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20-hydroxyeicosatetraenoic acid (20-HETE) is a metabolite of arachidonic acid (AA) 

formed by cytochrome P450 (CYP) 4A11 and CYP4F2 in humans, with potent microvascular 

constriction activity. Inhibition of 20-HETE formation is neuroprotective in subarachnoid 

hemorrhage, cardiac arrest and thromboembolic stroke preclinical models. These findings 

suggest that inhibition of 20-HETE formation is a potential therapeutic strategy for 

neuroprotection after brain injury. At this point, a clinically relevant 20-HETE inhibitor is not 

available to be evaluated as a therapeutic intervention. Our goal is to identify a selective, 

metabolically stable, and potent 20-HETE inhibitor. Test compounds were obtained either via 

virtual screening against a CYP4F2 homology model or from scaffold hopping from structures of 

known inhibitors. Four different types of microsomes including human liver microsome (HLM), 

recombinant CYP4F2 (rCYP4F2), rat liver microsome (RLM) and rat kidney microsome (RKM) 

were used. AA was incubated in microsomes with/without compound for 20 min. 20-HETE 

formation rate was quantified using a validated UPLC-MS/MS assay and normalized by vehicle 

control group. Other eicosanoids including 15-, 12-HETEs, epoxyeicosatrienoic acids (EETs), 
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and dihydroxyeicosatrienoic acids (DiHETs) were monitored simultaneously. Selected 

compounds were tested in HLM for metabolic stability over 60 minutes. Remaining amount of 

compound was quantified using UPLC-MS/MS and normalized to corresponding 0-min values. 

Among 26 compounds, compounds 10 and 26 both inhibited 20-HETE formation in a dose-

dependent manner. At 2500nM, compound 10 reduced 20-HETE formation to 19.9±1.8%, 

24.0±5.5% in rCYP4F2 and HLM compared with control; compound 26 decreased 20-HETE 

formation to 32.4±6.5%, 34.8±5.1% in rCYP4F2 and HLM, respectively. After structure 

modification, compound 19 and its hydrochloride salt compound 18 were the most potent and 

dose-dependently inhibited 20-HETE formation. At 2500nM, compound 19 decreased 20-HETE 

formation to 4.4±0.4%, 8.6±1.3% in rCYP4F2 and HLM, respectively without inhibitory effects 

on 15-, 12-HETE, EETs or DiHETS formation. Compounds 10 and 19 were more stable with 

91.4±11.0% and 100.4±1.7% remaining compound at 30min in HLM compared to 35.1±5.7% of 

3-(4-n-butoxyphenyl)pyrazole. These results suggested that compounds 10, 19 and 26 are potent 

20-HETE formation inhibitors, compounds 10 and 19 have improved microsomal stability, and 

these three compounds can serve as lead compounds for further structure modifications that may 

lead to novel 20-HETE formation inhibitors. 

Key words: 20-hydroxyeicosatetraenoic acid; epoxyeicosatrienoic acid; UPLC-MS/MS; 

microsome incubation; inhibitor 
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1.0  INTRODUCTION 

 

1.1 BRAIN INJURY IN CEREBROVASCULAR AND CARDIOVASCULAR DISEASES 

 

1.1.1 Stroke 

 

Stroke is the fifth leading cause of death in the US. Each year, approximately 795,000 people 

experience a new or recurrent stroke [1]. There are two types of strokes: ischemic stroke and 

hemorrhagic stroke. Ischemic strokes are caused by obstruction within a blood vessel that 

supplies blood to the brain. It accounts for 87% of all strokes [1]. Hemorrhagic strokes are less 

common, accounting for 13% of all stroke cases [1]. There are two types of hemorrhagic strokes 

based on location: intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH), taking 

up 10% and 3% of all strokes, respectively [1]. ICH happens when diseased blood vessels burst 

and blood leaks into brain parenchyma or the surrounding meningeal spaces. SAH refers to 

bleeding into the subarachnoid space between the pial and arachnoid membranes. According to 

the American Heart Association/American Stroke Association (AHA/ASA) website, strokes 

caused by unknown factors are categorized as cryptogenic stroke. Transient ischemic attack (TIA) 

is a transient episode of neurologic dysfunction caused by ischemia in focal brain, spinal cord, or 

retinal, without acute infarction. TIA symptoms occur rapidly and last for a short time, usually 
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less than an hour. Patients with untreated TIA have a 10% chance of developing a stroke in the 

next 7 days [1]. 

 

1.1.1.1 Ischemic Stroke:  Ischemic strokes are divided into two types: thrombotic stroke and 

embolic stroke. In thrombotic stroke, a blood clot is formed in an artery that supplies blood to the 

brain. In an embolic stroke, a blood clot or other substances travel through the bloodstream to an 

artery in the brain. Despite different types of ischemic stroke, oxygen-rich vascular supply is 

compromised. Ischemia causes brain damage by oxygen or glucose depletion, energy failure and 

disturbance of subsequent energy-dependent processes. The extent of brain injury depends on the 

severity, duration and location of ischemia [2]. Depletion of cellular energy causes imbalance in 

ion pumps. Elevation of intracellular Na
+
, Ca

2+
 and extracellular K

+
 will cause cytotoxic edema 

[3]. With energy depletion, an excitotoxic amino acid, glutamate, is released, activating of 

glutamate receptors which leads to Na
+
, Ca

2+
 influx, thus exacerbating edema and toxicity [3]. 

Generation of oxygen-free radicals and reactive oxygen species can react with cellular 

components and trigger inflammation and apoptotic pathways [2]. Apoptosis is an energy 

consuming process, so restoration of blood flow could potentiate apoptosis [3]. Inflammation 

molecules, free radicals, hypoxia damage and destruction of basal lamina by matrix 

metalloproteinases could cause disruption of the blood brain barrier (BBB) [3]. There is 

increased angiogenesis in ischemic stroke within penumbra in humans. Rodent studies 

demonstrated the increased expression of mRNA of angiogenesis genes and angiogenic protein 

in ischemic area, however, it is still unclear if angiogenesis response could lead to development 

of functional new blood vessels and improve brain function after ischemic stroke [4]. 
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The inner core of the cerebral vascular tissue that undergoes ischemia is hypoperfused 

(18–20 ml/100 g/min) and is at risk of dying within hours whereas penumbra perfused at 60 

ml/100 g/min is less likely to die [2]. Early restoration of blood flow by pharmacological 

intervention or mechanical recanalization could salvage neurons and glia cells from the inner 

core as well as penumbra and reduce infarct size. However, some patients experienced 

reperfusion injury, fatal edema and intracranial hemorrhage, after reperfusion [5]. After 

reperfusion, reactive hyperemia occurs where there is an elevation of regional blood flow along 

with loss of cerebral autoregulation and increased BBB permeability [6]. Following postischemic 

hyperperfusion, a secondary hypoperfusion phase occurs, which lasts for 18 to 96 hours resulting 

in cerebral metabolic depression, microvascular obstruction, occlusion via swelling of 

endothelial cells and astrocytic end-feet, and formation of endothelial microvilli. All these 

contribute to increased paracellular permeability, which is associated with vasogenic edema that 

worsens reperfusion injury. Hillis et al. reported that reduction in volume of hypoperfused brain 

regions is a marker of response to treatment to improve perfusion [7]. Recombinant tissue-type 

plasminogen activator (rt-PA) is the only drug FDA approved for treating ischemic stroke 

patients via its antithrombotic effect [8]. Unfortunately, rt-PA may cause symptomatic 

intracranial hemorrhage and should be intravenously administered within three hours after stroke 

symptoms onset to achieve its benefits [9, 10]. 

 

1.1.1.2 Subarachnoid Hemorrhage:  Eighty percent of subarachnoid hemorrhage occurs due to 

bleeding from cerebral aneurysm and ten percent occurs due to rupture of arteriovenous 

malformation. Rupture of mycotic aneurysm, angioma, neoplasm and cortical thrombosis are the 

other remaining causes of SAH. Approximately 30,000 people experience an aneurysmal 
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subarachnoid hemorrhage (aSAH) each year [11]. aSAH is associated with a significant case 

fatility ranging from 8% to 67% and significant morbidity among survivors [12, 13].  

Early brain injury (EBI) is an emerging cause of morbidity and mortality after SAH. The 

definition of EBI is the immediate injury to the brain within the first 72 hours of the ictus, 

secondary to SAH [14]. EBI refers to the complications that happen before vasospasm and 

delayed cerebral ischemia (DCI) [15]. During aneurysmal rupture, intracranial pressure (ICP) 

increases. Possible mechanisms of ICP elevation include volume increase secondary to SAH, 

vasoparalysis and cerebral spinal fluid (CSF) drainage obstruction [15]. If bleeding continues 

and ICP remains elevated, it could induce a decrease in cerebral perfusion pressure (CPP), 

decrease in cerebral blood flow (CBF), as CPP=MAP-ICP and CBF=CPP/coronory vasucular 

resistance (CVR), and cerebral ischemia and patients could die immediately [15]. Cellular 

apoptosis can be activated by the increase in ICP. Neuronal apoptosis has been shown in the 

hippocampus and cortex in humans [16]. Apoptosis has also been linked to the development of 

vasospasm [15]. Prolonged and ICP-independent hypoperfusion was found in the acute phase 

after SAH clinically and experimentally, indicating acute vasospasm [17].  

Vasospasm and delayed cerebral ischemia (DCI) that happen 3-14 days after initial 

hemorrhage remain to be the common causes of increased morbidity [11]. Approximately 70% 

of patients develop cerebral vasospasm after aSAH [18]. Cerebral vasospasm describes the 

narrowing of cerebral arteries that can be detected by angiography or sonography [11]. 

Vasospasm usually has an onset at 3 days after SAH, reaches maximum constriction on 5 to 14 

days and gradually resolves at 2 to 4 weeks [11]. While cerebral vasospasm has been found to be 

associated with the reduction in CBF in various studies, it is also associated with reduction in 

cerebral perfusion but not regional perfusion. This association is supported by the fact that 
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hypoperfusion was seen in 46 regions but 66% of these were supplied by vessels with no 

significant vasospasm and some patients without vasospasm still could have hypoperfused 

regions in a SAH corhort study [19]. DCI happens in about 30% of aSAH patients [11]. DCI is 

defined as the presence of focal neurological deficit or a decrease in the Glasgow Coma Scale of 

at least two points with an disturbance in cerebral blood flow [20]. It has long been implicated 

that cerebral vasospasm plays a causative role in developing DCI. However, clinical trials 

showed that clazosentan treatment didn’t significantly reduce delayed ischemic neurological 

deficit while showing reduction in moderate or severe vasospasm [21]. Similarly, one parallel 

study found that delayed cerebral infarction could develop in brain regions without vasospasm 

and it accounts for >25% of infarct from DCI [22]. These indicated an association instead of a 

causal relationship between cerebral vasospasm and DCI, other processes that happen in a 

microvascular level could attribute to part of the burden from DCI [22].  

Prophylactic oral nimodipine and initiation of triple-H therapy have the strongest 

evidence in treating vasospasm [23]. Triple-H therapy increases cerebral blood flow by 

increments of intravascular volume and reduction of blood viscosity, but failed to show 

improvement in delayed neurological deficits or clinical outcome [23]. Nimodipine is a calcium 

channel blocker indicated for improving neurological outcomes after SAH. In a British 

Aneurysm Nimodipine Trial, patients who had oral nimodipine demonstrated a 34% reduction in 

cerebral infarction and a 40% reduction in poor outcome at three months. 

 

1.1.2 Cardiac Arrest 

 

Cardiac arrest is defined as the cessation of cardiac mechanical activity and confirmed by the 

absence of signs of circulation. In 2014, 6328 children (<18 years) and 320157 adults 
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experienced out-of hospital cardiac arrest and survival to hospital discharge was only around 7-

10% [24]. Whole-body ischemia during cardiac arrest and after return of spontaneous circulation 

(ROSC) lead to a series of post-cardiac arrest syndrome, including post-cardiac arrest brain 

injury, post-cardiac arrest myocardial injury, systemic ischemia/reperfusion response and 

persistent precipitating pathology. Brain, particularly cerebral cortex, is vulnerable to 

ischemic/reperfusion injury and post-resuscitation neurological dysfunction of cardiac arrest 

represents the major cause of mortality and morbidity [25]. Upon cessation of cerebral 

circulation, oxygen is depleted, followed by energy depletion. Inability to maintain Ca
2+

 

homeostasis could result in the release of free fatty acid, mainly arachidonic acid, and induce 

vasospasm. Free radical formation and activation of protease cascades lead to damage in 

membrane structure, DNA and mitochondria. Activation of cell-death signaling pathways and 

excitotoxicity during ischemia and after reperfusion of cardiac arrest all contribute to post-

cardiac arrest brain injury [25-27].  

Animal studies show that there is a short period of multifocal no-reflow right after 

resuscitation from cardiac arrest. This is followed by a 15-30 min transient global hyperemia that 

causes impaired cerebral autoregulation. While the cerebral metabolic fate gradually recovers, 

cerebral blood flow is severely reduced for 2-12 hours, which is called the delayed 

hypoperfusion phase. After restoration of CBF and metabolism, there might be secondary 

hyperemia [25, 28]. The prolonged phase of hypoperfusion is correlated to neurocognitive, 

behavioral, sensory and motor function deficit and may represent a therapeutic target for 

ischemic/reperfusion injury [16]. For example, simultaneous chest compression cardiopulmonary 

resuscitation (CPR) combined with abdominal binding improves cerebral perfusion by elevating 

cerebral perfusion pressure in dog after cardiac arrest [29]. In a ventricular fibrillation cardiac 
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arrest (VFCA) model in pig, the endothelin-1 treated group showed dose-dependent elevation in 

CBF after resuscitation from VFCA and increased resuscitation success [30]. On the contrary, 

BQ123, an antagonist of endothelin type A receptor, reversed cerebral hypoperfusion and 

improved functional outcome in cardiac arrest rats [31].   

One important treatment to prevent secondary brain injury and improve neurological 

outcome is the application of therapeutic hypothermia. Preclinical research showed hypothermia 

improved functional, neurological and morphological cerebral outcome in dogs and rats [32-35]. 

Clinical evidence showed that 49% of the patients treated with hypothermia (33°C) had a good 

outcome compared to 26% in the normothermia group, with an odds ratio of 5.25 [36]. Based on 

the published evidence, AHA recommended therapeutic hypothermia as standard of care in 

patients after resuscitation from VFCA. In 2009, an international conference provided consensus 

recommendations to targeted temperature management in critical care, where “therapeutic 

hypothermia” was recommended to replace by “targeted temperature management” and targeted 

temperature management profile should be explicitly indicated instead of using “mild”. 

Recommendations also include 32-34°C as preferred treatment for out-of-hospital cardiac arrest 

adult patients with ventricular fibrillation or pulseless ventricular tachycardia and still 

unconscious after restoration of spontaneous circulation [37]. Possible protective mechanisms of 

hypothermia include: (1) a 6% reduction in cerebral metabolic rate for oxygen when every 1°C 

reduction in brain temperature; (2) suppression of free radical production, excitatory amino acid 

release, and calcium shifts that are associated with hyperthermia; (3) attenuation of pro-apoptosis 

signals; (4) upregulation of p53 that promote repair after focal ischemia and (5) reduction in a 

neuron death marker enolase [38].  
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Collectively, cardiac arrest, ischemic stroke and subarachnoid hemorrhage share common 

mechanisms in pathophysiology of brain injury. Cerebral hypoperfusion is one common 

mechanism that contributes to secondary brain injury and may serve as a potential treatment 

target in cardiovascular and cerebrovascular diseases. 20-HETE as microvascular constrictor 

could also regulate CBF through alteration of CVR. The following section will introduce 20-

HETE production and its biological effects.  

 

 

1.2 ARACHIDONIC ACID METABOLISM PATHWAY AND EICOSANOIDS 

BIOLOGICAL EFFECTS 

 

1.2.1 Arachidonic Acid Metabolism Pathway 

 

Arachidonic acid (AA) is a polyunsaturated ω-6 fatty acid that is esterified in the cell membrane. 

It can be activated by cytosolic phospholipid A2 (cPLA2) under different stimuli to release free 

AA for oxidized metabolism [39]. Once released, free AA is metabolized by three enzymatic 

pathways, including cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 

(CYP450) [40]. COX catalyze AA into prostaglandins PGG2 and PGH2, which are further 

converted into vasodilatory prostaglandins PGE2, PGF2α, prostacyclins PGI2 and thromboxanes 

TXA2 and TXB2 [41]. Several different LOX, 5-, 12-, and 15-LOX metabolize AA into 5-, 12-, 

15-HETE, which are converted to leukotrienes and lipoxins [41]. CYP450 pathways metabolize 

AA by hydroxylation, olefin epoxidation and bis-allylic oxidation into hydroxyeicosatetraenoic 

acids (HETEs) and epoxyeicosatrienoic acids (EETs). AA ω-/ω-1 hydroxylation happens at or 
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near the terminal carbon and yields 16-, 17-, 18-, 19-, 20-HETE [42]. Bis-allylic oxidation 

generates 5-, 8-, 9-, 11-, 12-, 13-, and 15-HETE [42, 43]. Olefin oxidation provides four EETs: 

5,6-, 8,9-, 11,12-, and 14,15-EET [42]. A study done in a group of human recombinant enzymes 

showed that CYP2C19 had the highest catalytic activity (32 pmol/ pmol P450/ min) to 

metabolize AA, followed by CYP1A1, 4F3B, 4A11 and 4F2 [44]. Figure 1 depicts three 

pathways of AA metabolism.  

 

 

Figure 1. Arachidonic acid metabolism pathway 

 

1.2.2 Hydroxylase Pathway and 20-HETE Biological Function 

 

CYP450 hydroxylase pathway regulates formation of 16-, 17-, 18-, 19-, and 20-HETE [42]. 20-

HETE is the major metabolite of AA in various organs such as liver, kidney, heart, lung and 

cerebral arteries [40, 45, 46]. CYP4A and 4F subfamilies are responsible for ω-hydroxylation of 

AA to form 20-HETE [40]. Powell et al. showed that CYP4A11, 4F2 produced 20-HETE in 
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human liver and kidney microsomes, and Lasker et al. demonstrated that CYP4F2 was 

responsible for predominant 20-HETE formation in human kidney [47, 48]. Incubation with 

human recombinant CYP4F3B exhibited high catalytic hydroxylation of AA, and AA ω-

hydroxylated metabolites formed by CYP4F3B decreased to 8% when DHA (50 μM) was 

present, which indicates CYP4F3B is an isoform that could also form 20-HETE [49, 50]. A non-

CYP4 isoform CYP2U1, localized in human brain tissue, also converted AA into 19-HETE and 

20-HETE [51]. In rat, CYP4A1, 4A2, 4A3, 4A8, 4F1, 4F4 has been shown to generate 20-HETE 

and CYP4A2 is considered the major isoform for 20-HETE formation [52-56]. 20-HETE has 

potent microvascular constriction effects, constricting renal, cerebral, mesenteric and skeleton 

muscle arterioles [40]. 20-HETE inhibits large conductance Ca
2+

-activated K
+
 (KCa) channels, 

leading to depolarization of membrane potential and vasoconstriction [57]. 20-HETE is also 

involved in myogenic response in renal, cerebral, mesenteric and skeleton muscle, autoregulation 

of renal and cerebral blood flow, ischemia-induced angiogenesis and PPAR-mediated 

inflammation [57-60].   

 

1.2.3 Epoxygenase Pathway and EETs Biological Function 

 

CYP450 epoxygenase pathway generates four EETs: 5,6-EET, 8,9-EET, 11,12-EET and 14,15-

EET [61]. In general, CYP1A, 2B, 2C, 2D, 2G, 2J, 2N can generate these metabolites from AA 

[39, 62]. In livers and kidneys of both humans and rats, CYP2C8, 2C9 are the major isoforms for 

EETs formation [39]. CYP2J2 is the predominant isoform for EETs formation in human and rat 

heart [63]. Once formed, the majority of EETs are esterified to cellular glycerophospholipids 

[39]. EETs can be metabolized by soluble epoxide hydrolase (sEH) localized in liver, kidney, 
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and brain into corresponding DiHETs [39, 64]. DiHETs are generally viewed as biologically 

inactive or less effective compared with EETs [39, 65]. Other metabolism pathways of EETs 

include β-oxidation, CYP metabolism and glutathione conjugation. On the contrary to 20-HETE, 

EETs dilate kidney, cerebral, mesenteric and pulmonary arterioles, inhibit T-type calcium 

channels, and activate large conductance Ca
2+

-activated K
+
 (KCa) channels, leading to 

hyperpolarization of membrane potential and vasodilation [40, 65, 66]. EETs have anti-

inflammatory effects and inhibit platelet aggregation [40]. EETs also stimulate angiogenesis by 

involving MAPK, P13-k/Akt signaling pathway and eNOS pathway [67].  

 

1.2.4 CYP450 Enzymes and Eicosanoids in Brain 

 

CYP2C, 2D, 2J, 4A, 4F subfamilies are expressed in brain [40, 68, 69]. 20-HETE and EETs are 

formed when incubated with AA in rat cerebral arteriole microsomes and can be found in human 

CSF [58, 70]. 20-HETE is produced in vascular smooth muscle cells, vascular endothelium and 

astrocytes, while EETs are produced in neurons, astrocytes and endothelial cells [40, 71, 72]. 

sEH that bioinactivate EETs is expressed in smooth muscles of the arterioles, neuronal cell 

bodies, oligodendrocytes, and astrocytes [73]. As discussed above, 20-HETE and EETs have 

opposite effects on cerebral arteries. 20-HETE constricts cerebral arteries by activating PKC, Ras, 

tyrosine kinase, MAP and rho kinase pathways, depolarize cell membrane by blocking Kca 

channels, and activating L-type Ca
2+

 channels [74]. 20-HETE and EETs regulate basal blood 

flow in cerebral microcirculation. Subdural administration of CYP450 epoxygenase inhibitor 

miconazole induced a 29.7% decrease in basal blood flow [75]. At 10
-6

 mol/L, 20-HETE 

decreased basal cerebral arteries diameters by 25.3% [58]. 20-HETE has a potential role in CBF 
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autoregulation and this is supported by the evidence that 20-HETE concentration levels increased 

six times as transmural pressure elevated from 20 to 140 mm Hg and in vivo inhibition of 20-

HETE alleviated autoregulation of CBF to elevation of arterial pressure [58]. EETs dilate 

cerebral arteries by activating Kca channels and hyperpolarize cell membranes. 5,6-EET and 

14,15-EET were identified when blood-free mouse brain slices were incubated with exogenous 

radiolabeled AA [76]. Topical application of brain-synthesized 5,6-EET or synthetic 8,9-EET (5 

μg/ml) showed a 28% and 8% dilation in cerebral arteriolar, respectively [76]. Co-localization of 

CYP2C11 and sEH at extrinsic parasympathetic and sensory vasodilator fibers suggested that 

EETs have a role in neurogenic control of cerebral arteries [77]. EETs have also been 

demonstrated to be key mediators in neurovascular coupling [64].  

 

 

1.3 PRECLINICAL AND CLINICAL STUDIES OF EICOSANOIDS IN 

CEREBROVASULAR AND CARDIOVASCULAR DISEASES 

 

Multiple animal and clinical studies have demonstrated that upregulation of 20-HETE is 

detrimental, whereas inhibition of 20-HETE produces protective effects in CA, SAH and 

ischemic stroke.   

 

1.3.1 Eicosanoids in SAH 

 

A number of studies have investigated the role of 20-HETE and EETs in SAH. Various studies 

proved that inhibition of 20-HETE had beneficial effects in CBF and neurological outcomes. 
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Kehl et al. showed that 20-HETE levels drastically increased from 12 to 199 ng/ml in vehicle-

treated rat after SAH [78]. Rats pretreated with N-hydroxy-N-(4-butyl-2-methylphenyl) 

formamidine  (HET0016 10mg/kg i.v.), a 20-HETE formation inhibitor, significantly reduced the 

initial fall in CBF at 10 min after induction of SAH [78]. Pretreatment of N-(3-chloro-4-

morpholin-4-yl) phenyl-N′-hydroxyimido formamide (TS-011 0.01–0.1 mg/kg i.v.), another 20-

HETE formation inhibitor, prevented sustained fall in CBF in rat after induction of SAH [78, 79]. 

In a dual-hemorrhage model of SAH in rat, rats that received TS-011 (0.1 mg/kg i.v.) showed 

recovery of cerebral artery diameter, CBF returned to control values, and reversion of delayed 

vasospasm [80]. Eicosanoids can be found in human CSF as well [70, 81]. Our laboratory found 

in aSAH patients CSF 20-HETE concentrations was associated with delayed cerebral ischemia 

(DCI) and Hunt & Hess score, which represents severity of hemorrhage [82]. This is the first 

clinical evidence that supports an association between 20-HETE CSF levels with poorer aSAH 

outcome. Along with the increase of 20-HETE, CSF levels of the protective vasodilator 14,15-

EET also increased in aSAH patients who experienced DCI [83]. Our laboratory also found that 

aSAH patients with moderate or high 20-HETE CSF concentrations were more likely to have 

unfavorable 3 and 12-months Modified Rankin Scale, quicker onset to develop clinical 

neurologic deterioration and three-fold higher 3 and 12-month mortality [84].  

Decreasing EETs bioinactivation through sEH gene deletion is another strategy to 

produce protective effects after SAH. The most common genetic variants for EPHX2, a gene that 

regulates sEH transcription, are K55R and R287Q. K55R variant confers the increase of sEH 

activity and lowers EETs levels, while R287Q variant leads to a decrease in sEH activity and 

higher EETs levels. aSAH patients with K55R variants had higher odds of new stroke, higher 
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mortality, and worse ICU discharge [85]. In sEH knockout mice, cerebral edema and vascular 

inflammation was less, and behavioral outcome was better compared with wild type mice [86].  

 

1.3.2 Eicosanoids in Ischemic Stroke 

 

Multiple studies in ischemic stroke models established that an increase in 20-HETE is 

deleterious, and an increase in EETs is favorable. Direct infusion of 20-HETE (8 mg/kg or 12 

mg/kg) into carotid artery induced severe neurological deficit and large cortical infarcts that 

resembled the infarct in transient ischemic stroke model in rat [79]. After temporal focal 

ischemia in rats, HET0016 (10 mg/kg i.p.) administration is associated with 79.6% reduction in 

20-HETE levels in brain cortical tissue [87]. HET0016 treated group exhibited reduced lesion 

volume and attenuation of decreased CBF [87]. Similarly, in ischemic stroke rat model, brain 20-

HETE levels significantly increased within 5.5 h after transient middle cerebral artery occlusion 

(MCAO) [88]. Treatment with TS-011 (0.3 mg/kg) led to smaller infarct volume, and improved 

neurological and functional outcome compared with vehicle treatment [88]. 20-HETE is found in 

plasma of ischemic stroke patients, and is associated with unfavorable outcome. In acute 

ischemic stroke patients, plasma 20-HETE as well as EETs, DiHETs, and F2-isoprostane levels 

significantly increased compared with healthy controls, and 20-HETE and EETs levels 

attenuated at 30 days post ischemic stroke [89]. 20-HETE concentrations are associated with 

greater neurological impairment, reduced modified barthel index (MBI), and reduced cognitive 

function. 

Increasing EETs by inhibiting sEH is another strategy to produce protective effect after 

ischemic stroke. Acute inhibition of sEH by trans-4-[4-(3-adamantan-1-yl-ureido)-
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cyclohexyloxy]-benzoic acid (t-AUCB) increased EETs to DiHETs ratio by two fold in rat brain 

cortex [90]. t-AUCB reduced cortical infarct volume by 35%, decreased neuronal cell death and 

improved functional outcome [90]. sEH knock-out reproductively senescent  female mice 

subjected to MCAO showed decreased infarct size and increased cerebral perfusion at 24 h after 

MCAO [91]. Interestingly, therapeutic ultrasound has shown beneficial effect in stroke patients 

by ultrasound-mediated thrombolysis through augmenting vasodilator eicosanoids 8,9-EET, 

11,12-EET, 14,15-EET by more than two fold [92].   

 

1.3.3 Eicosanoids in Cardiac Arrest 

 

20-HETE and EETs disturbance were also found in CA. In an asphyxia cardiac arrest model 

performed in our laboratory, 16-18 day old pediatric rats underwent 9 min /12 min (moderate 

/severe) cardiac arrest. After moderate cardiac arrest, 8,9-EET and 14,15-EET significantly 

increased in cortex and subcortical region. After severe cardiac arrest, 20-HETE significantly 

increased in cortex and subcortical regions [93]. HET0016 (0.9 mg/kg i.v.) administration 

inhibited 20-HETE formation, improved cortical perfusion, decreased neurological deficit score 

(NDS), reduced pyknotic neurons, and percentage of brain tissue water [93]. This suggests that 

inhibition of 20-HETE improves CBF and reduces neurodegeneration. Early administration of 

HET0016 (1 mg/kg) plus delayed therapeutic hypothermia (34°C) in neonatal piglets after 

hypoxia-ischemia enhanced the benefit of delayed therapeutic hypothermia in neuron protection, 

HET0016 plus delayed therapeutic hypothermia treated group showed increase in viable neurons 

in putamen, somatosensory cortex and ventral posterolateral nucleus thalamus [94].  
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There is inconsistency regarding the protective effects of sEH pharmacological inhibition 

or gene deletion. Hutchens et al. showed that sEH gene deletion mice subjected to 10 min CA 

had significantly lower survival rate than wild type mice at 10 min and 24 h after CA and they 

required significantly longer CPR time and more epinephrine [95]. Other studies supported the 

favorable effect of sEH gene deletion or pharmacological inhibition. For example, sEH inhibition 

by 4-phenylchalcone oxide (4-PCO) in mouse CA/CPR model had reduced neuronal cell death 

and improved memory function by inducing anti-inflammatory and neuroprotective IL-

10 expression [96]. 

Together, these studies suggest that reducing 20-HETE production may serve as a 

potential therapeutic strategy in cerebrovascular and cardiovascular diseases. Inhibiting 20-

HETE formation or blocking 20-HETE action can diminish vasoconstriction thus increasing 

cerebral blood flow and produce beneficial neurological outcome.  

 

 

1.4 20-HETE FORMATION INHIBITORS AND ANTAGONISTS 

 

According to the AHA/ASA stroke guidelines, blood pressure management for ischemic stroke 

treatment is a class I recommendation, where treating peri-infarct penumbra characterized with 

impaired cerebral blood flow is dependent on mean arterial blood pressure [8, 97]. The only drug 

that is FDA approved for ischemic stroke treatment is recombinant tissue-type plasminogen 

activator (rt-PA) to dissolve clots and restore cerebral blood flow [8]. Unfortunately, rt-PA may 

cause symptomatic intracranial hemorrhage and must be administered early after strokes [9]. For 

aSAH patients, antifibrinolytic treatment following prophylaxis against vasospasm is 
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recommended by AHA/ASA aSAH guidelines to reduce the threat of ischemic neuronal damage 

through controlling intracranial pressure, decreasing the metabolic rate of oxygen use, and 

improving CBF [98]. However, few therapeutic treatments exist for SAH-induced brain injury 

[98]. In 2010 CA guidelines, neurocritical care was emphasized for post-cardiac arrest patients. 

Few neuroprotective drugs have been tested in clinical trials and no pharmacological agents were 

observed to have neuropretective effect [59]. Thus, intervention treatment for post-injury 

cerebral hypoperfusion and CBF disturbance is inadequate. Emerging evidence of 20-HETE as 

pathogenesis in various neurovascular diseases and its association with unfavorable outcomes 

has made it a potential treatment target in ischemic stroke, SAH and CA.  

 

1.4.1 20-HETE Formation Inhibitors 

 

There has been a wealth of compounds synthesized to either target enzymes that are responsible 

for 20-HETE formation or act as antagonists of 20-HETE to block its effects. Table 1 is a 

summary of IC50 values and inhibition mechanisms of 20-HETE inhibitors and antagonists [99]. 

Several compounds inhibit 20-HETE and EETS formation nonselectively. β-diethyl-

aminoethyldiphenylpropylacetate (SKF-525A) nonselectively inhibits EETs and 20-HETE 

formation by binding to the heme in CYP enzymes and reduces availability of the heme to 

incorporate into CYP enzymes [40, 100]. 17-octadecynoic acid (17-ODYA) is a fatty acid 

analogue, which inhibits 20-HETE formation avidly depending on the terminal acetylenic moiety 

[101]. However, it also inhibits epoxygenases effectively at the same concentration [102]. 

Compound 1-aminobenzotriazole (ABT) (50 mg/kg) administered intraperitonealy completely 

inhibited 20-HETE and EETs formation, it disrupts CYP450 function by binding a benzene 
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group to the heme [103, 104]. In addition to these compounds, endogenous vasodilators, nitric 

oxide (NO) and carbon monoxide (CO), bind to the heme in the CYP enzymes and block 20-

HETE and EETs formation simultaneously even though NO donor dose-dependently inhibited 

20-HETE formation in renal microsomes [105]. 

Selective 20-HETE formation inhibitors were developed to specifically target the 

hydroxylase pathway, while minimizing the effects on the epoxygenase pathway. N-

methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) and 12-12-dibromododec-11-enoic 

acid (DBDD) are dibromoolefinic fatty acids [106]. In rat renal cortical microsomes, DDMS and 

DBDD inhibited ω-hydroxylation of AA with IC50 of 2 μM and there was about a 20% reduction 

in EETs at 10 μM. As concentration increases, DDMS and DBDD inhibit the epoxygenase 

pathway with an IC50 of 60 μM and 51 μM, respectively [106]. One-hour intravenous infusion of 

DDMS (10 mg/kg) reduced rat renal 20-HETE formation by 70% [107]. Because DDMS and 

DBDD are fatty acids, in vivo application might be restrained due to protein binding [40]. 

HET0016 is a selective, potent 20-HETE formation inhibitor in both humans and rats. It inhibits 

20-HETE in a dose-dependent manner with an IC50 value of 35.2±4.4 nM and 8.9±2.7 nM in rat 

and human renal microsomes, respectively [108]. EETs inhibition occurs at IC50 (2800±300 nM) 

100 times higher [108]. However, HET0016 is plagued by low water solubility (3.7 μg/ml), short 

half-life (39.6±20.0 min) and instability under acidic environment (43.2% remaining) [109, 110]. 

Several pyrazole and isoxazole derivatives of HET0016 showed selective inhibition against 20-

HETE formation with better stability and solubility profile, such as 3-(4-n-

Butoxyphenyl)pyrazole [110]. N-(3-chloro-4-morpholin-4-yl) phenyl-N'-hydroxyimido 

formamide (TS-011) is a newer selective, potent 20-HETE formation inhibitor with a IC50 range 

of 10-50 nM in human renal microsomes and recombinant CYP4A11, 4F2, 4F3B against 20-
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HETE formation and has little effect against other CYP450 isoforms [79]. Unfortunately, TS-011 

has a shockingly short half-life of 10 min when i.v. injected in rat and its main metabolite did not 

show inhibitory effects against 20-HETE formation in human renal microsomes [79]. 

Several clinically approved drugs and supplements have demonstrated inhibitory effects 

against 20-HETE formation. Fluoxetine has been proven to have protective effects by preventing 

BBB disruption in global ischemia-induced neuronal death [111]. In a study done in neonatal rats, 

transient postnatal fluoxetine (10 mg/kg) exposure reduced brain 20-HETE concentration by 

70.3%, indicating that fluoxetine may be a potential therapeutic agent in ischemic brain injury 

patients [112].  Isoniazid inhibited 20-HETE levels in rat liver and kidney tissue by 34±10% and 

15.6±5.3% of control, respectively [113]. Cardiac hypertrophy-induced rats treated with 

isoniazid (200mg/kg/day) showed increased cardiac 19-HETE levels by 20-fold and significant 

reduced 20-HETE levels by 98% [114]. By Monte Carlo simulations, El-Sherbeni et al. predicted 

that 2.5g daily high and safe oral resveratrol will decrease 20-HETE levels by 16-35% in 90% of 

human population [44]. Sesamin and sesamolin are plant lignans derived from sesame, which 

inhibited 20-HETE formation both in vitro and in vivo, while inhibiting epoxygenase activity 

with an IC50 value of 50 M [115]. 

 

1.4.2 20-HETE Antagonists 

 

Several 20-HETE analogues have shown to antagonize 20-HETE activity in renal and 

cerebral arteries, such as 5-, 15-, 19-HETE and 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid 

(6(Z),15(Z)-20-HEDE) [40]. 2,5,8,11,14,17-hexaoxanonadecan-19-yl 20-hydroxyeicosa-
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6(Z),15(Z)-dienoate (20-SOLA) is a novel, water soluble, 20-HETE antagonist that has shown to 

be able to reduce blood pressure in cyp4a14 knockout mice [116].  

 

Table 1. Summary of 20-HETE inhibitors 

Name Structure IC50 for 20-HETE 

formation in renal 

microsomes 

Type of 

inhibitor 

Reference 

SKF-525A 

 

Unknown Mechanism-

based 

[40, 100, 

117] 

17-ODYA 

 

<100 nM (rat) 

 

Mechanism-

based 

[99, 102, 

118] 

ABT  

 

M range Mechanism-

based 

[118, 119] 

DDMS  

 

2M (rat) Mechanism-

based, 

Reversible 

[106, 107] 

DBDD  

 

2M (rat) Reversible [106] 

DPMS 

 

31 M (rat) Unknown  [106] 

10-SUYS 

 

10.1±2.6 M (rat) Mechanism-

based 

[120, 121] 

HET0016  

 

8.9±2.7 nM (human) 

35.2±4.4 nM (rat) 

Unknown [99, 108] 

3-(4-n-

Butoxyphenyl

)pyrazole 

 

23±12 nM (human) Unknown [110] 

TS-011 

 

8.42 nM (human) 

9.19 nM (rat) 

Unknown  [79] 

Fluoxetine 

 

Unknown   Alter CYP4A 

expression 

[112, 122] 

Isoniazid 

 

Unknown  Alter CYP4A 

expression 

[113, 114] 
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Resveratrol 

 

3 M (human liver 

microsomes) 

Time-dependent 

inhibition 

against 

CYP1A1, alter 

CYP4A 

expression 

[44, 123, 

124] 

Sesamin 

 

5.3 M (human) Unknown  [115] 

Sesamolin  

 

3.4 M (human) Unknown  [115] 

6(Z),15(Z)-

20-HEDE  

Unknown Antagonist [40] 

20-SOLA 
 

Unknown  Antagonist  [116] 

 

 

1.5 COMPUTATIONAL CHEMISTRY 

 

Protein structures can be ascertained by X-ray crystallography, NMR spectroscopy or electron 

microscopy. Protein crystallization is to crystallize protein to obtain its 3D structure, which can 

aid in in silico drug design. Crystallizing membrane-bound proteins has many barriers including: 

(1) extraction only takes place when detergents in presence due to the hydrophobicity of protein 

surfaces; (2) difficulty in purifying membrane proteins because of their instability once 

solubilized in detergents and (3) generating low yield from purified proteins to high-resolution 

structure [125]. In addition to the challenges of protein crystallization, the methods used for 

determining their structures also have their drawbacks. X-ray crystallography and NMR 

spectroscopy have disadvantages when membrane proteins are embedded in a lipid bilayer [126]. 

The only way to determine structure of membrane-bound protein in its membrane context is by 

Table 1 (continued) 
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using electron crystallography. This technique is not widely used because producing two-

dimensional crystals that diffract to high-resolution requires sufficient amount of stable and 

compatible membrane proteins [125].  

When a protein 3D structure is not available, homology modeling can help in 

constructing a 3D model of target protein and structure-based drug design [127]. Homology 

modeling, also known as comparative modeling, allows construction of 3D structure of target 

protein based on its amino acid sequence and templates of experimental 3D structures that are 

evolutionarily related to the target protein [128].  

The first step of homology modeling is to select the most appropriate template among 

available protein structures for target sequence. Templates can be found in databases like Protein 

Data Bank, CATH, MODBASE, SCOP and etc. [129]. BLAST server provides a comparison of 

the target sequence with a library of protein sequences and outputs a list of 3D protein structures 

based on the sequence identity [130]. The second step is to align the target sequence with the 

template, which is the basis for homology modeling. There are several methods that can achieve 

target-template alignment, including PSI-BLAST, SALIGN, SAM-T02 and etc. [129]. In some 

alignments, using multiple template structures and sequence information is beneficial [131]. For 

example, human CYP4F11 and CYP4F3A were aligned using mammalian CYP2C5 bound to 3-

dimethylsulfaphenazole, CYPBM3 (2HPD), CYPterp (1CPT), CYPcam (2CPP), and CYPeryF 

(1OXA) as structural templates [132]. If the sequence homology between target protein and 

protein template is larger than 50%, then the template protein structure will be a general good 

model. However, if the homology drops to 20%, there will be large structural differences [133]. 

After the alignment of a target sequence with the template sequence, the next step is to build and 

refine the 3D structural model of the target protein. The model should include building of the 
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backbone of the protein, loops and side-chains [134]. Several programs can carry out model 

building. The SWISS-MODEL models by the rigid-body assembly method, where rigid bodies 

derived from the core of the aligned regions are used to construct a model [129, 135]. The 

SegMOD program employs modeling by segment matching, where atomic positions obtained 

from the alignment were used to find resembling segments [135, 136]. The third method is to 

model based on satisfaction of spatial restraint, which can be achieved by the MODELLER 

program [137]. The newest homology modeling method, artificial evolution, can be done by the 

NEST program, which employs the structural evolution from the template to the target protein 

[138, 139]. Homology modeling is a iterative process and needs model optimization which can 

be applied by molecular mechanics force field, molecular dynamics, Monte Carlo and genetic 

algorithm-based sampling [134]. Lastly, the homology model needs to be validated by 

determining if the model has the correct fold, similarity between the target and template 

sequences, stereochemistry of the model and model structure in the functional environment [134].  

Homology modeling can be used together with virtual screening to help identify novel 

compounds. Virtual screening enables identification of biologically active molecules that bind to 

the protein target [140]. When target information is available we can use structure-based virtual 

screening. In other cases, when this information is not available, ligand-based virtual screening 

can be used [141]. For example, two retinoic acid receptor (RAR) agonists with an IC50 value of 

50 nM were identified based on virtual screening from Available Chemicals Directory using a 

RAR-α model. One of the compounds displayed novel structural features that may assist in the 

development of novel ligands for cancer therapy [142]. Pharmacophore modeling is a major tool 

in ligand-based virtual screening in drug discovery. According to IUPAC, a pharmacophore 

model is an ensemble of steric and electronic features that is necessary to ensure the optimal 
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supramolecular interactions with a specific biological target and to trigger (or block) its 

biological response [143]. Pharmacophore modeling can be improved by ligand-based or 

structure-based methods [144]. For example, 22 structure-based and 3 ligand-based 

pharmacophore models identified 58 compounds that were potential sEH inhibitors. Among 48 

tested compounds, 19 were sEH inhibitors with IC50 < 10 μM, one was the most potent with an 

IC50 of 4.2 nM [145].   

Human CYP4 family consists of 13 isozymes [99]. There is an ester bond between the 

heme 5-methyl group and a glutamic acid, which is conserved in the CYP4 family [146]. The 

sequence and structure of CYP4F2 is closely related to other isoforms in the CYP4F subfamily. 

CYP4F2 and CYP4F3B have high similarity in their amino acid sequences; they have more than 

93% sequence identity [147]. CYP4F11 has 80.0% and 82.3% sequence identity with CYP4F2 

and CYP4F3, respectively [148]. Thus, predicting the 3D structure of CYP4F2 using homology 

modeling and virtual screening against compound libraries could assist in discovery of novel 

selective and potent enzyme inhibitors. 

CYP450-derived eicosanoids have a wide range of biological functions and the alteration 

of eicosanoid levels is associated with pathophysiological conditions in CA, SAH and ischemic 

stroke. Since 20-HETE is a potent microvascular vasoconstrictor that plays a role in CBF 

autoregulation and cerebralvascular tone, CYP4A and CYP4F subfamilies that are involved in 

20-HETE formation may be potential therapeutic targets in these diseases. Consequently, 

development of enzyme inhibitors that target the CYP4F2 isoform should be studied profoundly 

to aid in the study of vasoactive metabolites pathophysiological roles. The goal of this research 

project is to identify novel, potent, selective, metabolically stable 20-HETE formation inhibitors 

with improved solubility and better BBB permeability.   
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2.0 METHODS AND MATERIAL 

 

 

2.1 CHEMICALS AND REAGENTS 

 

Test compounds 1-19 were obtained from a proprietary library available to our laboratory; test 

compounds 21-26 were obtained via virtual screening from NCI database against a CYP4F2 

homology model. Stock standards of (±)5,6-dihydroxy-8Z,11Z,14Z-eicosatrienoic acid (5,6-

DiHET), (±)8,9-dihydroxy-5Z,8Z,14Z-eicosatrienoic acid (8,9-DiHET), (±)11,12-dihydroxy-

5Z,8Z,14Z-eicosatrienoic acid (11,12-DiHET), (±)14,15-dihydroxy-5Z,8Z,11Z-eicosatrienoic 

acid (14,15-DiHET), (±)8(9)-epoxy-5Z,11Z,14Z-eicosatrienoic acid (8,9-EET), (±)11(12)-

epoxy-5Z,8Z,14Z-eicosatrienoic acid (11,12-EET), (±)14(15)-epoxy-5Z,8Z,11Z-eicosatrienoic 

acid (14,15-EET), 20-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid (20-HETE), 20-hydroxy-

5Z,8Z,11Z,14Z-eicosatetraenoic-16,16,17,17,18,18-d6 acid (20-HETE-d6), 12S-hydroxy-

5Z,8Z,10E,14Z-eicosatetraenoic acid (12-HETE), 15S-hydroxy-5Z,8Z,11Z,13E-eicosatetraenoic 

acid (15-HETE) and arachidonic acid (peroxide free) were purchased from Cayman Chemical 

Company (Ann Arbor, MI). Spectrophotometric grade dimethyl sulfoxide (DMSO) was 

purchased from Sigma-Aldrich (Milwaukee WI), high purity methanol (MeOH), ethyl ether and 

acetic acid and other solvents were purchased from Fisher Scientific (Pittsburgh, PA). NADPH, 

Administrator
打字机
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(±)-Metoprolol (+)-tartrate and (±)-verapamil hydrochloride was purchased from Sigma-Aldrich 

(St. Louis, MO). Warfarin was a kind gift from Dr. Thomas D. Nolin’s lab. Human liver 

microsome (HLM) was purchased from CellzDirect (Carlsbad, CA). Rat liver microsomes (RLM) 

and recombinant CYP4F2 (rCYP4F2) were purchased from Seikisui Xenotech (Lenexa, KS). Rat 

kidney tissue was prepared by homogenization from male Sprague Dawley rats. RKM was 

prepared from differential centrifugation in a Beckman Coulter Optima XL-100K ultracentrifuge 

(Beckman Coulter, Fullerton, CA). Total protein concentration was determined by Lowry protein 

assay.  

 

 

2.2 MICROSOMAL INCUBATION ASSAY 

 

2.2.1 AA Microsomal Incubation 

 

To screen the inhibitory effects against 20-HETE formation, compounds were tested in four 

different types of microsomes, including HLM, RLM, RKM or rCYP4F2. Compounds were 

dissolved in either 100% methanol or 100% DMSO to yield 10 mM stock solutions. Microsome 

incubation conditions were previously optimized. Microsomal incubations contained HLM, 

RLM, RKM (300 μg/ml) or rCYP4F2 (25 pmol/ml), AA (100 μM), NADPH (1 mM) and test 

compounds with various concentrations (50 nM to 2500 nM) in a 1 ml total volume in 

microsomal incubation buffer (0.12 M potassium phosphate buffer containing 5mM magnesium 

chloride). Each compound had three replications (n=3). Vehicle group was used as control to 
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calculate percentage of eicosanoids formation rate. HET0016 (250 nM) was used as positive 

control. Incubates without NADPH group served as the negative control.  

Reaction was started by adding NADPH to the incubates and was carried out at 37°C in a 

shaking water bath for 20 min. Reaction was stopped by placing tubes on ice, followed by adding 

12.5 μl 20-HETE-d6 as internal standard to each sample. Microsomal incubations were extracted 

with 3 ml ethyl ether twice, dried down under nitrogen gas and reconstituted in 125 μl 80:20 

methanol: deionized H2O for analysis. 20-HETE formation was quantified using a validated 

UPLC-MS/MS assay and normalized by vehicle group [70]. Other eicosanoids including 15-, 12-

HETEs, 8,9-, 11,12-, 14,15-EETs, and 5,6-, 8,9-, 11,12-, 14,15-DiHETs were monitored 

simultaneously.  

 

2.2.2 Chromatographic Analysis of CYP Eicosanoids 

 

An Acquity ultra performance LC autosampler (Waters, Milford, MA) was used to separate 

HETEs, EETs and DiHETs on a UPLC BEH C18, 1.7 μm (2.1 × 100 mm) reversed-phase 

column (Waters, Milford, MA) protected by a guard column (2.1 × 5 mm; Waters, Milford, MA) 

of the same packing material. Column temperature was maintained at 55° C. Mobile phases 

consisted of 0.005% acetic acid, 5% acetonitrile in deionized water (A) and 0.005% acetic acid 

in acetonitrile (B). The flow rate for mobile phases is 0.5 ml/min. The initial mixture of mobile 

phase was 65:35 of A and B. Mobile phase B increased at 0.4 minutes after injection from 35% 

to 70% in a linear gradient over 4 minutes, and again increased to 95% over 0.5 minutes where it 

remained for 0.3 minutes. This was followed by a linear return to initial conditions over 0.1 
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minutes with a 1.5 minute pre-equilibration period prior to the next sample run. Total run time 

was 6.4 minutes for each injection. Injection volumes were 7.5μl. 

Mass spectrometric analysis was carried out using a TSQ Quantum Ultra (Thermo Fisher 

Scientific, San Jose, CA) triple quadrupole mass spectrometer using heated electrospray 

ionization (HESI). Mass spectrometer was operated in negative selective reaction monitoring 

(SRM) mode with unit resolutions at both Q1 and Q3 set at 0.70 Da full width at half maximum. 

Scan time was set at 0.01 s and collision gas pressure was 1.3 mTorr. Quantitation of HETEs, 

EETs, and DiHETs by SRM was performed by monitoring their m/z transitions. Analytical data 

was acquired and analyzed using Xcaliber 3.0 data system (ThermoFinnigan, San Jose, CA). 

 

 

2.3 MICROSOMAL STABILITY ASSAY 

 

2.3.1 Compounds Microsomal Stability Assay 

 

Microsomal incubates contained HLM (500 μg/ml), test compounds (1 μM) and NADPH (1.3 

mM) in a 1 ml total volume of microsomal incubation buffer (0.12 M potassium phosphate 

buffer containing 5mM magnesium chloride). Each compound had three replications (n=3).  

Reaction was started by adding NADPH to the incubates and was carried out at 37°C in a 

shaking water bath for 60 min. At 0, 15, 30, 45, 60 min, a 50 μl aliquot of incubates was taken 

out and reaction was stopped by adding aliquot into 200 μl ice-cold acetonitrile. After 

centrifugation at 14000×g for 5 min, 200 μl supernatant was taken out for UPLC-MS/MS 

analysis. Values at 0 min were used as corresponding control for test compounds. Varapamil, 
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metoprolol, and warfarin, categorized as fast, moderate and slow metabolism, were used as 

positive control. Incubates without NADPH group served as negative control. 

 

2.3.2 Chromatographic Analysis Of Compounds 

 

Compounds were separated using the same instrument on a UPLC BEH C18, 1.7 μm (2.1 × 100 

mm) reversed-phase column (Waters, Milford, MA). Column temperature was maintained at 

50°C. Mobile phases consisted of 0.1% formic acid in deionized water (A) and acetonitrile (B) 

with a flow rate of 0.25 ml/min. The initial mixture of mobile phase was 80:20 of A and B. 

Mobile phase B increased from 20% to 95% at 0.5 minutes after injection in a linear gradient 

over 3 minutes and maintained for 0.5 minutes. This was followed by a linear return to initial 

conditions over 1.5 minutes. Total run time per sample was 5 minutes and all injection volumes 

were 7.5μl. 

Mass spectrometric analysis was performed using a TSQ Quantum Ultra (Thermo Fisher 

Scientific, San Jose, CA) triple quadrupole mass spectrometer coupled with heated electrospray 

ionization (HESI) operated in positive selective reaction monitoring (SRM) mode with unit 

resolutions at both Q1 and Q3 set at 0.70 full width at half maximum. Quantitation by SRM 

analysis on compounds was performed by monitoring their m/z transitions. Scan time was set at 

0.01 s and collision gas pressure was set at 1.2 mTorr. Analytical data was acquired and analyzed 

using Xcaliber 3.0  data system (ThermoFinnigan, San Jose, CA). 
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2.3 STATISTICAL ANALYSIS 

 

Data were analyzed with SPSS Statistics 23.0. Data were presented as mean ± std of the percent 

of vehicle control. One-way ANOVA was carried out and corrected with Bonferroni as post-hoc 

test when comparing remaining 20-HETE between test compound group and vehicle group. 

Values that are statistically significant are designated by asterisks (*, p < 0.05). 
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3.0 RESULTS 

 

 

3.1 COMPOUNDS 1-15 INHIBITORY EFFECT AGAINST 20-HETE FORMATION IN 

HLM, RLM, RKM AND rCYP4F2 

 

Compounds 1-15 were obtained from a proprietary library that’s available to our laboratory. 

HET0016 and 15 compounds were dissolved in methanol to yield 10 mM stock concentrations. 

Final concentrations of all the compounds in microsomal incubation buffer were 250 nM. HLM, 

RLM, RKM, and rCYP4F2 all produced 20-HETE only when incubated with AA in the presence 

of NADPH. HET0016, used as a positive control, completely knocked down 20-HETE formation 

in rCYP4F2, HLM, RLM and RKM by 92.21±2.72%, 98.3±0.37%, 90.49±2.60% and 

97.42±9.54%, respectively. At 250 nM, compared with the no compound group, compound 3 and 

10 significantly inhibited 20-HETE formation by 51.60±3.32% and 53.62±5.93% in rCYP4F2. 

Compounds 3, 7, 10 inhibited 20-HETE formation by 21.00±6.60%, 26.86±6.73% and 

30.45±3.15% in HLM, respectively, without statistical significance. Compounds 3, 7, 10 didn’t 

show comparable inhibition effects in RLM or RKM as in rCYP4F2 or HLM. Interestingly, 

compound 14 and 15 only significantly decreased 20-HETE formation by 32.55±0.83% and 
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40.69±4.52% in RKM but not in HLM or RLM (Figure 2). Table 2 lists inhibition of all 15 

compounds against 20-HETE in percent of control in four different microsomes.  

 

 

Figure 2. Compounds 1-15 inhibition against 20-HETE formation in four different 

microsomes 

 

Table 2. Compounds 1-15 inhibition against 20-HETE formation in percent of control 

Name rCYP4F2 HLM RLM RKM 

No compound 100±15.7% 100±7.08% 100±10.4% 100±7.96% 

No NADPH ND 0.03±0.04% ND 0.73±1.46% 

HET0016 7.79±2.72% 1.70±0.37% 9.51±2.60% 2.58±0.54% 

Compound 1 61.6±18.8% 116±8.29% 118±5.77% 202±20.0% 

Compound 2  59.1±10.9% 102±16.3% 96.9±5.71% 206±28.9% 

Compound 3 48.4±3.32%* 79.0±6.60% 98.0±6.89% 92.4±3.55% 

Compound 4 89.5±9.18% 105±13.4% 131±7.89% 110±16.1% 

Compound 5 90.1±5.70% 88.3±13.4% 112±5.59% 76.5±13.7% 

Compound 6 91.2±4.61% 100±5.98% 110±10.4% 92.2±2.35% 

Compound 7 94.5±12.0% 73.1±6.73% 121±1.41% 121±6.09% 

Compound 8 112±10.4% 102±13.1% 109±5.16% 108±6.14% 

Compound 9 96.2±12.9% 85.1±2.24% 95.7±13.0% 92.8±4.89% 

Compound 10 46.4±5.93%* 69.6±3.15% 86.5±1.92% 101±10.1% 
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Compound 11 85.6±13.9% 116±5.24% 100±4.33% 102±5.49% 

Compound 12 129±13.9% 87.9±2.07% 101±3.8% 100±5.88% 

Compound 13 249±23.9% 145±18.9% 103±10.1% 81.1±4.80% 

Compound 14 157±23.5% 117±5.10% 97.8±1.06% 67.5±0.83%* 

Compound 15  108±5.77% 108±4.70% 91.9±2.37% 59.3±4.52%* 

 

Based on the result in HLM, compounds 3, 7, and 10 were selected to conduct microsomal 

incubations in HLM with different concentrations. Methanol was used as vehicle control; it didn’t 

inhibit 20-HETE formation at 1% (v/v). Compounds 3, 7 and 10 all exhibited dose-dependent 

inhibition against 20-HETE formation in HLM (Figure 3). As concentration increased from 250 

nM to 1000 nM to 2500 nM, compound 3 showed an increase in percent of inhibition from 

7.17±9.28% to 20.32±6.53% to 31.09±2.14%. Compound 7 decreased 20-HETE formation by 

35.99±2.90%, 59.43±1.25% and 75.40±0.42% at the three different concentrations. Compound 10 

showed a similar trend with 31.59±3.00%, 62.68±1.45% and 76.05±5.45% at the three 

concentrations. After several repeat of the experiment, compound 10 consistently showed the best 

inhibition effect among all the compounds in HLM and good inhibition effect in rCYP4F2 and 

RLM. Based on these results, compound 10 could be a potential lead compound. 

 

Table 2 (continued) 
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Figure 3. Compounds 3, 7, and 10 dose-dependent inhibition against 20-HETE formation in 

HLM 

 

 

3.2 COMPOUNDS 21-26 INHIBITORY EFFECT AGAINST 20-HETE FORMATION IN 

HLM, RLM, RKM AND rCYP4F2 

 

Compounds 21 to 26 were selected from virtual screening and tested in four different types of 

microsomes for comparison with HET0016. Compounds were dissolved either in methanol or 

DMSO to yield a 10 mM stock solution. Final concentrations of test compounds and HET0016 

were 2500 nM and 250 nM, respectively, in microsomal incubations. Methanol and DMSO were 

used as vehicle control for compounds dissolved in each solution. HLM, RLM, RKM and 

rCYP4F2 all produced 20-HETE in a NADPH-dependent manner. HET0016 inhibited 20-HETE 

formation profoundly in all four types of microsomes at 250 nM. At 2500 nM, compound 24 

significantly reduced 20-HETE formation by 12.82±2.26% in RLM. Compound 25 significantly 

inhibited 20-HETE formation in both rCYP4F2 and HLM but not in RLM or RKM. It decreased 
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20-HETE by 34.25±1.39% and 16.90±2.54% in rCYP4F2 and HLM, respectively. Compound 26 

reduced 20-HETE formation by 65.16±5.13%, 77.94±0.73%, 12.94±4.71% and 24.84±4.26% in 

rCYP4F2, HLM, RLM and RKM, respectively, with a lesser extent of inhibitory effect in RLM 

and RKM (Figure 4). Table 3 lists the remaining 20-HETE in percentage of control for six 

compounds in four types of microsomes.   

 

 

Figure 4. Compounds 21-26 inhibitory effect against 20-HETE formation in four different 

microsomes 

 

Table 3. Compounds 21-26 inhibition against 20-HETE formation in percent of control 

Name rCYP4F2 HLM RLM RKM 

No compound 140±10.8% 117±4.51% 103±5.46% 115±4.40% 

MeOH 100±7.56% 100±8.08% 100±4.04% 100±4.19% 

DMSO 100±3.23% 100±0.42% 100±2.41% 100±6.80% 

No NADPH 1.47% 0.22±0.09% 0.19±0.10% 0.17±0.21% 

HET0016 5.43±0.88% 2.39±0.52% 10.2±2.04% 3.34±0.42% 

Compound 21 124±7.79% 116±3.63% 109±8.50% 90.0±5.05% 

Compound 22 115±1.78% 108±10.0% 96.5±2.44% 93.9±5.03% 
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Compound 23 110±20.3% 79.0±6.60% 98.7±5.24% 113±4.12% 

Compound 24 113±16.3% 87.5±5.80% 87.2±2.26%* 95.6±3.78% 

Compound 25 65.8±1.39%* 83.1±2.54%* 115±3.97% 104±2.53% 

Compound 26 34.8±5.14%* 22.1±0.73%* 87.1±4.71% 75.2±4.26% 

 

Based on the previous 20-HETE inhibitory results in rCYP4F2 and HLM, compounds 25 

and 26 were selected for further analysis in HLM at 250 nM, 1000 nM and 2500 nM. 

Compounds 25 and 26 both showed a dose-dependent inhibitory effect against 20-HETE 

formation. As concentration increased, remaining 20-HETE was 109.54±4.61%, 90.74±7.74% 

and 74.09±5.38% when treated with compound 25. Compound 26 decreased 20-HETE formation 

by 45.21±10.81%, 62.57±4.67% and 73.87±0.83%, confirming that it could be a potential 

CYP4F2 enzyme inhibitor (Figure 5). Collectively, the initial screening in four different types of 

microsomes and dose-dependent inhibition results indicated that compound 10 and compound 26 

could serve as lead compounds for optimization. 
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Figure 5. Compounds 25 and 26 dose-dependent inhibition against 20-HETE formation in 

HLM 

 

 

3.3 COMPOUNDS 16-19 INHIBITORY EFFECT AGAINST 20-HETE FORMATION IN 

HLM, RLM, RKM AND rCYP4F2 

 

Compounds 16, 17, 18, and 19 were dissolved in DMSO to yield 10 mM stock concentrations. 

The final concentrations of all test compounds in the microsomal incubate was 2500 nM. HLM, 

RLM, RKM and rCYP4F2 all produced 20-HETE only in the presence of NADPH when 

incubated with AA. HET0016 completely blocked 20-HETE formation at 250 nM in rCYP4F2, 

HLM, RLM and RKM by 95.62±0.90%, 96.96±1.51%, 86.39±0.21% and 97.33±0.04%, 

respectively. At 2500 nM, compared with the corresponding vehicle group, compounds 18 and 

19 significantly inhibited 20-HETE formation in all four microsomes. Compounds 18/19 

inhibited 20-HETE formation by 93.96±0.32%/95.62±0.29%, 90.18±1.56%/91.40±1.34%, 

69.54±2.06%/70.52±1.60%, and 46.95±1.02%/27.82±1.72% in rCYP4F2, HLM, RLM and 

RKM, respectively. Compound 17 significantly inhibited 20-HETE formation by 82.43±2.53%, 

72.49±6.42%, 41.95±0.83% in rCYP4F2, HLM and RKM, except RLM (Figure 6). Table 4 lists 

percent of control of compounds 16-19 in four different microsomes.  
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Figure 6. Compounds 16-19 inhibitory effect against 20-HETE formation in four different 

microsomes 

 

Table 4. Compounds 16-19 inhibition against 20-HETE formation in percent of control 

Name rCYP4F2 HLM RLM RKM 

No compound 119±3.80% 119±14.5% 96.3±6.46% 110±1.97% 

DMSO 100±1.14% 100±9.94% 100±3.89% 100±3.76% 

No NADPH ND 0.21% 0.06% 0.24% 

HET0016 4.38±0.90% 3.05±1.51% 13.6±0.21% 2.68±0.04% 

Compound 16 109±16.4% 131±8.15% 115±11.3% 135±6.77% 

Compound 17 17.6±2.53%* 27.5±6.42%* 83.9±1.86% 58.0±0.83%* 

Compound 18 6.04±0.32%* 9.82±1.56%* 30.5±2.06%* 53.1±1.02%* 

Compound 19 4.38±0.29%* 8.60±1.34%* 29.5±1.60%* 52.2±1.72%* 

 

Compound 18 and 19 both dose-dependently inhibited 20-HETE formation in HLM 

(Figure 7A). As the concentration of these compounds increased from 25 nM to 100 nM to 250 

nM, the inhibitory effect also increased. Compound 18 increased inhibition from 13.09±1.12% to 

34.12±0.81% to 51.79±1.45%, while compound 19 saw inhibition from 13.76±1.64% to 
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36.24±3.24% to 55.68±1.21%, respectively. Based on thees results, we could infer that the IC50 

value of compound 18/19 is less than 250 nM in HLM. Compound 18, 19 showed even better 

inhibitory effects against 20-HETE formation in rCYP4F2. Compound 18, 19 inhibited 20-

HETE from 19.76±4.92% to 59.14±2.56% to 78.06±2.34% and 27.60±7.06% to 63.62±7.02% to 

81.28±2.00%, respectively. IC50 values of these compounds were less than 100 nM in rCYP4F2 

(Figure 7B). As Figure 7 shows, compound 18 and 19 had improved inhibitory effect against 20-

HETE formation compared with compound 10 or compound 26 at 250 nM.  
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Figure 7. Compounds 18 and 19 dose-dependent inhibition against 20-HETE formation in 

HLM (A) and rCYP4F2 (B).   

 

 

3.4 INHIBITORY EFFECT AGAINST EPOXYGENASE PATHWAY 

 

As discussed in the introduction section, CYP450 epoxygenase pathway is responsible for EETs 

formation. EETs are vasodilators that have neuroprotective effect. Thus, 20-HETE as well as 

8,9-, 11,12-, 14,15-EET and 5,6-, 8,9-, 11,12-, 14,15-DiHETs were monitored by UPLC-MS/MS 

simultaneously. Epoxygenase activity is reported by the sum of EETs and DiHETs as presented 

by percentage of control. In HLM, compound 10 (Figure 8A) inhibited 20-HETE formation in a 

dose-dependent manner, without inhibiting EETs or DiHETs formation. Compound 19 showed 

more potent inhibitory effect against 20-HETE formation, without inhibiting epoxygenase 

activity at 2500 nM (Figure 8B). Compound 26 (Figure 8C) showed 10-30% reduction in 

epoxygenase activity as concentration increased from 250 nM to 2500 nM. These data suggest 
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that compound 10 and compound 19 are potent 20-HETE formation inhibitors with IC50 values 

in nanomolar range with good hydroxylase selectivity, where they didn’t inhibit epoxygenase 

activity even at 2500 nM in HLM. 

 

 

Figure 8. Compound 10 (A), compound 19 (B) and compound 26 (C) selectivity data in 

HLM.  
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3.5 MICROSOMAL STABILITY PROFILE OF COMPOUNDS 

 

In early drug discovery process, compounds cannot be administered to human directly. In order 

to predict pharmacokinetic parameters like intrinsic clearance, in vitro systems are used. As 

compounds 10, 19, and 26 are promising as leads, we examined the metabolic stability of 

compounds 10, 19, and 26 in HLM. According to Nakamura et al., one pyrazole derivative of 

HET0016, 3-(4-n-Butoxyphenyl) pyrazole, had better solubility, stability under acidic 

environment and was also a selective potent 20-HETE inhibitor. 3-(4-n-butoxyphenyl)pyrazole 

was used as control since it already showed improved physicochemical properties compared with 

HET0016. Compounds 10, 19, 26 and 3-(4-n-butoxyphenyl)pyrazole were incubated in HLM 

during a 60-minute incubation time. 3-(4-n-butoxyphenyl)pyrazole had 35.08±5.66% remaining 

compound at the 30 min time point (Figure 9). Compared with 3-(4-n-butoxyphenyl)pyrazole, 

compound 26 was quickly metabolized with 3.50±0.75% remaining parent compound in 

incubates at 30 min. Compound 10 and compound 19 were slowly metabolized, with 

91.36±11.01% and 100.40±1.73% remaining compound in HLM, respectively. These data 

suggest that our compounds 10 and 19 are more stable in in vitro human liver microsomal 

incubates and have better intrinsic clearance than their comparator and compound 26.  

Based on the results above, we will prioritize compound 10 as our lead compound to 

work with, as it has potent inhibition effect against 20-HETE and better stability compared with 

3-(4-n-butoxyphenyl)pyrazole.  
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Figure 9. Microsomal stability profile of compound 10, 19, 26 and 3-(4-n-

Butoxyphenyl)pyrazole 
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4.0 DISCUSSION 

 

In this study, we identified three compounds 10, 19, and 26 as selective potent 20-HETE 

inhibitors that may serve as lead compounds for optimization by testing them in rCYP4F2, HLM, 

RLM, and RKM, together with stability assays.. 

 

 

4.1 INTERSPECIES DIFFERENCE 

 

In order to examine the inhibition effect between different species and confirm inhibition 

specificity towards CYP4F2 isoform, rCYP4F2, HLM, RLM, and RKM were used as screening 

systems. Mean 20-HETE formation rate in HLM, RLM, RKM, rCYP4F2 without compound was 

570.64, 629.81, 351.99 pmol/min/mg P450 and 0.52 pmol/min/pmol P450, respectively. 20-

HETE was the most abundant metabolite in rCYP4F2, HLM, RLM and RKM. This is in 

consistent with the finding that ω-hydroxylation accounts for 50-75% of AA metabolism in 

humans, and 13-28% are EETs [149].  

We observed interspecies difference in 20-HETE inhibition with test compounds. For 

example, compounds 10, 18 and 19 inhibited 20-HETE in rCYP4F2 and HLM, but to a lesser 

extent in RLM and RKM. Compounds 14 and 15 only inhibited 20-HETE formation in RKM. 

Possible explanations include: (1) isoforms that are responsible for generating 20-HETE in 

humans and rats are different. CYP4A11 and 4F2 are major isoforms for 20-HETE formation in 

humans, while CYP4A1, 4A2 in rats. (2) Even if isoforms are same in different species, the 

difference in primary sequence of CYP protein will result in different substrate specificity. (3) 
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The level of CYP isoforms expression may be different in species. (4) There may be distinct 

catalytic activity for one substrate in different species as well [150]. For new drug development, 

isoform composition, expression and catalytic activity need to be considered when extrapolating 

preclinical data to humans.  

 

 

4.2 EFFECT OF ORGANIC SOLVENT ON METABOLIC ACTIVITY 

 

In the initial screening for compounds 1-15, data were obtained by normalizing 20-HETE 

formation rate to no compound group. Compounds 3, 7, and 10 were selected and their inhibition 

data were then confirmed by normalizing formation rate by vehicle group in dose-dependent 

inhibition experiment. We observed that as methanol concentration increased from 0.25%, 0.5%, 

0.75%, 1%, 2%, to 5%, there was a dose-dependent reduction in rCYP4F2 catalytic activity. 

Concentration at 1% for methanol or 0.5%: 0.5% methanol: DMSO did not significantly reduce 

20-HETE formation. Methanol Concentration higher than 2% significantly reduced rCYP4F2 

catalytic activity. The vehicle group (1% methanol or 0.5%: 0.5% methanol: DMSO) was used 

as control in subsequent analyses for all four types of microsomes. Chauret et al. evaluated 

methanol, DMSO, ACN on several HLM isoforms catalytic activity. Various isoforms were not 

affected by 1% methanol except for CYP2C8, 2C9, and 2E1 [151]. For CYP 2C8, 2C9, 2C19, 

2E1, and 3A4 isoforms, even 0.2% DMSO inhibited their catalytic activity [151]. The presence 

of organic solvent may affect certain isoform catalytic activity. This should be taken into account 

when dissolving compound for inhibition study or examining compound in vitro metabolic 

pathways.  



 

 46 

 

 

4.3 INDUCTION IN 20-HETE FORMATION 

 

We observed compounds, such as compound 13, showed an induction in 20-HETE formation. 

One possible explanation is enzyme activation. It had been reported that 7,8-benzoflavone as a 

CYP3A4 substrate itself, activated CYP3A4-catalyzed phenanthrene metabolism [152]. Shou et 

al. found that 7,8-benzoflavone didn’t change Km of phenanthrene metabolism, while increasing 

the Vmax of phenanthrene metabolism and that phenanthrene didn’t increase Km of 7,8-

benzoflavone metabolism, while decreasing the Vmax, which indicated that more than one 

molecule could bind to CYP3A4 active sites simultaneously [152]. Subsequently, a two-substrate 

model was developed by the same laboratory, which could be used to explain phenanthrene/7,8- 

benzoflavone metabolism[153]. Phenanthrene and 7,8- benzoflavone serve as each other’s 

effector of metabolism. 7,8-benzoflavone stimulates phenanthrene metabolism by 15.7-fold, 

while phenanthrene is a partial inhibitor of 7,8-benzoflavone metabolism. In the presence of the 

other substrate, binding constants are relatively unaffected. These data suggested that 

phenanthrene and 7,8-benzoflavone couldn’t displace each other from the active site. In the 

presence of a certain compound, there is a possibility that AA still can bind to the active site of 

CYP4F2 or other isoforms that can convert AA, which may stimulate the generation 20-HETE. 

Compounds that showed an increase in 20-HETE formation need to undergo further 

experimental confirmation. Mechanisms of compounds inhibition towards CYP4F2 also need 

further elucidation.  
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4.4 ENDOGENOUS OR EXOGENOUS COMPOUNDS THAT SHARE CYP4F2 

METABOLISM PATHWAY 

 

To date, there have been several substrates of CYP4F2 being reported. CYP4F2 is responsible 

for ω–hydroxylation of endogenous substrates AA and leukotriene B4 (LTB4). CYP4A11 and 

4F2 exhibited 20-HETE formation rate of 15.6 and 6.8 nmol/min/nmol P450, while antibodies to 

CYP4F2 inhibited 20-HETE formation by 93.4% [47]. Leutotriene B4 is a derivative of AA, 

which can be converted to 20-hydroxyleukotriene B4 by CYP4F2 at a turnover rate of 392 

pmol/min/nmol P450 [154]. CYP4F2 is also an oxidase for vitamin K, which is associated with 

warfarin dosage. McDanold et al. showed that CYP4F2 V433M (rs2108622) allele have a 

reduced capacity to metabolize vitamin K1 in human liver microsomes [155]. This could be an 

explanation for high inter-individual variability in warfarin dosage. A meta-analysis that includes 

13 clinical studies showed that patients with CYP4F2 CT and TT genotypes require 10% and 21% 

higher warfarin doses [156].  

CYP4F2 also plays a role in metabolizing xenobiotics. Fingolimod is a FDA approved 

treatment for relapsing multiple sclerosis. Jin et al. reported that only recombinant human 

CYP4F2 and to some extent CYP4F3B produced fingolimod metabolites similar to those in 

HLM, and an antibody of CYP4F2 inhibited fingolimod metabolism completely in HLM [157]. 

Brincidofovir (CMX001) is an antiviral drug for treating cytomegalovirus, adenovirus, smallpox, 

and ebolavirus infections currently in Phase III clinical trials. Tippin et al. demonstrated that 

CYP4F2 is the major enzyme involved in CMX001 metabolism by the data that CMX001 

metabolism was inhibited by HET0016 and ketoconazole in both HLM and human rCYP4F2. 
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CYP4F2 is also responsible for ω–hydroxylation for tocopherol and tocotrienol. This is 

supported by the results that human rCYP4F2 oxidized tocopherol into its terminal hydroxylated 

and carboxylated metabolites, and 1 μM sesamin inhibited tocopherol metabolism in rCYP4F2, 

HLM, and RLM by more than 80% [158]. Vitamin E is composed of tocopherols and 

tocotrienols. Thus, CYP4F2 plays a role in regulating vitamin E metabolism. In insect cells that 

express wild type or polymorphic variants of the human CYP4F2, the W12G variant had two-

fold higher enzymatic activity towards tocopherols and tocotrienols, whereas the V433 variant 

showed one half of the enzymatic activity compared with wild type [159].  

The expression level of CYP4F2 may have effects when considering results in humans. 

Lasker’s group developed an antibody to quantify CYP4F2 expression in human liver and kidney, 

which is able to differentiate between CYP4F2, 4F3B, 4F11 and 4F12 [147]. They found 

CYP4F2 expression is highly variable (0-80.1 pmol/mg microsomal protein) in human liver 

microsome from 29 subjects pool with a mean of 18.2 ± 19.9 pmol/mg [147]. CYP4F2 has lower 

level and less variability in human kidney microsomes (n=10), ranging from 0 – 11.3 pmol/mg 

microsomal protein with a mean of 3.9 ± 3.8 pmol/mg [147]. Subsequently, the pie chart of 

human liver CYP450 pie chart was updated for CYP4F subfamily, CYP4F enzymes account for 

approximately 15% of total CYP450 enzymes in human liver [160].  

Thus, enzymatic inhibition of CYP4F2 may induce changes in endogenous or exogenous 

substrates metabolism. 20-HETE metabolism pathway needs to be further elucidated, as well as 

CYP4F2 polymorphism need to be considered to better predict potential interactions between 

substrates being metabolized by CYP4F2. 
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4.5 PHYSICOCHEMICAL PROPERTIES FOR DRUGGABLE COMPOUNDS 

 

In order to optimize compounds to increase potency and selectivity, Lipinski rule of fives (RO5) 

is used to evaluate druglikeness properties. RO5 include: (1) molecular weight ≤ 500, (2) 

LogP (the logarithm of the partition coefficient between water and 1-octanol) ≤ 5, (3) H-bond 

donors ≤ 5, (4) H-bond acceptors ≤ 10 [161]. When aiming to produce neuroprotective effects in 

the brain, compounds with molecular weight ≤ 450, LogP values ranging between 1.5-2.7, 

heteroatoms capable of hydrogen bonding (O+N) ≤ 5, PSA within 60-70Å, rotatable bonds ≤ 5, 

and pKa around 7-8 showed good BBB penetration [162].   

Physicochemical characteristics of compounds need to be considered during optimization 

of lead compound identified in our study. When advancing from preclinical to clinical studies, 

physicochemical properties, pharmacokinetic parameters including metabolic stability, metabolic 

liability, permeability and protein binding as well as patients pathophysiological need to be 

accounted to select the most appropriate drug candidate.  

 

 

4.6 sEH INHIBITION OR 20-HETE INHIBITION 

 

20-HETE and sEH have been investigated as potential therapeutic targets for cerebral vascular 

diseases. Both 20-HETE inhibition and sEH inhibition or sEH gene deletion demonstrated 

positive neurological outcome. The major holdback for investigating 20-HETE pathogenesis role 

in human is lacking suitable druggable inhibitor. In 2005, TS-011 was in a phase I clinical trial in 

acute ischemic stroke patients. However, with no follow-up information provided, it is likely that 
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TS-011 failed in phase I clinical trial for some unknown reason. Sesamin is the other 20-HETE 

inhibitor that underwent clinical trials. Overweight men and postmenopausal women receiving 

sesame bar (providing 26.2 g of sesame seeds per day) had 28% reduction in plasma unesterified 

20-HETE levels and a 32% reduction in urinary excretion [115]. On the contrary, sEH inhibitors 

progressed further in clinical trials. AR9281, a sEH inhibitor, was in phase IIa clinical trials in 

pre-diabetic patients, but failed to show efficacy in early-stage hypertension. EC5026 is a novel 

sEH inhibitor that showed efficacy in diabetic neuropathic pain, and phase I clinical trial will be 

initiated to study safety profile of EC5026.  

20-HETE synthase inhibitors and 20-HETE receptor antagonists have their pros and cons. 

20-HETE synthase inhibitors works on the enzymes that form 20-HETE, such as CYP4A or 

CYP4F subfamilies. However, inhibiting the enzymes may lead to disruptions of metabolism  of 

other endogenous or exogenous compounds, like vitamin K. To date, there have been no explicit 

20-HETE receptors being reported, antagonists were designed based on the structure of 20-

HETE. 20-HETE antagonists compete with 20-HETE to bind with the receptor, thus leaves the 

substrates that metabolized by the enzymes unaffected. However, receptor antagonists inhibit 

effects of preformed 20-HETE if present in esterified lipids in the membrane, and we are not 

clear right now that if there are other ligands that work through that receptor or not. Further 

considerations and studies will be needed to elucidate the difference between this two strategies. 

sEH is a promising therapeutic target in cardiovasuclar diseases. Inhibiting sEH to 

increase EETs showed favorable outcomes in spontaneously hypertensive stroke-prone rats [163]. 

However, sEH gene deletion may result a shift in HETEs production. For example, while kidney 

homogenates from sEH gene deletion mice had lower DiHETs levels and higher EETs levels, 

20-HETE levels increased by four fold [164]. Plasma concentration of 9-, 11-, 15-, 19-HETE 
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was increased by two fold in sEH gene knockout mice [165]. This suggests that hydroxylase 

activity is increased in sEH gene knockout mice.  

Inhibition of 20-HETE provided beneficial effects in cardiovascular and cerebrovascular 

diseases. Reduction in 20-HETE formation improves CBF and neurological outcomes. Enzymes 

that metabolize AA also metabolize exogenous compounds. Inhibiting enzymes that are 

responsible for 20-HETE formation may lead to alterations of enzyme substrate levels. The role 

of 20-HETE is the basis that produces deleterious effects in diseases. Targeting 20-HETE 

formation is aiming at the origin that causes neurological deficits. In acute ischemic stroke 

patients, baseline 20-HETE level was positively associated with lesion size, but not EETs or 

DiHETs [89]. 20-HETE was also associated with functional indices including greater 

neurological impairment, reduced modified barthel index (MBI), and reduced cognitive function, 

while EETs or DiHETs had no association with functional indices. Further studies need to be 

carried out to compare the beneficial effects of two strategies, or testing if sEH inhibition plus 

20-HETE inhibition will have synergistic effects in cerebral vascular and cardiovascular diseases.   
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5.0 CONCLUSION 

To summarize, in the work we screened 26 compounds, compounds 10, 19, and 26 were 

potent 20-HETE formation inhibitors with an IC50 value in nano molar range. Compounds 10 

and 19 dose-dependently inhibited 20-HETE formation and showed good selectivity for 

hydroxylase pathway, they didn’t inhibit epoxygenase at 2500 nM. Compound 26 decreased 

epoxygenase activity for around 10-30%. Compounds 10 and 19 were metabolically stable in 

HLM though out a 60-minute incubation period, while compound 26 was quickly metabolized 

within 30 minutes. Thus, compound 10, 19, and 26 can serve as lead compounds for structure 

optimization, and we will prioritize with compound 10 and 19. 
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6.0 FUTURE DIRECTION 

 

Experiments need to be conducted to obtain IC50 values of lead compounds in order to 

confirm compounds inhibition potency. More selectivity evaluation of compound inhibition 

against other CYP isoforms will need to be done to provide evidence if compounds are selective 

to isoforms that only produce 20-HETE instead of other drug metabolizing CYP enzymes. More 

compounds will need to be experimentally tested in vitro in order to select a potential in vivo 

candidate. Also, lead compounds incubated in brain microsomes would give relevant information 

towards eicosanoids enzymatic formation in the brain. The ultimate goal at the current state is to 

screen and identify the compound that has the optimum physicochemical properties, including 

potency, solubility, selectivity, microsomal stability and ability to across BBB. CYP4F2 

homology model will be optimized based on the screening results at the same time to support 

compound design and virtual screening. 
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APPENDIX. ABBREVIATION 

 

4-PCO 4-phenylchalcone oxide 

10-SUYS 10-undecynyl sulfate 

17-ODYA  17-octadecynoic acid 

20-HETE 20-hydroxyeicosatetraernoic acid  

20-SOLA 2,5,8,11,14,17-hexaoxanonadecan-19-yl-20-hydroxyeicosa-6(Z),15(Z)-

dienoate 

AA Arachidonic acid 

ABT 1-aminobenzotriazole 

AHA American Heart Association 

ASA American Stroke Association 

aSAH Aneurysmal subarachnoid hemorrhage 

BBB Blood brain barrier 

CA Cardiac arrest  

CBF Cerebral blood flow 

CO Carbon monoxide  

COX Cyclooxygenase  

cPLA2 Cytosolic phospholipase A2 

CPP Cerebral perfusion pressure 

CPR Cardiopulmonary resuscitation 

CSF Cerebral spinal fluid 

CPP Cerebral perfusion pressure 

CYP Cytochrome P450 

DBDD 12-12-dibromododec-11-enoic acid 

DCI Delayed cerebral ischemia 

DDMS N-methylsulfonyl-12,12-dibromododec-11-enamide 

DiHET Dihydroxyeicosatrienoic acid  

DPMS N-methylsulfonyl-15,15-dibromopentadec-14-enamide 

EET Epoxyeicosatrienoic acid 

EBI Early brain injury 

eNOS Endothelial nitric oxide synthase 
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FDA Food and Drug Administration 

HET0016 N-hydroxy-N-(4-butyl-2-methylphenyl) formamidine 

ICP Intracranial pressure 

ICH Intracerebral hemorrhage 

LOX Lipoxygenase  

LTB4 Leukotriene B4 

MCAO Middle cerebral artery occlusion  

MS/MS Tandem mass spectrometry 

NADPH Nicotinamide adenine dinucleotide phosphate  

NO Nitric oxide 

PGF2α Prostaglandin F2α 

PGI2 Prostacyclin  

PPAR Peroxisome proliferator-activated receptor alpha 

PSA Polar surface area 

rt-PA Recombinant tissue-type plasminogen activator 

SAH Subarachnoid hemorrhage  

sEH Soluble epoxide hydrolase  

SKF-525A β-diethyl-aminoethyldiphenylpropylacetate 

SRM Selective reaction monitoring  

TIA Transient ischemic attack 

TS-011 N-(3-chloro-4-morpholin-4-yl) phenyl-N′-hydroxyimido formamide 

TXA2 Thromboxane A2 

TXB2 Thromboxane B2 

UPLC Ultra-performance liquid chromatography 
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