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IMPROVING THE DESIGN AND OPERATION OF WHO-EPI VACCINE
DISTRIBUTION NETWORKS
Jung Lim, Ph.D.

University of Pittsburgh, 2016

Vaccines have contributed significantly to the prevention of diseases. Yet millions of children,
especially in low and middle income countries, remain unvaccinated and are exposed to
preventable diseases such as typhoid, measles and tuberculosis. There are many reasons for this
including personal belief systems, vaccine safety concerns, problems with vaccine availability,
failures in the healthcare system, social barriers and economic constraints. International
organizations are making continual efforts to increase vaccine coverage in these countries using
various strategies. In this research we focus on the problems associated with poor design and
operation of vaccine delivery systems and address these issues via four broad contributions. First,
we present four quantitative models that can be used to optimize the selection of locations for
vaccine outreach (where teams from clinics go to relatively remote places to administer
vaccines), in order to maximize the number of residents that can be reached; each model
addresses a different type of coverage possibility. The models are analyzed and contrasted using
an example and adapted to address the situation when the coverage assumptions and demands are
uncertain. Second, we propose modular vaccine packaging as an alternative to current packaging,

which is not standardized and leads to inefficiencies when packing vaccines into a storage



device; this in turn can result in vaccine shortages. We illustrate the benefits of modular
packaging over current packaging schemes and storage devices that are commonly used in the
field. Third, we suggest alternative ordering policies at the clinic level that are based on
secondary vaccine packaging. The policies draw upon lean concepts that have been used in the
manufacturing sector to simplify and improve inventory management. Since the ordering units
are larger, storage space issues may occur at clinics or during vaccine transportation and the new
ordering polices are analyzed in terms of their effect on storage. Lastly, we propose a
mathematical model to redesign the vaccine distribution network from a central warehouse to
individual health clinics and study algorithms to solve this difficult problem. We propose a
hybrid algorithm based on mixed integer programming and an evolutionary strategy. We also
describe how to improve the performance of the evolutionary strategy and how to use the results

of the evolutionary strategy to reduce the calculation time of the integer programming model.
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1.0 INTRODUCTION

11 MOTIVATION AND RESEARCH OBJECTIVE

In 1974, the World Health Organization (WHO) established the Expanded Programme on
Immunization (EPI) to ensure that all children have access to vaccines recommended for routine
use (Bland & Clements, 1997). In many low and middle income countries, EPI and the Global
Alliance for Vaccines and Immunization (GAVI, which was established in 1999 to extend the
reach of EPI to the poorest countries) have combined to save millions of lives since the
establishment of these programs. According to 2013 WHO data (Immunization coverage, Fact
sheet N°378, 2014), world immunization coverage of diphtheria-tetanus-pertussis (DTP3), Polio,
Measles, Tetanus and Hepatitis B vaccines is over 80%. Yet, despite improvements in global
vaccine coverage during the past decade, there are millions of children in these countries who
still do not get the full regimen of childhood vaccines that are routinely given to children in the
developed world (GAVI, 2014) and limited resources, competing health priorities, poor
management of health systems, and inadequate monitoring and supervision remain as key
challenges. An estimated 22.8 million infants worldwide still miss getting basic vaccines.

There are a multitude of strategies that can be used to deliver immunization services and
there are two types of doses that can be given - routine or supplemental. The main distinction is

that a supplemental dose is “additional” or “extra” to the doses required by the national



immunization schedule and may, or may not, be recorded in the child's immunization record. On
the other hand, a routine dose is one that is prescribed according to the national immunization
schedule, is administered based on the vaccination history of each individual, counts towards
“fully immunized” status, and must be recorded on immunization cards and registers
(WHO/UNICEF Guidance Note, 2011).

By taking advantage of technology, low-cost mass production of many vaccines has
become possible. However, keeping vaccines available with low costs remains one of the major
challenges for vaccine supply chain managers. Most vaccines need to be maintained within a
narrow temperature range from the point of manufacture to their use in an immunization session,
within what is called the “cold chain,” which is essential to vaccine delivery. Many of the
challenges of getting vaccines to children result from the poor management or operation of the
vaccine supply chain. In particular, poor infrastructure and the constraints of the cold chain cause
inefficiency in vaccine storage and transportation (Zaffran, 1995, Yadav, Lydon, Oswald, Dicko,
& Zaffran, 2014).

In many low and middle income countries supported by EPI, vaccines are distributed via
their legacy medical supply chain, which is typically a three, four or five tier hierarchical
network. Vaccines are purchased by international organizations and delivered to a central
distribution center within each country from multiple suppliers/manufacturers. Through various
levels of the supply chain, vaccines are then delivered to clinics where the final recipients are
located. For example, Niger has a four-tier structure: central store, regional stores, district stores
and clinics. All vaccines come to the central store by air and are transported to children
successively through regional stores, district stores and finally, clinics. Figure 1 shows the health

facilities for Niger. Vaccines are periodically replenished at each facility in amounts that can



ensure adequate service until the next replenishment. In most countries, for locations that are not
conveniently located near a clinic, vaccination outreach activities are used, where health workers
visit such locations. Since each clinic has very limited resources, including health workers,
storage devices, transportation resources and time, teams from the clinic conduct outreach on
fixed days in selected locations by foot, or by using locally available means of transportation
(bicycles, locally arranged transport, etc.) (Ministry of Health, Government of Southern Sudan,

2009).

Central
Region
District
Clinic

cee

Figure 1. Health facilities for Niger

This study is motivated by the need to seek improvements in vaccine supply chains and
ultimately, to have more children be able to have access to vaccines via efficient network flow
and scientific management. It begins by studying the issue of outreach. Since outreach sessions

are usually not provided at the same location more than once a month and are planned and



organized with the community, they should be arranged such that they cover as many children as
possible during the limited number of sessions. This study introduces several vaccine outreach
models with different assumptions based on the maximal coverage location problem and
investigates the results.

The second focus of this research is on certain logistics aspects of vaccine delivery.
Specifically it examines issues associated with storing vaccines efficiently in a storage device
when transporting them, and on handling the replenishment process at facilities. When an upper
level distribution center or hospital prepares the vaccines to send to lower level distribution
centers or clinics, they are often sent in inner packs, which constitute a secondary packaging
mode for vaccines. These inner packs are the units in which vials are stored within larger cartons
and because of their irregular sizes they can lead to inefficient space utilization within a storage
device. This study is designated to clarify the benefits of the modular vaccine packaging which is
proposed in Chapter 3. In related work, a vaccine ordering policy is also studied. Currently, at a
clinic where actual vaccination occurs the vaccines are ordered in vial units. However, counting
several kinds of vaccine vials and ordering them can lead to errors in the ordering process and
increases ordering and order fulfillment effort. An ordering policy that is based on using inner
pack quantities is proposed that can reduce ordering errors and order fulfillment effort.

In the third part of this research, the problem of redesigning a whole vaccine supply chain
is studied. Currently, in many countries vaccines are distributed via their legacy medical supply
chain which is typically not cost-efficient. Because vaccines require a cold supply chain,
capacity constraints on cold storage and cold transport are critical. Redesigning the vaccine
supply chain includes: choosing intermediate hubs among the current distribution center

locations, determining the flow paths from the central distribution facility (where vaccines are



received into a country) to health clinics where vaccination actually occurs, the transportation
vehicles to allocate to each flow path, and storage devices to use at each location. The re-
designed network does not have to follow the current three or four tiered strictly arborescent
structure commonly found in practice but can use alternative network structures. To re-design
this network, we develop a mixed-integer optimization model and also suggest heuristic methods
to get an approximate solution for larger problems. Numerical results are presented using real

data from different countries.

1.2 CONTRIBUTIONS

This dissertation develops models for analyzing the issues raised above. The major contributions
are:

e The formulation and solution of mixed integer programming (MIP) models for vaccine
outreach at the clinic level.

e Robustness analysis on outreach MIP models with respect to uncertain demand in outreach
locations and uncertain coverage assumptions.

e Development of a spreadsheet model that evaluates the impact of different modular packing
schemes and uses data from the Benin and Niger routine regimen along with commonly
used vaccine carriers.

e Applying lean concepts that have been used in the manufacturing sector to vaccine inventory
management, in order to simplify ordering procedures and evaluate the impact on storage

and transportation resources.



Creation of a MIP model for redesigning the WHO-EPI vaccine distribution chain in any
country and developing a hybrid evolutionary strategy /MIP algorithm to solve the model.
Development on an algorithm to apply vehicle routing strategies to a vaccine distribution

network.



20 COVERAGE MODELS TO DETERMINE OUTREACH VACCINATION

CENTER LOCATIONS IN LOW AND MIDDLE INCOME COUNTRIES

2.1 INTRODUCTION

Vaccine delivery in many low and middle income countries is an extremely complex problem.
The supply chains in such countries are limited in their cold-storage capacity and in their ability
to transport vaccines quickly to various points throughout the country. In addition to these
supply chain limitations, most of these countries have geographically dispersed or nomadic
populations. Portions of their populations have limited or no access to vaccination locations due
to poor infrastructure (poor road conditions or limited transportation) or other geographic
barriers. As examples, in the country of Niger, 90% of the roads are unpaved (Blanford, Kumar,
Luo, & MacEachren, 2012). In Nigeria, people from some rural areas may have to walk at least
26 miles to access health care (BBC, 2006). In Kenya, 40% of the population must travel in
excess of an hour to the nearest primary healthcare facility (Noor, Amin, Gething, Atkinson,
Hay, & Snow, 2006). Thus, people from remote locations within resource-deprived countries
have difficulty reaching immunization locations for their standard regimen of vaccines. This puts
these individuals at a very high risk of mortality from infectious diseases such as measles, yellow

fever, polio and tuberculosis.



One method to overcome this challenge is to use outreach. Sustained outreach is a
strategy for reaching remote sections of the population with limited access to immunization
locations. With this service, health care workers take vaccines from a fixed immunization
location and travel to the remote locations, to immunize individuals there. This service is
different from a campaign which is a one-time attempt to raise immunization rates. Outreach is
extremely important to the overall immunization programs in resource-deprived countries.
Without outreach, many countries would suffer from extremely low coverage rates. For
example, a study was carried out in three zones of different population densities within Kenya to
test the effectiveness of outreach programs as compared to only utilizing fixed immunization
locations. The study showed that with outreach, the coverage rate increased from 25% to 57% in
the zone with lowest population density. Coverage increased from 54% to 82% in the zone with
greatest population density (World Health Organization, 1997).

Outreach is typically provided on a systematic basis, at regular time intervals and regular
outreach locations. However, the outreach activities conducted from each immunization location
can vary greatly depending on financial resources, time constraints, vaccine availability,
population characteristics, usage rate of the fixed immunization location, health worker training,
portable cold chain equipment available, and transportation available. The decisions about when
and where to conduct outreach and which vaccines to administer, are often made locally,
depending on each location’s available resources (World Health Organization, 2001).

Outreach from health centers constitutes the critical final link in the vaccine supply chain,
which can be quite complex and is typically comprised of four levels in addition to outreach: a
central location where vaccines are received into the country from manufacturers, regional

locations (typically five to 10) that serve as distribution hubs, districts (typically 25-100) which



serve as the next layer of distribution and where vaccination may occur, and immunization health
centers (typically 100-2000) which provide vaccinations to patients (Kaufmann, Miller, &
Cheyne, 2011). Outreach planning has a significant effect on the behavior of the entire vaccine
distribution chain. As previously noted, in many countries successful outreach greatly increases
the number of people vaccinated and therefore increases the number of vaccines that must flow
through the entire vaccine supply chain. Thus, it is vital that countries consider the design and
intended operation of their outreach programs as they are designing and equipping their entire
vaccine supply chain.

In summary, vaccine delivery is a complicated problem and the effectiveness of delivery
is critical to reducing mortality rates in many resource-deprived countries. To increase
effectiveness outreach is widely utilized. However, there are no quantitative outreach planning
models available to help countries and individual facilities plan the optimal outreach strategy.

The purpose of this chapter is to address this need.

2.2 PROBLEM DEVELOPMENT AND LITERATURE REVIEW

The objective in each of the various models formulated in this chapter is to maximize the number
of people vaccinated through outreach, when resources are limited. We assume that outreach is
necessary whenever one or more villages are more than a distance d, (typically, 5 km as per
WHO guidelines) (Dicko, 2013) from an existing Immunization Health Center (IHC or clinic).
An outreach team from the IHC visits one or more such villages, and residents from that village
and all villages that are within a distance d; of it are able to go there to be vaccinated. We refer

to a village that serves as an outreach vaccination center as a “center” and the other nearby



villages (within distance d,) from which residents travel to the center as “satellite” villages. The
maximum number of centers that can be selected for outreach during the planning horizon
depends on the financial and other resources available at the IHC. The objective is to select
centers so as to maximize the number of residents that can be served at each of the central
villages and its respective satellite villages.

As an illustrative example, Figure 2 shows seven villages (represented by the small
circles) located near an IHC along with their corresponding patient populations (represented by
the numbers above the circles). Three options are shown for the selection of an outreach center
from that IHC. If village A is selected as the center [Case A], then the satellite villages that are
within 5 km are villages B, C, and D, and thus people in villages A, B, C and D can be
vaccinated. People in villages E, F and G will not be vaccinated. In this case, the number of
residents that can be covered by outreach is 170. Similarly, 180 people can be covered in Case
B and 160 in Case C. Therefore, if we are restricted to a single outreach location, then among

these three villages, B would be the best option for a center.
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Figure 2. Outreach example: selecting an outreach location
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While more than one outreach strategy might be possible, there will typically be
constraints that limit the final choice of outreach options. For example, outreach to a particular
location has a cost associated with it (that might depend upon distance or terrain or equipment
used) and there might be some overall budget for outreach that constrains our choice of outreach
trips. Alternatively, costs might be similar for outreach to different sites but we might have a
direct limit on the number of outreach sessions (e.g., because of personnel, vehicle, or equipment
limits). In other cases, there might be limits on the length of a trip or preferences for certain trips
over others. Different strategies are possible depending on these constraints and the assumptions
made on the type and amount of patient coverage that can be obtained at a center.

In this chapter, we introduce three models that have different coverage assumptions and
an integrated model for multiple IHCs. In addition, we consider the robustness of our solutions
with respect to coverage assumptions and uncertainty in demand.

Daskin and Dean (2004) discuss how the location set covering model, maximal covering
model and P-median model have been used for location planning in health care and review other
models derived from these three basic facility models. The different model types are applied
selectively according to a problem's characteristics and objective. The problem addressed here
may be viewed as a covering problem, which is well-known among facility location models
(Farahani, Asgari, Heidari, Hosseininia, & Goh, 2012). In particular, it is related to the Maximal
Covering Location Problem (MCLP), which was developed by Church and ReVelle (Church &
ReVelle, 1974), with the objective of maximizing the amount of demand covered by a facility. In
this model, it is assumed that all demand is covered if the demand location is within an
acceptable service distance, otherwise it is not, i.e., coverage is binary. An extension to this is the

concept of partial coverage, in which there are two distances: the maximum full coverage
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distance D; and the minimum non-coverage distance D,. The demand within distance D; from a
facility is fully covered while none of the demand beyond distance D, is covered. For demand at
locations between distances D; and D, from the facility, the coverage level is assumed to be a
decreasing function of the distance to the demand location. Thus, some customers are fully
covered and the others are partially covered (Berman & Krass, 2002). This variation has been
called the gradual covering problem by Drezner, Wesolowsky, and Drezner (2004), or MCLP
with partial coverage by Karasakal and Karasakal (2004). Berman and Krass (2002) collectively
refer to this class of models as the Generalized Maximal Covering Location Problem (GMCLP).
In order to apply linear programming, they assume that the function for partial coverage is
stepwise decreasing, so that the model is similar to MCLP. In these models, all demand at a
location is assigned to the nearest facility, even though there might be two or more facilities near
the demand location that are capable of serving the demand. Berman, Drezner, and Krass (2009)
introduce the cooperative coverage model where the effect of facilities is combined if there are
more than two facilities near the demand location. However, in this model the coverage is once
again binary, with a demand location being fully covered if an aggregation of partial coverage
possible from nearby facilities exceeds a certain threshold; otherwise there is no coverage. That

is, there is no partial coverage of demand points.

23 COVERAGE MODELS

In this section, we consider four types of models to optimize coverage from outreach. In all of
our models we consider multiple outreach locations that can be selected. We start with a basic

model that is similar to the binary MCLP model. The second model extends this by drawing
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from the GMCLP approach, with coverage being a stepwise and decreasing function of distance.
The third model is a new generalization of the cooperative cover model: rather than being binary,
an accumulation of partial coverage becomes the partial coverage of the location. The final
model is a larger one that could be viewed as a generalization of any of the first three models.
Here we formulate it as an extension of the second one, where each facility is constrained to lie
within a given radial distance from one of several specific points (the IHCs).

For ease of exposition, we assume that there is sufficient capacity to vaccinate the people
who are targeted by an outreach trip (although it would be a straightforward extension to add in
capacity constraints for trips). These models are described in the next four subsections, followed
by numerical illustrations of each in the section after that. The illustrations use data that is
generated from partial information on the state of Bihar in northern India that was obtainable,
and which was the motivating application for this work. We conclude with a discussion and

summary of our work in the final section.

2.3.1 Model 1: Binary coverage model

In this basic model, it is assumed that residents in villages within a radius of D; km from an
outreach center are covered, while residents in other villages are not.
Notation:

n: Total number of villages to be served via outreach from the IHC

p;: Number of residents living in village i

c;: Cost of outreach at village i if it serves as an outreach center

d;;: Distance between village i and village j (with d;; = 0)

D;: Maximal coverage distance
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C: Available budget for outreach

N: Maximum number of outreach centers that is feasible

x;€{0,1}: 1 if village i is selected as an outreach center; O otherwise
v;€{0,1}: 1 if village i is covered; 0 otherwise

The mathematical model is as follows:

n
Max Zpiyi @
i=1
subject to
yi < Z xj for S;={j:d;j<Dy,j=1,..,n}, i=1,..,n @)
JEs;

cix; < C 3

M= 1D

Il
[y

X < N (4)

L

x;€{0,1}, y;€{0,1}, fori=1,..,n (5)

The objective is to maximize the number of people who are vaccinated by outreach
(across all villages selected along with their respective satellites). Constraint (2) ensures that
village i is covered only if it is D; km or less from any village j which serves as an outreach
center (a typical value for D; might be 5 km). Constraints (3) and (4) respectively ensure that the
available outreach budget and the limit on the number of outreach centers are not exceeded. It is

conceivable that only one of these constraints might exist.
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2.3.2 Model 2: Variable single coverage model

In this model, it is assumed that the coverage by outreach is a stepwise decreasing function of
distance from an outreach center, rather than being binary. Given D;<D.<...<Dx and
l=aq>m>...> >0, coverage is divided into groups:

» If there are centers within distance D, of the village, all residents (i.e., a fraction &y=1) go to
one such center; else
» If there are centers between distance D; and D, then a fraction «, of the patient population

will choose to visit one such center; else

» If there are centers between distance Dk.; and Dk, then a fraction ax of the population will
choose to visit one such center; else

* There is no coverage.

A typical example might be K=3 with D1=5 km, D,=8 km, D3=10 km, and a1=1, «»=0.5,
a3=0.2.
Additional notation is as follows:
D,: Distance from the outreach center of the kt" coverage boundary, k = 1,2, ..., K
a;: Coverage fraction attained if the nearest center is between D,,_; and D, km of a village
Instead of the y; variables of the prior section we now have
vik € {0,1}: 1if village i is covered by a center between D, _; and D, km of it; 0 otherwise

The model is as follows:

n K

6

Max zpi Z Ak Yik ©)
=1 k=1

subject to

15



Vi < Z xj for S;={jiDy_y <d;j<Dy,j=1,..,n} i=1..n

JES; (7
k=1,..,K
K
Zyik <1 fori=1,..,n (8)
k=1
n
Z cix; < C 9)
i=1
n
dusn (10)
i=1
x;€{0,1}, vy e{0,1}, fori=1,..,n, k=1,..,K (11)

In this model the objective is the same as in the previous model but coverage is according
to the appropriate coverage fraction. Constraint (7) ensures that yi can be 1 only if village i is
within the appropriate coverage radius from any outreach center. Constraint (8) ensures that
village i is assigned to at most one outreach center. Constraints (9) and (10) are the usual

budget/resource constraints akin to (3) and (4) in Model 1.

2.3.3 Model 3: Variable multiple coverage model

The third model is a generalization of the second one: villages that are not within the 100%
coverage distance D; are not restricted to partial coverage by a single center (unless it is the only
available choice). Rather, residents who do not visit one such center might choose to visit
another one. More specifically, given D1<D,<...<Dg and 1=aq>a>...>a>0, coverage follows
the following pattern:

« If there are m;>0 centers within distance D; of the village, all residents (i.e., a fraction az=1)

go to one such center; else
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« If there are m,>0 centers between distance D; and D, then a fraction «, of the population will
choose to visit one such center; a further fraction «, of the remaining population will choose

to visit another such center; and so on

* If there are m>0 centers between distance Dk.; and Dk, then a fraction ax of the remaining
population will choose to visit one such center; a further fraction ax of the remaining
population will choose to visit another such center; and so on

* There is no coverage if there is no center within distance D of the village

In general, the coverage in a village would be given by

K
=1 — mg
p=1 B(l @)

As an example, with K=3, D;=5 km, D,=8 km, D3=10 km, &4=1, &,=0.5, 5=0.2, m;=0,
m,=2, ms=1, the fraction of residents covered would be given by 1-(1-0.5)*(1-0.2)" = 0.80. Thus,
if the village had 100 residents, since there are no centers in the inner circle, 50% (i.e., 50) would
go to one of the two centers in the next circle while 50% of the remaining 50 (i.e., 25) would go
to the other, and 20% of the remaining 25 (i.e., 5) would go to the center in the outer circle; 20
residents would choose not to go to any center for immunization. To further illustrate the
difference between the model in this section and the previous one, consider the Figure 3 with
four outreach centers in a region of 20 villages; these centers are located at villages 2, 8, 10 and

14. Suppose that as before an=1, =0.5 and a3=0.2 in both models.
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Figure 3. Variable outreach coverage example

Consider village 6 and 11, neither of which is within the inner circle of any center and
thus cannot receive 100% coverage. Village 6 is within the outer circles of centers located at
villages 8 and 10: with Model 2, the coverage would be 20%, all at one of centers 8 or 10. With
Model 3, the coverage would be 36%: 20% at one of 8 or 10, and 16% (i.e., 20% of the
remaining 80%) at the other. Village 11 is within the middle circle of the centers at locations 10
and 14 and within the outer circle of the center at location 8. Here the coverage would be 50%
with the first model (at either center 10 or center 14), but in the second model with three possible
center options, it would be 1-(1-0.5)%(1-0.2)=80% (50% at one of villages 10 and 14 and 25% at
the other, 5% at village 8).

In our formulation of this problem we restrict ourselves to K=3. Define the following

additional notation:

M,.: Maximum number of villages within the r*" coverage circle of any village,r = 1,2,3

Bm,m,: Coverage constant with m, centers between (Dy, D,) and m3 centers between (D5, D3)
=1-(1—-a))™1—az)™
Zi € {0, 1}: 1 if there are no centers located within distance D, of i, k centers located between

distance (D4, D,) of i, and [ centers located between distance (D, D5) of village i; 0 otherwise
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Instead of the yi variables of the prior section we now have
y; € {0,1}: 1 if there is at least one center located within distance D, of i; 0 otherwise

The values of M, are determined a priori by preprocessing. To illustrate the notation,
consider the outreach assignment shown in Figure 2-2. For village 11, we have 0 centers within
distance Dy, 2 centers between distance (D, D), and 1 center between distance (D2, D3). Thus
Z1121=1 and z;1,=0 for all other k, I. For village 19, the corresponding numbers are 1, 0, and 2,
but the model will insure z19=0 for all k, | because there is a center located within distance D
of village 19.

The model is as follows:

n Mz Mz
Max Z biYi + Z Z 2 plﬁklzlkl (12)
i=1k=01=
subject to
yi < z xj for S;={j:d;j<Dy,j=1,..,n} i=1.,n (13)
JES;
M, Mjy

Z Z Zig +yi <1 (14)

M,
2 Ezlkl 2 for S;={j:D; < dij <D, j=1, won), i=1,.,n (15)

JESs;
M3
z ZZlkl z for S; —{] D, <djj<D3j=1,.. }, i=1,..,n (16)
JES;
n
Zcixi <c a7
i=1
n
in <N (18)
i=1
x;€{0,1}, y;€{0,1}, fori=1,..,n (19)
ZiklE{O,l}, fOT'i = 1, e, n, k = O, ...,MZ, l= 0, ...,M3 (20)
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The objective in this model has two terms: the first one counts the number of residents in
villages with 100% coverage and the second in villages that obtain partial coverage. Constraints
(14), (18) and (19) are similar to the ones in the prior models, while (15) ensures that if village i
gets coverage, it is either 100% coverage or partial coverage from one particular combination of
villages in the inner and outer secondary coverage circles. Constraints (16) and (17) along with
the fact that Sq is monotone increasing in k and | ensure that zjy =1 when there are k centers

located between distance (D1,D,) and | centers located between distance (D2,D3) of village i.

2.3.4 Model 4: Model with multiple IHCs

In the last model we consider an entire district with multiple IHCs located within it. It is
possible that a particular village might be a candidate for outreach from more than one IHC. This
model addresses the problem of developing the best combination of outreach programs across all
IHCs within a district. We could embed any of the models of the previous section into a larger
problem for the entire district as appropriate; here we illustrate the model using the case where
there is variable single coverage at each village (as in Model 2). Additional notation is as
follows:
m: Number of different IHCs in the district
N,: Maximum number of outreach activities from IHC ¢
Dinax: Maximum travel distance to an outreach location from any IHC

We define yj, similar to what we did in the variable single coverage model but also define

x; = {0,1}: 1 if village i is selected as a center for outreach from IHC [; 0 otherwise
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The model is as follows:

n K

21

Max zpizakyik 21)
=1 k=1

subject to
m
yus . D xy for Si={j:Dey < dyy < Dj=1,..,m), (22)
jesiq=1
i=1lton, k=1,..,K
K
Z Vie <1  fori=1,..,n (23)
k=1
n
Yaxsc (24)
i=1
n
qul- <N, forgq=1,.,m (25)
i=1
dgixqi < Dpmax  for q=1,.,mj=1,..,n (26)
m
Xgp<1 fori=1,.,n (27)
q=1
x€£0,1}, ypef01}, fori=1,..,m k=1,..,K; ¢ =1,...m (28)

Here C represents the budget for the entire district in (25), a separate limit on the number
of outreach sessions is defined for each IHC along with a distance constraint for each IHC in
(26) and (27), and (28) that ensures that if there is an outreach center at a village it must come

from a unique IHC.

2.3.5 Numerical example

We first illustrate the binary, variable single and multiple coverage models with the following

example based on the Tetia Bambar IHC in the state of Bihar, India. This IHC has a total of 92
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villages in its catchment area that are candidates for outreach centers. We were provided with the
distances from the IHC to each outreach village and the patient populations at each village.
However, the exact locations of these villages in relation to Tetia Bambar were not available, and
given their small sizes and inconsistencies in how their names were spelled it was impossible to
accurately locate them on any map. We therefore located the IHC at (0, 0) and randomly
assigned coordinates to the villages while maintaining the given distances. The resulting
coordinates of the villages along with their patient populations are listed in Table 1.

We use coordinate units of 1 km and assume that all distances d;; are Euclidean. For the
binary coverage model we assume D; =5 km. For the variable coverage models, we also assume
D, = 8 km and D3 = 10 km along with coverage fractions &= 0.5 and a3= 0.2. In order to
compare the results across the various models we ignored the budget constraints (i.e., (3), (9),
and (17)) because it was impossible to obtain even approximate estimates from Bihar. We only
used the constraints on the maximum number of outreach activities (centers), N (i.e., (4), (10),
and (18)). We solved each model for increasing values of N until we obtained 100% coverage.
For each model, Table 2 lists the coverage obtained for each value of N, along with the
respective locations of the outreach centers. The numbers in bold face represent new locations of
outreach centers that are added to or replace the ones from the previous (lower) value of N.

The three models often give different locations and levels of coverage when the limit on
the number of centers does not allow for 100% coverage. As an example when only 4 centers
are possible the coverage is 80.9% with Model 1, 88.6% with Model 2 and 90.5% with Model 3,
and the models do not select the same 4 locations. However, as the number of possible centers
(and the corresponding coverage) increases the centers start to converge to the same locations.

In all cases, a total of 9 centers are required before 100% coverage can be obtained; the locations

22



are identical and such that each village is within the inner circle (5 km radius) of at least one
center. Another interesting observation is that while one new center is always added as we
increase N, there are many instances with all models where in addition to adding a new center an
existing location is replaced with a new one. This emphasizes the value of an optimization model
in selecting the best strategy. As an example, with Models 1 and 2, when N changes from 7 to 8
four of the existing centers are replaced with five new ones; there are only three in common.
Similarly, with Models 2 and 3, when N changes from 2 to 3, the two existing locations are

replaced by three completely new ones.

Table 1. Location information

Village X Location y Population Village XLocatlonY Population
1 -11.84 493 228 47 1.38 -9.63 525
2 -11.03 -7.51 646 48 1.49 5.38 348
3 -10.07 2.85 366 49 1.53 10.24 401
4 -10.07 3.61 671 50 1.84 5.19 706
5 -9.88 0.40 594 51 1.94 4.89 650
6 -9.78 -3.48 624 52 1.97 -5.86 865
7 -8.93 3.79 711 53 2.76 -9.79 624
8 -8.88 2.25 475 54 2.85 3.49 44
9 -7.95 -3.40 198 55 2.92 291 147

10 -71.75 -6.21 561 56 3.05 -2.49 563
11 -7.52 0.19 525 57 3.18 5.46 273
12 -7.13 6.73 1,049 58 3.39 -9.66 618
13 -6.25 -2.92 554 59 3.43 -4.51 748
14 -6.07 0.06 496 60 3.96 -7.97 756
15 -5.37 -1.48 701 61 3.97 0.59 508
16 -5.19 3.30 293 62 4.59 -7.89 348
17 -5.14 -5.06 955 63 4.63 1.50 541
18 -4.67 -8.98 466 64 4.65 4.82 240
19 -4.65 11.30 246 65 4.69 2.13 463
20 -4.54 8.41 203 66 5.08 2.93 434
21 -4.38 2.98 297 67 5.29 -2.83 413
22 -4.14 -3.25 398 68 5.59 9.87 848
23 -3.67 0.41 695 69 5.61 -0.88 584
24 -3.60 9.14 254 70 5.76 -5.74 661
25 -3.48 -1.44 160 71 6.00 -0.57 636
26 -3.23 0.92 498 72 6.60 -0.74 682
27 -2.78 -3.86 442 73 6.71 -8.85 646
28 -2.62 -9.70 317 74 6.72 5.99 485
29 -2.38 -6.37 281 75 6.78 -7.45 541
30 -2.36 -2.23 278 76 7.12 1.47 792
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Table 1 (continued)

31 -1.74 -8.48 736 77 7.32 0.80 592
32 -1.65 -7.33 566 78 7.47 8.17 573
33 -0.96 3.30 387 79 7.48 6.37 423
34 -0.89 -10.30 195 80 7.70 5.60 493
35 -0.78 -3.81 743 81 7.73 1.48 694
36 -0.71 -3.05 370 82 7.82 -71.71 470
37 -0.62 11.76 553 83 8.05 -6.30 482
38 -0.41 -7.66 272 84 8.14 -1.24 355
39 -0.14 8.26 627 85 8.90 3.83 692
40 0.08 -10.23 543 86 8.94 3.94 677
41 0.24 -8.79 473 87 9.03 0.51 540
42 0.31 -9.84 329 88 9.53 3.62 90
43 0.41 -7.65 374 89 10.03 5.38 613
44 0.62 -10.20 491 90 10.27 6.24 313
45 111 6.30 392 91 12.16 -4.61 488
46 1.19 3.24 619 92 12.88 1.33 456

Table 2. Results for the first three models

Model 1: Binary Coverage Model 2: Variable single Model 3: Variable multiple
coverage coverage
N | No. Percent Center No. Percent  Center No. Percent  Center
Covered Covered Locations Covered Covered Locations Covered Covered Locations
1 | 10,749 269% 51 14,238 35.7% 53 14,238 35.7% 53
2 | 20,515 51.4% 48,51 25,167 63.1% 30,51 25,463 63.8% 30,51
3 | 27,417 68.7%  11,48,51 32,390 81.2% 11,48,52 33,093 83.0% 11,43, 60
4| 32257 80.9% 2'1 17,48, | 35331 88.6% ;’217’ 48| 36119  905% 2’2 31, 35,
8, 17, 31, 8, 17, 31, 8, 17, 31,
5 | 35,812 89.8% 48, 62 37,853 94.9% 48, 62 38,347 96.1% 48, 62
8, 17, 31, 8, 17, 31, 8, 17, 31,
6 | 37,590 94.2% 48, 60, 73 38,742 97.1% 48,60 73 39,132 98.1% 48,60 73
6.8 30. 31 6, 8, 30, 6, 8, 30,
7 | 39,259 98.4% 66 (’39 ’73 "| 39,572 99.2% 31, 60, 39,746 99.6% 31, 60,
T 69, 73 69, 73
10, 11, 23, 10, 11, 23, 6, 8, 23,
8 | 39,666 99.4% 35, 39, 60, | 39,780 99.7% 35, 39, 60, | 39,844 99.9% 30, 39, 60,
69, 73 69, 73 69, 73
8, 10, 22, 8, 10, 22, 8, 10, 22,
9 | 39,804 100.0% 23, 35 ,39, | 39,894 100.0% 23, 35,39, | 39,895 100.0% 23, 35 ,39,
60, 69, 73 60, 69, 73 60, 69, 73

Finally, it is worth noting that there could be differences in the actual number of people

covered at a specific outreach center; some centers that cover more locations might cater to a
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larger number of patients than others. However, the imbalances are not drastic. As an
illustration, consider the case when we have 6 outreach centers, in which case all three coverage
models choose the same set of six locations for outreach as shown in Table 2 (Villages 8, 17, 31,
48, 60 and 73). Table 3 displays the actual population covered at each of these locations under

the different coverage models.

Table 3. Coverage at each of 6 centers with different coverage models

Location No.
Model Total
8 17 31 48 60 73
Binary 5,704 6,040 3,592 9,766 6,416 6,073 37,590
Variable Single 5,704 6,490 3,714 9,997 6,416 6,420 38,742
Variable Multiple 5,971 6,425 3,665 10,214 6,526 6,329 39,132

Figure 3 provides a visual summary of the coverage results. Obviously, the variable
coverage models always provides higher coverage than the binary coverage model but the
differences start to get smaller when the number of centers (N) reaches about 7, and the models
are identical when N =9. The two variable coverage models behave similarly, and the gains from
multiple coverage (as well as from variable coverage) over binary coverage are more noticeable
at intermediate values of N. This is significant because in practice, the values of N are more
likely to be in this intermediate range: if N is small the options are limited and the benefits of an
optimization model are not significant, while large N values are unlikely in practice because of
budgetary considerations and resource constraints. While Figure 4 indicates that we have
diminishing marginal gains in coverage as we add outreach sessions, it also allows a social
planner to evaluate these gains in light of the extra resources (monetary, equipment, personnel,
etc.) that might be required for additional outreach sessions.
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Figure 4. Coverage with first three models

Figure 5 further illustrates the differences in results from the three models for an
intermediate value of N=3. The three panels in the figure provide a visual depiction of the actual
locations selected by the models. Notice that location 11 is common to all three models but the

others differ depending on the model in use.

Binary Coverage (V=3) Variable Single Coverage (N=3) Variable Mutiple Coverage (NV=3)
Centers at 11, 48 and 51 Centers at 11, 48 and 52 Centers at 11, 43 and 60

Figure 5. Locations of 6 centers with different types of coverage
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Finally, to illustrate the multiple IHC model consider a hypothetical district with a total
of 80 villages served by 4 IHCs. The locations of the villages and the IHCs are depicted in
Figure 6. Populations of the individual villages are not shown, but these were randomly

generated; the total population of the district for this example was equal to 4,645.
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Figure 6. Locations of 8 outreach centers for maximizing coverage

In defining constraint (26) we assume the same value of N, for all values of g, i.e., that
each IHC was restricted to the same maximum number of outreach centers. The multi-IHC
problem was solved for values of Nq ranging from 1 through 9; the results on the total coverage

are shown in Table 4. Once again budget constraints were ignored for the illustration.
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Table 4. Coverage with 4 IHCs

Outreach per Population Coverage
IHC P Percentage

1 1,387 29.9
2 2,243 48.3
3 2,810 60.5
4 3,169 68.2
5 3,416 735
6 3,607 71.7
7 3,743 80.6

3,816 82.2

3,846 82.8

As Table 4 indicates, there is a diminishing marginal benefit from allowing an IHC to
have an extra outreach center. In practice the number of outreach centers permissible would be
limited by the budget and other available resources, but a table such as this one allows planners
to balance the additional resources expended with more outreach centers against the gains in the
number of residents vaccinated. Figure 6 illustrates the case where Nq=2 and shows the locations

of the two outreach centers for each of the four IHCs; the total coverage here is about 48%.

24  ROBUST MODELS

In this section, we consider two types of uncertainty. The first is with respect to our coverage
assumptions. The first three models have different coverage assumptions based on the behavior
of the underlying population. But it is difficult to know this behavior exactly. If a model that

does not reflect the actual behavior of the population is applied, the result would not be reliable,
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and the goal is to examine how the results from one set of assumptions perform when the actual
behavior is different from the assumed one. The second type of uncertainty is with respect to
demand. Since there might be a time difference between when the number of people at a location
is recorded and when an outreach activity occurs, the number of people at a location might not be
accurate, so that we have to consider possible variation in the number of people that might be

served by outreach to see how robust a particular outreach strategy might be.

2.4.1 Robustness for coverage assumptions

Clearly, a solution to one of the models is feasible for the other models, since any set of outreach
centers can be a solution. Therefore, we do not need to consider the potential for infeasibility of
solutions to a model. Rather, a robust solution will be one that provides a good solution for all
three models without sacrificing very many people that need to be covered. Table 5 shows the
number of covered people for each model when the optimal solution of each of the other two
models is applied. The percentage value shown below the number of covered people is the

percentage difference from the maximum number of people covered by any of the models.

Table 5. The number of covered people in each model with the optimal solution of the other models

model 1 2 3
solution 1 2 3 1 2 3 1 2 3

1 10,749 8,508 8,508 14,060 14,239 14,239 14,060 14,239 14,239
(20.85%) (20.85%) | (1.26%) (1.26%)

2 20,515 19,928 19,928 24,253 25,169 25,169 24,253 25,465 25,465
(2.86%)  (2.86%) | (3.64%) (4.76%)

3 27,418 27,163 25,985 32,384 32,394 32,078 32,639 32,840 33,097
(0.93%)  (5.23%) | (0.03%) (0.98%) | (1.38%)  (0.77%)

4 32,260 32,005 29,509 35,249 35,335 34,704 35,442 35,717 36,123
(0.79%)  (8.53%) | (0.24%) (1.79%) | (1.88%)  (1.12%)
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Table 5 (Continued)

. 35816 35816 35816 | 37,857 37,857 37,857 | 38,351 38351 38,351

6 37593 37,593 37,593 | 38746 38746 38,746 | 39,135 39,135 39,135

. 39,254 39,254 39,254 | 39,576 39576 39,576 | 39,700 39,700 39,720
(0.05%)  (0.05%)

g 39,670 39,670 39,652 | 39,784 39784 39,775 | 39,807 39,807 39,837
(0.05%) (0.02%) | (0.07%)  (0.07%)

o 39,898 39,898 39,898 | 39,898 39,898 39,898 | 39,898 39,898 39,898

These results indicate that choosing the wrong model might result in a significant number
of people not being served (e.g., 20.85% in this example when the optimal solution from model 2
is used but the behavior of patients is actually as assumed in model 1.) Note that when we can
choose more outreach centers the solutions are the same (or very similar) regardless of the model
used, but when we have a limited budget and the number of outreach centers we can have is
small wrong assumptions on the population behavior can result in lower coverage. In order to
address this issue, a solution that performs well and is robust across all three models is desired
and can be found using robustness techniques. That is, in order to obtain a robust solution to all
three models, we have to minimize the maximum difference between the number of people who
can be covered with each model and the number of people who can be covered with a robust

solution. The robust model is as follows:

Min t (29)
subject to
n
G(N) =) pi <t (30)
i=1
n K
G(N) = ) i ) v <t (31)
i=1 k=1
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n n M; Mz

M
G3(N) — Z piyi — Z z PiBriZi <t (32)
i=1

i=1 k=0 1=0
Vi < Z xj for §; = {j:dij <Dyj=1, ...,n}, i=1,..,n (33)
JEs;

n

Z CiXi <C (34)
i=1

n

in <N (35)

yik< Xj fOT Si={j:Dk_1£dijSDk,j=1,...,n}, i=1,...,n;

jESi (36)
k=1,..,K
K
Z Y <1 fori=1,..,n (37)
k=1
Vi < Z xj for §;= {j:dij <Dyj=1, ...,n}, i=1,..,n (38)
JEs;
M; M3
Z Z Zikl +yl < 1 (39)
k=01=0
M, Ms
ZkZZileZXj fOT Si:{j:Dl<dijSD2,j:1,...,Tl}, i=1,...,n (40)
k=0 1=0 j€s;
ZZZZ”([SZX]' fOT' Siz{j:Dz<dijSD3,j=1,...,Tl}, i=1,...,7’l (41)
1=0 k=0 jES;
x;€{0,1}, y;€{0,1}, fori=1,..,n (42)
viee{0,1}, fori=1,..,n, k=1,..,K (43)
z3q€{0,1}, fori=1,..,n, k=0,..,.M,, 1L=0,..,M; (44)

where G;(N) is the objective value of the model i when the number of outreach location is N
The objective function and constraints (30) — (32) ensure that we minimize the difference
between the optimal value in each model and the optimal robust value. Since all three models
optimize the number of people covered for a specific value of N, there is not a significant issue

with objective function scaling in constraints (30) — (32). However, we could consider scaling t
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depending on the objective of the robustness analysis. For example, if we want to minimize the
maximum percentage deviation across the three models from the robust optimum, we can
multiply t by G;(N) (e.g., Gy(N) — X1, piyi < G1(N)t). Constraints (33) — (44) come from models
1, 2 and 3. Table 6 shows the result when the robust solution from the above model is evaluated
using each of the three original models, and the numbers in parentheses display the percentage of
the population lost as a result of using the robust solution in place of the optimal one. If the
outreach centers from the robust solution are used, then for any N, the maximum percent

deviation from the best possible solution is 1.94%.

Table 6. Result of robust solution for uncertain assumption

Model

N 1 2 3
1 10,749 14,060 14,060
(1.26%) (1.26%)
5 20,117 25,043 25,179
(1.94%) (0.50%) (1.12%)
3 27,163 32,390 32,840
(0.93%) (0.77%)
4 32,005 35,335 35,717
(0.79%) (1.12%)
5 35,816 37,857 38,351
6 37,593 38,746 39,135
; 39,254 39,576 39,720
8 39,670 39,784 39,825
(0.03%)
9 39,898 39,898 39,898
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2.4.2 Robustness for uncertain demand

We can also consider uncertainty in the number of people (=demand) at each village. In this
section, we consider a robust version for Model 1. Those for Model 2 and 3 can be expressed
similarly.

Let us define the feasible region A for Model 1 as follows:

A={(xy)|y; < Z x; forS; = {j:dij <D;j=1, ...,n}, i=1,..,n,

JES;

n n
Ecixi < C,Exi < N; x;€{0,1}, y;€{0,1}, fori=1,..,n}
i=1 i=1

Now suppose that p; is an estimate of the population in village i and that p;y; is the
amount by which the true population p; differs from this estimated value p;, so that p; — p; =
Divi, 1.e., p; = p;(1 +y;) . Also assume that

Yiz1Divi =0 sothat ¥im, p; = XL 9 =D

O0<lyil=y:i<1

In other words we know the total population (D) across all n villages, but the true
population p; at village i could be up to 100y;% higher or lower than its estimated population p;.

Let us define the set B as

pivi = 0,1yl <7 <1}
1

B = {y|

n
i=

where y is a vector of y;.

Robust Model:

n
maX{irylf pi(L+v)yi |[(x,y) EAYE B}

x,y
i=1

33



Note that for a given feasible selection of outreach centers (x) and corresponding set of
villages covered (y), the quantity within the braces represents the smallest value of the true total
population covered across all different deviations from the estimates that meet conditions 1-3
above. The objective of the model is to find the vectors x and y that maximize this value.

Proposition

If y; =y, = -+ =y, = 7, then the optimal solution to the original formulation (Model 1)
is the optimal solution to the robust formulation.

Proof:

Let (x*, y*) be the optimal solution to Model 1, and consider any feasible (x,y) € A and
define C as the index set of villages that are covered and N as the index set of villages that are
not covered. Note that CUN = {1,2,...,n} and the estimated total coverage is ).;ec p; While the
estimated population not covered is given by Y.;cy Di = D — Yiec Pi-

Define

n
f(x:)’)= ﬁizz/ﬁiyi

i=1

Srixy) = myin {z p;,(L vy

Note that for the assignment (x,y), ¢&(x,y) is the estimated total coverage, while
E(y|x,y) is the smallest actual total coverage possible across all differences from the estimates
that satisfy conditions 1-3 described earlier.

Case 1: {(x,¥) = XiecPi < D/2)

In this case the true total coverage has its minimum value &(y|x,y) when the true
population of each village i € C is p;(1 — ), as long as this minimum can be attained. This

minimum is attained as long as the true total population not covered (in the villages indexed by
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set N) does not exceed (1 + 7) Xien Di» Which is the largest possible value that this number can
take on.
The true number not covered is given by D — (1 — y)(Q;ec P;) and therefore we need to
show that {D — (1 = Y) Qiec D)} < {(1 + ) Xien Pi)}- This is easily done because
D - (A =7)QiecP)} — {1 + V) Rien Bi)}
={0 - -7 QiecP)} —{Q +7)(D — LiecPi)}
=y{2Y;ccP; — D} < 0 (because ¥y > 0 and Y;ccp; < D/2)

Therefore

Erlxy) = ) (1 -7b, = - PNEEY)

ieC
and in particular, for (x*, y*)
Erlxt,y) = A -N§,y).
Since (x*, y*) is optimal for Model 1, it follows that £ (x, y) < é(x*,y*), and therefore
Erlxy) < Srlx, ¥).

Therefore (x*, y*) is also optimal for Model 2.

Case 2: $(x,y) = XiecPi > D/2)

Here it is not possible for the true coverage to attain the minimum possible value of
(1 —y) Yiec i because the actual total number not covered would then exceed its maximum
possible value. Instead we make use of the fact that the minimum actual coverage is attained
when the actual number not covered is at its maximum of (1 4+ y)Y,enD;- TO show this
minimum can be attained we need to ensure that the true total number covered is larger than
(1 — 7) Yiec Di» Which is the smallest value that it can take on.

The true number covered is given by D — (1 + y)Qien ;) and therefore we need to
show that {D — (1 + 7) Qien P1)} = {(1 — 7)Qicc P1)}- This is easily done because
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D - A+ Qien D)} — {1 —7) Liec bi}
={D - A +7)D — Xiec )} = {(1 = V) Liec bi}
=V{2Ziechi =D} >0
Therefore
E1xy) =D — (1 +7) Lien ;
=D - (1+7)(D~Xiech;) = 1+ P iech) — 7D
= ({1 +7)¢xy) —vD,
and in particular, for (x*, y*)
§rlxy) = A+ iy —7D.
Since (x*, y*) is optimal for Model 1, it follows that £ (x, y) < é(x*,y*), and therefore
Eylxy) < E(yix,y*).m
Example:

Suppose we have a total of 100 people in our n villages and the true population in any
individual village i could be higher or lower than the estimated value p; by no more 10% (so
y=0.1).

Case 1: Suppose Y.;ccP; =45 people are estimated to live in villages covered and
Y.ien Pi =55 in villages not covered. Then the lowest true coverage possible is 45(0.9) = 40.5
with 59.5 people not being covered.

Case 2: Suppose Y.;ecP; =b5 people are estimated to live in villages covered and
Y.ien Di =45 in villages not covered. Then the lowest true coverage possible is when the actual
number not covered is at its maximum of 45(1.1) = 49.5, i.e., with 50.5 people being covered.

According to the previous proposition, the optimal solution to the model without demand

uncertainty is the robust solution for uncertain demand. If the assumption about the equality of
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the total population is removed, the result is the same because the objective value for all
solutions would be decreased by y . In addition, even if the assumption of percentage deviation
from the estimated population is changed to a fixed amount of deviation from the estimated
population, the optimal solution is still the robust solution. The fact that the solution to the robust
model is the same as the solution for the original model is because of the following
characteristics of the coverage model: 1) it maximizes the number of people who can be covered,
2) the robust model provides the optimum corresponding to the worst-case scenario for the error
in the estimated population, and 3) there is no systematic interaction between the populations at
different locations. Thus, in order to have the best worst-case performance it is optimal to locate
the outreach points at the locations that maximize coverage with the estimated populations. This
follows because if the population at each location can either be reduced by a constant percentage
or a constant amount then the locations that maximizes coverage in the original problem will still

provide the highest coverage for the new problem.

2.5  DISCUSSION AND CONCLUSIONS

To the best of our knowledge the work reported here is the first to provide a formal modeling
framework for decision making with respect to outreach. As with any model-based approach, our
work has some limitations and certain facts are worth keeping in mind. First, our results apply
mainly to rural outreach settings with relatively lower population densities; in densely populated
urban settings coverage models could clearly be much more complex. However, since most
urban centers tend to have health posts or clinics with regular hours, outreach generally is

focused on rural locations. Second, we assume that the social planner is not biased in favor of
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outreach plans where the travel is shorter or across easier terrain (which is sometimes the case in
practice), and that the plans from our model can be implemented in an unbiased fashion. Third,
in general it could be difficult to predict the exact type of coverage applicable to a particular
application environment. However, the models could be run under different assumptions of
coverage, and as the results indicate, in many instances the optimal locations are identical (e.g.,
with N=6 locations), with only the estimates of the populations served being different. In other
cases there may be some common locations and some that differ (e.g., with N=3), in which case
the social planner would make a subjective decision on the locations to select.

In addition, when it is not possible to specify the coverage assumption, a robust approach
can be applied by creating a model that combines aspects of the different models into one model
or by using a minmax regret evaluation of the solutions found by the different models as shown
previously. Similarly, if there is uncertainty about parameter values then the model can be run
for different parameter values, either separately or in a combined manner, in order to find a
robust solution. For example, the first and second radius of model 2 can be assumed to be 4km
and 6km in one model run and 5km and 8km in a second model run or have both parameter sets
incorporated into one robust model. Moreover, in the robust formulation for addressing demand
uncertainty, if the total demand is unchanged and the deviation percentage in each village is the
same, the optimal solution of the nominal problem is the same as that of the robust problem.

In summary, outreach is a critical component of EPI vaccination programs in low and
middle income countries. However, there are no standard guidelines for outreach and these
activities tend to be conducted in a fairly ad hoc fashion. In particular, the problem modeled in
this paper is motivated by vaccination activities in India, and our approach is based on adapting

facility location models to the outreach coverage problem. Based on past and ongoing work
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related to vaccine logistics that we have done with a number of countries in Asia and sub-
Saharan Africa, we feel that these models can aid decision makers when they are establishing
outreach policies. The resulting outreach plan affects the performance of the entire vaccine
supply chain because the demand for vaccines at all levels of the supply chain will vary with the

outreach plan and the resulting vaccine coverage.
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3.0 MODULAR VACCINE PACKAGING TO INCREASE PACKING EFFICIENCY

3.1 INTRODUCTION

Currently, individual vaccines vials and their component packaging vary significantly in overall
length, width, and height. This is because the vaccine packaging size is determined by the
dimensions of both individual cylindrical vials (each containing one or more doses of vaccine)
and rectangular inner packs that typically contain 10, 20, 50 or 100 vials of a particular vaccine.
The variability of inner pack and vial dimensions may hinder efficient vaccine distribution
because it constrains packing of cold boxes and vaccine carriers to quantities that are often
inappropriate or suboptimal in the context of country-specific vaccination guidelines. In
particular, estimating storage space requirements is more difficult with non-standard sizes and in
a resource constrained system it may not be possible to take all the vaccines needed in a carrier
because of the inefficient packaging.

Modularized packaging is one way to address this because the consequent increase in
packing efficiency has the potential to reduce storage space requirements and replenishment
frequencies. The standardization of packaging also has the benefit of making operations much
simpler for personnel since vaccines can be more easily packed and space requirements can be
more easily estimated. While vaccine vial size has been a recent topic of academic and

policymaker interest, explorations of alternative packing configurations have not yet addressed
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inner packs (Assi, et al., 2011; Dhamodharan & Proano, 2012; Parmar, Baruwa, Zuber, & Kone,
2010; Lee, et al., 2011; Lee & Burke, 2010; Assi, et al., 2013; Brown, et al., 2014; Drain,
Nelson, & Lloyd, 2003). The packing analysis in this paper proposes that a solution to
inefficient packing caused by inner pack and vial size variability is a modular packaging system
(where vial and inner pack dimensions are more consistent between different vaccines) that

allows for more effective packing into cold boxes and vaccine carriers.

3.2 METHODS

We developed in Microsoft Excel (Microsoft Corp.) a spreadsheet model that evaluated the
impact of different packing schemes for the Benin routine regimen plus the introduction of the
Rotarix vaccine. The Benin routine vaccine regimen includes Bacillus Calmette-Guerin (BCG),
Tetanus, Measles, Oral Polio, Yellow Fever, Diphtheria-Tetanus-Pertussis-Hepatitis B-
Haemophilus influenzae type B (DTC-HepB-Hib), Pneumococcal Conjugate (PCV13), and
Rotavirus (Rota) vaccines. Specifically, the model is used to compare the current packing
scheme to that of a proposed modular packaging system.

The storage device considered is the Dometic RCW25, which is prequalified by the
WHO, is used in over 100 countries and was noted as a commonly used storage device in a
recent study of in-country vaccine transport devices (PATH & World Health Organization, 2013;
World Health Organization, 2010). The RCW 25 has a vaccine storage volume with length 40.5
cm, width 26.5 cm and height 19 cm after it is packed with conditioned ice. In Benin, workers at
a “Health Post” (the lowest level of the vaccine distribution chain where vaccines are
administered) typically travel to a “Commune Store” once per month to pick up vaccines; the

amount of vaccines picked up depends on the population characteristics of the catchment area
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served by the Health Post and is determined by workers at the Health Post based on prior
months’ demand. The vaccines are transported back to the Health Post in a vaccine carrier using
a motorcycle. In determining packing efficiency, analyses of both current inner pack/vial sizes
and the proposed modular system considered the number of fully immunized children (FIC)
possible and packing efficiency (% space occupied) per fully packed device. The FIC metric
ensures that our evaluations are with vaccine carriers that transport the suite of vaccines required

for an FIC (as opposed to simply filling the carrier with just one or two types of vaccines).

3.2.1 Conventional packaging configuration

The dimensions in Table 7 were used for analyses of existing, conventional inner packs and their
constituent vials; the volume of the inner pack is simply the product of its length, width, and
height as described by the vaccine manufacturer. These dimensions were used to determine the
number of conventional inner packs for each vaccine type that could be placed in the RCW25 in
order to maximize the FIC per device. To pack the device, we used manual modifications. Note
that each inner pack could be positioned in any orientation and that inner packs of the same type
could have multiple orientations. For each inner pack combination we placed the inner packs into

the storage device until its dimensions prohibited the addition of any more.

Table 7. Conventional inner pack dimensions

DTC-
Vaccine Type BCG Tetanus  Measles Oral Polio T:eel\llz\;\l HepB-Hib PCV13 Rota
liquid
Length (cm) 18.5 10.6 18.5 15 10.6 18 17.9 14.6
Width (cm) 9.5 4.7 9.5 12.5 4.7 14.9 9.2 8.5
Height (cm) 6 51 6 7.5 5.1 3.7 41 6.9
volume(L) 1.05 0.25 1.05 1.41 0.25 0.99 0.68 0.86
Vials/inner pack 50 10 50 100 10 100 50 50
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1 M sco 1 pack

1 layer; 18.5 cm height

2 I Veasles 1 pack

1 layer; 18.5 cm height

.2 packs
3 I DTC-HepB-Hib 1 layer; 18 cm height

4 M rcviz 8 packs

1 layer; 17.9 cm height

5 - Rota 5 packs

2 layers; 2x8.5 cm height

. 1 pack
6 - Oral Polio 1 layer; 7.5 cm height
3 packs
1 layer; 10.6 cm height

g 3 packs
[ Yellow Fever 3 layers; 3x4.7 cm height

Figure 7. Packing arrangement in RCW25 for conventional inner packs (Top view)

7 Tetanus

1 [ sco 1 pack

1 layer; 18.5 cm height

2 I Measles 1 pack

1 layer; 18.5 cm height

.2 packs
3 I DTC-HepB-Hib 1 layer; 18 cm height

4 M rcvis 8 packs

1 layer; 17.9 cm height

5 - Rota 5 packs

2 layers; 2x8.5 cm height

. 1 pack
6 - Oral Polio 1 layer; 7.5 cm height
4 packs
1 layer; 10.6 cm height

s 1N 4 packs
Yellow Fever 4 layers; 3x4.7 cm height

Figure 8. Packing arrangement in RCW25 for conventional inner packs with two additional inner packs

7 Tetanus

In our simulation of storage device packing, the device is filled with the objective of
maximizing the number of children that could be fully immunized as per the Benin routine
vaccination schedule. This involved two steps. In Step 1 we considered the vaccine schedule
required for each FIC — for each vaccine we determined the average number of children that can
be fully vaccinated per inner pack, based on the scheduled number of doses, the wastage rate, the
number of doses per vial and the number of vials per inner pack, as described in Table 8. For

example, for BCG the vaccine schedule is one dose per child and the wastage rate is 50%;
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therefore, on average, 1/(1-.50) = 2 doses are needed per FIC (note that in the remainder of this
chapter when we reference FIC we mean the expected FIC given the average wastage rates given
in Table 8) . BCG has 20 doses per vial and an inner pack of BCG contains 50 vials, therefore
the inner pack contains 50*20 = 1,000 doses total. Because 2 doses on average are needed per

FIC, on average 1,000/2 = 500 children can be immunized per inner pack of BCG.

Table 8. FIC calculations per inner pack

. Yellow DTC-
BCG Tetanus  Measles Oral Polio E HepB-Hib PCV13 Rota
ever .
liquid

Scheduled doses per child 1 2 1 4 1 3 3 2
Wastage rate 0.5 0.15 0.45 0.17 0.45 0.05 0.01 0.01

Doses per vial 20 10 10 20 10 2 1 1

Vials per inner pack 50 10 50 100 10 100 50 50
FIC per inner pack 500 425 275 415 55 63.33 16.5 24.75

In Step 2, beginning with one inner pack of each vaccine type, we incrementally
increased the number of inner packs in order to increase the expected number of FIC that can be
served, as illustrated in Table 3-3. Initially we place one inner pack of each vaccine type into the
carrier, resulting in the FIC values given in the first row (“One of each”). The expected number
of FIC that the carrier can serve is the minimum FIC value in the row, which is 16.5 for PCV13
(bold, highlighted); therefore, we next add an inner pack of PCV13 so that there is enough
PCV13 to vaccinate 2 * 16.5 = 33 children. This results in the FIC values given in row 2 (“+1
PCV13”), with a new limiting FIC value of 24.75 determined by Rotarix; therefore we next add
an inner pack of Rotarix. This process is repeated until there is no more room in the storage
device. This results in the inner pack values shown in the last row (“FINAL”), with a final FIC

value of 123.75.
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Table 9. Packing current inner packs into the device

Oral Yellow DTC-HepB-

BCG  Tetanus  Measles Polio Fever Hib liquid

PCV13 Rotarix

Number of
One of inner 1 1 1 1 1 1 1 1
Each packs
FIC 500 425 275 415 55 63.33 16.5 24.75
Number of
+1 inner 1 1 1 1 1 1 2 1
PCV13 packs
FIC 500 425 275 415 55 63.33 33 24.75
Number of
+1 inner 1 1 1 1 1 1 2 2
Rotarix packs
FIC 500 425 275 415 55 63.33 33 495
Number of
FINAL inner 1 3 1 1 3 2 8 5
packs
FIC 500 1275 275 415 165 126.67 132 123.75

In determining the exact inner pack configuration within the storage device our approach
was slightly different for conventional and modular inner packs. The conventional inner packs
are all of different sizes and their packing was therefore done by trial and error filling from the
bottom of the storage device. It should be noted that an optimization approach such as 3-
dimensional bin packing would be computationally intensive and unrealistic in the field; rather
we tried to replicate what a typical field worker might do in an effort to choose among realistic
solutions. While the packing is easy in the early stages, as the number of inner packs increases
(at each step in Table 3-3) it becomes more difficult as we need to abandon the current
configuration and start afresh. We were able to pack the number of inner packs shown in the last

row of Table 9 using the configuration shown in Figure 7.
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3.2.2 Proposed modular packaging configuration

In designing modular packaging we assumed that all vaccines have vials with the same diameter
but that the vial heights can change to account for differences in dose volumes. This provided
uniform vial size in two dimensions and variation in only one dimension. Our data sources
provided the rectangular dimensions of existing conventional inner packs but not the cylindrical
dimensions of individual vials. We computed these by dividing the length or width of the inner
pack by the number of vials in the length or width dimension. When there was inconsistency in
the unit length and the unit width, we choose the larger value to be conservative. These values
were then used to determine current vaccine vial volume, in order to design similar modular
vials.

Specifically, to determine the ideal modular vaccine vial diameter, we analyzed the
effects of multiple potential vial diameter sizes on packing efficiency. There are four main
considerations for deciding the ideal modular vaccine vial diameter:

1) The number of vials in an inner pack: We required the quantities per inner pack to be values
that are easy for counting, such as 10, 20, or 50.

2) Area efficiency: The modular vaccine vial diameter needed to result in an inner pack
configuration that would fit well into the space available in the storage device.

3) Vial size as it relates to dose volume: The goal was to create standardized vial sizes but also
make them similar in size to conventional vials to preserve existing dose per vial calculations
— thus we found candidate vial diameters by calculating the area occupied by the vials when
using 10, 20, and 50 vials in an inner pack.

4) Packing array: We considered diameters that could work with both hexagonal and

rectangular packing within rectangular inner packs.

46



The above analysis yielded three potential diameters of 1.6 cm, 2.2 cm, and 1.91cm. For
each diameter and each vaccine type, we calculated the modular vial height based on the volume
of the original, conventional vial; the calculated modular vial heights are shown in Table 10, and
also determine the height of the inner pack in which the vials are subsequently stored. The 1.6cm
diameter vials require relatively large heights while the 2.2 cm diameter vials require relatively
small heights, in order to maintain current volumes/doses per vial. Therefore, we also evaluated a
modular system that uses a mixture of 1.6 cm diameter vials for some (small-volume) vaccines
and 2.2 cm diameter vials for other (large-volume) vaccines. We also considered an intermediate
vial diameter of 1.91 cm by itself.

We next examined the three different vial sizes in the context of potential inner pack
dimensions; optimum inner pack dimensions are shown in Table 10, while the vial configuration
within each inner pack and the corresponding dimensions are shown in Figure 9. Note that the
inner packs for 1.6 cm diameter vials and 2.2 cm diameter vials are very similar in length and
width; this was done purposely in order to maximize the efficiency of the fourth modular system
that uses a combination of the two vial sizes. All three inner pack sizes were chosen such that
they can be packed efficiently into the volume of the RCW25. From Table 10, for the 1.6 cm and
2.2 cm diameter vials, inner pack dimensions are approximately 8 cm long and 6.5 cm wide.
Therefore, they can be stored 5-long along the 40 cm length of the storage device and 4-wide
along the 26.5 cm width of the storage device. The result is that there are 20 stacks of inner
packs, each occupying the same area, which can each be up to 19 cm tall. For the 1.91 cm
diameter inner packs, there are 6 stacks of inner packs that can each be up to 19 cm tall. The
different packing configurations for each vial size within the two dimensions (length x width) of

the storage device are shown in Figure 10.
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Table 10. Potential modular inner pack dimensions for different vial diameters

Diameter _ Yellow DPTC-

(cm) BCG Tetanus  Measles  Oral Polio Fever :—il(;eSin-Hlb PCV13 Rota
Length(cm) 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00

1.6 Width(cm) 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40
Height(cm) 8.24 9.95 8.24 5.54 9.95 3.01 5.28 6.73
Length(cm) 7.92 7.92 7.92 7.92 7.92 7.92 7.92 7.92

2.2 Width(cm) 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.60
Height(cm) 4.36 5.26 4.36 2.93 5.26 2.07 2.79 3.56
Length(cm) 8.53 8.53 8.53 8.53 8.53 8.53 8.53 8.53

1.91 Width(cm) 20.06 20.06 20.06 20.06 20.06 20.06 20.06 20.06
Height(cm) 5.78 6.98 5.78 3.89 6.98 2.74 3.70 4.72
Length(cm) 7.92 7.92 7.92 8.00 7.92 8.00 8.00 7.92

16422 Width(cm) 6.60 6.60 6.60 6.40 6.60 6.40 6.40 6.60
Height(cm) 4.36 5.26 4.36 5.54 5.26 3.01 5.28 3.56
Diameter(cm) 2.2 2.2 2.2 1.6 2.2 1.6 1.6 2.2

6.4cm 853cm

1.6cm diameter vials

2.2cm diameter vials

2006 cm

1.91cm diameter vials

Figure 9. Packing configurations within inner packs for each proposed modular vial size

1.6cm diameter 4x5 inner packs

2.2cm diameter 4x5 inner packs

1.91cm diameter 3x2 inner packs

Figure 10. Packing configurations within storage device
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As opposed to the trial-and-error approach with the conventional inner packs as described
in Section 3.2.1, we used a heuristic algorithm for packing the modular inner packs into the
storage device. We experimented with two versions of the heuristics based on how field workers
might fill the storage device. In version 1 the device was packed by starting on one side of the
storage device and sequentially stacking inner packs vertically and building up multiple stacks
(we refer to this as the tower method), while in version 2 we sequentially fill the storage device
horizontally filling the storage device from the bottom and building up multiple layers (we refer
to this as the layer method).

For both methods we started by assigning the storage orientations for inner packs as
described in the previous paragraph, and then sorted inner packs in decreasing order of height.
In the tower method we used a first-fit-decreasing heuristic where inner packs were stacked in
decreasing order of height in a single tower until no more can be placed in that tower, and we
then search for the largest inner pack that fits in the remaining space (Figure 11). When no inner
packs can be fitted into the current tower a new tower is started and this procedure is repeated
until all inner packs are exhausted. In the layer method, the inner packs are sequentially placed in
the same layer in decreasing order of height until there is no more space in the layer to form
several different towers. These towers are then built up layer by layer in a sequential fashion

until all inner packs are exhausted (Figure 12).
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Figure 12. Layer packing method

In addition to the heuristic tower and layer methods, we also considered a mathematically
optimized tower method (termed the optimized method) using the following model.

Notation

Xij: Number of inner packs of vaccine i in the j”‘ tower

F: Number of fully immunized child who can be covered

ci: Number of people who can be covered by one inner pack of vaccine i
fi: Number of people who must be administrated vaccine i

hi: Inner pack height of vaccine i

h: Storage device height

m: Number of towers in one storage device

n: Number of the vaccine types
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Max F

(45)
subject to
m
cinijZF fori=1ton
4 (46)
n
Zhixijﬁh forj =1tom (47)
i=1
xl-j = {0, 1, 2, } (48)

The objective (45) is to maximize the number of fully immunized children F that can be
covered by the combination of inner packs of each vaccine in one storage device. Constraint (46)
insures that the number of FIC cannot exceed the number of people who can be administrated
each vaccine type. Constraint (47) insures that the sum of height of the inner packs in each tower
must be less than the height of the storage device. Constraint (48) insures that we only use
integral numbers of inner packs (no partial inner packs are allowed.) This model determines the
optimal way to combine the inner packs into towers to attain the maximum possible FIC value.
This linear integer programming model is presented mainly as a point of reference for bounding
the performance of our heuristic approach, since it is unrealistic to expect that this approach will

be used in the field.
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3.3 RESULTS

3.3.1 Conventional packing efficiency

The number of children who can be fully vaccinated with each vaccine type for the conventional
inner packs is shown in the bottom row of Table 9 and the maximum expected FIC served by a
single storage device is 123. The resulting configuration of inner packs within the device is
illustrated in Figure 7.

Currently, the FIC-optimizing configuration of conventional inner packs occupies 16.71
liters, representing 81.93% of the available volume of the RCW25; we refer to this as the volume
efficiency of the packing. Although there is not enough empty space to add an inner pack of the
vaccine currently determining the maximum FIC value (Rotarix), we can still use this space for
other vaccines if we wish to do so. Thus, after filling the device to its FIC capacity, it is possible
to add in two inner packs of Yellow Fever or two inner packs of Tetanus or one inner pack of
each (the inner packs of these two vaccines are the same size). The occupied volume and volume
efficiency now rise to 17.22 liters and 84.4% respectively. Figure 8 illustrates the arrangement
with one extra inner pack of yellow fever (on top of the previous three) and one extra inner pack
of tetanus (stored vertically in the empty space shown in Figure 7).

It is important to note that these packing efficiencies were achieved by evaluating many
different possibilities and therefore almost certainly reflect a higher packing density than would
be achieved in practice, since storage devices are generally not packed and repacked multiple
times. Thus, it is not likely that this high a degree of space utilization is regularly achieved in

actual practice
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3.3.2 Conventional versus modular packing efficiency

The maximum FIC that can be served by one RCW25 given the current inner pack sizes is 123 as
calculated above; the same methodology can be applied using the modular inner pack data and
the results are shown in Table 11 (detailed information about the numbers of doses and inner
packs achieved with conventional packing and each modular packaging system can be found in
Table 12). The results also show that the tower method often outperforms the layer method and
the optimized method always performs as well as or better than the layer and tower methods in
terms of vaccine storage. In the discussion below we use the term “baseline” or “base” to refer to

the 123 FIC obtained with conventional packaging.

Table 11. Maximum FIC and occupied volume for different proposed modular vaccine vial diameters

Diameter Layer Method Tower Method Optimization Method
(cm) FIC Vol. % FIC Vol. % FIC Vol. %
(102\}i2a|s) (9%.52%/0) 92.6% (93_51?,/0) 94.1% (1(1)56% 94.8%
(201\}?a|s) (8%%%/0) 81.3% (93_47?,/0) 86.6% (1(1)(5)% 90.6%
(501\}?a|s) (1%)?)%@) 87.9% (1%)?)%@ 87.9% (1%)& | 87.9%
1'(\31';(2 (9;47?%) 87.4% (9&?)/0 ) 86.1% (1%)%)% ” 91.5%

Note that the numbers below the FIC in the parentheses is the percentage

Generally speaking, all modular packing systems exceed baseline packing efficiency,
both in terms of maximum FIC served and volume efficiency. For example, using modular inner
packs with vial diameter 2.2 cm, 155 FIC can be served per storage device, with a 94.1% volume

efficiency, when the tower method is applied. It is also worth noting that (a) this increase in
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efficiency is mainly because of the new inner pack sizing and is not dependent on the specific
approach used to store the inner packs within the device, and (b) potential improvements are
likely to be even higher because any optimization of conventional packing in the field is highly
unlikely and in reality the actual FIC figure attained is likely to be much lower that our baseline
value of 123, which was obtained after significant effort. For catchment areas with higher
populations where larger volumes of vaccine are required, this has the potential for reductions in
the number of vaccine carriers required and/or reductions in the replenishment frequency, which
in turn could yield lower transportation and personnel costs. Estimating such potential savings

would be the next step in analysis of this novel modular packaging system.
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Table 12. Total doses, inner packs, and FIC by antigen for conventional versus proposed modular packaging configurations within the Dometic RCW25

BCG Tetanus Measles Oral Polio Yellow Fever DTP-HepB-Hib PCV13 Rota
Total Inner Total Inner Total Inner Total Inner Total Inner Total Inner Total Inner Total Inner FIC
Doses Packs Doses Packs Doses Packs Doses Packs Doses Packs Doses Packs Doses  Packs Doses  Packs
Conventional Packaging 4, 1 300 3 500 1 2000 1 300 3 400 2 400 8 250 5 123
Configuration
Proposed Modular
Packaging Configuration
2.2 cm Vial Diameter
Layer Method 400 2 400 4 300 3 800 4 300 3 480 24 470 47 310 31 152
Tower Method 400 2 400 4 300 3 800 4 300 3 500 25 470 47 320 32 155

Tower Opt. Method 400 2 400 4 300 3 800 4 300 3 500 25 480 48 320 32 158

1.6 cm Vial Diameter

Layer Method 400 1 400 2 400 2 800 2 400 2 440 11 420 21 280 14 138
Tower Method 400 1 400 2 400 2 800 2 400 2 480 12 460 23 300 15 148
Tower Opt. Method 400 1 400 2 400 2 800 2 400 2 520 13 480 24 320 16 158

1.9 cm Vial Diameter

Layer Method 1000 1 500 1 500 1 1000 1 500 1 500 5 450 9 300 6 148

Tower Method 1000 1 500 1 500 1 1000 1 500 1 500 5 450 9 300 6 148

Tower Opt. Method 1000 1 500 1 500 1 1000 1 500 1 500 5 450 9 300 6 148
1.6 + 2.2 cm Vial Dia.

Layer Method 400 2 400 4 300 3 800 2 300 3 480 12 460 23 300 30 148

Tower Method 400 2 400 4 300 3 800 2 300 3 480 12 440 22 300 30 145

Tower Opt. Method 400 2 400 4 300 3 800 2 300 3 520 13 480 24 320 32 158
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3.4  ANALYSIS WITH MORE STORAGE DEVICES

Even though the RCW 25 is a widely used cold box, many other devices are used in practice and
the modular packaging which is designed for the RCW 25 could be used with other storage
devices. The question of interest is, if this occurs, does this modular packaging still work better
than conventional packaging? In order to answer this, the space efficiency of the modular
packaging system is examined using the same analysis method used in the previous research by
evaluating the modular packaging configurations for the RCW 25 when they are applied to

another storage device.

3.4.1 Selection of the new device

First, we consider the storage devices found in the WHQO’s pre-qualified storage device list that

have similar volumes to that of the RCW 25. These devices are shown in Table 13.

Table 13. WHO pre-qualified storage device list

PQS code Model Length(cm)  Width(cm)  Height(cm)  Volume(liter)
E004/025 CB-20-CF 53 23 20 24.4
E004/031 AICB 503 L 455 31 16 22.6
E004/015 ACB 503L 455 30.5 16 22.2
E004/024 ACB 316 L 44.2 29.3 18.3 23.7
E004/014 ACB 444 L 45 29.4 16.4 21.7
E004/013 RCB 444 L 23 45 30 17 23.0
E004/010 AICB 444 L 44.8 30 16.7 22.4
E004/036 RCB 444L-A 45 30 15 20.3
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Seven of the storage devices have dimensions of about 45 cm in length and 30 cm in
width. Since the volume of the RCW 25 is 20.3 liters, the RCB 444L-A which has 20.3 liters

volume is chosen to analyze the space efficiency of the modular packaging system.

3.4.2 Results for the new device with the inner pack configurations for the RCW 25

When the original inner pack sizes are used, the RCB 444L-A can store vaccines that are able to
cover 126.6 FICs. Note that this packing configuration was found by evaluating numerous
configurations and represents a packing density that would be difficult to achieve in practice.
Table 14 shows the number of FICs when the modular inner packs which were created for the
RCW 25 are used to fill the RCB 444L-A. When 1.6 cm diameter vials are used, a maximum of
21 (3 x 7) tower are available in the RCB 444L-A. For 2.2 diameter vials, a maximum of 20
(4x5) tower are available. When the inner packs are stored vertically in the tower, 112.2 FICs
can be covered when using 1.6 cm diameter vial inner pack with the tower method, and 118.8
FICs for 2.2 cm diameters with the layer method. Since the inner pack dimensions are not
designed for the RCB 444L-A, after filling up the tower in the storage device, there are spare
spaces where additional inner packs can be stored. If the spare space is used to store vaccines,
the FICs for the 1.6 and 2.2 diameter vial inner packs increase to 145 with the layer method and

152 with the tower method each.
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Table 14. FIC for the heuristic and optimizing methods

Proposed Tower method Layer method Optimizing method
Modular No. of
Packaging | tower” In + Spare In + Spare Intower® T Spare
Configuration towers? space® towers? space® space®
1.6 cm 112.2 138.6 110.0 145.2
diameter 2L | (100%)  (87.4%) | (98%) (91.6%) 112.2 1586
2.2cm 118.8 152.0 112.2 145.7
diameter 20| (97.3%) (98%) (91.9%)  (93.9%) 1221 1551
1.91cm 99.0 126.6 99.0 126.6
diameter 6 (100%)  (852%) | (100%)  (85.2%) 9.0 148.5
1.6cm+2.2 114.0 151.8 110.0 138.6
cm mixed 20 (96%) (100%) | (92.6%)  (91.3%) 1188 151.8

1) The footprint of a tower is the area that one modular inner pack takes in the storage device.

2) When vaccines are filled only in towers
3) When vaccines are filled in towers and any empty space after filling the towers
4) Percentage ratio of the FIC of the tower/layer method to the optimizing method

When the inner packs are stored only in towers, the number of FIC is less than 126.6.
However, when we consider that 126.6 is not the number of FIC that we can expect to attain in
practice, the value that we obtain with only tower packing is reasonably good. In addition,
because the spare space can be utilized to store more inner packs, the modular packing systems
exceed the baseline packing efficiency. Clearly, the optimizing method provides better results
than the two heuristic methods, but the FIC difference between the heuristic methods and the
optimizing method is relatively small so the heuristic methods can be used to fill the storage

devices almost as well as the optimizing method does.
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3.4.3 New configuration for the RCW 25 and the new device

Now, we consider new modular configurations that consider the size of the RCW 25 and the new

device. These configurations allow more modular inner packs to be stored than the modular

configurations designed for only the RCW 25. Using the same methods as in section 3.2.2, the

proper inner pack dimensions are chosen and shown in table 15.

Table 15. New modular packaging configuration for RCW 25 and RCB 444L-A

New Modular DTP-
Packaging BCG-20 TT Mea TOPV YF H PCV13 RV
. : epB
Configuration
176 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8
(20 vials per pkg) 7.04 7.04 7.04 7.04 7.04 7.04 7.04 7.04
6.81 8.22 6.81 4,58 8.22 3.23 4.36 5.56
245 8.82 8.82 8.82 8.82 8.82 8.82 8.82 8.82
(10 vials per pkg) 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35
3.51 4.24 3.51 2.36 4.24 1.67 2.25 2.87
15 7.5 7.5 7.5 75 75 75 75 75
(20 vials per pkg) E @ E 0 © © 0 0
9.38 11.32 9.38 6.30 11.32 4.45 6.00 7.66
208 7.488 7.488 7.488 7.488 7.488 7.488 7.488 7.488
(10 vials per pkg) 6.24 6.24 6.24 6.24 6.24 6.24 6.24 6.24
4.88 5.89 4.88 3.28 5.89 2.31 3.12 3.98
214 22.47 22.47 22.47 22.47 22.47 22.47 22.47 22.47
(50 vials per pkg) 9.55 9.55 9.55 9.55 9.55 9.55 9.55 9.55
4,61 5.56 4,61 3.10 5.56 2.19 2.95 3.76

Table 16 shows the number of the towers for each device for different vial diameters. The

1.76 cm and 2.45 diameter vial inner packs have a similar width and length, so they can be used

interchangeably. The 1.5 cm and 2.08 diameter vial inner packs also have a similar width and

length and can be used interchangeably, but only 28 towers in the RCW 444L-A are available

when they are used interchangeably.
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Table 16. The number of the towers for RCW 25 and RCB 444L-A

New gg:f‘:;irr:t?g';aging RCW 25 RCB 444L-A
(20 viat7:er ) 15 towers (3 x 5) 20 towers (4 x 5)
(10 vzi:lrssr::er?pkg) 15 towers (3 x 5) 20 towers (4 x 5)
(20 vila.li ;r:r okg) 20 towers (4 x 5) 30 towers (5 x 6)
(10 via?jpser i) 20 towers (4 x 5) 28 towers (4 x 7)
(50 vzié}::enrlpkg) 4 towers (2 x 2) 6 towers (2 x 3)

However, note that these new configurations might not be realistic because the heights of
some vials are too short to hold vaccine. Vials less than 3 cm in height may not be tall enough to
hold vaccine. The short vials occur because the vial size change only considers total vial volume
and ignores the vial shape. For example, DTP-HepB inner packs with diameter 2.45 cm have a

height of 1.67 cm, which is definitely too short.

3.4.4 Results with new configurations

Table 17 shows the number of FICs for each device when only towers are used for packing. In
most cases, a modular packaging system can hold more vaccines, as measure by FIC, than the
conventional packaging configuration (123.6 for the RCW 25 and 126.6 for the RCB 444L-A).
Note that we do not consider filling any additional spare space so as to simplify the packing
analysis. Using the spare space permits a storage device to hold more vaccine but makes the
packing procedure more complicated because a health worker has to consider many different
ways to utilize the spare space. In addition, even without utilizing the spare space, the modular

packaging results in better filling of the storage devices than conventional packaging.
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Table 17. FIC for RCW 25 and RCB 444L-A with new configurations

New Modular RCW 25 RCB 444L-A
Packaging o o
Configuration Tower Layer Optimizing Tower Layer Optimizing
13856 132 132 138
1elf9 G (99.5%)" (94.6%) SRS (88.9%) (92.9%) RS
1436 138.6 143.6 145.2
A (98.6%) (95.1%) ] (92.6%) (93.6%) 3
132 11838 1518 1518
1S Eil] (100%) (90.0%) = (92.2%) (92.2%) il
138.6 135.3 141.9 145.2
LI EI (100%) (97.6%) kD (93.5%) (95.7%) fei8
1155 12338 1485 1485
214.cm (93.3%) (100%) 123.8 (100%) (100%) 148.5

1) Percentage ratio of the FIC of the tower/layer method to the optimizing method

Obviously, the FIC for the RCW 25 decreases and the FIC for the RCB 444L-A
increases. When the vial configurations for the RCW 25 are used and only the tower space is
used, the maximum FICs for each device are 158.0 and 122.1, respectively. However, when the
new configurations for both devices are used and only the tower space is used, the maximum
FICs for each device are 145.7 and 155.1, respectively. This implies that the new packaging

configuration results in greater vaccine storage if equal numbers of the two devices are used.

3.5 DISCUSSION AND CONCLUSIONS

The results of this study show that modular inner packs permit more vaccines to be stored in the
storage device. This follows from the fact that we choose to standardize vial diameters and inner
pack sizes, which in turn leads to easier and more efficient packing in a vaccine carrier. Under
the current situation with widely varying inner pack sizes it is not possible to arrive at a
consistent and space-efficient packing arrangement. Additionally, the modular inner packs would

actually provide even greater packing efficiency because the height of the inner packs was
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determined conservatively in our analysis; adjusting for this will likely increase the packing
efficiency difference by approximately an additional 5%. We also recommend the tower
approach over the layer approach since the former generally provides slightly better packing
efficiency. The mathematical model allows more vaccine to be stored in the storage device, but
the heuristic methods also provide good packing efficiency in all examples. Therefore, if the
optimizing method is not available, the heuristic ones can provide a good packaging solution.
Finally, the optimized tower approach would be unrealistic in practice and its results serve
mainly to provide an upper bound on performance. Table 11 shows that the heuristic methods do
well in relation to this bound.

Since different shapes and sizes of storage devices are used in practice, it is impossible to
design a modular packaging scheme that fits all storage devices precisely. However, if there is a
commonly used storage device in a country and it is possible for the vaccine manufacturers to
manipulate the size of the modular packaging, then selecting the right dimension that give a
precise fit for the device would be a good strategy to employ. Even if there are different storage
devices in a country, as long as a modular packaging system is utilized, more vaccines can be
packed than when conventional packaging is used. We also accrue additional benefits from using
modular packaging including simple, consistent and fast packing, ease of counting the number of
vials, and easier handling in general.

It should be noted that if the demand is not high enough to warrant filling the cold box
(e.g., at a catchment area with a low population) then packaging is obviously less of an issue.
Simply filling the carrier with additional vaccines to maximize FIC might not be appropriate if
there is potential for wastage of excess vaccines at such locations. The issue of packaging is of

greater importance when we have sufficient demand and the cold boxes we have cannot take
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everything needed because of the inconsistent packaging sizes, or when inconsistent sizes make

it difficult for health care workers to manage limited space in a simple and efficient fashion.

In summary, there are several advantages to using the modular packaging as listed below;

the first two are probably the most important.

1.

It achieves higher packing densities for a reasonable packing method such as the tower or
the layer approach, as indicated by the data in Table 3-5. Also, recall that the heights of
the modular inner packs were found by using conservative volume estimates and
therefore the actual packing density differences between conventional and modular
systems will likely be a few percentage points greater. It is also important to note that the
conventional packing densities discussed assume that packers optimize space efficiency
by packing and re-packing to achieve maximum efficiency. Thus, the packing densities
achieved in practice are probably lower, which further increases the advantage of using
the modular systems.

The modular packing procedure is much simpler and more consistent. Vaccines are
simply stacked vertically in the twenty or six vertical stacks (depending on the vial size);
there is no need to explore numerous complicated orientations and geometrical
configurations. Thus, high packing efficiencies can be obtained consistently with little
effort or special expertise required. This is a tremendous advantage from a practical
standpoint because the personnel packing the storage devices will not require special
training to ensure that carefully planned packing procedures are followed routinely in the
field.

The simplified modular packing procedure will be faster since the person packing the

storage device does not have to spend time exploring different configurations.
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4. Counting the number of vials is easier because the inner packs have uniform quantities
(this advantage is somewhat reduced if more than one standard size is adopted).

5. It is easier to handle the inner packs because they are all the same size, rather than trying
to handle vaccines with different inner pack sizes. For example, transporting a stack of
vaccines that has an inner pack that is 12cm x 15cm on top of an inner pack that is 15cm
x 18cm which is on top of an inner pack that is 20cm x 20cm is more difficult to do
without toppling it than a stack of three inner packs that all have the same dimensions.

6. Ideally, the vaccines should be packed with about 1cm of clearance space in between
each inner pack to promote good air flow and uniform cooling (especially in
refrigerators). If the inner packs have a consistent modular size, this would facilitate
inserting spacers in between the stacks of inner packs to insure proper clearance is
maintained.

7. If the inner packs are a consistent size, then cold storage devices can be manufactured
with storage spaces that have dimensions that most efficiently accommodate the inner

packs.

These benefits comes from the power of standardization. In this chapter, we have focused
on standardization of vaccine packaging by changing packaging configurations. The modular
packaging designed for a storage device can decrease wasted space in the storage device and can
make it possible to utilize easy stacking methods. If the storage devices are also standardized
along with the modular packaging size, the space efficiency could be maximized over an entire
country.

While our analysis suggests that modular packaging systems offer benefits over

conventional vaccine packaging in the form of increased potential FICs, higher packing
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densities, and simplifying the process of a worker packing a storage device, there are several
limitations to our study. First, we assumed a single conventional packaging type for each existing
vaccine, while it is likely that existing packaging varies for vaccines from different
manufacturers or with different dose schedules. Similarly, in designing a potential modular
packaging system, we assumed that all vaccines could fit in new, optimized vials based on the
volumes of vials currently in use. This may not be the case for all existing vaccines. Third, our
packing approach is a heuristic algorithm related to inner pack heights and if these heights are
widely different it might not provide packings that are as good as the ones in our illustration.
Finally, in order to quantify the economic benefits of improved packaging, a potential next step
would be to utilize a vaccine supply chain modeling software, such as HERMES(Assi, et al.,
2011; Lee, et al., 2011; Assi, et al., 2013), to determine the economic impact of changing
packaging sizes. The impact could vary significantly depending on the country and
circumstances (e.g., vaccine regimen), and such an analysis would require extensive simulation
experiments and could be the basis of a future study.

Our analysis suggests that modular packaging systems could offer significant advantages
over conventional vaccine packaging systems with respect to space efficiency when combined
with a reasonable packing method such as the layer or tower method, when they are stored in
standard vaccine carrying devices. This allows for more vaccines to be stored within the same
volume while also simplifying the procedures used by field workers for packing storage devices.

Ultimately, this could be a simple way to help increase vaccine coverage worldwide.
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4.0 APPLYING LEAN CONCEPTS TO MANAGE VACCINE INVENTORY

4.1 INTRODUCTION

Vaccines administered at clinics or health centers are typically supplied from an upper level
distribution location. The replenishment of vaccines at a clinic usually happens at regularly
scheduled intervals (e.g., once a month) and requires completing vaccine ordering processes such
as determining how many vaccine doses remain and requesting the amounts necessary to cover
the forecast demand before the next replenishment. This vaccine ordering process is executed by
health workers at clinics across the country. It is complicated by the fact that there might be five
to ten different vaccine types (e.g., measles, DTP, polio, etc.) and also that vaccines come in
multi-dose vials where the number of doses in a vial is different for different vaccine types. In a
typical clinic, the health worker counts and records the remaining vaccine vials and translates
this into a number of doses. He then determines how many net doses would be required to meet
the forecast demand until the next replenishment point and translates this into the number of
vials needed for the next inventory cycle. This is done for each different vaccine and a combined
order for vials is then placed with the higher level.

At the upper level distribution location another health worker counts the number of vials
ordered by the clinic for each vaccine type and prepares them for delivery to or pickup by the

clinic. The same distribution location will typically service a number of different clinics in a
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similar fashion. The vaccines are then transported to the clinic. Currently, an individual vial is
used as the ordering unit at the clinic, and since this is the smallest physical unit in the
distribution chain, ordering in vials (as opposed to cases or standard packs of vials) does help to
minimize clinic vaccine inventory. This is important because cold storage capacity for vaccines
can often be quite limited at clinics. However, personnel at clinics who perform logistical
activities are often poorly trained and lacking in the skills to effectively perform these activities.
The steps in the replenishment process can be tedious and even trained workers can make
mistakes in counting and recording the number of remaining vials of several different kinds of
vaccines, and managing and replenishing inventory at the individual vial level requires
significant effort. Moreover, Steele (2014) reports that immunization supply chain functions are
frequently performed in developing countries by pharmacists, clinicians and drivers, as opposed
to workers who are trained specifically on supply chain functions. She points out that vaccine
supply chain practices are poor because of poor monitoring systems, resulting in poor data for
demand forecasting and long procurement processes.

In this chapter, we conduct an ordering policy analysis with respect to the ordering unit,
and based on this analysis we recommend the use of inner packs (the next larger packaging unit),
rather than a vial, when ordering vaccines. In addition to simplifying the ordering process used
by healthcare workers at the clinics, we show that it reduces the likelihood of vaccine stockouts
and thus also improves overall vaccination levels at clinics by giving the patient more
opportunities to get vaccinated. The basic idea behind this simplified ordering process draws
upon the Kanban concept from Just-In-Time (JIT) inventory systems. JIT is a commonly used
technique in the manufacturing industry that was popularized by Toyota, and a Kanban is a

simple visual system that is used for implementing JIT. JIT/Kanbans have been shown to yield
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considerable benefits in production settings, including simpler processes, more timely deliveries,
increased responsiveness, increased firm profitability, and inventory reductions (Monden, 2011;
Baudin, 2004; Fullerton & McWatters, 2001). In addition to manufacturing, Kanban/bin supply
systems are being adapted elsewhere and have been shown to provide better inventory control in
many healthcare settings, e.g., managing critical nursing supplies (Southwest solutions group,
2015) and other items (Graban, 2011). Rahn (2010) explains why the Kanban method has
advantages over the commonly used PAR-level system for hospital material management (where
items are replenished every period to bring inventories back to some base stock level). He
emphasizes seven main advantages including the fact that no counting is needed, and that it
promotes better inventory management practices. The primary disadvantage is that this approach
might need more physical storage space.

The remainder of this chapter is structured as follows. First, the problem is described and
the suggested ordering policies are explained. Next, we perform a storage space analysis at the
clinic level, with a focus on cold storage requirements. In this section, the methodology and
equations related to the different ordering policies are presented, and numerical examples are
illustrated using real data from two countries — Benin and Niger. Third, we perform storage
space analysis in vaccine transportation between different levels in the supply chain to
investigate the effect of the proposed ordering polices. We end with a brief discussion of our

conclusions.

68



4.2 PROBLEM DESCRIPTION

In this research, we focus solely on the ordering process at the clinic level where vaccinations
occur. Currently, the vial is the ordering unit and a base-stock policy is applied. Each period the
health worker counts the remaining vials of each vaccine, records these numbers and then orders
the number of vials needed to return to an inventory level equal to the average demand during
the replenishment cycle. Note that for some vaccines the shelf life is limited once the vaccine
vial has been opened and any vaccine remaining after this period has to be discarded. Such
wastage is referred to as open vial waste (OVW) and this has been studied by Lee et al. (2010),
Dhamodharan & Proano (2012) and Mofrad et al. (2014). The demand forecast is first inflated by
a factor to account for the percentage of OVW (where applicable) to compute the number of
vials needed and a buffer factor is added to account for demand variability. Using a base stock
level (in vials) equal to the average adjusted demand plus a 25% buffer is a standard
recommendation of the WHO (World Health Organization, 2014).

The upper level health worker receives order requests from the clinics and then picks the
corresponding vials for each clinic and prepares them for shipment. All of the vial counting for
all of the vaccines at both the clinic and the upper level is done manually and there are ample
opportunities for ordering and order fulfillment errors. Since manufactures distributed vaccine
vials in inner packs that typically range in size from 10 to 200 vials in one inner pack depending
on the vaccine type and manufacturer, we propose two ordering policies based on inner packs
and compare them with the current policy, which uses a vial as the unit.

The first proposed policy is referred to as the inner pack unit ordering policy, where a
clinic orders vaccines only in inner pack units. For a given vaccine, the clinic worker counts the

number of unopened inner packs and individual vials in any open pack to determine the number
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of vials remaining and then calculates the required number of vials based on the forecast
demand. This policy still requires some counting of vials to obtain the number remaining, but
since there is at most one open inner pack at any time for a given vaccine, the worker only has to
count the number of remaining vials in this one inner pack. For example, if an inner pack
contains 20 vials and we have one unopened inner pack and one open one with 11 vials in it,
only the latter would be counted to determine the current inventory of 31 units. If we require 55
vials for the next cycle (typically, one month), this means we need to order 24 more vials. Since
ordering is based on rounding up to the next full inner pack, two inner packs are ordered. At the
upper level the order fulfillment process is even simpler because only full inner packs are
handled and no individual vial counting is required.

The second policy is referred to as a kanban ordering policy, where each empty inner
pack is set aside in a specified location. The worker only counts the number of empty inner
packs at the location for each vaccine and orders enough material to replenish these.
Alternatively, one might follow a process like the one common in many manufacturing
environments where each container - or inner pack in our case - is placed in its own slot
(possibly, a location that is marked with a prominently marked symbol or color). When the inner
pack is completely emptied it is discarded and the slot is empty (or the symbol is exposed), and
this represents the fact that a replacement is required for it, so that we order as many inner packs
as there are empty slots. In this context, each inner pack corresponds to a Kanban bin and the
number of bins replenished is equal to the number fully consumed. This Kanban ordering idea is
borrowed from the traditional Kanban materials management system for lean and just-in-time
production. It most closely resembles a signal Kanban (Monden, 2011). An example signal

Kanban is shown in Figure 13 where there are three measles inner packs that are stored. At the
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time of reorder the healthcare worker simply orders the number of inner packs equal to the
number of empty storage locations. Thus, only one inner pack is ordered in case (a) and two are

ordered in case (b).

ORDER 1 Inner Pack
| EMPTY |

DELIVER 1 Inner Pack

casea

iiiiiiiiii \__At the time of reorder
Is N
ORDER 2 Inner Pack
o ] |
Three storage spaces i m
— | EMPTY |
caseb

(11171 I

{__At the time of reorder

DELIVER 2 Inner Pack

Figure 13. Signal Kanban example

The primary advantage of simplifying the ordering method is that it is easier to
implement when the personnel involved might not be well trained, and it reduces potential errors
that could occur during ordering. However, one drawback of the Kanban based idea is that it
does require more storage space at the clinic. This is because the maximum number of vials
stored under the current vial unit ordering method is equal to the order up to level, but if the
inner pack unit or Kanban ordering policy is applied, the maximum amount stored will generally
increase. In addition, a cold storage device used in transportation between points in the
distribution chain may not be able to hold all of the vaccines, because filling the storage device
with only inner packs both potentially increases the number of vials that must be transported and
also decreases packing efficiency due to having to pack the physical dimensions of the inner
pack rather than individual vials. In order to address these space issues, we evaluate the effect on

storage space at the clinic level and in transportation in the following sections.
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43  CLINIC STORAGE DEVICE ANALYSIS

Introducing the simplified ordering policies of the previous section generally leads to needing
more storage space at the clinic because vaccines are now ordered in inner pack units. In order to
evaluate the effect of the two proposed policies on incremental space requirements, we perform a
clinic storage device analysis. To understand the true impact at a high level, we use real data to
calculate the total number of storage devices needed across the entire set of clinics in a country
in order to store vaccines for each policy, and we repeat these calculations for different inner
pack sizes. Since a public health decision maker would not want the number of storage devices
to increase significantly due to the resulting increase in system-wide costs, our goal is to also
determine an inner pack size that results in only a modest increase in the required number of

storage devices country-wide.

4.3.1 Methodology

The total number of storage device needed is estimated conservatively by summing the minimum
number of storage devices required at each location for each ordering policy. This can be
computed using several pieces of available information: the monthly demand, the average
number of vaccination days per week, device storage volumes, and vaccine information such as
dose(s) per patient, number of doses per vial and packed volume per vial. The first step is to
estimate the average total number of doses needed per vaccination day for vaccine i at location j
(= s;; ) as follows:

d
Si]' =

; X pi (49)
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where d; denotes the patients per month expected at location/local clinic j, a; denotes the
number of vaccination days per month at location j, and p; denotes the doses per patient of
vaccine i.

Next, we calculate the number of vials m;; required per month for vaccine i at

location j, as follows:

X (1+b)

my; = i x 3
Y 1—ovw(sivy)) " v

where v; denotes the number of doses per vial of vaccine i, ovw is the open vial waste which is

(50)

a function of s;; and v;, and b denotes the buffer value; the (1 + b) term is used to add a buffer
to account for variability in the patient arrival process.

Because m;; is the number of vials required per month, anytime the inventory level is
below m;; at the beginning of the month, ordering needs to occur. Thus, m;; — 1 is the largest
number of vials that can be on hand when ordering occurs. Assume we use inner packs
containing k vials. With our first (inner pack) ordering policy, we simply count the number of
vials in any currently open inner pack (say, x) and the number of unopened inner packs (say, Y)
and if ky + x < m;; we place an order for [(m;; — ky — x)/k] inner packs.

With the second (Kanban) ordering policy, we have to be more careful. Recall that we
order as many inner packs as the number fully consumed, and assume that the policy is
implemented by assigning each inner pack a slot and ordering enough to fill each empty slot.

Then the minimum number of slots to set aside (say n) is given by

m;;—1
n—1> —2

(51)
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[+1 (52)

It might seem that we could simply let n = [m;;/k] but this is not sufficient because we
want to ensure that when there is a partially empty inner pack (as would often occur) at an
ordering time, we order sufficient inventory. For example, suppose the inner pack size is 20, m;;
is 50, and we have two full inner packs plus one inner pack with 6 vials in it when we review the
inventory prior to deciding on whether to place an order. If we only set n = [50/20] =3 slots
then we will not order any vaccines since all three slots are currently occupied (two by full inner
packs and one by the inner pack with 6 vials). However, we will only have 46 vials on hand,
which is below our desired inventory level. Thus, the + 1 term is needed to insure that the clinic
always starts with the minimum required number of vials. Otherwise, a partially filled inner pack
(in the extreme case, with as little as one vial in it) would result in us not placing an order to
replenish that inner pack, which might cause the starting level of stock to be below the desired
amount and increases the likelihood of a vaccine shortage during that cycle. Furthermore, we
use m;; — 1 rather than m;; because in the case that m;; — 1 is an integer multiple of the inner
pack size, using m;; could result in holding one more inner pack than is strictly necessary,
because in this special case even if the last inner pack only has one vial remaining that is
sufficient. For example, if the inner pack size is 20 and m;; is 61, then using n = [m;;/k] + 1 =
[61/20] + 1 will result in using 5 slots. However, only 4 slots are actually required because
even if the inner pack in the last slot contains only one vial we will have sufficient vial inventory
for the month.

We made the assumption that vaccine vials are stored in inner packs in the storage device
when the inner pack unit ordering policy or Kanban ordering policy is used. Therefore, even if
only one vial is left in the inner pack the volume of one entire inner pack is still occupied. The
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Kanban ordering policy needs sufficient space to store the number of inner packs required to
provide m;; vials and then one more inner pack because inner packs are only replaced once they
are fully empty. The inner pack unit ordering policy also needs enough space to hold the number
of inner packs required to provide m;; vials, plus one, because at times one inner pack may have

as few as one vial remaining but still occupies an entire inner pack’s volume. For example, let

14-1

k =10 and m;; = 14, then [mf_llﬂ = [ 10

] + 1 = 3, so space to hold three inner packs is

needed. If there are 18 vials left at the time of reordering, no vaccine is ordered under the inner
pack ordering policy (because 18 > 14), but one inner pack is ordered in the Kanban ordering
policy (because one inner pack location is empty). If there are 13 vials left at the time of
reordering, both policies order one inner pack. Thus, the Kanban and inner pack ordering
policies both require sufficient space to store the same maximum number of inner packs although
the average inventory level of the inner pack ordering policy will be lower.

To estimate the required vaccine storage volume for a vaccine we start with the packed
volume per vial (which we define as g7). For vaccines that require a diluent (a liquid that is used
to reconstitute freeze dried vaccines), the diluent must also be stored in the storage device before
it is used. We assume that 10% of a vaccine’s diluent is stored in the storage device at any point
in time. Thus, the net storage volume per vial of a vaccine, g;, is given by

gi =g+ 0.1} (53)
where [; denotes the packed diluent volume of vaccine i. Using an inner pack of k vials, we
need a packed volume of (g; X k) units of space per inner pack, and multiplying this by the

number of inner packs required, we may estimate the minimum required volume of vaccine i at

location j with inner packs of size k, denoted as 7; j, Via:
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ml-j -1
e = Coox ) % (|=5—| +1) (54)
So, the corresponding estimate of the number of storage devices n; needed at location j

is given by
J G (55)

where ¢; is the capacity of a storage device at location j and I is the index set of all vaccines.
Summing these over j € J, where J is the set of clinics, finds the total number of storage devices
needed within an entire country. In particular, if k=1 for all vaccines Y ¢, n; is the total number
of storage devices needed in the country using the vial unit ordering policy. In general, let
s = (i,k) € S, where S is the set of pairs of vaccine types and corresponding inner pack sizes.
For example, if BCG uses an inner pack of size 20, measles one of size 10 and PCV one of size
50, then S = {(BCG, 20), (Measles, 10), (PCV,50)}, and the total number of storage devices

needed in the country, N(S), may be estimated as:

Z X(ijes Tijk
C; (56)

N(S) =
j€l J

Note that in this particular capacity analysis we only consider clinic cold storage space

and do not consider any transportation capacity issues.

4.3.2 Numerical example

We illustrate our approach by applying it to data from two countries: Benin and Niger. Table 18

provides summary data for these two countries. (Haidari et al., 2015; Lee et al., 2012)
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Table 18. Summary data for Benin and Niger

Benin Niger
Number of local clinics 658 695
Number of vaccines 8 8
Vaccination days per month 5-28 16
Mean clinic demand 564 1,083
(Range of clinic demands) (100 - 3300) (300 - 3,400)

Vaccine information for Benin and Niger is shown in Tables 19 and 20. Note that the
same vaccine can have a different packed volume per vial in different countries because the
vaccine might be supplied by a different manufacturer. The data also shows that different

countries can require different numbers of doses of a particular vaccine.

Table 19. Vaccine information for Benin

Name Vaccing Do_ses/ Pac_ked vol./ Doses Dilu_ent vol./ Current !nner
presentation vial vial(cc) /person vial(cc) pack size

Tuberculosis Lyophilized 20 21.09 1 12 50
TTf)tig:Jj Liquid 10 25.41 2 10
Measles Lyophilized 10 21.09 1 25 50
Oral Polio Liquid 20 14.06 4 100
Yellow Fever Lyophilized 10 25.41 1 25.4 10
DI-:—ig-l?qeuF;dB- Liquid 2 9.92 3 100
PCV13 Liquid 1 17.13 3 50
Rotavirus Liquid 1 135 2 50

*Note that the current inner pack size is inferred from the WHO vaccine database and vaccine information for Benin
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Table 20. Vaccine Information for Niger

Name Vaccing Do_ses/ Pac_ked vol./ Doses DiIL!ent vol/  Cu rrent_inner
presentation vial vial(cc) /person vial(cc) pack size*

Tuberculosis Lyophilized 20 24 1 14 50
Tﬁ;ﬁgf; Liquid 10 30 3 10
Measles Lyophilized 10 21.3 1 5 10
Oral Polio Liquid 20 20 4 100
Yellow Fever Lyophilized 10 25 1 6 10
DJi(g'l'i"qeupiS' Liquid 1 16.8 3 50
PCV13 Liquid 1 12 3 50
Rotavirus Liquid 1 45.9 3 10

*Note that the current inner pack size is inferred from the WHO vaccine database and vaccine information for Niger

The following analysis considers inner pack sizes of 10, 20, 50, and 100, which represent
round numbers that are commonly seen in practice. The first analysis is done for Benin. If we set
the inner pack sizes of all vaccines to be the same, the total number of storage devices needed

and the annual operation costs are as follows:

Table 21. Total number of storage devices by inner pack size for Benin

Vial unit Inner pack unit ordering/Kanban ordering
ordering
Inner pack size (k) 1 10 20 50 100
Total numbe_,*r of storage 664 664 670 706 1117
devices
Annual operation costs($) 521,535 521,535 526,545 555,593 898,018

As seen in Table 21, with k=10 there is no need to purchase any additional cold storage

devices. With inner packs of k=20 vials for all vaccine, only six more storage devices are
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needed and even when the inner pack has 50 vials there is only a modest increase in the number
of additional storage devices needed.

Given that each vaccine has its own characteristics, it follows that the inner pack sizes of
all vaccines need not be the same. To find a reasonable inner pack size for each vaccine, a
marginal volume analysis was done for each vaccine, where the inner pack size of the selected
vaccine increases but all of the others are set to 1. The results are shown in Table 22; e.g., for the
measles vaccine, using k=10, 20, 50 and 100 result in marginal increases in volume of 4%, 9%,
25% and 55%, respectively, and we could pick a size depending on the percentage increase that
we are willing to tolerate. We consider two such values, corresponding to marginal increase in
volume of up to 10% and up to 20%. The orange colored cells indicate the inner pack size
breakpoint for up to a 10% volume increase, while the blue colored cells represent the breakpoint
for up to a 20% increase. If the breakpoints are the same for 10% and 20%, then only an orange
colored cell is shown. For Tuberculosis, Tetanus Toxoid, Measles and Yellow Fever, the 10%

and 20% breakpoint volume inner pack sizes are the same (=20).

Table 22. Marginal volume increase for each vaccine Benin

Vaccines 1 10 20 50 100
Tuberculosis Volume 5,325 5,506 5,710 6,572 8,040
Increase % 0% 3% 7% 23% 51%
Tetanus Toxoid Volume 5,325 5,632 5,764 6,727 8,382
Increase % 0% 4% 8% 26% 57%
Measles Volume 5,325 5,645 5,783 6,669 8,259
Increase % 0% 4% 9% 25% 55%
Oral Polio Volume 5,325 5,439 5,568 _ 7,017
Increase % 0% 2% 5% _ 32%
vellow Fever Volume 5,325 5,679 5,855 6,877
Increase % 0% 5% 10% 29% 64%
. Volume 5,325 5,405 5,498 5,845 _
DTC-HepB-Hib liquid oo 06 0% 1% 3% 10%
PCV13 Volume 5,325 5,434 5,570 6,705
Increase % 0% 2% 5% 26%
Rotavirus Volume 5,325 5,443 5,595
Increase % 0% 2% 5% L18% | 31%
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Using the inner pack sizes corresponding to the 10% and 20% marginal increases in
volume for each vaccine, the total number of storage devices needed is shown in Table 23, along

with the results for the current inner pack size combination.

Table 23. The total number of storage devices by inner pack size Benin

Vial unit . . .
ordering Inner pack unit ordering/Kanban ordering
Inner pack size 1 10 20 L Current 50 100
10%
Total number of 664 664 670 670 699 706 1,117

storage devices

Annual operation

521,535 521,535 526,545 @ 526,545
costs($)

550,557 555,593 898,018

As seen in Table 23, with inner packs of k=50 for DTC-HepB-Hib and k=20 for all other
vaccines (up to a 10% marginal volume increase) we still require the same number of additional
storage devices (6) as the case where all inner packs are of size 20. On the other hand, using
inner packs of k=100 for DTC-HepB-Hib, k=50 for Polio, PCV13 and Rotavirus, and k=20 for
all other vaccines (up to a 20% marginal increase in volume) we require 14 additional storage
devices. Finally, if we switched to an inner pack ordering or Kanban ordering policy while
staying with the inner packs that are currently in use (as shown in Table 19), we would still need
only 35 additional devices country-wide.

Conducting a similar analysis in Niger, we picked inner pack sizes for each vaccine with
up to a 5% and up to a 10% marginal volume increase. Note that we did not consider a value of
20% because even with inner pack sizes of 100 there was only a 7% increase and vaccines do not

typically come in inner packs larger than 100 vials (Table 24).
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Table 24. Marginal volume increase for each vaccine Niger

Vaccines 1 10 20 50 100
Tuberculosis Volume 19,788 19,813 19,841 20,275 21,093
Increase% 0% 0% 0% 2% 7%
Tetanus Toxoid Volume 19,788 19,788 19,788 20,194 20,863
Increase% 0% 0% 0% 2% 5.4%
Measles Volume 19,788 19,860 19,959 20,168 20,870
Increase% 0% 0% 1% 2% 5.5%
Oral Polio Volume 19,788 19,788 19,788 20,044 20,655
Increase% 0% 0% 0% 1% 4%
Volume 19,788 19,873 19,988 20,235 21,059
Yellow Fever Increase% 00% 0% 1% 12% 6%
DTC-HepB-Hib Volume 19,788 19,788 19,788 20,017 20,180
liquid Increase% 0% 0% 0% 1% 2%
Rotavirus Volume 19,788 19,788 19,788 20,412 20,858
Increase% 0% 0% 0% 3% 5.4%
PCV13 Volume 19,788 19,813 19,841 19,951 20,068
Increase% 0% 0% 0% 1% 1%

If up to a 5% and up to a 10% volume increase inner pack size for each vaccine are
applied, the total number of storage devices needed is shown in Table 25. Table 25 also shows

results for the current combination of inner pack sizes.

Table 25. Total number of storage devices by inner pack size for Niger

Vial unit Inner pack unit ordering/kanban ordering
ordering
Inner pack size (k) 1 10 20 Current 50 Up to 5% L0
Up to 10%
Total number of 1,057 1,068 1,068 1,122 1,177 1,188 1,499

storage devices
Annual operation

679,975 686,468 686,468 716,030 747,712 755,159 850,136
costs($)

The Niger results indicate that using inner packs of up to 20 for all vaccines requires only
eleven more storage devices over the entire country than with the current vial unit ordering

policy; this is a very small increase. Note that this is less than the number of storage devices
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needed if used the new ordering policies with the current set of inner pack sizes. Choosing inner
packs of size 50 for all vaccines results in needing 120 more storage devices which represents
only about a 10% increase in the total number of devices. If we increase the inner pack sizes up
to 100 then there is a significant increase in the number of storage devices needed. We could also
use a combination of inner packs of size 20 for all vaccines except PCV13 and DTC-HepB-Hib
liquid where a size of 50 would be used (a larger inner pack is used for PCV13 and DTC-HepB-
Hib liquid because both are relatively small volume and have high demand) This results in a
need for 1,069 storage devices across the country, which is an increase of only twelve over the
single vial ordering policy. Thus, ordering logistics in Niger can be greatly simplified from both
the ordering and fulfillment viewpoints with very little impact on the number of storage devices

needed countrywide at the clinic level.

44  TRANSPORTATION STORAGE SPACE ANALYSIS

So far, we have only considered clinic cold storage space and not transportation capacity.
Typically, vaccines are transported to clinics in vaccine carriers, using small 4x4 vehicles,
motorcycles, bicycles or even on foot. These vaccine carriers have limited storage space and
given that inner packs take up more space in a carrier than individual vials, ordering policies that
use an inner pack unit may require more storage devices in transportation, and specific devices
might not be suitable in the first place. According to the WHQO’s specifications, the capacity of
vaccine carriers which are used for vaccine vial transportation is between 0.5 and 5 liters (World

Health Organization, 2010).
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The BK-VC 1.7-CF which is used from the District distribution centers to clinics in
Benin has a capacity of 1.7 liters. In Niger on the other hand, a 5 liter vaccine carrier is used
(Assi et al., 2013). In addition, although the average volume of vaccines transported to a clinic
might be similar, there is a higher degree of variation in the total volume required with the inner
pack policies and the packing efficiency is worse since their replenishment unit is an inner pack.
Therefore, we need to consider how using inner packs affects storage space requirements when

transporting vials to clinics.

4.4.1 Simulation model

In order to examine the effect of using inner packs on transport capacity requirements, a model is
developed using Microsoft Excel VBA to simulate a clinic’s ordering policy. We assume that the
daily demand follows a Poisson distribution, and values of these demands at each clinic j for
each vaccine i are randomly generated using a mean value of s (as given by (49)). Monthly
orders are placed according to each of the ordering policies that we study. The simulation model
has the following parameters: inner pack size, doses per vial, whether or not the vaccine
experiences open vial waste, buffer percentage, annual number of patients served at the location,
vaccination days per month, doses per patient, and ordering policy.

The model assumes that 1) the lead time is zero, 2) back orders are not allowed, 3) the
vaccine shelf lives are long enough that expiration is not a problem, and 4) vaccines are ordered
each month. We run the simulation using the inner pack sizes found from the previous section
that analyzed storage device requirements at the clinic level. The output of the model is the

number of vials or inner packs ordered each month for each vaccine type under each ordering
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policy; this determines the total amount of vaccine that must be transported to the clinic from the

next higher level, and hence, the required transportation storage capacity.

4.4.2 Methodology

The simulation model is run for 2000 months and for each month, and for each vaccine, it yields
either the number of inner packs (for the two simplified policies that use an inner pack unit), or
the number of vials ordered (for the current ordering policy). From this data, the volumes of the
shipments are then calculated. Since the transportation storage devices should be able to
transport the required vaccine amount of vaccine every month with a high probability, we
specify the required total volume to be such that at least 95% of all orders (as estimated from the
simulation output) can be successfully transported. This is estimated from the output of the
simulation. Using this vaccine replenishment data and the capacity of each transportation storage
device we then estimate the number of transportation storage devices required.

For the current ordering policy with vial ordering/storage, we decrease the available
space in the device to account for its packing efficiency. For example, if the capacity of a storage
device is 3 liters and the packing efficiency is 80%, the storage device can hold 2.4 liters of
vaccine vials; thus, if our requirement was for 6 liters of vaccines, we would need 3 devices.
With the two simplified ordering polices, we use a trial-and-error method for packing the
required vaccine inner packs into the physical dimensions of the transport storage device, given
their dimensions and the dimensions of the storage space in the device. While a more
sophisticated approach such as a 3D bin packing algorithm could be used, we chose to use the

simpler methods that might be used in practice by a healthcare worker in the field.
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4.4.3 Numerical example and Result

The results from the simulation and the analysis are shown below for Benin. The transportation
storage device commonly used at clinics in Benin (BK-VC 1.7-CF) has a vaccine storage volume
of length 10 cm, width 10 cm and height 17 cm after it is packed with conditioned ice. The
average annual patient demand, which is 550, is used to determine daily demand for doses of
each vaccine. Since some of the current inner packs (Tuberculosis, Measles, DTC-HepB-Hib and
PCV13) are too large to be held in the BK-VC 1.7-CF, assessing the simplified ordering policies
with these inner packs is impossible, and the only option is to order in vial units. However, as we
saw in the storage device space analysis, 10- or 20-vial inner packs could be considered with
very little increase in clinic storage requirements. Table 26 shows the actual inner pack
dimensions for the 10-vial inner packs. Note that the new dimensions are calculated based on the

current vial diameter and height.

Table 26. 10 vial inner pack dimensions

. . Oral Yellow DTC-
Vaccines Tuberculosis  Tetanus  Measles - HepB- PCV13 Rota
Polio Fever Hib
Length(cm) 9.25 10.6 9.25 7.5 10.6 9 8.95 7.3
Width(cm) 3.8 4.7 3.8 2.5 4.7 2.98 3.68 3.4
Height(cm) 6 5.1 6 7.5 5.1 3.7 4.1 6.9

Using the current vial unit ordering policy, we need 6.39 liters to cover all orders with a
probability of 0.95, and 6.55 liters with 0.99 probability. Using the Kanban ordering policy or
inner pack unit ordering policy with 10-vial inner packs for all vaccines, 6.49 liters are needed to
cover all orders with the 0.95 probability, and 6.67 liters with 0.99 probability. Table 27 shows

the corresponding number of inner packs of each vaccine for the simplified ordering policies.
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Table 27. Number of inner packs for the simplified ordering polices

. ) Oral Yellow DTC-
Vaccines Tuberculosis  Tetanus  Measles - HepB- PCV13 Rota
Polio Fever Hib
Kanban 2 1 2 1 2 8 14 12
ordering
Inner pack 2 1 2 1 2 7 16 11
unit ordering

Table 28 shows the number of storage devices required to hold 6.39 liters of vaccine vials
for different packing efficiencies. For example, if an effective 80% of device storage space is
available, five storage devices are needed. In fact, if the packing efficiency is between 80% and

90%, five storage devices will suffice.

Table 28. Number of storage devices required to hold 6.39 liters of vaccine vials

Packing efficiency 70% 80% 90% 100%
The number (_)f the storage 6 5 5 4
devices

When 10-vial inner pack vaccines are used, we estimated that six storage devices are
required for both the Kanban ordering policy and the inner pack unit ordering policy to cover
95% of vaccine delivery. With 20-vial inner packs, seven storage devices are required for both
policies.

Clearly, if the inner pack size cannot be changed, the simplified ordering policies are not
practical. However, if 10 or 20 vial inner pack can be used, one or two more additional

transportation storage devices (vaccine carriers) would be required at each clinic.
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45  DISCUSSION AND CONCLUSIONS

Ordering vaccines in inner pack quantities has many advantages over single vial ordering
including convenience in managing inventories, fewer errors in counting and ordering, and
reduced order fulfillment effort. If vaccines are stored within an inner pack, a health worker can
easily distinguish vaccines from each other and more readily find the particular vaccine that the
worker is looking for because there is vaccine information on the outside face of the inner pack.
In addition, at the upper level distribution center, the complicated vial counting process to supply
clinics will be replaced by a much simpler process of picking one, or counting just a few inner
packs. Counting errors at the upper levels will decrease and order preparation and distribution
time will be saved. EPI vaccines are not particularly expensive, so there is no real disadvantage
to holding more vaccines at the clinic level, as long as there is sufficient storage space.

The results from Benin and Niger indicate that while there is no common inner pack size
that is best for all vaccines, if we use inner packs of size 10 or 20 for all vaccines only a few
more storage devices are needed. Thus, even though these simplified ordering policies increase
the storage volume needed, if we choose the proper inner pack size these negative consequences
can be minimized such that the additional number of storage devices needed is very small (on the
order of 1%). In terms of transportation storage space, the proposed ordering policies are not
practical without changing the inner pack size. However, if 10- or 20-vial inner packs are used
across all vaccines, one or two more storage devices in transportation will be required to service
orders with a high probability. Note that in general, a vaccine carrier is inexpensive (e.g., the
2009 price of a BK-VC 1.7-CF is US$ 12.00), so purchasing one or two devices would be very
affordable for a clinic. But if transportation resources are constrained it might become necessary

for an additional trip to a clinic in order to carry additional vaccine carriers. In this case the
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transportation cost will increase and it might be difficult to implement due to time and resource
limitations.

In conclusion, we recommend adapting simplified ordering polices based on well-known
lean concepts (that are widely used in manufacturing) to a major public health sector. There are
several key managerial insights relating to this recommendation. First, only replenishing using
inner pack quantities reduces logistical effort and potential ordering errors at multiple levels of
the supply chain. This is particularly valuable in the context of lower and middle income
countries as many of the workers involved in the vaccine supply chains in these countries are not
well trained in logistics systems operations. Second, while the average inventory levels do
increase slightly with the simplified policies, the increase is minor and only causes minor
increases (less than a few percent) in the number of cold storage devices needed at facilities if
the inner pack sizes are carefully chosen. Third, transport logistics are also not impacted
significantly. Thus, we can achieve significant benefits from simplified ordering policies with

modest increases in operational costs by selecting proper vaccine inner pack sizes.
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5.0 REDESIGN OF VACCINE DISTRIBUTION NETWORKS IN LOW AND

MIDDLE-INCOME COUNTRIES

5.1 INTRODUCTION

In many low and middle income countries supported by the Expanded Program on
Immunization, vaccines are distributed through a legacy medical supply chain. The legacy
medical supply chain consists of traditional medical facilities including a central distribution
center for the country, regional hospitals, district hospitals, and clinics. Their locations and
connections within the supply chain network (SCN) have typically been determined based on
political boundaries or the existing administrative hierarchy. Since the distribution network is not
optimized, the legacy medical supply chain is not necessarily a cost-efficient one.

In this chapter, we separate the cold chain for vaccine distribution from the legacy
medical supply chain and address it independently. The primary characteristic of this chain is
that it requires cold storage and transportation of a narrowly defined set of vaccines at controlled
temperatures of between 2 and 8°C. When the vaccine supply chain is separated from the
medical supply chain, redesigning it can be approached via mathematical models. In this chapter,
a mixed integer programming (MIP) model for designing the vaccine supply chain network is
introduced. As our analysis with real data shows, the solution of this problem can be quite
difficult, and an evolutionary strategy (ES) is therefore proposed to solve the network design

problem.
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The remainder of this chapter is structured as follows. Section 2 describes the problem.
Section 3 presents the mixed integer mathematical model and Section 4 proposes the
evolutionary strategy to solve the problem. In Section 5, sensitivity analysis is performed.
Section 6 introduces a looping factor that is applied to the transport vehicle routing and
illustrates how to apply it. We talk about how to improve the ES in section 7. In section 8, we
describe how to use the results from the ES to enhance the MIP performance. Each section
presents its own numerical examples based on real data to illustrate the problem and solution

characteristics.

5.2 PROBLEM DESCRIPTION

EPI vaccines from foreign manufacturers typically enter a country via air or sea and are initially
stored in a central distribution center. Then via intermediate distribution centers, they are
transported to local clinics, where actual vaccinations take place. The legacy medical supply
chains in most countries have a 3, 4 or 5 tier arborescent structure. For instance, in a typical 4-
tier vaccine supply chain, vaccines move from the central distribution center to regional
distribution centers, and from a regional distribution center to district distribution centers, and
finally, from a district distribution center to clinics. However, since the distance from the main
source node, (the central distribution center), to a final sink node (a local clinic) varies widely
and the supply chain network design was not optimized, this hierarchical and arborescent
structure does not guarantee an optimal distribution scheme.

Our goal is to send vaccines from one fixed source node to a set of fixed sink nodes

efficiently. If intermediate distribution centers (hub distribution centers) through which vaccines
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are transported from a source node to sink nodes are selected properly, the distribution network
will be more efficient. While the current network has a fixed number of tiers, this does not have
to be the case in general and we do not assume any such restriction. That is, vaccines can be
supplied to local clinics from the central distribution center through any number of hub
distribution centers, or even directly. A hub distribution center is a facility that stores vaccines
and supplies vaccines to local clinics as well as other hubs. Only the local clinic is assumed not
to have any distribution role. Hub distribution centers are selected from the current regional and
district distribution centers, which serve as a set of candidates.

This research considers several different storages devices at each facility and different
transportation modes/vehicles for transporting vaccines between facilities. Each facility is
allowed to choose its own storage devices for vaccines as well as its own transportation vehicles.
These storage devices have different capacities and a facility can have different storage devices
to hold its required volume of vaccines. Note that the storage capacity can be changed only in
discrete increments corresponding to additional devices. As with storage devices, there are
several types of capacitated transportation vehicles from which a facility can choose one. In
addition, we consider a replenishment/trip frequency along with vehicle capacity. For example, if
the total required volume at a facility in a year is 120 units and the replenishment frequency is
once a month, the required storage volume at the facility is 10 units, but if the replenishment
frequency is once every three months, 30 units of storage capacity is needed. The trip frequency
also works in the same way, e.g., if each replenishment must move 10 units and the capacity of
the vehicle is 5 units, then two trips will be required per replenishment. With respect to cost, we
consider transportation cost, storage cost, and facility operation cost. Transportation cost is

calculated using a travel distance between two nodes and increases discretely according to the
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number of vehicle trips needed to deliver the required volume. Storage cost is also related to the
volume of required vaccines and increases discretely according to the number of storage devices
required to store the vaccines. Even though there are several vaccines handled, only the total
volume of vaccines affects the capacity of transportation and storage so that we only consider the
total volume of vaccines along arcs and at nodes. Facility operation costs are incurred when a
facility is open.

In this research, we decide the locations of hub distribution centers, the flows from the
central distribution center to local clinics through hub distribution centers, the storage devices
and their numbers at each facility, the transportation vehicles used and the number of trips
required for each vaccine flow between facilities, taking into account the assumed trip frequency
for each connection between supply chain levels.

We make the following assumptions to reflect a real vaccine supply chain:

(1) Only local clinics have demand and demands at each clinic are fixed based on the
population served by the clinic.

(2) The location of the central distribution center does not change.

(3) A hub distribution center can only be located at the current regional and district
distribution center locations.

(4) Every local clinic is supplied via a hub distribution center (or directly from the central
distribution center).

(5) Each operational facility has exactly one inbound flow except the central distribution
center, which has none.

(6) Enough vaccine should be supplied to clinics to satisfy all demand.
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(7) If a hub is supplying another hub and is supplied by the central distribution center, it is
replenished quarterly.

(8) Ifahub issupplied by another hub, it is replenished monthly.

(9) The replenishment frequency of local clinics is once a month.

(10) The storage device type at a local clinic is given.

(11) There is a required 25% buffer at each location so that the total required storage volume is
inflated by a factor of 1.25.

(12) If more than one trip to a lower level facility is required, it does not change the
replenishment frequency to the lower level facility, i.e., we assume that the multiple trips
are done on the same day.

The supply chain network design problem is well-known to the operations research
community and there are many papers as well as reviews on this topic. The p-median problem,
the uncapacitated facility location problem (UFLP), and the capacitated facility location problem
(CFLP) are introduced as the basic network location problems in many papers [e.g., (Klose &
Drexl, 2005), (Melo, Nickel, & Saldanha-Da-Gama, 2009) and (Mirchandani, 1990)]. These
location problems have been mostly studied for single level systems (Sahin & Siiral, 2007).
Various extensions to these basic models have been derived, such as the capacitated facility
location problem with single sourcing (CFLPSS), the two-stage capacitated facility location
problem (TSCFLP), and the multi-commodity or multi-activity uncapacitated facility location
problem (MUFLP) (KloseA. & DrexlA., 2005). Mirchandani et al. discuss a stochastic variant of
the p-median problem (Mirchandani, Oudjit, & Wong, 1985). The uncapacitated facility
location/network design problem (UFLNDP) is introduced by Daskin et al. (Daskin, Hurter, &

VanBuer, 1993) and the capacitated facility location/network design problem (CFLNDP) is
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introduced by Melkote et al. (Melkote & Daskin, 2001). With UFLNDP and CFLNDP, where the
facility location and network design problems are combined, similar to the problem in this
chapter, it is often more economical to change the configuration of the underlying network rather
than adding and locating new facilities (Melkote & Daskin, 2001). If a network has hierarchical
features, there are two basic distinct MIP models: flow-based and assignment-based formulations
(Sahin & Siiral, 2007). Narula and Ogbu examine flow-based formulations for multi-flow
systems (Narula & Ogbu, 1979) and Sahin et al. construct a two-level multi-flow assignment-
based model (Sahin, Siiral, & Meral, 2007).

More recently, hub location models have received considerable attention (Klose & Drexl,
2005). Algorithms for solving the uncapacitated hub location problem (UHLP) have been
developed by several researchers [e.g., (Klincewicz, 1996), (Ernst & Krishnamoorthy, 1998), and
(Hamacher, 2000)]. The capacitated case has been studied by several researchers, e.g., (Aykin,
1994) and (Ebery, Krishnamoorthy, Ernst, & Boland, 2000). Unlike the general models or papers
mentioned above, recent work has considered more complexities to cope with a more realistic
variety of situations. For example, Rahmaniani and Ghaderi have worked on a combined facility
location and network design problem with multiple types of capacitated links and suggested a
fix-and-optimize heuristic based on the firefly algorithm (Rahmaniani & Ghaderi, 2013).
Kalaitzidou et al. optimize multiechelon supply chain networks with generalized production and
warehousing nodes using a mathematical programming model (Kalaitzidou, Longinidis, Tsiakis,
& Georgiadis, 2014). In this model, the optimization procedure decides which mid echelon
locations produce items and which ones only distribute items.

Regarding applying genetic algorithms to supply chain problems, the first was an

application to a transportation problem used a nonstandard genetic algorithm for solving linear
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and nonlinear transportation problems (Michalewicz, Vignaux, & Hobbs, 1991). The authors
used a matrix-based representation to represent a transportation tree. Since then, there have been
several studies on transportation problems (Bielli, Caramia, & Carotenuto, 2002; Gen,
Altiparmak, & Lin, 2006; Altiparmak, F; Gen, M; Lin, L; Karaoglan, I, 2009). For example,
Altiparmak et al. presented a solution procedure based on a steady-state genetic algorithm with a
new encoding structure for the design of a single-source, multi-product, multi-stage SCN
(Altiparmak, F; Gen, M; Lin, L; Karaoglan, I, 2009). They extended the priority-based encoding
of the transportation tree to a multi-product case. Firoozi et al. solve a three level hierarchical
supply chain, which is modeled with non-linear MIP, using a genetic algorithm (Firoozi, Ismail,
Avriafar, Tang, & Ariffin, 2013). Izadi and Kimiagrari solve the location-allocation problem with
an unknown demand function using a genetic algorithm and a Monte Carlo simulation approach

(Izadi & Kimiagari, 2014).

5.3 MIP FORMULATION

To formulate the problem we define the following notation:
Index sets
C: Central distribution center ={0}
H: Hub distribution centers ={1,2,...,|H|}
I: Local clinics = {|H[+1,...,N}
E:Edges:(i,j)[i€eCUH,jEHUILi#]j

V: Vertices: CUH U [
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L: Levels: {central (=0), hub (=1), local clinic (=2)}

T: Transportation vehicles: {cold truck (=0), 4x4 truck (=1), motorbike (=2)}

R: Storage devices: {cold room (=0), regional device (=1), district device (=2), local clinic
device (=3)}

F: Replenishment frequency: {Quarterly (=0), Monthly (=1)}

Parameters

CZ-t: Transportation cost per km of vehicle type t from location i to location j ; (i,j) € E;t €T
C:2: Annual storage cost per storage device r; r € R

CF: Annual facility cost when the facility is level [; L € L

PI: Transportation capacity per trip of vehicle t; t € T

PS: Storage capacity of device r; r € R

Gy: Annual number of replenishments f € F (=4 if k=0; =12 if k=1)

S: Buffer stock factor for vaccines stored at a location

D;;: Distance (km) between location i and location j ; (i,j) € E

B;: Annual demand (B;<0, j € I) or supply (B;>0, j € C) volume at location j; B; = 0 forj €

H

Variables
X;j- Annual flow (volume) of vaccines from location i to location j ; (i,j) € E
W; € {0,1}: 1 if a location j is open, 0 otherwise; j € V
Y;s: Number of storage devices of type r at location j with replenishment frequency f;

jEV,reR, f€eF
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Zijer» Number of vehicle trips per replenishment from location i to location j using vehicle type
t with replenishment frequency f; (i,j) € E,t €T, f € F
V; € {0,1}: 1 if a location j has monthly replenishment frequency, 0 otherwise; j € H U I

U;; € {0,1}: 1 if vaccines flow from location i to location j, 0 otherwise; (i,j) € E

Our formulation is:

(i,j)EE t€eT f€EF JEV fEF rER JEH J€EI
subject to
Xij = Z Xji = Bi forvieVv (58)
jev:(i,j)EE JjeV:(j,i)EE
T
z Z Pt GrZijey 2 Xij forv (i,j) EE (59)
teT feF
S
EZPTGfoTfZ(HS) 2 Xij forVj eV (60)
TER fEF iECUH:(i,j)EE
MwW; = Z Xij + z Xji forvjeH (61)
IECUH:(i,j)EE IEHVUI:(j,i)EE
Xij SMUU fOTV(i,j)EE (62)
Uj=1 forvje HUl (63)
iECUH:(i,j)EE
EZYMSMWJ forvj€H (64)
TER fEF
2 Yir1 < MVj forvj €H (65)
TER
> Vo <M -V)) forvjeH (66)
TER
Xij < MV; forVvi,j e H (67)
U
VL-SZ—UOL-—% forvieH (68)
W, =1 forvieCul (69)
Vi=1 forviel (70)
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Yo00 =1 (71)

Xij =0 forv(i,j) €EE (72)
W; € {0,1} forvjev (73)
Yirs €{0,1,2,...} forVj€V,¥vr e R,Vf €F (74)
Zijer €1{0,1,2,...} forv(i,j) €EE,Vt e T,Yf €F (75)
V; € {0,1} forvje Hul (76)
Uij € {0, 1} fOT V(l,]) EE (77)

where M is a large number.

The objective function (57) consists of three terms: Annual round-trip transportation cost,
annual storage cost and annual facility cost. Constraint (58) is a conservation of flow equation,
where the inbound flow to a hub facility is equal to its outbound flow and the inbound flow to a
clinic is equal to its total demand. Constraint (59) ensures that if an edge representing
transportation between two locations is used, there are sufficient trips during each replenishment
using the selected vehicle to transport the total volume of vaccines required to be transported
along the edge. Constraint (60) ensures that a facility is able to have enough capacity (number of
storage devices) to store the total amount of vaccines before the next replenishment (including
any buffer stock). Constraint (61) states that if a facility is closed, the inbound flow to the facility
and outbound flow from the facility is 0. Constraint (62) states that if an edge is not used, there is
no flow on the edge. Constraint (63) ensures that each hub and clinic has at most one inflow.
Constraint (64) allows a facility to have storage devices only when a facility is open. Constraints

(65) and (66) stipulate that the Y;,., variable has the appropriate value corresponding to the

selected replenishment frequency at facility j. Constraint (67) states that the trip or replenishment
frequency at a hub that is supplied by another hub is once a month. Constraint (68) guarantees

that a hub that is supplied by the center gets replenished once every quarter. Note that the

Yjen Uij

ntit
quantity A

Is a positive fraction between 0 and 1 so that if there is shipment from the
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central store to hub i, then V/; must be equal to zero (quarterly replenishments); otherwise it could
be 0 or 1. Constraint (69) ensures that the central distribution center and all local clinics are
open, while Constraint (70) ensures that all local clinics have monthly replenishments. Finally,
Constraint (71) states that the central distribution center must have a cold room.

The above formulation can be used to solve the network problem optimally, but as the
problem size becomes bigger, the computational time increases exponentially. For example,
suppose there are three kinds of storage devices and three kinds of transportation vehicles, along
with five candidate hubs and 125 clinic locations. For this problem, the MIP formulation leads
to approximately 102,500 integer variables. If we increase the number of candidate hubs and
clinics by a factor of four (which would be quite representative of the structure in many
countries), the number of integer variables increases by a factor of 16 to approximately
1,627,000. Even if the computational effort is not directly proportional to the number of integer
variables, the additional computational time required to solve the model can be prohibitive. For
example, the largest problem we can solve with the MIP formulation has 210 locations including
13 candidate hubs. It takes 196 hours using IMB ILOG CPLEX 12.6 on a computer with an Intel
Xeon CPU E5450 3.00 GHz with 20.0 GB memory (also note that different combinations of
CPLEX parameters were evaluated before choosing the one that minimized computational time).
This problem represents only two of the eight regions in Niger. Many network problems have a
similar issue with dramatic increases in computational effort as the size of the problem gets
larger. Often, this issue is addressed by developing heuristics based on Lagrangian relaxation,
linear programming, or constructive methods, or by using so-called metaheuristics (Melo,

Nickel, & Saldanha-Da-Gama, 2009).
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In the next section, we propose a metaheuristic that uses an evolutionary strategy (ES) to

obtain a good solution to the network problem in a reasonable amount of time.

5.4 EVOLUTIONARY STRATEGY ALGORITHM

5.4.1 Introduction

An Evolutionary Strategy (ES) is a population based algorithm that is related to genetic
algorithms, which were developed independently (Whitley, 1994) and have been used to solve
large network problems (Altiparmaka, F; Genb, M; Linb, L; Paksoy, T, 2006; H. Aytug , M.
Khouja & F. E. Vergara, 2003; Altiparmak, F; Gen, M; Lin, L; Karaoglan, I, 2009). ES is based
on the work of Rechenberg and Schwefel (Schwefel, 1975).

An ES can be a good candidate for solving the vaccine distribution network design
problem based on the problem’s characteristics and its likely optimal network structure: (a) most
clinics will tend to be supplied from the nearest open hub, (b) the number of candidate hubs is
relatively small; e.g., Niger has 40 candidate hubs even though there are 644 clinic locations, and
(c) the optimal network has a tree structure which is not very deep and its branches can be
clustered. Fact (a) implies that the ES does not need to have all connection information for the
entire network and that the network structure from the central distribution center to the hubs is
more critical (this is discussed in more detail later). Facts (a) and (b) permit the design of a
simple ES representation that facilitates ES operations such as crossover and mutation, and can

decrease the evaluation time of a candidate solution. Fact (c) is a good feature to have for a
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population based method such as ES because the ES operations can be effective at finding
improved solutions in successive iterations of the algorithm.
There are two types of ES: (u+ A)-ESand (u,1)-ES. The (u,A1)-ES is closer to the

canonical genetic algorithm, where u parents produce A offspring and only the best u of the

A offspring replace the p parents (u < A). On the other hand, in the (u + 1)-ES, u parents
produce A offspring, and the population is then reduced again to u parents by selecting the best

solutions from among both the parents and offspring (Whitley, 1994). In this chapter, a (u +

A)-ES is used to apply high selective pressure. Goldberg and Deb have shown that replacing the
worst member of the population tends to produce higher selective pressure (Goldberg & Deb,
1991).

One of the reasons for long computation times for the MIP model is that the vaccine
volumes handled at the hubs cannot be fixed before the network structure is set. In the ES, a
chromosome decides the network structure from the central storage location to the hubs and the
local clinics are automatically assigned to the nearest open hub to then complete the entire
network. Throughout the network, the amount of vaccine that must be handled at each hub
location is decided and then appropriate transportation and storage devices are selected. Note that
the best possible result found using the ES representation is not guaranteed to be an optimal
solution since the local clinics do not necessarily have to be connected to the nearest open hubs.
This is because clinic to hub assignments that result in more travel distance may result in lower
overall cost of storage device costs. For example, if Hub A can eliminate one storage device by
not servicing one of its clinics and there is another hub, say Hub B, which has sufficient storage
space to supply the clinic which was supplied by Hub A. If the cost of doing this from Hub B is

lower than the cost of using one more storage device at Hub A, then the local clinic (which was
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supplied by Hub A) can now be supplied by Hub B. However, it is reasonable that in an optimal
solution one could expect many of the local clinics to be connected to the nearest open hubs.
Therefore, even though the ES does not guarantee that it can solve the network problem
optimally, it can hopefully produce a very good solution. In addition, if we fix the portion of the
network structure that does not include the clinics, solving the problem is much easier and
computation times decrease dramatically because the number of clinics greatly exceeds the
number of candidate hub locations.

In this section, an evolutionary strategy is introduced in order to address the
computational problems associated with the MIP formulation of the vaccine network problems,
and numerical examples are presented to illustrate the approach and demonstrate its

effectiveness.

5.4.2 An ES for vaccine supply chain network design

5.4.2.1 The ES procedure

Figure 14 shows the flow of the ES. The upper part shows the ES procedures and the lower part
presents the post processing that occurs after terminating the ES. The ES basically follows a
Genitor (u + A1) strategy. However, here we initially generate a population of size 2u and then
choose the best u of these for higher selective pressure. Moreover, we continue to maintain a
population of size u until termination, where the members are ranked at the beginning of each
iteration in descending order of their fitness/performance. In the crossover step we select one
parent at random from the population and another from the top &% of the population. As we
will explain, because of how the crossover is performed the number of offspring chromosomes

produced (A4;) is not the same at each iteration. Similar to crossover, in the mutation step we elect
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one chromosome at random from the population and another from the top 2% of the population,
these generate 1,=2 new chromosomes. The 1 = A; + 4, new offspring generated at the iteration
are then added to the existing ¢ members and the entire population is then re-ranked and reduced
to a new set of « members by eliminating the ones at the bottom. This completes one iteration
and we repeat the process with the new population. The process is terminated either when there
is no change in the population’s best 3% of chromosomes over T successive iterations or after
Tmax iterations. In the post-processing step we then solve the MIP with the central-to-hub

structure fixed according to the best chromosome in order to obtain the assignment of clinics to

hubs.
( ( )
2 x 1 population members produced =» select
Select U members produce /ll(not fixed) offspring
elec - Select 2 parents, one from the u members of the
. V population, the other from top a_% of the population.
Evolutionary - Fitness value is assigned accoréing to fitness-function
Strat.egy Crossover based rank
(Genitor Y . .
(u+A)- ES) Perform mutation by randomly selecting one
Mutate population member and choosing the other from the
L2 top az% of the population to produce Az offspring
Evaluate Evaluate A (:A1+A2) offspring
A 4 . - .
Offspring replace existing members in the
Upndate population if they are better
No erminate the ES either after iterations, or i
. Terminate the ES either after T__ iterati if
ere is no improvement over T successive iterations
Terminate there i : t T ive iterati
N \ Yes )
( ( . . )
olve with fixed central-to-hubs structure (networ
Post Solve MIP with fixed central-to-hubs structure (network)
Processin of the best chromosome from the ES to determine the
L i L hubs-to-clinics structure (network) optimally )

Figure 14. Evolution strategy for the network problem
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The solution representation and initialization are now described in more detail. A
matrix-based representation, which falls into the category of edge-based representations, is used
to represent the solutions. A chromosome is represented by an (n + 1) X n matrix, where n is
the number of hubs. Rows in the matrix correspond to the outbound flow from hubs and
columns to the inbound flow into hubs. That is, a;; = 1 implies that hub i supplies hub j, and
a;; = 0 implies that hub i and hub j are not connected, where a;; is an element of the matrix in
row i and column j. The first row represents the central distribution center. Figure 15 shows

examples of two chromosomes for n = 6.

L= B, I U TV I S o
O B W N R0
-

@00 6

Chromosome 1 Chromosome 2

Figure 15. Chromosome examples

Note that since each location can be supplied by exactly one location, each column sum is
less than or equal to one.

For initializing a new chromosome, we use the following steps:

Step 1. The values of the elements in the first row are decided randomly, with each
column having a probability p; of being selected and assigned a value of 1. This fixes which
hubs are supplied from the central distribution center. If hub i is supplied from the central store,
it is an open hub and i is inserted into the open hub set (= 0). Other hubs that are not in O are

assigned to the complementary set L.
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Step 2. Next, wechoose an open hub, say j € 0, update O = 0\{j}, and randomly decide
whether j supplies other hubs or not, where p, is the probability that hub j supplies other hubs
and (1-p,) the probability that it does not. If j is selected to supply other hubs, then a hub k € L
is selected to be supplied from j with probability p; and we update O = 0 U {k} and L = L\{k}
with each selection k.

Step 3. Repeat step 2 until 0 = @.

5.4.2.2 Evaluation

A chromosome ¢ has network information from the central store to the hubs, but does not have
information from hubs to clinics. Therefore, for evaluation of a chromosome, each clinic is
temporarily assigned to the nearest open hub and the flows into each hub are determined. Based
on the flows into each location, the transportation volume along each connected arc and the
storage volume at each open facility are decided across the entire network. This is because once
the flows are fixed, the demand (or volume of vaccine to be stored) at each location is also
known. Based on this volume, we know the storage and transportation volumes required at each
node and along each arc that is used, respectively. Once these volumes are fixed, the

performance of the chromosome(= E(¢)) is evaluated as follows:

(1 + 5) ZLECUH (i, ))e E
_ , s j i
E(c) = Z ZDl mm {Clthf [PTG l} + L fEF{C PG }+ CoW,
(.DeE s
(78)
+ Z Ciw; + Z C;W;
jEH JEl

The first term, where the lowest cost transportation vehicle and the shipping frequency
are decided, determines the annual transportation cost. The second, where the lowest cost storage

device and replenishment frequency are decided, determines the total annual storage cost, and
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the last term determines the annual facility cost. Note that the network structure determines the

values of W; and U;.

5.4.2.3 Selection

After a chromosome is evaluated, a fitness value is assigned based on the chromosome’s rank in
the population. In the selection step for crossover, two parents are selected: one is chosen
randomly from the whole population and the other is chosen randomly from the top a;% of the
population, based on the fitness rank. The reason why we choose one parent from the top a;% is
to apply higher selective pressure. Similarly, two chromosomes are also selected for mutation:
one is randomly chosen from the top a,% of the population and the other is randomly chosen

from the entire population.

5.4.2.4 Crossover

A 1-point crossover is performed between the two parents, where the crossover point is
randomly selected. Swapping the fragments occurs only in the first row within the column and
the other n rows follow the crossover from the first rows. That is, the crossover point divides the
network tree into two sub-trees and then sub-trees are swapped between the two parents. For
example, in Figure 16, if chromosomes 1 and 2 at the top are swapped between column 3 and 4,
the crossover results are shown. In this example there is no duplication of hubs and both
offspring are feasible, but in general, this need not be the case. If redundant hubs exist across the
two sub-trees, we might have a hub that is supplied from two upper level facilities (or a cycle
may occur). For instance, in Figure 17, if node 2 in chromosome 1 supplies nodes 1 and 4 instead
of nodes 1 and 3, then one of the offspring, chromosome 1’, has a cycle, where node 4 is

supplied by both the central node and node 2. Node 4 can select only one supply node: either the
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central node or node 2 as shown in the right hand side of the figure. Thus, chromosome 1’ and

chromosome 2 produce three offspring. Note that there might be several redundant hubs when

crossover is performed and because every redundant hub increases the number of offspring by a

factor of 2. This is why A;is not fixed. If there are no redundant hubs, the two parents produce

two offspring (4, = 2), but if there are in general, n(= 1) redundant hubs in a child chromosome

after the crossover, it is replaced by 2 x n new child chormosomes.

/ Chromosome 1 Chromosome 2 I fChromosome 1 Chromosome 2 )
1 2 3 4 5 6 1 2 3 4 5 &
c 1 1| c 1 1 C c
1 1 1
2 1 1 2
3 E]
4 4 i1
5 | 1 5
6 6
1 5 6
C 1 1 C 1 C C
1 1 1
2 1 1 2
. ; ) (@ o &
a4 1 4
5 5 1 o
; ; O 606
Child Chromosome 1 Child Chromosome 2 Child Chromosome 1  Child Chromosome 2
AN /

Figure 16. Crossover example
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Figure 17. Example of handling a redundant hub in crossover

5.4.2.5 Mutation

Mutation occurs with probability p,, at every iteration. Two chromosomes are selected for

mutation: one from the top a,% of the population and the other randomly selected from the

entire population. There are three options for mutation: (1) eliminating a hub, (2) adding a hub,

and (3) exchanging hubs. Each type of mutation has the same probability of occurring. Figure 18

illustrates these mutations. If option (1) is selected, a hub selected randomly from the open hubs

is removed from the network. If a hub (say, Hub A) is removed, then any hubs supplied by Hub

A are now supplied directly from the location that supplied Hub A. If option (2) is chosen, a hub

(say, Hub B) among the closed hubs and a hub (say, Hub C) among the open hubs (including the

central distribution center) are selected, and Hub C and Hub B are connected. In option (3), two

hubs among the open hubs are selected and their positions are exchanged.
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Eliminating a hub Adding a hub Exchanging hubs

Figure 18. Mutation

5.4.2.6 Termination and optimization

After evaluation, if no change is observed in the top a;% of the population over T successive
iterations, or we have reached our iteration limit of Ty, the algorithm is terminated. Although
the best chromosome has the minimum cost only the network structure from the central location
to the hubs is considered for optimization, and the network from the hubs and the local clinics is
not optimized. However, if the network from the central location to the hubs is fixed, assigning
the local clinics to the hubs optimally is relatively easy. This is done by solving an MIP problem
with the upper level of the network structure being fixed to the one that the ES produces.
Consider an open location ie CUH and link i-j, jeH along which vaccines flow, as determined by
the ES and define:

WjE € {0,1}: 1 if location j is open, O otherwise; j € H

Uﬁ- € {0,1}: 1 if vaccines flow from location i to location j, 0 otherwise; i € CUH and j € H
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The following additional constraints are added to the MIP Model in section 3.

Uy = Uj

w; = W

forvie CUHandVj €eH

forVvjeH

5.4.3 Numerical example

5.4.3.1 Niger

(79)

(80)

The proposed approach is applied to a subset (2 regions) of the Niger distribution network. Table

29 provides summary data for this subset of the Niger distribution network. Information on

vaccines, transportation, storage and facilities is shown in Tables 30 through 33.

Table 29. Summary data for Niger

Number
Region and District distribution centers 13
Clinics 196
Vaccines
Transportation device types 3
Storage device types 4

Table 30. Vaccine information for Niger

Vaccine . Packed vol./ Doses

Name . Doses/vial .

presentation vial(cc) [/person
Tuberculosis Lyophilized 20 24 1
Tetanus Toxoid Liquid 10 30 3
Measles Lyophilized 10 21.3 1
Oral Polio Liquid 20 20 4
Yellow Fever Lyophilized 10 25 1
DTC-HepB-Hib Liquid 1 16.8 3
liquid
PCV13 Liquid 1 12 3
Rotavirus Liquid 1 45.9 3
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Table 31. Transportation information for Niger

Vehicle Type Capacity (L) Cost ($/km)
Cold truck 9,293 0.97
4x4 Truck 172 0.54
Motorbike 5 0.23

Table 32. Storage information for Niger

Device Type Capacity (L) Cost ($/year)
Cold room 18,000 8,116
Regional level device 1,843 1,582
District level device 76 600
Clinic level device 35 596

Table 33. Facility information for Niger

Facility type Cost ($/year)
Central 40,000
Region 13,000

District/Hub 4,500
Clinic 800

Note that capacity and cost of transportation vehicles and storage devices at a particular
level are weighted average values based on the equipment currently used at that level. For
example, if there are 1,000 units of a 40-liter storage device and 600 units of a 20-liter storage
device across the clinic level, the storage device assigned to the clinic level is assigned a capacity
of 32.5 (=(1000x40+600%20)/1600) liters. This procedure is in order to simplify the problem. If
we were to include every currently used vehicle and device type in the model as an option this

would dramatically increase the computational effort. Facility cost is estimated based on labor

and building operation costs.
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This subnetwork has one central distribution center, along with 13 regional and district
distribution centers, which are potential hubs. Table 6 provides three different network design
results for the network. The first is the cost of the original network with the currently assigned
vehicles and storage devices for the routes and locations, respectively. The second still uses the
original network structure, that is, all the facilities are open and vaccines are distributed using the
current routes, but vehicles and storage devices are optimally assigned to each route and each
facility. The last is the network that is optimized for structure as well as devices using the
original MIP in Section 5.3. Figure 19 shows the resulting graphs for each network. Black lines

imply the use of cold trucks, orange lines correspond to 4x4 trucks, and blue lines to motorbikes.

Table 34. Network cost for Niger

Network Total cost Transportation Storage Facility Computatlon
cost cost cost time
Original Network 961,014 394,852 293,862 272,300
Ot ] BT Sy 660,330 140,064 247,966 272,300 <1sec
optimized devices
Optimized Network 605,193 135,107 237,286 232,800 196 hours

3 } o\ ] [
Ry P- -1
i ey !\‘n
5 N N\
2
Te

-

Original Network Original Network Optimized Network
with optimized devices
Figure 19. Network graphs for Niger
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The annual cost of the original network is $961,014. Maintaining the original network
structure but optimizing the transportation vehicles and storage devices used reduces the costs to
$660,330. Thus, if we assign the transportation vehicles and storage devices to the facilities more
appropriately, a cost savings of about 30% is possible for this subset of the Niger network. These
savings come mostly from reduced transportation costs. If we solve this network problem
optimally using the MIP described in Section 5.3, the total cost is $605,193, which is almost
another 10% in additional savings and around 37% in savings from the original network.
However, the computation time required to solve the problem optimally was 196 hours. The
computational experiments were done using a computer with an Intel Xeon CPU E5450 3.00
GHz processor and 20.0 GB of RAM. Since the whole Niger network has 40 candidate hubs and
644 clinics, solving the entire network with this computer in a reasonable amount of time is not
possible.

This same problem was also solved using the ES to fix the central-to-hub network
combined with the MIP post processing to get the clinic to hub assignment. Table 35 shows the
results of the ES + post processing for six different values of x (the population size), where each
of the six runs has 30 replications, each with different random number seeds. The ES input
parameters are shown in Table 36. Note that extensive pilot tests were run for a range of
parameter values and these values were chosen because the pilot testing indicated that this set
performed best. The mean, standard deviation and minimum values across these 30 replicates
along with the run times are reported. We also report the number of replicates in which the best

solution found by the ES is also the optimal solution of the MIP (=Frequency of optimum).
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Table 35. ES results

Population 10 25 50 100 300 600
Min 605,193 605,193 605,193 605,193 605,193 605,193
Avg 606,910 606,595 606,347 606,030 605,901 605,946
SD 1,807 972 760 424 433 311
Frequency of
optimum 2 1 1 3 6 2
Run time for 30 1,114 1,122 1,383 1,744 1,957 2,354

replications (sec)

Table 36. ES parameter settings

Parameter Value
u (10, 25, 50, 100, 300, 600)
DPm 100%
a; 10
a, 20
as 50
A, 2
D1 20%
D2 40%
D3 20%
T 100
Trnax 1000

| 607,000 2,000

1,800
| 606,800
| 1,600
| 1,400
| 606,600

1,200
| 606,400 1000 —+—AVG

800 ——50

| 606, 200
| 600
400
| 606,000

200

| 605,800 o
a 100 20 00 400 500 00 700

Figure 20. ES results for Niger

With 4 > 100, the ES provides stable results (Figure 20) in terms of the average quality

of the best solution in the population. An analysis of variance indicates that there is no
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significant difference between the solutions found by population sizes over 100 and the t-tests
between different populations indicate that the poulation sizes that are over 100 have a
significantly different average than those with population sizes less than 100. Thus, a population
size of 100 or more is preferable although there is no advantage to making it larger than 100. For
u = 100, the value of the solution found is on average about $606,000, which is 0.14% higher
than the cost found by the MIP. Recall that the ES does not assign clinics to hubs optimally, and
therefore the best solution found by the ES is not guaranteed to be the optimal one found by
solving the MIP. In this example, each experimental run has 30 replications and in all cases the
minimum cost found by at least one of the replicates was equal to the optimal value of $605,193
from the MIP. Each run takes 15 to 30 minutes to run 30 replications, which is a huge decrease
in computation time compared to directly solving the original MIP.

Since the clinics are assigned to the nearest hub in the ES evaluation step, the best ES
solution is not necessarily the same as the optimal solution of the MIP. Before deciding the final
network, replications are required to get the best solution. From the example of this section,
regardless of the size of the population, the minimum solution across 30 replications was the
same in all cases. So instead of increasing the size of the population, increasing the number of

replication is a better strategy.

5.4.3.2 Additional examples

In order to further evaluate the performance of the ES, similar experiments, using a
population size of 100 for the ES, are performed for a subset of the networks found in three
countries: Benin, Country A, and Country B. (Note that we use Country A and B instead of the
actual country names because the Ministries of Health in those countries did not give us

permission to use their country names — while the Ministries of Health in Benin and Niger did
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give permission to use their names.) The parameter settings for the ES are the same as with
Niger. Table 37 provides summary data for the network subsets of these three countries. The
results are shown in table 38. In the Benin and Country A cases, the ES consistently found the
optimal solutions. The average ES cost for Country B is 213,692, which is 0.1% more than the

optimal solution.

Table 37. Summary data for Benin, Country A, and Country B

Benin Country A Country B
Region and District distribution centers 13 10 11
Clinics 114 106 130
Vaccines 8
Transportation device types 3

Storage device types

Table 38. Results for Benin, Country A, and Country B

Benin Country A Country B
Original Network 158,330 771,290 294,739
Original Network with optimized devices 157,052 771,290 291,103
Optimized Network 142,543 593,326 213,422
ES result (average of 30 replications) 142,543" 593,326" 213,692"
ES Run time for 30 replications (sec) 460 319 630

Y These instances are relatively small, so the ES yields the same result for all 30 replications.

These smaller test problems have been used to demonstrate the effectiveness of the ES
since the optimal solution can be determined for these smaller problems. However, the ES was
created to find solutions to larger problems which the MIP model cannot solve in a reasonable
amount of time. Thus, we now examine country-level problems for four countries, which the
MIP model cannot solve in real time: Niger, Benin, Country A, and Country B. Table 39

provides summary data for these four countries. The parameter settings are the same as with the
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previous Niger example except that the iteration limit is now set to 5000 (as opposed to 1000).

The results are shown in Table 40.

Table 39. Number of locations for Niger, Benin, Country A, and Country B

Niger Benin Country A Country B
Region and District distribution centers 41 87 141 81
Clinics 644 658 2733 851

Table 40. Country level results for Niger Benin, Country A, and Country B

Niger Benin Country A Country B
Original Network (A) 2,989,490 791,164 11,182,800 6,987,500
Original Network with optimized devices 2,054,260 788,913 11,150,900 6,647,460
Best ES result (B) 1,903,500 718,898 8,710,000 5,414,090
Average 1,907,716 721,146 8,730,283 5,425,201

Standard deviation 4,057 1,294 11,870 17,900

Savings ((A-B)/Ax100%) 36% 9% 22% 23%

ES Run time for 30 replications 3.7 hours 5.9 hours 30.1 hours 21.5 hours

5.4.4 Discussion

The ES can obtain excellent solutions to the network problem in a very reasonable amount of
computational time. Given that we cannot solve these large problems optimally in a reasonable
amount of time, it is not possible to objectively evaluate the quality of the ES solution to these
problems. However, since the ES did well on smaller examples where we could indeed verify

optimality, it is reasonable to conclude that that these solutions are likely to be very good. This
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performance may be explained in terms of the following structural features of the vaccine
distribution network.
1. A vaccine network does not have many candidate hubs relative to the total number of
nodes in the network because the vast majority of nodes correspond to clinic locations.
2. Clinics are often assigned to the nearest open hub in an optimal solution.
3. The optimal network is not very deep.

4. An optimal network has a tree structure.

In addition, the following design features of the ES help it to find a good solution in a
reasonable amount of time.
1. The ES constructs the network structure only from a central distribution center to hubs.
2. Clinics are heuristically assigned to the nearest open hub in the ES (although we allow
ourselves the option of changing this in the post-processing step).

3. The crossover occurs between hubs supplied by a central distribution center.

5.5  SENSITIVITY ANALYSIS

The vaccine distribution network has three associated cost parameters - storage, transportation
and facility costs - that are calculated based on storage device cost per year, transportation cost
per trip and facility cost per year, respectively. They are fixed values in the model but in practice
it might not be possible to ascertain exact values for these. In order to investigate the effects of
cost variation on the network structure, we perform a sensitivity analysis around these cost
estimates. One cost element at a time is perturbed, while the other two other are fixed. Each cost

element is altered from 10% to 1,000% of the baseline value (with the other two maintained at
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their baseline values). Subsets of the Niger, Benin, Country A and Country B vaccine
distribution networks are used with the MIP. For Niger a larger problem with 2 regions, which is
used in section 5.4.3.1,is also considered, but with the ES (which will likely provide at least a
near-optimal solution), since running the MIP for this several times would take an inordinate
amount of time. Since the MIP can provide the optimal network, we can readily observe the

impact of the changes. Table 41 shows the number of candidate hubs and clinics in the four

countries.
Table 41. Country information for sensitivity analysis
Country Niger Benin Country B Country A
Number of candidate hubs 5 13 11 10
Number. of clinics 86 114 130 106

Our interest is to study how the network changes according to how the costs vary.
Therefore, we focus on the number of open hubs, the number of hubs supplied by a central

distribution center and the number of levels.

5.5.1 Results

Table 42 shows the results of the sensitivity analysis for Niger (one district) which are obtained
via the MIP. It indicates that changes in storage device costs have no effect on the network
design but changes in transportation and facility cost can alter the network structure. As the
transportation cost per trip increases from 10% to 1000% of its nominal value, the number of
hubs increases. In the situation where the transportation cost is low, frequent trips are preferred
and fewer hubs are open. When transportation costs are high, opening more hubs can reduce
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costs by decreasing the number of trips required. The effect of changes in facility cost per year
has an opposite effect to transportation cost changes. Higher facility costs decrease the number
of open hubs (with higher transportation costs) and lower facility costs increase the number of
open hubs (with lower transportation costs). Tables 43-45 show the sensitivity analysis results
for subsets of the Benin, Country B and Country A networks that were considered. These results

show trends similar to those obtained for Niger.

Table 42. Sensitivity analysis results for Niger (Dosso Province)

Sgt(:isr:g Storage 10% 20% 50% 67% 100% 150% 200% 500% 1000%
Results Number of hubs 3 3 3 3 3 3 3 3 3
Number of levels| 3 3 3 3 3 3 3 3 3
Sgt(t)isr;[g Transportation | 10% 20% 50% 67% 100% 150% 200% 500% 1000%
Results Number of hubs 1 1 3 3 3 4 4 5 5
Number of levels| 3 3 3 3 3 3 3 3 3
S;(t)isr;[g Facility 10% 20% 50% 67% 100% 150% 200% 500% 1000%
Results Number of hubs | 5 5 4 3 3 3 3 1 1
Number of levels| 3 3 3 3 3 3 3 3 3
Table 43. Sensitivity analysis results for Benin
Seft‘i’f]gs Storage 10% 20% 50% 67% 100% 150% 200% 500% 1000%
Results Number of hubs 5 5 5 5 4 4 3 3 3
Number of levels| 3 3 3 3 3 3 3 3 3
Seft‘i’ﬁgs Transportation | 10% 20% 50% 67% 100% 150% 200% 500% 1000%
Results Number of hubs 1 2 3 3 4 5 5 5 7
Number of levels| 3 3 3 3 3 3 3 3 3
Seft‘i’ﬁgs Facility 10% 20% 50% 67% 100% 150% 200% 500% 1000%
Results Number of hubs 5 5 5 4 4 4 3 2 1
Number of levels| 3 3 3 3 3 3 3 3 3
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Table 44. Sensitivity analysis results for Country B

sec'[:t(i);;s Storage 10% 20% 50% 67% 100% 150% 200% 500% 1000%

Results Number of hubs 6 6 6 6 6 6 6 6 5
Number of levels 3 3 3 3 3 3 3 3 3

sect:t(i)rswgs Transportation 10% 20% 50% 67% 100% 150% 200% 500% 1000%

Results Number of hubs 2 2 4 5 6 6 6 8 9
Number of levels 3 3 3 3 3 3 3 3 3

sect:t(i);gs Facility 10% 20% 50% 67% 100% 150% 200% 500% 1000%

Results Number of hubs 9 8 6 6 6 5 4 2 2
Number of levels 3 3 3 3 3 3 3 3 3

Table 45. Sensitivity analysis results for Country A
Cost

Sett‘i’;gs Storage 10% 20% 50% 67% 100% 150% 200% 500% 1000%

Results | Number of hubs 2 2 2 2 2 2 2 2 2
Number of levels 3 3 3 3 3 3 3 3 3

Cost .

Sett‘i’;gs Transportation | 10% 20% 50% 67% 100% 150% 200% 500% 1000%

Results | Number of hubs 1 1 2 2 2 2 2 2 2
Number of levels 3 3 3 3 3 3 3 3 3

se?t?;;s Facility 10% 20% 50% 67% 100% 150% 200% 500% 1000%

Results | Number of hubs 2 2 2 2 2 2 2 1 1
Number of levels 3 3 3 3 3 3 3 3 3

The Niger network instance includes only one of its eight districts, so the three level

network is optimal even though the cost factors are altered. This makes it impossible to see any

changes in the network’s depth. In order to examine this further, we also study a problem

instance with two districts of Niger, which has 13 candidate hubs and 196 clinics. This instance

can be solved by the MIP but it takes around 8 hours to get the optimal solution, so the ES is
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used to obtain the best solution. The results are shown in Table 46. As the storage device cost
increases, the number of levels decreases and the number of hubs decreases. This is because
higher storage costs restrict the sizes of the open hubs and reduce the number of levels desired.
As the transportation cost per trip increases, the number of hubs increases and the number of
levels increases. This is because higher transportation costs call for shorter trips and the number
of levels and hubs increase in order to reduce the trip distance. As the facility costs increase, the
number of hubs and the number of levels decrease. In this case, in order to save costs, the
network is forced to not open hubs and this leads to fewer levels. These increases and decreases

exhibit monotonic behavior.

Table 46. Sensitivity analysis results for Niger (two provinces)

Seft?zgs Storage 10% 20% 50% 67% 100% 150% 200% 500% 1000%
Results Number of hubs 9 9 8 8 8 7 7 6 4

Number of levels 5 5 5 5 5 5 5 3 3
Seft?zgs Transportation | 10% 20% 50% 67% 100% 150% 200% 500% 1000%

Number of hubs 2 2 6 6 8 10 10 13 13
Results

Number of levels 3 3 3 4 5 5 5 6 7
se(ft(i)rS]tgs Facility 10% 20% 50% 67% 100% 150% 200% 500% 1000%

Number of hubs 11 10 10 10 8 7 5 2 2
Results

Number of levels 5 5 5 5 5 5 4 3 3
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5.6  APPLYING A LOOPING FACTOR

5.6.1 Introduction

The current model assumes that a vaccine transportation vehicle visits only one place and returns
to the original point of departure. In practice, the vehicle may visit several locations during one
trip as long as it has enough capacity to carry all required vaccines. In order to add travel routes
between the central warehouse and hubs, vehicle routing constraints are required to be added to
the MIP model. However, the vehicle routing problem (VRP) is known to be an NP-Hard
problem. If we add VRP constraints into the current MIP model, it is not possible to solve it in
reasonable time for even small networks. So a two-step procedure is proposed for adding vehicle
routing. First, the network problem is solved using the MIP formulation or the ES procedure.
Once the network is fixed and the locations supplied by each of the hubs are decided, a vehicle
routing problem from each hub to its delivery locations is solved in order to optimize the travel
routes for that hub. Since there may be several hubs, the number of VRPs solved would be equal
to the number of hubs (plus one for the central warehouse).

The introduction of vehicle routing to the network problem leads to a decrease in the
transportation cost of the network because vehicles travel less than in a network where we
assume that all trips are point-to-point. Thus the network structure obtained from solving our
MIP (or by using the ES procedure) may be improved with the decreased transportation costs.
However, we do not actually know these costs until the network is fully solved. We therefore use
an estimate of the transportation cost for the optimization by applying a multiplicative looping
factor, which is computed as the ratio of the transportation cost with vehicle routing to the
transportation cost with all point-to-point travel. The transportation costs from the hub to each of
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its delivery locations are then multiplied by this looping factor. The network design problem is
then solved again using these lower transportation costs. Figure 21 shows an example of the
looping factor calculation. Location D supplies locations 1-5. If a vehicle visits one place per
trip, the total distance is 132 (left side of Figure 21). When the vehicle has two big loops (right
side of Figure 21), the total distance is 93. Thus, the looping factor is calculated to be 0.705

(=93/132).
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Looping factor : 93/132 = 0.705

Figure 21. Looping factor example

Two issues arise when we solve the network design problem again. First, the central
distribution center and each of the hubs has its own looping factor, and the transportation costs
between a hub and its delivery locations are each multiplied by the hub’s looping factor. The
second issue is that the network structure obtained from the MIP or the ES procedure does not
use all routes, so only a few vehicle routing paths are available after solving the VRPs. Therefore
we assume that the network has representative looping factors depending on where the VRP
origin and destinations are. We group the VRP deliveries in the network into three categories —

central-to-hubs, hub-to-hubs and hub-to-clinics, and assume that there is a representative looping
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factor corresponding to each of these categories.. Each representative looping factor is computed
as the average of all looping factors computed by the different VRPs within each category. For
example, consider the third category. Suppose there are five hubs with each one only supplying
clinics, and suppose their looping factors are found to be 0.35, 0.4, 0.38, 0.42 and 0.45. Then the
representative looping factor for hub-clinic deliveries is 0.4 (the average of these five values),

and the transportation cost for deliveries from any hub to any clinic is multiplied by 0.4.

5.6.2 Procedure

After finding an initial network structure using the MIP or the ES, looping factors are calculated.
However, once the network problem with the lower transportation costs is solved, the network
structure originally obtained might change. If this happens, a fresh set of looping factors are
computed for the new network and the procedure is repeated until there is no change in the
network. That is, it is an iterative procedure, as shown in Figure 22.

e STEP 0: Use the MIP or the ES to obtain the network structure {N}. Looping factors are
then obtained by solving VRPs resulting from {N} and the “true” cost of the network
(assuming we use these routes) is estimated as Z; this is done by multiplying each point-
to-point transportation cost in the network by its looping factor.

e STEP 1: The network problem is re-solved with these looping factors using the MIP or
the ES. If the structure of the new network {Nnew} is identical to {N} , we stop and the
current network structure is the best we can find. If the network structure has changed,
the VRPs resulting from this new structure {Nn.w} are solved and new looping factors

obtained. The “true” cost of the network {Npew} is estimated as Ze, by multiplying the
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original point-to-point transportation costs in the network by the appropriate looping
factors

o STEP 2: If Zyew> Z then the new network {Npew} is not better and we stop with {N} as the
best structure we can find. If Z,.w < Z we have a better network, so we redefine

{N}={Nnew}, Z=Znew and return to Step 1.

VRP for central and

MIP/ES result — each hub | Looping factors
¥
MIP/ES result
with looping factors
¥
s the network No
changed?
‘ Yes
. VRP for central and
Looping factors each hub
. No
Improvement? —
I Yes

Figure 22. Apply looping factors

5.6.3 Vehicle routing problem

There are many algorithms that have been developed for the VRP. Because the VRP is known to
be NP-Hard, many of these are heuristics. For this network problem, both an MIP formulation
and a heuristic method are used in this research. Since we need to solve many VRPs while
applying a looping factor, the MIP formulation is used for smaller problems where the VRPs can
be solved efficiently, while the heuristic is used when the VRPs take too much time to solve

optimally.
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5.6.3.1 MIP Formulation

In this section, we describe a mathematical formulation corresponding to the VRPs that we solve.
This formulation considers the vehicle type to use for each loop and its capacity. It uses a binary
variable as a vehicle flow variable to show if there is travel between two locations using a

specific vehicle.

Notation

CiTjt, d;, B;, Pf,C,H,and T follow the same notation as the network MIP. Define
x;j¢ € {0,1}:1if i and j are connected using vehicle type t; 0 otherwise.
Yije + amount of vaccine transported from i to j using vehicle type t.

The following MIP is used to solve the VRP:

Mlnz Z CZ]"-txi]-t (81)

teT i,jECUH
subject to

z Z xije =1 for Vj €H (82)
teT ieCUH

Z Xipk — Z Xjpr =0 for vpeEH,VtET  (83)
iECUH jECUH
Z Z Yije —Z Z Yjie = dj for vj€EH  (84)
teT ieCUH teT ieCUH

Bixije < yijr < Plxij for Vi,jECUH,i #jVtET (85)
Yije =0 for Vi,jECUH,i#jVteT  (86)
x;j¢ € {0,1} for Vi,jECUH,i+jVteT (87)

Constraints (82) and (83) ensure that a facility is visited exactly once and that if a vehicle

visits a location, it must also depart from it. Constraint (84) specifies that the difference between
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the quantity of vaccines a vehicle carries before and after visiting a facility is equal to the

demand of that facility. Constraint (85) ensures that the vehicle capacity is never exceeded.

5.6.3.2 Heuristic method

Our heuristic uses a constructive method based on the algorithm of Clark and Wright (1964). In
this algorithm, point-to-point routes are combined to form a loop by choosing the routing path
that gives the largest transportation cost savings at each iteration until every location is linked.
For our network problem, vehicle type is considered when the savings on the route are
calculated. For checking if a route is feasible, both vehicle capacity and trip distance are

considered.

Modified Clark and Wright algorithm
Label the delivery locations as 1, 2, ..., n and label the origin as 0.

Determine the costs Cic-t to travel between all pairs of delivery locations and between each
delivery location and the origin and for each vehicle type, i.e., for i=0, 1, .., n; j=0, ..., nand jA ,

teT

1. Calculate the savings S;;x=C{, + Cg;. — Cij, for all pairs of delivery -locations i,

jand vehicle typest (i=1, 2...n; j=1, 2...n; i#j, teT).
2. Order the savings, S, from largest to smallest.
3. Starting with the largest savings, do the following:

(@ Iflinking delivery locations i and j results in a feasible route, then add this link to

the route; if not, reject the link.

(b)  Try the next savings in the list and repeat (a).
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Checking for route feasibility

If the sum of vaccine volumes required at the delivery locations on the route is less than or equal
to the capacity of the vehicle and the total travel distance of the vehicle is less than or equal to
the maximum travel distance of the vehicle, the route is feasible; otherwise, the route is

infeasible.

5.6.4 Numerical example

Table 47 shows results from the Cotonou province of Benin when vehicle routing is considered.
This example is small enough that we can use the MIP to solve the network and also use an MIP
formulation to solve the VRPs. The original optimal value for the network {N} obtained after
solving the problem is 142,543. The corresponding VVRPs are then solved and the looping factor
for the central distribution center to the hubs is computed as 0.4333 (i.e., 43.33%) while the
looping factor for the hub to the clinics is 0.4585 (i.e., 45.85%). There is no hub to hub
connection in this original network. The network cost with vehicle routing is estimated as
Z=138,810; this is obtained by multiplying the transportation costs at each route (edge) by its
looping factor. In particular, the transportation costs per km (Cic-t) from the central distribution
center to each hub and from each hub to a clinic are multiplied by 0.4333 and 0.4585,
respectively.

Next, the MIP is solved again with transportation costs based on the above looping
factors and we obtain a new network {Nnew} With a cost of 138,393. After solving the associated
VRPs this new network yields values of 1.00 and 0.391 respectively for the looping factors for
central to hubs and hub to clinics each, and the true cost for this network {Nye} with routing is

estimated as Znew =138,333. Since the network is changed and the cost has decreased
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(138,333<138,810 (Table 47)), we perform a second iteration after resetting Z=138,333 and
{N}={Nnew}-

After the second iteration, the new network {Nye} is different from {N} and the VRPs
yield new looping factors of 1.00 and 0.316. Since there is improvement in the network cost
(Znew= 137,494<138,333=Z (Table 47)), a third iteration is performed after resetting Z=137,494.
After the third iteration, the solution to the network design problem is the same as the one from
the previous iteration. Therefore, we stop here and accept this network structure with vehicle
routing as the final one. Table 48 also shows the results for the same problem using the heuristic
method for the VRPs instead of the MIP formulation. The iterations proceed in a similar fashion
but the final network is different with looping factors of 1.00 and 0.3533 and a final cost of
Z=137,831. The final network with the MIP VRP solver is little bit better than with the heuristic

VRP solver (137,474 <137,831), because the MIP VRP solver provided optimal VRP solutions.

Table 47. Results of applying a looping factor for Benin (MIP-MIP)

Initial Network Iteration 1 Iteration 2 Iteration 3
MIP Cost 142,543 138,393 138,171 137,494
. C-H 43.33% 100.0% 100.0% 100.0%
Looping
H-H - - - -
Factor
(MIP) H-I 45.85% 39.10% 31.60% 31.60%
Cost (2) 138,810 138,333 137,494 137,494
Table 48. Results of applying a looping factor for Benin (MIP-Heuristic)
Initial Network Iteration 1 Iteration 2 Iteration 3
MIP Cost 142,543 138,753 138,419 137,831
. C-H 43.33% 100% 100% 100%
Looping
H-H - - - -
factor
(Heuristic) H-I 50.64% 41.85% 35.33% 35.33%
Cost (2) 139,106 138,539 137,831 137,831
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Figure 23 shows the network structures at each iteration. As the iterations proceed, the
number of hubs decreases. This is because allowing vehicle routing reduces the transportation
cost substantially and this result is similar to the one obtained while conducting sensitivity

analysis on transportation costs.
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Figure 23. Network structure at each iteration (MIP-MIP)

5.6.5 Discussion

If a vehicle has enough capacity, visiting several locations during a trip is reasonable. Actually,
this is common in practice. So solving a network assuming point-to-point trips can result in an

undesirable solution. In this section, we described how vehicle routing can be incorporated into
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the network problem using looping factors. Here, three looping factors — central distribution
center to hubs, hub to hub, and hub to clinic - are used. This makes the simplifying assumption
that the transportation costs between all points at one level and all destinations at the next lower
level can be reduced by a similar percentage using delivery loops.

We cannot guarantee that the final network is optimal with vehicle routing because the
network and the vehicle routing problems are not solved together. However, since vehicle
routing has the effect of reducing transportation costs, if that reduced transportation cost can be
incorporated when the network problem is solved, we can expect to find high quality solutions

by applying looping factors.

5.7 IMPROVING THE EVOLUTIONARY STRATEGY

5.7.1 Introduction

The ES solves the network design problem from a central distribution center to hubs and a sub-
network from hubs and clinics is automatically constructed by assigning the clinics to the nearest
open hub. After the ES process, an MIP is used to optimize the sub-network. Since the sub-
network is not optimized when the ES decides the best solution, the best ES solution before
optimizing the sub-network might not be the best solution after optimizing the sub-network. For
example, the 10™ ES solution can lead to the best solution of the network after optimizing the
sub-network. In this section, we improve the ES for this problem by storing some of the solutions

that are obtained during the intermediate ES iterations.
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5.7.2

Since the ES is a stochastic optimization method, it is run for a predetermined number of
replications in order to obtain the best solution. For example, if there are n replications of the ES,
we have n ES runs and n MIP runs during post-processing. Without increasing the run time, we
could possibly improve the ES results. Instead of solving an MIP corresponding to the best ES
solution after each ES run and repeating this process n times, we start by storing the best n ES
solutions from the first run. After each of the subsequent runs we update the list of the n best ES
solutions found thus far by replacing existing solutions on the list with any better ES solutions
found in the current run. After n replications of the ES, we solve n MIPs using the final list of

the n best ES solutions. This method could possibly provide a network solution that might not

Improved ES

have been possible to obtain using our original ES approach.
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Figure 24. Original ES vs Improved ES
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5.7.3 Numerical example

Table 49 shows the result of the original ES (left) and the improved ES (right) for 3 regions of
Niger; 20 ES runs are performed for this network problem. The left half of the table (with the
original ES) shows the best original ES value from each run and the value after applying the MIP
to these. After 20 runs, the final best solution of the original problem yields a cost of 1,032,590.
The right half of the table (with the improved ES) shows the final best 20 ES values (arranged in
order) after 20 runs/replications. After using the MIP to further improve each, the best solution is
1,032,550 which is slightly better than the final solution of the original ES and could not be

obtained by the original ES.

Table 49. Original ES vs improved ES for 3 regions of Niger

Run  Original ES O”g:\r}ﬁLES * Order Improved ES Improved ES + MIP (Improvgjag; + MIP)
1 1,038,580 1,035,840 1 1,035,330 1,032,590 2
2 1,040,200 1,036,690 2 1,035,860 1,033,120 5
3 1,035,330 1,032,590 3 1,035,870 1,033,130 6
4 1,036,130 1,033,390 4 1,035,940 1,034,710 15
5 1,036,440 1,033,700 5 1,035,950 1,034,710 15
6 1,036,290 1,032,720 6 1,036,070 1,032,550 1
7 1,036,670 1,033,930 7 1,036,290 1,032,720
8 1,035,330 1,032,590 8 1,036,330 1,033,590 9
9 1,036,330 1,033,590 9 1,036,350 1,035,120 18
10 1,035,330 1,032,590 10 1,036,360 1,033,200 8
11 1,037,110 1,033,540 11 1,036,400 1,033,690 10
12 1,037,840 1,034,270 12 1,036,440 1,033,700 11
13 1,036,440 1,033,700 13 1,036,470 1,035,230 19
14 1,035,330 1,032,590 14 1,036,470 1,035,230 19
15 1,036,670 1,033,930 15 1,036,590 1,033,050 4
16 1,038,580 1,035,840 16 1,036,670 1,033,930 12
17 1,036,660 1,033,920 17 1,036,810 1,033,160 7
18 1,037,470 1,033,900 18 1,036,850 1,034,110 13
19 1,036,330 1,033,590 19 1,036,870 1,034,130 14
20 1,036,290 1,032,720 20 1,036,900 1,034,830 17

Min 1,035,330 1,032,590 Min 1,035,330 1,032,550

Original ES Improved ES
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Similarly, table 50 shows a comparison of the original ES and improved ES results for 4,
5, 6, and 7 (all) regions of Niger. The figures in the table are the final solution of each ES after

processing via the MIP. In all cases, the improved ES results are slightly better than the original

ES.
Table 50. Original ES vs. Improved ES results for Niger
4 Regions 5 Regions 6 Regions 7 Regions
Original ES + MIP 1,304,170 1,647,660 1,761,630 1,904,160
Improved ES + MIP 1,302,930 1,647,570 1,759,320 1,902,850

5.7.4 Discussion

Here, the number of ES iterations and the number of solutions in the final set of the best ES
solutions are the same, but this need not have to be the case depending on the problem size and
time available to solve it. As the size of the problem increases, the list can be longer and cover
more different network structures as long as the computational time does not increase too much.
Also, the ES runs can be stopped earlier if we cannot update the ES best solution set for some
predetermined number of experimental runs (replication). For example, we might start with a
plan of n=50 runs, but if there is no improvement in the best ES solution set for 10 successive
runs after the 17" one, the ES process might then be halted after the 27" iteration.

While the improved ES can generally provide a better solution, this is not necessarily
guaranteed because the best solution obtained by the original ES method might not be included

in the best n ES solutions after n ES runs. This issue can be readily resolved by also storing the
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best solution from each ES run across the entire set of runs and also solving the MIPs
corresponding to these after the completion of all runs. This requires at most n more MIP runs.
However, since many of the best solutions from each ES run will be included in the ES best
solution set, it is likely to be much smaller in practice. This additional step ensures that the

improved ES is never worse than the original ES.

5.8 USING THE ES RESULTS AS MIP CONSTRAINTS

5.8.1 Introduction

For a large network problem, the rapid increase in computational effort makes the MIP an
impractical approach. Because the network is fully connected, the MIP searches all possible
solutions, and pruning the undesirable solutions is time consuming. If we can restrict the network
structure by adding constraints that help decrease the solution space, the processing time can
decrease. Since the improved ES generally provides very good solutions, one approach might be
to make use of information about common characteristics of good solutions from the ES. In this

section, we study what information from the best ES solutions we can use, and how.

5.8.2 Available network structure information from the ES solutions

The ES solutions provide the network structures from the central distribution warehouse to the
hubs. The network structure from each of the solutions has the following information associated

with it;
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The number of open hubs

The number of hubs supplied by the central distribution center
The number of hubs supplying only clinics

Hubs that are open in all ES solutions in the solution set

Hubs that are closed in all ES solutions in the solution set

o o w D E

Hubs that are supplied by the central distribution center in all ES solutions in the
solution set
7. Hubs that are not supplied by the central distribution center in all ES solutions in the
solution set

8. Hubs that supply only clinics in all ES solutions in the solution set

Predetermining the number of hubs (based on 1, 2, and 3) can directly decrease the
solution space in the MIP model. For example, if the number of open hubs is prespecified to be
between four and six in a problem which has 11 potential hub locations, the MIP does not need
to search among solutions that have more than six or fewer than four hubs. The information on
hubs that are open or closed in all good solutions (based on 4 and 5) also can directly set the W
variables in the MIP which represent whether a hub is open or not. Information on whether open
hubs are supplied by the central distribution center or not (based on 6 and 7) can decide the value
of the U variables from central distribution to hubs. Finally, the information on whether open
hubs supply only clinics (from 8) sets the U variables. If a hub supplies only clinics, the values of
U from the hub to other hubs becomes 0.

These can be categorized into three groups depending on where the information comes
from. The first group (1, 4, and 5) is related to open hubs for each ES solution. The second group
(2, 6, and 7) is connected to open hubs supplied by the central warehouse. The third group (3 and

8) relate to open hubs supplying only clinics.
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Table 51 shows how to use the ES solutions for the first group. The example network has
10 candidate hubs and 10 ES solutions after the improved ES. The 0 or 1 in for each solution in
the table represents whether the corresponding hub is open or not for that solutions. The last
column is the total number of open hubs. The minimum number of open hubs is four (ES
solution 1 and 3) and the maximum is six (ES solution 9). This implies that the optimal solution

probably has four to six open hubs. So we can add following constraints into the MIP model.

|H|
D Wise (88)
i=1

|H|

; W, > 4 (89)

The sum for each column is the number of times that the hub i corresponding to that
column is chosen in our solutions. For example, the value of 10 for the second column indicates
that the second hub is always selected as an open hub. The sum for the eighth column is 7 this
indicates that the eighth hub is not always selected for opening. The first hub is never selected.
If the sum for column i is 10, the i*" hub is always open hub and if the sum is 0, the hub is
always closed. So we can add following constraints into the MIP model.

W, =Wy =W, =1 (90)

Wy=Ws=W, =0 (91)

If we look at the eighth and ninth column, we can see that exactly one of these is selected

in each of the 10 runs. So we could add the following constraint.
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Table 51. First group example (whether a hub is open or not)

Hub No. of open
hubs
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Table 52 shows how to use the ES solutions for the second group. The example network
is the same as with the first group. In this table, the figures represent whether a hub is supplied
by the central distribution center (=1) or not (=0) for each ES solution. The last columns displays
the number of hubs supplied by the central warehouse in each ES solution. The minimum
number is two and the maximum is three. This indicates that the central warehouse probably
supplies two to three hubs in the optimal network. So we can add following constraints into the

MIP model.

|H|

D U= 3 (93)
i=1

2 Up; = 2 (94)
i=1
The sum for each column is the number of times in our solution set that hub i is chosen to

be supplied by the central warehouse. For example, the value of 10 for the second column

indicates that the second hub is always supplied by the central warehouse. The sum for the third
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column is 8, but the sum for the third column in Table 52 was 10. This implies that the third hub
is not always supplied directly by the central warehouse when it is open. The fourth hub is never
supplied by the central warehouse. If the sum for column i is 10, the i** hub is always considered
to be supplied by the central distribution center and if the sum is 0 even though the hub is open,

it is supplied by some other hub. So we can add following constraints into the MIP model.

UOZ =1 (95)

Ups = Ups = U0,10 =0 (96)

Table 52. Second group example (whether a hub is supplied by the central location)

ES Hub
Soltions [T 2 3 4 5 6 7 8 9 1] °@
1 0 1 1 0 0 0 0 0 1 0 3
2 01 1 0 0 0 0 1 0 0 3
3 0 1 1.0 0 00 0 0 0 2
4 01 1 0 0 0 0 0 0 0 2
5 0 1.0 0 0 0 0 0 1 0 2
6 01 1 0 0 0 0 1 0 0 3
7 01 1 00 00 0 1 0 3
8 01 1 0 0 0 0 1 0 0 3
9 01 1 00 00 1 0 0 3
0 |0 1 0 00 00 1 0 0 2
Toal |0 10 8 0 0 0 0 5 3 0

Finally, Table 53 shows how to use the ES solutions for the third group. Once again, we
use the same example as before. In this table, the figures represent whether a hub supplies other
hubs or not for each ES solution (i.e., serves as a transshipment node for other hubs). We denote
any hub that does not supply other hubs as a leaf hub. If the hub is a leaf hub, the value in the

table is 1. If the hub supplies other hub(s) or is not open, the value is 0. The last column indicates
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the number of leaf hubs for each ES solution. The minimum number is one and the maximum is
three. This indicates that the number of leaf hubs is probably between one and three in the
optimal network. Using just the current notation in the MIP model, it is impossible to express
these additional restrictions. The sum for a column is the number of times across all the ES
solutions that the corresponding hub i is chosen as a leaf hub. For example, the value of 10 for
the fourth column indicates that the fourth hub is always a leaf hub. It can be seen that the entries
for the fourth, fifth and tenth columns are identical to those in Table 53 for the same columns.
This indicates that these two hubs serve as leaf hubs whenever they are chosen to be open. So we

can add the following constraints into the MIP model.

|H| |H] |H]

Z Usi :Z Us; :Z Ujoi =0 (97)
i=1 i=1 i=1

Table 53. Third group example (whether a hub supplies other hubs)

ES Hub Total

Solutions |1 2 3 4 5 6 7 8 9 10

1 0O 0 0 1 0 0O 0O 0O 0O 1

2 0O 0 01 0 0 0 0 0 1 2

3 0O 0 01 0 0 01 0O 2

4 0O 0 0 1.1 0 0 1 0O 3

5 0O 01 121 0 O O OO 3

6 0O 0 01 0 0 0 0 0 1 2

7 0O 0 0 1 0 0 0 0O 0 1 2

8 0O 0 0 1.1 0 0 0 0O 2

9 0O 0 011 0 0 0 0 1 3

10 0O 01121 0 0O O O O0 1 3
Total 0O 0 2 10 4 0 0 2 0 5
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5.8.3 Numerical example

Since the additional constraints from the ES results can reduce the search space for the MIP, we
can expect a reduction in its run time. Table 54 shows results for subsets of Benin (Benin 1 and
2), with 20 runs of the ES. Benin 1 and 2 are smaller problems, so they can be solved by the MIP
in reasonable time. In the table, “MIP” implies that the problem is solved by the MIP without
any additional constraints. MIP + ES 1 means that the constraints from the first group are added
into the problem. MIP + ES 1/2 means that the constraints from the first and second groups are
added into the problem. When the Benin 1 problem is solved without any additional constraint, it
takes 67 seconds. If we add the first group of constraints, the run time decreases to 30 seconds.
When the first and second group constraints are added, the run time is only 8 sec. . For Benin 2,

the results shows a similar performance improvement.

Table 54. Run time for Benin 1 and 2

Region No. of Locations MIP MIP + ES 1 MIP + ES 1/2
Benin 1 128 67 sec. 30 sec. 8 sec.
Benin 2 162 153 sec. 88 sec. 13 sec.

Table 53 shows another example of a larger subset of Benin (Benin 3). This example is
with two regions of Benin (Cotonou and Porto Novo) with 271 locations. The original MIP
cannot be solved for this problem. After 30 runs of the improved ES, the cost of the best solution
IS 264,949 with a 2,940 second run time. When we use only the first group information, the MIP
still cannot be solved even after running for 24 hours. When the second group information is also

used, we can solve the problem in 318 seconds with a value of 264,802, which is slightly better
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than the ES solution. This example shows that adding constraints mined from the ES result can

lead to better solutions from the MIP formulation.

Table 55. Results for Benin 3

Benin 3 Improved ES (30 runs) MIP + ES 1 MIP + ES 1/2
Best Solution 264,949 264,802 264,802
Run time 2,940 sec. Stopped after 24hours 318 sec.

The next example is for two and three regions of Niger and the results are shown in Table
56. The Niger two-region instance is the largest problem for which we were able to obtain an
optimal solution with the original MIP formulation albeit in 196 hours of run time. This example
shows how much of a reduction in run time of the MIP can be obtained by using the ES results.
Note that MIP+ ES 1/2/3 means that constraints from all the groups are added into MIP. Without
additional constraints, it takes 196 hours to get the optimal solution. However, as we add more
constraints, the run time decreases to 61.8 hours, then to 11.5 hours and finally, to 0.5 hours with
all three constraint groups. Thus we are able to solve the same problem using only 0.3% of the
original MIP run time when all information from the ES solutions is used. The Niger 3 region
instance could not be solved at all by the original MIP. Even when the constraints from the first
and second group are added, we are still unable to obtain a solution. But, when constraints

derived from all three groups are inserted, the MIP could be solved in 16.4 hours.

Table 56. Results for two and three regions of Niger

Niger MIP MIP + ES 1 MIP + ES 1/2 MIP + ES 1/2/3
2 Regions Best Solution 605,190 605,190 605,190 605,190
Run time 196 hours 62 hours 11.5hours 0.5 hours
Best Solution 1,032,593 1,032,593 1,032,593 1,032,551
3 Regions
RUN time Stopped after 48  Stopped after 24 Stopped after 24 16.4 hours
hours hours hours
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5.8.4 Discussion

Clearly, adding constraints derived from the ES solutions into the MIP model can significantly
reduce the run time because it decreases the search space; note that this search space still
includes the best solution from the ES results. There are two issues when we use the ES
solutions. First, the number of ES solutions to use should be decided carefully. If we have too
many, the search space might not be reduced sufficiently to save run time because the ES
solution set might include some relatively poor solutions that lead to relatively weak constraints.
For example, as we have more ES solutions, the range of the number of open hubs will increase
or the open hubs that are always selected might not be found. Conversely, if we do not have
enough ES solutions, the solution space might be too tight for the MIP with the additional
constraints in order to be able to find a better solution. There could also be correlations that are
coincidental. For example, in Table 21, the eighth and ninth hubs are mutually exclusive in the
10 ES solutions, so the constraint Wg + Wy =1 might be added. But this might be a
coincidence, and it might not be easy to say whether these hubs are truly mutually exclusive; we
should probably look at the geographical relationship between two locations before using this
constraint. Even if hub A and hub B are chosen to be mutually exclusive, if they are located far
apart, it is probably better not to use this constraint.

Finally, we also experimented briefly with constraining the number of levels in the
network. In the examples of Benin in section 5.8.3, we can observe that the depth of the optimal
network might be two since all the open hubs are supplied by the central distribution center in all
ES solutions. Therefore, we could also try limiting the depth of the network. The constraint
restricting the network depth to two is obtained by not allowing a flow between candidate hubs:

Uj; = 0forall i,j € H. If we add this constraint for Benin 1, 2, and 3 examples, the run times
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are 28, 58 and 1,528 seconds. These run times are shorter than MIP + ES 1 but longer than MIP
+ ES 2/3. This is likely because ES 2/3 constraints already involve depth restriction constraints

and appear to be more efficient than adding the depth constraint.

5.9  DISCUSSION AND CONCLUSIONS

Cordeau et al. argue that solving a real-life problem to optimality is rarely justified due to errors
contained in the data estimates. Since the margin of error for data tends to be larger than 1%,
they suggest that it is adequate to run the mathematical solver until a feasible solution within 1%
of optimality has been identified (Cordeau, Pasin, & Solomon, 2006). In the vaccine network, the
demands at local clinics, transportation costs, and storage costs are fluid and we use
estimated/averaged values here for these here. The solutions produced by the ES are reasonably
close to the optimal MIP solutions (less than 1% difference). In addition, the computation time is
vastly smaller. Therefore, solving the vaccine distribution network design problem using an ES
approach can be a good way to address the problem.

This chapter focuses on designing a vaccine distribution network in terms of cost
minimization. Obviously, the resulting network is more cost effective than the original one.
However, there are other considerations that are not able captured by this model. First, we may
have to consider the cost of closing a hub. This is not considered in our model since usually the
candidate hub is a local health facility with other functions that it will continue with, even
without the vaccine distribution role. But if a hub is not open, the devices used in the hub, such
as refrigerators, might be moved to another facility that needs them. So, if the cost associated

with this is included in the model, we can have more precise results. Second, the new network
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usually has fewer intermediate hubs. This might increase the risk of losing more vaccines due to
unexpected circumstances such as unstable power supply. The countries supported by the WHO-
EPI program still have problems such as unannounced electricity blackouts and poorly trained
workers, and a significant number of vaccine vials might be wasted because of undesirable
handling of vaccine or events such as electricity loss. The fewer the number of facilities where
vaccines are stored, the more the amount of vaccines at any single facility and the higher the
consequences of such losses. Third, vehicles with limited capacity are used in the model. But in
practice, they can transport more vaccines, especially at the clinic level. As an extreme example,
when a vehicle has a capacity of 5 liters and 5.1 liters of vaccine should be delivered, a vehicle
may be able to carry 5.1 liter of vaccine in a trip, but we assume in our model that two vehicle
trips are needed.

This chapter also does not consider the introduction of new vaccines in the future. If a
new vaccine is introduced, it will require more space in storage and transportation and may
change the optimal network structure. In order to address this, some kind of robustness analysis
with respect to the vaccine schedule should be performed. This can be done as follows. First, set
the demands at clinics based on different vaccine schedules. Second, obtain the vaccine networks
for each scenario. Third, compare the cost of each network for the different demands. The
network which has the lowest total cost for all demands could then be the final network

For NP-hard problems like the one in this chapter, the MIP computation time increases
dramatically as the problem size gets larger. Since most real world vaccine distribution networks
have many candidate hubs and demand nodes, finding the optimal solution using an MIP
formulation of the problem cannot be done in a reasonable amount of time. Therefore, in this

chapter, an ES algorithm is proposed to solve this problem, and it is shown that the ES
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consistently produces a near-optimal solution in reasonable times. In addition, visiting several
locations during a trip is common practice. In order to model this, the two step procedure using
looping factors was introduced. Since the effect of vehicle routing is a reduction in transportation
costs, solving the network problem after modifying the transportation cost using a looping factor
presents a comparable result with solving the network problem using vehicle routing. Therefore,
this study can help decision makers who plan to redesign their distribution chain which has

features similar to those described here.
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6.0 SUMMARY AND CONCLUSIONS

In this dissertation, we have proposed models and methodologies that can help increase the
efficiency of the WHO-EPI vaccine supply chain in meeting the demand for life-saving vaccines
in low and middle income countries. Despite many technological advances that have been made
over the last four decades, these distribution chains and their operations still pose many problems
in many places around the world. The problems relate both to how the distribution chain is
designed as well as to how it is operated, and in this dissertation we address both of these
aspects. The overall goal is to improve coverage and to be able to inoculate the millions of
children who still do not receive life-saving vaccines against preventable diseases because of
inadequacies in the distribution system.

This research had focused on three major areas. First, we have introduced four
optimization models for the vaccine outreach supply chain in developing countries. Since the
level of coverage that one gets from outreach in practice is not clearly understood, we develop
three different models, each of which is based on a different plausible coverage assumption, and
we have presented robust approaches to cope with the uncertainty associated with our coverage
assumptions, as well as the uncertainty associated with demand for outreach. To our knowledge
the work reported here is the first to provide a formal modeling framework for decision making

with respect to outreach. Currently, there are no standard guidelines for outreach, and these
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models can aid decision makers to improve coverage when they are establishing outreach
policies.

In next two chapters, we have addressed operational issues and focused on simplifying
vaccine ordering logistics. This is important because in many low and middle income countries
these operations are performed in the field by personnel who are not necessarily trained for
logistics activities. Thus it is critical to develop operational procedures that are efficient but also
simple enough to be implemented in a resource constrained environment.  First, we have
suggested a modular packaging system for vaccines. The modular packaging can be obtained by
standardizing the dimensions of vaccine vials and packaging units as far as possible. This could
offer significant advantages over a conventional vaccine packaging system with respect to space
efficiency as well as convenience of handling vaccine orders by allowing for more vaccines to be
stored within the same volume in the storage devices. Second, we have proposed vaccine
ordering policies using inner packs for the clinic level in order to simplify how inventories are
managed in the field. The proposed policies can reduce errors in counting and ordering, as well
as order fulfillment effort, and are based on lean concepts that are already used widely in
manufacturing. Because these policies might need a larger packaging unit that increases the
required storage volume, we have performed the required analyses with respect to cold storage
during transportation as well as at clinics in order to evaluate their impact. The proposed
simplified ordering policies are shown to work better when the vaccine inner packs are
standardized because the modular packaging can use space more efficiently.

Lastly, we address the fundamental issue of designing the vaccine distribution network
based on the specific characteristics and operating environment of the country where it will be

implemented. This is similar to how any other supply chain network is designed and in contrast
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to the somewhat rigid structure that exiting WHO-EPI networks have. We have presented
methodologies which can improve the design of vaccine distribution networks at a country level
while considering constraints on capacity for storage and transportation, by formulating the
problem as a mixed integer program and developing an evolutionary strategy that can be used in
conjunction with the MIP. Computational examples based on real data are used to illustrate that
this is an appropriate approach. In order to reflect how deliveries might be made in practice, we
have developed the notion of looping factors and presented how these can be applied in the
network problem. In addition, we have suggested ways to improve the efficiency of the ES
algorithm without any significant additional computational effort.

Although we have addressed a diverse set of issues in this research there are still open
questions including the design and optimization of alternative outreach policies that can be
standardized in the field, the development of easy-to-use policies and procedures that can reduce
operational inefficiencies (especially at the clinic level), and the development of better and more
detailed models for designing/redesigning the WHO-EPI network that can also be solved
efficiently.

There is also the potential to evaluate different modeling frameworks because the current
MIP is a flow based formulation and its computational time grows quickly as the size of the
problem gets larger. Alternative formulations may be able to reduce the computational time. All

of these present areas for future research.
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