
SOFTWARE Open Access

NOBLE – Flexible concept recognition for
large-scale biomedical natural language
processing
Eugene Tseytlin, Kevin Mitchell, Elizabeth Legowski, Julia Corrigan, Girish Chavan and Rebecca S. Jacobson*

Abstract

Background: Natural language processing (NLP) applications are increasingly important in biomedical data analysis,
knowledge engineering, and decision support. Concept recognition is an important component task for NLP
pipelines, and can be either general-purpose or domain-specific. We describe a novel, flexible, and general-purpose
concept recognition component for NLP pipelines, and compare its speed and accuracy against five commonly
used alternatives on both a biological and clinical corpus.
NOBLE Coder implements a general algorithm for matching terms to concepts from an arbitrary vocabulary set. The
system’s matching options can be configured individually or in combination to yield specific system behavior for a
variety of NLP tasks. The software is open source, freely available, and easily integrated into UIMA or GATE. We
benchmarked speed and accuracy of the system against the CRAFT and ShARe corpora as reference standards and
compared it to MMTx, MGrep, Concept Mapper, cTAKES Dictionary Lookup Annotator, and cTAKES Fast Dictionary
Lookup Annotator.

Results: We describe key advantages of the NOBLE Coder system and associated tools, including its greedy algorithm,
configurable matching strategies, and multiple terminology input formats. These features provide unique functionality
when compared with existing alternatives, including state-of-the-art systems. On two benchmarking tasks, NOBLE’s
performance exceeded commonly used alternatives, performing almost as well as the most advanced systems. Error
analysis revealed differences in error profiles among systems.

Conclusion: NOBLE Coder is comparable to other widely used concept recognition systems in terms of
accuracy and speed. Advantages of NOBLE Coder include its interactive terminology builder tool, ease of
configuration, and adaptability to various domains and tasks. NOBLE provides a term-to-concept matching
system suitable for general concept recognition in biomedical NLP pipelines.

Keywords: Natural language processing, Text-processing, Named Entity Recognition, Concept recognition,
Biomedical terminologies, Auto-coding, System evaluation

Background
Natural Language Processing (NLP) methods are in-
creasingly used to accomplish information retrieval and
information extraction in biomedical systems [1]. A crit-
ical component of NLP pipelines is the matching of
terms in the text to concepts or entities in the controlled
vocabulary or ontology. This task is best described as

‘Concept Recognition’ although the labels ‘Entity
Mention Extraction’ and ‘Named Entity Recognition’
are sometimes also used, especially among clinical
NLP researchers. Ideally, such concept recognition
systems produce annotations of mentions where the
annotated term in the text may be a synonym, abbre-
viation, lexical variant, or partial match of the con-
cept in the controlled vocabulary, or of the entity in
the ontology. For example, given the concept “atrial
fibrillation” in the terminology, we expect a concept
recognition component to annotate mentions for all
four of the following phrases in a text passage: ‘auricular

* Correspondence: rebeccaj@pitt.edu
Department of Biomedical Informatics, University of Pittsburgh School of
Medicine, The Offices at Baum, 5607 Baum Boulevard, BAUM 423, Rm 523,
Pittsburgh, PA 15206-3701, USA

© 2016 Tseytlin et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Tseytlin et al. BMC Bioinformatics  (2016) 17:32 
DOI 10.1186/s12859-015-0871-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0871-y&domain=pdf
mailto:rebeccaj@pitt.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


fibrillation’ (synonym), ‘a-fib’ (abbreviation), ‘atrial fibrilla-
tions’ (lexical variant), and potentially ‘fibrillation’ (partial
match). Definitions of key terms used throughout this
paper are provided in Table 1.
Two general approaches have been used for biomed-

ical concept recognition [2]. Term-to-concept matching
algorithms (previously called ‘auto coders’) are general-
purpose algorithms for matching parsed text to a ter-
minology. They typically require expert selection of

vocabularies, semantic types, stop word lists, and other
gazetteers, but they do not require training data pro-
duced through human annotation.
In contrast, machine learning NLP methods are used

to produce annotators for specific well-defined purposes
such as annotating drug mentions [3, 4] and gene men-
tions [5, 6]. Conditional random fields, for example, have
produced excellent performance for specific biomedical
NER tasks [4], but these systems often require training
data from human annotation specific to domain and
document genre. More recently, incremental approaches
have been advocated for certain tasks (e.g. de-
identification) [7]. These methods may be most appro-
priate where specific classes of mentions are being anno-
tated [8].
For large-scale processing of biomedical documents,

human annotation can be impractical because of the
wide range in domains and genre represented. As a re-
sult, many current biomedical NLP pipelines and frame-
works utilize some form of a general-purpose concept
recognition system in combination with more specific
custom annotators developed using training corpora.
Commonly used general purpose concept recognition
systems for biomedical tasks include MetaMap [9–11]
and its Java implementation MMTx [12], MGrep [13],
IndexFinder [14, 15], MedLEE [16], DOUBLET [17, 18],
Concept Mapper [19], and ‘NER components’ of cTAKES
[20], including the cTAKES Lucene-based Dictionary
Lookup Annotator (DLA) [21] and the cTAKES Fast Dic-
tionary Lookup Annotator (FDLA) [22]. These systems
are compared for approach, availability, interoperability,
and terminology source and format in Table 2. A number
of these systems have been compared in other publica-
tions [23–26].
Our laboratory has previously utilized several concept

recognition systems in our NLP pipelines for processing
clinical text for particular document genre (e.g. pathology
reports [27]) or for specific NLP tasks (e.g. ontology
enrichment [28, 29] and (in collaboration) coreference
resolution [30]). In our experience, currently available sys-
tems are limited in their ability to scale to document sets
in the tens and hundreds of millions, and to adapt to new
document genre, arbitrary terminologies specific to par-
ticular genre, and new NLP tasks. We developed NOBLE
to perform general-purpose biomedical concept recogni-
tion against an arbitrary vocabulary set with sufficient
flexibility in matching strategy to support several types of
NLP tasks. The system can be used for concept annotation
of terms consisting of single words, multiple words, and
abbreviations against a controlled vocabulary.
In this manuscript, we present the algorithmic and im-

plementation details of NOBLE Coder and describe its
unique functionality when compared with these other
systems. We benchmarked the accuracy, speed, and

Table 1 Key terms and definitions

Term Definition

Abbreviation A shortened form of a word, name, or phrase.

Annotation The tagging of words comprising a mention
to assign them to a concept or text feature
[41].

Auto coder A computer-based system that automatically
matches text terms to a code or concept.

Concept A “cognitive construct” that is built on our
perception or understanding of something
[42]; delineates a specific entity embodying
a particular meaning [43].

Controlled vocabulary A vocabulary that reduces ambiguity and
establishes relationships by linking each
concept to a term and its synonyms [43, 44].

Entity An “object of interest.” [41]; the referent in
the semiotic triangle.

Gazetteer A list or dictionary of entities [45].

Lexical variant Different forms of the same term that occur
due to variations in spelling, grammar, etc. [44].

Mention One or more words and or punctuation
within a text which refer to a specific entity.

Named entity A specific word or phrase referring to an
object of interest [41, 46].

Ontology A defined group of terms and their
relationships to each other, within the
context of a particular domain [47].

Semantic type A logical category of related terms [48].

Stop word A word of high frequency but limited
information value (e.g.determiners) that is
excluded from a vocabulary to improve
results of a subsequent task [49].

Synonym A term with the same meaning as another
term; terms that describe the same concept
[48, 50].

Term One or more words including punctuation
that represent a concept; there may be
multiple terms associated with one concept
[42, 49].

Terminology A catalog of terms related to a specific
domain [42]. Subsumes a variety of
formalisms such as lexicons and ontologies
[43].

Vocabulary A terminology where the terms and concepts
are defined [42, 44].

Word A linguistic unit that has a definable meaning
and/or function [51].

Tseytlin et al. BMC Bioinformatics  (2016) 17:32 Page 2 of 15



error profile of NOBLE Coder against MMTx, MGrep,
Concept Mapper, cTAKES Dictionary Lookup Annotator
(DLA), and cTAKES Fast Dictionary Lookup Annotator
(FDLA), all of which are general-purpose term-to-
concept matching systems that have been widely used
for biomedical concept recognition.

Methods
Algorithm
NOBLE is a term-to-concept matching algorithm imple-
mented using two hash tables: a word-to-terms (WT)
table and a term-to-concepts (TC) table (Fig. 1). In the
terminology building process (Fig. 1a), NOBLE takes a
controlled vocabulary of synonymous terms, and splits
each synonymous term for a given concept into compo-
nent words. When the term is broken into words, each
word is stemmed (Porter stemmer) to account for differ-
ent inflections. This option can be disabled, which may
provide slightly higher precision at the expense of recall.
Words are also normalized, excluding stop words. Word
normalization is performed using an approach that is
similar to the method used by SPECIALIST NLP tools
[31]. Each normalized term is then mapped to its corre-
sponding concept in the TC table. In parallel, each word
from a given term is mapped to a set of normalized
terms that contain it in the WT table.
To perform the subsequent match (Fig. 1b), input text

is broken into a set of normalized words and stop words
are excluded. The word set is then ranked by frequency
of associated terms. Each word is looked up in the WT
table to find terms that are associated with the word and

include all of the other words in the input text. This
term is then added to a candidate list. Once all of the
words in the input text have been processed and a set of
candidate terms has been generated, each candidate
term is looked up in the TC table and its concept is
added to the results queue.
NOBLE has been designed to support a variety of

matching options, which can be used to modify the out-
put of the system for specific purposes within an NLP
pipeline. These parameters, which can be altered, in-
clude (1) subsumption, (2) overlap, (3) contiguity, (4)
order, and (5) partial match. Table 3 demonstrates the
different concept matches (outputs) that NOBLE Coder
produces based on parameter settings for a given input
text and vocabulary set.
Matching options can be combined to create matching

strategies suitable for particular NLP tasks (Table 4). If
multiple candidates are generated for the same input
text chunk, an optional heuristic-based scoring algo-
rithm is applied to the results queue to select the
highest-ranking candidate. Heuristics provide a method
to optionally eliminate suboptimal matches that derive
from specific characteristics of the terminology struc-
ture. For example, when two similar candidates are
returned, NOBLE (1) prefers candidates that map to the
larger number of source vocabularies, (2) rejects candi-
dates that resemble abbreviations, but lack a case-sensitive
match, and (3) prefers candidates that are un-stemmed.
Using these heuristics, NOBLE respectively compensates
for (1) similar concepts that have not yet been merged, (2)
concepts that have abbreviation synonyms identical to

Table 2 Widely used concept recognition systems

System Approach Availability Interoperability Terminologies Terminology
building tools

MetaMap (and MMTx) [9–11] Noun-phrase, lexical
variants

Open Source [12, 52] Java API for MMTx UMLS MetamorphoSys,
DataFileBuilder

MGrep [13] (and OBA) [53] Single word variations, Closed Source Binary
Utility

Command line utility
(MGrep) integrated
with RESTful API in
OBA

Custom dictionaries
(MGrep) with UMLS
and Bioportal in OBA

N/A

Radix-Tree search

Concept Mapper [19] Word Lookup Table Open Source [54] UIMA plugin XML file N/A

cTAKES Dictionary Lookup
Annotator [21]

Noun-phrase, dictionary
lookup

Open Source [21] Java API with full
integration in UIMA

UMLS (RRF), Bar
Separated Value
(BSV) file

Example scripts
available [55]

cTAKES Fast Dictionary Lookup
Annotator [22]

Rare Word index Open Source [22] Java API with full
integration in UIMA

UMLS (RRF), Bar
Separated Value
(BSV) file

Example scripts
available [55]

Index Finder [14, 15] Word Lookup Table N/A N/A UMLS N/A

Doublet [17, 18] Bigram Lookup Table Open Source [56] Command line
utility (Perl)

Custom dictionary
format

N/A

MedLEE [16] concept recognition Noun-phrase Commercial XML based input/
output

UMLS N/A

NOBLE Coder Word Lookup Table Open Source [57] Java API, UIMA and
GATE wrappers

UMLS (RRF), OWL,
OBO, BioPortal

Terminology
Loader UI

Tseytlin et al. BMC Bioinformatics  (2016) 17:32 Page 3 of 15



common words, and (3) concepts that are incorrectly
matched due to word stemming. Although this does not
provide true word sense disambiguation, candidate heuris-
tics minimize the frequency of spurious matches in our
experience.
NOBLE Coder is most reminiscent of the IndexFinder

[14, 15] algorithm and system (Table 2). However,
NOBLE Coder also differs from IndexFinder in several
important respects, with significant consequences for its
performance, scalability, and extensibility.
First, NOBLE’s terminology representation is funda-

mentally different from IndexFinder’s terminology

representation. IndexFinder uses in-memory lookup
tables with integer identifiers to look up words and
terms. Constituent words are represented in a separate
lookup table and string representation terms are not per-
sisted. While this representation minimizes memory re-
quirements, it loses information about composition of
individual terms. Consequently, all words associated with
a term must be counted before selecting it as a candidate.
In contrast, NOBLE uses a WT table that includes the
constituent words and terms (Fig. 1). This supports two
major algorithmic improvements: (1) it is possible to avoid
looking up a list of terms associated with words that are

Fig. 1 NOBLE Coder Algorithmshowing a. terminology build process and b. concept recognition process

Tseytlin et al. BMC Bioinformatics  (2016) 17:32 Page 4 of 15



already present in previously selected candidate terms;
and (2) the algorithm can first consider more inform-
ative words with fewer associated terms, because the
number of terms associated with each word in the
WT table is known.
To increase processing speed, NOBLE Coder creates a

cache of the word-to-term table that contains 0.2 % of
the most frequently occurring words in a dictionary.
This table contains a reduced set of terms that include
only the cached words. NOBLE determines if a word is
cached before using the main WT table. The threshold
was empirically chosen based on a series of experiments
comparing a range of thresholds.
Second, NOBLE Coder uses hash tables to represent

the WT table, and relies on the underlying JVM to han-
dle references to string objects internally. NOBLE Coder
also uses JDBM (Java Database Management) [32] tech-
nology to optionally persist those hash tables to disk.

This enables NOBLE to input a terminology of any size,
since it does not need to fit into memory. IndexFinder
leverages a sorted table of run-length identifiers, and
therefore trades complexity at build time for a smaller
memory footprint. In contrast, NOBLE Coder stores a
list of term sizes, requiring more memory but eliminat-
ing the requirement to load the entire vocabulary each
time the system is initialized.
Third, NOBLE Coder is arguably more extensible

and customizable when compared with IndexFinder.
NOBLE supports multiple matching strategies enab-
ling the optional inclusion or exclusion of candidates
based on (1) subsumption, (2) overlap, (3) contiguity,
(4) order, and (5) partial match. NOBLE has been im-
plemented to support a variety of terminology import
formats including RRF, OWL, OBO, and Bioportal.
The published implementation of IndexFinder was
specific to UMLS.

Table 3 NOBLE matching options with examples

Matching
feature

Explanation Example input text Example
input vocabulary

Example Output based on
ParameterSetting (T, F)

TRUE FALSE

Subsumption Only more comprehensive concepts are coded “Deep margin” Deep Deep margin Deep

Margin Margin

Deep margin Deep margin

Overlap A mapped concept may be fully or partially
within
the boundaries of another concept

“Deep lateral margin” Deep Deep Deep

Lateral margin Lateral margin Lateral margin

Deep margin Deep margin

Contiguity Words in text that map to concept term must
be
continuous (within word gap)

“Deep lateral margin” Deep Deep Deep

Margin Margin Margin

Deep margin Deep margin

Order Order of words in text must be the same as in
the concept term

“Margin, deep” Deep Deep Deep

Margin Margin Margin

Deep margin Deep margin

Partial Input text that only partially matches the
concept term is coded

“Margin” Deep margin Deep margin No concepts coded

Table 4 Examples of NOBLE matching strategies produced by combinations of matching options

Use Cases Combination of matching options

Task Description Subsumption Overlap Contiguity Order Partial

Best match Provides the narrowest meaningful match with the fewest candidates.
Best for concept coding and information extraction.

Yes Yes Yes (gap = 1) No No

All match Provides as many matched candidates as possible. Best for information
retrieval and text mining.

No Yes No No No

Precise match Attempts to minimize the number of false positives by filtering out
candidates that do not appear in exactly the same form as in controlled
terminology. Similar to best match, but increases precision at the expense
of recall.

Yes No Yes (gap = 0) Yes No

Sloppy match Allows matching of concepts even if the entire term representing it is not
mentioned in input text. Best for concept coding with small, controlled
terminologies and poorly developed synonymy.

No Yes No No Yes

For contiguity, the gap indicates the number of words (not counting stop words) that can occur in-between words that make up a valid term

Tseytlin et al. BMC Bioinformatics  (2016) 17:32 Page 5 of 15



Finally, NOBLE supports dynamic addition and sub-
traction of concepts to the terminology while process-
ing. This feature can be used as part of a cycle of
terminology enrichment by human reviewers or by
automated methods.

Implementation
NOBLE Coder is implemented in Java and is part of a
suite of Java NLP tools developed at University of Pitts-
burgh. In addition to the WT and TC tables described
earlier, NOBLE Coder uses additional tables to store word
statistics, terminology sources, and concept metadata such
as hierarchy information, definitions, semantic types, and
source vocabularies. NOBLE Coder uses JDBM 3.0 library
as a NoSQL solution to persist these tables to disk.
NOBLE Coder supports several additional features and

tools that enhance its utility and usability. These features
include (1) matching regular expressions, (2) resolving
acronyms to their expanded terms, (3) filtering concepts
by source or semantic types, (4) skipping problem
words, and (5) selecting a single candidate for a matched
term. Another feature that expands usability is the User
Interface (UI) for running the concept recognition sys-
tem and generating results as both tab-delimited files
and interactive annotated documents in HTML format.
NOBLE Coder has also been designed to minimize the

amount of user effort required to input terminologies,
including ontologies. For example, NOBLE Coder uses a
bundled Terminology Importer UI so users can easily
import custom terminologies in multiple formats (RRF,
OWL, OBO, and BioPortal). NOBLE Coder also allows
users to select multiple branches from a set of termin-
ologies, filter by semantic types, and export the results
as an OWL file. Furthermore, users can visually and pro-
grammatically browse taxonomic relationships in a
loaded terminology (Fig. 2).
NOBLE Coder is open source and freely available for aca-

demic and non-profit use under the terms of the GNU
Lesser General Public License v3. Source code, documenta-
tion, and executable, with UIMA and GATE wrappers, are
available at https://sourceforge.net/projects/nobletools/. For
rapid evaluation, users may run NOBLE Coder in Java
Webstart at http://noble-tools.dbmi.pitt.edu/noblecoder.
We have used NOBLE Coder as part of a new NLP

pipeline for TIES v5.0 [33] used to processed more than
25 million de-identified clinical documents. The TIES
system [27] is used by clinical and translational re-
searchers at our institution and other institutions across
the country.

Benchmarking
We compared NOBLE Coder to five widely used,
general-purpose concept recognition systems: MGrep,
MMTx, Concept Mapper, cTAKES Dictionary Lookup

Annotator (DLA), and cTAKES Fast Dictionary Lookup
Annotator (FDLA). Because NOBLE Coder was origin-
ally written to replace MMTx in our TIES system, we
chose to evaluate MMTx rather than its Prolog analog,
MetaMap. As described by its NLM developers [9],
MMTx is a Java implementation of MetaMap, which
produces only minor differences in comparison. These
discrepancies result in large part from MMTx’s tokeniza-
tion and lexicalization routines. MMTx continues to be
widely used throughout the biomedical informatics com-
munity, in part because of (1) its simpler installation
using a single server and (2) its more flexible vocabulary
building process.
We used two human annotated corpora as a basis for

performance comparisons. Evaluation included measure-
ments of run time speed (Fig. 3a) and standard perform-
ance metrics (Fig. 3b), as well as an analysis of false
positive and false negative errors made by NOBLE Coder
on both corpora. In order to minimize the differences
among implementations, we performed all tests in a
standard NLP framework, replacing only the NER pro-
cessing resources between runs.

System versions and configurations
Systems included in this benchmarking study differed
considerably in the number and types of parameters, as
well as the extent to which those parameters could be
manipulated. In selecting parameter settings for each
system, we sought to achieve uniform behavior that best
captured the annotation guidelines associated with the
reference standards [34, 35]. In addition, we favored set-
tings that, in our experience, have shown superior con-
cept recognition for an overall information extraction
strategy. Previous studies of concept recognition systems
using the Colorado Richly Annotated Full Text (CRAFT)
corpus have shown that adjusting parameters can pro-
duce significant variation in performance across corpora,
terminology, and terminology subset [26]. Rather than
taking an exhaustive approach, our goal was to replicate
the “best match” strategy, which is a common use case
for concept recognition in information extraction tasks.
Consequently, we set parameters to achieve Overlap,
Contiguity, and Subsumption (Table 3), which are
equivalent to the NOBLE Coder ‘best match’ strategy.
Selected parameters for each concept recognition system
are shown in Table 5. We relate each given parameter to
the associated general behavior achieved, which are mir-
rored by named NOBLE Coder matching options. Stand-
ard settings that were not adjusted are not shown.
To minimize differences due to platform, all systems

were run in the context of a cTAKES UIMA pipeline
that included standard front-end cTAKES Text Annota-
tors for Tokenization and Sentence Detection. Each
coder was entirely wrapped as a UIMA Annotator, with

Tseytlin et al. BMC Bioinformatics  (2016) 17:32 Page 6 of 15

https://sourceforge.net/projects/nobletools/
http://noble-tools.dbmi.pitt.edu/noblecoder


the exception of MGrep. MGrep was partially wrapped
as a UIMA Annotator as described below.

Corpora and vocabularies
We used two publicly available, human-annotated cor-
pora for comparison of the five systems. These corpora
were selected because they represent very different tasks
(clinical text annotation versus biomedical literature
annotation) and very different vocabularies (OBO ontol-
ogies versus SNOMED-CT), allowing us to better assess
generalizability during the benchmarking process. For
each corpus vocabulary, we built annotator-ready
vocabulary footprints as described below.

The Colorado Richly Annotated Full Text (CRAFT)
corpus The Colorado Richly Annotated Full Text
(CRAFT) Corpus [35] is a publicly available, human an-
notated corpus of full-text journal articles from a variety
of disciplines. Articles focus on mouse genomics. All
articles are from the PubMed Central Open Access Sub-
set. Human concept annotations are provided as Knowta-
tor XML files with standoff markup. The evaluation set
contained a total of 67 document, 438,705 words, and
87,674 human annotations.
Machine annotations by all five systems were gener-

ated using the terminologies and version provided with
the CRAFT corpus (CHEBI.obo, CL.obo, GO.obo, NCBI-
Taxon.obo, PR.obo and SO.obo). Based on published

Fig. 2 NOBLE Coder User Interface. a Example of NOBLE Coder processing reports. b Terminology Importer loads the Bioporter ontology, one of
the many supported formats. c Terminology Exporter creates a custom terminology by merging branches from two different terminologies

Tseytlin et al. BMC Bioinformatics  (2016) 17:32 Page 7 of 15



recommendations by the corpus developers [36], we
elected to exclude Entrez gene from the human annota-
tions. Therefore, we did not utilize the Entrez gene
vocabulary, relying instead on the PR ontology for gene
mentions.

The Shared Annotated Resources (ShARe) corpus We
obtained the Shared Annotated Resources (ShARe)
corpus [34] under a Data Use Agreement with the
Massachusetts Institute of Technology (MIT). The
ShARe corpus consists of de-identified clinical free-
text notes from the MIMIC II database, version 2.5,
that was used for the SemEval 2015 challenge [37].
Document genres include discharge summaries, ECG
(electrocardiogram) reports, echocardiogram reports, and
radiology reports. Human annotations are provided as

Knowtator XML files with standoff markup. For the
purposes of this study, we used the entire training set
of documents. The evaluation set contained a total of
199 documents, 94,243 words, and 4,211 human
annotations.
Machine annotations by all five systems were gener-

ated using the same terminology, version, and seman-
tic types as designated by the ShARe schema [37, 38].
SNOMED CT was obtained from UMLS version
2011AA and filtered by semantic type to include only
Congenital Abnormality, Acquired Abnormality, Injury
or Poisoning, Pathologic Function, Disease or Syndrome,
Mental or Behavioral Dysfunction, Cell or Molecular
Dysfunction, Experimental Model of Disease, Anatom-
ical Abnormality, Neoplastic Process, and Signs and
Symptoms.

Fig. 3 Benchmarking Study

Table 5 Parameter settings used for concept recognition systems

Concept recognition system Download reference Parameters changed from standard Goal achieved

MMTx [12] Best-mapping = false Overlap

MGrep [58] Longest match = true Subsumption

Concept Mapper [59] Contiguous match = true Contiguity

cTAKES Dictionary Lookup Annotator [21] N/A N/A

cTAKES Fast Dictionary Lookup Annotator [22] OverlapJCasTermAnnotator Overlap

PrecisionTermConsumer Subsumption

NOBLE Coder [57] Best Match Strategy Overlap

Contiguity

Subsumption

Tseytlin et al. BMC Bioinformatics  (2016) 17:32 Page 8 of 15



Vocabulary build process
For all concept recognition systems except NOBLE
Coder, significant additional effort was required to im-
port the vocabulary into a format that could be used by
the system. Additionally, some systems only worked
when the concept code was in the form of a UMLS CUI
string (e.g. cTAKES DLA and FDLA), while others (e.g.
MGrep) expected integers. In order to standardize for-
mats and to account for these different representations,
we used UMLS Rich Release Format (RRF) as the least
common denominator for all vocabulary builds. We note
that NOBLE already ingests many different formats (in-
cluding OBO, OWL, BioPortal and RRF). For the sake of
consistency, we utilized RRF as the input format for
NOBLE Coder too.
To construct coder-ready terminologies from CRAFT,

we developed Java code to convert OBO to Rich Release
Format (RRF). These transformational tools are also
made publicly available at https://sourceforge.net/pro
jects/nobletools/. We generated UMLS-like identifiers in
a cui-to-code mapping table to enable subsequent com-
parison to the gold annotations.
To construct coder-ready terminologies for ShARe, we

used UNIX command line tools (grep and awk) to ex-
tract SNOMED CT terminology, filter to the required
semantic types [34], and output RRF.
NOBLE Coder ingests native RRF files as one of its in-

put formats. No other transformations were performed.
Subsequent manipulations required for all other systems
are described in Table 6.

Document processing
Expert annotations for both corpora were published as
Knowtator XML files. We used the Apache XMLDige-
ster package to read these files and transform their con-
tent to a set of comma separated value (CSV) files
containing the annotation span, and concept unique
identifier. Natural Language Processing was performed
with the cTAKES UIMA Processing Pipeline (Fig. 3).
Documents were initially pre-processed using cTAKES
off-the-shelf Tokenizer and Sentence Splitter modules.
They were then processed with each of the individual
concept recognition components. Each concept recogni-
tion system generated a set of concept annotations that
were converted into a CSV format matching the format
of the gold annotation set.

Measurement of run times Run time was defined as
the time to process all documents in the corpus (prepro-
cessing and coding), as reported by the NLP Framework
Tools. Each concept recognition system was run ten
times in the context of a simple UIMA pipeline. Mea-
surements were made on a single PC with Intel I7 × 8
processor and 32 GB of RAM, running Ubuntu 12.04.

No significant competing processes were running. A
total of 120 runs were performed representing each of
the six coders, across both corpora, over ten runs. Runs
were randomly sequenced to minimize order effect.
Resources were freed and garbage was collected before
each new run was started. Results are reported as
median milliseconds with interquartile range (IQR).
Because MGrep runs as a command line program, we

used a two-step process for MGrep in which we first
produced a set of annotations cached in JDBM (now
MapDB) [32], and then wrapped a series of hash map
lookups with a UIMA Annotator. Run times for MGrep
were calculated as the sum of these two steps. In this
way, we avoided overly penalizing MGrep for start-up
time, which would be incurred with each text chunk.

NLP performance metrics Standard NLP evaluation
metrics were used, including TP, FP, FN, Precision,
Recall, and F-1 measure. The quality of the software
annotations was determined via comparison to the
Expert Annotation Set using GATE’s AnnotDiffTool
[39], which computes a standard Precision, Recall,
and F-1 measure using True Positive, False Positive,
and False Negative distributions. We ran in average
mode, which also considers partial positives (PP). PPs
are defined as any inexact overlap between the soft-
ware proposed annotation and the expert annotation.
Scoring with average mode allocates one-half the Par-
tial Positive count into both the Precision and Recall
calculations.

Table 6 Vocabulary build steps required for each system

Concept Recognition
Systems

Dictionary Data Structure Used by Coder

MMTxa Used MetamorphoSys to convert RRF
to ORF and used bundled data file
builder to create terminology for each
corpus; this process required significant
user interaction and took many hours

MGrep Sent RRF files for both corpora to the
MGrep authors and received from them
a tab delimited text file that could be
used with the MGrep system enriched
with LVG; there is limited publicly available
information about the vocabulary format
required by MGrep

Concept Mapper Wrote custom Java code to convert RRF
files to an XML file formatted in the Concept
Mapper valid syntax

cTAKES Dictionary
Lookup Annotator

Wrote custom Java code to convert RRF
files to seed a Lucene Index

cTAKES Fast Dictionary
Lookup Annotator

Wrote custom Java code to convert RRF
into Bar Separated Values (BSV) file that
FDLA imports

NOBLE Codera Directly imported RRF files
aSystems that have vocabulary import and selection tooling

Tseytlin et al. BMC Bioinformatics  (2016) 17:32 Page 9 of 15

https://sourceforge.net/projects/nobletools/
https://sourceforge.net/projects/nobletools/


Error analysis To evaluate the overall error profile of
NOBLE Coder against other systems, we examined the
distribution of all errors (both false positive and false
negative) made by NOBLE Coder and determined when
these specific NOBLE Coder errors were also made by
one or more of the other systems. From this set of all
NOBLE Coder errors, we then randomly sampled 200
errors made by NOBLE Coder on each corpus, including
100 false positives and 100 false negatives and yielding a
total of 400 errors. Each error in this sampled set was
then manually classified by a human judge to determine
the distribution of errors based on 10 categories of error
types. Categories included errors that could result in
false positives (e.g. word sense ambiguity), false negatives
(e.g. incorrect stemming), or both false positives and
false negatives (e.g. boundary detection). Our categories
built on previous error categories used in a study of
MMTx [40], which we further expanded. All 400 errors
studied were classified as one of these error types. We
then analyzed the frequency with which these specific
NOBLE Coder errors were also made by the other sys-
tems. For error analyses, we considered only absolute
matches and not partial positives, which would have
significantly complicated the determination of overlap in
errors among all six systems.

Results
All systems performed better on the ShARe corpus than
they did on the CRAFT corpus (Table 7). There are
likely various factors that contribute to the observed
differences. The CRAFT corpus contains a large number
of gene and protein mentions, often with complex com-
binations of letters, words, numbers, and punctuation.
Such a terminology is more prone to ambiguity between

entries or with common English terms. Behavior was
most disparate for MGrep, which was four times more
accurate on the ShARe corpus. Because MGrep does not
consider all word orders, it can be expected to perform
better with vocabularies that include different orderings
of multi-word terms as synonyms. MGrep’s vocabulary
build process also includes UMLS lexical variant gener-
ation, which could be expected to improve performance
on the ShARe corpus more than on the CRAFT corpus.
On CRAFT, NOBLE Coder achieved an F1 value of

0.43, ranking second behind the cTAKES Dictionary
Lookup Annotator (F1 = 0.47), and slightly better than
MMTx (F1 = 0.42), cTAKES Fast Dictionary Lookup
Annotator (F1 = 0.41), and Concept Mapper (F1 =
0.40). All five of these coders markedly outperformed
MGrep (F1 = 0.19).
On ShARe, NOBLE Coder achieved an F1 value of

0.59, ranking third behind cTAKES Fast Dictionary
Lookup Annotator (F1 = 0.62) and MGrep (F1 = 0.62)
which were tied. NOBLE Coder was slightly more accur-
ate than MMTx (F1 = 0.58), and performed better than
cTAKES Dictionary Lookup Annotator (F1 = 0.53), and
Concept Mapper (F1 = 0.51).
With respect to speed, Concept Mapper was the fast-

est on both corpora, followed by cTAKES Fast Diction-
ary Lookup Annotator and NOBLE Coder. All three of
the fastest annotators completed the CRAFT corpus with
a median run speed of less than twenty seconds, and the
ShARe corpus with a median run speed of less than
seven seconds. MGrep was only slightly slower than
NOBLE Coder was and completed annotations of the
CRAFT and ShARe corpora in 27.5 and 7.1 s, respect-
ively. In contrast, MMTx completed the annotation of
the CRAFT corpus in 10 min and the ShARe corpus in

Table 7 Performance metrics

Corpus Concept Recognition System TP PP FP FN Precision Recall F1 Median runtime over
10 runs (ms)**

IQR (ms)

CRAFT MMTx 35,140 659 45,791 51,875 0.43 0.40 0.42 640,450 3,937

CRAFT MGrep 9,955 292 10,666 77,427 0.48 0.12 0.19 27,448* 747

CRAFT Concept Mapper 29,353 713 32,122 57,608 0.48 0.34 0.40 5,329 113

CRAFT cTAKES Dictionary Lookup 37,736 742 36,951 49,196 0.51 0.43 0.47 4,082,685 3,459

CRAFT cTAKES Fast Lookup 35,078 784 51,383 51,812 0.41 0.4 0.41 9,812 1,160

CRAFT NOBLE Coder 36,568 1,637 46,344 49,469 0.44 0.43 0.43 17,431 44

ShARe MMTx 2,375 101 1,675 1,735 0.58 0.58 0.58 52,016 2,678

ShARe MGrep 2,340 35 1,075 1,836 0.68 0.56 0.62 7,103* 148

ShARe Concept Mapper 2,302 34 2,483 1,875 0.48 0.55 0.51 1,543 57

ShARe cTAKES Dictionary Lookup 2,417 39 2,587 1,755 0.48 0.58 0.53 263,336 2,316

ShARe cTAKES Fast Lookup 2,374 36 1,101 1,801 0.68 0.57 0.62 2,754 81

ShARe NOBLE Coder 2,315 99 1,413 1,797 0.62 0.56 0.59 6,466 94
*MGrep runtime is a sum of the runtime of a harness and a stand-alone MGrep invocation on a corpus
**all measurements were performed on a UIMA platform and a Linux Workstation, 32GB RAM, Intel® Core™ i7-3770 CPU @ 3.40GHz

Tseytlin et al. BMC Bioinformatics  (2016) 17:32 Page 10 of 15



1 min. cTAKES Dictionary Lookup Annotator was the
slowest on both corpora, completing the annotation of
the CRAFT corpus in 68 min and the ShARe corpus in
4.3 min.
We investigated the frequency of errors made by

NOBLE Coder on both corpora and then determined
the distribution of these errors across the other systems.
As shown in Fig. 4, for both corpora, there is substantial
overlap among FN errors, with the same missed entities
being missed by multiple systems. Of note, most of the
errors made by NOBLE Coder were made by at least
three other systems. As would be expected, FP errors
have less overlap. However, once again, errors made by
NOBLE Coder are frequently made by the other coders,
with the majority of NOBLE Coder FP errors made by
three or more systems.
The distribution of errors made by NOBLE Coder on

a set of randomly sampled FN and FP errors is shown in
Table 8. For both corpora, the most frequent type of
error related to absence of background knowledge or
context when compared to the human annotated gold
corpus. For example, in the ShARe corpus, the phrase
“No W” appears in the review of systems within the
documentation of the physical examination. “W” was an-
notated by the humans as a mention of the concept
“wheezing” (C0043144). The human annotators under-
stood the context of the highly condensed list of clinical
pertinent negatives used, and they also knew the
discourse-specific abbreviations that were used in the re-
view of systems for pertinent negatives in auscultation.
“W” is not a synonym for “wheezing” in the vocabulary,
and NOBLE lacks the contextual understanding of such
abbreviations. NOBLE Coder therefore missed this men-
tion. NOBLE Coder also annotated entities that were
not annotated by the expert human annotators, even
though the mentions annotated appear to be reasonable
concept annotations. For example, in the CRAFT corpus
the phrase “Cells were lysed in Laemli buffer” appears.

NOBLE Coder annotated “buffer” with the concept “buf-
fer” (CHEBI:35225), but no matching human annotation
appears in the gold corpus. Such entities may not have
been deemed sufficiently important to merit annotation,
based on the annotation guidelines.
Among the errors sampled from the CRAFT corpus,

other error types identified included (with decreasing
frequency) an alternative application of the terminology,
concept hierarchy errors, abbreviation detection errors,
wording mismatch, text span mismatch, word sense am-
biguity, and missed exact matches. Among the errors
sampled from the ShARe corpus, other error types iden-
tified included (with decreasing frequency) text span
mismatch, wording mismatch, concept hierarchy errors,
an alternative application of the terminology, and
boundary detection.
Finally, we looked at the overlap of error types among

other systems for the 400 sampled NOBLE Coder errors
(Fig. 5). Not surprisingly, NOBLE Coder FN errors that
were judged to be related to context were commonly
seen in all other systems. Other errors were largely
evenly distributed.

Discussion
In this manuscript, we introduce NOBLE Coder, a con-
cept recognition system for biomedical NLP pipelines.
The underlying algorithm of NOBLE Coder is based on
a word lookup table, making it most similar to the
IndexFinder [14, 15] and Concept Mapper [19] systems.
However, NOBLE Coder is different from these systems
in a number of respects, with consequences for its per-
formance, scalability, and extensibility (Table 1).
Our benchmarking tests showed that NOBLE Coder

achieved comparable performance when compared to
widely used concept recognition systems for both accur-
acy and speed. Our error analysis suggests that the ma-
jority of the NOBLE Coder errors could be related to
the complexity of the corpus, expert inferences made by

Fig. 4 Frequency of All Errors Made by NOBLE Coder and Other Systems Shows the total number of errors made by NOBLE Coder and the number of
other systems that made the same errors. a Total number of FN and FP errors on CRAFT corpus. b Total number of FN and FP errors on ShARe corpus

Tseytlin et al. BMC Bioinformatics  (2016) 17:32 Page 11 of 15



the annotator, annotation guideline application of the
human annotators, and missing (but reasonable) annota-
tions created by NOBLE Coder that were not identified
by the gold annotators. Errors due to known weaknesses
of concept recognition systems (such as word sense am-
biguity and boundary detection) occurred relatively
infrequently in both corpora.
Overall, NLP performance metrics (precision, recall,

and F1) were low for all systems, particularly on the
CRAFT corpus, which was not unexpected. Results of
our component benchmarking tests should not be dir-
ectly compared to evaluations of entire systems, includ-
ing those tested against these corpora with reported
results in the high 70s F-score [37, 38]. We specifically
sought to separate out and test the concept recognition
system alone without the use of noun phrasing, part of
speech tagging, pre-processing of the vocabulary, or fil-
tering results to specific semantic types. When concept
recognition is used within the context of a pipeline that
performs these other functions, performance can be
expected to be higher.
Nevertheless, our results provide additional data to

other comparative studies by evaluating recall, precision,
and speed for all of these systems across two very differ-
ent gold standards. No previous study has compared
performance on more than one reference standard. Our
results demonstrate that some systems generalize more
easily than others do. Additionally, no previous study
has directly compared the cTAKES Dictionary Lookup

Annotator and Fast Dictionary Lookup Annotator with
other alternatives. Our results demonstrate the remark-
able speed of the cTAKES Fast Dictionary Lookup
Annotator with increased accuracy on the ShARe corpus.
The results of our benchmarking tests are consistent

with findings of other recent studies that demonstrate
the greater precision and greater speed of MGrep over
MetaMap [23–25]. However, the low recall of MGrep,
for example on the CRAFT corpus, may limit its utility
to tasks in which a UMLS-derived vocabulary is used
with lexical variant generation. To evaluate speed fairly
across systems, we ran all systems within the context of
a cTAKES UIMA pipeline. The command line version of
MGrep can be expected to run at faster speeds.
A recent study of concept recognition systems using

the CRAFT corpus showed that Concept Mapper
achieved higher F1 measures when compared to both
MetaMap and NCBO annotator (which implements
MGrep) across seven of eight ontologies represented in
the gold set annotations [26]. We did not specifically
compare accuracy against specific ontology subsets, and
therefore our results are not directly comparable.
NOBLE Coder has some similarities to Concept

Mapper including the use of a word-to-term lookup
table and the ability to create different matching strat-
egies. But there are also a large number of differences
between the systems, including NOBLE Coder’s use of
JDBM, native imports of vocabularies as NoSQL tables,
and additional parameters for setting the mapping

Table 8 Analysis of sampled NOBLE Coder errors

Error Type Definition Type of error CRAFT ShARe

Boundary detection Incorrectly incorporates words from earlier or later in the
sentence, considering them to be part of the concept
annotated

FP 0 (0 %) 3 (1.5 %)

Concept hierarchy Incorrectly assigns more general or more specific concept
than gold standard

FP and FN 18 (9 %) 13 (6.5 %)

Context/background knowledge Concept annotated incorrectly because context or
background knowledge was needed

FP and FN, usually FN 72 (36 %) 81 (40.5 %)

Exact match missed Concept not annotated despite exactly matching the
preferred name or a synonym

FN 2 (1 %) 3 (1.5 %)

Importance Annotated concept was not deemed relevant by gold
annotators

FP 33 (16.5 %) 51 (25.5 %)

Abbreviation detection Abbreviation defined in the dictionary had a case-insensitive
match, because it did not match a defined abbreviation
pattern

FP 18 (9 %) 0 (0 %)

Alternative application of
terminology

Gold used obsolete term, term is not in SNOMED, or same
term existed in multiple ontologies, resulting in different
annotations for same mention

FN 31 (15.5 %) 10 (5 %)

Text span Concept annotated was identical to gold but text span
was different than gold

FP and FN 10 (5 %) 20 (10 %)

Word sense ambiguity Concept annotated was used in different word sense FP 4 (2 %) 0 (0 %)

Wording mismatch Missing or incorrect annotation due to word inflection
mismatch between dictionary term and input text

FP and FN, usually FN 12 (6 %) 19 (9.5 %)

Total Errors 200 (100 %) 200 (100 %)

Tseytlin et al. BMC Bioinformatics  (2016) 17:32 Page 12 of 15



strategy (e.g. word order and partial match) when com-
pared with ConceptMapper. A particularly important
difference is that the NOBLE algorithm is greedy, which
is likely to improve performance with very large termin-
ology sets and corpora.
NOBLE Coder also has significant advantages over in-

memory systems. Use of heap memory is an advantage if
the system will be run on 32-bit machines or in any way
that is RAM limited. Disk-based concept recognition
systems such as NOBLE Coder, MMTx, and disk-
configured deployments of cTAKES DLA and FDLA
would likely run with smaller footprints than their in-
memory counterparts. Additionally, NOBLE Coder can
enable the application programmer to directly manage
heap growth, with its utilization of MapDB just-in-time
caching technology. None of the other systems has this
capability. Memory management aspects of NOBLE
make it an excellent choice for NLP processing in cloud-
based environments where higher RAM requirements
also increase cost.
In addition to performance metrics and speed, usabil-

ity within common NLP tasks and scenarios is an
important criterion to consider when selecting processing

resources for an NLP pipeline. We observed significant
differences in the degree of effort required to achieve a
specific behavior such as Best Match. Systems that expose
and explicitly document parameters that can be altered to
achieve such behaviors may be preferred for some applica-
tions. The terminology build process remains one of the
most complex and challenging aspects of working with
any general concept recognition system. Of the systems
described in Table 1 that support more than a single pre-
determined vocabulary, only MMTx and NOBLE provide
both tooling and documentation to build the necessary
terminology resources. Most systems also have significant
limitations in the formats and types of vocabularies that
can be used. In large part, NOBLE was developed to
address this limitation. It currently supports a variety of
terminology import formats including RRF, OWL, OBO,
and Bioportal. Finally, of the systems tested, only NOBLE
supports dynamic addition and subtraction of concepts to
the terminology while processing. This feature can be used
as part of a cycle of terminology enrichment by human
reviewers or by automated methods.
Results of our benchmarking tests may provide guid-

ance to those seeking to use a general-purpose concept

Fig. 5 Frequency of Error Types Made by NOBLE Coder and Other Systems Shows the number of FP and FN errors made by NOBLE Coder on the
CRAFT and ShARe corpora, and the number of other systems that made the same errors. a Number of FN errors on CRAFT corpus. b Number of
FN errors on ShARe corpus. c Number of FP errors on CRAFT corpus. d Number of FP errors on ShARe corpus

Tseytlin et al. BMC Bioinformatics  (2016) 17:32 Page 13 of 15



recognition system within the context of their biomed-
ical NLP pipelines. Given specific use cases, individual
researchers must prioritize not only (1) precision, (2) re-
call, and (3) speed, but also (4) generalizability, (5) ability
to accommodate specific terminologies and (6) termin-
ology formats, and (7) ease of integration within existing
frameworks. The reader should also be aware that any
general-purpose annotator must ultimately be evaluated
within the context of a larger pipeline system.

Conclusions
NOBLE Coder is an open source software component
that can be used for biomedical concept recognition in
NLP pipelines. We describe the system and show that it
is comparable to the highest performing alternatives in
this category. NOBLE Coder provides significant advan-
tages over existing software including (1) ease of
customization to user-defined vocabularies, (2) flexibility to
support a variety of matching strategies and a range of
NLP tasks, and (3) disk-based memory management, mak-
ing the software particularly well suited to cloud hosted
environments.

Availability and requirements
Project name: NOBLE Coder and NOBLE Tools
Project home page: http://noble-tools.dbmi.pitt.edu/
Operating system(s): Linux, Windows, MacOS
Programming language: Java
Other requirements: None; can be used as standalone

application, or within UIMA or GATE
License: Gnu LGPL v3
Any restrictions (to use by non-academics): University

of Pittsburgh holds the copyright to the software. Use by
non-profits and academic groups is not restricted.
Licensing for use by a for-profit commercial entity may
be negotiated through University of Pittsburgh Office of
Technology Management.

Competing interests
This research was supported by the National Cancer Institute (R01 CA132672
and U24 CA180921).

Authors’ contributions
ET was the primary developer of the NOBLE system, contributed to the
analysis and interpretation of the data, and to the writing of the manuscript.
KM was the primary evaluator of the NOBLE system against alternatives,
contributed to the analysis and interpretation of the data, and to the writing
of the manuscript. EL contributed to the design of the benchmarking study,
analysis and interpretation of the data, and writing of the manuscript. JC
contributed to the analysis and interpretation of the data, and to the writing
of the manuscript. GC contributed to the development of the system, the
design of the benchmarking study, and to the writing of the manuscript.
RJ contributed to the development of the system, designed the benchmarking
study, contributed to the analysis and interpretation of the data, and
contributed to the writing of the manuscript. All authors read and approve
the final manuscript.

Authors’ information
None.

Acknowledgments
We gratefully acknowledge support of our research by the National Cancer
Institute (R01 CA132672 and U24 CA180921). Many thanks to Fan Meng and
Manhong Dai (University of Michigan) for the use of the MGrep software
and for their assistance with the MGrep vocabulary builds. We also thank
Guergana Savova, Sean Finan, and the cTAKES team at Boston Children’s
Hospital for assistance in use of the cTAKES pipeline and dictionary
annotators. Finally, we are indebted the creators of the ShARe and CRAFT
corpora, whose significant efforts make these essential resources available
for research use.

Received: 31 July 2015 Accepted: 22 December 2015

References
1. Friedman C, Elhadad N. Natural language processing in health care and

biomedicine. In: Shortliffe EH, Cimino JJ, editors. Biomedical Informatics.
London: Springer; 2014. p. 255–84.

2. Cohen KB, Hunter L. Getting started in text mining. PLoS Comput Biol. 2008;
4(1):e20. doi:10.1371/journal.pcbi.0040020.

3. Doan S, Collier N, Xu H, Duy PH, Phuong TM. Recognition of medication
information from discharge summaries using ensembles of classifiers. BMC
Med Inform Decis Mak. 2012;12(36). doi:10.1186/1472-6947-12-36

4. Tikk D, Solt I. Improving textual medication extraction using combined
conditional random fields and rule-based systems. J Am Med Inform Assoc.
2010;17(5):540–4. doi:10.1136/jamia.2010.004119.

5. Hsu C-N, Chang Y-M, Kuo C-J, Lin Y-S, Huang H-S, Chung I-F. Integrating
high dimensional bi-directional parsing models for gene mention tagging.
Bioinformatics. 2008;24(13):286–94. doi:10.1093/bioinformatics/btn183.

6. Mitsumori T, Fation S, Murata M, Doi K, Doi H. Gene/protein name
recognition based on support vector machine using dictionary as features.
BMC Bioinformatics. 2005;6 Suppl 1:S8. doi:10.1186/1471-2105-6-S1-S8.

7. Hanauer D, Aberdeen J, Bayer S, Wellner B, Clark C, Zheng K, et al. Bootstrapping
a de-identification system for narrative patient records: cost-performance
tradeoffs. Int J Med Inform. 2013;82(9):821–31. doi:10.1016/j.ijmedinf.2013.03.005.

8. Lu Z, Kao H-Y, Wei C-H, Huang M, Liu J, Kuo C-J, et al. The gene
normalization task in BioCreative III. BMC Bioinformatics. 2011;12 Suppl 8:S2.
doi:10.1186/1471-2105-12-S8-S2.

9. Aronson AR, editor. Effective mapping of biomedical text to the UMLS
Metathesaurus: the MetaMap program. Proc AMIA Symp. 2001; 17-21.

10. Aronson AR. MetaMap: mapping text to the UMLS metathesaurus. Bethesda,
MD: NLM, NIH, DHHS; 2006. p. 1-26. Available at http://skr.nlm.nih.gov/
papers/references/metamap06.pdf

11. Aronson AR, Lang F-M. An overview of MetaMap: historical perspective and
recent advances. J Am Med Inform Assoc. 2010;17(3):229–36. doi:10.1136/
jamia.2009.002733.

12. MetaMap Transfer (MMTx). http://mmtx.nlm.nih.gov/MMTx/. Accessed 23 Jul 2015.
13. Dai M, Shah NH, Xuan W, Musen MA, Watson SJ, Athey BD et al. An efficient

solution for mapping free text to ontology terms. AMIA Summit on Translat
Bioinforma. 2008

14. Zou Q, Chu WW, Morioka C, Leazer GH, Kangarloo H. IndexFinder: a
knowledge-based method for indexing clinical texts. AMIA Annu Symp
Proc. 2003; 763–767

15. Zou Q, Chu WW, Morioka C, Leazer GH, Kangarloo H. IndexFinder: a method
of extracting key concepts from clinical texts for indexing. Proc AMIA Symp.
2003:763-7

16. Friedman C, Shagina L, Lussier Y, Hripcsak G. Automated encoding of
clinical documents based on natural language processing. J Am Med
Inform Assoc. 2004;11(5):392–402. doi:10.1197/jamia.M1552.

17. Berman JJ. Doublet method for very fast autocoding. BMC Med Inform
Decis Mak. 2004;4:16. doi:10.1186/1472-6947-4-16.

18. Berman JJ. Automatic extraction of candidate nomenclature terms using
the doublet method. BMC Med Inform Decis Mak. 2005;5:35. doi:10.1186/
1472-6947-5-35.

19. Tanenblatt MA, Coden A, Sominsky IL. The ConceptMapper approach to
named entity recognition. 2010. p. 546–51. Proc of 7th Language Resources
and Evaluation Conference.

20. Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, et al.
Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES):
architecture, component evaluation and applications. J Am Med Inform
Assoc. 2010;17(5):507–13. doi:10.1136/jamia.2009.001560.

Tseytlin et al. BMC Bioinformatics  (2016) 17:32 Page 14 of 15

http://noble-tools.dbmi.pitt.edu/
http://dx.doi.org/10.1371/journal.pcbi.0040020
http://dx.doi.org/10.1136/jamia.2010.004119
http://dx.doi.org/10.1093/bioinformatics/btn183
http://dx.doi.org/10.1186/1471-2105-6-S1-S8
http://dx.doi.org/10.1016/j.ijmedinf.2013.03.005
http://dx.doi.org/10.1186/1471-2105-12-S8-S2
http://skr.nlm.nih.gov/papers/references/metamap06.pdf
http://skr.nlm.nih.gov/papers/references/metamap06.pdf
http://dx.doi.org/10.1136/jamia.2009.002733
http://dx.doi.org/10.1136/jamia.2009.002733
http://mmtx.nlm.nih.gov/MMTx/
http://dx.doi.org/10.1197/jamia.M1552
http://dx.doi.org/10.1186/1472-6947-4-16
http://dx.doi.org/10.1186/1472-6947-5-35
http://dx.doi.org/10.1186/1472-6947-5-35
http://dx.doi.org/10.1136/jamia.2009.001560


21. cTAKES Dictionary Lookup. https://cwiki.apache.org/confluence/display/
CTAKES/cTAKES+3.0+-+Dictionary+Lookup. Accessed 23 Jul 2015.

22. cTAKES 3.2 - Fast Dictionary Lookup. https://cwiki.apache.org/confluence/
display/CTAKES/cTAKES+3.2+-+Fast+Dictionary+Lookup. Accessed 23 Jul 2015.

23. Bhatia N, Shah NH, Rubin DL, Chiang AP, Musen MA. Comparing concept
recognizers for ontology-based indexing: MGrep vs. MetaMap. AMIA
Summit on Translat Bioinforma. 2009

24. Shah NH, Bhatia N, Jonquet C, Rubin D, Chiang AP, Musen MA. Comparison
of concept recognizers for building the Open Biomedical Annotator. BMC
Bioinformatics. 2009;10 Suppl 9:S14. doi:10.1186/1471-2105-10-S9-S14.

25. Stewart SA, Von Maltzahn ME, Abidi SSR. Comparing Metamap to MGrep as
a tool for mapping free text to formal medical lexicons. 2012. p. 63–77. Proc
of 1st International Workshop on Knowledge Extraction and Consolidation
from Social Media.

26. Funk C, Baumgartner WJ, Garcia B, Roeder C, Bada M, Cohen KB, et al.
Large-scale biomedical concept recognition: an evaluation of current
automatic annotators and their parameters. BMC Bioinformatics. 2014;15:59.
doi:10.1186/1471-2105-15-59.

27. Crowley RS, Castine M, Mitchell K, Chavan G, McSherry T, Feldman M. caTIES:
a grid based system for coding and retrieval of surgical pathology reports
and tissue specimens in support of translational research. J Am Med Inform
Assoc. 2010;17(3):253–64. doi:10.1136/jamia.2009.002295.

28. Liu K, Chapman WW, Savova GK, Chute CG, Sioutos N, Crowley RS.
Effectiveness of lexico-syntactic pattern matching for ontology enrichment
with clinical documents. Methods Inf Med. 2011;50(5):397–407. doi:10.3414/
ME10-01-0020.

29. Liu K, Mitchell KJ, Chapman WW, Savova GK, Sioutos N, Rubin DL, et al.
Formative evaluation of ontology learning methods for entity discovery by
using existing ontologies as reference standards. Methods Inf Med. 2013;
52(4):308–16. doi:10.3414/ME12-01-0029.

30. Zheng J, Chapman WW, Miller TA, Lin C, Crowley RS, Savova GK. A system
for coreference resolution for the clinical narrative. J Am Med Inform Assoc.
2012;19(4):660–7. doi:10.1136/amiajnl-2011-000599.

31. Browne AC, Divita G, Aronson AR, McCray AT. UMLS language and
vocabulary tools. AMIA Annu Symp Proc. 2003:798

32. The JDBM project. http://jdbm.sourceforge.net/. Accessed 23 Jul 2015.
33. TIES. http://ties.dbmi.pitt.edu/. Accessed 23 Jul 2015.
34. ShARe/CLEF eHealth evaluation lab. SHARE-Sharing Annotated Resources.

https://sites.google.com/site/shareclefehealth/home. Accessed 23 Jul 2015.
35. CRAFT: The Colorado Richly Annotated Full Text corpus. SourceForge.net.

http://bionlp-corpora.sourceforge.net/CRAFT/. Accessed 23 Jul 2015.
36. Bada M, Eckert M, Evans D, Garcia K, Shipley K, Sitnikov D, et al. Concept

annotation in the CRAFT corpus. BMC Bioinformatics. 2012;13:161. doi:10.
1186/1471-2105-13-161.

37. Elhadad N, Pradhan S, Chapman WW, Manandhar S, Savova GK. SemEval-2015
task 14: Analysis of clinical text. Proc of Workshop on Semantic Evaluation.
Association for Computational Linguistics. 2015:303-10

38. Pradhan S, Elhadad N, Chapman WW, Manandhar S, Savova GK. SemEval-2014
task 7: analysis of clinical text. Proc of Workshop on Semantic Evaluation.
Association for Computational Linguistics. 2014:54-62

39. GATE annotation diff tool. GATE-General Architecture for Text Engineering.
http://gate.ac.uk/sale/tao/splitch10.html#x14-27600010.2. Accessed 23 Jul 2015.

40. Divita G, Tse T, Roth L. Failure analysis of MetaMap transfer (MMTx).
Medinfo. 2004;11(Pt 2):763–7.

41. Definitions of terms used in Information Extraction. Message Understanding
Conference. 2005. http://www-nlpir.nist.gov/related_projects/muc/.
Accessed 20 Oct 2015.

42. de Keizer NF, Abu-Hanna A, Zwetsloot-Schonk J. Understanding
terminological systems I: terminology and typology. Methods Inf Med.
2000;39(1):16–21.

43. Cimino JJ. Desiderata for controlled medical vocabularies in the twenty-first
century. Methods Inf Med. 1998;37(4-5):394–403.

44. Zeng ML. Construction of controlled vocabularies, a primer. 2005. Online.
45. Smith A, Osborne M. Using gazetteers in discriminative information

extraction. 2006. p. 133–40. Tenth Conference on Natural Language
Learning.

46. Nadkarni PM, Ohno-Machado L, Chapman WW. Natural language
processing: an introduction. J Am Med Inform Assoc. 2011;18(5):544–51.
doi:10.1136/amiajnl-2011-000464.

47. Gruber TR. A translation approach to portable ontology specifications.
Knowledge Acquisition. 1993;5(2):199–220.

48. de Keizer NF, Abu-Hanna A. Understanding terminological systems II:
experience with conceptual and formal representation of structure.
Methods Inf Med. 2000;39(1):22–9.

49. Manning CD, Raghavan P, Schütze H. Introduction to information retrieval.
2008. Cambridge University Press.

50. Liu K, Hogan WR, Crowley RS. Natural Language Processing methods
and systems for biomedical ontology learning. J Biomed Inform.
2011;44(1):163–79. doi:10.1016/j.jbi.2010.07.006.

51. Trask RL. What is a word? University of Sussex Working Papers in Linguistics.
2004.

52. MetaMap - a tool for recognizing UMLS concepts in text. http://metamap.
nlm.nih.gov/. Accessed 23 Jul 2015.

53. Jonquet C, Shah NH, Musen MA. The Open Biomedical Annotator. Summit
on Translat Bioinforma. 2009;56–60.

54. Index of /d/uima-addons-current/ConceptMapper. http://uima.apache.org/
d/uima-addons-current/ConceptMapper. Accessed 23 Jul 2015.

55. cTAKES 3.2 Dictionaries and Models. https://cwiki.apache.org/confluence/
display/CTAKES/cTAKES+3.2+Dictionaries+and+Models. Accessed 23 Jul 2015.

56. The Doublet Method medical record scrubber. http://www.julesberman.
info/aacom10.htm. Accessed 23 Jul 2015.

57. Noble tools. http://noble-tools.dbmi.pitt.edu/noblecoder. Accessed 23 Jul 2015.
58. MGrep. Available from University of Michigan.
59. Concept Mapper. https://uima.apache.org/sandbox.html#concept.mapper.

annotator. Accessed 23 Jul 2015.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Tseytlin et al. BMC Bioinformatics  (2016) 17:32 Page 15 of 15

https://cwiki.apache.org/confluence/display/CTAKES/cTAKES+3.0+-+Dictionary+Lookup
https://cwiki.apache.org/confluence/display/CTAKES/cTAKES+3.0+-+Dictionary+Lookup
https://cwiki.apache.org/confluence/display/CTAKES/cTAKES+3.2+-+Fast+Dictionary+Lookup
https://cwiki.apache.org/confluence/display/CTAKES/cTAKES+3.2+-+Fast+Dictionary+Lookup
http://dx.doi.org/10.1186/1471-2105-10-S9-S14
http://dx.doi.org/10.1186/1471-2105-15-59
http://dx.doi.org/10.1136/jamia.2009.002295
http://dx.doi.org/10.3414/ME10-01-0020
http://dx.doi.org/10.3414/ME10-01-0020
http://dx.doi.org/10.3414/ME12-01-0029
http://dx.doi.org/10.1136/amiajnl-2011-000599
http://jdbm.sourceforge.net/
http://ties.dbmi.pitt.edu/
https://sites.google.com/site/shareclefehealth/home
http://bionlp-corpora.sourceforge.net/CRAFT/
http://dx.doi.org/10.1186/1471-2105-13-161
http://dx.doi.org/10.1186/1471-2105-13-161
http://gate.ac.uk/sale/tao/splitch10.html#x14-27600010.2
http://www-nlpir.nist.gov/related_projects/muc/
http://dx.doi.org/10.1136/amiajnl-2011-000464
http://dx.doi.org/10.1016/j.jbi.2010.07.006
http://metamap.nlm.nih.gov/
http://metamap.nlm.nih.gov/
http://uima.apache.org/d/uima-addons-current/ConceptMapper
http://uima.apache.org/d/uima-addons-current/ConceptMapper
https://cwiki.apache.org/confluence/display/CTAKES/cTAKES+3.2+Dictionaries+and+Models
https://cwiki.apache.org/confluence/display/CTAKES/cTAKES+3.2+Dictionaries+and+Models
http://www.julesberman.info/aacom10.htm
http://www.julesberman.info/aacom10.htm
http://noble-tools.dbmi.pitt.edu/noblecoder
https://uima.apache.org/sandbox.html#concept.mapper.annotator
https://uima.apache.org/sandbox.html#concept.mapper.annotator

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Algorithm

	Implementation
	Benchmarking
	System versions and configurations
	Corpora and vocabularies
	Vocabulary build process
	Document processing


	Results
	Discussion
	Conclusions
	Availability and requirements
	Competing interests
	Authors’ contributions
	Authors’ information
	Acknowledgments
	References



