
 

TREG, CD4 TEM, AND CD8 TEMRA FAIL TO PREDICT ACUTE CELLULAR REJECTION 
IN LIVING-DONOR RENAL ALLOGRAFT RECIPIENTS 

 
 
 
 
 
 
 
 

by 

John T. Walters 

BS Chemistry, BA History and Philosophy of Science, University of Pittsburgh, 2008, 2008 

 

 
 
 
 
 
 
 

Submitted to the Graduate School of 

the Department of Biostatistics  

Graduate School of Public Health in partial fulfillment  

of the requirements for the degree of 

Master of Science 
 
 
 
 
 
 
 
 

University of Pittsburgh 

2016 

 



 ii 

UNIVERSITY OF PITTSBURGH 

GRADUATE SCHOOL OF PUBLIC HEALTH 
 
 
 
 
 
 
 
 

This thesis was presented 

 
by 

 
 

John T. Walters 
 
 
 

It was defended on 

December 2, 2016 

and approved by 

 

Ada O Youk, PhD, Associate Professor, Department of Biostatistics, Graduate School of 
Public Health, University of Pittsburgh 

 
Diana Metes, MD, Professor, Department of Surgery and Immunology, School of Medicine, 

University of Pittsburgh 
 

Thesis Director: Jeanine M. Buchanich, M.Ed., Ph.D., Research Assistant Professor, 
Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh 



 iii 

Copyright © by John T. Walters 

2016 



 iv 

ABSTRACT 

Since it was pioneered successfully, renal transplantation remains the only option for patients 

with stage-5 chronic, severe, and end-stage renal disease for whom dialysis treatment 

complications preclude its continued use.  Currently, and historically, the supply of suitable 

living-donor allografts is far less than their clinical need, and this gap cannot be offset by 

transplanting available cadaveric kidneys.  Immuno-suppressive and -induction therapies have 

been used to impair the recipients’ immune response against the allograft. Without such 

therapies many recipients’ immune systems would reject the organ, causing the patient to 

again experience renal failure.  It is therefore incumbent upon the public health community to 

ascertain the most effective treatment modality for transplanted organs to ensure that these 

limited resources are utilized in the most efficient manner possible. 

Thymoglobulin and Basiliximab induction therapies are two induction treatments available 

clinically for kidney transplantation.  Within this study, patients undergoing treatment using either 

of these induction-agents had their circulating T cell phenotypes analyzed and compared.  The 

goal of this study was to produce a statistical model, based on Generalized Estimating Equation 

methodology, that would predict episodes of acute cellular rejection (ACR) between the day of the  

transplant and up to one year after transplantation.  The selection of potential covariates was based 

upon previously identified T cell markers. 
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Due to small sample size, missing data, and both left- and right-truncation of the data, 

the model was not able discriminate between patients that underwent ACR from those that did 

not based upon the a priori markers of interest. However, the analysis did identify different 

memory T cell proportions that may be predictive of ACR in patients treated with 

Thymoglobulin or Basiliximab and warrants further study.  The public health impact of a 

predictive model would be to increase the quality and duration of life in individual patients and 

reduce the burden of End Stage Renal Disease (ESRD) within the US population as a whole. 
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1.0  INTRODUCTION 

Chronic stage-5 kidney disease, also called end-stage renal disease (ESRD), is a persistent disease 

endemic within the United States.  From 1996 to 2006 the incidence rate (per million per year) of 

ESRD increased from 328.1 to 386.4.  Since its peak in 2006, the incidence rate fell to 352.2 in 

2013; however, the incident cases of ESRD have remained steady over the same time period at 

roughly 101,000 cases per year.  As of 2013, ESRD’s four main causes were diabetes, 

hypertension, glomerulonephritis, and cystic kidney disease comprising 53.4%, 34.9%, 9.2%, and 

2.6% of new cases, respectively.  As a result of the steady incidence and persistent nature of ESRD, 

as well as an etiology which includes a factor comorbid with another increasing public health 

concern, obesity, the prevalence of ESRD has increased steadily each year from 1996 to 2013.  

The primary means of treating ESRD is via hemodialysis or, more infrequently, peritoneal dialysis.  

Because dialysis treatments only address the symptoms of ESRD, these modalities do not reduce 

the prevalence of the disease.  Renal transplantation, however, addresses the cause of ESRD by 

providing the patient with a functional kidney, and eliminates the need for regular dialysis 

treatments.[1], [2] 

The first successful human kidney transplant was performed in 1954 by Dr. Joseph E. 

Murray in Boston’s Peter Bent Brigham Hospital (now Brigham and Women’s Hospital).[3]  While 

it was a remarkable feat of surgical technique, it was only a long-term successful transplant because 

the patient was given a kidney from his identical twin brother, meaning that the transplanted organ 
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was genetically identical (syngeneic) to the host.[4]  As a result, the new kidney did not face the 

typical host vs. allogenic (of different genetic composition) transplanted organ (allograft) 

immunological response seen in the transplantation of kidneys from one individual to another with 

non-identical DNA.  A common type of such an immunological response towards a solid organ 

transplant is acute cellular rejection.[5], [6] 

Acute cellular rejection (ACR) episodes are characterized by large numbers of infiltrating 

host immune cells.  Those cells can form dense clusters within the allograft tissue at particular 

locations, and they may also be profuse throughout the allograft.  The presence of such 

immunocellular infiltrate creates two functional threats to the longevity of the allograft: first, high 

numbers of activated, allograft-specific adaptive immune cells (such as T cells) directly damage 

the allograft; second, clusters of these cells can serve to facilitate proliferation of allograft-specific 

T cells that will further damage the allograft.[7]  Of particular interest are CD4 and CD8 memory 

cells, which are recognized as critical mediators of ACR, and T regulatory cells, which serve to 

blunt the activity of T cells that might cause ACR.[6]  For the duration of an ACR episode, the 

allograft’s ability to function is reduced, and even after the episode is resolved clinically, damage 

to the tissue persists.  As such, ACR episodes in kidney transplant recipients present a significant 

threat to the continued function of the kidney allograft, and may ultimately lead to the complete 

loss of the transplanted organ.[5] 

Due to the functional impact of episodes of ACR, their discovery after a patient becomes 

symptomatic is not ideal.  Currently they can only be defined pathologically via needle biopsy, a 

procedure which removes a small cylindrical tissue sample from the kidney allograft for 

histological analysis.  By the time they have been discovered, host immune cells have most likely 
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done permanent damage to the allograft, limiting its ability to function within its recipient and 

increasing the risk for additional ACR episodes.[6] 

While the benefits of preventing the loss of a kidney are dramatic for any particular 

recipient, from an epidemiological perspective, diminishing the rate of renal allograft loss from 

ACR is imperative.  The pool of potential transplant recipients continues to grow at a faster rate 

than the availability of donor allografts, and this has caused more patients to wait longer for 

transplants.  In 2002, 2012, and 2016, the number of patients awaiting kidney transplant (and the 

percentage waiting longer than 5 years for a transplants) was 51,004 (9.7%), 92,885 (13.9%), and 

99,333 (15.8%), respectively.[2], [8]  The loss of function of an allograft exacerbates the increasing 

disparity between donor organ availability and need.  In 2014 and 2015, the number of allografts 

transplanted into patients receiving their second transplant was 2,003 and 2,319, respectively, 

which accounted for 11.7% and 13.0% of all kidney transplants performed in those years.[2]  Once 

the primary allograft is lost, patients awaiting subsequent transplants experience longer wait-times, 

with 23.8% waiting longer than 5 years for another allograft compared with 14.6% waiting as long 

for their first allograft.[1]  Therefore, in order to reduce the burden of medical care required for 

patients after the failure of their primary kidney allograft, and reduce the waiting period for all 

patients receiving kidney transplants, a means of predicting ACR events before irreparable 

damage, or loss, of a kidney allograft occurs is needed. 



 4 

2.0  CLINICAL BACKGROUND FOR RENAL TRANSPLANTATION 

The immune response to an allogenic transplant is for host’s immune cells to attack allogeneic 

cells and tissues that express foreign MHC molecules. Acute and chronic T cell mediated rejection 

(TCMR) are two means by which a functioning allograft can be harmed so severely that it will no 

longer function.[6], [9]  Great strides have been made in reducing the host response against 

allografts, and as a result, kidney transplantation is the best available treatment for patients 

experiencing end-stage renal failure.[10]  In addition to the application of corticosteroids[11] and 

calcineurin inhibitors[12] used to suppress the recipient’s immune system, a method for reducing 

the risk of TCMR is the use of induction therapy at the time of the organ implantation.[13], [14], [15], 

[16] 

Induction therapy artificially induces immunological non-response to the allograft by 

means of manipulation of the hosts’ adaptive and/or innate immune systems.  Depleting 

(Thymoglobulin) and non-depleting (Basiliximab) therapies are currently FDA approved and 

available in the clinic.  While tolerance has been achieved in animal models with different 

induction therapy regimens, complete and lasting tolerance induction remains elusive in the 

field of human solid organ transplant.[13], [17], [18]  Allograft tolerance is the ultimate goal of 

transplantation research, and for the purposes here, it will be defined as the absence of host 

immunological attack of, or damage to, the allograft.  This definition includes insults to the 

allograft caused by both the innate and adaptive immune systems and all sub-categories 

thereof, i.e., TCMR, ACR, chronic humoral rejection, dendritic cell mediated rejection, etc.[7], 

[9] 
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2.1 RENAL ALLOGRAFT OUTCOMES 

The rates for long-term renal allograft survival have improved markedly since the advent of new 

pharmacological modalities.  The half-life of deceased donor renal allografts increased from 6.6 

years in 1989 to 8.0 years in 1995 then 8.8 years in 2005.[19]  Additionally, survival rates of 

transplanted kidneys have reached 92.0% and 96.5% for patients receiving deceased- and living-

donor allografts, respectively, one year after transplantation.[19]  While strides have been made in 

prolonging long-term graft survival in kidney transplant patients, there is still a significant, and 

persistent, proportion of recipients who experience ACR fewer than 90 days after transplantation, 

despite increasingly potent inductive and immunosuppressive regimens.[5]  Thymoglobulin® and 

Basiliximab have been shown to lower the incidence of ACR episodes versus placebo and previous 

treatment modalities, and are considered to be part of standard-of-care drug protocols for patients 

receiving renal allografts.[20], [21] 

Despite the known benefits of using induction protocols, their use also has drawbacks.  

When T cell depleting agents, such as Thymoglobulin, are used, the patients’ immune cells 

gradually become reconstituted.  The new populations of T cells quickly fill the place of T cell 

populations which developed over the patients’ lifetimes.  Therefore, the reconstituted T cell 

memory subsets differ from those that were depleted, and the new subsets that proliferate in the 

patient are associated with increased instances of delayed ACR.[15], [19] 

In addition, the non-depleting agents, such as Basiliximab, lower regulatory T cells (TREG), 

which are associated with long-term graft survival and graft tolerance, by blocking the IL-2Rα 

ability to signal.[22], [23]  Thus, non-depleting induction agents also have the potential to interfere 

with natural regulatory mechanisms and potential to skew the T cell population to favor 

alloreactive T cells.[24]  This means that, while such therapies have been able to lengthen mean 
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graft survival of allografts, they have been shown to be imperfect treatments, as they defer attack 

on the allograft (albeit for years) rather than prevent the host’s rejection of the allograft.  Only 

through further exploration can it be known if the T cell memory profiles created by induction 

therapies can be further modulated to entirely avoid TCMR or ACR rather than simply postponing 

these allograft-damaging episodes. 

2.2 LYMPHOCYTE MARKERS 

Throughout this study phenotypic analysis and flow cytometry, are used to identify subsets of 

lymphocytes.  are used to identify subsets of lymphocytes. Receptors on the surface of the cells or 

transcription factors in the nucleus, were chosen to identify cells that play important roles during 

ACR or allograft acceptance. 

2.2.1 CD3, CD4, and CD8 

Clusters of differentiation (CD) -3, -4, and -8 are proteins expressed on the cellular surface of T 

cells and are markers of determining cellular type.  CD3 is the signaling component of the T cell 

receptor (TCR), and is used throughout this study to differentiate T cells from non-T cells.  CD4 

and CD8 are two different co-receptors for the TCR and are indicative of the particular 

functionality of T cells.  T cells have either CD4 or CD8 expression once they leave the thymus 

and circulate throughout the body, but not both.  CD4+ T cells are often called helper T cells as 

their release of cytokines upon antigen recognition influences the activation and proliferation of 
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cytotoxic T cells.  Cytotoxic T cells are CD8+, and they able to attack and kill cells with the use 

of perforin and granzymes proteins, which they produce upon activation.[25] 

2.2.2 CD45RO, CD45RA, and CD62L 

The transmembrane protein CD45 has multiple isoforms, but the two of interest here are CD45RO 

and CD45RA, of which only one is expressed on the surface of a T cell at a time.  CD62L, or L-

selectin, is a protein which drives cells into secondary lymphoid tissues such as lymph nodes, 

tonsils, and the spleen.  Using a matrix of CD45RO versus CD62L expression, T cells can be 

broken down into the four functional categories seen Table 2.1: [25] 

 

Table 2.1: T cell Memory Subsets Defined by CD45RO and CD62L 

 CD45RO- CD45RO+ 
CD62L+ Naïve (TN) Central Memory (TCM) 
CD62L- Effector Memory, RA+ (TEMRA) Effector memory (TEM) 

2.2.3 FoxP3 and CD25 

Forkhead box protein P3 (FoxP3) is located in the cellular nucleus.  This protein is an essential 

transcription regulator as it suppresses transcription of genes encoding for pro-inflammatory 

cytokines like interleukin-2 and interferon-gamma.  FoxP3 is used for the identification of TREG in 

CD4+ T cells along with a high (as opposed to low and medium) expression of CD25, a marker of 

activation of T cells, and a lack of CD127 (IL-7Rα) expression.[25] 
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2.2.4 T Cell Subsets of Interest 

The identification of subsets of immune cells depends upon the markers expressed by those cells.  

The subsets of interest identified from previous studies with similar cohorts, but a different 

induction agent, are TREG defined as being CD3+/CD4+/CD25hi/FoxP3+, CD4 TEM defined as 

being CD3+/CD4+/CD62L-/CD45RO+, and CD8 TEMRA defined as being CD3+/CD8+/ CD62L-

/CD45RO-.[17], [23], [26]  These cells types were examined in this study to determine if changes in 

their frequency could predict ACR episodes. 
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3.0  ANALYSIS METHODOLOGY 

General estimating equations (GEE), are a form of generalized linear models (GLM) that take into 

account correlation introduced from multiple measurements of an individual.[27] 

3.1 GENERALIZED LINEAR MODELS 

Generalized Linear Models (GLM) refers to a large class of statistical models employed to relate 

outcomes to linear combinations of predictor variables, which can be adapted for many different 

types of data.  These data types include, continuous, ordinal, count, rate, and binary. 

In its most basic form, the generalized linear model may be written as seen in Equation 3.1.[28] 

Equation 3.1    𝑦𝑦𝑖𝑖 =  𝛸𝛸𝑖𝑖𝛽𝛽 +  𝜀𝜀𝑖𝑖 ~ iid 𝑁𝑁(0,𝜎𝜎2) 

Equation 3.1 states that the expected value for the random variable, y, for a given case, i, 

may be predicted by the observed values of covariates for that case, Xi, multiplied by the 

coefficients for those covariates, β.  The error between the predicted value for a given case, yi, is 

accounted for by the error term, εi.  Sample error, ε, for this model is assumed to follow a normal 

distribution with a mean 0 and standard deviation, σ.  This assumption is a consequence of the 

foundational assumption that the sampled random variables in the model are independent and 

identically distributed (iid).[28] 

The distribution of expected values, μi, of Yi given observed values of Xi (shown in 

Equation 3.2) need not be normally distributed. 

Equation 3.2     𝜇𝜇𝑖𝑖 = 𝐸𝐸(𝑌𝑌𝑖𝑖|𝑋𝑋𝑖𝑖) 



 10 

When fitting a GLM, the most appropriate distribution should be chosen in accordance 

with the observed data being fit to the model.  This is accomplished by utilizing a link function, 

defined in Equation 3.3.[28] 

Equation 3.3     𝑔𝑔(𝜇𝜇𝑖𝑖) = 𝜂𝜂𝑖𝑖 

In the special case of µ = η, the GLM would function the same as classical (Gaussian) 

linear models.  This is known as the identity link.  However, GLM can be easily fit for any type of 

statistical distribution from the exponential family (the pdf of whose “natural form” was described 

by McCullagh and Nelder (1989), shown in Equation 3.4) to allow proper specification of the 

outcome variable structure.  For a function that is a member of the exponential family, θ is the 

scalar parameter, φ is the dispersion parameter, and b(θ), a(φ), and c(y, φ) are known functions.[28] 

Equation 3.4   𝑓𝑓𝑌𝑌(𝑦𝑦|𝜃𝜃) = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑦𝑦𝑦𝑦−𝑏𝑏(𝑦𝑦)
𝑎𝑎(𝜑𝜑)

+  𝑐𝑐(𝑦𝑦,𝜑𝜑)� 

If the proper distribution of the data is identified, so too is the proper variance structure from 

which it comes, as the first derivative of b(θ) is the distribution’s mean, and its second derivative 

is the distribution’s variance.  It is important to note that θ in the equations above stand for any 

number of parameters, so GLM are able to account for an equally large number of variable 

coefficients, β.[28] 

3.1.1 GLM Assumptions 

Applying GLM requires that a set of assumptions be met in order for valid statistical inferences to 

be made.  The assumptions placed upon GLM are as follows: 

1) The data Y1, Y2,…, Yn are independently distributed, i.e., the cases are independent; 
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2) Yi, the dependent variable, need not be normally distributed, but it will typically take the 

distribution of one of the members of the exponential family; 

3) There is a linear relationship between the transformed dependent variable, via the link 

function, and the independent variables; 

4) Missing data are missing completely at random (MCAR); 

5) And, large sample approximations are valid for the data, as they are required for maximum 

likelihood estimation (MLE) used to estimate the parameter. 

Neither normal distribution of errors, nor homogeneity of variance need to be assumed in order to 

properly employ GLM.[28] 

3.1.2 GLM Limitations 

Generalized linear models have two main limitations.  First, only linear predictors may be used in 

the predictor components of the model.  Second, requiring independent responses explicitly 

precludes analysis of the type of individual clustering expected in longitudinal studies.[28] 

3.2 GENERALIZED ESTIMATING EQUATIONS 

The Generalized Estimating Equation (GEE) approach is a natural extension to GLM that relaxes 

the restriction of independent response.  This difference is key in using GEE for longitudinal data 

analysis.[27] 
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3.2.1 GLM and GEE Similarities 

The most important conceptual similarity between GLM and GEE is the types of models, and the 

types of hypotheses, they can address.  Both methods are designed to explore marginal models, 

i.e., show the risk of a population given a particular set of treatments or exposures, while only 

GLM can address conditional models, those designed to address the risk of an individual given 

certain parameter values.[27] 

3.2.2 Marginal GEE Models 

Marginal GEE models are designed and employed to explain population- or cohort-wide 

probability averages for an outcome based upon covariate values over time.  These probabilities 

average over the random-effects distribution of the population.  As such, the primary use of 

marginal models is to describe both the positive and negative effects of each covariate as it relates 

to an outcome of interest and also the magnitude of its influence over the outcome while accounting 

for within group correlation over time.[27] 

Marginal models can give probability for an outcome given treatment or exposures (in the 

binary case) or weighted risk against continuous variables that applies to the whole cohort.  The 

probability for a given case, pi, in a binary GLM model is shown in Equation 3.5 (given that Yi = 

1 indicates that the presence of a treatment or exposure), where Xi and β are the values for the 

case’s observed variables and model’s coefficients for the covariates, respectively.[27] 

Equation 3.5  𝑒𝑒𝑖𝑖 =  𝐸𝐸(𝑌𝑌𝑖𝑖|𝑋𝑋𝑖𝑖) =  𝑃𝑃(𝑌𝑌𝑖𝑖 = 1|𝑋𝑋𝑖𝑖) =  exp (𝑋𝑋𝑖𝑖𝛽𝛽)
1+ exp (𝑋𝑋𝑖𝑖𝛽𝛽)

 

The GLM equation above can be adapted to determine probabilities of outcomes in GEE 

(see Equation 3.6), and it can also be easily converted to determine odds ratios, OR, between 



 13 

treatments or exposures (see Equation 3.8).  In Equation 3.6 the probability of an outcome at a 

given time-point, pij, is determined by the observed values of the covariates at all observed time-

points, Xij, and the values of the coefficients of the model, β, given that Yij equal to one indicates 

the outcome of interest.  In Equation 3.6, 3.7, and 3.8 the subscript i indicates a given subject and 

subscript j indicates a given time-point of observation.[27] 

Equation 3.6 𝑙𝑙𝑙𝑙𝑔𝑔𝑙𝑙𝑙𝑙(𝑒𝑒𝑖𝑖𝑖𝑖) =  𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖𝑖𝑖� =  𝑃𝑃�𝑌𝑌𝑖𝑖𝑖𝑖 = 1�𝑋𝑋𝑖𝑖𝑖𝑖� =  𝛽𝛽𝑋𝑋𝑖𝑖𝑖𝑖 

Obtaining an OR from a GEE model for a given exposure or treatment can be done utilizing 

the coefficients of the model.  Equation 3.7 is a GEE model of the simplest case in which only a 

single, binary treatment or exposure variable, Xij, is observed.  The coefficients of the model shown 

in Equation 3.7 β0 and β1 are the baseline coefficient for all subjects observed and the coefficient 

associated with receiving treatment, respectively.[27] 

Equation 3.7 𝑙𝑙𝑙𝑙𝑔𝑔𝑙𝑙𝑙𝑙�𝑒𝑒𝑖𝑖𝑖𝑖� = 𝑃𝑃�𝑌𝑌𝑖𝑖𝑖𝑖 = 1�𝑋𝑋𝑖𝑖𝑖𝑖� =  𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖𝑖𝑖 

The OR of an outcome based on receiving a treatment or exposure given the model from 

Equation 3.7 can be found in Equation 3.8.  The OR is defined by ratios of probabilities of 

outcomes at observed time-points, Yij, conditioned on the treatment received at those times, Xij.[27] 

Equation 3.8 𝑂𝑂𝑂𝑂 = 
𝑃𝑃�𝑌𝑌𝑖𝑖𝑖𝑖=1|𝑋𝑋𝑖𝑖𝑖𝑖=1� 𝑃𝑃�𝑌𝑌𝑖𝑖𝑖𝑖=0|𝑋𝑋𝑖𝑖𝑖𝑖=1��
𝑃𝑃�𝑌𝑌𝑖𝑖𝑖𝑖=1|𝑋𝑋𝑖𝑖𝑖𝑖=0� 𝑃𝑃�𝑌𝑌𝑖𝑖𝑖𝑖=0|𝑋𝑋𝑖𝑖𝑖𝑖=0��

 = 
𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽0+𝛽𝛽1)
𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽0)  = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽1) 

3.2.3 GEE Assumptions 

As is the case with GLM, GEE analysis has a number of assumptions which must be met in order 

for the model to be employed correctly.  They are: [27] 

1) The data Y1, Y2,…, Yn are not independently distributed, i.e., the cases are correlated or 

clustered; 
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2) Covariates can have interaction terms and may be non-linear transforms of independent 

variables; 

3) Variance does not need to be homogenous between estimated parameters; 

4) Errors are correlated; and 

5) Missing data are MCAR. 

3.2.4 GEE Correlation Matrices 

In GEE, correlation matrices are used to account for the lack of independence in clustered 

observations.  Values for the matrix range from zero to one where zero indicates no correlation 

between observations in a cluster, and values approaching one indicate very high correlation 

between observations.  The matrix is arranged such that the first value in each column and row is 

for the first observation and each subsequent column and row is for each subsequent observation.  

Correlation matrices are always square with its main diagonal values equal to one.[27] 

GEE is robust relative to the incorrect specification of correlation structure, however, a model 

fit with the correct correlation structure will produce more accurate estimates of variable 

coefficients and standard errors for the coefficients.  For a GEE model fit to longitudinal data 

collected from patients it would be expected that the most appropriate correlation matrix would 

show that the closer observations are in time, the more highly they are correlated.  Stationary and 

Autoregressive correlation matrices are two examples with this type of time-dependence.  

Illustration of different correlation matrices is depicted in Table 3.1 where ρ is a given correlation 

value exclusively between zero and one.[27] 
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Table 3.1: Examples of GEE Correlation Matrices 

Independence Exchangeable Stationary (m=1) AR1 Unstructured 

�
1 0 0
0 1 0
0 0 1

� �
1 𝜌𝜌 𝜌𝜌
𝜌𝜌 1 𝜌𝜌
𝜌𝜌 𝜌𝜌 1

� �
1 𝜌𝜌 0
𝜌𝜌 1 𝜌𝜌
0 𝜌𝜌 1

� �
1 𝜌𝜌 𝜌𝜌2
𝜌𝜌 1 𝜌𝜌
𝜌𝜌2 𝜌𝜌 1

� �
1 𝜌𝜌12 𝜌𝜌13
𝜌𝜌21 1 𝜌𝜌23
𝜌𝜌31 𝜌𝜌32 1

� 

3.3 MODEL SELECTION CRITERIA 

As opposed to GLM, GEE relies on quasi-likelihood estimation rather than maximum likelihood 

estimation.  Thus, methods used for model selection in GLM, such as Akaike information criterion 

(AIC) and Bayesian information criterion (BIC) are inappropriate for GEE.  Quasi-likelihood 

under the independence model criterion (QIC) is an adaptation of AIC that can be used in its place 

when evaluating the value of one model over another within GEE.  The similarities between AIC 

and QIC can be seen in Equation 3.9 and 3.10, respectively.[29], [30] 

Equation 3.9    AIC =  −2𝐿𝐿𝐿𝐿 + 2𝑒𝑒 

Equation 3.10   QIC =  −2𝑄𝑄(�̂�𝜇; 𝐼𝐼) + 2𝑙𝑙𝑡𝑡𝑡𝑡𝑐𝑐𝑒𝑒(Ω�𝐼𝐼−1𝑉𝑉�𝑅𝑅) 

 In the Equations 3.9 and 3.10 above, LL stands for log likelihood, p indicates the number 

of parameters, 𝑄𝑄(�̂�𝜇; 𝐼𝐼) is the quasi-likelihood function with an estimated mean of �̂�𝜇 given I, the 

independent covariance structure, 𝛺𝛺�𝐼𝐼 is the variance estimator under the independence correlation 

structure, and 𝑉𝑉�𝑅𝑅 is the robust variance estimator.  Both AIC and QIC, therefore, give lower values 

for models which have a higher (quasi-)likelihood and fewer parameters, all else being equal.  QIC 

can also be used to compare GEE models with different assigned covariance structures if they have 

the same parameters, as the values in the 𝑉𝑉�𝑅𝑅 matrix are dependent upon the chosen covariance 
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structure.  By selecting GEE models with the lowest QIC values, the most parsimonious model 

with the best parameters and goodness-of-fit may be chosen.[29], [30] 

 The last aspect of model selection resides in the inclusion, or not, of interaction terms.  If 

an interaction between covariates within a model is found to be significant, the parent model and 

the model constructed by adding the interaction term to it may be compared using a modification 

of QIC termed QICu.  QICu adds to the value of QIC in proportion to the number of parameters 

within the model.  As a result, when two models differ in only one parameter a QICu comparison 

will weigh the information added by the additional parameter against the preference for as 

parsimonious a model as possible.  Equation 3.11 retains the variable definitions from Equations 

3.9 and 3.10 and describes QICu.[30] 

Equation 3.11  𝑄𝑄𝐼𝐼𝑄𝑄𝑄𝑄 =  −2𝑄𝑄(�̂�𝜇; 𝐼𝐼) + 2𝑒𝑒 

3.4 GEE MODEL APPLICATION 

In order to test the hypotheses that TREG, CD4 TEM, and/or CD8 TEMRA distributions were important 

predictors of ACR events, GEE models were built.  The process of building these models began 

with description and cleaning the data, determining which parameters were statistically significant, 

construction and comparison of models containing statistically significant parameters, and 

ultimately testing the best model against the data to determine its utility in discerning between 

patients at higher risk of ACR episodes from those that were not. 

The strategy for parameter selection was to test parameters of interest individually against 

the binary outcome variable of a patient experiencing ACR on their subsequent or not, with the 

inclusion criterion being a p-value of 0.15 or less using the same GEE analysis intended for the 
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built model.  The a priori assumption of covariance was that the data would be auto-regressive 

due to intra-patient correlation. 

3.5 MISSING DATA AND GEE ANALYSIS 

Missing data are a problem for accurate analysis of data in most statistical setting.  When applying 

GEE to longitudinal data, thorough and accurate characterization of the type the missing data is 

paramount because incorrect specification of the type of missing data during analysis can lead to 

biased or inefficient estimators.[31]  Three types of missing data will be discussed: data missing 

completely at random (MCAR), data missing at random (MAR), and data missing not at random 

(MNAR).[32] 

3.5.1 MCAR 

Data are considered to be MCAR if failure to observe the data does not depend on the outcome of 

interest, observed covariate values, or unobserved data.  Simply put, if data are MCAR, the missing 

data constitutes a random sample of all data that could have been observed.  As a result, no bias is 

introduced into the inferences drawn from analyzing the data, and this type of missing data can be 

appropriately analyzed using GEE.[32] 
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3.5.2 MAR 

Data are MAR when the missingness of the observed data does not depend on the outcome of 

interest.  However, the MAR assumption is less restrictive than the MCAR assumption because it 

allows for the failure to observe data to depend upon unobserved data.  Because MCAR is a special 

case of MAR, all data that are MCAR are also MAR.[32]  Data that are MAR but not MCAR can 

introduce bias into GEE analysis.  Other methods that appropriately account for data being MAR, 

such as mixed models, need to be utilized for such data.[33] 

3.5.3 MNAR 

Data are MNAR when the failure to observe the data depends upon the data that could have been 

observed.  In this case, missing data mechanisms must often be explicitly modeled, and ultimately, 

statistical inferences found using this type of methodology will be sensitive to the accuracy with 

which the missing data are modeled.  Adding to the complexity MNAR data is that typically the 

assumptions made in developing these models may not be verifiable.[32] 

3.5.4 Study Data and the MCAR Assumption 

In order to analyze data using GEE the MCAR assumption must be met.  With data that are 

multivariate normal, Little’s MCAR test can be used to determine if the MCAR assumption is 

met.[34], [35]  However, this test is not appropriate for application to these data.  While the original 

test has been adapted to accommodate arbitrary missingness, the non-binary covariates come from 

binomial distributions, some of which have small probabilities.  This drove the data to depart from 
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univariate normality (at least one covariate had p < 0.05 for the Shaprio-Wilk test at each time-

point) as well as multivariate normality (Doornik-Hansen test values of p < 0.0001 at all time-

points). 

Because no broadly applicable test was available to ascertain if the MCAR assumption was 

violated, indicator variables for missing data were generated to determine if any were statistically 

significant in predicting ACR episodes.  These variables were assigned a value of one if the datum 

was missing and zero if it was observed. 
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4.0  STUDY DESIGN AND IMPLEMENTATION 

4.1 STUDY HYPOTHESES 

The hypotheses examined within this study stemmed from previous a cross-sectional study 

conducted within the University of Pittsburgh,[23] and was supported by observations from other 

findings in the literature.[15], [26], [36], [37]  The aim of the study was to create a predictive statistical 

model that would predict ACR episodes.  Within this study a predictive model is defined as one 

which would indicate changes in the allograft recipients’ immune system during the visit prior to 

the occurrence of ACR (i.e., if a patient experienced ACR at 90 days post-Tx, a predictive model 

should indicate a change based on that patient’s immunological profile at 30 days post-Tx). 

The study was designed to explore whether or not the proportion of TREG relative to the 

rest of the CD4+ T cell population could be used as a predictor of rejection episodes.  TREG have 

been shown to suppress T cell reactivity in a dose-dependent fashion and correlate with ACR 

episodes.[18]  As such, the first hypothesis for the study was whether the proportion of TREG from 

CD4+ T cells could be used to predict patient ACR episodes. 

Decreased prevalence of terminally-differentiated effector memory T cells that were also 

CD45RA+ (CD8 TEMRA), was previously shown to be cross-sectionally correlated with patients 

undergoing ACR.[23]  It was hypothesized that there may be a longitudinal correlation between the 

proportion of CD8 TEMRA versus the remainder of patients’ CD8+ T cell populations.  As a result, 

the second hypothesis tested in this study was that the proportion of CD8 TEMRA relative to all 

CD8+ T cells within patients would predict ACR episodes. 
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The third, and final, hypothesis to be tested in this study resulted from a finding that patients 

characterized as “reactive” (neither tolerant nor experiencing ACR) had elevated levels of CD4+ 

CD45RO+ (CD4 TEM) T cells compared with kidney transplant recipients who appeared 

tolerant.[23]  Resultantly, the third hypothesis to be tested in this study was that the proportion of 

CD4 TEM out of all CD4+ T cells within patients would predict ACR episodes. 

4.2 STUDY IMPLEMENTATION 

The data used for this thesis were obtained from blood samples collected as part of a parent clinical 

study at the University Hospital and Christ Hospital in Cincinnati, Ohio.  The parent study was 

designed as a 12-month, prospective, randomized, dual center, open label pilot study to evaluate 

the safety and efficacy of Myfortic® (mycophenolic acid) loading regimens in combination with 

Simulect® (Basiliximab) induction vs. Thymoglobulin induction alone and with Prograf® 

(tacrolimus) in early corticosteroid withdrawal (hereafter referred to as CWT).  This clinical study 

collected data relevant to standard-of-care treatment for renal transplant recipients; however, only 

demographic data, date of transplant, and rejection episode dates and severity, were made available 

to the University of Pittsburgh’s research group. 

From the 61 patients enrolled in the CWT, this study’s cohort was selected from any patient 

who agreed to volunteer additional blood samples for our subordinate lymphocyte characterization 

and analysis.  All of the CWT’s participants had the option to enroll or refuse enrollment in our 

characterization study while remaining part of the CWT.  Samples for this current study were 

collected from 2011 to 2013.  Forty patients donated blood samples this study.  Of those, five were 
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excluded due to pretreatment with an additional drug, not in the original study design.  Samples 

for this current study were collected from 2011 to 2013 (as discussed in Section 5.1.2.). 

Demographic comparisons of the participants enrolled in the current study were made.  The 

two-tailed Pearson χ2 test was used for testing sex and race.  The two-sided T-test was used for 

patient age at the time of transplant, and a comparison of proportion test was used for number of 

patients.  No test was performed on ethnicity due to complete homogeneity within the study 

population.  Fisher’s exact test was used to assess statistical significance of patients experiencing 

ACR episodes between groups. 

A panel of fluorochrome-conjugated antibodies was developed to characterize the makeup 

of peripheral blood leukocyte.  The panel examined the proportion of three cell types known to be 

correlated in a cross-sectional manner with ACR: TREG, CD4 TEM, and CD8 TEMRA. 

4.3 BLOOD SAMPLE ACQUISITION 

Participants were asked to give up to 75 mL of blood (70 mL in sodium-heparin test tubes and 5 

mL in a serum-separating test tube) at each of the following time-points: before transplantation 

(pre-Tx), 30-; 90-; 180-; 270-; and 360-days after transplantation (post-Tx).  The acceptable 

windows were ±3 days for the 30-day sample, and ±7 days for all other post-Tx samples.  The pre-

Tx samples could be obtained any time prior to the administration of preconditioning or induction 

drugs.  These samples were then shipped overnight to the University of Pittsburgh’s Starzl 

Transplant Institute.  Samples that took greater than 24 hours to arrive were discarded. 
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4.4 PHENOTYPIC ANALYSIS OF LYMPHOCYTES 

Lymphocyte counts were obtained from whole blood samples using the automated cell counter.  

Approximately 1.2 mL of whole blood was retained from the sample for use in staining and flow 

cytometry analysis.  The lymphocytes in the remainder of the samples were then separated via 

Ficoll-Paque suspension and centrifugation at 1,200 rpm in a centrifuge.  The suspended 

lymphocyte layer was combined and washed within 30 minutes of centrifugation using 1640 RPMI 

and bovine serum albumin (BSA) solution under sterile conditions.  The cells from the sample 

were counted visually using a hemocytometer and they were preserved cryogenically in a solution 

of 10% dimethyl sulfoxide (DMSO) in bovine serum albumen (BSA) for follow-on studies. 

4.4.1 Leukocyte Preparation 

The cells intended for analysis via flow cytometry were stained with fluorochrome-conjugated 

monoclonal antibodies for CD3, CD4, CD8, CD45RO, CD45RA, CD62L, CD127, and CD25 

purchased from eBioscience and Beckton Dickinson.  Upon staining, the cells were kept at 4°C in 

the dark for 30 minutes, and then washed and fixed using 1% paraformaldehyde in DPBS.  For the 

analysis of TREG, eBioscience fixation/permeabilization solutions were utilized to allow 

intracellular staining of FoxP3.  Samples were acquired by flow cytometry within 2 hours of 

staining, and the raw data output was analyzed with BD’s FACSDiva software.  All statistical 

analysis of FACSDiva output was conducted using Stata SE 14 software. 
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4.4.2 Data Acquisition 

Proportional data was used throughout this analysis, and shown in percentages.  The number of 

cells from which the percentages are derived are always larger than 100, often greater than 1,000 

or 10,000, so the large number approximation is appropriate for any given observed datum.  The 

system by which the data is obtained is called a gating strategy, because the data are derived by 

drawing a polygon around areas in scatter plots that correspond to cells that correlate to markers 

either being present or absent in the cells.  Figure 4.1 shows the gates for selecting TREG, CD4 

TEMRA, and CD8 TEMRA populations from their parent populations, namely T cells, CD4+ T cells 

and CD8+ T cells, respectively. 
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Figure 4.1: Collection Gates Figure 4.1: Collection Gates 
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5.0  RESULTS 

5.1 DATA DESCRIPTION 

The CWT randomized subjects to two arms.  Those that volunteered for this study were 

similar across both treatment groups, with the exception of sex (Table 5.1).  Although sex is close 

to being statistically significant, none of the demographic differences reach statistical significance 

at the p = 0.05 level.  There was no statistical difference between the number of patients that 

experienced at least one ACR episode. 

Table 5.1: Study Participant Demographics 

5.2 MISSING DATA 

Eleven of 35 patients had data collected for every planned collection time-point.  Nine patients’ 

data were left-truncated, seven patients’ data were right-truncated, and an additional eight patients 

had one or more time-point of missed data collection.  In total, approximately 26.7% of the data 

was missing from the 35 patients.  Further examination of the MCAR assumption was required 

before application of GEE.  A depiction of the data collected can be seen in Figure 5.1 in which 

 Thymoglobulin Basiliximab P-value 
Number of Patients 20 15 0.552 
Age at Tx (years) 51.1 ± 14.4 

(Range 28 to 71) 
56.7 ± 12.2 
(Range 37 to 79) 

0.231 

Sex 10 male, 10 female 12 male, 3 female 0.069 
Race 16 Caucasian, 4 Black 12 Caucasian, 3 Black 1.000 
Ethnicity 20 Non-Hispanic/Latino 15 Non-Hispanic/Latino N/A 
ACR 7 2 0.244 
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collected data for a patient a given time-point is shown in green (if there was no ACR) or red (if 

there was a biopsy-proven ACR episode after the sample collection but before the next sample 

collection).  Missing data are shown by a blank cell. 
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Patient Pre-Tx 30 Days 90 Days 180 Days 270 Days 360 Days 
01           65.8 
03           35.8 
06         83.7 90.4 
12         68.4 70.8 
17     62.2   40.6 62.9 
19       79.6 82.2 79 
23     73.2 70.8   68.6 
26   1.61 41.1 33.6 61.4 60.9 
28       85.2 76.9 74.1 
30 68.1 66.6 70.1 69.3 73.6 70.7 
31 81.8 77.5 62.7 74.2   71.2 
32 62.9 16.1 32.4 32.8 52.2 100 
35 60.3 5.03 7.25 21.5 18.5 19 
36 68.4 34   37.5 46.1 47.3 
37 92.3 78 74.7 76.4 79.4 78.3 
47 27.9 75.4 81.8 83.3 74.6 84.5 
49 32.5 0.898 15.1 28.6 44.7 47.8 
54 84.4 85.8 83.6 81.3 84.6 77.2 
56 51.8 8.15 21.7 21.8 18.5 16.2 
57 74.8 60.6 66.4     53.6 
59 81.3 50.2 66.6   64.9 66.8 
61 60.9 70 76.1 40.8 12.8 23.2 
76 79.5 47.1 49.9 52.1 38.3   
78 82.3 49.1 63.4   60.6 57.1 
79 72.1 4.81 14.1 21.4     
82 70.6 3.99 8.72 41.6 100   
83 74.2 55.6 57.7   55.2 55.8 
84 82.4 36.8 36.6 50.9 70.5 72.3 
85 77.8 32.4   39.5   30.7 
89 45.8 22.4 34.3       
90 75.8 53.9 63.4 59.2     
92 68.1 16.7 54.6 64.9 59.5 66 
93 75.1 27.7 29.7 47.1   40.6 
96 73   38.3 42.5 36.2   
97 82.7 15.9 24.3 45     

 
Figure 5.1: Collected Data 
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Although the level of data missed from collection is high the number of samples received 

for each time-point is consistent: for each of the six time-points from pre-Tx to 360 days post-Tx, 

the number of collected data points was 26, 26, 27, 25, 24, and 28, respectively.  On average 4.6 

samples were collect for each subject in the study.  Thirteen patients had missing data only as the 

result of truncation due to late entry into the study or premature termination of the study 

(accounting for 76% of the missing data).  Eleven of the 35 patients had missing data not accounted 

for by study implementation, which equates to 10.8% of the total time-points which may have been 

collected from the 35 enrollees. 

None of these indicator variables was found to be statistically significant in GEE analysis 

where ACR episodes were held as the independent variable and each missing indicator was tested 

as a dependent variable, in turn.  Because that missing data due to study design or implementation 

does not necessarily violate the MCAR assumption and no missing data were statistically 

significant in predicting the outcome of interest, the MCAR assumption for these data was deemed 

appropriate.[38] 

5.3 PARAMETER SELECTION 

Parameters, and their corresponding coefficients’ p-values, may be seen in Table 5.2 (p < 0.15 are 

italicized).  Parameters other than TREG, CD4 TEMRA, and CD8 TEMRA were included due to their 

biological relevance in T cell immunity with the possibility that they may help to refine any 

predictive relationships that might exist between the two variables of interest and ACR events. 
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Table 5.2: GEE Single-Parameter Model Values 

Parameter Coefficient p-value  Parameter Coefficient p-value 
Age, centered -.04536 0.109  CD25hi .0480918 0.416 
Days post-Tx -.0039507 0.117  TREG -.0007007 0.469 
Treatment 1.141206 0.149  CD4 TEM -.0048596 0.760 
CD4 .0113613 0.241  CD4 TEMRA .0717864 0.051 
CD8 -.0164905 0.118  CD8 TEM .0011368 0.953 
CD4/CD8 .0630022 0.671  CD8 TEMRA .014741 0.435 

5.4 MODEL CONSTRUCTION 

For the purpose of preliminary GEE model construction an AR1 correlation structure was 

assumed.  In addition to the five parameters that met the inclusion criterion, the variables TREG, 

CD4 TEM, and CD8 TEMRA were added to Models A, C, and E, respectively. 

Model A was built using the parameters Age (centered), Days post-Tx, Treatment, CD8, 

CD4 TEMRA, and TREG.  GEE analysis of the model showed that it was significant (Wald χ2 p = 

0.0095) but it contained on covariate that was not statistically significant, Days post-Tx.  The 

details for Model A can be seen in Table 5.3. 

Table 5.3: Model A Values 

Parameter Coefficient p-value  Parameter Coefficient p-value 
Age, centered 0.035529 0.012  CD8 0.0216521 0.002 
Thymoglobulin 1.239464 0.026  CD4 TEMRA 0.0738930 0.062 
Days post-Tx 0.0029239 0.900  TREG 0.0145422 0.267 

 
Days post-Tx was removed from the covariates in Model A because it had the highest p-

value, and Model B was built from the five remaining covariates.  Model B was statistically 

significant (Wald χ2 p = 0.0059), but TREG was not a statistically significant covariate (p = 0.245).  

Details for Model B can be found in Table 5.4. 
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Table 5.4: Model B Values 

Parameter Coefficient p-value  Parameter Coefficient p-value 
Age, centered 0.0350208 0.010  CD8 0.0211845 0.001 
Thymoglobulin 1.120552 0.012  CD4 TEMRA 0.0736068 0.061 
    TREG 0.0140173 0.245 

 
Model C contained the five covariates found to be statistically significant in univariate 

analysis as well as CD4 TEM.  Model C achieved statistical significance (Wald χ2 p = 0.0061), but 

it contained covariates that failed to reach statistical significance.  Details for Model C can be seen 

in Table 5.5. 

Table 5.5: Model C Values 

Parameter Coefficient p-value  Parameter Coefficient p-value 
Age, centered -0.098 0.007  CD8 -0.077 0.013 
Thymoglobulin 2.419 0.026  CD4 TEMRA 0.152 0.058 
Days post-Tx -0.0006 0.834  CD4 TEM 0.028 0.405 

 
Days post-Tx was removed from the pool of covariates in Model C to produce Model D’s 

covariate pool because it had the highest p-value.  Model D was statistically significant (Wald χ2 

p = 0.0121), but it contained one covariate that was not, CD4 TEM.  Values for Model D can be 

seen in Table 5.6. 

Table 5.6: Model D Values 

Parameter Coefficient p-value  Parameter Coefficient p-value 
Age, centered -0.099 0.006  CD8 -0.079 0.015 
Thymoglobulin 2.503 0.010  CD4 TEMRA 0.152 0.057 
    CD4 TEM 0.027 0.407 

 
Model E was constructed using the third covariate of interest, CD8 TEMRA, in addition to 

the five covariates found to be statistically significant in univariate analysis.  Model E was 

statistically significant (Wald χ2 p = 0.0198), but it contained three covariates that were not 

statistically significant at the p < 0.05 threshold.  See Table 5.7 for Model E details. 
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Table 5.7: Model E Values 

Parameter Coefficient p-value  Parameter Coefficient p-value 
Age, centered 0.0335643 0.006  CD8 0.0247909 0.005 
Thymoglobulin 1.123874 0.020  CD4 TEMRA 0.0777823 0.142 
Days post-Tx 0.0029216 0.858  CD8 TEMRA 0.0329762 0.249 

 
The covariate with the highest p-value was removed from the covariates in Model E to 

produce Model F.  Model F was statistically significant (Wald χ2 p = 0.0032), but it contained two 

covariates that failed to reach statistical significance, CD4 TEMRA and CD8 TEMRA. 

Table 5.8: Model F Values 

Parameter Coefficient p-value  Parameter Coefficient p-value 
Age, centered 0.032653 0.005  CD8 0.0252462 0.004 
Thymoglobulin 1.033318 0.010  CD4 TEMRA 0.0789165 0.149 
    CD8 TEMRA 0.0334378 0.253 
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6.0  DISCUSSION 

The analysis of the data showed that neither of TREG, CD4 TEM, nor CD8 TEMRA proportions in 

peripheral blood were associated with ACR events.  None of the variables of interest was 

independently statistically significant in this regard nor were they statistically significant when 

forced into models containing other statistically significant covariates. 

Five covariates were identified that were potentially predictive of ACR episodes: Age 

(centered), Days post-Tx, Treatment, CD4 TEMRA, and CD8.  These five predictors have been 

previously described in the literature as being correlated with ACR episodes.  The positive or 

negative influence of the coefficients for Days post-Tx, Treatment, CD4 TEMRA, and CD8 are in 

line with previous findings.[1], [16], [37]  Of note, the literature is mixed in regard to whether 

Thymoglobulin or Basiliximab therapies are more likely to lead to ACR episodes, with some 

studies concluding that one treatment is more beneficial while others conclude the opposite.[16]  

Also in line with previous studied, patients in this study experienced a preponderance of ACR 

episodes between transplant and 90 days post-Tx; a common problem for kidney tolerance in the 

clinic.[19] 

Recipient age is known to be a predictor of renal transplant rejection episodes, however 

increasing age has been shown to be associated with increased risk for ACR,[39] while in this study 

the opposite was observed.  It has also been noted that increased deceased donor age increases the 

risk of ACR episodes.[39]  Due to this study not being provided with donor organ age data, the 

correlation between Days post-Tx and ACR episodes may be the product of a confounding 

variable. 
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There are two very important caveats to the lack of statistical significance found in our 

subsets of interest as compared with previous literature: first, two of the markers were chosen 

based upon a study using a different induction agent;[23] and second due to the small number of 

patients enrolled in the study, the analysis may have not had enough power to detect a true predictor 

of ACR. 

 Different induction modalities have varying means of action, and effects, upon recipients’ 

immune system.  The differences noted in populations of TREG, CD4 TEM, and CD8 TEMRA came 

from studying patients that had undergone induction therapy using Alemtuzumab.  Thymoglobulin 

is a T cell depleting agent, whereas Alemtuzumab depletes not only lymphocytes, but also B cells.  

The presence or absence of these cells has been shown to effect graft tolerance.[7]   

6.1 ANALYSIS LIMITATIONS 

These data did not appear to violate the MCAR assumption.  However, due to the high amount of 

missing data and no established test for the assumption, discussion of addressing the missing data 

is warranted.  Should the collected data not reflect the population-at-large, the results of the 

analysis could contain bias of the estimators or their statistical significance. 

Two common methods for dealing with missing data, line (subject) deletion and multiple 

imputation (MI), were both inappropriate for application here.  If line deletion were used, 

approximately 69% of the subjects from the study would be eliminated from analysis, leaving a 

sample too small for any meaningful discussion.  MI methodology would not aid analysis because 

MI addresses missing values for a given time-point based upon other variable values for that same 

time-point.  Given that all lymphocyte population data is derived from the presence or absence of 
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a blood sample, there is almost no missing data for any given patient-time-point unless all of the 

data for that time-point is missing. 

 Beyond the common methods mentioned above, there exist additional methodology for 

analyzing missing data, but these methods are computationally intensive, lack explicit algorithms 

for general use, and/or rely upon untestable hypotheses whose violation results in highly biased 

outcomes given non-normal distributions.[40], [41]  Three of these methods are the selection model, 

pattern mixture model, and shared parameter model.  The selection model is inappropriate as it 

relies on the assumption that data measures can predict missingness, and the left- and right-

truncation subjects are known to have missingness not related to their observed values.  The pattern 

mixture model was not used because it relies upon there being relatively few patterns of 

missingness within the data relative to its clusters, and this assumption was violated by there being 

16 patterns of missingness, eight of which were unique, among the 35 subjects.  The shared 

parameter model could not be used on this data because it relies on the assumption that within a 

given subject the chance of a binary outcome increases or decreases in a linear fashion over time, 

which is known to be false in the observed population for the parameters of interest.  Lastly, these 

three models are well-suited for dropout (right truncation) of data in which data for a given subject 

exists until the point that the data is censored.  Right truncation was only observed in seven of 35 

patients, lending further merit to these models not being applied to these data.  It has been shown 

that mixed-effect models can be tailored to produce more efficient estimators than GEE 

methodology in some cases when truncation and random missing data are present, however since 

the assumptions of GEE were met, no mixed-effect models were fit to these data. 

Exploration of the data’s missingness showed that the amount of data missing or present 

relative to the other time-points was similar across all time-points.  There were no outliers in this 
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regard.  Given that all available methods of analysis would have a violated assumption if applied 

to these data, it was determined that GEE methodology was best suited to analysis in this study. 

Although GEE analysis was deemed an appropriate method for use with these data, one of 

the assumptions, namely MCAR, might be called into question since Little’s MCAR test was not 

applicable here.  Although much of the data was missing, its missingness did not depend upon the 

outcome of interest, as assessed by the missing data’s lack of correlation to ACR episodes.  Also 

of note is that 76% of the missing data was due to a cause independent of ACR episodes, due to 

left- and right-truncation late implementation of this study and termination of the parent study, 

rather than lack of patient follow-up (which might be negatively correlated with patient self-care 

and thus with ACR episodes). 

While no power calculations were performed for this study’s analysis, other work suggests 

that the sample size achieved in this study may have been too small to detect statistically significant 

predictors of ACR episodes.  Even with a low level of intra-cluster correlation and a relative risk 

greater than three, single binary exposure/outcome correlations require more than 70 clusters to 

achieve 90% power at the desire significance level of 0.05.[35]  Although most of the covariates in 

this study were not binary, the power simulations serve as an example that many more participants 

may be necessary in a study of this type in order to detect statistically significant covariates, 

especially those that have been shown to be linked in cross-sectional studies by many previous 

investigators.[6], [15], [17], [18], [22], [24], [26], [36], [37] 

The coefficients for the parameters of interest mirrored the positive or negative effects 

expected of TREG, CD4 TEM, nor CD8 TEMRA on future ACR episodes.  As such, their failure to 

reach statistical significance of p < 0.05 does not refute previous findings, but rather highlights the 

need for more information to be gathered in similar cohorts to elucidate the predictive strength of 
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these markers.  Such further studies should also explore the ratio of TREG to the two memory 

subsets of interest, since they were shown to be correlated with patients undergoing ACR as 

compared with quiescent kidney allograft recipients.[23]  Unfortunately, due to sparse data in this 

study, modeling of these ratios was too noisy for meaningful analysis. 
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7.0  CONCLUSION 

The analysis of these data showed that TREG, CD4 TEM, and CD8 TEMRA cell populations did not 

statistically significantly predict ACR episodes, possibly due to lack of analytic power stemming 

from missing data and small sample size.   

While none of the hypotheses were confirmed, if the results of the single-variable models 

are reflective of the kidney transplant population, clinically useful inference can be made.  Of 

interest, CD4 TEMRA has been shown to be predictively associated with liver transplant ACR, [37] 

and CD8 proportions have also shown association with kidney ACR episodes.[26]  With this in 

mind, further exploration of these data and studies with more robust data collection, could reveal 

that either/both CD4 TEMRA and CD8 are predictive of ACR. 

From a public health perspective, the ongoing challenge of discovering a minimally-

invasive technique for predicting ACR remains.  This analysis has shown that although the 

hypothesized parameters did not predict rejection, other markers may be able to do so.  

Development of such a technique is of paramount importance as it greatly benefits transplant 

recipients, reduces the burden of health care provision, and will help to alleviate the persistent 

problem of lower than necessary donor organ supply. 
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