jones potential is 

employed to show the validity of SRB for nonlinear potentials. The success of SRB for nonlinear 

potential lies in the fact that any nonlinear potential can be well approximated within its convex 

region. Then SRB with LJ potential is employed to solve problems such as high order tensile, 

shear, bending and crack propagation problems. In addition, MMM has been compared to several 

existing methods where MMM shows a better interface compatibility and performance through a 

benchmark example. 
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(5) Numerically demonstrated the effectiveness of the proposed surface summation 

rule SRS by capturing surface effect in nanosized structures in 2D and 3D using 

quadrilateral and hexahedral elements. It is observed that the results of full atomistic (FA) 

simulation can be reasonably reproduced with MMM with less than 0.3% degrees of freedom of 

the original FA system .The good performance of SRS is expected and is easy to understand 

since SRS in 3D is, in fact, SRB in 2D and SRS in 2D is actually in SRB 1D. Physically, this is 

because that for cubes, the boundary of 3D model is two-dimensional surface and the edge of a 

2D surface is one-dimensional line. 

(6) Discovered that MMM shows similar behavior to FEM under certain 

circumstances in its numerical convergence and error structure analysis with respect to 

linear element in 1D and 2D. The effect of the regularity and smoothness of the exact solution 

on the convergence behavior have been considered by applying different loading conditions. It is 

observed that MMM converges in an order of 2 and an order of 1 in the respective displacement 

(L2) and energy (H1) fields in 1D under the condition that the exact solution is C0 smooth. In 

addition, the nonlinearity of interatomic potential on the convergence behavior is also studied. 

To explain the observed convergence phenomena, the respective discretization and sampling 

errors are analyzed for each tested element size. 

6.2 FUTURE OUTLOOK 

The proposed Multiresolution Molecular Mechanics with the novel summation rule SRMMM are 

innovative and has been demonstrated to have advantages over existing approaches. However, 

there is room to improve the current work to better its performance and applicability to large-
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scale systems of scientific interest. The improvement can be developed under the following 

directions: 

(1) Iso-parametric analysis: the finite elements employed in this work mostly have 

regular shapes, i.e. rectangles and right-angled triangles. However, in general, element shapes are 

curved and irregular. In Section 3.8, we have employed irregular quadrilateral elements as an 

example to employ SRMMM with irregular element. Even though SRMMM can be directly 

performed, the shape function constructed is not consistent across element boundaries. 

Numerically, this may introduce extra errors. As in conventional FEM, isoparametric elements 

are proposed to overcome this technical difficulty, especially for high order element with curved 

boundaries. As such, the same idea can be adopted in MMM to not only have consistent shape 

functions but also standardize the calculation of SRMMM. In addition, since the shape functions 

for the mapped element are, in general, rational not polynomial, numerical quadrature such as 

Gauss quadrature may not be exact in FEM. Similarly, SRMMM is also not exact for rational shape 

function. The performance of SRMMM for mapped elements needs to be tested. It is worthwhile to 

note that the order of numerical integration is often determined by the order of shape functions in 

local coordinates [125] in FEM. Analogously, the proposed summation rule SRMMM can still be 

determined based on the shape functions defined via the “parent” elements such that the 

derivation in Chapter 2.0 may still be valid when it is performed with respect to local coordinates. 

Thus, the proposed summation rule may be reasonably expected to have good performance for 

mapped elements. 

(2) Edge summation rule: As mentioned in Section 2.3, the energy of the atoms near 

element edges (called element edge atoms) within a potential cut-off distance does not follow the 

energy distribution of atoms in the bulk region (called element bulk atoms) (at least a potential 
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cut-off distance away for the edges) of each element. In this work, we have assumed that both 

element edge and bulk atoms have the same energy distribution. This assumption may not 

introduce large sampling errors for regular element shapes, as demonstrated in the work. 

However, it may introduce relatively large sampling error for elements with irregular shapes. As 

such, an edge summation rule SRE may be designed to further reduce introduced sampling error. 

For instance, the energy of the atom at the middle of each element edge may be selected to 

sample and represent the energy of element edge atoms. Or, the proposed surface summation rule 

SRS for surfaces can be directly employed for element edges since element edges are “surfaces” 

for each element. 

(3) Many-body potentials: the potentials employed in this dissertation to test the theory 

of MMM are harmonic spring and the standard Lennard-Jones potentials. For more realistic 

applications, for instance, metals, many-body potentials such as embedded atom model (EAM) 

have to be employed. As discussed in Section 2.4, in principle, the proposed summation rule 

SRMMM is independent of the interatomic potentials employed, similar to that quadrature rules 

employed do not depend on the constitutive relationships in FEM. Since any nonlinear 

interatomic potential can be well-approximated by a harmonic spring within its convex region, 

SRMMM may be expected to be effective for many-body potentials. For cases where large 

deformation occurs, a relatively higher order of Gauss quadrature may be required for nonlinear 

constitutive relationships in FEM. Similarly, a higher order of SRMMM may be employed for 

nonlinear interatomic potentials when large deformation is involved.   

(4) Time scale and finite temperature: the proposed SRMMM only coarse-grain the 

spatial scale and temporal scale is not considered. The numerical examples considered are at zero 

temperature. The time scale may be coarse-grained by incorporating techniques, for instance, 
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hyperdynamics – an approach for accelerating time in Molecular Dynamics (MD), into MMM. 

The acceleration in temporal space may be achieved by modifying MMM potential energy to 

reduce the energy barriers between metastable states in a way that reserves the characteristic 

dynamics of the system. Finite temperature may be considered by using the different thermostat 

such as Andersen Thermostat employed in MD simulation to maintain a system at constant 

temperature. Or, temperature-dependent interatomic potential may be utilized to consider thermal 

effect. 

(5) Adaptive analysis: Adaptive mesh refinement is a key requirement for MMM to be 

accurate and efficient throughout the whole simulation process. Adaptive analysis has to be 

achieved in two directions: (I) keep molecular or atomistic description locally to track material 

defects movement and (II) coarse-grain the regions that was modelled by atomistic description 

and now are behind or not important to capture material defects. To achieve this, an efficient and 

accurate error estimator is definitely needed. The error indicators employed in adaptive FEM 

analysis may be borrowed and modified. Or, some quantity defined for solid state system may be 

employed. For instance, the centro-symmetry parameter is a useful measure of the local lattice 

disorder around an atom and can be used to characterize whether the atom is part of a perfect 

lattice, a local defect, or at a surface. 

(6) Implementation and Parallelization: The implementation and parallelization is the 

final key step to enable MMM to solve large-scale problems of scientific and engineering 

interests. The ideas in implementing and parallelizing full MD to handle problems such loading 

balancing and effective communication may be borrowed and modified. This is possible since no 

continuum element is introduced and the framework of MMM is consistent with MD. One merit 
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of this framework consistency is that no differentiation between regions (such as local/nonlocal) 

is required. 

To summarize, we have proposed the Multiresolution Molecular Mechanics with a novel 

summation rule SRMMM to contribute the spatial length scale coarse-graining for general shape 

functions in coarse-gained molecular mechanics simulation. The validity and effectiveness of 

MMM have been demonstrated by numerical experiments. There remain improvements to be 

achieved, but the present work has lain down and contributed to the foundation of enabling 

coarse-grained molecular simulation to become a useful tool to firstly understand material 

deformation mechanism, then to discover new materials and as such to design materials by need. 
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