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PATHOGEN DYNAMICS: MODELING AND ANALYSIS OF

COMPETITION, ORGANIZATION, AND VACCINATION

Glenn Young, PhD

University of Pittsburgh, 2016

The work presented in this thesis is motivated by questions arising about pathogen dynam-

ics. The effects of pathogens can be observed on a variety of spatial scales, from within-host

interactions with the immune system on the microscopic level, to the spread of communi-

cable disease on the population level. We present analyses of three common pathogens on

three different scales. In Chapter 2, we derive and study a system of ordinary differential

equations modeling the competition for space and resources between a mammalian host’s

native intestinal microbiota and an invasive species of Salmonella Typhimurium. We use

our model to discuss optimal invasion strategies that maximize the salmonella’s likelihood

of successfully displacing the microbiota for a spot on the intestinal wall. In Chapter 3,

we analyze an anomalous behavior observed in which two interacting pulses of E. coli in

a one-dimensional nutrient gradient will turn around move away from one another rather

than combine. To this end, we derive a novel system of ordinary differential equations ap-

proximating the dynamics of the classic Keller-Segel partial differential equations model for

bacterial chemotaxis, and use this approximation to make testable predictions about mecha-

nisms driving the turn around behavior. Finally, in Chapter 4, we use a two-strain SIR-type

model of rotavirus transmission to study the effects of vaccination on a population exposed

to multiple endemic strains.
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1.0 INTRODUCTION

Understanding how pathogens interact with each other and their environment is imperative

when it comes to controlling the spread and impact of disease. Experimentalists exploring

these dynamics are presented with many difficulties, however; in vivo host-pathogen studies

are made difficult by uncontrollable factors such as variation in immune response and gut

biome composition, and population-level experiments of disease spread would be unethical

at best. Mathematical modeling offers a tractable method of studying the nonlinear rela-

tionships governing the organization and interaction of microbes that are otherwise difficult

or unethical to pursue.

Mathematical models of pathogen dynamics as they occur within a host organism are

naturally called within-host models. Such models are usually on a small spatial scale, focus

on the behavior of pathogens while inside of a host, and often consider the interaction of

pathogens with a host’s immune system. Within-host models are becoming invaluable tools

for studying mechanisms behind specific aspects of their interactions inside of a host [36].

For example, the authors in [67] study the human inflammatory response due to influenza

infection. In [43], a phenomenon in which the number of infected erythrocytes undergoes

damped oscillations during malaria infection is captured and studied. These models vary in

terms of complexity, from considering well-mixed, homogenous populations [4, 9], to spatially

heterogeneous systems that require some form of cell motility [2, 62].

Cell motility plays a vital role in the spread of bacterial disease. Many pathogens “swim”

to areas within a host that are most favorable for colonization and therefore maximize the

likelihood of infection [54]. Such processes can lead to the aggregation of biofilms in patients

and on medical equipment, a common cause of chronic infection that is becoming more

significant with the rise of antibiotic resistant bacteria [18, 84]. Mathematical modeling
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has a successful history in analyzing these processes. The Keller-Segel partial differential

equations model for bacterial chemotaxis has been used to analyze important processes

in biofilm formation, such as aggregation [46], the formation of traveling pulses [48, 75],

and pattern formation [91]. Beyond biofilms, mathematical models for collective motion by

chemotaxis such as the Keller-Segel model have been used to study the propagation of cancer

[76] and even crime [81].

On a larger scale, models concerned with the dynamics of the spread of communicable

disease in human, animal, or plant population are called population-level or epidemiologi-

cal models. The earliest example of a population-level epidemic model is perhaps due to

Daniel Bernoulli in 1760, when he derived and analyzed a mathematical model of smallpox

transmission in an effort to influence the establishment of a vaccination program [10]. More

recently, such models have been used to produce estimates of morbidity and mortality rates

of communicable diseases and determine the benefits of various intervention methods. These

models are valued tools in determining public policy and action, especially with quickly

emerging and fast spreading viruses (e.g., West Nile virus [101], avian flu [17], ebola [28],

and Zika virus [63]). There are also ongoing efforts being made to link within-host dynamics

to population-level models together to create a more complete description of the transmission

and impact of diseases [35].

The work in this thesis focuses on the development and analysis of systems of ordinary

differential equations (ODEs) and partial differential equations (PDEs) that model biological

systems arising from the study of pathogen dynamics. Many of our analytical techniques

come directly from dynamical systems theory; in particular, we make heavy use of linear

stability analysis and bifurcation theory to study the effect of variation of parameters on

model behavior. A large proportion of our analytical techniques are novel, however; we

present a variety of methods we developed with the purpose of answering specific biological

questions, and then frame our methods in a more general context to facilitate application

to other problems. In Chapters 2 and 3, we demonstrate the practicality and versatility of

boundary value problems through a variety of examples related to optimization and transient

analysis. In Chapter 3, we offer a novel approximation to the spatio-temporal dynamics of the

advection-diffusion PDE system that offers qualitative agreement with the original model

2



and facilitates efficient analysis of varied parameters. While these methods are analytic,

much of our analysis is carried out numerically using XPPAUT [29].

The following three chapters of this thesis present work motivated by a desire to under-

stand the dynamics of different pathogens at various spatial scales. In Chapter 2, we study

the within-host competition between the native, gut-dwelling microbiota, and an invading

population of Salmonella Typhimurium. In Chapter 3, we analyze an anomalous behavior

observed in interacting E. coli populations. In Chapter 4, we consider the possible effects

of a monovalent vaccination on the spread of rotavirus. A brief summary of the content of

each chapter concludes this introduction.

In Chapter 2, we develop a novel optimization framework to study strategies in ecolog-

ical competition processes. The optimization method uses theory from dynamical systems

describing the asymptotic behavior of a bistable system based on initial conditions, which

we implement using a numerical boundary value problem. As an application of our method,

we develop a model of the competition between Salmonella Typhimurium (S. Typhimurium)

and the host’s native microflora, which constantly and densely inhabit the intestinal lining

of most mammals. S. Typhimurium invades the gut in two distinct phenotypic populations,

one virulent and one avirulent, though the avirulent bacteria have the ability to activate

a virulence factor and thereby “switch” into the virulent population. Counterintuitively,

some studies have found that the combined population of S. Typhimurium gains an environ-

mental advantage over the commensal microbiota after the virulent subpopulation provokes

the body’s inflammatory defenses. Our model represents the competition between the com-

mensal microbiota, the avirulent salmonella, and the virulent salmonella populations and

incorporates a simple representation of the immune response. We use our model to pre-

dict optimal strategies that would favor salmonella in its competition with the commensal

bacteria. For example, if the switching rate of the salmonella from avirulent to virulent is

known, our model can be used to make predictions about the minimum initial population

size necessary to outcompete the microbiota and colonize the gut.

In Chapter 3, we study an anomalous behavior observed in interacting E. coli popu-

lations. When two populations of E. coli are placed on opposite ends of a long channel

with a supply of nutrient between them, they will travel as pulses toward one another up

3



the nutrient gradient [75]. We present experimental evidence that the two pulses will in

some cases change direction and begin moving away from each other and the nutrient back

toward the end of the channel from which they originated. Intuition suggests that because

the two bacterial populations produce the same chemoattractant to which they are mutually

attracted and are both attracted up the interior nutrient gradient, they should both continue

to move inward until they meet, and then combine into a single population. To study why

this is not the case, we use an adaptation of the Keller-Segel PDE model for chemotaxis that

includes an external nutrient source to elucidate mechanisms behind this direction switch.

While the Keller-Segel model has been used to study a variety of important processes related

to bacterial motility, it has not been used to study transient direction changes. We introduce

a heuristic approximation to the spatial profile of each population in the Keller-Segel model

to derive a system of ODEs approximating the temporal dynamics of the center of mass

and the width of each spatial profile. This ODE model facilitates linear stability analysis of

equilibrium states and numerical simulation, and allows phase plane analysis in some situa-

tions. In these ways, our approximate model simplifies analysis of the global dynamics of the

bacterial system and allows us to efficiently explore the qualitative behavior changes across

variations of parameters, and thereby provides experimentally testable hypotheses about

the mechanisms behind the turnaround behavior. In particular, our model predicts that the

center of mass of each bacterial pulse is generically ahead of (with respect to the direction of

motion) the center of mass of the chemoattractant for early time. The bacteria are therefore

attracted inward toward the nutrient and outward by their own chemoattractant and will

turn around if the outward attraction is stronger than the inward attraction.

In Chapter 4, we study the effect of a vaccination program on the spread of rotavirus

in a human population. Rotavirus is the most common cause of severe gastroenteritis in

young children worldwide. The introduction of vaccination programs has led to a significant

reduction in number of hospitalizations due to rotavirus in North and South American coun-

tries. Little work has been done, however, to examine the differential impact of vaccination

as a function of strain distribution and strain-specific vaccine efficacy. We develop a two-

strain epidemiological model of rotavirus transmission, and use it to examine the effects of a

monovalent vaccine (Rotarix) on the qualitative behaviors of infection levels in a population.

4



For contrast, we parameterize our model with strain distribution data from North America

and from South America. In all cases, the introduction of the vaccine leads to significant

decreases in the prevalence of primary infection due to both strains for a decade or more,

after which the overall prevalence recovers to near pre-vaccination levels. The prevalence of

G1P[8] is significantly higher in North America (73% of all rotavirus infections) compared

to that of South America (34%). Our model predicts that the introduction of Rotarix might

result in major strain replacement in regions such as North America where the prevalence of

G1P[8] is relatively high, due to higher efficacy of Rotarix against infection caused by G1P[8],

while regions with lower prevalence of G1P[8], such as South America, are not susceptible

to major strain replacement.
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2.0 A BOUNDARY VALUE APPROACH TO OPTIMIZATION WITH AN

APPLICATION TO SALMONELLA COMPETITION

2.1 INTRODUCTION

Interspecies competition often involves competition over a common resource, such as food,

water, sunlight, or space. The outcome of such competition generally falls in favor of the

species that can most quickly and efficiently make use of the resources, thereby limiting the

resources available for the competitor. A species that can effectively use resources and inhibit

its competitors’ resource access is said to have a competitive advantage, and the greater

its advantage, the greater the chances of survival for a species. From this perspective,

a competitor should always adopt a strategy that maximizes competitive advantage and

therefore chance of survival.

In this chapter, we seek to determine the optimal strategy that an invasive population

can use to outcompete an established population. To this end, we develop an optimization

method to determine the minimum initial size of a population needed for it to mount a

successful invasion in a bistable competition setting. Our method is motivated by dynamical

systems theory. In a bistable deterministic competition model, the asymptotic behavior

of the system is entirely decided by initial conditions. The winner of the competition is

determined by the side of a separatrix on which the system begins. In general, finding an

analytical or numerical expression for the separatrix of such a system is difficult or impossible,

and so finding an exact threshold for the success or failure of each species relative to the

other is often impractical. Instead, we define a simple empirical condition that appears

to be necessary and sufficient on the transient behavior of the system that determines the

outcome of the competition. We use this idea to formulate a boundary value problem
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that determines the smallest population size of an invasive species that will displace the

established population, which we implement numerically.

As an application of our optimization method, we develop a novel model of the competi-

tion between Salmonella enterica serovar Typhimurium (S. Typhimurium) and a host’s native

intestinal microflora. Once salmonella enter a host, they must make their way into the lower

intestine, where they attempt to colonize a spot on the interior intestinal wall. To success-

fully invade the gut, however, salmonella must outcompete a dense and ever-present layer of

commensal microbiota [83]. These microbiota provide the final hurdle for the salmonella to

cross before they can colonize the gut: the invaders must somehow use available energy and

resources to displace the microbiota and expose the inhabitable intestinal wall. Remarkably,

the virulence factor type III secretion system TTSS-1 allows S. Typhimurium to survive

within host macrophages and thereby gain an environmental advantage over the commensal

microbiota during the host’s non-specific immune response [83]. S. Typhimurium is known

to maintain a phenotypically distinct avirulent population during host invasion, which does

not express the virulence factor. These avirulent cells reproduce at a faster rate than their

virulent counterparts, but also can activate the virulence factor, thereby switching into the

virulent population [86]. It seems reasonable to assume that S. Typhimurium has evolved in

such a way as to increase its chance of survival inside of a host. To better understand the

relative contributions of these two populations and the role of switching between them, we

developed a system of ordinary differential equations that models the competition between

the invasive S. Typhimurium and a native population of commensal microbiota, and we apply

our optimization method to determine the virulence activation rate and initial proportions of

avirulent and virulent salmonella that minimize the total initial salmonella population size

necessary to outcompete the commensal bacteria. Our model therefore determines parame-

ter values that represent behavioral characteristics of the salmonella that make it easiest for

the salmonella to invade and become established in the gut.

In the following section, we introduce and develop the general idea of the optimization

framework. In Section 2.3, we construct and analyze a model of the competition between the

invasive S. Typhimurium and the commensal microbiota. Our model is based on a previous

two-dimensional competition model encompassing an effect known as the differential killing
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hypothesis [13]. We expand on this model in a number of ways, most importantly by model-

ing the virulent and avirulent salmonella phenotypes as separate populations and including

a simple dynamic model of the immune system. We analyze this model to demonstrate

conditions under which the salmonella population benefits from invading with two pheno-

typically distinct populations. The ability of the salmonella to outcompete the commensal

microbiota depends heavily on the virulence factor activation rate, as well as the initial pro-

portion of the avirulent and virulent phenotypes in the total population. In Section 2.5, we

use our method to find the switching rate and the initial proportion of avirulent phenotypes

(and consequently, the initial proportion of virulent phenotypes) that minimize the total

initial salmonella population size necessary to outcompete the commensals for a spot on

the intestinal wall. The optimal parameters that we compute represent an optimal strategy

for the salmonella to use when invading the gut; that is, a population of S. Typhimurium

maximizes its chance of successfully invading the gut by invading with the optimal initial

proportion of avirulent cells and virulence activation rate. We follow up with a thought ex-

periment concerning the initial and final ratios of avirulent to virulent salmonella. In theory,

S. Typhimurium might have a greater chance of survival with a higher proportion of avir-

ulent cells when surviving outside of a host, since the avirulent cells grow faster than their

virulent counterparts. Consequently, we extend our optimization framework to determine

optimal strategies for the salmonella to use within the host in order to exit the host with any

ratio of avirulent to virulent cells. Our results provide experimentally testable predictions on

important properties, namely the optimal switching rate and initial distribution of avirulent

and virulent cells, found in bacterial populations.

2.2 OPTIMIZATION FRAMEWORK

Many bistable deterministic competitions are decided once one of the competitors surpasses

some threshold given by a separatrix. For example, consider the two species competition

governed by Lotka-Volterra-type deterministic equations
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x′ = x(1− x− αy) (2.1)

y′ = y(1− y − βx),

with α > β > 1. The outcome of such a competition is determined by the position of

the initial condition relative to the stable manifold of the interior saddle point, as shown

in Figure 2.1. Species y will outcompete species x if and only if the system is ever above

the stable manifold. Of course, the stable manifold of a general nonlinear system is very

difficult or impossible to determine analytically, and consequently using the stable manifold

as a separatrix is in practice out of the question. Instead, we can often determine a simpler

sufficient condition to determine when species y outcompetes species x that is straightforward

to check. In this case, if x(t1) = y(t1) for any time t1, then y will outcompete x because the

identity line lies above the stable manifold. Moreover, if x(0) > y(0), the condition is also

necessary, since the system must pass through the identity line y = x while approaching the

steady state (x, y) = (0, 1).

We now make use of this observation to find the minimum required initial y-value y0

such that if y(0) = y0, then y outcompetes x, assuming that species x has an established

population and begins at its carrying capacity, x(0) = 1. The desired y0 value is exactly the

y-value of the intersection of the line x = 1 and the stable manifold, which we call ys. In this

two-dimensional case, we can numerically find this intersection by starting just off the saddle

point on the stable manifold and integrating backwards in time until we reach x = 1, but

this method is not easily generalizable to higher dimensional manifolds. Instead, we observe

that starting above the stable manifold on the line x = 1 results in y outcompeting x, and,

importantly, the system crossing the line y = x at some unknown time t1 = t1(y0). The

closer y0 gets to the stable manifold, the more time it takes for the system to cross the line

y = x, and the larger t1 becomes; in particular, lim
y0↓ys

t1(y0) =∞. Consequently, we can force

y0 to be arbitrarily close to ys by requiring that y(t∞) = x(t∞), where t∞ is a sufficiently

large number.
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Figure 2.1: Two species Lotka-Volterra-type bistable competition. Assuming species x begins

at carrying capacity x = 1, species y will outcompete x if and only if it invades with an initial

population greater than ys, which marks the intersection of the stable manifold of the saddle

point (center red dot) and the line x = 1. The system crosses the identity line y = x at time

t = t1, denoted in the figure by the blue dot labeled (x(t1), y(t1)). The green dots at (0, 1)

and (1, 0) mark the two stable fixed points of the system, corresponding to the outcome

where x outcompetes y and where y outcompetes x, respectively. The origin marked with a

red dot is an unstable steady state.

We find this approximation of ys numerically by solving the boundary value problem on

t ∈ [0, t∞]:

ẋ = x(1− x− αy)

ẏ = y(1− y − βx) (2.2)

ẏ0 = 0

x(0) = 1

y(0) = y0

y(t∞) = x(t∞).
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The addition of the third differential equation ẏ0 = 0 serves a dual purpose: it allows us to

include a third boundary condition and, along with the boundary conditions y(0) = y0 and

y(t∞) = x(t∞), it forces the initial value of y to lie as close as we want to ys.

The numerical solution of boundary value problem (2.2) yields ys, the smallest initial

y-value y0 such that y will outcompete the established population x. Of course, the inter-

section of the stable manifold and the line x = 1 (and consequently the lower bound on y0

yielding successful invasion) will vary with system parameters. We can minimize y0 over

any parameter by simply continuing the solution of the boundary value problem along this

parameter.

2.3 SALMONELLA TYPHIMURIUM COMPETITION MODEL

Salmonella infection is a leading cause of foodborne illness worldwide, typically resulting in

diarrhea, abdominal cramps, and fever for 4-7 days [74, 14]. S. Typhimurium exploit the

host’s immune response to displace the commensals from the intestinal wall in a variety of

ways. First, invoking the immune response recruits macrophages. Though macrophages typ-

ically ingest and eliminate foreign bacteria, virulent S. Typhimurium have evolved to survive

and even reproduce within host macrophages [74, 83]. Since inflammation will also disrupt

the commensal microbiota, macrophage resistance likely contributes to S. Typhimurium’s

ability to colonize the gut, a phenomenon dubbed the differential killing hypothesis in [83].

Second, inflammation shifts nutrient availability in the intestine. In the uninflamed intestine,

nutrients are used efficiently by the microbiota, but inflammation introduces organic com-

pounds such as ethanolamine and cellular detritus, which S. Typhimurium might be better

suited to consume[83, 90]. The advantage gained by the S. Typhimurium from this nutrient

shift has been called the food hypothesis [83].

Despite the advantages that inflammation and therefore virulence provide, a subpopu-

lation of invasive S. Typhimurium remarkably do not express the virulence factor TTSS-1

and are consequently avirulent. Intuitively, if S. Typhimurium gain an environmental ad-

vantage over the commensal microbiota by invoking the host’s immune response, then every
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salmonella cell should express TTSS-1 to maximize their advantage. However, the existence

and persistence of the avirulent salmonella suggests that the avirulent cells must provide

another type of advantage in the competition against the commensals.

Experiments have shown that avirulent salmonella cannot survive within host macropha-

ges, but they reproduce at a much quicker rate than their TTSS-1-expressing counterparts

[30, 86]. The fast growing avirulent cells are thought to allow the entire salmonella population

to withstand the early stages of invasion, when their numbers are low, before inflammation

takes effect. Moreover, recent studies on growth rates of S. Typhimurium have concluded

that avirulent S. Typhimurium are able to “switch on” the virulence factor TTSS-1 while

in the gut [86]. There is no evidence that the bacteria can switch back from virulent to

avirulent, and the role of this switching mechanism in gut invasion is not fully understood.

We now develop a mathematical model of the competition between the virulent salmonella,

V , the avirulent salmonella, U , and the established commensal microbiota population, C,

on a small patch in the lower intestine. Our model is adapted from a three-population

competition model.

U ′ = U(gU − α(C + V )− γU)

V ′ = V (gV − α(C + U)− γV ) (2.3)

C ′ = C(gC − α(V + U)− γC)

In this basic model, each population ζ ∈ {C, V, U} has exponential growth rate gζ .

Since the expression of the virulence factor slows growth rate, we always impose gV < gU .

Moreover, each population suppresses the other two with competition parameter α and itself

with self-crowding parameter γ.

We extend the basic model (2.3) to include additional biological features, as follows:
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U ′ = U(gU − α(C + V )− γU + σUf(V )− κM − dr) (2.4)

V ′ = V (gV − α(C + U)− γV + σV f(V )− (κ− rV )M) + drU

C ′ = C(gC − α(V + U)− γC + σCf(V )− κM)

P ′ = aM − µPP

D′ = gD − (bPP + bV V + ρV + µD)D

M ′ = (bPP + bV V )D − (δV V + µM)M

f(V ) =
δV

1 + V
.

As has been noted previously by, e.g., [74, 82], S. Typhimurium gains an environmental

advantage over the commensals by inciting the inflammatory immune response of the host.

We therefore include in our system a simple model of the immune response, motivated by

those found in [19] and [68], in the form of a dynamic population of activated macrophages,

M . Nonactivated macrophages serve a variety of purposes in the body, but once activated,

their singular role is the elimination of pathogens. The nonactivated macrophages can be

activated by pathogens and also by pro-inflammatory cytokines, which are produced by

already activated macrophages. In our model, macrophages are activated at rate bV when

any member of a pool of nonactivated macrophages, D, comes into contact with a virulent

salmonella cell and at rate bP when a nonactivated macrophage comes into contact with a pro-

inflammatory cytokine, P . The activated macrophages then kill each of the three bacterial

populations at rate κ upon contact with the corresponding population. Since virulent S.

Typhimurium are able to survive and reproduce within macrophages, the killing rate of V

by M is reduced by a factor that we denote by rV . The model does not include an equivalent

reduction in the killing rate of the avirulent salmonella by the macrophages because they

cannot survive within macrophages [30].

The pro-inflammatory cytokines P are produced by the macrophages at rate a and decay

naturally at rate µP . The nonactivated macrophages D are produced by the body at rate

gD, activated by the pro-inflammatory cytokines and virulent salmonella at rate bP and bV ,

respectively. The nonactivated and activated macrophages naturally decay at rate µD and
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µM , respectively. We also allow nonactivated and activated macrophages to be killed by

virulent salmonella at rate ρ and δV , respectively, as has been observed experimentally [11].

We include in our model a food source f for each of the three bacterial populations

to use as energy, which leads to faster growth. We assume available food is proportional

to the amount of virulent salmonella, as virulence triggers inflammation and inflammation

produces nutrients not found in the uninflamed intestine [90, 83]. The parameter δ is simply a

scaling factor related to the amount of food available. The relative ability of each population

to utilize the energy provided by food is given in the parameters σζ , ζ ∈ {C, V, U}. In

accordance with the food hypothesis, we impose σC < σU and σC < σV .

Experiments show that while in the gut, the avirulent salmonella are able to express the

virulence factor TTSS-1 and consequently “switch” to join the virulent population [86]. We

include this switching ability in our model as a drift rate, dr, from U to V . Experimentalists

have not observed “switching” from the virulent phenotype to the avirulent phenotype, and

so we do not include a drift rate from V to U [86].

Since the reactions are happening locally in a patch in the gut, the body has an abundance

of cytokines and nonactivated macrophages to contribute to the area; however, the available

food nearby is limited. We therefore ignore any saturating effects on P and D but include

them in f .

Finally, we assume that the commensal microbiota have reached their carrying capacity

before the invasion by the salmonella, and that the gut contains no salmonella leading up

to the invasion, such that initially no activated macrophages are present. In the following

sections, we will concern ourselves with the initial size of the combined salmonella invading

force, and consequently it is convenient to consider the avirulent and virulent populations

as fractions of the total salmonella population. We define S0 to be the initial salmonella

population S0 = U(0) + V (0) and x to be the initial proportion of avirulent cells x =

14



U(0)/(U(0) + V (0)). We therefore consider system (2.4) with the following initial values:

U(0) = xS0

V (0) = (1− x)S0

C(0) = gc/γ

P (0) = 0

D(0) = gD/µD

M(0) = 0

(2.5)

where gc/γ and gD/µD are obtained from solving C ′ = 0 and D′ = 0 with U = V = M = 0,

respectively.

It is important to note that since we do not have sufficient data to accurately parame-

terize the system, all simulation results about model (2.4)-(2.5) that we present are purely

qualitative. In this vein, we chose parameter values that are of the correct relative mag-

nitudes based on the published literature. These values are found in Table 3.1 and are

dimensionless.
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Variables

U Relative population size of avirulent salmonella

V Relative population size of virulent salmonella

C Relative population size of commensal microbiota

M Relative population size of activated macrophages

f Relative abundance of food

P Relative abundance of pro-inflammatory cytokines

D Relative population size of non-activated macrophages

Parameters Values Source

gζ Growth rate of bacterial population ζ = C, V, U 1.3,0.7,1.3 [86]

α Competition parameter 1.3

γ Bacterial self-crowding parameter 1

σζ Relative contribution from food to the growth rate of bacterial
population ζ = C, V, U

1,1.4,1.8

κ Rate of elimination of bacteria by macrophages 1.8 [68]

rV Reduction in the rate of elimination of virulent salmonella by
macrophages in the virulent population

0.9 [34]

dr Drift rate of salmonella from avirulent to virulent 0-1

bP Activation rate of macrophages by pro-inflammatory cytokines 0.01 [19]

bV Activation rate of macrophages by virulent salmonella 0.02 [19]

δV Rate of elimination of activated macrophages by the virulent
salmonella

0.05

µM Natural death rate of activated macrophages 0.05 [19]

δ Food abundance-scaling coefficient 4

a Production rate of pro-inflammatory cytokines by activated
macrophages

0.1

µP Natural death rate of pro-inflammatory cytokines 0.1

gD Production rate of non-activated macrophages 0.1

ρ Rate of elimination of non-activated macrophages by the virulent
salmonella

0.005 [34]

µD Natural death rate of non-activated macrophages 0.12 [19]

x Initial proportion of avirulent salmonella cells 0-1

Table 2.1: Variables and parameters for model (2.4).

We require of our model that activated macrophages cannot persist in the gut in the
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absence of virulent salmonella. By this requirement, we effectively ignore all other causes of

inflammation and our analysis can be thought of relative to a baseline amount of activated

macrophages, which we assume to be zero. For this reason, we consider system (2.4) with V

omitted and P and D in pseudo-steady state, for simplicity:

U ′ = U(gU − αC − γU − κM)

C ′ = C(gC − αU − γC − κM) (2.6)

M ′ =
gDbPaM

bPaM + µDµP
− µMM.

We restrict our parameters such that the fixed point (U,C,M) = (0, C∗, 0), C∗ = gC/γ > 0

of system (2.6) is stable and no stable fixed points such that M > 0 exist. The Jacobian

matrix obtained by linearizing (2.6) around this fixed point is

J =


gU − αC∗ 0 0

−αC∗ −γC∗ −κC∗

0 0 (gDbPa)/(µDµP )− µM

 .
All three eigenvalues of this matrix are negative and the only fixed points in the nonnegative

octant are such that M = 0 if and only if gUγ < gCα and (gDbPa)/(µdµMµP ) < 1, so we

impose these two requirements on our parameters. Under these requirements, when virulent

salmonella are absent, the macrophages are, too.

2.4 EFFECT OF DRIFT RATE AND INITIAL AVIRULENT

PROPORTION ON LONG-TERM OUTCOMES

To illustrate the power of our optimization method, we will use it to determine optimal

strategies that the invasive salmonella should use in the gut to most easily outcompete the

commensal microbiota. An in depth exploration of optimal strategies is presented in the next

section, but as a preliminary step, here we determine some properties of system (2.4), and

in particular, the effect of the drift rate dr and the initial proportion of avirulent salmonella
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x on the ability of the salmonella to colonize the gut. Both parameters are strongly related

to the relative size of the avirulent and virulent salmonella populations and consequently are

useful in determining the relative impact of both populations during invasions.

In Figure 2.2, the initial total population size of the invasive salmonella is fixed at

S0 = U(0) + V (0) = 0.65, with the initial proportion of avirulent salmonella fixed at x =

U(0)/S0 = 0.5. In panel A, the drift rate of the salmonella from avirulent to virulent is

dr = 0.1, and the salmonella are promptly eliminated by the immune system, while the

commensals persist. In panel B, the drift rate is turned up to dr = 0.5, and the salmonella

outcompete the commensals for a spot on the gut. This suggests that a larger conversion

rate from the avirulent to the virulent phenotype helps the salmonella in their quest to

colonize the gut. However, in panel C of the same figure, the drift rate is set to dr = 0.9,

and the commensals once again outcompete the salmonella. Consequently, there seems to

be an intermediate optimal drift rate, at least for the fixed initial proportion of avirulent

salmonella near x = 0.5.
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Figure 2.2: The outcome of the competition depends on the drift rate, dr. All three panels

show simulations of system (2.4) with C displayed as the blue curve, U as the dashed black

curve, and V as the dashed red curve. S0 = U(0) + V (0) was fixed at 0.65 and x was

fixed at 0.5 for all simulations. A. With drift rate dr = 0.1, the commensals outcompete the

salmonella. B. With dr = 0.5, the salmonella outcompete the commensals. C. With dr = 0.9,

the commensals outcompete the salmonella once again. Since the salmonella outcompeted

the commensals for one but not all drift rates shown, these figures suggest that there is an

intermediate optimal drift rate for some fixed initial avirulent proportions x, such as x = 0.5.

Figure 2.3 shows a similar set up as in Figure 2.2, with the total initial invasive population
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fixed at S0 = 0.65, but now the drift rate is fixed at dr = 0.5, and each panel shows the

simulation for a different value of x. In panel A, x = 0.1, so only ten percent of the initial

salmonella population is avirulent. This condition results in the commensals outcompeting

the salmonella. Panel B in Figure 2.3 is the same as panel B in Figure 2.2, with dr = 0.5

and x = 0.5. Increasing the initial proportion of avirulent salmonella to half of all invaders

allows the salmonella to defeat the commensals and become established on the intestinal wall.

Perhaps, then, having a higher avirulent proportion of the initial salmonella population is

beneficial. The growth rate gU of the avirulent phenotype is higher than the growth rate gV of

the virulent phenotype, so a larger initial population of the fast-growing avirulent salmonella

could allow the entire salmonella population to survive the early stages of competition,

after which drift rate dr could cause an increase in the immune response-triggering virulent

phenotype, which would help the salmonella outlast the remaining commensals. However,

panel C shows that commensals quickly outcompete the salmonella when x = 0.9. Thus, we

conclude that too large a proportion of avirulent invaders hurts the salmonella as a whole.

These observations suggest that there is an interior optimum in the invasive proportion of

avirulent salmonella for fixed drift rate; too few or too many avirulent salmonella cost the

total population in the fight against commensals.
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Figure 2.3: The outcome of the competition depends on the initial proportion of avirulent

salmonella, x. All three panels show simulations of the system (2.4) with C displayed as the

blue curve, U as the dashed black curve, and V as the dashed red curve. S0 = U(0) + V (0)

was fixed at 0.65 and dr fixed at 0.5 for all simulations. A. With x = 0.1, the commensals

outcompete the salmonella. B. With x = 0.5, the salmonella outcompete the commensals.

With x = 0.9, the commensals outcompete the salmonella. The salmonella only outcompete

the commensals for the intermediate value of x, which suggests that there is an optimal

initial avirulent proportion for some fixed drift rates dr, such as dr = 0.5.

Considering the above results, the two parameters dr and x seem to play important roles

in the competition between the salmonella and the commensal microbiota in the inflamed

gut. Consequently, in the next section, we search for optimal strategies, in the sense of

minimizing over dr and x the initial salmonella population size S0 needed for successful

colonization.

2.5 FINDING OPTIMAL STRATEGIES

We now explore optimal invasion strategies from the salmonella’s perspective. We consider

the two parameters from the above section that impact the ability of the invasive salmonella

to outcompete the commensal microbiota and colonize the gut: the drift rate dr at which

salmonella “switch” from the avirulent to the virulent population, and the proportion x of

initial salmonella invaders that are avirulent. We ask what values of these quantities minimize

the initial population size S0 = U(0) + V (0) necessary for the salmonella to successfully
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outcompete the commensal bacteria. Given accurate parameter values, such an (x, dr) pair

would represent a prediction for the relative proportion of the two phenotypes found in an

invasive S. Typhimurium population and the drift rate from avirulent to virulent states found

in S. Typhimurium populations.

For a range of fixed dr and x values, too small an initial population size S0 will result in

an unsuccessful invasion attempt, while a large enough S0 will result in a successful invasion.

Consequently, for each of these fixed parameter values, there is a minimum S0 necessary to

outcompete the commensals, which we call Snec := Snec(dr, x). In this notation, the optimal

strategy we seek is given by arg min
dr,x

Snec(dr, x).

We optimize using the method described in Section 2.2. We claim that the method ex-

tends naturally from our two-dimensional formulation to our six-dimensional model. Our

approach for determining the optimal strategy described above is based on the numerical

observation that if the total salmonella population is ever the same size as the commen-

sal population, then the salmonella will ultimately outcompete the commensals; that is, if

U(t1) + V (t1) = C(t1) at any time t1, then lim
t→∞

C(t) = 0 and lim
t→∞

U(t) + V (t) > 0. This

is the same condition we use to determine whether the invasive population outcompetes

the established population in system 2.1 in Section 2.2. Conversely, if lim
t→∞

C(t) = 0 and

lim
t→∞

U(t) + V (t) > 0, then the there must be a time t1 such that U(t1) + V (t1) = C(t1), as

long as S0 < C(0), which we will in general assume based on the idea that the salmonella is

invading a domain where the commensal bacteria are already established. The existence of

such a “crossing time” t1 is therefore a necessary and sufficient condition that determines if

the salmonella outcompete the commensals.

The crossing time t1 depends on the initial salmonella population size S0. In particular,

if such a crossing time exists, an increase in S0 will result in a shorter crossing time. This

makes sense, since the more salmonella initially present, the faster they will outcompete the

commensals. Similarly, a reduction in S0 will result in a longer crossing time, until S0 falls

below the threshold Snec(dr, x), after which the crossing time no longer exists because the

commensals outcompete the salmonella. By continuity with respect to initial conditions,

for each fixed dr and x, and for any time t1, there is an S0(t1) so that the salmonella and

commensal population sizes will be equal at t1. As t1 increases, the corresponding S0(t1)
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decreases to a critical initial salmonella population size. Starting from this critical salmonella

population size, a smaller S0 would result in the commensals outcompeting the salmonella,

while a larger S0 would result in the salmonella outcompeting the commensals. This critical

S0 value for the fixed parameters is therefore Snec(dr, x).

To find arg min
dr,x

Snec(dr, x), we introduce the time-scaled system (2.7) with boundary con-

ditions (2.8), both found in the Appendix. These equations represent a natural generalization

of the boundary value problem system (2.2) from the Lotka-Volterra example in Section 2.2.

According to our observation, the salmonella will outcompete the commensal microbiota if

and only if U(t1)+V (t1) = C(t1) for some time t1, and the larger t1 is, the closer S0 must be

to Snec(dr, x). We therefore approximate Snec(dr, x) by requiring the crossing time t1 to be

large. We numerically implement this condition in system (2.7) by rescaling time by s = t/τ ,

where τ = t1 is our required crossing time, and requiring that the populations cross at time

t = t1 by the boundary condition C(1) = U(1)+V (1). Figure 2.4 shows an example solution

of this boundary value problem. We illustrate that this approximation works well for large

τ in Figure 2.10 in the Appendix.

Again using XPPAUT [29] we continue the solution of the boundary value problem

(2.7)-(2.8) over a range of drift rate values dr between 0 and 1 for fixed initial proportion of

avirulent salmonella x. Figure 2.5A shows Snec(dr, 0.1), Snec(dr, 0.5), and Snec(dr, 0.9) plotted

versus the drift rate. For each fixed x, there is a clear interior minimum value of Snec, and

it is clear that these minima vary with x. We again use XPPAUT to pick out these minimal

Snec over all dr between 0 and 1 for each fixed x , which we call Smin(x) = min
dr

Snec(dr, x),

and use continuation in x to derive the full Smin(x) curve (see Appendix). Figure 2.5B shows

that the minimum of Smin(x) occurs around x = 0.5 for this parameter set, implying that

the salmonella should invade with roughly equal proportions of avirulent and virulent cells

in order to maximize the population’s chance at a successful invasion for these parameter

values.

As was previously stated, we are concerned with finding pairs of dr and x values that

minimize the initial size of the invading salmonella population necessary to successfully

outcompete the commensals. From the above, we have the x value which minimizes Smin(x).

To each Smin(x) there corresponds a dr(x) for that fixed x that minimizes Snec(dr, x); that
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Figure 2.4: Boundary value problem solution with τ = 20, dr = 0.3, and x = 0.5. The

upper red line represents the population of commensal microbiota, C, while the lower blue

line represents the sum of the virulent and avirulent salmonella, S = U + V . The curves

represent a solution to the boundary value problem, with right hand boundary condition

C(1) = U(1) +V (1), and the initial value S(0) = U(0) +V (0) that is obtained is Snec(dr, x).

From this solution, we can vary the drift rate, dr, and the initial proportion of avirulent cells

in the salmonella population, x, to determine the minimum initial salmonella population size

necessary to outcompete the commensals.

is, dr(x) = arg min
dr

Snec(dr, x). These optimal dr(x) are plotted versus x in Figure 2.5C.

The figure shows that as x increases, the optimal dr does as well. This makes sense, as a

higher initial proportion of avirulent salmonella would require a faster virulence activation

rate in order for the salmonella population to take advantage of the benefits that virulence

provides. The dashed lines in the figure identify the dr value corresponding to the x value

that minimizes Smin(x), as shown in Figure 2.5B. In particular, Smin is minimized when

dr = 0.52, implying that the avirulent salmonella should activate their virulence factor at

that rate. Therefore, (dr, x) = (0.52, 0.5) represents the salmonella’s optimal strategy for

this particular parameter set.
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Figure 2.5: Optimal strategies and minimum necessary initial populations from continuation

of solutions to boundary value problem (2.7)-(2.8) with τ = 20 in dr followed by continuation

in x. A. Snec, the minimum initial salmonella population necessary to outcompete the

commensals, for three different fixed initial avirulent proportions x, as a function of switching

rates dr from 0 to 1. Each of the three curves in has an interior minimum value, which

represents the smallest Snec for that fixed value of x over all switching rates, which we call

Smin(x). B. Smin(x) as a function of the initial avirulent salmonella proportion x. Note that

dr values can differ at different points on this curve. C. The (x, dr(x)) pairs that minimize

Snec(dr, x) with respect to dr. The dashed lines identify the x and dr values that minimize

Smin. The red circle in C corresponds to the same x value given by the red circle in B.

In the preceding analysis, for each fixed initial proportion of avirulent salmonella x, the

minimal necessary invading salmonella population Snec(dr, x) size was minimized over the

drift rate dr. Of course, we can ask the same question in the opposite order: for each fixed

dr, what value of x minimizes Snec(dr, x)? To answer this question, we use the same idea

as before, only we now consider system (2.9) with boundary conditions (2.8), found in the

Appendix, instead of system (2.7).

Figure 2.6A shows solutions to the boundary value problem for the drift rate fixed at

dr = 0.3, 0.5, and 0.7. Similar to the previous case, varying x reveals there is a minimum value

of Snec(dr, x) for each fixed dr, which we call Smin(dr) = min
x
Snec(dr, x). Using XPPAUT,

we continue the solution corresponding to Smin(dr) over dr from 0 to 1, and the results are

plotted in Figure 2.6B. Consistent with the approach used in Figure 2.5, the minimum Smin

occurs around dr = 0.52, meaning the avirulent salmonella should activate their virulence
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factor at that rate in order to maximize their chance at a successful invasion.

The values of x that minimize Snec(dr, x) for fixed dr are plotted in Figure 2.6C, along

with the corresponding curve from Figure 2.5C. The intersection of the two curves rep-

resents the (dr, x) pair that minimizes Snec(dr, x) over all dr and x: min
dr,x

Snec(dr, x) =

min
x

{
min
dr

Snec(dr, x)

}
= min

dr

{
min
x
Snec(dr, x)

}
.
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Figure 2.6: Optimal strategies and minimum necessary initial populations from continuation

of solutions to boundary value problem (2.7)-(2.8) with τ = 20 in x followed by continuation

in dr. A. Snec, the minimum initial salmonella population necessary to outcompete the

commensals, for fixed switching rates dr, as a function of the initial proportion of avirulent

salmonella x from 0 to 1. Each of the three curves has an interior minimum value, which

represents the smallest Snec for that fixed value of dr over all initial avirulent proportions,

which we call Smin(dr). B. Smin(dr) versus dr. Note that x values can differ at different

points on the curve. C. The curve of (x, dr) pairs that minimize Snec(dr, x) with respect to

x is shown in blue and the curve of (x, dr) pairs that minimize Snec(dr, x) over dr is shown

in red. The intersection of the two curves represents the optimal strategy to be used by the

salmonella when invading the gut.

The optimal strategies above are only optimal while the salmonella are within a host.

After the bacteria are expelled, they find themselves in a new environment without any

inflammatory response to exploit. Consequently, it might benefit the salmonella population

to invade a host with the optimal proportion of avirulent cells described above, but leave the

host with some other proportion of fast-growing avirulent cells that increases their chance

of survival outside of a host. To explore this idea, we impose another condition and require
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xinit = βxfinal, where β is a constant, while xinit = x and xfinal are the proportions of

avirulent cells in the total salmonella population at the beginning and end of the invasion,

respectively. Details on how this additional condition was implemented can be found in the

Appendix.

Holding all variables other than dr and x constant, the final proportion of avirulent

salmonella becomes a function of only dr: xfinal = U∗(dr)/(U
∗(dr)+V ∗(dr)) = U∗/(U∗+V ∗),

where (U, V, C,M) = (U∗, V ∗, 0,M∗), U∗, V ∗ > 0, is the steady state corresponding to a

successful invasion. Thus for each fixed dr, we need only consider the x = xinit values such

that x = βU∗/(U∗ + V ∗). Figure 2.7 shows the curve in (dr, x) space that preserves this

equality with β = 1, along which we apply our optimization method. Figures 2.8A and

B show the minimum salmonella invasion force necessary to colonize the gut, Smin, versus

the initial proportion of avirulent salmonella x and the switching rate dr, respectively, also

with β = 1. Since we have added the constraint that xinit = βxfinal, the minimum Smin

value, Smin = 0.6427, is larger in these figures than in the analogous Figure 2.5B, where

Smin = 0.6393.

This approach could be repeated to predict the optimal strategy for any other choice of

β > 0.
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Figure 2.7: Parameter curve on which the initial proportion of avirulent salmonella is equal

to the final proportion of avirulent salmonella. The blue dot at (dr, x) = (0.6743, 0.6161)

denotes the (dr, x) pair that minimizes Smin while preserving the equality xinit = xfinal.
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Figure 2.8: The optimal strategies with the added requirement that xinit = βxfinal, with β =

1. A. The smallest initial salmonella population that will still outcompete the commensals,

Smin, as a function of the initial proportion of avirulent salmonella x. B. Smin as a function

of the switching rate dr. The blue dots correspond to the x and dr values that minimize

Smin, which are the coordinates of the blue dot in Figure 2.7.

2.6 DISCUSSION

We have developed an optimization method to determine the minimum size of an invasive

species population that will outcompete an established population. The method is based on

analysis of general bistable competition models and is implemented by solving a boundary

value problem numerically. Further, we constructed and analyzed a model describing the

competition between a commensal microbiota population and an invasive salmonella pop-

ulation, along with a simple model of the immune response, under the assumptions of the

two hypotheses about this competition proposed by Stecher and Hardt. Our model agrees

with experiments in that populations of S. Typhimurium benefit from invading a host with

two phenotypically distinct subpopulations of avirulent and virulent cells, rather than a pop-

ulation comprised of just avirulent or just virulent phenotypes. We went on to apply our

optimization method to show how to determine the proportion of avirulent cells in the initial

population and the virulence factor activation rate that maximize the chance of a successful

invasion, for a fixed set of the model parameters.
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Previous studies indicate that S. Typhimurium is an example of a species that gains an

environmental advantage over a host’s commensal microbiota as a result of the host’s natural

inflammatory response [82]. Stecher and Hardt proposed the differential killing hypothesis

and the food hypothesis as mechanisms by which the salmonella gain this advantage [83].

Brown et al. [13] incorporated the food hypothesis into a simple model of the competi-

tion between S. Typhimurium and the commensal microbiota [13]. The food hypothesis is

supported by, e.g., [90], which found that the inflamed intestine contains ethanolamine, a

nutrient which supports the growth of salmonella, but not the commensal microbiota. In this

chapter, we constructed and analyzed a novel model describing the competition between the

commensal population and the salmonella population, including separate virulent and avir-

ulent salmonella subpopulations, and incorporating the two hypotheses proposed by Stecher

and Hardt along with a simple model of the immune response that mediates the differential

killing effect.

At first glance, the need for both virulent and avirulent salmonella subpopulations may

seem unnecessary. While the salmonella population as a whole benefits from the host’s in-

flammatory response, only the virulent bacteria invoke inflammation. However, since the

relative growth rate of the virulent population is slowed by the expression of virulence factor

TTSS-1 [86], the fast-growing avirulent population allows the salmonella to become estab-

lished during the early stage of the invasion. Thus, we expect that there could exist an

optimal initial proportion of avirulent salmonella in the entire invasive population exclu-

sively between 0 and 1, and our model confirms this expectation. This result is consistent

with experiments, which have shown that both virulent and avirulent phenotypes exist in

invasive S. Typhimurium populations. Moreover, avirulent S. Typhimurium are observed to

“switch on” the virulence factor TTSS-1. Again, since a high switching rate would cause

most or all of the salmonella to become virulent, we expect a nontrivial optimal switching

rate, and our model confirms that such an optimal rate exists. It is reasonable to expect

that while S. Typhimurium evolved to benefit from the body’s inflammatory response, they

also evolved in such a way as to activate their virulence factor at the rate that gives the

greatest environmental advantage. We viewed the minimal initial population necessary to

successfully colonize the intestine as a measure of this advantage, since the probability of
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successful invasion should be proportional to this quantity. Our model allows us to estimate

this minimal invasion force, as well as the corresponding switching rate and initial proportion

of avirulent cells.

These results supply us with the means of creating experimentally testable hypotheses

about the virulence initiation rate, the minimal initial salmonella population necessary to

colonize the intestine, and the initial proportion of avirulent salmonella. If the switching

rate is known, then the corresponding Smin value in Figure 2.6B represents the predicted

minimal necessary salmonella invasion force, and the corresponding x value in Figure 2.6C

provides a prediction of the optimal initial proportion of avirulent cells. For example, if the

switching rate is found to be 0.4 hr−1, then avirulent cells should make up about 43% of the

initial salmonella population, and the minimal necessary invasion force Smin is predicted by

our model to be above half the size of the established commensal population. Similarly, if

the initial proportion of avirulent cells in the salmonella population is known, then Figure

2.5B predicts the value of Smin, and Figure 2.5C predicts the optimal switching rate dr.

Since salmonella must survive outside of a host after being expelled, and the environment

outside of the host is drastically different from the environment within the host, there is rea-

son to believe the salmonella population would do better entering this non-host environment

with a potentially different proportion of avirulent cells then that with which it invades. If

we make the further assumption that the salmonella exit the host with a certain proportion

of avirulent cells, we can still make analogous predictions about the expected switching rate

and the smallest salmonella invasion force necessary to outcompete the commensals. Of

course, the additional requirement will cause the minimum necessary initial salmonella size

to become larger than that determined in the unconstrained case, but the increased chance

to survive outside of the host could make up for this disadvantage.

The optimization method that we have introduced can be applied to any bistable system,

and is generalizable to multi-stable systems, as long as a necessary and sufficient condition

for each outcome, analogous to crossing the identity line in our example, can be formulated.

In this way, the method must be problem-specific, as a condition that works for one sys-

tem might not work for another. However, the ease with which such a condition can be

implemented makes this method simple and attractive.
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Future work can enhance the above analysis in several ways. Most notably, we made

the simplifying assumption that the rate of virulence factor activation in S. Typhimurium is

constant; however, Sturm et al. [86] showed that this switching rate can increase over time.

It seems reasonable to assume that the switching rate might be proportional to the number of

macrophages present, and to optimize such a rate would require techniques from variational

calculus. Further, we have considered only temporal dynamics, corresponding to interactions

in a small, localized region in the gut. A natural extension of the model would be to include

both more aspects of the physiology involved, such as the blood, lumen, and so on [5]),

and spatial aspects of bacterial interactions, which may allow virulent bacteria to invade

successfully in some locations but not others. The coexistence of avirulent and virulent

phenotypes itself raises an evolutionary question: how did the virulence factor-activating

ability of the avirulent cells evolve? It may be possible to investigate this question through

stochastic evolutionary models.

2.7 APPENDIX

To determine the minimal initial salmonella population size necessary to outcompete the

commensals, we rescale time by t = τs to transform system (2.4) to the following boundary

value problem:

U ′ = τ(U(gU − α(C + V )− γU + σUf(V )− κM − dr)) (2.7)

V ′ = τ(V (gV − α(C + U)− γV + σV f(V )− (κ− rV )M) + drU)

C ′ = τ(C(gC − α(V + U)− γC + σCf(V )− κM))

P ′ = aM − µPP

D′ = gD − (bPP + bV V + ρV + µD)D

M ′ = τ((bPP (M) + bV V )D(V,M)− (δV V + µM)M)

d′r = 0

f(V ) =
δV

1 + V
,
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where ′ = d
ds

, and

U(0) = xS0

V (0) = (1− x)S0

C(0) = gC/γ (2.8)

P (0) = 0

D(0) = gD/µD

M(0) = 0

C(1) = U(1) + V (1).

where τ is a large positive number that we choose.

Here we consider dr as a stationary variable instead of a parameter. Since we are mini-

mizing S0, it might seem more natural to allow S0 to be a stationary variable and leave dr

as a parameter that we can vary. Solving such a boundary value problem and continuing the

solution over varied dr in AUTO results in solutions as in Figure 2.9A, where the minimum

value of Snec appears as a local minimum. Unfortunately, bifurcation continuation methods

cannot continue along minima, as minima are not bifurcations. Treating dr as a variable

allows us to identify folds in the solution of the boundary value problem (2.7)-(2.8) where

the derivative of dr with respect to S0 becomes unbounded. Such a fold is shown in Figure

2.9B. Solving the boundary value problem in this setting therefore allows us to continue the

solution over a new parameter; in particular, we can continue the solution in x to determine

Smin = min
dr

Snec(dr, x).
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Figure 2.9: Minimal salmonella population sizes necessary in successful invasions, derived

using boundary conditions (2.8). A. The S0 value obtained by solving system (2.4) together

with S ′0 = 0 and boundary conditions (2.8) over a range of dr values. The bifurcation

continuation software AUTO cannot continue along minima, and so this solution cannot be

continued along a new parameter. B. The dr value obtained by solving system (2.7) with

boundary conditions (2.8) for varied Snec ≡ S0. Here, the minimum value of Snec with respect

to dr is given by a fold bifurcation, which allows us to continue to track the minimum as x

is varied in AUTO.

We seek the critical value of S0 so that beginning with any initial salmonella population

size below this value results in the commensals outcompeting the salmonella, while initial

salmonella population sizes above this level yield successful invasion. Our method to deter-

mine this value is based on the description in Section 2.2. After rescaling time, solutions to

the boundary value problem (2.7)-(2.8) for fixed S0 and x return a value of dr for which we

have C(1) = U(1) + V (1), where C, U , and V are now considered functions of rescaled time

s. Consequently, we are really searching for the value of dr for which S0 = Snec(dr, x). If S0

is any larger for the fixed x and dr, then U(s0) + V (s0) = C(s0) for some 0 ≤ s0 < 1 and

if S0 is any smaller, then the combined population U + V will not match C before s = 1,

and possibly never will. Analogous to the treatment of system (2.2) in Section 2.2, we can

approximate the critical value of S0 within arbitrary precision by taking τ sufficiently large.

We take τ = 20, which seems to be large enough to provide an accurate approximation of

the critical S0, as seen in Figure 2.10.
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Figure 2.10: Justification for the choice of τ . The value of dr in the solution to system

(2.7) with boundary conditions (2.8) remains near its asymptotic value around and beyond

τ = 20. Here, x = 0.5 and S0 = 0.652.

Similarly, in order to minimize Snec(dr, x) over x for fixed dr, we consider the following

system:

U ′ = τ(U(gU − α(C + V )− γU + σUf(V )− κM − dr)) (2.9)

V ′ = τ(V (gV − α(C + U)− γV + σV f(V )− (κ− rV )M) + drU)

C ′ = τ(C(gC − α(V + U)− γC + σCf(V )− κM))

P ′ = aM − µPP

D′ = gD − (bPP + bV V + ρV + µD)D

M ′ = τ((bPP (M) + bV V )D(V,M)− (δV V + µM)M)

x′ = 0

f(V ) =
δV

1 + V
,

The technique to solve the boundary value problem (2.9) with boundary conditions (2.8) is

identical to that described above, with the roles of dr and x switched.

To add the constraint that the final proportion of avirulent salmonella is equal to the

initial proportion of avirulent salmonella (or any fraction β of the initial proportion, al-

though we set β = 1 here), we restrict our (dr, x) parameter values to only those such that
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x = U∗/(U∗ + V ∗), where (U, V, C,M) = (U∗, V ∗, 0,M∗), U∗, V ∗ > 0 is the steady state

corresponding to a successful invasion. We find such parameter pairs by continuing this

steady state along dr and setting x = U∗/(U∗ + V ∗) = U∗(dr)/(U
∗(dr) + V ∗(dr)) for each

fixed dr. Since we do not have an analytical form for this steady state, we load the dr and

corresponding x = U∗/(U∗ + V ∗) values into XPPAUT as functions of a new parameter q,

so that (dr(q), x(q)) preserves the equality xinit = xfinal for all q. We then solve the system

U ′ = τ(U(gU − α(C + V )− γU + σUf(V )− κM − dr)) (2.10)

V ′ = τ(V (gV − α(C + U)− γV + σV f(V )− (κ− rV )M) + drU)

C ′ = τ(C(gC − α(V + U)− γC + σCf(V )− κM))

P ′ = aM − µPP

D′ = gD − (bPP + bV V + ρV + µD)D

M ′ = τ((bPP (M) + bV V )D(V,M)− (δV V + µM)M)

S ′0 = 0

f(V ) =
δV

1 + V
,

with boundary conditions (2.8) in XPPAUT. Here there is no advantage to treating x or dr

as a stationary parameter in place of S0, as our parameter space (dr, x) = (dr, x(dr)) is now

one-dimensional, and consequently we need only vary a single parameter to find the global

minimum Smin. We continue the solution of the boundary value problem in AUTO over

varied q, from which we can extract the corresponding dr(q) and x(q) for each q, and the

result is plotted in Figures 2.8A and B.
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3.0 INTERACTIONS OF SOLITARY PULSES OF E. COLI IN A

ONE-DIMENSIONAL NUTRIENT GRADIENT

3.1 INTRODUCTION

In 1970, Evelyn Keller and Lee Segel proposed a mathematical model to analyze the aggrega-

tion process of slime mold [46]. In the following year, they derived a general model describing

the collective dynamics of populations that move by chemical sensing, or chemotaxis [47].

This so-called Keller-Segel model has provided a cornerstone for the mathematical study of

the collective behavior of biological species. Since its inception, the Keller-Segel model has

been applied to approximate the dynamics of a variety of species, from slime molds such as

Dictyostelium discoideum to bacteria such as Escherichia coli to insects such as the fruit fly

Drosophila melanogaster [39, 41, 51]. Many adaptations have been developed to include addi-

tional biological realism, such as signal-dependent sensitivity [50, 77] or non-local sampling of

a chemical [39, 58]. The primary biological questions addressed by these models are typically

centered around describing aggregation processes [46], pattern formation [12, 40, 41, 62], and

the development of traveling waves [42, 48, 56], while the mathematical questions typically

concern existence of solutions and conditions for finite-time blow up [39, 41, 85]. Here we

use such a model to address a different problem: analyzing the transient dynamics of two

interacting pulses of bacteria in a nutrient gradient.

In Section 3.2, we present experimental results due to the Salman laboratory at the

University of Pittsburgh demonstrating the dynamics of two interacting E. coli populations

in a nutrient gradient. When two E. coli populations are placed on opposite ends of a long

channel with a supply of nutrient between them, they travel as pulses toward one another

up the nutrient gradient. Interestingly, in some cases they will change direction and begin
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moving away from each other and the nutrient back towards where they started. Because

the two bacterial populations move by chemotaxis up the nutrient gradient and they both

produce the same chemoattractant to which they are mutually attracted, it seems reasonable

that they should always continue moving inward toward one another, meet in the middle,

and subsequently combine into a single, unified population. As this is not the case, we use a

Keller-Segel model that includes an external nutrient source to elucidate mechanisms behind

this unintuitive direction switch. External gradients play an important role in collective

behavior of species that move by chemotaxis. For example, it has been shown that an

external nutrient gradient can give rise to a traveling pulse in a bacterial population [75].

Temperature and oxygen gradients have also been shown to influence the collective dynamics

of such populations [21, 24, 71, 72].

Pulse-pulse interaction has also been studied in a number of reaction-diffusion equations,

including the Gierer-Meinhardt and Gray-Scott models [25, 27, 87]. In [25] and [87], the au-

thors use asymptotic approaches to derive approximate ordinary differential equations for the

distance between the center of pulses. We do not use formal asymptotic estimates to derive

approximations for the center of the pulses here, but instead make a straightforward heuristic

approximation to the spatial profile of each pulse using a Gaussian distribution. From this

assumption, we are able to derive a system of ODEs approximating the temporal dynam-

ics of the center of mass and the width of the pulses. Analysis of the Keller-Segel partial

differential equations model is complicated by finite-time blow up of solutions and numer-

ical difficulties. By contrast, our ODE system eases linear stability analysis of equilibrium

states and numerical simulation, and even allows phase plane analysis in some situations.

In these ways, our approximation facilitates analysis of the global dynamics of the bacterial

system and allows us to efficiently explore the qualitative behavior changes across variations

of parameters.

This chapter is organized as follows: in Section 3.2, we present experimental results

due to the Salman laboratory highlighting this unusual result in which two identical E.

coli populations can turn around rather than combine. Next, in Section 3.3, we show that

the classic Keller-Segel model for bacterial chemotaxis captures the experimentally observed

behaviors. In Section 3.4 and 3.5, we show that our approximating system agrees with the

36



Keller-Segel model in predicting that bacterial accumulation is the result of an instability

of the uniform state that occurs when the bacterial population size gets sufficiently large.

In Section 3.6, we use our approximation to analyze parameter conditions that lead to turn

around of the bacterial populations and conditions that cause them to combine.

3.2 EXPERIMENTAL RESULTS

Wild type Escherichia coli (E. coli) RP437, expressing either yellow fluorescent protein

(YFP) or red fluorescent protein (tdTomato) from a medium copy number plasmid (pZA)

under the control of the constitutive λ-promoter, were grown in M9 minimal medium sup-

plemented with 1g/l casamino acids, and 4g/l glucose (M9CG) at 30◦C until early expo-

nential growth phase (Optical Density at 600nm (OD600nm) = 0.1). The cultures were then

centrifuged for 5 minutes at 10,000 rpm, and resuspended in fresh M9CG medium at an

OD600nm=0.3. Each of the bacterial cultures was loaded onto one end of a set of ∼2cm long,

thin channels (800 µm wide, 20-25 µm deep) fabricated in polydimethylsiloxane (PDMS)

and adhered to a microscope glass slide (Figure 3.1A). The channels were pre-filled with

fresh M9CG medium. The sample was then mounted onto an inverted microscope (Zeiss

Axiovert 40 CFL), and the bacteria were observed in fluorescence mode using a 2.5x objec-

tive. Shortly after loading the bacterial cultures onto the slide (∼ 10− 20 minutes), a sharp

accumulation peak appeared at each end of the channel, which then proceeded to advance

as a pulse towards the center of the channel following a food gradient created by the bac-

terial consumption at the densely populated ends (for more details about this phenomenon

see for example [59, 72, 75]). The dynamics of both bacterial pulses was recorded, each in

its correspondent fluorescence colors, at a rate of 1 image/9 seconds using a charge-coupled

device (CCD) camera (Progress MF, Jenoptik). The fluorescence profile reflecting the bac-

terial concentration along the channel was measured using ImageJ (NIH). For each of the

examples presented in Figure 3.1B and C, the fluorescence intensity is depicted in units of

the maximal measured fluorescence at the peak of the concentration and the background

was subtracted for better comparison.
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Figure 3.1B and C displays only a ∼3.5mm long section of the channel where the two

populations meet. These results show that upon collision between the two populations,

two outcomes could occur. In the first (Figure 3.1B), the two populations combine and

move together towards one end of the channel or sometimes (data not shown) stay at the

collision location, while their accumulation peak reduces in amplitude and widens gradually

by diffusion. In the second case (Figure 3.1C), the two populations’ peaks never meet; rather,

they approach each other initially and then bounce back, each towards the end of the channel

where they originated.
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Figure 3.1: Experimental results (these data were collected by the Salman laboratory). (A)

The experimental setup: a set of narrow channels (800µm×20µm), 2 cm long, microfabri-

cated with polydimethyl-siloxane (PDMS) using the common techniques [59] and adhered

to a microscope slide by plasma cleaning, while leaving both ends open for loading the bac-

teria. (B and C) Examples of the fluorescence intensity profile along the channel measured

for both red and green bacteria as indicated by the color of the plot and at different time

points marked in the graph. In (B) the two bacterial pulses advance towards each other and

when they meet, they combine and move together towards the left end of the channel. In

(C) the two pulses bounce back and move towards their original end of the channel. (D and

E) The position of the peaks of the bacterial pulses over time. (D) corresponds to the data

from panel (B) and (E) corresponds to the data from panel (C).
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3.3 KELLER-SEGEL MODEL

We use an adaptation of the classic Keller-Segel model of chemotaxis to approximate the

spatio-temporal dynamics of the above experiment. We denote by b(t, x) the bacterial density

at time t and spatial position x. The cell density moves both by linear diffusion and by

chemotaxis up a chemical gradient. A full derivation of the differential equations modeling

such dynamics can be found in, for example, [39, 41]. Here we consider the effects of two

chemical densities: a chemoattractant (glycine) produced by the bacteria, a(t, x), and an

externally added nutrient, φ(t, x). We assume that the chemoattractant is produced by the

bacteria at constant rate r and naturally degrades at rate δ, and that the bacteria consume

the nutrient at constant rate κ. Under these assumptions, the model we study is as follows:

∂b

∂t
= Db

∂2b

∂x2
− χa

∂

∂x

[
b
∂a

∂x

]
− χφ

∂

∂x

[
b
∂φ

∂x

]
∂a

∂t
= Da

∂2a

∂x2
+ rb− δa

∂φ

∂t
= Dφ

∂2φ

∂x2
− κbφ

∂b

∂x

∣∣∣∣
x=0,1

=
∂a

∂x

∣∣∣∣
x=0,1

=
∂φ

∂x

∣∣∣∣
x=0,1

= 0

(3.1)

where the parameters are defined in Table 3.1.

We impose minimal biological assumptions on our model: we ignore any effects of cell

physiology on chemical sensing, such as signal-dependent sensitivity, and any cell kinetics.

The basic Keller-Segel model (3.1) captures the qualitative behaviors observed experimen-

tally and is therefore a reasonable approximation of the E. coli system studied. We note that

the receptor-binding adaptation to the Keller-Segel model (model (M2a) in [39]) produces

similar qualitative results as we present in this paper, though we do not present those results

here.

For the purpose of differentiating between two populations of bacteria in numerical sim-

ulations, we include in our model two identical populations of bacteria, b1 and b2, that

each produce the same chemoattractant, a1 and a2, respectively. These variables are only
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differentiated by their initial distributions and are otherwise identical:

∂b1
∂t

= Db
∂2b1
∂x2
− χa

∂

∂x

[
b1
∂(a1 + a2)

∂x

]
− χφ

∂

∂x

[
b1
∂φ

∂x

]
∂b2
∂t

= Db
∂2b2
∂x2
− χa

∂

∂x

[
b2
∂(a1 + a2)

∂x

]
− χφ

∂

∂x

[
b2
∂φ

∂x

]
∂a1
∂t

= Da
∂2a1
∂x2

+ rb1 − δa1
∂a2
∂t

= Da
∂2a2
∂x2

+ rb2 − δa2
∂φ

∂t
= Dφ

∂2φ

∂x2
− κ(b1 + b2)φ

∂b1,2
∂x

∣∣∣∣
x=0,1

=
∂a1,2
∂x

∣∣∣∣
x=0,1

=
∂φ

∂x

∣∣∣∣
x=0,1

= 0.

(3.2)

Importantly, the dynamics of the two population model are identical to those of the single

population model because the system is linear in b and a. That is, if b = b1 + b2 and

a = a1 + a2, then the system of differential equations governing the dynamics of b, a, and c

is exactly system (3.1).

We nondimensionalize model (3.2) as follows:

b1 = Nb̃1; b2 = Nb̃2; a1 = Kã1; a1 = Kã1; φ = Mφ̃; x = x̃/L,

where N, K, and M are large numbers of approximately the same size of the maximum

size of the bacterial, chemoattractant, and nutrient populations, respectively, and L is the

domain length. After nondimensionalization, the parameter values we use are those given

in Table 3.1. The natural dimensions (before nondimensionalization) are included. After

nondimensionalization, all parameters have units s−1 and the spatial domain is the unit

interval. For simplicity, we immediately replace the nondimensionalized symbols b̃1, b̃2, ã1,

ã2, φ̃, and x̃ with b1, b2, a1, a2 φ, and x, respectively, in the nondimensionalized system.
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Parameter Value Natural dimensions

Db Diffusivity of bacteria 0.001 space2·time−1

Da Diffusivity of attractant 0.03 space2·time−1

Dφ Diffusivity of nutrient 0.03 space2·time−1

χa Chemotactic sensitivity to attractant 0.025 space3·time−1·mol−1

χφ Chemotactic sensitivity to nutrient 0.015 space3·time−1·mol−1

r Production rate of attractant by bacteria 0.05 mol·bacterium−1· time−1

δ Natural decay rate of attractant 0.005 time−1

κ Consumption rate of nutrient by bacteria 0.001 (bacterium/space)−1·time−1

Table 3.1: Parameters used in model (3.1).

We initialize all simulations with the two populations accumulated on opposite ends of

the spatial domain. We assume that sufficient time has passed so that the bacteria have

consumed the nutrient at the densely populated regions at the ends of the domain so that

the nutrient concentration is initially distributed as the symmetric sigmoid function given

by

φ(0, x) =

 φ0/(1 + exp(−100x+ 10)) : 0 ≤ x ≤ 0.5

φ0/(1 + exp(100x− 90)) : 0.5 < x ≤ 1
, (3.3)

where φ0 is a parameter. Without the external nutrient, the bacterial populations would

remain accumulated at their respective ends of the domain, maintaining a concentration of

chemoattractant, and would not travel inward.

A population evolving according to a Keller-Segel model can only form a nontrivial

pulse if the population size is sufficiently large relative to model parameters [26, 39, 41, 55].

Below this critical threshold, the only solution is the uniform solution, b = btot =constant,

a = rbtot/δ. Model (3.1) in particular predicts that in order to maintain a nontrivial pulse,
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the total amount of bacteria must be greater than the critical threshold defined by

b∗tot =
Db[(kπ)2Da + δ]

rχa
, (3.4)

where k is any positive integer (see Section 3.8.1 in the Appendix for details) [26]. The

nutrient does not come into play here because φ = 0 in the uniform state.

Below threshold (3.4), the bacterial population cannot maintain a pulse-like solution.

Figure 3.2 shows an example of a simulation of model (3.2) when the combined bacterial

population size is less than threshold (3.4). The two populations initially form pulses and

move up the food gradient toward the center, but eventually lose their pulse-like shapes and

diffuse out to uniformly fill the spatial domain.
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Figure 3.2: Bacteria dynamics with population size below critical threshold (3.4). The two

populations initially move up the nutrient gradient but cannot maintain a pulse-like profile.

When the total amount of bacteria exceeds threshold (3.4), the bacterial populations

will asymptotically form a pulse along one or both of the boundaries of the spatial domain.

For consistency with experiment, we will only consider bacterial population sizes above this

threshold.

Figures 3.3 and 3.4 show examples of simulations of system (3.2) that capture the two

qualitatively distinct results observed experimentally. In Figure 3.3, the two bacterial popu-

lations move up the nutrient gradient toward one another until they meet and combine into a
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single pulse, which propagates to one end of the domain. In Figure 3.4, the two populations

initially move up the external nutrient gradient but eventually change direction and move

backwards toward the chemoattractant that is accumulated near the boundaries. The only

difference between the two outcomes is the initial amount of nutrient: the simulations shown

in Figure 3.3 begin with more nutrient than those shown in Figure 3.4.
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Figure 3.3: Bacterial pulses combine under the dynamics of system (3.2). The two popu-

lations move toward one another up the external nutrient gradient until they collide and

combine to form a single pulse, which ultimately moves to and accumulates on the left wall.

The initial food profile is given by the reflected sigmoid (3.3) with φ0 = 20. (A) Snapshots of

the bacterial profiles at different times. The arrows indicate direction of motion. By t = 30,

the two populations have combined and behind moving toward the left boundary. (B) The

positions of the peaks of the bacterial pulses over time.
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Figure 3.4: Bacterial pulses turn around under the dynamics of system (3.2). The two

populations initially move toward one another up the external nutrient gradient. Through a

combination of diffusion and consumption, the nutrient gradient quickly becomes sufficiently

weak so that the two populations are both attracted backward toward the chemoattractant

they left behind. Here the initial food profile is given by the reflected sigmoid (3.3) with

φ0 = 18. (A) Snapshots of the bacterial profiles at different times. Arrows indicate direction

of motion. (B) The positions of the peaks of the bacterial pulses over time.

Though these outcomes result from a change in the initial abundance of the nutrient, we

note that we can produce similar results by changing other model parameters. For example,

if we start from conditions that result in the two populations combining, we can always

reduce the chemotactic sensitivity of the bacteria to the nutrient, χφ, and cause the two

populations to turn around. On the other hand, this parameter is unlikely to change from

experiment to experiment, and therefore cannot be the reason we observe different outcomes

on different trials.

We seek to determine possible causes of these distinct outcomes. We observe that both

the combination outcome and the turnaround outcome can be characterized by the relative

position of the center of mass of the two bacterial populations: if the centers of mass coalesce,

the two populations have combined; if they change direction and accumulated along the

opposite boundaries of the domain, the two populations have turned around. In the following

section, we derive a system of ordinary differential equations (ODEs) describing the dynamics

of the size, center of mass, and variance of the spatial profile of each variable. By explicitly
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considering the dynamics of the center of mass, this model facilitates exploration of parameter

spaces related to the transient behaviors of the bacterial populations.

3.4 GAUSSIAN APPROXIMATION OF A ONE POPULATION SYSTEM

Here we consider the temporal dynamics of the spatial moments of each variable in a one

bacterial population Keller-Segel model (3.1). The ith moment, i = 0, 1, 2, . . . , of the spatial

profile of variable s ∈ {b, a, φ} is defined by

si(t) =

∫ ∞
−∞

xis(x, t)dx.

We are primarily concerned with the size, center of mass, and variance of each population.

The size of population s is simply s0, the zeroth moment of that population. The center

of mass is given by the formula µs = s1/s0, and the variance is given by σ2
s = s2/s0 − µ2

s.

Each of these quantities is a function of time only, and therefore differentiation produces

an ordinary differential equation describing the temporal dynamics of that quantity. For

example, the differential equation governing µb is

µ̇b =
d

dt
[b1/b0]

=
1

b0

∫ ∞
−∞

∂
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b
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x
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∂a

∂x
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Db
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1
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∣∣∞
−∞ + χa〈bax〉+ χφ〈bφx〉

]
=
χa〈bax〉+ χφ〈bφx〉

b0
,

(3.5)

where 1/b0 factors out because b0 is a constant (see system (3.6), below), the boundary terms

are zero by assumption, and

〈f(x)g(x)〉 =

∫ ∞
−∞

f(x)g(x)dx.
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Similarly differentiating the eight remaining variables produces the following system of

nine ODEs:

ḃ0 = 0

ȧ0 = rb0 − δa0

φ̇0 = −κ〈bφ〉

µ̇b =
χa〈bax〉+ χφ〈bφx〉

b0

µ̇a =
rb0
a0

(µb − µa)

µ̇φ = − κ

φ0

(〈xbφ〉 − µφ〈bφ〉)

σ̇2
b = 2Db + 2

χa〈(x− µb)bax〉+ χφ〈(x− µb)bφx〉
b0

σ̇2
a = 2Da +

rb0
a0

(
σ2
b − σ2

a + (µb − µa)2
)

σ̇2
φ = 2Dφ +

κ

φ0

(
σ2
φ〈bφ〉 − 〈(x− µφ)2bφ〉

)

(3.6)

The two terms on the right hand side of equation (3.5), χa〈bax〉 and χφ〈bφx〉, are mixed

moments, which cannot be found without knowing the spatial distribution of each population.

Indeed, the differential equation for each moment of each variable will generally depend on

higher or mixed moments, and we therefore require a method of moment closure.

We observe that the spatial profiles of the bacterial populations in the Keller-Segel model

(3.2) both maintain pulsatile, fairly symmetric, Gaussian-like appearances when accumulated

in the interior of the spatial domain (see Figures 3.3 and 3.4). We therefore approximate

the spatial distribution of each population s(t, x) ∈ {b(t, x), a(t, x), φ(t, x)} by

s(t, x) =
s0

σs
√
π

exp

(
−(x− µs)2

σ2
s

)
. (3.7)

Further, because the pulse-pulse interaction occurs within the interior of the domain, we

ignore boundary effects by considering the system on the infinite real line. Approximation

(3.7) allows us to evaluate each integral that appears in system (3.6), resulting in an explicit

system of ordinary differential equations. In this way, the approximation acts as a method

of moment closure.

The behavior of the dynamic variables in system (3.6) describe important aspects of

the dynamics of the populations considered in the Keller-Segel model (3.1). In particular,
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a change in the direction of µb (that is, the sign of µ̇b) corresponds to a direction reversal

of the bacterial population. Similarly, if σ2
b is nonzero and small, then the bacteria form a

pulse; if σ2
b tends to infinity, then the bacterial population diffuses out to a uniform state.

Unless otherwise specified, the initial conditions and parameter values used are those

given in the Table 3.2.

Variable Initial condition Natural dimension

b0 Total bacteria 3 bacterium

a0 Total chemoattractant rb0/δ mol

φ0 Total nutrient 35 mol

µb Center of mass of bacteria 0 space

µa Center of mass of chemoattractant 0 space

µφ Center of mass of nutrient 0.5 space

σ2
b Variance of the bacteria profile 0.005 space2

σ2
a Variance of the chemoattractant profile 0.2 space2

σ2
φ Variance of the nutrient profile 0.1 space2

Parameter Value Natural dimension

Db Diffusivity of bacteria 10−5 space2·time−1

Da Diffusivity of attractant 0.0002 space2·time−1

Dφ Diffusivity of nutrient 0.0002 space2·time−1

χa Chemotactic sensitivity to attractant 0.00025 space3·time−1·mol−1

χφ Chemotactic sensitivity to nutrient 0.0002 space3·time−1·mol−1

r Production rate of attractant by bacteria 0.05 mol·bacterium−1·time−1

δ Natural decay rate of attractant 0.005 time−1

κ Consumption rate of nutrient by bacteria 0.001 (bacterium/space)−1·time−1

Table 3.2: System variables and parameters used in system (3.6).

Before we explore the mechanisms responsible for the turnaround of the bacteria in a one-

dimensional nutrient gradient, we explore the extent of the qualitative agreement between
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the Keller-Segel model (3.1) and system (3.6).

3.4.1 Stability of uniform state

While we cannot expect perfect quantitative agreement between model (3.1) and system

(3.6), we can confirm that (3.6) reproduces key qualitative behaviors of (3.1). We first

consider the linear stability of all equilibrium points of system (3.6). The differential equation

for µa indicates that we must have µb = µa at any equilibrium point, but the specific value

of these two variables is arbitrary (in other words, the bacterial and chemical pulse must

accumulate around the same spatial coordinate, but that coordinate can be anywhere). We

therefore introduce the relative coordinate µ = µb − µa. Further, we note that any steady

state requires φ0 = 0. Under this transformation and condition, evaluating the integrals

remaining in system (3.6) after imposing assumption (3.7) produces

ḃ0 = 0

ȧ0 = rb0 − δa0

µ̇ =

[
−2χaa0√

π(σ2
b + σ2

a)
3/2

exp

(
−µ2

σ2
b + σ2

a

)
− rb0

a0

]
µ

σ̇2
b = 2Db − 2

χaa0σ
2
b√

π(σ2
b + σ2

a)
5/2

(
σ2
b + σ2

a − 2µ2
)

exp

(
−µ2

σ2
b + σ2

a

)
σ̇2
a = 2Da +

rb0
a0

(σ2
b − σ2

a + µ2).

(3.8)

From the first two equations, any fixed point of this system must satisfy b∗0 = constant

and a∗0 = rb∗0/δ. Since the term inside the brackets in the µ equation is strictly negative, any

fixed point must also satisfy µ = 0. The remaining two-variable system is

σ̇2
b = 2

(
Db −

χarb
∗
0σ

2
b√

πδ(σ2
b + σ2

a)
3/2

)
σ̇2
a = 2Da + δ(σ2

b − σ2
a).

(3.9)

The generic cases of the nullclines for system (3.9) are plotted in Figure 3.5. In Figure

3.5A, the total amount of bacteria is b0 = 0.01 and the system contains no fixed points. The

variance of both populations generically blows up to infinity as time gets large for any initial

condition; that is, the bacterial population will always diffuse out into a uniform state if the
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population size is too low. As b0 surpasses some critical threshold b∗0, the system undergoes

a saddle-node bifurcation (Figure 3.6). In Figure 3.5B, b0 is increased to 0.012, and a

stable node and a saddle point now exist. The stable equilibrium point is analogous to the

pulse solution of system (3.1): the bacterial population and its chemoattractant accumulate

around the same center of mass (µ = µb − µa = 0) with a small variance around this point.

Consequently, the threshold b∗0 is analogous to the critical threshold (3.4) of the Keller-Segel

model (3.1), above which the bacteria are able to aggregate into a pulse. In the approximate

system (3.6), however, if the initial bacterial variance that is too large (that is, to the right of

the separatrix of the saddle point), then the variance of both populations increases without

bound. This case is analogous to the system diffusing out to the uniform solution, and so

system (3.6) is generically bistable when b0 is above a critical threshold.

Figure 3.5: Phase plane of system (3.9) describing steady states of the Gaussian approxima-

tion system. (A) The bacterial size b0 = 0.01 is below the critical threshold b∗0. Trajectories

approach the σ2
a-nullcline and then both σ2

a and σ2
b tend to infinity. (B) The bacterial pop-

ulation size b0 = 0.012 is above the critical threshold b∗0. The left-most equilibrium point is

a stable node. The right-most equilibrium point is a saddle, the stable manifold of which

is shown as the green curve. To the left of this stable manifold, trajectories tend toward

the stable node, and the bacteria consequently form a pulse. To the right of the manifold,

trajectories tend to infinity, and the bacteria diffuse out to the uniform solution. Arrows in

both panels indicate the direction of flow.
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Figure 3.6: Bifurcation diagram of system (3.9). The green curve corresponds to the σ2
b

coordinate of the stable node, and the red dashed curve corresponds to the σ2
b coordinate of

the saddle point. The σ2
b coordinate of the saddle point increases with b0, and consequently

the separatrix in Figure 3.5 gets pushed farther to the right.

We can explicitly calculate the critical population size b∗0 at which the saddle-node bi-

furcation occurs as a function of system parameters. The nullclines of system (3.9) intersect

when

Db −
χarb0σ

2
b√

πδ(2σ2
b + 2Da/δ)3/2

= 0,

or equivalently,

(σ2
b )

3 +

(
3
Da

δ
− χ2

ar
2b20

8πδ2D2
b

)
(σ2

b )
2 +

3D2
a

δ2
σ2
b +

D3
a

δ3
= 0. (3.10)

When

3
Da

δ
− χ2

ar
2b20

8πδ2D2
b

= −15

4

Da

δ
, (3.11)

Equation (3.10) can be written

(
σ2
b − 2

Da

δ

)2(
σ2
b +

Da

4δ

)
= 0,
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and therefore equation (3.11) is the condition for when the two positive roots of (3.10)

coalesce. This condition gives us the critical bifurcation value for b0,

b∗0 =
Db

√
54πDaδ

rχa
. (3.12)

If b0 > b∗0, then equation (3.10) has two roots and a stable pulse solution of system (3.16)

exists, and if b0 < b∗0, then the equation has no roots and the uniform state is the only

asymptotic solution of the system. Comparison to the critical value of btot in the Keller-

Segel system (3.1),

btot =
Db(π

2Da + δ)

rχa
,

shows that a change in any of the system parameters for (3.6) produces the same qualitative

effect on the threshold as in the PDE model (3.1).

In the following section, we introduce a similar approximation to the dynamics of a two-

population system and show that the asymptotic dynamics and critical threshold remain

qualitatively unchanged.

3.5 TWO-POPULATION GAUSSIAN APPROXIMATION

For the purposes of analyzing the behavior of interacting bacterial populations, we introduce

a second bacterial population β and corresponding chemoattractant concentration α, both

of which we again assume maintain a Gaussian profile. The dynamics governing b and β

are identical: both are mutually attracted by chemotaxis up both chemoattractant gradients

and the nutrient gradient and they diffuse at the same rate. With the addition of these

variables, the system we study becomes
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ḃ0 = 0

ȧ0 = rb0 − δa0

β̇0 = 0

α̇0 = rβ0 − δα0

φ̇0 = −κ〈bφ〉 − κ〈βφ〉

µ̇b =
χa〈bax〉+ χa〈bαx〉+ χφ〈bφx〉

b0

µ̇a =
rb0
a0

(µb − µa)

µ̇β =
χa〈βax〉+ χa〈βαx〉+ χφ〈βφx〉

β0

µ̇α =
rβ0
α0

(µβ − µα)

µ̇φ = − κ

φ0

(〈xbφ〉 − µφ〈bφ〉)−
κ

φ0

(〈xβφ〉 − µφ〈βφ〉)

σ̇2
b = 2Db + 2

χa〈(x− µb)bax〉+ χa〈(x− µb)bαx〉+ χφ〈(x− µb)bφx〉
b0

σ̇2
a = 2Da +

rb0
a0

(
σ2
b − σ2

a + (µb − µa)2
)

σ̇2
β = 2Db + 2

χa〈(x− µβ)βax〉+ χa〈(x− µβ)βαx〉+ χφ〈(x− µβ)βφx〉
β0

σ̇2
α = 2Da +

rβ0
α0

(
σ2
β − σ2

α + (µβ − µα)2
)

σ̇2
φ = 2Dφ +

κ

φ0

(
σ2
φ〈bφ〉+ σ2

φ〈βφ〉 − 〈(x− µφ)2bφ〉 − 〈(x− µφ)2βφ〉
)
.

(3.13)

We will first show that the asymptotic dynamics of system (3.13) are qualitatively the

same at the analogous one-population system (3.6), namely that any equilibrium point of

system (3.13) requires that µb = µβ = µa = µα. As in system (3.6), the external nutrient

population is entirely transient, φ0 → 0 as t→∞, so the nutrient will not affect asymptotic

stability. From the first four equations of system (3.13), we have that a∗0 = rb∗0/δ and

α∗0 = rβ∗0/δ at any equilibrium point, where b∗0 and β∗0 are constants. Moreover, the µa and
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µα equations require that µb = µa, and µβ = µα, respectively. We introduce the relative

center of mass coordinate µbβ = µb− µβ, which is then governed by the differential equation

µ̇bβ = −2χarβ0(µb − µα)

δ
√
π(σ2

b + σ2
α)3/2

exp

(
−(µb − µα)2

σ2
b + σ2

α

)
+

2χarb0(µβ − µa)
δ
√
π(σ2

β + σ2
a)

3/2
exp

(
−(µβ − µa)2

σ2
β + σ2

a

)

= −2χarβ0(µb − µβ)

δ
√
π(σ2

b + σ2
α)3/2

exp

(
−(µb − µβ)2

σ2
b + σ2

α

)
+

2χarb0(µβ − µb)
δ
√
π(σ2

β + σ2
a)

3/2
exp

(
−(µβ − µb)2

σ2
β + σ2

a

)

= − 2χarβ0µbβ
δ
√
π(σ2

b + σ2
α)3/2

exp

( −µ2
bβ

σ2
b + σ2

α

)
+

2χarb0(−µbβ)

δ
√
π(σ2

β + σ2
a)

3/2
exp

(
−µ2

bβ

σ2
β + σ2

a

)

=

(
− 2χarβ0
δ
√
π(σ2

b + σ2
α)3/2

exp

( −µ2
bβ

σ2
b + σ2

α

)
− 2χarb0
δ
√
π(σ2

β + σ2
a)

3/2
exp

(
−µ2

bβ

σ2
β + σ2

a

))
µbβ.

(3.14)

The expression multiplying µbβ is strictly negative, and so µ̇bβ = 0 if and only if µbβ = 0.

We have therefore shown that, at steady state, we must have µa = µb = µβ = µα.

The remaining dynamical variables are governed by the system

σ̇2
b = 2Db − 2

χarb0σ
2
b

δ
√
π(σ2

b + σ2
a)

3/2
− 2

χarβ0σ
2
b

δ
√
π(σ2

b + σ2
α)3/2

σ̇2
a = 2Da + δ(σ2

b − σ2
a)

σ̇2
β = 2Db − 2

χarb0σ
2
β

δ
√
π(σ2

β + σ2
a)

3/2
− 2

χarβ0σ
2
β

δ
√
π(σ2

β + σ2
α)3/2

σ̇2
α = 2Da + δ(σ2

β − σ2
α).

(3.15)

If we make the additional simplifying assumptions that the two bacterial populations

are of the same size (that is, b0 = β0) and have the same initial variance, and the two

chemoattractant populations have the same initial variance, then the first two equations are

identical to the second two equations in system (3.15), and consequently σ2
b = σ2

β for all time

(these assumptions ease analysis but are not necessary to achieve the results presented below;

see Discussion). Imposing these conditions, system (3.15) reduces to the two-dimensional

system

σ̇2
b = 2

(
Db − 2

χarb0σ
2
b

δ
√
π(σ2

b + σ2
a)

3/2

)
σ̇2
a = 2Da + δ(σ2

b − σ2
a).

(3.16)
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This system is nearly identical to system (3.9), the only difference being that the second

term inside the parentheses in the first equation is doubled in (3.16) because there are now

two bacterial populations producing chemoattractant. System (3.13) therefore produces the

same saddle-node bifurcation structure as the one-population system (3.6). We note that

the same bifurcation will occur if the two populations are not of equal size, though the

mathematical details become tedious and no more informative than this simplified case.

As with model (3.2), we will only consider regimes under which the bacterial popula-

tion maintains a size above the critical threshold b∗0 and can therefore maintain a pulse.

Two example outcomes of simulations of system (3.13) demonstrating agreement with the

experimentally observed outcomes are shown in Figures 3.7 and 3.8. The only difference

between the two simulations was the initial condition for shared nutrient, φ0. In Figure 3.7,

φ0(0) = 35, and the two populations combine; in Figure 3.8, φ0(0) = 25, and the two popula-

tions turn around and separately accumulates into meta-stable pulses (see Section 3.6). The

parameters chosen in both simulations are those in Table 3.2. The results shown in Figures

3.7 and 3.8 are consistent with the results from Section 3.3 of simulations of the Keller-Segel

model (3.2): increasing the initial amount of external nutrient caused the bacteria to switch

from a regime in which they turn around to one in which they combine (Figures 3.3 and

3.4).
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Figure 3.7: Bacterial pulses combine under the dynamics of system (3.13). The two pop-

ulations move toward one another up the external nutrient gradient until they collide and

combine to form a single pulse. The initial amount of nutrient is φ0(0) = 35. (A) Snap-

shots of the bacterial spatial profiles at different times, given by (3.7). The arrows indicate

direction of motion. (B) The positions of the peaks of the bacterial pulses over time.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

(B)

time

s
p

a
c
e

 

 

Pop 1

Pop 2

Figure 3.8: Bacterial pulses turn under the dynamics of system (3.13). The two populations

initially move toward one another up the external nutrient gradient but later change direction

and move back toward their own accumulated chemoattractant to form separate meta-stable

pulses. The initial amount of nutrient is φ0(0) = 25. (A) Snapshots of the bacterial spatial

profiles at different times, given by (3.7). The arrows indicate direction of motion. (B) The

positions of the peaks of the bacterial pulses over time.

Our simulations confirm that a change to the initial amount of available nutrient can
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cause a change in the outcome of the bacterial interaction. Variations in other parameters can

have similar effects on the bacterial behavior. In the following section, we explore the effects

of specific parameters and determine regions in various parameter spaces that correspond to

each outcome.

3.6 PREDICTING TURNAROUND

We are particularly concerned with the behavior of the center of mass of the bacterial pop-

ulation, µb (and equivalently µβ). One significant advantage of system (3.13) over the two-

population Keller-Segel model (3.2) in this regard is that system (3.13) explicitly includes

the time derivative of this center of mass and thus allows us to separately consider the effects

that the chemotactic attraction to the chemoattractant and to the external nutrient have on

its motion.

The differential equation for µb is

µ̇b =
χa〈bax〉+ χa〈bαx〉+ χφ〈bφx〉

b0

= − 2χaa0(µb − µa)√
π(σ2

b + σ2
a)

3/2
exp

(
−(µb − µa)2

σ2
b + σ2

a

)
− 2χaα0(µb − µα)√

π(σ2
b + σ2

α)3/2
exp

(
−(µb − µα)2

σ2
b + σ2

α

)
=− 2χφφ0(µb − µφ)√

π(σ2
b + σ2

φ)3/2
exp

(
−(µb − µφ)2

σ2
b + σ2

φ

)
,

(3.17)

where each of the three terms in the sum in the right hand side of (3.17) can be inter-

preted, in order, as the rate of change in position of the center of mass of b due to its

own chemoattractant, due to the other population’s chemoattractant, and due to the ex-

ternal nutrient, respectively. Since we assume that µb(0) = µa(0) = 0, µφ(0) = 0.5, and

µβ(0) = µα(0) = 1, we have that µ̇b(0) > 0 and µ̇a(0) = 0. The center of mass of the

bacteria is therefore generically ahead (with respect to the direction of motion) of the center

of mass of the chemoattractant for early time. We can now apprehend the mechanism that

allows for the bacteria to turn around: the bacteria are attracted inward toward the nutrient

and the second population’s chemoattractant and outward by their own chemoattractant. If
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the outward attraction is stronger than the inward attraction, then the bacteria will turn

around.

Upon inspecting equation (3.17), it is clear that the chemotactic pull toward any given

substance is related to the chemotactic sensitivity to the substance (χa and χφ), the distance

between the center of mass of the bacterial population and that of the substance, the variance

of the substance pulse, and the total amount of the substance present. Since the latter three

quantities are dynamic variables, direct analysis of their effects on the transient behavior of

µb is not viable. Instead, we consider the effects of parameters related to the dynamics of

these variables.

Our goal in studying system (3.13) is to determine parameter conditions under which

the two populations combine and those under which they turn around. Because equilibria

require that µb = µβ, the two populations will necessarily combine in asymptotic time, in

contrast to the Keller-Segel model (3.2). We therefore must take care in deciding what

qualifies as a turnaround in system (3.13). One possible condition is that µ̇b(t1) = 0 and

µ̇β(t2) = 0 for some times t1 and t2 (indicating that the centers of mass of both populations

have changed direction). However, this condition is not sufficient to determine when the

populations turn around and move away from one another. Figure 3.9 shows an example

where both populations quickly turn around, but shortly thereafter turn back around and

combine. Though the center of mass of each population does change direction in this example,

the overall outcome is not compatible with experimentally observed turnaround, in which

the two populations accumulate along opposite ends of the domain. We therefore adopt the

following more robust definition of turnaround.
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Figure 3.9: False turnaround. The vertical dashed line marks a turnaround in the center of

mass of both populations, but the populations combine together a short time later.

The chemotactic attraction of a bacterial population decays exponentially with the dis-

tance between the center of mass of the bacteria and that of the chemoattractant (see

equation (3.14)). Thus, if the two bacterial populations are sufficiently far apart, then the

chemotactic pull from each pulse of chemoattractant to the more distant bacterial population

is negligible, and the populations can separately approach a meta-stable state: each pop-

ulation asymptotes into it own pulse-like structure, subject to only an exponentially small

effect from the other population’s chemoattractant. This state is intuitively consistent with

the experimental state in which two bacterial populations accumulate along the boundaries

of the domain. In asymptotic time, the two populations will always combine, but the farther

apart the two populations are, the longer it will take for the combination to occur. Once the

populations do become sufficiently close, however, the relative effect that each population

experiences from the other population’s chemoattractant becomes nontrivial, and they com-

bine together relatively quickly. We therefore reason that if the two populations have not

combined after a large but finite amount of time, they must be in a meta-stable non-combined

state. We therefore take as our condition for turnaround that the centers of mass of the two

populations are distinct after a large amount of time; that is, that |µb(tc) − µβ(tc)| > ε for

some small, fixed distance ε at some large time t = tc.

We must take care in choosing values for ε and tc. For instance, in order to establish a
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boundary between the turnaround outcome and the combination outcome, we must choose

ε small enough so that the two populations will quickly combine if their center of masses

are ε apart. We determine through numerical simulation that when the distance between

the center of masses reaches ε = 0.1, that distance decreases monotonically and quickly.

Similarly, we must choose tc large enough to guarantee that the system did in fact reach a

meta-stable state and to avoid a false turnaround, as illustrated in Figure 3.9. Figure 3.10

shows the time t = tc at which the two populations will be ε = 0.1 apart over varied parameter

values. In each panel, the curve defines a boundary. For example, if φ0(0) is to the right of

the curve in the first panel, then the two populations will be ε apart sooner than tc. In each

case, the curve becomes very steep near a critical parameter value. Consequently, as long

we choose tc sufficiently large, our choice will not have much impact on the parameter value

that defines our boundary. Guided by this reasoning, we choose to take as our condition for

turnaround that the centers of the two populations are ε = 0.1 units away from one another

at tc = 500.
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Figure 3.10: Dependence of time to combine on system parameters. In order to combine

at time t, the parameter on the horizontal axis must be the value specified by the curve.

Sensitivity of the time to combine tc on each parameter considered decreases once tc exceeds

some quantitative threshold. Similar figures for parameters N0 and D not shown.

To apply this condition, we solve a modification of system (3.13) as a boundary value

problem with boundary condition |µb−µβ| = ε = 0.1 at time t = 500. To satisfy all boundary

conditions, we must consider one of the pertinent parameters as a stationary variable. For

example, to determine the effect of χa on the transient behavior, we include the differential
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equation χ′a = 0 in the system. We then use the continuation software AUTO to solve this

boundary value problem across a varied parameter. The solution curve in parameter space

defines a boundary between regions in which our system predicts the bacteria turn around

and in which it predicts they combine.

Figure 3.11 shows the results of solving this boundary value problem. In this figure,

N0 = b0 = β0, D = Db, and Da = Dφ = 20×D. Each panel shows a given parameter space

divided into two regions. Parameter pairs chosen from the grey region in each panel represent

a regime in which the two E. coli populations turn around; parameters chosen from the white

region correspond to a regime in which they combine. These figures provide a picture of the

relative contributions of the parameters considered. For example, Figure 3.11A shows that

if the bacterial population size is increased, more external nutrient is needed to result in the

bacterial populations combining. This is easy to understand: if the bacterial populations

are larger, then they produce more chemoattractant, and the outward attraction toward

the bacteria’s own chemoattractant will be stronger, requiring a stronger inward attraction

toward the nutrient to result in combination. Our simulations presented in Figure 3.7 and

3.8 agree with this prediction. The parameters chosen in Figure 3.7 correspond to the black

circle in Figure 3.11 and resulted in a combination of the two pulses; the parameters in

Figure 3.8 correspond to the black square and results in the pulses turning around.

Figures 3.11B and C are more subtle. Increasing D can be interpreted as, for example,

decreasing the viscosity of the medium in which the bacteria are suspended, thereby increas-

ing the diffusivity of the bacterial and chemical populations. Figure 3.11B shows that the

higher the diffusion rate, the less initial nutrient is necessary to cause the bacterial popula-

tion to combine. For too fluid of a medium, the chemoattractant of both populations spreads

quickly across the spatial domain to reach the other population. This results in a mutual

attraction of both populations toward one another, and the external nutrient is no longer

needed to pull both populations inward. Figure 3.11C similarly shows that in order for the

two populations to turn around when diffusivity is high, they need a large initial population

resulting in a large initial supply of chemoattractant.

Figure 3.11D shows the chemotactic sensitivity of the bacteria toward the chemoattrac-

tant, χa, versus the sensitivity toward the nutrient, χφ. While these parameters do not
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change from trial to trial, this figure is easily interpreted and agrees with intuition: a strong

attraction toward the nutrient will always result in the bacterial populations being pulled

quickly inward and combining. If the attraction toward the chemoattractant is sufficiently

high relative to the attraction toward the nutrient, then the bacteria will be pulled strongly

outward toward their previously accumulated chemoattractant and hence will turn around.
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Figure 3.11: Boundaries in parameter space between combination (white) and turnaround

(grey). The black circle and square in panel A correspond to the parameter values chosen in

Figures 3.7 and 3.8, respectively. The criterion for combination is µb−µβ = 0 before t = 500.

Whenever a parameter is not varied, N0 = 3, D = 10−5, χa = 0.00025, χφ = 0.0002, and

φ0(0) = 35.
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3.7 DISCUSSION

In this chapter, we study the interaction of bacterial pulses in a one-dimensional nutrient

gradient. We present experimental results due to the Salman laboratory in which two identi-

cal populations of E. coli moving toward one another up a nutrient gradient change direction

and move back in the direction they came from, rather than continuing toward each other

to combine into one indistinguishable population. We capture this turn-around behavior

analytically using the classic Keller-Segel model for bacterial chemotaxis. We then use a

heuristic argument to develop a system of ordinary differential equations approximating the

spatio-temporal dynamics of the Keller-Segel model. Our approximation facilitates the study

of the global dynamics of the system and the exploration of effects of parameter variation

on population dynamics. After verifying that the approximating system agrees qualitatively

with both experiment and with the Keller-Segel model, we define a condition on system

parameters that determines whether the bacterial populations will combine or turn around,

then develop and numerically solve a boundary value problem to find the boundary in various

parameter spaces separating these two outcomes.

Our results leave us with predictions about the mechanisms by which the E. coli popu-

lations manage to turn around and move away from each other and the nutrient gradient.

System (3.6) shows that the center of mass of a bacterial population is generically between

the center of mass of its chemoattractant and that of the external nutrient for early time.

This allows the bacteria to turn around if the outward attraction toward the chemoattrac-

tant is stronger than the inward attraction toward the nutrient. Outward attraction can

overcome inward attraction in a number of ways. For example, if the amount of chemoat-

tractant accumulated on the edges of the spatial domain is large relative to the amount of

nutrient between the bacterial populations, our approximating system predicts the bacteria

will turn back toward the attractant. If the medium in which the bacteria are suspended is

too fluid, our system predicts that the two bacterial populations will likely combine, because

the chemoattractant will spread across the spatial domain, removing the driver of the direc-

tion reversal. Variations in the total amount of available nutrient or fluidity of the medium

can therefore lead to qualitative changes in the behavior of the bacteria.
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The predictions made by our approximate system agree qualitatively with the the Keller-

Segel model. Figures 3.3 and 3.4 in Section 3.3 show that decreasing the initial amount of

nutrient can cause the bacterial populations to switch from a combination outcome to a

turnaround outcome. Similarly, increasing the diffusivity of all three populations results in

the bacterial populations combining (results not shown). This agreement suggests that our

Gaussian approximation system offers reasonable predictions to be tested experimentally.

Our analysis of the two population system assumed that both bacterial populations

were of equal size. This assumption simplified our analysis by reducing the number of

free parameters, but might be unrealistic, as population size could vary between the two

populations during an experiment. Simulations of system (3.13) with unequal but similar

population sizes agree qualitatively with those presented in this chapter, and the dynamics

we observed are therefore not a result of perfect symmetry in the populations.

Previous works have derived approximate ODE systems to analyze the interaction of

pulses in reaction-diffusion models [25, 45, 87]. These works use asymptotic matching meth-

ods to derive first-order approximation for an ODE describing the dynamics of the distance

between slowly varying spike peaks. The stability of the origin of the resulting ODE deter-

mines whether the two pulses are predicted to combine or repel. However, this framework

depends heavily on the dynamics of the pulses being slow, and does not allow for analysis

of the transient behavior of pulses. Our approximating system and the method used to

derive it provide an efficient and tractable framework for analyzing the transient dynamics

of complex systems. A similar analysis was conducted in [2], in which the authors used

singular perturbation techniques to derive a Lotka-Volterra-like ODE competition model be-

tween invasive bacteria and host leukocytes from a Keller-Segel system adapted to model

the inflammation response due to bacterial infection. The resulting approximated system

allowed the authors to conduct an analysis of the global behavior of the system as a function

of model parameters, but removed all spatial aspects of the system. Our approximation

preserves the spatial dimension by considering the temporal dynamics of the key quantities

that characterize spatial features of our model populations.

There a several open directions related to this study. The first is to explore other, more

quantitatively accurate approximations to the population distributions. While the bacteria
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maintains a Gaussian pulse-like distribution in the Keller-Segel model, the chemoattrac-

tant and nutrient populations do not necessarily do the same, especially as two populations

interact. One could impose a different assumption on the distribution of the chemical popu-

lations, the results of which could be important in understanding the transient behavior we

studied in this chapter. An improvement could be made through better parameter fitting.

Our study is primarily qualitative in flavor, and a more quantitatively accurate approxi-

mation could produce more precise experimental predictions. Our heuristic approximation

could easily be applied as a method of moment closure for other spatio-temporal models

whose nonlinearities make parameter exploration and transient analysis tedious or impos-

sible. Finally, it would be interesting to apply our Gaussian approximation method to a

two-dimensional Keller-Segel model and explore transient dynamics, asymptotic states, and

pattern formation.

3.8 APPENDIX: ANALYSIS OF KELLER-SEGEL MODEL

3.8.1 Stability of uniform solution

Here we perform linear stability analysis of the uniform solution of system (3.2),

b1 = b∗1

b2 = b∗2

a =
r

δ
(b∗1 + b∗2)

φ = 0.

(3.18)

Since the only steady state solution of the external nutrient is φ = 0, φ cannot affect

the asymptotic stability of steady state solutions. Therefore, to study the stability of the

uniform solution of system (3.2), we can instead study the uniform steady state of system
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(3.1); that is, constant solutions of the system

0 = Db
∂2b

∂x2
− χa

∂

∂x

[
b
∂a

∂x

]
0 = Da

∂2a

∂x2
+ rb− δa

∂b

∂x

∣∣∣∣
x=0,1

=
∂a

∂x

∣∣∣∣
x=0,1

= 0.

(3.19)

System (3.19) admits the trivial solution

b = b0

a =
r

δ
b0,

(3.20)

where b0 is a positive constant.

Following the technique described in, for example, [26, 55], we linearize system (3.19)

about the solution (3.20). We assume that to first order stationary solutions are of the form

b(x) = b0 + C1 cos kπx

a(x) =
r

δ
b0 + C2 cos kπx,

(3.21)

where the argument is kπ in order to satisfy the no-flux boundary conditions and k > 0 is

the wavenumber. Plugging (3.21) into (3.19) yields the system

Jb = 0,

where b = (b(x), a(x))t and J is the Jacobian matrix

J =

 −(kπ)2Db (kπ)2χab0

r −(kπ)2Da − δ

 .

The matrix J has two eigenvalues,

λ+,−(k2) =
τ(k2)±

√
τ(k2)2 − 4∆(k2)

2
, (3.22)

where

τ(k2) = −(kπ)2(Db +Da)− δ

∆(k2) = (kπ)2Db

(
(kπ)2Da + δ

)
− (kπ)2rχab0.
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The smaller (real part) of these two eigenvalues, Re(λ−(k2)), is always negative for any k,

and consequently the uniform solution will only lose stability if Re(λ+(k2)) > 0 for any

k ∈ N. The real part of λ+(k2) is plotted in Figure (3.12) for different values of b0. The

nodes on each curve denote the value of λ+(k2) at values of k2 for k ∈ N. If any of these

nodes are above the horizontal axis, small spatial perturbations to the uniform solution will

grow.
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Figure 3.12: Dispersion relation.

3.8.2 Existence of bump solution

If the real part of λ+(k2) is positive for 1 ≤ k ≤ n, we expect a stationary waveform

solution with wavenumber 1 ≤ k ≤ n. Here we investigate the existence of such solutions.

After integrating both sides of the first equation of system (3.19), the resulting equation is

separable with solution

b = σ exp

(
χaa

Db

)
, (3.23)

where σ is a constant of integration defined by the integral condition

btot =

∫ 1

0

b(x)dx =

∫ 1

0

σ exp

(
χaa(x)

Db

)
dx. (3.24)
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Plugging equation (3.23) into the second equation of system (3.19) provides us with the

second order nonlinear differential equation

0 = Da
∂2a

∂x2
+ rσ exp

(
χaa

Db

)
− δa. (3.25)

Defining v = a′, where ′ denotes differentiation with respect to x, and imposing no-flux

boundary conditions allows us to write equation (3.25) as the system

a′ = v

v′ =
1

Da

[
δa− rσ exp

(
χaa

Db

)]
v(0) = 0

v(1) = 0.

(3.26)

Combining system (3.26) with integral condition (3.24), stationary solutions must therefore

satisfy the boundary value problem

a′ = v

v′ =
1

Da

[
δa− rσ exp

(
χaa

Db

)]
b′sum = σ exp

(
χaa(x)

Db

)
σ′ = 0

v(0) = 0

v(1) = 0

bsum(0) = 0

bsum(1) = btot.

(3.27)

We numerically solve system (3.27) using XPPAUT and continue the solution along the pa-

rameter btot. The continuation yields a branch of nonuniform stationary solutions bifurcating

from the line of uniform solutions, shown in Figure 3.13.
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Figure 3.13: Stationary solution bifurcation. The solid blue curves correspond to stable

solutions. The red curves correspond to unstable solutions.

3.8.3 Normal form analysis

The numerically generated bifurcation curves in Figure 3.13 suggest the possibility of a

subcritical pitchfork bifurcation, and consequently bistability between the uniform solution

and the nonuniform stationary bump solution. Our goal now is to characterize the criticality

of the bifurcation. To this end, we use perturbation analysis to derive the normal form of

the bifurcation.

As in the numerical analysis, we wish to use the parameter btot =

∫ 1

0

b(x)dx as our

bifurcation parameter. To introduce btot explicitly into our system, we define B = b/btot and

rewrite system (3.19) in terms of B, resulting in

0 = Db
∂2B

∂x2
− χa

∂

∂x

[
B
∂a

∂x

]
0 = Da

∂2a

∂x2
+ rbtotB − δa

∂B

∂x

∣∣∣∣
x=0,1

=
∂a

∂x

∣∣∣∣
x=0,1

= 0.

(3.28)

We perturb the system off of the critical uniform solution defined by btot such that λ+(1) = 0;
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that is, we perturb the solution

B = 1

btot = btot∗

a =
r

δ
btot∗,

by

B = 1 +B1ε+B2ε
2 +B3ε

3 +O(ε4)

btot = btot∗ + btot1 ε+ btot2 ε2 + btot3 ε3 +O(ε4)

a =
r

δ
btot∗ + a1ε+ a2ε

2 + a3ε
3 +O(ε4).

Plugging these ε-expansions into system (3.28) and collecting similar orders of ε produces a

system of equations for each order εk, k = 0, 1, 2, . . . , of the form

Luk = fk,

where

L =

 Db
∂2

∂x2
−χa ∂

∂x

rbtot0 Da
∂2

∂x2
− δ

 ,

uk =

 Bk

ak

 ,

and fk is a function of Bi, b
tot
i , and ai for i = 0, 1, . . . , k − 1. Solving the systems through

O(ε2) imposing no flux boundary conditions and the integral conditions

∫ 1

0

Bi(x)dx = 0 for

i ≥ 1 yields

B = 1 +
χa
Da

L cos(πx)ε+O(ε2)

btot = btot0 + btot2 ε2 +O(ε3)

a = rbtot0 /δ + L cos(πx)ε+O(ε2),

where L is the nontrivial root of the pitchfork bifurcation equation

γ1b
tot
2 + γ3L

3 = 0,

and γ1 > 0, γ3 are functions of model parameters.
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The bifurcation is supercritical if γ3 < 0 and subcritical if γ3 > 0. Figure 3.14 shows the

agreement between the above analysis and the numerically generated bifurcation diagrams

near btot∗.
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Figure 3.14: Perturbation analysis of the bifurcation. In both frames, the blue line corre-

sponds to the family of uniform solutions for varied btot, and the blue curve corresponds

to a family of nonuniform stationary solutions. The black-dashed curve is the analytically

generated bifurcation curve. A. The bifurcation is supercritical (γ3 < 0). B. The bifurcation

is subcritical (γ3 > 0).
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4.0 QUALITATIVE EFFECTS OF MONOVALENT VACCINATION

AGAINST ROTAVIRUS: A COMPARISON OF NORTH AMERICA AND

SOUTH AMERICA

4.1 INTRODUCTION

Rotavirus is the leading cause of severe diarrhea in children under five years of age worldwide,

resulting in about 453,000 deaths each year [89]. By the age of five, one in five children will

visit a clinic, one in 50 will be hospitalized, and approximately one in 205 will die due to

rotavirus infection [22].

Rotavirus strain distribution varies across continent and climate. G1P[8] is the most

prevalent human rotavirus strain worldwide, and represents the majority of rotavirus infec-

tions in North America (Gentsch et al. 2009, Hull et al. 2011). Although a plurality of cases

in South America, Africa, and Asia are due to G1P[8], the majority of cases are collectively

caused by strains G3P[8], G4P[8], G9P[8], G2P[4], and a combination of less common strains

[73]. The most prevalent strain in a region can change over time, however. Immunity gained

after recovery from infection of the current dominant strain exerts selective pressure on that

strain, allowing another strain to displace it as the most prevalent [66].

Vaccination programs are considered to be the most effective public health strategies

for reducing the incidence rate of severe rotavirus infections. Rotarix is a monovalent vac-

cine manufactured by GlaxoSmithKline that contains the most common human rotavirus

strain, G1P[8] [37]. Rotarix is administered in two doses: the first dose between 6 and 14

weeks of age, and the second by 8 months of age, with at least 4 weeks between doses.

Studies have shown that after the second dose, Rotarix provides 90.8% protection against

severe rotavirus gastroenteritis caused by G1P[8], 86.9% protection against severe rotavirus
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gastroenteritis caused by G3P[8], G4P[8], or G9P[8], and 45.4% protection against severe

rotavirus gastroenteritis caused by G2P[4] for up to twelve years after inoculation [70, 97].

Rotarix was introduced in countries throughout North and South America between 2006

and 2013 [60]. Since its introduction, many studies have sought to determine long term

effects on disease prevalence and economic impact [7, 8, 79, 80, 78, 64, 65]. However, little

has been done to compare the effect of the vaccination on regions with highly varied strain

distribution. A multi-strain mathematical model of rotavirus transmission can clarify the

effect that vaccination might have on populations with different strain distributions.

In this chapter, we first introduce a two-strain, pre-vaccination rotavirus transmission

model. We use our model to investigate the transient and asymptotic behavior of rotavirus

within a population, primarily as a function of transmission rate. Our model predicts that

two strains of rotavirus can coexist either at fixed infected proportions of the population

or oscillate over time, with periodic switching of the more prevalent strain over time. We

mathematically explore the periodic behavior to determine what drives these oscillations in

the Appendix. We then expand our model to include a class of individuals vaccinated with

Rotarix, and we examine the effects of the vaccine on epidemic thresholds and transient

behavior. Finally, we explore how vaccination affects the regions with widely differing strain

distributions. In each case considered, infection due to rotavirus is substantially decreased

for up to ten years after the introduction of the vaccination program. If the efficacy of

the vaccination against heterotypic strains is sufficiently low, then our model predicts the

potential for major strain replacement in countries where G1P[8] is the dominant serotype.

4.2 TWO STRAIN MODEL: DEVELOPMENT AND BASIC ANALYSIS

We developed a two-strain model of rotavirus transmission, Figure (4.1), in order to deter-

mine epidemic thresholds and behavior in an unvaccinated population.
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Figure 4.1: The model diagram. Natural mortality rate µ not shown.

Throughout this work, we assume the first strain is G1P[8], and the second strain is a

weighted combination of all remaining strains within the population. Individuals are born

into the maternally protected population, M. These individuals are immune to both strains

of rotavirus for a period of 1/τM weeks due to maternal antibodies. After maternal immunity

wears off, they enter the susceptible population, S. Here they are at the risk of becoming

infected with either strain of rotavirus. Susceptible individuals become infected with strain

i at rate βi upon contact with an infected individual in the class I0i, and at rate ρβi upon

contact with individuals who have previously been infected with and recovered from strain

j and are now infected with strain i, Iji, j 6= i; i, j = 1 or 2. The total transmission rate

is written concisely as the force of infection λi = βi(I0i + ρIji)/N . Upon primary infection

with strain i, they enter the class I0i and remain infectious for 1/γp weeks on average, then

recover to the class Ri, where they are temporarily immune. The immunity wears off after

1/τp weeks and the recovered individuals enter class Yi, where they are susceptible to a

secondary infection of strain j, i 6= j, but the risk of secondary infection is reduced by a

factor of σ [93]. Thus, secondary infections occur at a rate (1−σ)λj, and infected individuals

enter the Iij class, remain there for 1/γs weeks on average, then recover to class W where they
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are completely immune to both strains for 1/τs weeks. Once an individual loses immunity,

they then become susceptible again to both strains with added partial immunity θ in the H

class, where upon infection at rate (1 − θ)λj, j = 1, 2, he or she enters class Iij and stays

infected for 1/γs weeks, and recovers into class W [93]. Consequently, no individual ever

remains completely immune. Finally, we assume death due to infection is negligible and that

the birth and death rates are equal so that the total population remains constant [78].

Our model assumes that individuals who have recovered from strain i = 1, 2 must become

infected with j 6= i before becoming infected with strain i again. This assumption is based on

the findings that secondary infections were more likely to be caused by another strain due to

homotypic protection (Velaquez et al. 1996) and that protection following natural infection

was predominantly against homotypic strains (Clarke and Desselberger 2015). Other studies

have found no evidence of homotypic protection, however (Gladstone et al. 2011). We

therefore explore the possibility of reinfection with the same strain in Section 4.4.

The assumptions above and the diagram in Figure 4.1 lead us to the following system of

differential equations:
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dM
dt

= µN − (τM + µ)M

dS
dt

= τMM − λ1S − λ2S − µS

dI01
dt

= λ1S − (γp + µ)I01

dI21
dt

= (1− σ)λ1Y2 + (1− θ)λ1H − (γs + µ)I21

dI02
dt

= λ2S − (γp + µ)I02

dI12
dt

= (1− σ)λ2Y1 + (1− θ)λ2H − (γs + µ)I12

dR1

dt
= γpI01 − τpR1 − µR1

dR2

dt
= γpI02 − τpR2 − µR2

dY2
dt

= τpR2 − (1− σ)λ1Y2 − µY2

dY1
dt

= τpR1 − (1− σ)λ2Y1 − µY1

dW
dt

= γsI21 + γsI12 − τsW − µW

dH
dt

= τsW − (1− θ)(λ1 + λ2)H − µH,

(4.1)

where the force of infection is given by λ1 = β1(I01+ρI21)
N

and λ2 = β2(I02+ρI12)
N

.
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Variables

M Immune due to maternal antibodies

S Susceptible

I01 Infected with strain 1 without any prior infection

I02 Infected with strain 2 without any prior infection

R1 Recovered from strain 1

R2 Recovered from strain 2

Y1 Susceptible to strain 2, but immune to strain 1

Y2 Susceptible to strain 1, but immune to strain 2

I21 Infected with strain 1 after recovering from strain 2

I12 Infected with strain 2 after recovering from strain 1

W Recovered from both strains and immune to both

H Partially susceptible to both strains

Table 4.1: System variables

Parameters Values Source

µ Birth and natural death rate 0.000275 wk−1

τM Rate at which maternal protection wears off 3
52 wk−1 [6],[64],[20]

β1 Transmission coefficient of strain 1 8-17.5 wk−1

β2 Transmission coefficient of strain 2 6.1-18.2 wk−1

ρ Reduction of transmissibility of secondary infections 0.5

γp Rate of recovery from first infection 1 wk−1 [98],[100]

γs Rate of recovery from secondary infection 2 wk−1 [95],[96]

τp Rate at which partial protection wears off after one infection 1
52 wk−1 [15],[52]

τs Rate at which partial protection wears off after secondary infection 1
52 wk−1 [15],[52]

σ Reduction in susceptibility after first infection 0.38 [93]

θ Reduction in susceptibility after secondary infection 0.63 [93]

Table 4.2: System parameters

In system (4.1), N is the total population and Ṅ = 0, so the total population is constant.

By rescaling the state variables M → M/N , S → S/N , and so on, we may assume that
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N = 1, and so each epidemiological class represents a proportion of the total population.

Our analysis will focus largely on the behavior of the primary infected classes, I01 and

I02, because secondary infections are generally asymptomatic or mild compared to primary

infections (Velázquez et al. 1996). We begin our analysis of system (4.1) by identifying

steady states and their stability. System (4.1) supports four distinct equilibria in the positive

orthant: one disease-free steady state, one with only strain 1 endemic, one with only strain

2 endemic, and one with both strains endemic. We will call these steady states E0, E1, E2,

and E3, respectively.

4.2.1 The disease-free steady state and the basic reproductive numbers

The disease-free steady state is given by E0 = (M0, S0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), where M0 and

S0 must obey

0 = µ− (τM + µ)M0

0 = τMM
0 − µS0,

or equivalently,

M0 =
µ

τM + µ

S0 =
τMM

0

µ
=

τM
(τM + µ)

.

To determine epidemic thresholds, we construct the basic reproductive number of each strain,

R0,1 and R0,2, by using the method described by [92]. Following their method, we define x =

(x1, x2) = (I01, I21), F1,i(x) to be the rate of new infections in compartment xi, and V1,i(x)

to be the difference of the rate of transfer out of compartment xi and the rate of transfer into

compartment xi by any means other than infection. We then know that R0,1 = ρ(F1V
−1
1 ),

the spectral radius of F1V
−1
1 , where F1 = [

∂F1,i

∂xj
], and V1 = [

∂V1,i
∂xj

]. Specifically, we have

F1 =

β1S0 β1ρS
0

0 0

 and V −11 =

 1
γp+µ

0

0 1
γs+µ

 ,
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which yields

R0,1 =
β1S

0

γp + µ
=

β1τM
(γp + µ)(τM + µ)

=

(
τM

τM + µ

)
β1

(
1

γp + µ

)
. (4.2)

By symmetry, we also have

R0,2 =
β2S

0

γp + µ
=

β2τM
(γp + µ)(τM + µ)

=

(
τM

τM + µ

)
β2

(
1

γp + µ

)
. (4.3)

These values are the product of the probability of transition into the S class from the M

class, τM/(τM +µ), the transmission rate of the strain, βi, and the average time period spent

in the I0i class, 1/(γp + µ). We therefore define R0,i as the number of secondary infections

resulting from a single infection of strain i in a naive population. Theorem 2 from van den

Driessche and Watmough provides us with the following theorem summarizing this result.

Theorem 1. The disease free steady state E0 is locally asymptotically stable (l.a.s.) if both

R0,1 < 1 and R0,2 < 1 and unstable if either R0,1 > 1 or R0,2 > 1.

More concisely, Theorem 1 states that if either basic reproductive number R0,i exceeds

the critical threshold of one, then rotavirus can become endemic in the population.

4.2.2 Singly Endemic Steady States

Now that we have established a necessary condition such that either strain can become

endemic, we derive conditions under which one of the strains competitively excludes the

other, and conditions under which the two strains can coexist.

In order for strain 1 to persist in the population at steady state E1, we must have

0 = µ− (τM + µ)M1

0 = τMM
1 − λ1S1 − µS1

0 = λ1S
1 − (γp + µ)I101 (4.4)

0 = γpI
1
01 − τpR1

1 − µR1
1

0 = τpR
1
1 − µY 1

1 .

It is easy to show that I121 = 0 at E1, and so λ1 = β1I01 when strain 2 is extinct and strain

1 reaches steady state. Equivalently, Eqs. (4.4) are satisfied when
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M1 =
µ

τM + µ
= M0

S1 =
γp + µ

β1

I101 =
τMM

1

γp + µ
− µ

β1

R1
1 =

γp
τp + µ

(
τMM

1

γp + µ
− µ

β1

)
Y 1
1 =

τpγp
(τp + µ)µ

(
τMM

1

γp + µ
− µ

β1

)
,

and it is clear that this steady state exists in the positive orthant if and only if τMM1

γp+µ
− µ

β1
> 0,

that is, when R0,1 > 1.

Now that we’ve established existence of E1, we characterize its stability in the following

theorem.

Theorem 2. Given R0,i > 1, the steady state Ei is locally asymptotically stable if R̂0,j :=

βjS
i

γp+µ
+

βjρ(1−σ)Y i
i

γs+µ
< 1 and unstable if R̂0,j > 1, where i, j ∈ {1, 2}, i 6= j.

Proof. The Jacobian of the of the system evaluated at E1 has twelve eigenvalues. The first

six of these eigenvalues are easy to find, and they are −µ,−µ,−(µ + τp),−(µ + τp),−(µ +

τM),−(µ+β1I
1
01(1−σ)). Since R0,1 > 1 by assumption, I101 > 0, so each of these eigenvalues

are negative. The remaining six eigenvalues are comprised of the roots of three separate

quadratic polynomials, the first two of which are

p1(x) = x2 +
(
β1I

1
01 + µ

)
x+ β1I

1
01(γp + µ)

p2(x) = x2 +
(
γs + τs + 2µ+ β1I

1
01(1− θ)

)
x+ (µ+ γs)(µ+ τs) + β1I

1
01(1− θ)(µ+ τs + γs).

Since the nonleading coefficients of these two polynomials are positive, their roots have

negative real part.

The remaining two eigenvalues are roots of the quadratic polynomial

p(x) = x2 + bx+ c, (4.5)

where
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b = γb + γs + 2µ− β2S1 − β2ρ(1− σ)Y 1
1

and

c = (γp + µ)(γs + µ)− β2S1(γs + µ)− β2ρ(1− σ)Y 1
1 (γp + µ).

Thus, the eigenvalues have negative real part if and only if b > 0 and c > 0. It follows

that

b > 0 ⇐⇒ γp + γs + 2µ > β2S
1 + β2ρ(1− σ)Y 1

1 (4.6)

and

c > 0 ⇐⇒ (γp + µ)(γs + µ) > β2S
1(γs + µ) + β2ρ(1− σ)Y 1

1 (γp + µ). (4.7)

The inequality (4.7) is equivalent to

1 >
β2S

1

γp + µ
+
β2ρ(1− σ)Y 1

1

γs + µ
. (4.8)

Note that since γp, γs, and µ are all strictly positive values,

β2S
1

γp + µ
+
β2ρ(1− σ)Y 1

1

γs + µ
>

β2S
1

γp + γs + 2µ
+
β2ρ(1− σ)Y 1

1

γp + γs + 2µ
, (4.9)

and so by (4.8) and (4.9), we have

1 >
β2S

1

γp + γs + 2µ
+
β2ρ(1− σ)Y 1

1

γp + γs + 2µ
(4.10)

and thus by multiplying both sides of (4.10) by γp + γs + 2µ, we get (4.6). Thus, we

have that (4.7) implies (4.6), and so the condition (4.8) is necessary and sufficient for all

eigenvalues of the Jacobian matrix evaluated at E1 to have negative real part. We define

R̂0,2 = β2S1

γp+µ
+

β2ρ(1−σ)Y 1
1

γs+µ
, and the claim is proven.

The quantity R̂0,j is not a basic reproductive number in the sense of R0,j above, but

rather an invasion reproductive number for strain j when strain i is already present. It can

be understood as the number of infections resulting from a single infection of strain j when

only strain i 6= j is endemic. For clarity, consider the case when i = 1 and j = 2. The

quantity β2S
1/(γp + µ) is the number of primary infections resulting from a single case of

strain 2 infection in a population where strain 1 is endemic; that is, the number of individuals
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who transition from the S class into the I0,2 class due to contact with an individual infected

with strain 2 (I02 or I12). Similarly, the quantity β2ρ(1 − σ)Y 1
1 /(γs + µ) is the number

of secondary infections resulting from the same single case of strain 2 infection; i.e., the

number of individuals who transition from Y1 into I12 due to contact with a strain 2-infected

individual. If infections due to strain 2 result in more than one additional infection on

average per case, then strain 2 will become endemic in the population.

Notice that for both j = 1, 2,

R̂0,j =
βjS

i

γp + µ
+
βjρ(1− σ)Y i

i

γs + µ

=
βj
βi

+ βjρ(1− σ)
τp

τp + µ

γp
γs + µ

(
τM

(τM + µ)(γp + µ)
− 1

βi

)
<
βj
βi

+ βj

(
τM

(τM + µ)(γp + µ)
− 1

βi

)
=

βjτM
(τM + µ)(γp + µ)

=
βjR0,j

βj

= R0,j.

(4.11)

The inequality is due to the fact that τp/(τp + µ) and γp/(γp + µ) are both between 0 and

1 and the assumption that ρ and σ are both between 0 and 1. The second to last equality

uses the identity R0,j/βj = τM/(γp + µ)(τM + µ). We therefore have that R̂0,j < R0,j, and

importantly, we have that R̂0,j > 1 only if R0,j > 1.

Theorem 2 partially determines the asymptotic behavior of the system and provides us

with four cases to be analyzed: (1) R̂0,1 < 1 and R̂0,2 < 1, (2) R̂0,1 > 1 and R̂0,2 < 1, (3)

R̂0,1 < 1 and R̂0,2 > 1, and (4) R̂0,1 > 1 and R̂0,2 > 1. Case (1) is impossible, as

R̂0,2 < 1 ⇐⇒
β2S

1

γp + µ
+
β2ρ(1− σ)Y 1

1

γs + µ
< 1 ⇐⇒

β2
β1

(
1 +

ρ(1− σ)τpγp(R0,1 − 1)

(γs + µ)(τp + µ)

)
< 1 =⇒ (since R0,1 > 1)

β2
β1

< 1,
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and so if R̂0,2 < 1 then β2 > β1. Similarly, if R̂0,1 < 1 then β1 > β2, and so R̂0,2 < 1 and

R̂0,1 < 1 can never be simultaneously true.

In case (2), strain 1 is much better suited to persist in the population than strain 2 in

the sense of epidemic thresholds R̂0,1 and R̂0,2. Consequently, E1 is the only stable fixed

point in the positive orthant. Strain 1 will therefore ultimately remain endemic while strain

2 will become extinct. Similarly, in case (3), since E2 is the only stable fixed point, strain 2

will remain endemic and strain 1 will become extinct.

In case (4), both strains are above their respective epidemic thresholds, and so both can

become and remain endemic in the population. The long term behavior of the system is not

entirely determined by the stability of E1 and E2, shown in Figure 4.2 in Section 4.2.3.

4.2.3 Dually Endemic Steady States

It was shown in Section 4.2.2 that both strains of rotavirus can persist in the population

long term only if R̂0,1 > 1 and R̂0,2 > 1. Given that multiple strains of rotavirus are found

in almost all countries where rotavirus is endemic [73], we study the asymptotic behavior of

the system where R̂0,1 > 1 and R̂0,2 > 1 using numerical simulations.

Specifically, we used XPPAUT [29]) in order to numerically track the stability of the

dually endemic steady state E3 as a function of the transmission rates β1 and β2 (Figure

4.2). Region I in Figure 4.2 corresponds to the case when neither strain can persist because

R0,1 < 1 and R0,2 < 1 (E0 stable). Regions II and III correspond to cases (2) and (3),

respectively, from Section 4.2.2; points on the lower red line separating regions II and V

satisfy R̂0,1 = 1, and points on the upper red line separating regions III and V satisfy

R̂0,2 = 1. Regions IV and V together describe case (4). In region V, above the red lines

and on the outside of the blue curve, E3 is a stable steady state, and both strains will

remain endemic and tend asymptotically toward a fixed resting state. Upon crossing the

blue curve into region IV, however, the system undergoes a Hopf bifurcation, and both

strains are attracted to a stable limit cycle. Both strains still persist in the population,

but they alternate predominance. We study the mechanism that drives these oscillations in

Section 4.6.
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Figure 4.2: Rotavirus behavior as a function of transmission rates β1 and β2, without vacci-

nation. In region I, neither strain can be endemic. In region II, the first strain is attracted

to a stable non-trivial steady state, while the second strain becomes extinct. In region III,

the second strain is attracted to a stable non-trivial steady state, while the first strain be-

comes extinct. In region IV, both strains exist and oscillate. The blue curve denotes the

parameter values for which the steady state E3 goes through a Hopf bifurcation. In region

V, both stains are endemic and are attracted to the stable fixed point E3. The horizontal

black dashed lines denote fixed β2 values along which we perform bifurcation analysis with

respect to β1 in Figure 4.3. The blue circle and square denote fixed (β1, β2) pairs that we

consider in Sections 4.2.3 and 4.3.3.

Figure 4.2 shows that steady state E1 can only be stable if β2 is substantially less than

β1, and that E2 can only be stable if β1 is substantially less than β2. This can be seen more

clearly in Figure 4.3. When β2 is fixed at 4.5 and β1 varies as in Figure 4.3A and C, the

system passes through regions II-V from Figure 4.2. However, when β2 is fixed at 14 and β1

varies as in Figure 4.3B and D, the system passes through region III, where strain 2 is the

only endemic state, region IV, where both strains are endemic but oscillate, and region V,

where both strains stably coexist.
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Figure 4.3: Bifurcation diagrams with respect to β1 with β2 fixed. (A) and (C): The rate β2

is fixed at 4.5, corresponding to the lower horizontal dashed line in Figure 4.2. (A) shows the

bifurcation in relation to variable I01 and (C) in relation to I02. The system is in region III

in Figure 4.2 when β1 is between 0 and 2.932, and consequently the system is attracted to

fixed point E2. The system briefly crosses through region V as β1 increases from 2.932 until

3.113, allowing both strains to stably coexist. The system then undergoes a Hopf bifurcation

at β1 = 3.113 and stays in the oscillatory region IV until β1 = 8.434. From β1 = 8.434 until

β1 = 12.08, the system returns to region V, where the dually endemic steady state E3 is

stable. Beyond β1 = 12.08, the system stays in region II, where E1 is stable, and strain

1 is therefore the only endemic strain. (B) and (D): Transmission rate β2 is fixed at 14,

corresponding to the upper horizontal dashed line in Figure 4.2. As β1 increases from 0 to

4.703, the system is in region III from Figure 4.2 and E2 is stable. When β1 is between 4.703

and 6.428, the system is in region V, and therefore the dually endemic steady state E3 is

stable. A Hopf bifurcation occurs at β1 = 6.428, and the system oscillates until β1 = 6.93,

where the system leaves region IV and reenters region V, where it stays for all β1 values

considered.
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If the transmission rates are chosen from region IV in Figure 4.2, the two strains oscillate

in anti-phase over time. Figure 4.4 (A) confirms this behavior of the primary infected states

over the first one hundred years, with β1 = 10 and β2 = 7, denoted by the blue circle in

Figure 4.2. Over one oscillation period of approximately twelve years, strain 1 represents

the majority of rotavirus cases for roughly ten years at a time, then an abrupt switch occurs

causing strain 2 to dominate for approximately two years, after which strain 1 takes over

again and the cycle repeats. We explore this switching behavior in the Appendix. As

both transmission rates increase and the system tends toward region V in Figure 4.2, the

amplitude of the oscillations decreases to zero. The period also decreases as the transmission

rates increase, but seems to remain bounded away from zero until the system enters region V:

the smallest numerically observed period being around nine years. Once the system enters

region V, the two strains coexist nontrivially and stably in the population. Figure 4.4 B

shows the transient behavior of the system over the first one hundred years after rotavirus

is introduced, with β1 = 18 and β2 = 16, chosen so that the system falls in region V,

represented by the blue square in Figure 4.2. The two strains never alternate dominance;

strain 1 constantly comprises a majority of all primary infections due to a higher transmission

rate, but strain 2 consistently represents a substantial proportion of all rotavirus infections.
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Figure 4.4: Long-term primary infection behavior changes with transmission rate. Panel A

shows the primary infected states from system (4.1) when β1 = 10 and β2 = 7, denoted by

the blue circle in region IV of Figure 4.2. The corresponding basic reproductive ratios are

R0,1 = 9.950 and R0,2 = 6.965, respectively. The primary infection rates of strain 1 and

strain 2 oscillate in anti-phase over time. While one strain infects a relatively large proportion

of the population, the other is essentially dormant until the roles of the two switch, and the

once dormant strain becomes the major strain. In this case, strain 1 stays dominant for

approximately 600 weeks at a time, after which strain 2 takes over for approximately 200

weeks, and then strain 1 takes over again. Figure B shows the same system when β1 = 18

and β2 = 16, denoted by the blue square in region V of Figure 4.2, with corresponding basic

reproductive ratios R0,1 = 17.910 and R0,2 = 15.920. In this setting, primary infections

due to both strains settle asymptotically to fixed values. The prevalence of strain 1 is

approximately 4.5 times larger than that of strain 2, due to the higher transmission rate of

strain 1.

4.3 EXPANDED SYSTEM: EFFECTS OF VACCINATION

Now that we have categorized rotavirus behavior as a function of transmission rates in the

pre-vaccine era, we expand our model (Figure 4.1) and include a vaccination program using

the G1P[8] rotavirus vaccine, Rotarix (Figure 4.5). We include an additional epidemiological
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class of vaccinated individuals, V , and assume that a proportion, φ, of children in the

maternally protected class M will be vaccinated. Therefore, vaccinated individuals leave M

and enter V at rate φτM and unvaccinated individuals leave M and enter S at rate (1−φ)τM .

Those who receive the vaccination gain partial immunity ξi (0 < ξi < 1) against strain i

for 1/τv weeks on average, after which they become fully susceptible to both strains. The

population size in this expanded system remains constant, and so we assume that N = 1

and discuss infections as proportions of the total population. Using our assumptions and

definitions, we generate the following system of equations modeling rotavirus transmission

and vaccination:

Figure 4.5: The model diagram with vaccination. Removal rate µ not shown.
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dM
dt

= µN − (τM + µ)M

dS
dt

= τM(1− φ)M + τvV − λ1S − λ2S − µS

dV
dt

= τMφM − τvV − (1− ξ1)λ1V − (1− ξ2)λ2V − µV

dI01
dt

= λ1S + (1− ξ1)λ1V − (γp + µ)I01

dI21
dt

= (1− σ)λ1Y2 + (1− θ)λ1H − (γs + µ)I21

dI02
dt

= λ2S + (1− ξ2)λ2V − (γp + µ)I02

dI12
dt

= (1− σ)λ2Y1 + (1− θ)λ2H − (γs + µ)I12

dR1

dt
= γpI01 − τpR1 − µR1

dR2

dt
= γpI02 − τpR2 − µR2

dY2
dt

= τpR2 − (1− σ)λ1Y2 − µY2

dY1
dt

= τpR1 − (1− σ)λ2Y1 − µY1

dW
dt

= γsI21 + γsI12 − τsW − µW

dH
dt

= τsW − (1− θ)(λ1 + λ2)H − µH,

(4.12)

Here the force of infection is given by λ1 = β1(I01 + ρI21) and λ2 = β2(I02 + ρI12), and all

variables are as in system 4.1.
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New Variable and Parameters

V Vaccinated

Parameters Values Source
τv Rate at which vaccination wears off 1

624 wk−1 [97]

φ Vaccination coverage 0.9 [99]

ξ1 Efficacy of vaccination against strain 1 0.9 [70, 94]

ξ2 Efficacy of vaccination against strain 2 0.85 [94]

Table 4.3: Additional Variables and Parameters

The partial immunity against strain 1 (G1P[8]) gained due to vaccination (ξ1) is taken

to be 0.9 [70, 94]. Early studies on Rotarix efficacy indicated that the vaccine is less effective

against heterotypic strains, but recent meta-analysis by Velasquez et al. suggests that the

vaccine efficacy against heterotypic strains is much closer to that against homotypic strains.

For this reason, we take the immunity against strain 2 gained due to vaccination to be

ξ2 = 0.85. The behavior of the primary infected states over varied ξ2 is briefly explored in

Section 4.3.3.

4.3.1 The disease-free steady state and the basic reproductive numbers

The system maintains the four equilibria in the positive orthant, and we will refer to the

disease-free steady state, the strain one-endemic steady state, the strain two-endemic steady

state, and the dually endemic steady state as EV
0 , EV

1 , EV
2 , and EV

3 , respectively.

Just as in system (4.1), we can use the method described in [92] to determine a control

reproductive ratio. System (4.12) is at steady state EV
0 when

0 = µ− (τM + µ)M0

0 = τM(1− φ)M0 + τvV
0 − µS0

0 = τMφM
0 − (τv + µ)V 0,
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which is equivalent to

M0 =
µ

(τM + µ)

S0 =
(τv + (1− φ)µ)τMµ

(τv + µ)(τM + µ)µ

V 0 =
τMφµ

(τM + µ)(τv + µ)
.

Our F1,i(x) and V1,i(x) functions are defined in the same way as in Section 4.2.1, and thus

we have

F1 =

β1S0 + β1(1− ξ1)V 0 β1ρS
0

0 0

 and V −11 =

 1
γp+µ

0

0 1
γs+µ

 .
Thus, the control reproductive number of strain 1 in a vaccinated population is

Rc,1 = β1
S0 + V 0(1− ξ1)

γp + µ

=
β1τMµ(τv + (1− φ)µ)

(γp + µ)(τv + µ)(τM + µ)µ
+

β1(1− ξ1)τMφµ
(γp + µ)(τv + µ)(τM + µ)

= R0,1(1−
φξ1µ

τv + µ
).

Similarly, we can find the control reproductive number of strain 2, which is

Rc,2 = β2
S0 + V 0(1− ξ2)

γp + µ
= R0,2(1−

φξ2µ

τv + µ
).

The values of Rc,i (i = 1, 2) tell us important information about the effect of vaccination

on a naive population. First, Rc,i = R0,i(1 − φξiµ
τv+µ

), and thus vaccination decreases the

basic reproductive ratio by a factor of 1 − φξiµ
τv+µ

. Second, since R0,i is independent of φ,

ξi, and τv, Rc,i is a decreasing function of φ and ξi, and an increasing function of τv (and

therefore a decreasing function of 1/τv, the average length of immunity conferred by the

vaccination). This is expected, as increasing the coverage and efficacy of the vaccine, as

well as the duration of vaccine-induced immunity should only impede the strain’s ability

to establish itself in the population. Moreover, it is worth noting that if φ = ξi = 1 and

τv = 0, then Rc,i = 0; that is, if the entire population is vaccinated with a perfect vaccine

that confers lifetime immunity, then rotavirus can never become endemic, which is certainly

expected and therefore a necessary feature of our model.
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4.3.2 Singly Endemic States

Analysis of the stability of steady states EV
1 and EV

2 of system (4.12) follows in a similar

manner to the characterization of the corresponding steady states of system (4.1). Using

standard linear stability analysis, it becomes clear that EV
1 is an asymptotically stable fixed

point of the system if both eigenvalues of the matrix

J =

∂İ01∂I01

∂İ01
∂I02

∂İ02
∂I01

∂İ02
∂I02

 =

Aβ2 − (γp + µ) Aβ2ρ

Bβ2 Bβ2ρ− (γs + µ)

 , (4.13)

where A and B are parameter dependent constants, have negative real part. Therefore,

strain 2 can invade the population only if one of these eigenvalues has positive real part,

which happens exactly when

R̂c,2 > 1,

where

R̂c,2 =
β2S

γp + µ
+
β2(1− ξ2)V
γp + µ

+
β2ρ(1− σ)Y1

γs + µ

∣∣∣∣
EV

1

. (4.14)

Thus, strain 2 can persist in the population only if R̂c,2 > 1. By symmetry, we have the

endemic threshold for strain 1, R̂c,1 = β1S
γp+µ

+ β1(1−ξ1)V
γp+µ

+ β1ρ(1−σ)Y2
γs+µ

∣∣∣∣
EV

2

.

Replacing R̂0,i with R̂c,i in cases (1)-(4) from Section 4.2.2, these cases still categorize

the asymptotic behavior of system (4.12). In particular, case (1) is impossible for the same

reason as in section 4.2.2; cases (2) and (3) result in strain 1 and 2 outcompeting the other,

respectively; case (4) is the setting in which the two strains can coexist for all time. Region

I of Figure 4.6 corresponds to the trivial case in which both Rc,1 < 1 and Rc,2 < 1, and

so neither strain can become endemic. Regions II and III of the same figure correspond to

cases (2) and (3), respectively, and regions IV and V both correspond to case (4).
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Figure 4.6: Rotavirus behavior as a function of transmission rates, with vaccination. In

region I, neither strain can be endemic. In region II, the first strain is attracted to the

stable non-trivial steady state EV
1 , while the second strain becomes extinct. In region III,

the second strain is attracted to the stable non-trivial steady state EV
2 , while the first strain

becomes extinct. In region IV, both strains exist and oscillate. The blue curve denotes the

parameter values for which the steady state EV
3 goes through a Hopf bifurcation. In region

V, both stains are endemic and are attracted to the stable fixed point EV
3 . The figure shown

is made from system (4.12) with ξ1 = 0.908 and ξ2 = 0.85.

Under case (4), the system either approaches a stable, dually endemic steady state or

settles into a stable periodic solution, as shown in Figure 4.6. Numerical analysis of the

asymptotic behavior of the system in either case follows directly from the analysis in Section

4.2.3, and so we do not repeat it here.

4.3.3 Comparison of effects of vaccination: North America vs South America

In order to evaluate the differential impact of rotavirus vaccination in various regions, we pa-

rameterize system (4.12) with continent-specific data, and compare the effect of vaccination

on populations in North and South Americas [73]. For the direct comparison of rotavirus

dynamics in pre- and post-vaccination eras in North America, Figures 4.2 and 4.6 are shown

together in Figure 4.7A. Similarly, rotavirus dynamics in pre- and post-vaccination eras in

93



South America is shown in Figure 4.7B. We chose transmission rates β1 and β2 such that

the ratio of individuals infected with strain 1 (I01 + I21) to individuals infected with strain

2 (I02 + I12) at the fixed point EV
3 is equal to the ratio of the prevalence of G1P[8] to the

prevalence of all other rotavirus strains in a given continent. Specifically, in North Amer-

ica, G1P[8] comprises 73% of all rotavirus strains. We therefore choose β1 and β2 so that

I01+I21
I02+I12

= 73/27 is maintained at EV
3 . Similarly, we choose β1 and β2 so that the ratio

I01+I21
I02+I12

= 34/66 is maintained in South America. The transmission rates of rotavirus that

satisfy this constraint for North America and South America are shown in light blue in Fig-

ure 4.7. For both North and South America, the introduction of vaccination can lead to long

term oscillations of the two strains for a range of transmission rates, β1 and β2 (Figure 4.7).
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Figure 4.7: Continent specific parameterization for (A) North America and for (B) South

America. For both continents, the efficacy of the vaccination against strains 1 and 2 are

ξ1 = 0.9 and ξ2 = 0.85, respectively. The solid blue and red lines are the same as in Figure

4.2, the dashed blue and red lines correspond to the same threshold once vaccination is

introduced (φ = 0.9). The light blue line is the curve of (β1, β2) values that preserve the

ratio of strain 1 and strain 2 infected individuals at steady state EV
3 : I01+I21

I02+I12
= α, where

α = 73/27 for North America and α = 34/66 in South America. Region I is not shown, as

it is not considered in the following analysis, but it should be noted that the height of the

region is increased by a factor of 1/(1 − (φξ2µ)/(τv + µ)) and the width is increased by a

factor of (1/(1− (φξ2µ)/(τv + µ)), as Rc,i = R0,i(1− φξiµ
τv+µ

).

Although it is difficult to pin down exact transmission rates and basic reproductive
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numbers, we choose transmission rates that give reasonable R0 values according to previous

estimates [65]. The basic reproductive numbers for each transmission rate are shown in Table

4.4. For each fixed transmission rate β1, the corresponding transmission rate β2 is lower in

North America and higher in South America. This is consistent with the relative incidence

due to either strain in each continent.

Transmission rates and reproductive numbers
β1 17.5 8 12.8
R0,1 17.4122 7.9594 12.7358
Rc,1 16.8269 7.6923 12.3076

North America
β2 16.2709 6.1883 11.3938
R0,2 16.1893 6.1573 11.3366
Rc,2 15.8353 6.0226 11.0880

South America
β2 18.2446 9.0728 13.6028
R0,2 18.1531 9.0273 13.5346
Rc,2 17.7313 8.8176 13.2201

Table 4.4: Transmission rates and corresponding basic reproductive numbers for each simu-

lation. The three β1 values are used in simulations for both the North and South American

system, and the corresponding β2 value is shown in the same column beneath the appropriate

header.

Direct comparisons of primary infection dynamics after the introduction of a monovalent

vaccination in North America and South America were carried out (Figures 4.8 and 4.9).

We assume that vaccination is introduced into the population after the unvaccinated system

reaches steady state or limit cycle. For our simulations results, we assume that β1 = 17.5 for

both continents, and β2 = 16.2709 in North America and β2 = 18.2446 in South America, as

indicated by the blue squares in Figure 4.7 (Figure 4.8A and 4.8C). In this case, Figure 4.7

confirms that the qualitative behavior of system (4.12) before and after vaccination remains

unchanged in both continents: the system is attracted to a stable steady state in both cases.

In Figures 4.8B and 4.8D, both continents are chosen to have transmission rate β1 = 8, and

North America has corresponding rate β2 = 6.1883 while South America has corresponding

rate β2 = 9.0728. As indicated by the blue triangles in Figure 4.7, these transmission rates

put both continents in a regime under which the system is attracted to a stable limit cycle
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both before and after vaccination.
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Figure 4.8: Primary infection behavior before and after vaccination is introduced to North

and South America. Figures A and C. The system is parameterized with transmission

rates corresponding to the blue squares in Figures 4.7 A and B, respectively. The system

starts in its pre-vaccination steady steady and 90% of individuals receive the vaccination at

time t = 500 weeks, denoted the the dashed vertical line. Figures B and D. The system

is parameterized with transmission rates corresponding to the blue triangles from Figures

4.7 A and B, respectively. The system starts in its pre-vaccination limit cycle and 90% of

individuals receive the vaccination at time t = 500 weeks, denoted the the dashed vertical

line. In all four cases, the stability behavior of the system is not affected by the vaccination:

the system in Figures A and C is attracted to a stable fixed point, and in Figures B and D

is attracted to a stable limit cycle before and after vaccination is introduced.

In all cases shown in Figure 4.8, the total primary infected states initially decrease, then

recover to levels close to pre-vaccination levels. In Figure 4.8A, the total primary infection

in North America decreases for the first half of a year, then begins to recover, and reaches
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levels similar to its pre-vaccination state after roughly five years, after which the total primary

infection levels remain roughly constant. The growth in primary infected states is due to

an increase of individuals infected with strain 2, despite a substantial drop off of strain 1

infections caused by the greater efficacy against strain 1. In Figure 4.8B, the introduction of

vaccination leads to an immediate and significant reduction in the total incidence of primary

infection, with only strain 1 persisting at a considerably reduced level for roughly ten years.

After such time, the oscillations in the dominant strain continue.

The behavior of the system parameterized by South American strain data provides fur-

ther insights into the effect of vaccination at different strain distributions and transmission

rates (Figures 4.8C and 4.8D). The qualitative behavior of the primary infected states in

South America is not drastically altered by vaccination (Figure 4.8C). The total incidence

of primary infection is not substantially lowered, and recovers to pre-vaccination levels in

about year. However, when transmission rates of both strains are relatively low, vaccination

is shown to result in a dramatic decrease in both strains (Figure 4.8D). Before vaccination

is introduced, the two strains oscillate dominance over time: strain 1 dominates for periods

lasting roughly five years, followed by a switch after which strain 2 dominates for roughly

eight years. For about twenty years after vaccination is introduced, however, strain 1 is

nearly nonexistent in the population and strain 2 persists at a reduced level compared to

the pre-vaccination era (Figure 4.8D).

Figure 4.9 shows the most striking difference in the effect of vaccination between system

(4.1) parameterized by North and South American strain data. With transmission rate

β1 = 16.5 for both continents and β2 = 15.2 in North America and β2 = 17.15 in South

America (see the blue circles in Figure 4.7), both systems are attracted to a stable steady

state before vaccination is introduced. When vaccine is introduced into South America,

the prevalence of both strains quickly decreases and approaches a new steady state (Figure

4.9B). On the other hand, in North America, the two strains begin to oscillate over time

after the introduction of vaccination (Figure 4.9A).
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Figure 4.9: Primary infection behavior after vaccination is introduced to North and South

America. Figure A shows the behavior of the primary infected states I01 and I02 in North

America before and after the introduction of the vaccine, with transmission rates correspond-

ing to the blue circle in Figure 4.7 A. Before the vaccine is introduced, the system is attracted

to a stable steady state, but upon the introduction of vaccination at t = 500 weeks (vertical

dashed line), the system is instead attracted to a stable limit cycle, resulting in oscillatory

behavior in the primary infected states. Figure B shows the behavior of the primary infected

states in South America before and after the introduction of the vaccine, with transmission

rates corresponding to the blue circle in Figure 4.7 B. The system is attracted to a stable

steady state before and after the introduction of vaccination at t = 500 weeks. The total

incidence of primary rotavirus infection initially decreases, but recovers to pre-vaccination

levels within approximately ten years.

In all cases studied (Figures 4.8 and 4.9), the average incidence of strain 1 is lower after

vaccination is introduced relative to its prevalence before vaccination, while the incidence of

strain 2 is increased on average after vaccination. This is due to the greater efficacy against

strain 1 versus that of strain 2. Moreover, if we decrease the efficacy of vaccination against

strain 2 from ξ2 = 0.85, the incidence of strain 1 decreases and the incidence of strain 2

increases until the strain 2 overtakes strain 1 as the dominant strain (Figure 4.10).
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Figure 4.10: Effect of strain 2 efficacy on strain prevalence. (Left) As ξ2 decreases from

ξ2 = 0.85, the steady state of the strain 1 primary infected class decreases, with the strain 2

primary infected class increases. The dominance of the two strains switches around ξ2 = 0.8,

below which the population is at risk for dominant strain replacement due to vaccination.

The system is parameterized with North American data in this figure, with β1 = 17.5,

β2 = 16.2709, φ = 0.9, and ξ1 = 0.9. (Right) An example of dominant strain replacement

with ξ2 = 0.65. After the introduction of the vaccine, strain 2 overtakes strain 1 as the most

abundant rotavirus strain.

4.4 EXTENDED MODEL WITH REINFECTION

In the preceding analysis, we assumed individuals could not become reinfected with strain

i = 1, 2 before becoming infected with strain j 6= i, based on the findings that secondary

infections were more likely to be caused by another strain due to homotypic protection

and that protection following natural infection was predominantly against homotypic strains

(Velázquez et al. 1996, Clarke and Desselberger 2015). Because there is conflicting evidence

that rotavirus infection provides no such homotypic protection (Gladstone et al. 2011), here

we extend our model to allow individuals to become reinfected with the same strain without

experiencing infection from the other.

We now assume that after individuals recover from primary infection due to strain i = 1, 2
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and are now in class Yi, they can become reinfected with strain i at rate (1− θ)λi and enter

the new secondary infection class Iii. From this class, individuals recover at rate γs and

enter recovered class Ri. These interactions are shown in the model diagram Figure 4.11.

Since we have added two new infected classes, the force of infection for strain i is now

λi = βi(I0i + ρ(Iii + Iji)).

Figure 4.11: Model diagram with reinfection. Natural mortality rate µ not shown.
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Under these new assumptions, we arrive at the following system of differential equations:

dM
dt

= µN − (τM + µ)M

dS
dt

= τM(1− φ)M + τvV − λ1S − λ2S − µS

dV
dt

= τMφM − τvV − (1− ξ1)λ1V − (1− ξ2)λ2V − µV

dI01
dt

= λ1S + (1− ξ1)λ1V − (γp + µ)I01

dI11
dt

= (1− θ)λ1Y1 − (γs + µ)I11

dI21
dt

= (1− σ)λ1Y2 + (1− θ)λ1H − (γs + µ)I21

dI02
dt

= λ2S + (1− ξ2)λ2V − (γp + µ)I02

dI22
dt

= (1− θ)λ2Y2 − (γs + µ)I22

dI12
dt

= (1− σ)λ2Y1 + (1− θ)λ2H − (γs + µ)I12

dR1

dt
= γpI01 + γsI11 − τpR1 − µR1

dR2

dt
= γpI02 + γsI11 − τpR2 − µR2

dY2
dt

= τpR2 − (1− θ)λ2Y2 − (1− σ)λ1Y2 − µY2

dY1
dt

= τpR1 − (1− θ)λ1Y1 − (1− σ)λ2Y1 − µY1

dW
dt

= γsI21 + γsI12 − τsW − µW

dH
dt

= τsW − (1− θ)(λ1 + λ2)H − µH.

(4.15)

The qualitative behavior of system (4.15) is similar to that of system (4.12). Figure

4.12 shows the behavior of system (4.15) as a function of transmission rates before and

after vaccination is introduced. The labeled regions in Figure 4.12 are analogous to those

in Figures 4.2 and 4.6. In particular, in region II, only strain 1 can persist, and in region
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III, only strain 2 can persist. The two strains can coexist in regions IV and V, though both

strains oscillate over time in region IV, while the system is attracted to a stable steady state

in region V. This behavior as a function of transmission rates is identical to that of system

(4.12), though the shape and size of each region is now changed.
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Figure 4.12: Rotavirus infection behavior as a function of transmission rates. Figure A

shows the behavior without vaccination, and Figure B shows the behavior after vaccination

is introduced, with φ = 0.9, ξ1 = 0.9, and ξ2 = 0.85. In both figures, the red and blue curves

are analogous to those from Figures 4.2 and 4.6.

Simulations confirm the similarity between the behavior of systems (4.12) and (4.15). Fig-

ure 4.13 shows the effect of vaccination on the primary infected states from system (4.15),

parameterized with both North American and South American strain data. As with the

analogous Figures 4.8 and 4.9, the introduction of vaccination leads to a substantial and im-

mediate decrease in the overall prevalence of primary rotavirus infection, with the incidence

levels recovering to nearly those of the pre-vaccination era after approximately ten years.
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Figure 4.13: Primary infection class behavior before and after introduction of the vaccine.

In both figures, the vaccine is introduced at t = 1000 weeks, indicated by the vertical dashed

black line, with φ = 0.9, ξ1 = 0.9, and ξ2 = 0.85. Figure A shows the primary infected

classes when the system is parameterized with North American strain data. Figure B shows

the system parameterized with South American data. In both cases, the total incidence of

primary infection decreases greatly following the introduction of vaccination, but recovers to

near pre-vaccination levels after approximately a decade.

4.5 DISCUSSION

The oral rotavirus vaccine Rotarix R© manufactured by GlaxoSmithKline is currently in use

worldwide, including the United States, Mexico, Brazil, eleven other countries throughout

the Americas [60], greatly reducing the incidence rate of severe gastroenteritis caused by

rotavirus. Rotarix has the potential to decrease the total incidence rate in any other na-

tions as well; however, several factors should be considered before implementing a rotavirus

vaccination program. In particular, since Rotarix is a monovalent vaccine and strain distri-

butions can vary widely from country to country, it is worthwhile to study the possibility

of the selection pressure exerted by the use of monovalent vaccine in countries with various

distributions.

In this chapter, we first developed a two-strain system of equations modeling rotavirus
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transmission with partial cross-immunity to determine epidemic thresholds for one or both

strains. We then extended our system to include vaccination, determined the new epidemic

thresholds, and compared these in North and South Americas. As expected, the basic

reproductive ratio for both strains decreases with the introduction of vaccination. The

decrease is small, however, because the duration of immunity conferred by the vaccine is

relatively short. Nevertheless, the severity of rotavirus infection decreases with age, and

thus the role of vaccination in shifting the average age of infection is critical. Using available

strain distribution data, we then parameterized the system using data from two continents

with widely different strain distributions and compared the effect of vaccination between the

two. In North America, G1P[8] is responsible for 73% of all rotavirus infections, whereas in

South America, G1P[8] results in 34% of all rotavirus infections.

Our results indicate that the effect of vaccination is dependent on both the strain dis-

tribution and the overall transmission rates, and consequently the basic reproductive ratios.

In both North and South Americas, the use of Rotarix is likely to reduce total rotavirus

incidence immediately after introduction. The regions with lower transmission rates are ex-

pected to observe the initial reduction in rotavirus cases for longer durations than the regions

with higher transmission rates. However, regardless of transmission rates, the prevalence of

rotavirus is expected to recover to nearly pre-vaccination levels after approximately a decade.

In all cases, the reduction in G1P[8] due to vaccination was greater than the reduction

in the composite strain 2, due to greater efficacy of Rotarix against G1P[8] relative to all

other strains. This is consistent with observations following the introduction of Rotarix in

American populations [38]. Moreover, the initial decrease in infection incidence is in general

larger than the long-term decrease in cases. Our model predicts that the greatest reduction

in cases of rotavirus occurs immediately following vaccination introduction to about ten to

twelve years after introduction, after which time the total prevalence of rotavirus infection

returns to near pre-vaccination levels.

Importantly, our model predicts in regions such as North American where G1P[8] con-

stitutes a majority of rotavirus cases, dominant strain replacement is possible after the

introduction of vaccination. Rotarix is most effective against G1P[8] relative to any other

strain, resulting in a larger relative decrease in the infection levels due to that strain. In
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North America where G1P[8] is the most prevalent, the use of Rotarix might therefore exert

selective pressure in favor of a previously less abundant rotavirus strain, which then will

establish itself as a dominant strain [53]. In South America, however, G1P[8] comprises a

much smaller proportion (∼ 34%) of all rotavirus cases. Consequently, the other rotavirus

strains continue to dominate G1P[8] after the introduction of Rotarix, and dominant strain

replacement is not expected to be observed.

Our assumption that all non-G1P[8] strains are grouped together in strain 2 is done for

mathematical simplification purposes, but the results shown here will likely extend natu-

rally to a three or more strain model. In particular, if we include in our model a separate

compartment for each of the five most common strains, we could use the methods described

here to compute basic reproductive numbers for each strain, as well an invasive reproductive

numbers that determine when a strain can invade and persist in the population given that

one or more strains is already endemic. However, our two strain model is advantageous in

that it is mathematically tractable, and provides valuable intuition on the overall effect of

vaccination on rotavirus prevalence.

Similarly, our assumption that individuals are not susceptible to reinfection with strain

i = 1, 2 before infection with strain j 6= i was a mathematical simplification and was based

on the findings that secondary infections were more likely to be caused by another strain

and that protection following natural infection was predominantly against homotypic strains

[16, 93]. When we relax this assumption and allow for reinfection, the model predicts small

quantitive changes in the outcome of vaccination, increasing the size of the region in trans-

mission rate parameter space over which the system oscillates, but we do not observe any

new qualitative behaviors in the system.

Our analysis predicts a rebound in rotavirus incidence five to twenty years after the

vaccine is introduced, although the United States has yet to see such a rebound in the six

years since the introduction of Rotarix [61]. One reason that the model-predicted rebound

might not be observed is that the pentavalent rotavirus vaccine RotaTeq is also in use in the

United States, which we did not include in our model. Another, more probable reason why

such a rebound might never be observed is that Rotarix provides partial immunity against

rotavirus for up to twelve years, and the severity of the symptoms associated with rotavirus
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decreases with age, with many cases being asymptomatic in adults [93, 97]. Since our model

is not age structured, it does not differentiate between infected children and infected adults,

and so many of the model-predicted infections are likely mild or asymptomatic, and would

likely go unreported.

Our study shows that the impact of rotavirus vaccination can be significantly affected by

region-specific parameters, including strain distribution as well as transmission rates. The

model can be adapted to study other infectious diseases that persist in multiple strains.

4.6 APPENDIX: OSCILLATION ANALYSIS

Numerical observations about the behavior of the system drive the study of the oscillations.

First, the dynamics of the state variables Y1 and Y2 seen in Figure 4.14A and B are slow

relative to the dynamics of the infected states shown in Figure 4.4A. Second, Figure 4.14C

shows that the variable H has relatively small changes in amplitude as it oscillates. Indeed,

if the dynamics of H are frozen so that H is fixed at some intermediate value, the system

still oscillates for a range of β1 and β2 values.
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Figure 4.14: (A) and (B): Y1 and Y2 are slow variables. (C) H has relatively small oscillations.

We therefore fix the value of H at an intermediate value and introduce a time-scaling

parameter τy to slow down the dynamics of Y1 and Y2 simultaneously. As τy is decreased

from 1 to 0, the period of the oscillation increases, and the system stops oscillating when

τy = 0; that is, oscillations vanish when the dynamics of Y1 and Y2 are completely turned
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off. When τy is small, however, Y1 and Y2 remain (approximately) on a line with respect to

one another, as seen in Figure 4.15.
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Figure 4.15: Y2 grows approximately linearly with respect to Y1 for small values of τy. Here,

H = 0.575 is fixed, τy = 0.01, (β1, β2) = (10, 7), φ = 0, and Y2 ≈ −.02314Y1 + 0.0774.

We exploit this observation by treating Y1 and Y2 as parameters, with the constraint that

they both stay on the line Y2 = b+ aY2, where a and b are approximated from Figure 4.15.

Treating Y1 and Y2 as parameters in this way eliminates the oscillations in the system.

Instead, the system is generically attracted to one of two steady states: one with strain 1

endemic and strain 2 extinct, the other with strain 2 endemic and strain 1 extinct, which

we call E∗1 and E∗2 , respectively. Figure 4.16 shows the stability of the two fixed points as

the parameter Y1, and consequently Y2, varies. When Y1 is small, the E∗1 is stable and E∗2

is unstable. As Y1 increases past some critical threshold, the two steady states immediately

switch stability: E∗1 becomes unstable and E∗2 becomes stable.
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Figure 4.16: Stability switches from strain 1 being “on” and strain 2 being “off” to strain

1 being “off” and strain 2 being “on” past a critical value of Y1. (β1, β2) = (10, 7), φ = 0.

Bifurcation at Y1 = 0.28828.

This instantaneous switch in the stability of the system is due to a degenerate hyperplane

of fixed points at the critical value of Y1. In particular, at E∗i , we must have

dI0i
dt

= 0

dIji
dt

= 0

which occurs if and only if

βi(I0i + ρIji)S − (γp + µ)I0i = 0 (4.16)

[(1− σ)Yj + (1− θ)H] βi(I0i + ρIji)− (γs +mu)Iji = 0. (4.17)

Equation (4.16) is satisfied if and only if

I0i =
βiρS

(γp + µ)− βiS
Iji, (4.18)

and by plugging (4.18) into (4.17), we get
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[
[(1− σ)Yj + (1− θ)H] βi(

βiρS

(γp + µ)− βiS
+ ρ)− (γs + µ)

]
Iji = 0.

If Iji 6= 0, then dI0i
dt

= 0 and
dIji
dt

= 0 if and only if

[(1− σ)Yj + (1− θ)H] βi(
βiρS

∗

(γp + µ)− βiS∗
+ ρ)− (γs + µ) = 0,

or equivalently,

S∗i =
γp + µ

γs + µ

(
1

βi
(γs + µ− βiρ[(1− σ)Yj + (1− θ)H])

)
, (4.19)

where S∗i is the value of S at the fixed point E∗i . Thus, E∗1 and E∗2 coincide if and only if

S∗1 = S∗2 . (4.20)

In this case, I01, I02, I21 and I12 are all nonzero and from system (4.1) we have dS
dt

= 0 if

and only if

S∗i =
τMM

β1(I01 + ρI21) + β2(I02 + ρI12)− µ

=
τMM

β1(α1 + ρ)I21 + β2(α2 + ρ)I12 − µ
, (4.21)

where αi = (βiρS
∗
i )/(γp + µ− βiS∗i ).

Setting equations (4.19) and (4.21) equal defines a line in the I21-I12 plane, along which

the reduced system is at a steady state. Since I0i = αiIji, the line of fixed points in the

I21-I12 plane defines a hyperplane of fixed points in I01-I02-I21-I12 space.

This hyperplane exists only if equation (4.20) is satisfied. Given our requirement that

Y2 = b+ aY1, equation (4.20) is equivalent to

Y1 =
(β1 − β2)(γs + µ)

β1β2ρ(1− σ)(1− a)
+

b

1− a
, (4.22)
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which, when evaluated at parameter values specified in our simulation, is exactly the bifur-

cation value of Y1 as in Figure 4.16.

To visualize this bifurcation in system (4.1), we now allow Y1 and Y2 to vary as dynamic

variables, but slow down their dynamics by a factor of τy = 0.01 and continue to treat H as a

parameter fixed at H = 0.575. Figure 4.17 shows the infected state I02 versus the susceptible

class Y1. The vertical dashed line coincides with the critical value of Y1 from Figure 4.16.

Beginning in the lower left corner of the oscillation in Figure 4.17, as Y1 increases through

the critical value of Y1, the stability switches from strain 1 endemic to strain 2 endemic, and

I02 quickly grows to a steady state. After I02 increases, Y1 begins to decrease again because

all of the individuals who are susceptible to only strain 2 (i.e., individuals in class Y1) quickly

begin to become infected. Once Y1 decreases past the critical Y1 value, the incidence of strain

2 drops off sharply and Y1 begins to increase again.
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Figure 4.17: Y1 plotted against I02 in the full system with Y1 and Y2 slowed down by a factor

of τy = 0.01, and H frozen at 0.575. In this case, the transmission rates are (β1, β2) = (10, 7),

and there is no vaccination (φ = 0). After Y1 passes a critical threshold from left to right

along the bottom of the blue curve, there is a relative abundance of individuals who are

susceptible to strain 2 but not strain 1, and strain 2 gets turned “on.” I02 remains on until

Y1 falls below the critical value, after which strain 2 is turned “off” and strain 1 is turned

“on.”

In terms of a population, this means that while strain 1 is infecting a large proportion

of the population, strain 2 is almost extinct. Consequently, much more individuals become
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infected with strain 1 than strain 2, and upon recovery, they are only susceptible to strain 2.

The switch between strain 1 being the more prevalent strain to strain 2 taking over occurs

when the number of individuals susceptible to only strain 2 surpasses a critical threshold.

Immediately after the switch, there are much more individuals only susceptible to strain 2,

but as these individuals become infected and recover, more will be susceptible to only strain

1, prompting another switch in the dominant strain back to strain 1, and the cycle repeats.

The class of individuals who have recovered from strain i and are susceptible only to strain

j are therefore the driving force behind the oscillations: both strains require a sufficient

number of susceptible individuals available only to that strain in order to infect a nontrivial

proportion of the population. However, since the number of individuals who are susceptible

to only strain 1 is inversely proportional to that of those susceptible to only strain 2, the

two strains oscillate dominance over time.
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5.0 CONCLUSION

The chapters of this thesis contain a variety of results, both mathematical and biological,

arising from questions concerning pathogen dynamics. The primary focus is on the devel-

opment and analysis of simple mathematical models to study complex dynamics, and we

consider these on a variety of scales, from within host to without, and populations well-

mixed to spatially homogeneous. Our results have produced testable predictions, interesting

mathematical problems, and questions open to future study.

In Chapter 2, we studied the competition for space and resources between the host’s

native microbiota and invasive Salmonella Typhimurium within the inflamed mammalian

intestinal tract. A key factor that facilitates S. Typhimurium invasion their ability to main-

tain two phenotypically distinct subpopulations: one fast growing avirulent population, and

a slower growing virulent population. Importantly, the avirulent cells can activate a vir-

ulence factor and consequently switch into the virulent subpopulation. We developed an

optimization method to determine the minimum population size with which the salmonella

must invade so that they will outcompete the established microbiota population. We use this

method to make experimentally testable predictions about the optimal initial proportion of

avirulent cells in the invading population and about the virulence factor activation rate that

maximize the chance of a successful invasion.

A simple within-host Lokta-Volterra-type competition model between virulent S. Ty-

phimurium and native commensal microbiota was presented by Brown et al. in [13]. They

encapsulate the net advantage S. Typhimurium gains over the microbiota in a scaling param-

eter on the mass action competition term. An extended model that considers the competition

of both avirulent and virulent phenotypes with commensal microbiota was presented in [23].

Their model was the first to separately consider the two salmonella phenotypes to study co-
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existence between them. Our model advances the field further by explicitly coupling a model

for the inflammatory immune response with both the food and differential killing hypotheses

proposed by Stecher and Hardt in [83], thereby creating a unified competition structure.

Cooperation among organisms is an anomaly when survival is viewed as a competition.

The self-destructive cooperation of the virulent bacteria within S. Typhimurium populations

has therefore been studied extensively [1, 23]. How such a self sacrificing relationship might

have evolved remains an open question, however. Such questions related to evolutionary

dynamics are frequently studied using stochastic methods, modeling phenotypic variation as

a random variable [31, 57]. Applying existing methods to the question of the coevolution of

the two distinct phenotypes in the context of maximizing their success against commensal

microbiota presents an immediate and substantial issue: most stochastic processes used to

study evolution (e.g., Moran processes, branching processes) consider a single stochastic

variable, and the inclusion of a second stochastic variable makes the development of an

analytically tractable model difficult or impossible. The construction of a framework in

which two or more stochastically varying populations evolve would be both beneficial to the

study of S. Typhimurium and also groundbreaking in the study of evolutionary dynamics.

In Chapter 3, we analyzed an anomalous behavior observed in interacting bacterial pulses

in a one-dimensional nutrient gradient. When two populations of E. coli are placed on

opposite ends of a long plate that contains a uniform supply of nutrient in the interior, both

populations will initially form pulses and move up the nutrient gradient toward one another.

The bacteria will often meet somewhere in the middle of the plate and form a single, larger

pulse, but occasionally they will instead change direction and move back toward the end of

the plate from which they came. Using the classic Keller-Segel partial differential equations

model for bacterial chemotaxis, we captured this turn-around behavior analytically. In order

to study the effects of model parameters on the transient behavior of the two interacting

populations, we used Gaussian distributions to approximate the spatial profile of each model

variable. This approximation allowed us to derive an ordinary differential equations model

for the dynamics of the spatial moments of each variable, which agrees qualitatively with

the Keller-Segel model in many important ways. Using our approximate model, we were

able to determine parameter settings in which the bacterial populations are predicted to
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turn around and those in which they will combine. For example, if the bacterial population

size is increased, our model predicts that a higher proportion of trials will result in the two

populations turning around. If the medium is made more fluid, more trials are expected to

result in the populations combining.

The work in Chapter 3 is the first to consider transient direction switches in the collec-

tive behavior of bacteria. The system of ODEs we derived using a Gaussian approximation

to the spatial profile of each population considered is similarly the first of its kind applied

to collective behavior models. This type of approximation can naturally be applied to any

spatio-temporal system in which each spatial profile is approximately symmetric and pul-

satile. On the other hand, populations whose dynamics evolve according to the Keller-Segel

equations do not necessarily maintain such a pulse-like shape. For instance, bacteria can

move as an asymmetric front, or largely diffuse out and never aggregate in the interior of

the domain before forming a pulse along a spatial boundary. Our approximation therefore

only holds under conditions that induce symmetric, interior pulse formation.

A natural extension of the work conducted in Chapters 2 and 3 is to explicitly consider the

spatial dimension of bacterial competition. A shortcoming of well-mixed Lokta-Volterra-type

competition models is that they necessarily result in competitive exclusion: one population

must drive the other to extinction. Spatial models can allow for coexistence of the competing

species [3, 88]. In the case of bacterial invasion of the gut, this might correspond to the

salmonella outcompeting the native microbiota in a patch of the intestinal lining. This more

closely reflects the biology, as the salmonella do not uniformly eliminate all of the host’s

microbiota upon successful invasion. Our method described in Chapter 3 of approximating

spatial moments of bacterial populations can be applied to analyze such a model, to efficiently

consider the effect of varying model parameters.

In Chapter 4, we used an extended SIR-type, two-strain epidemiological model to study

the transmission of rotavirus in a human population, before and after the introduction of

the monovalent vaccination Rotarix. We considered the overall effect of the vaccination on

the proportion of the infected individuals over time, and on the effect it has on epidemic

thresholds (that is, the basic reproductive ratios). Our results indicate that the effect of

vaccination is dependent on both the strain distribution and the transmission rates of both
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strains. In all cases considered, the use of Rotarix reduced total rotavirus incidence im-

mediately after introduction. Regions with lower transmission rates, however, are expected

to observe a longer duration of decreased rotavirus incidence following the initial reduction

after the vaccine is introduced than the regions with higher transmission rates. However,

regardless of transmission rates, the prevalence of rotavirus is expected to recover to nearly

pre-vaccination levels after approximately a decade. Importantly, our analysis predicted that

in regions where strain G1P[8] constitutes a majority of rotavirus cases, dominant strain re-

placement is possible after the introduction of vaccination.

The issue of dominant strain replacement is important because it introduces a new

pathogen into a naive population, which consequently weakens our ability to control its

spread and effects [53]. Our model is general enough in structure that it can be readily

adapted to model other viruses that maintain more than one strain, thereby helping to

predict mechanisms by which strain replacement can occur. Another important study that

could accompany our analysis is one that considers cost-effectiveness of vaccination imple-

mentation. Understanding the cost of a vaccination program versus the cost of healthcare

and lost work time due to illness is crucial in determining whether it is economically viable

to institute a mass vaccination program, and detailed models such as ours can help provide

accurate estimates of these expenses [80].
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