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Andrew S. Whitford, PhD

University of Pittsburgh, 2016

Although it is firmly established that the primate motor cortex contributes to intentional

behavior, the exact relationship between patterns of cortical activity and effected action is

not well-understood. A particular matter of controversy is the degree to which such patterns

subserve a singular function in the control of behavior, and are constrained by this specific

role. The reported capability of nearby motor cortical neurons to vary independently of one

another – and to be dissociated from overt movement – has often been cited as evidence that

patterns of cortical activity are rather labile; that they are readily adjusted to suit varied

behavioral demands. Such claims are rooted in evidence from neurophysiology experiments

that entail direct reinforcement of variation in the firing rates of single cortical neurons – that

is, single unit operant conditioning experiments. However, such investigations have largely

been limited to the consideration of relationships among neurons recorded on the same

electrode, or among small populations (N < 5) of nearby neurons. Here, we explore cortical

flexibility by characterizing patterns of population (N > 20) activity as single neurons are

targeted for conditioning. We find that a substantial percentage of the populations tend to

co-vary, even though behavioral goals (i.e., reward) depend only on the activity of single

neurons. Further, stable patterns of covariation can change with those goals. We conclude

that cortical activity can be reshaped to suit behavioral demands, but that intrinsic structure

– perhaps due to network connectivity patterns – likely constrains the flexibility of population

activity.
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1.0 INTRODUCTION

1.1 EARLY DEVELOPMENTS IN BEHAVIORAL

ELECTROPHYSIOLOGY

During the 1960s and 1970s, Dr. Eberhard Fetz and colleagues pioneered the practice of op-

erantly conditioning the electrophysiological activity of cortical neurons in awake primates.

Recording from electrodes implanted in the motor cortex of rhesus macaques, Fetz [17]

developed a paradigm for behaviorally reinforcing changes in the rate of action potential

discharge from single cortical neurons. Using a custom ”activity integrator” circuit, animals

were provided with auditory or visual feedback of the real-time firing rate of a target neu-

ron. This feedback acted as a discriminatory stimulus, which the subject was trained to

control. When the firing rate passed a threshold, specified by the experimenter, a reward

was administered. Fetz showed that non-human primates were capable of intentionally and

systematically varying the activity of single cortical neurons. Such variation most commonly

manifested as phasic increases in firing rate, which were referred to as ”operant bursts” of

activity. After initial training sessions, average firing rates were reported to change, under

reinforcement, by as much as 500% of their baseline levels. Once trained, ”monkeys consis-

tently and rapidly increased the activity of newly isolated cells”, indicating that such control

was not overly challenging for the animals. These results set the foundation for decades of

subsequent research in cortical conditioning, and brain interface, research.

Fetz had come to develop the cortical conditioning paradigm as a response to the in-

novative work of Evarts, which had established behavioral electrophysiology as a means for

studying the cortical control of movement. In the years preceding Fetz’s initial operant

conditioning experiments, Evarts had become the first to successfully record from cortical
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neurons in awake, behaving primates. He had convincingly demonstrated that the firing

rates of pyramidal tract neurons (PTNs) correlated with gross motor behavior [16], and had

suggested that this correlation was indicative of a relatively direct, and causal, relationship

between PTN activity and volitional movement [15]. Moreover, he reported evidence sug-

gesting that the activity of PTNs was more closely associated with the force required to

realize a particular movement, rather than the movement itself [14].

During the course of these seminal studies, an increasingly refined characterization of

the relationship between cortical activity and volitional movement was made possible by an

increasingly constrained behavioral paradigm. Initially, Evarts had studied ”natural” and

spontaneous movements, because they ”allowed PT neuron discharge to be observed under

a wide range of physiological conditions”. However, he considered such passive observation

to be ”unsuitable for precise quantitative analysis” [16]. He noted that ”such movements

allowed detection of grossly apparent relations... but were entirely too uncontrolled to permit

analysis of certain other relations” [15] – such as the manner in which cortical activity varied

with the type and phase of movement. In order to achieve such experimental control, Evarts

turned to operant conditioning.

Developing a constrained behavioral paradigm enabled Evarts to more reliably identify

a relationship between cortical activity and particular movement-related variables, but it

simultaneously limited the scope of the conclusions that he could make. The highly stereo-

typed movements encouraged by operant conditioning served to stabilize an inconsistent

relationship with cortical activity, but they also induced behavioral correlations that con-

founded broader causal analysis. This fundamentally restricted interpretations to relation-

ships among only those variables included in the behavioral design.

As a particular consequence of this confound, Evarts cautioned that the strong relation-

ship between PTNs and force could not be taken to imply a direct relationship between

PTNs and specific skeletal muscles – the effectors of force. In his own words [14]:

Even a seemingly simple movement involves the activity of many muscles and a slow, con-
trolled movement of the type which has been investigated in the present study involves
cocontraction of agonist and antagonist muscle groups. In addition, wrist movement de-
pends not only on the forearm musculature but also on the maintenance of arm posture by
the musculature of the entire upper extremity. Thus, when a unit is found to be related to
the wrist movement, it cannot be inferred that this unit is specifically related to one of the
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prime movers of the wrist. Ideally, the monkeys employed in this study should have been
trained to carry out a wide repertoire of movements which involved differential activity of
each of the numerous muscles of the upper extremity and the trunk, but the difficulty of
achieving this degree of training seemed so great that it was not attempted.

It was this challenge that motivated Fetz to develop the cortical conditioning paradigm. Later

recapitulating this earlier assessment, Fetz and Finocchio noted that Evarts had reinforced

response patterns that ”involved coordinated activity of many muscles of the responding

limb, and therefore were not designed to resolve the question of which specific muscles a

given cortical cell may influence” [18]. However, instead of pursuing experiments involving a

”wide repertoire of movements”, as Evarts proposed, they instead suggested that an ”animal

could be trained to activate specific cells or muscles directly” [17] to overcome this obstacle.

They proposed that biofeedback could serve as a means for isolating and manipulating each

element of the system, in turn, and thereby testing ”functional relations between neurons

and muscles”.

1.2 THE RELATIONSHIP BETWEEN CORTEX AND MUSCLES

In their initial attempts to act on this proposal, Fetz and Finocchio [18, 19] aimed to ”de-

termine the degree to which precentral cell activity may be correlated with specific limb

muscles and to test the stability of such correlations during different behaviors”. Toward

this end, they utilized the operant conditioning paradigm to reinforce distinct patterns of

”motor activity” involving movement of the arm, isometric contraction of arm muscles, and

intentional bursts of activity in the arm/hand area of motor cortex. When the limbs were

manipulated by the experimenter, as the monkey sat passively, Fetz and Finocchio found

that the firing rates of most cells varied with the movement. Similarly, the activity of most

cells varied during active movements, in the manner reported by Evarts. Fetz and Finoc-

chio’s most significant results, however, were observed during isolated control of individual

muscles or neurons.
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In addition to feedback derived from cortical activity, the ”activity integrator” device

developed by Fetz [17] was capable of delivering muscle-related biofeedback. This apparatus

enabled Fetz and Finocchio to train subjects to repeatedly contract individual muscles of the

limb, in relative isolation, as they recorded from cortical neurons. Fetz and Finocchio [18, 20]

provide an illuminating example use scenario for the activity integrator:

The use of the activity integrator can be illustrated by the procedure for differentially con-
ditioning isolated activity in a specific muscle. If isolated biceps activity was desired, the
weighting factor for that channel was made positive so that biceps activity drove the inte-
grator toward the reinforcement level. To condition simultaneous suppression of the other
three muscles, the weight factors on these channels were made negative so their activity
drove the integrator voltage away from reinforcement level and prevented reinforcement.
To eliminate unit activity from the reinforcement contingency, the weighting factor for that
channel was made zero. At the beginning of a reinforcement period the monkey typically
emitted simultaneous bursts of EMG activity in several arm muscles every 2-3 sec. The
gains were then set to reinforce approximately half of these burst responses. As the mon-
key emitted a greater proportion of reinforced bursts the gains were continually adjusted
to differentially reinforce only the closest approximations to the required pattern. Termi-
nal performance typically consisted of repeated bursts of EMG activity in the reinforced
muscle with negligible coactivation of the other three. After recording 50-100 responses
with a given muscle, the procedure was repeated with each of the other three muscles.
After approximately 8 weeks of training one monkey could reliably contract each of the
four muscles in isolation in a given session; the time required to shape isolated activity in
a given muscle decreased to a few minutes.

Fetz and Finocchio observed that the majority of observed neurons (N=18) tended to

co-activate, to varying degrees, with several muscles [20]. Some neurons, however, did not

correlate with activation of any of the observed muscles. Still others correlated with all

observed muscles, in a uniform manner. They tentatively interpreted these patterns as

suggestive of a ”higher order relation than a one-to-one correlation with specific muscles”,

and noted that neighboring neurons in cortex could ”exhibit quite different sets of correlations

with the same set of muscles”. They contrasted these characteristics with ”motoneurons” of

the spinal cord, which tend to exhibit fairly uniform connectivity patterns, such that motor

units are restricted to single muscles.

Fetz and Finocchio questioned whether the reverse might be true: would reinforcement of

cortical neuron activity also elicit co-activation of multiple muscles? They defined the ”motor

field” of a cortical neuron to be ”the set of muscles coactivated with operant bursts of the

cell”, and conditioned several cortical neurons to emit bursts of activity on command. They
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did, indeed, observe co-activation of muscles for 4 of the 6 neurons tested.1 In agreement with

the patterns observed during isometric contraction, they found that these neurons seemed

to have divergent motor fields. They noted some overlap, but significant differences, in the

motor fields of nearby neurons. Interestingly, the relative amplitude of average EMG activity

in different muscles tended to remain consistent across single unit reinforcement sessions;

that is, the amplitude of muscle activity correlated with a particular cell might vary, but the

pattern of relative activity – across muscles – was usually stable, for a given cell. As Fetz

and Baker [21] put it, the rank order of correlated muscle activity was a stable property for

a given cortical cell. This was not necessarily true for different units; the pattern of muscle

activity sometimes changed when the reinforcement contingency changed. This supports the

concept of stable ”motor fields” associated with individual motor cortical neurons [20].

What do these correlations mean? Do they imply a functional or anatomical relationship?

Fetz and Finnochio suggest that a ”powerful test of the consistency of an observed correla-

tion is to directly reinforce its dissociation”. They regarded consistency across behavioral

contexts to be an important feature of ”strong” correlations: if an observed correlation is not

consistent, then it suggests that the functional relationship between neuron and muscle is a

consequence of the behavioral context (i.e., whatever behavior is operantly conditioned) to

a greater extent than it is of intrinsic, or anatomical, connectivity. With this in mind, they

attempted to dissociate, via differential conditioning, the activity of neurons and muscles

that had previously been found to correlate. Attempts to reinforce elevated cortical activ-

ity, while suppressing muscle activity, were ”invariably successful”: the monkey was able

to control the activity of cortical neurons (N=4) without significantly correlated activity in

any of the observed muscles. The inverse dissociation – reinforcement of muscle activity

with simultaneous suppression of cortical activity – was twice attempted. Only one case was

reported, and it was considered unsuccessful by the authors.

Despite small sample sizes, almost exclusively qualitative results, and a failure to reverse

the dissociation protocol, the authors interpreted these results as evidence for a fairly flexible

motor system. To summarize their results, Fetz once again contrasted cortical motor neurons

1Both units that were not associated with co-activation of arm muscles responded to passive shoulder
movement, and the authors speculate that they might have been more closely associated to (unmeasured)
proximal muscles.
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with those of the spinal cord. He noted that, unlike spinal motor units, ”whose activity

cannot be readily dissociated – if at all – from activity of homonymous motor units, motor

cortex cells appear to have more flexible relations to muscle activity and force” [23]. During

subsequent decades, Fetz and Finnochio’s work would be cited as evidence for a profoundly

labile cortico-motor system [38, 25].

1.3 AN EXPLORATORY CORTICAL CONDITIONING PARADIGM

Although the biofeedback paradigm was developed for the purpose of directly testing rela-

tionships between specific cortical neurons and specific skeletal muscles, Fetz and colleagues

discovered that it could serve a more exploratory function. Contrasting such a ”reverse

experimental strategy” with the constrained behavioral paradigm of Evarts, they note that

”motor activity was allowed to occur under relatively unrestrained conditions” during cor-

tical reinforcement [21]. They hypothesized that ”if a cell in the precentral motor cortex

were involved in a specific movement, this movement might be emitted with conditioned

bursts of activity in the cell”. In constrained movement experiments, it is often the case

that recorded cortical neurons will show little correlation with the specific behavior that was

a priori chosen for reinforcement. For example, Evarts [15] recorded from 182 neurons while

a monkey performed wrist flexion and extension, but only 57 of these showed a relation-

ship to the movement suitable for his analysis. Fetz and Baker reasoned that they might

more efficiently focus their inquiry by observing overt behavior associated with operantly

conditioned cortical activity.

Fetz and Baker reported overt motor activity during reinforcement of firing rate changes

for most, but not all, cortical neurons. Monkeys were seated in a primate chair, with head

restrained, but with arms and legs relatively free to move. Emitted movement patterns

varied from cell to cell, suggesting that the subjects ”did not simply adopt the strategy of

producing a single generalized motor pattern which was effective in activating all recorded

precentral units”. The authors note substantial diversity in responses, especially for such

a localized cortical area. While reinforcing high firing rates, Fetz and Baker grouped overt
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movement into 3 classes: specific, variable, and none. An example of a specific movement

that might be emitted with each operant burst would be flexion or extension of a single joint.

Variable movements were characterized by gross motor behavior that was not consistent from

operant burst to operant burst. In some sessions, no correlated movements were observed,

and the subjects might sit ”quite still”.

Once a motor field had been roughly identified, through observation, it could be more

carefully characterized by adjusting behavioral constraints. Fetz and Baker [21] provided a

concrete example of how this might happen. They noted a particular cortical conditioning

session, wherein ”it appeared that operant bursts were associated with dorsiflexion of the

ankle”. To quantify this covariate, Fetz and Baker fitted the foot with a cast that was hinged

at the ankle. A potentiometer recorded the ankle joint motion in the sagittal plane, and

confirmed that the most common motor correlate was dorsiflexion. However, plantar flexion

was found to accompany operant bursts in approximately one third of trials. As a further

refinement, electromyographic activity was also recorded from an ankle flexor and extensor,

and isometric contraction was reinforced, in the manner of Fetz and Finocchio. In this way,

Fetz and Baker iteratively refined their understanding of the relationship between the cortical

neuron and movement – starting from a relatively coarse description of the non-contingent

motor response – by successively adding more specific behavioral constraints, and realizing

successively more specific behavioral contingencies. Largely owing to the technical burden of

such an experimental paradigm, however, such iterative refinement were limited. Fetz and

Baker note that a ”severe limitation” of their approach was ”the degree of precision with

which any concomitant motor response could be documented”.

Non-contingent covariates were not limited to muscle activation and motor behavior.

Fetz and Baker [21] extended the concept of a cell’s ”motor field” to include other cortical

neurons:

Although delivery of reinforcement was made contingent on the activity of a single cortical
unit, that unit was obviously not the only one whose activity changed. With operant
bursts, one can argue a priori that there should be some correlated activity in other cells
and probably in muscles. At the least one would expect those cells involved in controlling the
reinforced unit to undergo correlated changes in firing rate. In addition one might expect
to see concomitant activity in other neurons and muscles involved in a wider correlated
response pattern, of which the operant unit burst may be a part. Since any influence of

7



the motor cortex on movements would ultimately involve the correlated output of many
thousands of neurons, the relationship between activity in different precentral cells is of
considerable interest.

To assess interactions among nearby units, Fetz and Baker made an effort to isolate and

simultaneously record pairs of units on the same electrode. Initially, they adopted the

exploratory approach: firing rates for a primary unit were reinforced, and the behavior of

the secondary unit was observed. Typically, the units were positively correlated, such that

the average rate of the secondary unit also increased during reinforcement periods. In 1 of 9

sessions, the average rate of the non-contingent unit was slightly suppressed. In 4 sessions,

the secondary unit actually showed a larger percentage change in the average rate than the

primary, conditioned unit – as much as 729% of the baseline rate. Clearly, the unit upon

which reward was made contingent was not the only unit to systematically vary during

reinforcement periods.

In much the same way that Fetz and Finocchio had tested dissociation of the activity

of specific neurons and muscles, Fetz and Baker refined their characterization of ”cortical

fields” by testing dissociation of the activity of pairs of neurons. They set up a differential

reinforcement contingency, in which reward was dispensed for increasing the firing rate of

one cell, while suppressing the other. They tested this contingency for 3 unit pairs. In 2

cases, the target activity pattern was successfully conditioned. Fetz and Baker interpret

their results as convincing evidence that the firing rates of pairs adjacent cortical units –

separated by no more than a few hundred microns – can be controlled independently. As

with Fetz and Finnochio, the results of Fetz and Baker [21] came to be cited as evidence for

profound cortical plasticity [25], despite the largely anecdotal character of their report.

1.4 CHARACTERIZING INTERACTIONS AMONG CORTICAL

NEURONS

Fetz and Baker were neither the first, nor the last, to consider the importance of correlation

among the firing rates of motor cortical neurons, and it relevance to behavior.
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Early-on, Evarts [16] had remarked on the apparent significance of interactions among

nearby cortical neurons and movements. In 13 cases, Evarts was able to compare the activ-

ity of adjacent units, measured simultaneously, on the same electrode. He found that the

”correlation between discharge frequencies of adjacent PT neurons varied depending upon

the particular movement which the monkey was making”. At times, the pairs could be pos-

itively correlated, and at times negatively. Evarts notes that the correlation pattern could

be quite ”striking”. Phase relationships were also observed. The relationship between firing

patterns appeared to depend on the type and/or stage of movement. Patterns of correlation

were also observed between cortical discharge and electromyographic (EMG) activity of the

contralateral arm.

Around the same time that Fetz was developing the cortical conditioning paradigm,

Humphrey, Schmidt, and Thompson were taking a different approach to refining Evarts’

results [44]. They were similarly motivated by the question of what motor variables are

”controlled” by motor cortex. Adopting Evarts’ behavioral paradigm, Humphrey et al. ex-

tended his electrophysiological technique to record simultaneously from multiple, chronically-

implanted electrodes. Significantly, they showed that it was possible to predict the temporal

evolution of movement-related variables, with relatively high resolution. They suggested

that ”information about a given movement is carried not simply in the discharge patterns

or spike trains of individual cortical neurons, but to a significant extent by the temporal

relations between them”. Humphrey et al. noted that ”neuronal spike trains can be used

for quantitative prediction of simple motor responses”, which supports the feasibility of us-

ing ”such signals for control of prosthetic devices”. This observation largely anticipated

Schmidt’s subsequent research trajectory.

Several years later, Schmidt et al. [40] sought to extend the work of Fetz et al., by

recording from the same neurons for periods of hours to days. Fetz et al. had endeavoured

to characterize cortical activity across as many motor behavioral conditions as possible,

but were limited by the 6-10 hours span within which they could reliably record from an

isolated neuron [19]. Consequently, their reported results are a patchwork of permutations

of neurons and conditions. As previously noted, this restricted them to largely qualitative

observations, and prevented strong statistical conclusions from being drawn. Schmidt et al.
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successfully demonstrated a chronic recording technique that allowed them to condition the

same neurons, across multiple experimental sessions. Over the course of 99 days, Schmidt

et al. monitored the activity of what they estimated to be 28 distinct neurons, from 6

chronic electrodes, which they subjected to a reinforcement contingency derived from the

work of Fetz et al. They report observing what appeared to be a stable neuron for as long

as 28 days. Thus, Schmidt et al. demonstrated the feasibility of characterizing individual

cortical neurons, across a wide array of behavioral conditions, and an extended interval.

They did not, however, attempt to reproduce the muscle and movement experiments of Fetz

et al. [21, 20].

However, Schmidt et al. did extend the results of Fetz and Baker [21], by carefully quan-

tifying correlations between the firing rates of nearby neurons [40]. During each experimental

session, the activity of a ”control neuron” was monitored, but not included in the operant

conditioning reward contingency. Generally, this was chosen to be the most discriminable

unit, on any electrode except the one on which the conditioned unit was found. We will here

refer to the unit targeted for reinforcement as the ”contingent neuron”, and the control neu-

ron as the ”non-contingent neuron” of the pair. A correlation coefficient was computed for

each of 29 unit pairs, by dividing successful trials into 50 bins of 5 ms width. The electrodes

with the most highly-correlated pairs of units were 3.8 mm apart. Of the 29 unit pairs – on

different electrodes – the average correlation magnitude was greater than 0.2 for 8 ( 28%)

pairs, and greater than 0.3 for 5 ( 17%) pairs. Thus, the activity of non-contingent neurons

co-varied with that of contingent neurons, during reinforcement, to at least some extent.

Although Schmidt et al. did not report statistical significance, or controls, their correla-

tion results furnish an interesting extension to the pairwise comparisons of Fetz and Baker.

They provided slightly more than a qualitative characterization, and showed that correlated

activity was not limited to units recorded on the same electrode. These preliminary data

support the notion that volitional control of single unit activity is accompanied by correlated

patterns of variation in local population activity – or across a distributed ”cortical field”.
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1.5 THE SIGNIFICANCE OF CORRELATED ACTIVITY

Ultimately, Fetz and colleagues cautioned that the correlations observed in the operant con-

ditioning paradigm were not adequate for reliably assessing connectivity in the motor system.

Fetz and Finocchio note that temporal correlations are not sufficient to establish that a func-

tional connection exists, since ”a precentral cell and muscle could be co-activated during a

given response without being connected” [20]. Inversely, they point out that a neuron and

muscle could, in fact, be varied independently, even if there is a direct synaptic connection

between the two. This is because of the convergence of neurons onto muscles, and the need

for coordinated excitation from a large number of neurons, in order to activate a muscle.

Thus, strong temporal correlation is not even a necessary consequence of anatomic connec-

tion.2 Fetz and Finnochio note that ”more direct physiological tests” are necessary to test for

synaptic connections, with confidence. However, they consider strong correlations between

a neuron and muscle to ”operationally define a ’functional relationship’” – where the corre-

lation ”strength” is ”proportional to both the intensity and consistency of ... coactivation

under different behavioral conditions”. A functional relationship cannot prove the existence

of anatomic or functional connectivity, but it strongly suggests that the two elements are rel-

evant to each other, and provides guidance for further exploration and refinement, A similar

logic applies to correlations between the activity of cortical neurons.

This perspective – that the combination of the operant conditioning paradigm and coarse

correlation analysis was not sufficient for generating reliable connectivity estimates – might

have prompted Fetz to concentrate on what he considered to be more powerful alternatives.

Operant conditioning was a means to an end for Fetz: it represented an experimental tool for

illuminating the functional relationship between cortical neurons and muscles. By 1975, Fetz

et al. expressed the opinion that more sensitive methodologies – such as cortical stimulation

and spike-triggered averages (STA) – were better suited to this problem. Such alternatives

became the focus of Fetz’s research for the next several decades. Fetz’s subsequent com-

2This seems to contradict the prior statement, by Fetz and Finocchio [18], that a ”consistent temporal
correlation between two events, such as precentral cell activity and some component of the motor response
(force, position, or activity of a specific muscle) is necessary but never sufficient evidence for a causal relation
between the correlated events”.
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mentary on operant conditioning theory and methods [23, 24] was largely limited to the

recapitulation of previous results, and reflections on their interpretation, until a resurgence

of interest, around the turn of the millennium.

1.6 A QUESTION OF MECHANISM AND SCOPE

Although Fetz turned his attention away from cortical conditioning, an early clinical col-

laboration evolved into a parallel research program that would complement and extend his

foundational work. As he was developing the motor cortical conditioning paradigm, Fetz

established a relationship with Dr. Allan Wyler, a neurosurgeon. Together, they sought

to explore the use of operant conditioning as a technique for investigating and treating

epilepsy [22, 30]. They hypothesized that epilepsy might be alleviated by training patients,

using biofeedback, to control pathological patterns of cortical activity. The cortical condi-

tioning paradigm continued to be a primary focus of Wyler’s research program well into the

1980s. Of particular relevance to the present discussion are a series of studies in which Wyler

and colleagues characterized the selectivity of single unit operant conditioning, with the aim

of illuminating the mechanism underlying the volitional control of cortical activity.

Wyler et al. were interested in the question of how cortical ”operant control is medi-

ated” [31]. They considered two strategies for such control – primarily distinguished by their

degree of specificity. First, they suggested that changes in cortical activity patterns could

be due ”merely to the monkey alerting and increasing muscle tone”. Second, they suggested

that the monkey might search for ”subtle specific peripheral movements that coactivate with

the firing of the central unit”. They reasoned that former strategy would activate a relatively

disperse population of cortical neurons – that is, it would have a global effect – whereas the

influence of the latter would be restricted to a more localized population.3

3It’s worth noting that Fetz had previously dismissed the former possibility, to some extent, citing his
”yoked control” results [17] and the diversity of movement patterns emitted during reinforcement of different
cells [21].

12



To test these alternatives, Wyler et al. recorded unit activity bilaterally, from homologous

regions of precentral cortex. While simultaneously observing the activity of a single unit

in each cortical hemisphere, they applied a cortical conditioning paradigm to each unit

in turn, and found that conditioning was successful for the majority of the 38 unit pairs

considered. Across all cases, they noticed a change in activity patterns, from baseline, for

both the contingent and non-contingent neurons. However, the activity of contingent neurons

continued to change – becoming more task appropriate – with practice in the operant task,

whereas the non-contingent neurons did not. Moreover, the effect was reversed when the

contingency was transferred from one neuron to the other. In no case was any significant

correlation between changes in the bilateral units’ firing patterns found. Since the activity

of one unit was largely independent of the unit in the opposite hemisphere, Wyler et al.

concluded that control of single unit firing rates is accomplished via specific, rather than

generalized, behavioral processes.

Wyler next sought to further ”investigate the specificity of single-unit operant condi-

tioning” [32]. He interpreted existing evidence to indicate that ”the operant response was a

general one rather than specific to the neuron”, but it remained to determine just how gen-

eral it was. Having been convinced of the absence of global correlation, he chose to explore

the opposite extreme, by assessing correlation between cortical neurons in close proximity.

Adopting the approach of Evarts, Fetz, and Baker before him, Wyler isolated pairs of neurons

recorded on the same electrode. He attached special importance to the idea that recorded

units were situated within the same ”cortical column”, and could therefore be expected

to share similar functional properties. He expressed difficulty in reconciling this with the

apparent independence of such pairs, as reported by Evarts [15] and Fetz and Baker [21].

While reinforcing changes in activity patterns for one unit, Wyler computed firing rate

statistics for each pair. For 78% of 133 unit pairs, ”the contingent unit was brought under

operant control without a significant or consistent change in the firing pattern of the second

unit”. Firing rates were estimated using 15 second bins, and correlation coefficients were

computed across 5 minute blocks. It is worth emphasizing that these were rather coarse
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firing rate estimates; 3000 times the length of those considered by Schmidt et al. [40].4 In

90% of cases, the correlation coefficient was not significant for any block. For 98% of unit

pairs, Wyler was especially surprised to report that correlations during reinforcement blocks

were decreased, relative to time-out blocks. There were approximately equal numbers of

positive and negative correlations, across all blocks. Moreover, ”the magnitude and sign of

the correlation coefficients varied randomly, from one operant period to the next, throughout

individual experiments”.

Altogether, Wyler conceded that these results did not paint a coherent picture. A lack of

significant correlation among cortical neurons suggests that operant conditioning was, indeed,

highly specific to single units. Wyler considered this to be an unexpected and confusing

outcome. In particular, it did not explain ”natural” correlations, reported previously [21, 40].

In this regard, Wyler suggested that ”it may be that the dissociation that Fetz and Baker

found between units was not entirely dependent on the operant paradigm, but may have

been also secondary to the normal variability in firing rates that two adjacent units may

have”.

Not satisfied with this result, Wyler revisited the pairwise correlation analysis [33]. Using

the same experimental paradigm and technique, he confirmed his previous observation: in

80% of cases, there was no significant correlation between 15 second firing rate fluctuations.

He then took the analysis a step further, by computing fine-timescale, spike-triggered cor-

relation histograms. For each spike of the unit upon which reinforcement was contingent,

he counted the number of spikes of the non-contingent unit in 1 ms bins, across an inter-

val spanning from 13 ms before to 13 ms after the primary spike event. This millisecond

timescale is more germane to questions of local neural network interactions, whereas broader

timescale correlations are more likely to reflect global, behavioral influences on single unit

firing rates. Wyler might have reasoned that the dearth of broad timescale correlations

reflected the relative specificity of cortical control to the local population.

4Fetz and Baker [21] reported many results in terms of firing rates averaged over 1 minute blocks, but
also considered peri-event time histograms with finer resolution.
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The revised analysis prompted a revised conclusion. In 67% of pairs, Wyler identified

what was deemed a significant coincidence of firing, according to an ad hoc significance test.

Significance did not seem to depend on correlated fluctuation of the 15 second firing rate

estimates. When significant, coincidence of firing was relatively consistent between behav-

ioral epochs. Thus, fine timescale correlations were deemed more common and consistent

than broad timescale firing rate fluctuations. Wyler surmised that the initial analysis had

not been sensitive enough. He concluded that single unit operant conditioning did, in fact,

induce patterns of correlated variability in a population of nearby neurons – perhaps as a

consequence of common synaptic input.

In the pursuit of an explanation for the mechanism via which cortical neuron activity

might be intentionally varied, Wyler et al. had come to explore the related issue of how

specific such variation is. They had asked how distributed patterns of co-variation were –

with respect to the local cortical population – during single unit conditioning. Like Schmidt

et al. [40], they concluded that the activity of surrounding, non-contingent neurons did

co-vary with the activity upon which behavioral goals were contingent, but that patterns

of covariation were restricted to the local population, and were not a generalized cortical

phenomenon.

What is the nature and significance of such patterns? Humphrey et al. had previously

demonstrated that information about simple arm movements could be found in correlations

among firing rates of cortical neurons within a local population [44]. Is similar informa-

tion evident during reinforcement of single unit activity? To what extent are patterns of

non-contingent co-variation equivalent to the patterns observed during natural movement?

Possible clues would come from a more naturalistic approach to cortical conditioning.

1.7 NATURAL MOVEMENT AS A BRIDGE TO CORTICAL CONTROL

Whereas derivatives of the work of Fetz et al. were often characterized as efforts to directly

condition the activity of cortical neurons – without reference to the ”normal” functional role

of those neurons – parallel efforts took a more ”natural” approach. Such investigations used
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patterns of cortical activity induced by movement as a bridge for transitioning between op-

erant responses involving gross motor behavior (like those reinforced by Evarts) and operant

responses involving only modulation of cortical activity (like those reinforced by Fetz). In

order to accomplish this, however, they first had to reliably characterize the relationship

between natural movement and patterns of cortical activity.

A particularly influential series of experiments came from Georgopoulos et al. (for re-

view, see [8, 11]). Inspired by the observation of movement-related correlations in parietal

cortex, Georgopoulos trained monkeys to perform instructed reaching movements between

planar targets in extrapersonal space. Like Evarts’ early button-press task, subjects were

conditioned to make relatively natural movements, under a behavioral contingency that de-

pended only on the motion of the hand, and not on the evolving state of the underlying

musculoskeletal system. However, unlike Evarts’ task, Georgopoulos et al. systematically

distributed targets throughout the workspace, in order to enforce large-amplitude move-

ments, involving multiple muscles and joints. As the subjects performed this task, they

recorded the activity of neurons in primary motor cortex.

Georgopoulos et al. [6, 4] found that the discharge rate of M1 neurons appeared to vary,

systematically, with the reach target. They showed that this relationship was well-fitted by

a cosine function, and formalized this observation in what came to be known as the ’cosine

tuning model’. This model suggests that the firing rate of an M1 neuron (dependent variable)

is ’tuned’ to the angle of movement (independent variable), and that the two quantities are

related by a cosine function. The peak of the cosine – the point of highest discharge rate – is

situated at what is referred to as the ’preferred direction’ of the cell. The firing rate of a cell

declines as the angular difference between reach direction and the cell’s preferred direction

increases.

Georgopoulos et al. [6, 5, 3] further showed that the cosine tuning model could be used to

infer the intended direction of hand movement, from populations of M1 cells. According to

the model, knowledge of the target movement direction would be sufficient for predicting the

expected firing rate of a cortical neuron. However, the redundancy of the cosine transforma-

tion – along with the imperfect / noisy nature of the model – made it necessary to observe

two or more cells in order to compute the inverse transformation. Among measured cells,

16



preferred directions tended to be uniformly distributed in space, so that the representation

of movement improved with the size of the observed population. By scaling the preferred

direction of each cell by its firing rate, and finding the weighted average across neurons, they

showed that it was possible to reliably estimate the direction in which the monkey intended

to reach, prior to the initiation of movement. They referred to this resultant vector method

as the ’population vector algorithm’,

Georgopoulos et al. [3] demonstrated that time-varying estimates of movement intention

could be synthesized into faithful movement trajectories. Such ’neural trajectory’ estimates

of movement intention were formed by computing population vectors at 20 ms intervals and

integrating across time, to obtain a time series of hand position estimates. Schwartz [2]

extended this analysis to more complex movements, by training monkeys to trace various

shapes (e.g., spirals) in space. He showed that the population vector method reliably pre-

dicted movement trajectories, even when the direction of intended movement changed fre-

quently. Moran and Schwartz [1] verified that the length of the population vector scaled with

the speed of the movement, further validating the integrated population vector algorithm.

Altogether, these results suggested that hand movement trajectories could be accurately

predicted, from the activity of populations of M1 neurons, in real-time.

An important implication of the cosine tuning paradigm is that the activity of M1

hand/arm area neurons must be substantially correlated during hand motion. The model

suggests that M1 neurons are driven by some common, low-dimensional, underlying pro-

cess, so that movement-related variation must be shared across the entire population. In

other words, every neuron of the population responds to the same 3 variables (hand veloc-

ity), which constrains the set of population patterns to 3 dimensions. The model does not,

however, specify to what extent other factors influence population activity, or how stable

such patterns of shared variation are across behaviors. Does correlated, movement-related

activity reflect a labile structure – some sort of cell assembly [39] – dynamically organized

to suit the prevailing behavioral context (i.e., reaching to targets)? Or, is the pattern of

shared variation a relatively fixed property – perhaps reflecting the intrinsic connectivity of

the network – which does not vary with behavioral goals?
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To explore these questions, Taylor et al. [7] manipulated the relationship between pop-

ulation activity and behavioral goals. Beginning with the standard center-out reaching

paradigm, developed by Georgopoulos et al., they transferred the behavioral contingency

from the actual motion of the hand to a population-derived estimate of that motion, as

obtained via the population vector algorithm. This closed the loop between cortical activity

and effected action, making behavioral goals dependent on the observed population exclu-

sively, and causing motion of the arm to become functionally irrelevant. They report that

arm movement gradually subsided, following the change in contingency, and that measured

EMG became attenuated. Although center-out task performance initially declined – presum-

ably reflecting mismatch between intended and ”decoded” motion – it gradually improved,

with continued practice.

Taylor et al. [7] reported that patterns of shared variation in cortical activity changed with

the behavioral contingency. They quantified such changes in terms of the cosine tuning model

– in particular, they considered changes in preferred directions. They reported consistent

shifts in the preferred directions of individual units, from day to day, but a lack of consistency

in the direction of the shifts across the population. Preferred directions continued to shift

with practice, following the change in the behavioral contingency. Significantly, such gradual

shifts correlated with improving task performance, indicating that the changes were non-

random, and were driven by a behaviorally-relevant process.

1.8 LOCAL AND GLOBAL PATTERNS OF POPULATION ACTIVITY

Altogether, these results indicate that the cosine tuning model does not perfectly generalize

across behaviors, and that patterns of shared variation implied by the model are, in some

sense, labile. The results of Taylor et al. suggested that changes were driven by a process of

behavioral optimization, but the nature of this optimization was not entirely clear. How did

behavioral goals drive changes in patterns of shared variation in the observed population?

How were such changes organized? One obstacle to answering these questions was the
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fact that the change in the behavioral contingency could not be precisely quantified, since

the mapping between the observed population and arm movement was only approximately

known.

Jarosiewicz et al. [9] sought to more systematically explore behaviorally-driven changes

in patterns of population activity, by more carefully controlling changes in the behavioral

contingency. In a manner similar to the brain-computer interface experiment (BCI) of Tay-

lor et al. they first established a contingency based on the population vector algorithm.

This provided a baseline condition, so that the mapping between population activity and

behavior was precisely known. Once performance of the center-out task had stabilized, in

this condition, Jarosiewicz et al. systematically perturbed that mapping. Specifically, for a

subset of units – either 25% or 50% – the preferred directions used to obtain the population

vector estimate were rotated by 90 degrees. Initially, this caused a substantial performance

deficit, but the subjects corrected for the perturbation with practice. As reported by Taylor

et al., the shift in performance was correlated with a shift in patterns of population activity.

Jarosiewicz et al. proposed three possible ways in which population activity might be

adjusted to compensate for the perturbation. They referred to these mechanisms as reaiming,

reweighting, and remapping. Each of these adaptive strategies modified the local tuning

properties of the observed population to varying degrees. At one extreme, reaiming entails

no change in local tuning properties, and affects all neurons of the population equally. At

the opposite extreme, remapping entails specific corrections of the tuning of individual units.

Reweighting also falls at this more local extreme.

Jarosiewicz et al. reported that a re-aiming mechanism seemed to best account for the

compensatory changes to patterns of population activity [9]. Re-aiming occurs when the

subject aims at an imaginary target in the task space, such that effected cursor motion

counteracts the net rotation caused by the perturbation. This is effectively a global mental

rotation, and manifests as a single, common rotation of the preferred direction of all units.

Arguably, this is the most ”intuitive” possibility, since only high level behavior, and not the

relationships between neurons, needs to be modified. Re-aiming was deemed to be a sub-

optimal strategy, since it will result in a shortened overall length of the population vector,

given the same unit modulation.
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Jarosiewicz et al. [9] also observed some local changes, at the level of single units. On

average, they found that the units subjected to perturbation showed a significant change in

the modulation depth (i.e., amplitude of the cosine tuning curve) following the perturbation,

whereas the remaining units did not. They interpreted this as evidence for the re-weighting

mechanism. Moreover, they reported significant shifts in the direction of the imposed per-

turbation, at the level of individual units. This is consistent with the re-mapping strategy.

Although local tuning properties were modified, the effects were more subtle than for the

re-aiming corrections. Jarosiewicz et al. concluded that the ”dominant response was a global

change in the activity level of all of the neurons”.

All of the units that Jarosiewicz et al. considered were part of the behavioral contingency,

but previous cortical conditioning studies had reported correlations between contingent and

non-contingent neurons. Could the global effect depend on the size and composition of the

population used to define the behavioral contingency? If nearby neurons are not directly

relevant to behavioral goals, then are behaviorally-induced changes still evident in their

activity?

Ganguly et al. sought to answer this question by excluding a subset of units from the be-

havioral contingency [35]. Monkeys were required to perform a center-out cursor task, where

motion of the cursor was a linear function of the firing rates of a small population of 10-15

M1 or PMd neurons. This behavioral contingency was similar, but not equivalent, to the

population vector algorithm of Taylor et al. During each experimental session, the monkey

also performed a center-out arm-movement task. Ganguly et al. reported changes in the pre-

ferred directions of all recorded neurons – between cortical conditioning and reaching blocks

– whether or not they were part of the behavioral contingency. This suggests a relatively

global effect, like re-aiming. These changes were stable over time, for both groups. However,

once proficient control had been established – after several days of practice – they reported

that modulation depths differed less, between hand movement and cortical conditioning,

for the non-contingent neurons than they did for behaviorally-contingent neurons. This re-

calls the results of Wyler et al. [31]. They compared this observation to the re-weighting
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mechanism proposed by Jarosiewicz et al., and interpreted it as evidence for ”differential

modification” of behaviorally-relevant neurons. This is a non-global effect. Altogether, the

results of Ganguly et al. seemed to corroborate the observations of Jarosiewicz et al.

1.9 TWO KINDS OF CONSTRAINTS ON CORTICAL ACTIVITY

PATTERNS

What determines the extent to which activity patterns can be shaped to behavioral goals?

The early results of Fetz and Baker [21] suggest that the activity of individual motor cortical

neurons can be conditioned to satisfy new behavioral contingencies. The results of Geor-

gopoulos et al. suggest that there are limits to this flexibility, perhaps imposed by the role

of motor cortex in the control of movement. The results of Taylor et al. and Jarosiewicz

et al. seem to confirm this suspicion, while emphasizing that aggregate behavior is likely

a mixture of local and global processes. Addressing the ”degree of volitional control” of

cortical activity, Fetz proposed two limitations on the extent to which individual elements

of a cortical population can vary independently [25].

First, Fetz suggests that independent variation of cortical neurons might be limited by

incomplete knowledge concerning the relationship between cortical activity and effected ac-

tion. In that case, a subject only imperfectly understands the environmental consequence of

emitting particular activity patterns. He maintains that this could be especially prohibitive

in the case of ”complex transforms”, like that of the population vector algorithm of Geor-

gopoulos et al., where actions are determined by the collective activity of a large number of

units. The implication is that each neuron involved in the contingency adds to the dimen-

sionality of the set of behaviors through which a monkey must search, to control cortical

activity. He suggests that ”in contrast to the relatively simple task of driving one or two

cells in bursts while allowing free performance of any correlated responses, the requirement

to modulate activity of a population to accurately control a transformed function may be

more difficult because the effect of any particular cell is largely submerged in the population

function”. This is fundamentally a learning problem.
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Second, Fetz proposes ”ensemble interactions” as a less mutable limitation on the inde-

pendence of cortical neurons. Noting that ”internal representations depend on relationships

between the activities of neurons in an ensemble”, he suggests that ”the processing of these

representations involves corresponding constraints on the independence of those activities”.

In other words: to represent or manipulate any form of information, a cortical population

must necessarily establish some manner of functional relationship between neurons. Fetz

suggests that the functional relationships induced by the ”natural” role of a given popu-

lation might restrict the degree to which that population can be re-purposed for operant

behavior. He offers an analogy with Henneman’s size principle, which constrains the order

in which motor units and muscle fibers can be recruited: high threshold motor units cannot

be activated independently of low threshold motor units. Thus, operant conditioning of high-

threshold motor units fundamentally cannot dissociate those units from the low-threshold

group, as a consequence of physiological connectivity. A similar constraint might apply to

cortical neurons.

1.10 SIMPLE TASKS FOR PROFOUND FLEXIBILITY

To explore these limits on cortical activity patterns, Fetz et al. compared motor cortical ac-

tivity during natural movements with that observed during cortical conditioning. Employing

a single unit operant conditioning procedure, derived from that of Fetz and Baker [21], Moritz

et al. [26] reported fast learning of the task contingency. Each monkey learned to control

nearly every tested unit (44 of 45), within 10 minutes of exposure to a new contingency.

Moritz et al. then compared performance in the operant task with the strength of direc-

tional tuning of the target unit, during a wrist-torque task (8-target center-out). They found

that tuning was only marginally correlated with task performance, and interpreted this result

as an indication that subjects could easily control arbitrarily-selected motor cortex neurons,

”regardless of any previous association to movement”. This, they suggest, is evidence for

profound flexibility in the patterns of activity that can be generated by cortical populations,
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which ”considerably expands the source of control signals for brain-machine interfaces”. It

was interpreted as evidence against the notion that ensemble interactions substantially limit

the flexibility of a cortical population.

Moritz and Fetz [27] provided a much more thorough account of their single unit op-

erant conditioning results. They report results for 240 cells recorded from the pre-central

gyrus, and 16 cells from the post-central gyrus, with no significant difference in single unit

conditioning performance between the two locations. All cells considered were successfully

controlled. Monkeys rapidly improved performance at least 2-fold within each conditioning

session, and could improve substantially across days, with stable unit recordings. As re-

ported by Moritz et al. [26], performance during single unit conditioning was not correlated

with strength of tuning during the wrist torque task.

Mortiz and Fetz again reiterate the conclusion that ”arbitrary single cortical neurons,

regardless of the strength of directional tuning, are capable of controlling cursor movements

in a one-dimensional” task. The authors note that they find it surprising that brain-computer

interface (BCI) devices based on population decoding schemes – wherein tens or hundreds of

cortical cells are operantly conditioned to vary in a particular pattern – do not perform as well

as one might expect, given the demonstration of ”rapid and robust operant control” for single

units. They further suggest that the problem of learning to control the activity of single units

might be ”inherently simpler than controlling large numbers of neurons simultaneously”, thus

avoiding learning-related limitations on cortical flexibility. Altogether, Moritz and Fetz seem

to conclude that neither learning barriers nor ensemble interactions appear to substantially

limit control, or the flexibility of cortical population patterns.

Taking their investigation a step further, Milovanovic et al. [29] tested whether or not

monkeys could ”independently modulate cortical units and contralateral wrist torque, regard-

less of the strength of directional tuning”. Specifically, they sought to test the hypothesis

that units only weakly correlated with wrist torque would be most robust to interference,

when the monkey was simultaneously required to modulate cortical activity and make wrist

movements; that is, that they would be more flexible. The authors frame their investigation

as a question of practical importance to the development of clinically-viable brain-computer
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interfaces (BCI). Similar to their previous work, Milovanovic et al. report that all tested

pairs of cortical units were successfully used to control cursor motion, and they found no

relation between tuning strength and cortical conditioning task performance.

Milovanovic et al. designed a dual control task to test dissociation of hand motion and

concurrent cortical activity. This task combined the wrist torque paradigm with the cortical

conditioning paradigm, to move a cursor in a 2 dimensional tracking task. As a consequence

of the dual control task design, movement to targets along a diagonal axis in the task space

required dissociation of pairs of tuned units from the correlation pattern that they had

”naturally” exhibited in the wrist tracking task. That diagonal axis was labeled the ”hard”

axis. Since the orthogonal axis corresponded to wrist motion and unit activity that were

naturally in agreement, and therefore had a facilitatory effect, that axis was labeled ”easy”.

A significant difference in performance was reported, between ’easy’ and ’hard’ targets, for

tuned units. The difference for untuned units was not significant. The authors ultimately

conclude that ”a monkey can learn to control the activity of single units in motor cortex

independently of ongoing contralateral limb movements”. As stated, the implication is one

of perfect dissociation from the natural role of cortical neurons. In other words, constraints

deriving from ensemble interactions were effectively deemed inconsequential.

1.11 REVISITING ”NATURAL” CONSTRAINTS

Independently of Fetz’s group, Law et al. [34] reported similar conclusions. Like Milovanovic

et al., they conditioned cortical activity by mapping the firing rates of a small ensemble of

neurons – recorded via microelectrode arrays implanted in the motor cortex – to the motion

of a cursor. Instead of carefully choosing units with related tuning to movement, however,

Law et al. mapped groups of 1-4 randomly-selected units to cursor motion. The mapping was

a simple average of firing rates, and the task was again reduced to a single dimension. As for

Fetz et al., learning did not seem to be an issue: they report that subjects typically achieved

control of such ensembles rather quickly, and that performance improved throughout each

experimental session. Performance also improved with larger ensembles.
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Since the mapping to cursor movement was selected arbitrarily, Law et al. reasoned that

established patterns of correlation among ensemble units during ”natural” movement might

restrict performance of the cortical conditioning task. This is equivalent to Fetz’s suggestion

that ”ensemble interactions” limit control. In particular, they suggested that ensembles of

similarly-tuned neurons might be easier to control than neurons with dissimilar tuning. To

quantify the relative similarity of tuning among ensemble neurons, Law et al. computed

the average angle between the preferred directions of every possible pairwise combination of

active ensemble neurons – where the preferred directions were estimated from data obtained

during a center-out joystick task. They compared this value with a performance metric in the

cortical control task, and found no significant predictive value. The authors interpret this to

suggest that ”the pre-existing synaptic architecture responsible for the natural correlations in

firing exhibited during normal behavior of the native limb does not limit the rapid adaptation

of small numbers of M1 neurons” to an arbitrary behavioral contingency, defined in terms of

the activity of those neurons. They suggest that motor cortical activity can be varied ”with

little constraint based on the normal relationships of the individual neurons to native limb

movement”

Law et al. also characterized patterns of activity among neurons that were not included

in the behavioral contingency. Such non-contingent neurons were found to co-vary with the

behaviorally-relevant ensemble, but the average depth of modulation was consistently less.

Moreover, the average modulation depths of contingent neurons increased as the monkeys

practiced the task, within an experimental session, whereas the modulation depths of non-

contingent neurons did not. The authors interpret this as convincing evidence that control

of cortical activity was somewhat specific to the contingent ensemble, rather than a general

population phenomenon. This supports the conclusion that small populations of motor

cortical neurons are profoundly flexible.

Law et al. contrast their results with that of Ganguly et al. [35]. Noting that Ganguly

et al. reported that non-contingent neurons were initially (for the first 2-3 days) modulated

as much during cortical conditioning as during a hand movement task, Law et al. suggest

that the apparent disagreement with their conclusions might be explained by the number of

neurons involved in the contingency: including more neurons in the behavioral contingency
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could recruit more non-contingent neurons to co-modulate. They also suggest that neurons

recorded from different regions of cortex (PMd, for Ganguly et al.) might behave differently

– that is, they might participate in a more distributed, or generalized, control mechanism

than neurons of primary motor cortex.

Law et al. also consider similar work from Hwang et al. [41]. Although they experi-

mented with neurons located in the parietal cortex, and adopted a conditioning paradigm

more like that of Fetz et al., Hwang et al. interpreted their results in terms of the investiga-

tion of Jarosiewicz et al. Citing the suggestion from Fetz et al. [25, 26] that cortical neurons

are profoundly plastic, Hwang et al. sought to test ”the assumption that individual neu-

rons can be conditioned independently, regardless of their natural movement association”.

They reported that ”monkeys could learn to elicit arbitrarily assigned movement patterns”

– agreeing with the observations of Fetz et al. and Law et al. – but that ”the seemingly

arbitrary patterns always belong to the response set for natural reaching movements”. In

agreement with Jarosiewicz et al., they conclude that cortical activity is controlled via a

relatively global mechanism, like re-aiming, by ”preferentially exploring and exploiting” the

”natural movement repertoire”. They strongly contrast this with the results of Fetz et al.

and Law et al. Both Hwang et al. and Law et al. suggest that this difference might reflect

a fundamental difference in the properties of precentral and parietal cortex.

1.12 RELAXING ASSUMPTIONS ABOUT ”NATURAL” ACTIVITY

PATTERNS

It is difficult to fully explore – using only constrained movement experiments – the idea

that the flexibility of cortical population activity is constrained by the ”natural” role of

the population. This is because the relationship between cortical neurons and ”natural”

behavior is not very well-understood. The activity of motor cortical neurons has been shown

to co-vary with a wide array of behaviorally-relevant variables [11]. Consequently, one cannot

ensure that an experimental design will sufficiently exercise exactly those natural behavioral

variables that are relevant to the population, without a priori knowledge regarding what
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those variables are. It is necessary, therefore, to choose – based on prior experience – an

experimental task that can be expected to adequately engage the population. However,

it is difficult to assess whether such an approach exercises population activity to its full

extent. For example, recall that the activity of only 57 of 182 neurons that Evarts recorded

from were found to significantly co-vary with the wrist movements that he reinforced [15].

The remainder could have been related to any number of movement-related variables, or

combinations of those variables.

Is it possible to characterize ”natural” interactions among neurons, without making

any assumptions about how such interactions relate to overt movement behavior? Chase

and Schwartz [10] proposed that direct cortical conditioning could serve as a means for

”identifying the volitional control signals that affect single neurons in motor cortex, without

resorting to any kind of explicit motor task”. They emphasized that a permissive approach

avoids a priori assumptions ”about what these driving signals might actually encode”. They

adopted a technique similar to that of Schmidt et al. [40] – basing their paradigm on that of

Fetz, while leveraging modern chronic array recording technology. They trained a monkey

to modulate the firing rates of single neurons, while simultaneously monitoring the activity

of a surrounding neuron population.

Chase and Schwartz report that ”invariably there are typically large correlations in the

firing rates of many of the other simultaneously recorded cells”. They interpret this to

indicate that ”the volitional control signal used to drive the target neuron also influences

the firing rates of other neurons”. In other words, the single unit activity that is relevant

to behavioral goals is part of a wider pattern of activity, in the manner of the ”motor

field” / ”cortical field” concept proposed by Fetz et al. They reported that patterns of

correlation among cortical neurons were stable within experimental blocks, but varied with

the reinforcement contingency. This is reminiscent of the finding, by Fetz and Baker [21],

that patterns of muscle activation tended to similarly vary with the single unit reinforcement

contingency. The idea that common drivers influence the activity of neurons of a local

population matches the conclusions of Wyler et al. and Schmidt et al.
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Seemingly well-defined patterns of cortical variability exist, during cortical conditioning,

but do these patterns reflect constraints on population activity? Do patterns of interaction

limit the flexibility of cortical control? Such questions cannot be rigorously addressed without

some sort of intervention, like the dissociation experiments of Fetz et al. To make such an

intervention possible, Chase and Schwartz used principal components analysis (PCA) to

summarize patterns of population activity observed during reinforcement of several cortical

units. They point out that the signed score of a population activity pattern – with respect

to a particular principal component eigenvector – is a statistical measure of the similarity

between that pattern, and the pattern represented by the principal component. Thus, by

treating this statistic as a discriminatory stimulus, it is possible to reinforce patterns of

population activity, and to ”condition on the overlap of the population activity with a

particular target pattern”. Moreover, because principal component eigenvectors form an

orthogonal basis for the entire space of population activity patterns, this method can also be

used to reinforce patterns of activity that are specifically not similar to those that have been

previously observed. Effectively, this furnishes a method for guiding a subject to explore the

set of feasible activity patterns. Chase and Schwartz indicated preliminary success with this

paradigm, and an intention to pursue further variations, but they did not report any specific

results.

Sadtler et al. [43] did, however, deliver on that promise. Asking ”if some neural activity

patterns are easier to generate than others”, they sought to verify limits on the flexibility of

cortical activity. As Chase and Schwartz suggested, they constructed a model to summarize

patterns of population activity during natural, or intuitive, behavioral conditions. They

built this model using dimensionality reduction – accomplished via factor analysis. They

referred to the linear vector space represented by this model as the ”intrinsic manifold” of

the population, which ”presumably reflects constraints imposed by the underlying neural

circuitry”. The concept of the intrinsic manifold is equivalent to the ensemble interactions

proposed by Fetz [25]. Sadtler et al. report that performance was substantially better for

behavioral contingencies defined in terms of this manifold, than for arbitrary contingencies.

They concluded that, ”on a timescale of hours, it seems difficult to learn to generate neural
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activity patterns that are not consistent with the existing network structure”. Their ”results

suggest that the existing structure of a network can shape” behavior, much as Fetz [25]

suggested. This contrasts with the conclusions of Moritz et al. and Law et al.

1.13 RE-ASSESSING THE SIGNIFICANCE OF LEARNING

In addition to the issue of ”natural” interaction constraints, Chase and Schwartz [10] also

addressed the other limitation to cortical flexibility proposed by Fetz [25]: an incomplete

understanding of the behavioral contingency. In this regard, they seemed to come to a sim-

ilar conclusion as Fetz: learning-related constraints can be mitigated by adopting a simple,

iterative behavioral paradigm. Specifically, they propose ”two sequential processes” for in-

troducing subjects to a behavioral contingency based on cortical population activity: first

identify network-based constraints on population patterns – via a permissive cortical con-

ditioning and dimensionality reduction paradigm, as described above – and then allow the

subject to gradually learn to act within those constraints. In effect, this amounts to a sepa-

ration of the processes of discovery and coordination of behavioral degrees-of-freedom, which

they suggest will ”facilitate learning”.

How significant are such learning-related constraints? Both Fetz and Chase / Schwartz

suggested that mismatch between a subject’s internal beliefs about a behavioral contingency,

and the actual contingency, could substantially limit the flexibility of a cortical population.

However, whereas Sadtler et al. [43] had effectively quantified the effect of the second con-

straint proposed by Fetz [25], evidence for the first constraint remained largely anecdotal.

Golub et al. [42] sought to supply this missing evidence. They developed a methodology

”for interpreting neural population activity in the context of how prior beliefs guide the

transformation of sensory input to motor output”. Within the context of a cortical condi-

tioning they sought to test the hypothesis that behavioral ”errors arise from a mismatch

between the subject’s internal model” of the behavioral contingency, and the actual contin-

gency. Toward this end, they adopted an experimental paradigm – like that of Taylor et al.

and Jarosiewicz et al. – wherein patterns of population activity were mapped to the motion
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of a cursor, in a center-out task. In a post-hoc analysis, they fitted the joint probability

distribution of the behavioral target, the observed cortical activity, and the cursor motion

that it effected. They parameterized this model such that they could extract an estimate

of the monkeys’ beliefs about the relationship between cortical activity and cursor motion.

In this way, they were able to predict the behavioral output that the monkeys intended.

They found that roughly 65% of movement errors could be accounted for by mismatch be-

tween this internal model and the true relationship. Importantly, they verified the absence

of significant biases in behavior. This, they argue, is evidence that the subject did not face

”systematic difficulties producing the neural activity patterns required to drive the cursor

in all directions in the 2D workspace”. In other words, stable structure – due to ”ensemble

interactions” or an ”intrinsic manifold” – did not functionally limit task performance. This

supports Fetz’s suggestion that learning-related constraints could limit cortical flexibility –

at least outside of the context of single unit conditioning experiments.

1.14 EXPLAINING A DIVERSITY OF RESULTS

The literature seems to paint a confusing picture of cortical activity patterns.

The classic experiments of Fetz and colleagues [17, 21, 20] are often cited as evidence

for the idea that such patterns are highly flexible, and that cortical neurons are highly

independent. This is interpreted to imply the absence of obligatory linkages between the

activity of behaviorally contingent and non-contingent neurons – as well as non-contingent

motor activity – during cortical conditioning. In recent years, Fetz et al. [25, 26, 27, 29] have

reiterated the perspective that patterns of motor cortical activity are profoundly flexible,

with only mild constraints due to intrinsic ensemble interactions and ”natural associations”

with movement behavior. Law et al. support this view. Altogether, these authors paint

a picture of a cortical population that is easily adapted to the demands of any arbitrary

behavioral contingency.
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On the other hand, the work of Georgopoulos, Schwartz, and colleagues [6, 5, 3, 4]

suggests that the activity of motor cortical neurons covaries in a rather systematic fash-

ion, and that such patterns of population activity are strongly-linked to natural behavioral

considerations – such as the direction of intended movement. They showed that changes

in these patterns – prompted by the need to adjust to a changing behavioral contingency

– are dominated by relatively ”global” changes, which affect the activity of all neurons of

the population [9]. Ganguly et al. [35] showed that such global changes were also reflected

in the activity of non-contingent neurons. Hwang et al. conclude that volitional control

of cortical activity is achieved by leveraging the ”natural movement repertoire” – at least

in parietal cortex. Combining chronic array recording with single unit conditioning experi-

ments inspired by those of Fetz et al., Chase and Schwartz presented preliminary evidence

that patterns of M1 population activity consistently co-vary with reinforcement of single

unit activity. Sadtler et al. show that such patterns represent constraints on learning and

control of cortical activity, in the context of behavioral contingencies based on population

activity.

How might we resolve this controversy? Early-on, Fetz and Finocchio suggested that

”strong” correlations ”operationally define a functional relationship”, between two elements

of the motor system, warranting further consideration. They adopted criteria for assessing

the strength of correlation involving ”examination of the intensity and consistency of the

covariation under different behavioral conditions”, or contingencies [20]. Stable functional

relationships between cortical neurons would constrain the flexibility with which cortical

population activity can be tailored to suit an arbitrary behavioral contingency. Thus, the

intensity and consistency of pairwise correlations among cortical neurons – across contingen-

cies – can be considered to be an indicator of the flexibility of the population.

Systematic, quantitative investigations of patterns of correlation among a population of

cortical neurons during single unit conditioning has yet to be studied. Due to the technical

limitations of the time, Fetz and colleagues were limited to cursory consideration of a small

number of neurons, where pairwise correlations were assessed only for units recorded on the

same electrode. Later, Schmidt et al. and Wyler et al. were able to more systematically

consider interactions among cortical neurons, but these analyses were similarly limited to
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single unit pairs. Even more recently, Moritz et al. evaluated the same scenario, but did not

evaluate the strength of interactions, except within the context of movement-related tuning.

Law et al. and Ganguly et al. did evaluate correlations among non-contingent neurons,

but only as a secondary point, and only within the context of a single change in behavioral

contingency. Chase and Schwartz considered patterns of population activity, during single

unit conditioning, but report only preliminary results.

We performed a series of experiments in which we operantly conditioned the activity of

single motor cortical neurons, while using chronic multi-electrode arrays to simultaneously

monitor the activity of a surrounding population. Of particular interest is the strength

of correlation patterns, as defined by Fetz; that is, the intensity and consistency of such

patterns, across behavioral contingencies. We compare patterns observed during single unit

conditioning to those observed during a task in which the entire population is part of a

behavioral contingency based on the model of the natural relationship between motor cortex

neurons and behavior, as proposed by Georgopoulos et al. [5, 3, 2]. Altogether, we expect that

this analysis will illuminate the flexibility of cortical populations, and the degree to which

cortical activity is constrained by ensemble interactions, associations to natural movement,

and/or intrinsic structure.
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2.0 METHODS

The results reported here were obtained from a series of behavioral electrophysiology exper-

iments. In short, two rhesus macaques – referred to here as non-human primates NHP-A

and NHP-C – performed a behavioral task while the activity of a small population of pri-

mary motor cortex (M1) neurons was recorded. Both subjects had previously been trained

to perform reaching tasks, and both had previously participated in cortical conditioning, or

brain-computer interface, experiments.

2.1 EXPERIMENTAL SETUP

Arrays of microelectrodes (Blackrock Microsystems, Salt Lake City, UT) were implanted into

the primary motor cortex (M1) of each subject. Prior to surgery, stereotaxic coordinates

were prepared to roughly estimate the position of M1. After performing a craniotomy, array

placement was decided via visual inspection of anatomical landmarks. The approximate

placement of the array for NHP-C is pictured in Figure 1. Arrays for both subjects were

implanted at least several months prior to these experiments, and were considered stable

at the time of these experiments. The array implanted in NHP C continued to deliver

consistent signals – which included well-isolated, single units – for several years following the

experiments reported here.

Signals from 96 implanted electrodes were acquired and pre-processed using a Plexon

(Dallas, TX) MAP system. Action potentials were isolated online using Plexon’s RASPUTIN

software suite. Spike waveforms were discriminated using time-amplitude windows or prin-
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cipal component features. Custom software obtained spike events from the MAP system in

real-time, and delivered binned spike counts to the software that drove the behavioral task.

Spike events were counted in approximately 30ms time bins.

Operant conditioning of cortical activity was accomplished by providing the subjects

with visual feedback of some transformation of cortical firing rates, and by delivering a

liquid reward when certain criteria on that feedback were met. The experimental setup is

pictured in Figure 2. Each subject was seated in a primate chair facing a 3D video display

(Dimension Technologies Inc., Rochester, NY, USA), which provided task feedback. A linear

decoding algorithm translated cortical activity into the motion of a cursor that was presented

on the display. Subjects were required to drive the cursor to indicated target locations. For

all tasks, the decoding algorithm had the form

k = WT (r− µr) (2.1)

where k are the kinematics of the cursor, r are the population rate estimates, µr is a vector

of mean rates, and W is a matrix of decoding weights. The tasks were organized into

blocks of trials, where each trial was structured as diagrammed in Figure 3. In short, each

trial required a subject to move the cursor to some starting position, at which point a new

target was presented. If the subject caused the cursor to move from the starting position

to the new target location, then the trial was considered a success, and a liquid reward was

dispensed. Each trial phase was time-limited, such that a trial would fail if the subject were

too slow to respond. Delays in receipt of reward motivated subjects to avoid failure. In

the parlance of operant conditioning techniques, the task contingency was defined by the

decoding parameters, the target, and the trial structure.

2.2 CENTER-OUT TASK

The center-out task is a canonical tool in movement electrophysiology, and is well-documented

in the literature [6, 3]. A cursor and targets were rendered as spherical objects in a 3D

workspace. For the cortically-controlled center-out task, neural activity determined cursor
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Figure 1: Array placement for NHP-C. The blue rectangle indicates the approximate location

of the array. This diagram is derived from a post-mortem photograph.
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Figure 2: Experimental setup. A non-human primate performed a task presented on a

computer display, as activity was recorded from a multi-electrode array implanted in the

primary motor cortex. See text for details.
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Figure 3: Illustration of the trial structure for the center-out (left column) and rings (right

column) tasks. The cursor is shown in green, and the target in blue. Red arrows indicate

the direction of motion of the cursor. For a trial to be successful, the subject must move

the cursor from some initial position (Target A) to some final position (Target B). In the

center-out task (shown here in 2D), this movement was from a central target to one of a

set of peripheral targets. For the rings task, the subject was required to move from either a

large-radius / high-rate target to a small-radius / low-rate target.

37



velocity – so that the vector k of Equation 2.1 was a 2D or 3D vector of velocities. The

firing rates r were estimated online, every 30ms, by averaging spike counts recorded during

the previous 150 ms. The decoding matrix W had dimensions Nu × 2 (2D task) or Nu × 3

(3D task), where Nu is the number of sorted units that were applied to control. Targets were

configured to lie in a 8 or 16 target circular configuration for the 2D task, and the cursor

was locked to the plane of the targets. For the 3D task, targets were organized in an 8 target

cubical configuration or a 26 target spherical configuration, and the cursor was permitted to

vary in 3 dimensions.

The weight matrix W of the decoding Equation 2.1 was calibrated at the start of every

experimental session. This was accomplished using a gradual transition from an assisted task

to a full cursor control task. At the start of each session, the subject was presented with

several blocks of 8-targets. Within these blocks, targets had a circular configuration for the

2D task, or a cubical configuration for the 3D task. During any given trial, the subject was

required to move the cursor from a central target to one of the peripheral targets. Initially,

the cursor was constrained to lie on the line that connected the target pair, and the radial

distance along this line was computed using some initial set of decoding parameters. After an

initial block of 8 targets, a weight matrix W was estimated by regressing firing rates against

movement direction. In subsequent blocks of trials, the subject was given partial control

of the cursor, via a weighted average of decoded cortical activity and automated computer

control. During this phase of calibration, deviation from a straight-line path was attenuated

by scaling the component of the commanded motion that was orthogonal to the straight line

path. Initially, decoded cortical activity contributed less than 25% to cursor motion, and

the attenuation coefficient was near one. After the second block of trials, cortical control of

the cursor was increased, and attenuation was reduced. This process typically continued for

3-5 blocks of trials, until full control was achieved. The weight matrix W was re-estimated

after each block. After no more than 6 calibration blocks – typically lasting no more than 5

minutes – the decoding parameters were fixed, and the subject proceeded with full control.

In the center-out task, trials were fairly rigidly structured, as illustrated in Figure 3.

Unless otherwise noted, trials began with both the cursor and the target placed in the center

of the workspace, in order to avoid inter-trial cursor drift due to imperfect velocity decoding.
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Typically, the subject was not required to hold the cursor in this position, or was only

required to hold for a very short time. Subjects were prompted to move by the appearance

of a peripheral target (Target B), as the central target (Target A) was extinguished. The

subject was required to move the cursor to the target before the expiration of a timeout

clock – typically between 1 and 3 seconds. Once reaching the peripheral target, the subject

was required to maintain the cursor within the target for a short interval. If the subject

successfully moved the cursor to the target in the allotted time, and held for the required

interval, then the trial was considered a success. If not, then the trial failed, and the

task reset. Trials were organized into blocks of 8, 16, or 26. The subject was required to

successfully move to each target before progressing to the next block of trials.

2.3 RINGS TASK

The structure of the rings task shares many similarities with the center-out task, but differs

primarily in the form of feedback delivered, in the dimensionality of the task, and in the

specifics of the decoding Equation 2.1. The rings task was rendered in 2D, and the cursor

and targets had the form of concentric rings, rather than spheres. Modulation of cortical

activity dictated the radius of the cursor ring, and the subject was required to increase or

decrease this radius in order to match that of the target ring. As such, the task was 1-

dimensional and “directionless” (i.e., it did not favor movement in any particular direction

in the workspace).

The decoding Equation 2.1 became a scalar inner-product between a weighted indexing

vector and filtered firing rates. The kinematics vector k became the scalar radius (position)

of the cursor ring, whereas the weights W became a vector with only one non-zero element.

This element corresponded to a single cortical input channel, such that the cursor radius

was driven entirely by a single unit. Unit selection was at the discretion of the experimenter.

Typically, well-isolated units, or units that had been observed to modulate reliably, were

selected. The parameters W and µr were largely obtained through trial-and-error, or from

estimates of a unit’s dynamic range that were derived from previous recording sessions (e.g.,
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the center-out session). Typically, the experimenter would conduct short blocks of trials to

adjust these parameters in such a manner as to balance low chance rates of success with

moderate task difficulty. Once adequate parameters were identified, these parameters were

fixed for blocks of tens of trials. The firing rates of vector r were filtered using a 5-10 tap

digital (FIR) filter, with either a flat (i.e., moving average) or exponential shape.

The trial structure of the rings task – illustrated in Figure 3 – was similar to that of

center-out. In early versions of the task, trials initiated automatically. In a later version of

the task, a trial was initiated by moving the ring cursor to the middle of the workspace, where

a purple ring target was displayed. No cursor hold epoch was effectively enforced. Once the

trial initiated, a blue ring target was placed at one of the two extremes of the workspace

– that is, a target with either a very large radius or a very small radius appeared. In the

modified task, the choice of which target to present first was random. This trial initiation

and randomization protocol was adopted to reduce the possibility of random successes. The

subject was expected to move to the presented target before the expiration of a movement

timeout clock, but this timeout tended to be long (i.e., > 1sec). When the subject passed

through the first target (Target A), the target ring was moved to the opposite extreme

of the workspace. The subject was expected to reverse cursor direction, and to move to

the opposite target (Target B). Only then was a trial considered successful, and reward

delivered. No holds were required at any of the targets. Tens or hundreds of trials were

obtained for each controlling unit. The lengths of trial block were chosen at the discretion

of the experimenter. Typically, the control parameters would be changed once the subject

had demonstrated proficient control for more than 20, but less than 100, trials.

2.4 DATA ANALYSIS

Sorted units were excluded from analysis if they did not fire during any trial within either

task. For the center-out task, blocks of trials were excluded if fewer than 10 successful trials

were recorded. For the rings task, the minimum number of successes per block was set at

15. All other data were considered for analysis.
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2.4.1 Rate estimation

For the center-out task, the procedure for estimating firing rates is illustrated in the left

column of Figure 4. In polar or spherical coordinates, cursor velocity consists of two com-

ponents that can contribute to modulation: speed and angular direction. Cursor speed is

only loosely constrained by the go-cue and trial timeouts, and varies somewhat from trial

to trial. However, center-out movements are primarily ballistic, and the relative time at

which the cursor transitioned from rest to maximum speed tended to be consistent. Thus,

in an effort to represent the maximum range of modulation, we chose to estimate rates by

anchoring an averaging interval to this peak ballistic speed. For each experimental session,

we estimated the average time at which speed peaked. This estimate is indicated by a blue

circle in the top panel of the left column in Figure 4. The horizontal error bars – obtained

via resampling – are too narrow to be seen on the plot. Rates were estimates by counting

spike events, for each unit, from this peak speed time to 150 ms prior. These averaging win-

dows are indicated by colored boxes in the rate plots of Figure 4, where the horizontal limits

indicate the temporal bounds of the window, and the vertical limits indicate the 1-standard

deviation bounds about the estimated mean rate. The colors of the left column are matched

to the corresponding, diametrically-opposed center-out targets in the right column. The

like-colored line intersecting each box, in the plots of the left column, is the time-varying

firing rate of the relevant unit, averaged across trials. The time axis in each plot is aligned to

the end of the Hold A period (i.e., the ”go cue” event). A unit is considered modulated if the

mean rates of the two targets are significantly different (i.e., if the vertical space between the

colored box centers is sufficiently large). In this example, the unit is considered modulated

in the first and third plots, but not the middle plot. See text for details.

For the rings task, the estimation of firing rates is more straightforward, since the relevant

behavioral variable is more directly linked to population activity than in the center-out task.

More specifically, the behavioral variable of interest is the radius of the ring cursor, which

is directly proportional to the firing rate of a single unit. Thus, averaging windows are
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Figure 4: Illustration of rate estimation and the modulation test in the 2D center-out task,

for one unit and three target pairs. Each panel in the right column shows the pair of

diametrically-opposed targets for which color-matched rates are plotted in the left column.

A unit is considered modulated if the mean rates of the two targets are significantly different

(i.e., if the vertical space between the colored box centers is sufficiently large). In this

example, the unit is considered modulated in the first and third plots, but not the middle

plot. See text for details.
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anchored to target impact events; i.e., the instant at which the ring cursor intersects with

the ring target. We use the same 150 ms window, and compute one rate estimate for the

high rate target and one of the low rate target. This procedure is illustrated in Figure 5.

2.4.2 Modulation test

A recorded unit is said to be modulated if the firing rate of that unit co-varies with some

measured behavioral variable. In the present context, the relevant variables are the kinemat-

ics of cursor motion, as defined by Equation 2.1. In these terms, a unit u is considered to be

modulated between kinematic condition A and condition B if the estimated rates – rAu and

rAu – associated with each condition are distinct. Since firing rates estimates vary not only

from target to target, but also from trial to trial, a statistical test is used to evaluate mod-

ulation. Here, we employed a two-sample, unequal-variance t-test to assess the significance

of modulation. Specifically, we computed the mean and standard deviation of firing rates,

across all trials to a given kinematic target. If the mean rates were significantly different,

then the unit was considered modulated between that target pair.

For the center-out task, the second component of cursor velocity – angular direction

– is the independent variable with respect to which modulation is evaluated. Ultimately,

modulation might be observed between any two kinematics targets. However, we make

the simplifying assumption that modulation will be greatest between targets that are most

distant (in the kinematics space), to avoid having to consider every possible pair of kinemat-

ics targets (325 pairs, for 26 target 3D). Thus, the modulation test is considered only for

diametrically-opposed targets, as diagrammed in the right column of Figure 4.

The analysis for the rings task, once again, more straightforward. As illustrated in

Figure 5, the t-test is applied to assess the signficance of the difference in unit rates at the

high and low targets.
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Figure 5: Illustration of firing rate estimation and the modulation test in the rings task, for

one observed unit and three unit conditioning configurations. Compare with Figure 4. The

same unit is illustrated in the left columns as for the center-out figure, and the interpretation

is similar. Here, rate averaging windows are anchored to trial events (i.e., high and low target

impact) within a given trial. The diagrams in the right column indicate which unit – of 4

total, for this particular experimental session – was active for conditioning.
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3.0 RESULTS

Figure 6 shows the structure of the data reported here. A total of 7 sessions were collected for

NHP-A, and 6 sessions for NHP-C. Each row of Figure 6 represents a separate experimental

session, with NHP-A toward the bottom of the figure and NHP-C toward the top. For the

center-out task, there were always 8 conditions (16 targets), except for the last 3 sessions

for NHP-A, within which the task was switched to 26-target 3D center-out. In each task,

the number of trials always exceeded 200. The number of successful trials per target in

center-out ranged from 10 to 23 for NHP-A, and from 12 to 65 for NHP-C. The number of

rings trials per condition for NHP-A ranged from 23 to 99. For NHP-C, the range was from

16 to 105.

3.1 LEARNING TO CONTROL SINGLE UNIT ACTIVITY

Both subjects (NHP-A and NHP-C) eventually achieved control of single units in a majority

of tested cases, but the process of adapting to a new conditioning configuration varied by

unit. Typically, but not always, this entailed a period of adustment, during which task

performance was diminished, as a subject learned how to modulate the target unit. Figure 7

plots the cursor radius versus time for 3 epochs that immediately followed the start of a new

conditioning session. In the first case (top trace), successes were sporadic for an interval of

approximately 2 minutes, during which the success rate gradually increases. Presumably,

this reflects a search, on the part of the subject, for a control strategy via which to control

the target unit. In contrast, the success rate in the middle trace very abruptly increases

at around 35-40 seconds, and remains high. We interpret this to reflect a sudden, and
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Figure 6: Illustration of the data. Number of repetitions per experimental session, task,

and condition. Each row of bars represents a different experimental session. The left side

of the figure (blue) displays the number of trials successfully collected in the brain-control

center-out task, and the right side (red) displays the trial counts for the rings task. White

lines divide the trial count bars by condition. The number of repetitions is equal to the

number of trials in the rings task, and half the number of trials in the center-out task (since

diametrically-opposed targets are considered in pairs). Data for NHP-A are plotted below

the horizontal gray line, and data for NHP-C above.
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perhaps accidental, discovery of a control strategy. Finally, a high success rate is immediately

apparent in the bottom trace. Importantly, the conditioned unit co-modulated with the unit

conditioned in the previous experimental block, so that only a small shift in strategy was

apparently required to maintain task performance.

3.2 NON-CONTINGENT COVARIATION: SINGLE UNIT MODULATION

Robust patterns of population activity were typically observed during single unit conditioning

sessions. Figure 8 and Figure 9 display raster plots for 3 different conditioned units from each

subject. In each plot, the units are ordered by the correlation structure for the top-most

panel. Shaded (green) areas on the raster and radius plots indicate the duration of each

successful trial. For the radius trace, the upper and lower limits of the shaded trial boxes

also indicate the upper and lower target radii. Finally, the outcome of a modulation t-test

is indicated at the left-most margin of the raster plot: a red circle indicates that the unit is

significantly modulated (α = 0.01). The modulation test is computed using all trials within

the plotted condition; even those that are not pictured.

There are a few things to notice in these raster plots. Foremost among these observations

is that the conditioned unit does not modulate in isolation. There are clear patterns of co-

modulation across the population, in every case. It is also clear that co-modulation of

non-contingent units can be correlated (e.g., the first 4 units in the top panel of Figure 8) or

anti-correlated (e.g., the first and last unit in the top panel of Figure 9), and that interactions

can be temporally disperse (e.g., the first 4 units in the bottom panel of Figure 8) or fine.

Regarding this latter point, it was often true that the responsiveness of conditioned control

varied substantially by unit: some units could quickly modulate from one rate target to

another, whereas others followed a meandering course, resulting in a range of average success

rates.

The number of co-modulated units in the population varied by rings task condition.

Figure 10 shows the number of modulated units (here, including the conditioned unit) in

each of the 37 task conditions that we considered. Clearly, the number of modulated units
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Figure 7: Examples of task acquisition. Cursor radius plotted during the epoch immediately

following the onset of a new block of single-unit conditioning trials, for 3 different target

units. All plots represent data from the same experimental session, and are derived from

consecutive blocks (ordered top-to-bottom). The labels on the ordinates specify the units

that are linked to ring cursor control. Vertical red lines indicate successful trial completion.

Green lines indicate the target radii. The time scale (abcissa) of the top-most plot is longer

than that of the two bottom plots to emphasize the gradual convergence to a high success

rate. The scales of the vertical axes are identical.
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Figure 8: Raster plots for 3 different single unit conditioning configurations for NHP-A. Each

panel is a snapshot from a different block of the rings task. Within each panel, the raster is

plotted below the cursor radius trace (as pictured in Figure 7) and to the left of a bar plot

indicating the correlation between each unit and the conditioned unit. In each raster and

correlation plot, the conditioned unit is plotted in black. See text for further details.
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Figure 9: Raster plots for 3 different single unit conditioning configurations for NHP-C. See

Figure 8, and text, for details.
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could vary dramatically, ranging from 4 of 43 (9%) to 33 of 42 (79%). The average number

of modulated units was 19.6, and the average percentage of units modulated was 51%. The

number of modulated units does not appear to be a function of the total number of sorted

units. The patterns of population engagement seems to depend on the unit being conditioned.

3.3 NON-CONTINGENT COVARIATION: PAIRWISE CORRELATION

Having established that many units co-modulate during the task, and that these patterns

of co-modulation vary between task conditions, we sought to characterize similar changes

in pairwise relationships between units. For each rings condition, we computed the Pearson

correlation coefficient between the firing rates of unit pairs. This calculation included firing

rates at both Target A and Target B. Conditioned units were excluded from the analysis.

We then compared the pairwise correlations in every task condition with the corresponding

correlations for every other condition that was tested, within the same experimental session.

Figures 11 and 12 show scatter plots of these paired-pairwise correlation statistics, for NHP-A

and NHP-C, respectively. In each plot, the abscissa represents pairwise correlations between

recorded units in one rings task condition (i.e., one single unit conditioning configuration),

and the ordinate represents pairwise correlation for the same two units in a different rings

task condition. The color code communicates significance at α = 0.05. Approximately 43%

of paired, pairwise correlations were significant in at least one condition.

There are two principle features to observe in these plots. First, the number of unit

pairs that were significantly correlated in one rings task condition, but not the other, is

substantial. This is made evident by the clouds of red and blue points along either axis.

Thus, the significance of correlation could depend on the behavioral contingency. Second,

data points tend to cluster nearby the positive diagonal (the axis of maximal variation, as

determined by principle components analysis, lies at an angle of approximately 44o, and

captures more than 70% of the variance, for each data set). This indicates that pairs of unit

tended to maintain similar correlation relationships between rings task conditions.
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Figure 10: Engagement of the population, across single unit conditioning sessions. Bar

graph of the number of units modulated versus the number of units recorded, for each rings

condition. The contingent unit is included in the number of modulated units, but the number

of non-contingent units clearly dominates. Data for both NHP-A and NHP-C are included

in this plot.
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The modulation test and the correlation analysis are related, but distinct. The modu-

lation test describes the relationship between each non-contingent unit and the contingent

unit, and/or the behavioral goal. The correlation analysis describes the behaviorally-relevant

relationship between pairs of non-contingent units. Whereas the modulation test considers

only a change in the average difference between firing rates, the correlation analysis can also

identify trial-to-trial covariation. Of the unit pairs that were considered, across all rings

task conditions, the percentage of significantly correlated pairs was 20% for NHP-A and

42% for NHP-C. Of these correlated pairs, both units were significantly modulated in 53%

and 81% of cases. The percentage of unit pairings – correlated or not – in which both units

were significantly modulated was 22% and 53%. When the pairwise correlation coefficients

computed for different rings task conditions were paired, correlations were significant in

both conditions for 63% and 76% of cases. Of those pairings for which both correlations

were significant, both units were modulated in both rings task conditions in 72% and 86%

of cases. Alogether, these numbers show that significant modulation does not necessarily

imply significant correlation, and vice-versa.

3.4 COMPARISON WITH A POPULATION-BASED BEHAVIORAL

CONTINGENCY

Is such variation in patterns of population activity typical of cortically-controlled cursor

tasks? Are patterns of activity similar, when the behavioral contingency is derived from

models of cortical activity during natural movement? When the entire population is included

in the behavioral contingency? To assess whether single unit conditioning induced activity

patterns similar to other brain-computer interface paradigms, we compared these patterns

to those observed during the more standard center-out task. For this experiment, the motion

of a 2D cursor was computed using the population vector algorithm (PVA) of Georgopoulos

et al. [5, 3].
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Figure 11: Scatter plot of Pearson correlation coefficients between the same pairs of units

in pairs of rings task conditions, for NHP-A. In each plot, the abscissa coordinate of each

point represents pairwise correlations between recorded units in one rings task condition, and

the ordinate coordinate represents pairwise correlation for the same two units in a different

rings task condition. The color code communicates significance at α = 0.05. The points at

the center of the cloud (gray) are not significant in either condition. The points along the

vertical (blue) and horizontal (red) coordinates are significant in one or the other condition.

The points along the diagonals (black) are significantly correlated in both conditions.
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Figure 12: Scatter plot of Pearson correlation coefficients between the same pairs of units in

pairs of rings task conditions, for NHP-C. Compare with Figure 11.
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Figure 13 shows the number of units modulated for each center-out condition (pair of

diametrically-opposed targets). Compare this with Figure 10. The number of modulated

units ranged from 7 of 35 (20%) sorted units to 30 of 54 (56%) sorted units. Although

the average number of units modulated per condition (19.6) was approximately equal in

the two tasks, the variance was greater in the rings task (σ = 7.6 versus σ = 5.1). This

is apparent in Figure 14, where the number of modulated units is shown as a percentage

of the population total, by condition or target (top row) and by task (bottom row). Here,

the top row is an alternate view of the data in Figures 10 and 13. Across conditions,

we can see that the number of modulated units seemed to vary more in the rings task,

but that there is a tendency (i.e., the mode is higher) for a greater percentage of units to

modulate. Nonetheless, the distribution of modulation percentages are roughly similar. This

latter point is also true when considered across the entire experiment: the histograms are

roughly distributed about the same peak. However, the histogram suggests slightly more

engagement of modulated units in the center-out task. Taken together, these plots suggest

different patterns of modulation between conditions in each task, and between the two tasks.

The magnitude of modulation also varied by task. Figures 15 and 16 show the maximum

modulation depth for each unit, across all conditions and for all sessions. There are two

main points to take from these plots. First, we see a tendency of the points to skew toward

the abscissa, indicating that modulation depths tended to be higher in the center-out task.

However, it is important to note that this is a trend and not a rule: there are a substantial

number of points for which the maximum modulation depth is higher in the rings task. The

second point to note is that – although the majority of units were modulated in both tasks

– there could be a substantial difference in the degree of modulation between the two tasks.

Several units were modulated twice as much, or more, in one task versus the other.
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Figure 13: Bar graph of the number of units modulated versus the number of units recorded,

for each center-out condition. Compare with Figure 10. Note that the mean number of

modulated units are approximately equal (19.6 units) in the two plots.

57



Figure 14: Summary of population engagement in the two tasks. Histograms of the number

of modulated units, as a percentage of the population total, by condition (top row) and by

task (bottom row).
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Figure 15: Maximum modulation depths across all conditions tested, within a given exper-

imental session, for each of the two tasks. This plot shows data for NHP-A. Each plotted

point represents a single unit. The plotted points are color-coded by modulation test signif-

icance (α = 0.01): units could be modulated only in the center-out task, only in the rings

task, in both tasks, or in neither.
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Figure 16: Maximum modulation depths for NHP-C. Compare with Figure 15.
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3.5 POPULATION COVARIANCE STRUCTURE

How do patterns of covariation compare within and between the two tasks? We found that

the covariance structure in each task tended to be distinct, with some commonality. Fig-

ures 17 and 18 show scatter plots of principle components analysis (PCA) scores for 2 of the

most significant PCA eigenvectors, for both the center-out task (blue) and the rings task

(red). For each subject, the PCA decomposition was computed for a merged data set, con-

sisting of all trials from both the center-out and rings tasks. In each case, the 2D center-out

scores tended to assume a roughly planar, toroidal structure in the first 3 eigen-dimensions.

This is not entirely surprising, as it mirrors the structure of the task. Interestingly, there

tended to be at least two clusters of rings task scores: one cluster intermingled within some

sub-set of the volume occupied by the center-out scores, and one cluster lying distinctly out-

side of this volume, usually perpendicular to the approximate plane of the torus. This can

be seen in Figures 17 and 18, both of which are oriented with views along the approximate

plane of the torus structure. Importantly, the rings score clusters tended to correspond to

rates measured at the high and the low targets, indicating that performance of the rings task

corresponded to ”moving” in and out of the volume containing the center-out scores.

Figures 17 and 18 illustrate both similarities and differences between the covariance

structure in the most significant dimensions of the two data sets, but what does the complete

covariance structure look like? To answer this question, we again applied PCA – this time

segregating the data by task. That is, we computed a pair of decompositions, using the

data from the same two experimental sessions used to generate the score scatter plots. The

resulting principle component eigenvalues are represented by pie charts in Figures 19 and

20. The upper-left panel in each figure shows the center-out variance decomposition, and the

lower right shows the rings decomposition. Each of the decompositions represents a summary,

or model, of the complete covariance structure in each task context. Unsurprisingly, greater

than 50% of variance is explained by the first 2 to 3 principle components, in each case.

For NHP-C, the first eigenvector accounts for 66% of the variance, but it is important to

note that only one unit was conditioned during this session. The off-diagonal pie charts

(lower-left and upper-right) represent the covariance decomposition of each data set, taken
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Figure 17: Principal component scores for NHP-A, for all trials within an experimental

session. Only two of the higher-order principal component dimensions are plotted. See text

for details.
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Figure 18: Principal component scores for NHP-C. Compare with Figure 17
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with respect to the model fitted to the other data set. So, for example, the slices of the lower

left plot correspond to the variance of the rings data explained by each of the eigenvectors

of the center-out model (i.e., the PCA decomposition computed from the center-out data).

The order of the eigenvectors matches that of the diagonal plots. From these plots, it can

clearly be seen that patterns of covariation can differ substantially in each task. Although

the first principal component still explains a significant percentage of the variance in each

case, particularly for NHP-C, substantial variance is also distributed among lower-order

eigenvectors.

Does this tendency for the dominant covariance structure to vary between tasks hold

up across experiments? To answer this, we plotted the variance-explained, with respect to

the center-out PCA eigenvector decomposition. Pareto plots for this variance decomposition

are shown in Figures 21 and 22. For each plot, we performed 20 cross validation iterations,

within which PCA was applied to half of the center-out data set. The expected variance

explained by each PCA eigenvector was then computed for the held-out center-out data

(the remaining half), as well as a selection of the rings data of equivalent size. For each

experimental session, the mean and standard deviation of these statistics were computed

across cross-validation iterations. Figures 21 and 22 show the average of these statistics

across sessions. For each subject, it can clearly be seen that the variance in the rings session

is spread away from the dominant center-out PCA eigenvectors, and that there is significant

space between the cumulative variance curves. This is consistent with the characteristics of

the pie charts of Figures 19 and 20, and indicates substantial differences in the covariance

structure of the two data sets, across all sessions.

64



Figure 19: Pie charts of percentage variance-explained by each model, for each data set,

for one experimental session with NHP-A. The dataset is identical to that of Figure 17.

The upper-left and lower-right pie charts represent the PCA covariance decomposition for

the center-out and rings datasets, respectively. That is, each slice of the pie corresponds

to the variance explained (i.e., an eigenvalue) by an eigenvector of the sample covariance

matrix. The off-diagonal pie charts represent the cross-over decompositions; that is, the

slices correspond to the percentage variance-explained for one data set (e.g., center-out),

when computed with respect to the model / eigenvectors fitted to the other data set (e.g.,

rings). See text for further details.

65



Figure 20: Pie charts of percentage variance-explained by each model, for each data set, for

one experimental session with NHP-C. The dataset is identical to that of Figure 18. The

interpretation is the same as for Figure 19.
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Figure 21: Pareto plot for NHP-A. This plot shows the variance distribution, for each of the

tasks, with respect to the eigen-structure of a PCA model fitted to center-out data. The

blue lines and bars show data for the center-out task, and the red for the rings task. Bars

rising from the bottom of the plot show the variance explained by each principle component

eigenvector. These monotonically decrease for the center-out data, but not for the rings data.

Ascending lines show the cumulative variance explained. Error bars indicate the standard

deviation of the variance cumulative estimates. All statistics are cross-validated across all

experimental sessions (see text for details).
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Figure 22: Pareto plot for NHP-C. The interpretation is the same as for Figure 21.
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4.0 DISCUSSION

How neurons of the primate motor cortex contribute to intentional behavior is not well-

understood. A particular matter of controversy is the degree to which populations of cortical

neurons subserve a singular function in the control of behavior, and are constrained by this

specific role. For example, it has been suggested that populations of M1 neurons encode

the kinematics of hand motion in space [12]. If this is the case, then it could imply that

population activity is limited to only those patterns that are observed during hand motion.

At the opposite extreme, motor cortical activity might be readily dissociable from hand

motion[45] – if, for example, hand kinematics were only one of many variables encoded by

the population. In this case, patterns of observed population could be much more diverse,

and might be expected to flexibly adapt to changing behavioral priorities.

The current literature paints an uncertain picture of the flexibility of interactions among

motor cortical neurons. Here, by flexibility, we mean the extent to which a cortical population

is capable of realizing different patterns of activity, as dictated by behavioral demands. On

one hand, it has been suggested that motor cortical populations are profoundly flexible, and

perhaps capable of realizing arbitrary patterns of activity [21, 25, 26, 27, 29, 34]. On the other

hand, it has been suggested that motor cortical neurons covary in a systematic fashion [3, 2],

that such patterns of population activity are strongly-linked to natural behavior [6, 4], and

that such intrinsic structure might constrain the flexibility of cortical activity [9, 10, 43].

We sought to explore this issue by characterizing patterns of population activity during

operant conditioning of the firing rates of single motor cortical neurons. The single unit

operant conditioning paradigm dates back to the early work of Fetz and colleagues [17,

21, 20]. Historically, however, the simultaneous analysis of cortical activity that is not

relevant to behavioral goals (i.e., non-contingent activity), has focused on pairs of units
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recorded on the same electrode [21, 32, 33], on pairs of nearby neurons [40], or on small

populations of 4 or fewer neurons [34]. Our work is distinguished by quantitative analysis

of simultaneous activity of small populations (N > 20) of neurons, during reinforcement of

single unit firing rates – and by a particular focus on the covariance structure of population

activity. Previously, only Chase and Schwartz [10] have reported related results. The present

work may be considered to be an extension and refinement of aspects of that report.

4.1 COVARIATION OF NON-CONTINGENT CORTICAL ACTIVITY

During single unit operant conditioning, it was previously shown that the activity of non-

contingent neurons tends to covary with that of the contingent neurons. Such behaviorally-

irrelevant covariation has been characterized both as having lower intensity [35, 34], and

far greater intensity [21], than the activity of contingent neurons. Depending on analysis

parameters, either a minority [40, 32] or a majority [21, 33] of non-contingent neurons were

deemed correlated. Correlations seem to be more consistent within local regions of cortex [21,

40, 33] than distant [31]. In one study of a local population, the strongest correlations were

observed on electrodes 3.8 mm apart [40]. Although not exclusively [21], covariation tends

to be considered more meaningful at fine timescale [40, 33], rather than coarse [32].

We confirm the observation of non-contingent covariation, and extend the characteriza-

tion. Patterns of covariation – and the relative consistency of those patterns – are most

clearly exemplified in the rasters of Figures 8 and 9. The extent of covariation differed

by condition – that is, according to which neuron the behavioral contingency was defined

in terms of. Across all single unit contingencies, we observed as few as 4 non-contingent

units that co-modulated with behaviorally-relevant activity, and as many as 34 (see Fig-

ure 10). Although the number of covarying neurons changed with the contingency, it was

not uncommon for a large percentage of the population to co-modulate. In no case did the

contingent neuron modulate alone. Like the number of modulated units, the intensity and

significance of pairwise correlation also varied by condition. There was, however, a tendency

toward maintaining a consistent relative pairwise relationship – as is evident by the positive
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diagonal trend in Figures 11 and 12. The magnitude of pairwise correlations tended to be

less than 0.50, but did exceed 0.90, in some cases. Correlation coefficients exceeded 0.30

for a considerable number of sampled pairs – more than the 5 cases reported by Schmidt

et al. [40]. When considered as a population, patterns of pairwise covariation were rather

consistent, within conditions.

This observation recalls the concept of the ”motor field” suggested by Fetz and Finocchio,

and can be considered in terms of the early interpretations of Fetz et al. The motor field of

a neuron was defined as the set of muscles that co-varied during reinforcement of variation

in the firing rate of that neuron. Fetz et al. noted that, although the intensity of muscle

activation could fluctuate, the rank order was relatively consistent, for a fixed single unit

contingency. If we analogously define the ”cortical field” of a neuron to be those neighboring

neurons that co-vary during reinforcement, then the same property seems to hold true here:

even if the magnitude of modulation varies, the pattern of co-variation seems to be consistent,

within each condition. This can be picked out in Figures 8 and 9, by comparing patterns

of activity across trials. The flexibility of the cortical population, then, would be directly

dependent on the extent of the overlap in cortical fields: if the cortical fields are highly

redundant, then the set of possible patterns of discharge would be limited. Fetz et al.,

however, consider the ”strength” – or meaningfulness – of correlation to be defined in terms

of both the intensity of the correlation, and the consistency across behavioral conditions.

We asked if any such consistency could be identified. In this case, patterns of neuron-

neuron covariation changed with the contingency, and it is not immediately apparent to what

extent pairwise relationships are conserved. How can we uncover patterns that are, in fact,

conserved? As Chase and Schwartz suggest [10], dimensionality reduction methods offer a

means for identifying dominant covariance structure, which could represent the influence of

intrinsic factors that shape population activity – such as synaptic connectivity. Our own

principal components analysis (PCA) – as pictured, for example, in the lower right panel of

Figures 19 and 20 – supports this idea. That a majority of variance in population activity,

across contingencies, is explained by the first 2 to 3 principal components suggests that some

facets of population activity are indeed conserved.
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The observed populations – consisting of dozens of neurons – discharged patterns of

activity that varied in a restricted range. This might be interpreted to indicate a relatively

constrained capability for variation. As judged by this criterion, the degree of flexibility of

the cortical population would then be considered to fall somewhere between ”profoundly

flexible” and ”profoundly rigid”. In other words, the number of significant dimensions –

or degrees-of-freedom – appears to be non-trivial, but somewhat less than the number of

observed neurons.

4.2 RELEVANCE TO ”NATURAL” BEHAVIOR

It has been suggested that such consistent patterns of covariation could reflect ensemble

interactions or intrinsic structural constraints induced by the ”natural” role of the motor

cortical network [25, 28, 41, 34]. While we did not address this question directly, we did

compare patterns of activity observed during the single unit conditioning paradigm with

those observed during reinforcement of a behavioral contingency that is believed to be more

”natural”. Specifically, the population vector algorithm (PVA) [5, 3] was calibrated to map

patterns of M1 population activity to the velocity of intended cursor motion, in a manner

modeled after the relationship between M1 neurons and hand motion. In the literature,

such an approach is often contrasted with the operant conditioning (or ”biofeedback”) ap-

proach [25, 28, 10]. The former – sometimes referred to as the ”biomimetic approach” – is

considered to be more ethologically appropriate than the latter. Consequently, it is thought

”to confer immediate intuitive control without undue cognitive load” [28].

We observed two prominent differences in first order patterns of population activity,

between the two paradigms. First, the number of modulated units varied more during

the single unit task than it did during the PVA-based task (compare Figures 10 and 13).

Second, the modulation depths of non-contingent units was greater, on average, in the PVA-

based task (see Figures 15 and 16). Quite possibly, these differences reflect a natural pre-

disposition of the cortical population for the PVA / center-out task. However, we consider

it equally likely that they reflect differences in task construction and experimental design.
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This is an important consideration, since little effort was made to match the parameters

of the behavioral contingencies between the two tasks, in terms of how they related to

cortical activity patterns. Thus, the increased modulation depth in the PVA / center-out

task might have occurred simply because the task parameters required more modulation for

reward. Similarly, the more consistent engagement of units in the center-out task could be

a consequence of the fact that the structure of the task was more consistent and predictable

than that of the single unit task – that is, different conditions were related to each other

in a fixed and systematic fashion, such that transition between conditions might have been

facilitated.

Our comparison of pairwise relationships among cortical neurons was arguably more

interesting. Altogether, we found both substantial similarities and substantial differences

between the two paradigms. This is most completely represented in the Pareto plots of

Figures 21 and 22. In those plots, the first several principal components clearly account for

a high percentage of variability in both data sets, indicating that some patterns of pairwise

covariation were conserved. However, the percentage of variability of the rings task data

associated with lower-order principal components was non-trivial. This indicates that some

population activity patterns observed in the rings task were unlikely to be observed in the

center-out task – that they were unique to the rings task – and vice-versa. These differences

are emphasized and summarized by the gap between the cumulative variance curves in each

plot. Specific examples of these similarities and differences are represented by the area of

pie slices in the off-diagonal (top-right and bottom-left) plots of Figures 19 and 20.

Such significant differences between the patterns of population activity observed in the

two tasks seems to indicate that the underlying drivers of the population were at least

somewhat distinct – or that they were applied to the tasks in distinct ways. This is effectively

visualized in the principal component eigen-space plots of Figures 17 and 18. It is instructive

to interpret this observed structure – and its potential behavioral implications – in terms of

the concept of re-aiming [9]. The re-aiming model suggests that the single unit contingency

would most naturally be satisfied if the subject were to imagine ”moving” between surrogate

targets within the PVA / center-out workspace. This is at-odds with what we observed. In

terms of the score clusters of Figures 17 and 17, moving between center-out targets would
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approximately translate to moving within a 2D plane, oriented roughly perpendicularly to the

plane of each plot. However, the patterns of activity during single unit conditioning are shown

to modulate outside of this plane – at an angle of 45o or more. This is somewhat surprising,

in light of evidence that re-aiming dominates the process of optimizing cortical activity to

match a particular behavioral contingency [9], and evidence that a re-aiming mechanism can

explain modulation of single unit firing rates in parietal cortex [41]. Movement outside of

the plane might, in fact, indicate re-aiming in a higher dimensional space (3D or more), but

the question remains as to why different dimensions are preferred in the single unit task.

The data we present are not sufficient to answer this question. In any case, that patterns

of population activity observed in the single unit conditioning task do not exclusively and

preferentially fall within the planar structure, suggests that the population vector approach

is not more ”natural” or ”intuitive” than the single unit contingency. If it were, then the

patterns of population activity observed during single unit conditioning would tend to be

entirely subsumed by the space associated with the higher-dimensional center-out task.

As well as for considering the differences in population activity, Figures 17 and 18 are

effective examples for illustrating the similarities. Although the rings task principal compo-

nent scores deviate from the PVA / center-out scores, in each plot, there are also substantial

regions of overlap. This reflects a preference for particular patterns of population activity.

In terms of the re-aiming concept, for example, this could mean that an increase in the

radius of the ring cursor might have been accomplished via a behavioral mechanism that

was equivalent to that used to move the spherical cursor particular targets in the center-out

task. Alternatively, the preferential patterns might also simply correspond to some resting

or inactive state, representing lower effort for the subject in both tasks. In either case, the

tendency of population activity toward these patterns at least indicates a preference for, if

not a hard constraint on, particular population patterns. This suggests limits on the flexi-

bility of motor cortex, and at least calls into question the notion that cortical populations

are capable of realizing arbitrary patterns of activity, with equal effort.

Ultimately, our results are more suggestive than conclusive. Based on what we have ob-

served, we are inclined to reject the interpretation of Hwang et al. [41] that cortical activity

patterns tend to be restricted to by the ”natural movement repertoire”. However, we are
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equally inclined to reject the suggestion by other groups [26, 27, 29, 34] that ”arbitrarily-

selected motor cortex neurons” are capable of varying independently, ”regardless of any

previous association to movement”, or other variables. Instead, the answer likely lies some-

where in the middle. The most appropriate interpretation is likely that there are similarities

between the processes underlying single unit conditioning and the ”biomimetic” control sce-

nario, but that they are not equivalent.

4.3 DISSOCIATION AND DIFFERENTIAL CONDITIONING

The idea of designing behavioral contingencies in terms of previously-observed patterns of

activity dates back to the early differential conditioning experiments of Fetz et al. [21, 20].

Fetz and Finnochio suggested that a ”powerful test of the consistency of an observed cor-

relation is to directly reinforce its dissociation” [20]. In a similar manner, such differential

conditioning is a powerful test of the flexibility of a cortical population. More recently, it

has been suggested that even existing patterns of covariation can easily be trained-away,

and that the firing rates of cortical neurons can be dissociated from one another, with only

modest practice [26, 27, 29, 34]. However – for both the old work and the new – the evidence

for successful dissociation is primarily anecdotal and qualitative, with small sample sizes.

We did not attempt differential conditioning, or any sort of reinforced dissociation of

correlated activity, for two primary reasons. First, there is an added technical burden, and

a more substantial learning curve. Very likely, this is the unstated cause of the shortage of

samples and repetitions, in prior work. Second, we were primarily interested in characterizing

the baseline ”cortical fields” of M1 neurons; that is, the set of non-contingent neurons, among

the local population that co-vary with a contingent neuron. We were interested in what such

fields looked like (e.g., how many neurons co-vary), and how they varied by contingency. We

did not aim to characterize how such fields change with learning.
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4.4 CONCLUSIONS

Based on our results, we suggest three main points. First, neurons of the motor cortex are

not independent: they vary in coordinated patterns, even when only a subset are relevant

to behavioral goals. Second, patterns of population activity change with the behavioral

contingency – even when only a subset of the population is relevant to behavioral output

– but some neuron-neuron relationships are preserved across behaviors. Such preserved

features could be indicators of stable network structure, such as synaptic connectivity. Third,

although ”biomimetic” approaches to brain-computer interfaces and cortical conditioning

may confer practical, learning-related advantages, we found no strong evidence for preferred

– or ”natural” – patterns of population activity. Altogether, our results suggest that cortical

population activity is neither entirely labile nor entirely fixed, but that it is instead governed

by complex constraints – which have yet to be carefully characterized.

Although our conclusions are limited, our observations do suggest a path forward. The

underlying form and function (i.e., network structure and computational role) of a cortical

population is reflected in the patterns of activity that the population discharges, and in

how those patterns relate to goal-directed behavior. Whether or not such patterns represent

transient cell assemblies or stable anatomical structures, they can be applied as ”a language

with which to phrase new questions for the next generation of experiments” [37]. By testing

hypotheses expressed entirely in terms of observed patterns of population activity – sum-

marized, for example, via principal components analysis – we can make indirect inferences

about the unobserved structures and processes that drive the population, while avoiding a

priori assumptions about the nature of those drivers. Effectively, this is the approach ad-

vocated by Chase and Schwartz [10], and realized by Sadtler et al. [43]. We suggest that it

represents the most promising avenue for future research.
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