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The Internet has changed the landscape of marketing, and presented us with new 

marketing phenomena and challenges. In this dissertation, I focus on two emerging research 

topics at the frontier of marketing research –capturing consumer purchase patterns from big data 

and online groupbuy. 

Marketers have recognized that the probability of a consumer’s (or household’s) purchase 

in a particular product category may be influenced by past purchases in the same category, and 

also by purchases in other, related categories.  Past studies of cross-category effects have focused 

on a limited number of product categories, and have often ignored intertemporal effects in their 

analyses. The availability of such enormous consumer shopping data sets, and the value of 

analyzing the complex relationships across categories and over time (for example, for 

personalized promotions) suggest the need for computationally efficient modeling and estimation 

methods. We explore the nature of intertemporal cross-product patterns in an enormous 

consumer purchase data set, using a model that adopts the structure of conditional restricted 

Boltzmann machines (CRBM).  Our empirical results demonstrate that our proposed approach, 

employing the efficient estimation algorithm embodied in the CRBM, enables us to process very 

large data sets, and to capture the consumer decision patterns, for both predictive and descriptive 

purposes, that might not otherwise be apparent.  

Marketing in the Internet Age 

Feihong Xia, PhD 

University of Pittsburgh, 2016
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Online group buying, under which the seller offers discounts based on the size of the pool 

of buyers, is rapidly growing in popularity in both developed and emerging markets.  Our study 

categorizes the diverse mechanisms across group buying sites into three main types – volume 

strategy (e.g., Groupon), collective buying (e.g., Mercata), and referral reward (e.g., 

LivingSocial) – and associated subtypes.  Our seller faces a market comprising four segments of 

consumers who are heterogeneous in their product knowledge or intrinsic valuation or both.  

Informed consumers may inform and raise the valuation of their less informed peers.  

Consideration of a broader strategy space combined with a richer consumer behavior model, 

relative to the extant literature, provides new insights on when and how specific strategies or 

subtypes are optimal.  Collective buying emerges with the largest domain of optimality, followed 

by referral reward strategy and then the volume strategy.  Within collective buying, its subtypes 

favoring limited penetration are often optimal. 
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1.0  CHAPTER ONE. CAPTURING CROSS-PRODUCT CATEGORY AND 

INTERTEMPORAL DECISION PATTERNS FROM LARGE CONSUMER 

SHOPPING DATASETS 

 

1.1 INTRODUCTION 

The emergence of big data and of mobile marketing has changed the landscape of marketing.  

Now, nearly all retailers keep records of consumer shopping histories, and seek to gain useful 

insights from that data, to improve the effectiveness of marketing efforts.  Personalized 

promotion has become increasingly popular, thanks to the advancement of mobile technology.  

Retailers such Target and Walgreens have launched mobile apps that send consumers 

personalized coupons and advertisements.  Other intermediaries, such as Coupons.com and 

Alibaba, now offer mobile coupon services to all types of retailers.  In order to target consumers 

effectively, and to improve personalized marketing practices, such as mobile couponing, it is 

critical that marketing managers should “get the timing right” and “rely on data to make offers 

relevant” (Miles 2013).  Personalized coupons should be based on consumers’ purchasing 

patterns, captured from shopping data, and the coupons should be sent at the right time, when 

they are most effective with consumers.  For personalized marketing, marketers need a model 
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that captures and predicts intertemporal shopping patterns efficiently from large sets of consumer 

data, to assist in forecasting consumers’ future shopping baskets.  To meet such needs, we 

propose a model that captures intertemporal, multi-category purchasing patterns from large 

consumer data sets. 

Consumer purchasing decisions are related across categories and over time.  In order to 

estimate the intertemporal cross-category purchasing patterns accurately, we need a model that 

potentially includes all such effects, while also being able to efficiently estimate its parameters, 

and to present its results in a way that supports insightful post-estimation analysis.  Our aim is to 

capture purchasing patterns from massive consumer data efficiently, without having to resort to 

supercomputing.  

Our ability to model intertemporal cross-product effects on a major scale has been influenced 

by two factors.  First, we now have access to massive amounts of consumer- (household-) level 

purchase data, recorded at the point-of-sale by individual retailers, and compiled by marketing 

research companies, such as A.C. Nielsen.  Second, motivated by the availability of rich and 

massive data sets, efficient methods have been developed that permit the analysis of such data.  

However, most current approaches in marketing models follow the econometrics tradition, 

emphasizing unbiased parameter estimation, but not algorithm efficiency (Mehta 2007).  

Machine learning models, such as neural networks, are able to handle large datasets, but 

researchers often find it difficult to interpret the results of such approaches.  In order to model 

large-scale, intertemporal, cross-category effects using the massive datasets available today, we 

need a model whose parameters may be estimated with sufficient efficiency, but that also has a 

tractable and clear model structure that permits meaningful interpretation of the results. 
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Previous research on multi-category consumer purchasing decisions focused primarily on a 

limited number of product categories.  Further, discussion of the intertemporal aspects of multi-

category buying decision is sparse (Manchanda et al. 1999, Seetharaman et al. 2005).  The 

typical approach is to preselect a few categories, which are expected be either complements or 

substitutes, and then employ multivariate probit (MVP) or multivariate logit (MVL) methods to 

model the cross-effects.  Product pairs such as spaghetti and sauce have often been chosen for 

analysis (Manchanda et al. 1999, Duvvuri et al. 2007, Russell and Peterson 2000).  The 

limitation of focusing on a few preselected categories is that the analysis is likely to miss 

significant intertemporal cross-category effects. Furthermore, for business practitioners, all 

significant associations between product categories should be considered for designing 

promotions and other marketing tactics, with overall profit maximization in mind (Shocker et al. 

2004).  

A more recent stream of literature in marketing focuses on empirical methods for handling 

high-dimensional data.  An intuitive approach is to first reduce the dimensionality to a 

manageable level, and then to conduct the analysis on the lower dimensional data set (Lawrence 

2004).  Latent linear models, such as factor analysis and principal component analysis (PCA), 

are the most popular dimensional reduction methods in marketing research.  However, the 

benefits of applying factor analysis or PCA in multi-category analysis are not clear.  Duvvuri 

(2010) proposed a Bayesian multi-level factor model for consumer price sensitivity analysis 

across product categories, which captures the cross-category price sensitivities by latent factors, 

instead of by a covariance matrix.  While the factor model does indeed reduce the number of 

parameters needed to model the underlying associations, the estimation procedure is not efficient 

enough to handle high-dimensional data.  Usually, Markov Chain Monte Carlo (MCMC) 
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sampling methods for model inference can be very time consuming as the number of parameters 

increases.  

A model that utilizes a sparse representation of the associations between product purchasing 

decisions, along with an efficient inference algorithm, is needed for high-dimensional, multi-

category purchasing decision analysis. The restricted Boltzmann machine (RBM) possesses such 

advantages, and it is the basic building block for our proposed model.  Hruschka (2014) 

employed the RBM model for multi-category analysis, and showed the efficiency of the basic 

RBM model.  Our model is a significant extension of RBM that captures intertemporal effects as 

well as contemporaneous multi-category cross-effects, and that allows for additional variables, 

such as demographics, to influence the purchasing patterns.  To the best of our knowledge, this is 

the first time such a model has been adapted for application to a marketing problem. 

In summary, this paper: 

• Proposes an efficient model for the analysis of intertemporal cross-category consumer 
purchasing patterns on a very large scale, and compares the performance of that approach 
with current popular models, and 

• Interprets the intertemporal cross-category effects induced by the model, and motivates 
how those findings may be applied to improve marketing decisions in practice, for 
example, in personalizing mobile couponing. 
 

  The rest of the paper is organized as follows.  Section 2 presents the proposed model and 

the estimation algorithm.  Section 3 describes the data used in our empirical analysis.  Section 4 

discusses and interprets the results, including a comparative evaluation of the model’s 

performance.  Section 5 examines the managerial implications of our findings, and Section 6 

concludes the paper with a summary and ideas for future research. 



 16 

1.2 MODEL DESCRIPTION AND ESTIMATION 

We first describe the basic structure of the restricted Boltzmann machine (RBM) as it 

applies to modeling large cross-category purchase data (Section 2.1).  Next, we extend RBM, 

using a Conditional RBM structure to model the contemporaneous and intertemporal cross-

category effects efficiently, while also allowing for the inclusion of other variables, such as 

demographics, that might be expected to impact consumer behavior (Section 2.2).  Section 2.3 

describes the estimation procedure (Section 2.3). 

1.2.1 Restricted Boltzmann Machine 

RBM is a random Markov field (RMF) with one visible layer and one hidden layer, with 

connections only between the visible layer and the hidden layer (Hinton 2002; Pearl 2014).  The 

imposition of a bipartite structure improves efficiency, without compromising the model’s 

capability for pattern recognition (Burnap et al 2014).  In our model setting, the visible layer 

consists of binary variables representing observed purchasing decisions for a single customer or 

household.  Let I denote the number of product categories and let t denote a time period, 

typically a week.  The variable xit in the visible layer takes on the value 1 if the customer 

purchased at least one unit of one item from category i in period t, and 0 otherwise. The 

probability that a consumer purchases an item from product category i in week t is denoted 

by , i = 1… I.  For multi-category analysis, our task is to model the joint distribution 

of )...,( 21 Ittt xxxP . 

In the multivariate probit (MVP) model, the symmetric covariance matrix captures the 

cross-category associations explicitly.  The number of entries in a covariance matrix grows at an 
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O(I2) rate, where I denotes the number of product categories, so that the MVP approach becomes 

rapidly inefficient (computationally) as the number of product categories increases.  In contrast, 

the RBM adopts an approach to capturing relationships among the variables at time period t, 

using fewer parameters than are necessary for MVP. Specifically, by using hidden variables to 

capture relationships among the variables in the visible layer, the complexity of the RBM model 

grows at a rate less than O(I).  For each product category i at week t, a product purchase decision 

can be modeled as a binary outcome that is influenced by the hidden variables.

 

 

)exp(1
1)|1(

∑−−+
==

J
jtjii

tit h
HxP

ββ
,      (1) 

where Ht is a J dimensional hidden vector, , and βi is a constant 

term for each product category. 
 

The inclusion of hidden variables in the RBM model is consistent with the intuition that 

purchasing decisions are influenced by unobservable consumer attributes.  For instance, some 

consumers may be more likely to buy ramen noodles, frozen pizza and beers than others, and 

unobservable consumer attributes, such as laziness, might lead to such idiosyncratic shopping 

behaviors.  Instead of modeling the decisions explicitly, we can employ unobservable consumer 

attributes to explain the relationships among purchasing decisions.  Being unobservable, we 

model them as binary hidden variables, and infer their values based upon the observed 

purchasing decisions.  In the RBM model, if a hidden variable is turned on, certain associations 

among category purchases will be activated.  Because of the complexity of purchasing behaviors, 

it is usually necessary to use several hidden variables hj (j = 1,…, J) to describe a consumer’s 

buying patterns.  
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Latent state models, such as the Hidden Markov Model (HMM), also use hidden variables, 

but the RBM model makes more efficient use of them than does the HMM.  The J hidden 

variables in the RBM are able to represent up to 2J hidden states. The HMM assumes that the 

observed variables can only belong to one hidden state, and, as a result, there are only J hidden 

states in total, given J hidden variables (Salakhutdinov et al. 2007). The RBM has a symmetric 

bipartite structure; hence, conditioning on all the purchasing decisions, the hidden variables are 

also independent of each other.  

)exp(1
1)|1(

∑−−+
==

I
itjij

tjt x
XhP

ββ
,      (2)

  

which implies that if we observed the purchasing outcomes, we should be able to infer the 

hidden labels in reverse, as well.  The structure of the RBM is represented graphically in Figure 

1. 

Figure 1 Graphical Representation of the Restricted Boltzmann Machine 

 

The joint distribution of both hidden and visible variables is defined as: 

,     (3)
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where the exponentiation ensures a positive probability, and z is the normalizing constant. We 

can sum over Ht to get the marginal distribution of the vector Xt, where each unit in the vector 

represents a category purchasing decision at time t. 

z

hxhx
XP H J

jtj
I

itijtit
J I

ij

t

∑ ∑∑∑∑ ++
=

)exp(
)(

βββ
.
     (4)

 

The simple 2-layer structure of Figure 1 is advantageous for large-scale data analysis, 

because it reduces the number of parameters needed for modeling the relationships among the 

variables, and it makes inference efficient.  That efficiency is a critical feature that enables 

researchers to greatly scale up the model, while ensuring computation feasibility of parameter 

estimation.  

1.2.2 Conditional RBM 

The basic RBM model only captures contemporaneous cross-category effects.  We propose to 

use its extension, the Conditional RBM (CRBM), to model both contemporaneous and 

intertemporal effects (Taylor and Hinton 2009).   

A consumer’s past purchasing decisions have been shown to influence future purchasing 

decisions, and marketing models employ past purchasing decisions as predictors (Fader et al. 

2005; Keenan 1982).  However, such models focus on a product category’s own effect, without 

incorporating intertemporal, cross-category effects.  Our model captures intertemporal cross-

category effects to present a significantly more complete picture of consumer purchasing 

patterns. 

Diversity in consumers’ demographic backgrounds might account for some of the 

heterogeneity in purchasing patterns.  We let demographic variables have direct effects on each 
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product purchasing decision and on the hidden variables.  They could also moderate the 

intertemporal effects and the relationships among decisions at time t.  The addition of past 

purchasing decisions and demographic variables does not change the bipartite structures of the 

RBM.  The hidden variables are still independent of each other, conditioned on the visible 

variables, and vice versa, so that the model inference procedure remains efficient.  The extended 

model is given by Equations (5) - (7): 

z

dhxhxhx
XDHXP I J P

pjtitijp
I J

ititij
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jtjtitit

ttt

)exp(
),|,(
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where M is the number of time lags. P is the number of demographic variables, and βit and βjt 

are dynamic terms that affect the visible variable xit and the hidden variable hjt respectively.  

Both dynamic terms represent the effects from past purchasing decisions, which may be 

moderated by demographics.  In the full form of the CRBM model, demographics and past 

purchasing decisions may also have direct effects on the hidden or visible variables. The effects 

can be added to the dynamic terms as follows: 
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where is the direct effect of demographic attribute p on purchasing decision i at time t, and 

 is intertemporal effect on i of a purchase from category i’ at time t-m. By the same logic, 

 and  represent similar effects on the hidden variables. 

Heterogeneity among consumers may be further captured by changing the constant term βi 

to βni, which represents the baseline probability of purchasing a product for each individual n. 

The dynamic term βit then changes to 

∑∑∑∑∑∑ −−−− +++=
'

''
'

''
I M

mt
i

mt
iip

P
jp

I M
p

P

mt
i

mt
piinjnjt xddx βββββ .   (10) 

We can also integrate a hierarchical Bayesian model with CRBM to form a “Hierarchical 

Deep Model” (HD), representing the heterogeneity among consumers (Salakhutdinov et al. 

2013).  However, modeling heterogeneity in either manner did not reduce the testing error, and 

therefore neither is included in the final model.  The Hierarchical Bayesian extension of the 

model is described in Appendix 2.  For more information on HD models, please refer to 

Salakhutdinov et al. (2013).
 

For the empirical analysis in this paper, we focus on modeling heterogeneity in terms of 

demographics.  We can also incorporate price and promotion variables to model their cross and 

own effects on product purchasing decisions. Figure 2 provides a graphical representation of the 

full model, constructed to capture all the effects and interactions discussed above. 
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Figure 2 Graphical Representation of Proposed CRBM Model 

 

In order to keep such a complex model sparse and efficient, we factorized the parameter 

matrices (Taylor and Hinton 2009).  For example, we assumed that demographics would 

moderate the associations between visible variables and hidden variables, which is a three-way 

interaction modeled by the βijp terms.  Explicitly modeling all possible three-way interactions 

requires  parameters. If, instead, we break down the three-way interactions into 

pairwise interactions, the interaction term reduces to: 

∑∑∑∑∑∑∑ ≈
F I J P

ppfjtjfitif
I J P

pjtitijp dhxdhx ββββ .     (11) 

That manipulation reduces the number of parameters to , and we can 

adjust the number of factors F to control the total number of parameters.  Similar procedures 

were applied to other three-way interaction terms, to reduce the growth rate from O(N3) to O(N2).  

Unlike the intertemporal effects, the cotemporaneous effects are captured implicitly by the 

hidden variables.  We can infer the cross-effects from the partial derivative .  By the chain 

rule, , and the partial derivative  changes with the values of xit and xjt.  We 
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replace xit and Ht by their expected values (Hruschka 2014), which can be estimated efficiently 

by variational inference (Appendix 3). 

1.2.3 Estimation 

The parameters of the CRBM model are estimated numerically, by searching for the values that 

maximize the log likelihood of the training data.  A first-order algorithmic approach to that 

maximization problem would be to calculate the gradient of the log-likelihood function with 

respect to the parameters, and then to perform a search using that gradient.  Thanks to the 

bipartite structure of the RBM, each component of the gradient has the form
   

 
 

model)ˆˆ()()(log
jtitdatajtit

ij

it hxEhxExP
−=

∂
∂

β
      (12) 

where βij is the parameter capturing the interaction between the purchase decision variable for 

category i and hidden variable j.  The first term in Equation (12) is the expected value of the 

product of xit and hjt over households and time periods in the training data, and the second term is 

the expected value over the distribution of the same product assumed by the model.  The second 

term could be estimated by brute force by conducting Gibbs sampling to generate samples from 

the model, with random initial values for and , and then calculating the average of the 

product of and  for each product category.  However, such a naïve sampling approach 

would require a lot of training time, which is not ideal for large data analysis. 

Various methods have been proposed for making the inference procedure datajithxE )(  

efficient.  Contrastive Divergence (Hinton 2002) estimates the data-dependent statistics  in 
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Equation (12) by a one-step sampling process.  The hidden variables H are drawn, conditional on 

the original training data.  For the data-independent term, model)ˆˆ( jithxE , we first sample hidden 

units from the original data, and then sample simulated data from the sample hidden units.  The 

average value of the product of the simulated data and the hidden variable sample is then used as 

the data-independent term in the gradient.  While one-step Gibbs sampling cannot yield an 

accurate estimate of model)ˆˆ( jithxE , the gradient based on the sampling method has been shown to 

work well in practice (Hinton 2002). 

We shortened the time to convergence in parameter estimation by using the momentum 

method and batch gradient descent.  The momentum method is used to speed up the learning rate 

when the direction of the gradient stays the same on consecutive iterations, and to slow it down 

when the gradient changes direction.  The intuition behind the momentum method is illustrated 

by the simple analogy of a ball rolling down the side of a steep valley, gaining momentum until 

it reaches the bottom, but losing momentum as it rolls past the minimum up the other side of the 

valley.  The ball eventually settles at the bottom (minimum).  The update equation is as follows 

(Hinton 2010): 

)()(log)1()( txPtt
ij

it
ijij β

εβαβ
∂

∂
+−∆=∆ ,      (13) 

where t and t-1 indicates the current and previous iterations,  is the parameter increment 

at t-1, α is the momentum, and ε is the learning rate.  Log P(xit) is the log likelihood function 

that we are trying to maximize.  

Dividing the training data into batches, and updating the parameters after each batch, can also 

speed up the model training process, because a group of smaller matrices can typically be 

processed faster than can a single, very large matrix.  Both gradient descent and stochastic 
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gradient descent can be viewed as variations of batch gradient descent.  If we use each single 

data point as a batch, it becomes stochastic gradient descent.  If we use the whole training data as 

a batch, then it is traditional gradient descent.  In our empirical application, we used each 

(individual) household’s shopping data as a batch. 

In order to prevent overfitting, in addition to conventional regularization, we used the 

dropout method (Hinton 2012), and found that it prevented overfitting and improved the model’s 

predictive performance.  The dropout method requires a change to the implementation of the 

training algorithm.  During each batch training phase, some hidden variables are randomly 

dropped from the model, with probability p.  After the model training is complete, the parameters 

are multiplied by p, and all hidden variables are retained in the final model.  The dropout 

procedure prevents hidden variables from trying to fit the idiosyncratic characteristics of the 

training data, and it may be viewed as a form of model averaging. 

The complete training algorithm for the final model is described in Appendix 4.  A detailed 

discussion of efficient training algorithms for the RBM can be found in Salakhutdinov and 

Hinton (2012). 

1.3 THE DATA 

The consumer panel data set we analyzed was provided by A.C. Nielsen for the sole purpose of 

academic research.  The data set contains households’ shopping histories, as well as their 

demographic background information.  There are, in total, 6,695,833 observations in the data set.  

Each observation is a purchase transaction made by a household between 2004 and 2008.  In the 

data set, the three stores most frequently visited by consumers are Kroger, Walmart, and Meijer.  
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There are 4000 households’ purchasing histories over 211 weeks and across 1055 product 

categories (defined by A.C. Nielsen).  Each household in the data set made, on average, 2.74 

shopping trips per week.  Detailed demographic information for each household is also available.  

We selected 2086 households with complete purchasing history and demographic information 

for our analysis.  The 1055 product categories vary significantly in the frequency of their 

purchase.  Milk is the most frequently purchased category; other categories, such as pain relief 

medication, are purchased far less frequently.  A plot of the category purchase frequencies, with 

the categories sorted in decreasing order of frequency, is shown in Figure 3. 

Figure 3 Product Category Purchase Frequencies 

 

The frequency plot shows a “long tail” of infrequently purchased product categories.  100 

products were purchased more than 20,000 times by households in the dataset.  For our 

illustrative empirical application, we selected the 100 most purchased categories for our analysis, 

including products from dairy milk to nutritional supplements.  

We converted each household’s purchasing history into a binary matrix.  The rows represent 

the 211 weeks recorded in the dataset and the columns represent the 100 product categories.  The 
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product categories are ordered in decreasing overall purchase frequency.  For example, if a 

household purchased at least one unit of one item from the dairy milk category in Week 1, then 

the value in Row 1, Column 1 is 1.  If the household did not make such a purchase, then the entry 

is zero.  There are 2086 such matrices in all, one for each selected household.  We randomly 

selected 1500 matrices for the training set.  The remaining 586 matrices were used for testing the 

model.  

We conducted cross validation on the training data to select the optimal level of complexity 

(Friedman et al. 2001).  Only demographic variables which have shown significant effects on 

purchasing decisions in previous research (e.g., the presence of children, household income, and 

household size) were initially included in the full model (Manchanda et al. 1999; Hansen et al. 

2006).  The results indicated that only the inclusion of household size would further reduce the 

estimated prediction error. 

We also trained and tested models with promotion and price indices at the product category 

level. The price and promotion indices were constructed following approaches in previous multi-

category research (Manchanda et al. 1999, Duvvuri et al 2007, Duvvuri and Gupta 2010). For the 

price index, if a household purchased a product, the unit price the household paid was used. If 

the household did not make a purchase in a product category that week, a weighted average 

based on the household’s purchasing history across all brands in that category was constructed as 

the price index. The promotion index was constructed in the same fashion. If there was a 

promotion, the index was one; otherwise it was a weighted average. 

As discussed in marketing literature, the operationalization of promotion and price at the 

product category level may not be accurate (Manchanda et al. 1999, Duvvuri et al 2007, 

Hruschka 2014). Especially in our case, there is a large amount of price and promotion 
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information missing, and many households seldom purchase products outside of the top 40 most 

purchased product categories. As for the promotion index, the operationalization may 

manufacture strong correlation with the purchasing decision. A promotion is only recorded when 

a household made a purchase; therefore, if the promotion index is one, it is a prefect predictor 

that the household has made the purchase. Because coupon or sales promotion would result in 

reduced priced paid, price and promotion indices are also highly correlated in the dataset. 

Possibly due to the inaccurate measure, some multicategory studies that have used similar 

operationalization of price and promotion have found the price effects to be either marginal or 

insignificant (Russell and Peterson 2000, Boztug and Hildebrandt 2008, Hruschka 2014). By 

including price index in the model, we found that the model performance decreased in terms of 

testing error. The incorporation of promotion index reduced testing error, however, as 

aforementioned, it might just be the result of imperfect operationalization of promotion. We 

compared the model with and without promotion index, and have found no significant difference 

in the analysis results of the cross-category associations. 

The initial values for the learning rate and for the regularization penalty term were set at 0.01 

and  0.0002, respectively.  A momentum term of 0.9 was applied to the training process after five 

epochs.  We used a recommended dropout rate of 0.5 for training (Srivastava et al. 2014).  Those 

values are typical for CRBM training (Taylor and Hinton 2009), and we did not find a significant 

difference in results for different values (consistent with Hinton 2010).  Each household’s 

purchase history, over the 211 week period, was used as a mini-batch during training. 
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1.4 RESULTS 

1.4.1  Model Comparison 

We first compared the model’s performance with that of arguably the most popular “traditional” 

multi-category model employed for the explicit representation of cross-effects –  multivariate 

probit (MVP).  As discussed earlier, the major limitation of traditional models, such as the MVP, 

is the small number of categories that can be modeled, owing to computational constraints.  

Therefore, when comparing the CRBM method with the MVP, we limited the analysis to four 

categories: soup, pasta sauce, dog food, and pasta.  These four categories have been widely used 

in multi-category research (pasta and pasta sauce are complements; dog food is considered to be 

independent of the other three categories). 

The purchasing decisions for these 4 product categories for the previous 4 weeks, along with 

household size information, were included as independent variables in all models.  We used the 

mean squared error (the Brier Score), as the error measure for both testing and training errors.  

The testing error should be a better metric for model comparison and model selection because it 

is a better approximation of the generalization error than are other metrics, such as AIC or BIC, 

which are based on training errors (Friedman et al. 2009).  The results for the two models are 

displayed in Table 1. 

Table 1  Model Comparison: Brier Scores for MVP and CRBM Models 
Testing Error Soup Pasta Sauce Dog Food Pasta 
MVP 0.1146 0.0651 0.0271 0.0486 
CRBM 0.1143 0.0650 0.0274 0.0485 
Training Error Soup Pasta Sauce Dog Food Pasta 
MVP 0.1212 0.0601 0.0202 0.0399 
CRBM 0.1212 0.0601 0.0206 0.0399 
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Both models have similar performance, in terms of both testing error and training error at 

relatively low dimension.  However, the training time for the models was vastly different.  We 

trained both models on the same computer and recorded the training time.  For the MVP model, 

the training time was over 8 hours in R and around 7 hours in STATA.  It took less than 30 

seconds to train the proposed CRBM model.  Using the CRBM instead of the MVP model results 

in an enormous improvement in efficiency in terms of model training time, and the drastic 

reduction in training time is critical when it comes to large data analysis.  The comparison 

demonstrates that our model is much more efficient than the popular MVP models, even with 

relatively small dimensional data.  

1.4.2 Large-scale Cross-category and Intertemporal Effects 

By first comparing our model with other models, we demonstrated its significantly greater 

efficiency with low dimensional data.  In order to capture purchasing patterns more 

comprehensively, we expanded our analysis to include all 100 product categories, and time 

horizons beyond 4 weeks.  Estimation of the more traditional multivariate models is simply not 

feasible in this case, given the size of the data, and we focus instead on comparing different 

specifications of the CRBM model. 

We first trained the model with 80 hidden variables, keeping the structure the same as in the 

four-product category model with a four- period time lag (Model 4P4T).1   Next, we included all 

100 categories with the same four-period time lag (Model 100P4T).  Comparing the two models 

                                                 

1 The usual practice is to set the number of hidden variable to slight below the number of visible variables 
(100 in our case).  Dropout training (which we use) essentially prevents overfitting from an initial 
specification of too many hidden variables. 
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in terms of their predictive performance (predicting the purchases in the four categories – soup, 

pasta sauce, dog food, and pasta), the testing errors decreased with the inclusion of the additional 

categories.  For instance, the testing error for soup purchases dropped from 0.1143 to 0.1115, 

while the testing error across all categories dropped from 0.0638 to 0.0608, suggesting the 

presence of intertemporal cross-category effects beyond just the four categories.  Clearly, such 

an expanded analysis would not be feasible using traditional multivariate models.  

Next, we extended the number of time lags considered in the model to investigate the 

presence of intertemporal effects beyond the previous four weeks.  We compared models with 

different time lags, and discovered that the testing error dropped as the number of lags was 

expanded to 12 weeks, and then stayed relatively flat.  This may be explained by the observation 

that most products also have a shopping cycle of 12 weeks or less in the data.  Therefore, we 

next extended the model to incorporate a time lag of 12 weeks with both the four and all 100 

categories (Models 4P12T and 100P12T). 

We also trained and compared CRBM models with and without household demographics as 

moderators.  Results from cross validation showed that demographics were not significant 

moderators according to the testing errors.  The final model is shown in Figure 5. 

Figure 4 Graphical Representation of the Final Model 
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After selecting the final model, we performed non-parametric bootstrapping to test the 

significance of the parameters, especially the parameters that represent intertemporal effects.  

Non-parametric bootstrapping makes fewer assumptions about the distributions of data than does 

parametric bootstrapping, and it does not rely on the correct specification of the model; thus it is 

a more conservative test than is parametric bootstrapping (Friedman et al. 2009).  We drew 

samples from the data randomly with replacement, and created 100 sets of sample data the same 

size as the training data.  We estimated parameters for each sample data set, and placed a 95% 

confidence interval on the parameters, to check if the parameter values are significantly different 

from zero.  The bootstrapping process can be time-consuming if the simulations are conducted 

sequentially.  Because bootstrapping samples are independent, we parallelized the sampling 

tasks, to reduce working time.  We estimated a model with only significant parameters according 

to the bootstrapping confidence interval, and that model (Model 100P12T-SIG), had a smaller 

test error than did the model with the full set of parameters (Model 100P12T).  Table 2 compares 

the testing errors across the five CRBM models examined – 4P4T, 100P4T, 4P12T, 100P12T, 

and 100P12T-SIG.  

Table 2  Comparison of Model Testing Errors 
Testing Error Soup Pasta Sauce Dog Food Pasta All Products 
4P4T 0.1143 0.0650 0.0274 0.0485 0.0638 
100P4T 0.1115 0.0641 0.0274 0.0483 0.0608 
4P12T 0.1116 0.0640 0.0261 0.0482 0.0625 
100P12T 0.1118 0.0640 0.0264 0.0483 0.0602 
100P12T-SIG 0.1112 0.0638 0.0261 0.0482 0.0599 
Training Error Soup Pasta Sauce Dog Food Pasta All Products 
4P4T 0.1212 0.0601 0.0206 0.0399 0.0605 
100P4T 0.1183 0.0592 0.0204 0.0395 0.0595 
4P12T 0.1167 0.0586 0.0192 0.0390 0.0584 
100P12T 0.1158 0.0580 0.0186 0.0385 0.0576 
100P12T-SIG 0.1156 0.0582 0.0189 0.0388 0.0576 
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Note: 4P and 100P indicate CRBM models with 4 and 100 product categories respectively. 4T and 12T represent 4 
and 12 time lags in the models. SIG means the model only includes significant parameters according to the 
bootstrapping results. The All Products column shows the mean errors over all product categories in the model. 

The results further support the presence of intertemporal cross-category effects beyond just a limited 

number of products and time periods.  However, the full (more complex) model tends to overfit the 

training data if all effects are included.  Thus, the appropriate model in this case is 100P12T –SIG, which 

includes only statistically significant effects (based on the bootstrapping-based confidence intervals). 

1.4.3 Examination and Discussion of Intertemporal Cross-Category Effects 

Note that the proposed CRBM model is designed to predict shopping behavior of a 

household on the basis of past behavior (say, over the last 12 weeks), the hidden variables 

associated with the household, and key demographics.  In this sub-section, we discuss the pattern 

of intertemporal cross-category effects based on the model parameter estimates.  Given the very 

large number of such effects (with 100 categories and 12 time periods), presenting these results 

in a manner that makes sense for the reader poses a challenge.  We start by observing the general 

purchasing pattern, and then drilling down afterwards, to examine the associations between 

specific categories over time.  In order to follow that strategy, we first present visual 

representations of the intertemporal multi-category effects, shown in Figure 6.  Since these 

effects tend to be weaker for longer time lags, and for ease of exposition, we focus on four 

(rather than all twelve) lags. 

Each column represents the product category purchasing decision at time T and each row 

represents product category purchasing decisions in the past, from T-1 (Figure 6(a)) through T-4 

(Figure 6(d)).  The categories are ordered in decreasing purchase frequency from left to right and 

from top to bottom.  The value in each cell represents the association between a category 
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purchase decision in Period T and a category purchase decision in a prior period.  The 

associations are shown as color-coded ‘pixels’ – blue for a positive association, red for a 

negative association, and white to indicate no significant association between the two purchase 

decisions (using the 95% confidence interval as discussed).  The pattern formed by all the pixels 

provides an initial “big picture”. 

Figure 5 Plots of Intertemporal Effects from One to Four Week Lags 
5(a)  Intertemporal Effects from T-1 to T 
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5(b) Intertemporal Effects from T-2 to T 

 

5(c)  Intertemporal Effects from T-3 to T 
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5(d) Intertemporal Effects from T-4 to T 

 

In general, the varying patterns of the plots show the dynamic nature of intertemporal effects.  

Figure 6(a) has the most significant associations, with a large proportion of the cross-category 

associations being negative.  The proportion of significant associations that are negative 

decreases from Figure 6(a) to Figure 6(d) (the proportions are 76.43%, 38.81%, 32.61% and 

23.63% for Figures 6a, 6b, 6c, and 6d, respectively).  The trend suggests that last week’s 

shopping has a significant cross-category impact across several product categories, and the 

impact tends to be negative.  For example, if a household bought milk the week before, it is less 

likely to buy orange juice this week. The own (same-category) effects, however, are mostly 

positive across all time periods, which indicates that if a household bought a certain product 

previously, then it is more likely repeat the purchase next week than a household that did not do 

so.  The finding of predominantly positive own effects is consistent with previous research 

(Fader et al. 2005). The overall pattern at T-1 suggests that while a household may shop every 

week, a major shopping trip in one week is likely be followed by fewer purchases the next week.  

We plotted random households’ weekly total number of purchases as non-model evidence, and 
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the pattern of fluctuations supports the idea of households doing their heavy grocery shopping in 

alternate weeks. 

We examined each column for significant coefficients at T-1, and found that the greatest 

negative associations exist between pairs of typical substitutes, such as between frozen novelties 

and ice cream, fresh lettuce and precut fresh salad mix, butter and margarine, and sausage and 

bacon.  However, other significant negative effects at T-1 appear to capture buying habits and 

patterns (for example, households do not purchase certain products every week – this may be 

why the purchase of milk last week and orange juice this week are negatively associated).  Other 

effects appear to reflect lifestyle differences – for example, households that bought canned green 

beans one week are less likely to buy frozen pizza the following week. 

Examining the cross-category positive associations at T-1 in detail, several of the product 

pairs are complements, such as cereal and milk, and cold remedies and facial tissues.  Other 

positive significant associations are not so obvious, such as between hot cereal and fresh carrots. 

All four plots indicate that, while nearly all intertemporal own effects are significant and 

positive, there are also significant intertemporal cross-category effects.  These results suggest 

that including cross-effects over multiple categories and over multiple periods in the model helps 

to capture a more complete picture of household purchasing patterns, which can be complex, 

asymmetric, and time-varying.   

After observing the pattern at each time lag separately, we examined the intertemporal effects 

across multiple time periods jointly, to examine which cross-category associations remain 

significant over several time periods.  As expected, fewer effects persist as the number of time 

period increases.  The pairs for which the cross-category coefficients are significant for all four 

time lags are summarized in Table 3. 
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Table 3  Product Category Pairs with Significant Intertemporal Effects over all 4 Lags 
Category at T-1, T-2, T-3, or T-4 Category at T Cross-Category Intertemporal Coefficients 
  T-1 T-2 T-3 T-4 
ICE CREAM - BULK BUTTER 0.050 0.055 0.084 0.065 
BAKERY - BREAD - FRESH PEANUT BUTTER 0.082 0.073 0.071 0.048 
BAKERY - BREAD - FRESH CHEESE-PROCESSED SLICES-AMERICAN 0.066 0.062 0.073 0.078 
MARGARINE AND SPREADS BUTTER -0.220 -0.205 -0.151 -0.098 
CANDY-CHOCOLATE CANDY-CHOCOLATE-MINIATURES 0.071 0.086 0.082 0.059 
SOFT DRINKS - CARBONATED FRESH STRAWBERRIES -0.055 -0.067 -0.054 -0.043 
BAKERY-BUNS-FRESH FRANKFURTERS-REFRIGERATED 0.059 0.091 0.073 0.083 
BAKERY - BREAD - FRESH MARGARINE AND SPREADS 0.047 0.090 0.043 0.045 
PRECUT FRESH SALAD MIX SALAD DRESSING - LIQUID 0.178 0.189 0.138 0.074 
CHEESE - PROCESSED - CREAM CHEESE DAIRY - SOUR CREAM - REFRIGERATED 

CANNED 
0.088 0.062 0.109 0.100 

DAIRY-MILK-REFRIGERATED EGGS-FRESH 0.042 0.070 0.078 0.055 
BUTTER SUGAR-GRANULATED 0.094 0.141 0.119 0.103 
DAIRY-MILK-REFRIGERATED CEREAL - READY TO EAT 0.087 0.110 0.090 0.064 
PRECUT FRESH SALAD MIX CHEESE - SHREDDED 0.053 0.058 0.064 0.038 
DAIRY-MILK-REFRIGERATED BAKERY - BREAD - FRESH 0.023 0.042 0.051 0.042 
CANDY-CHOCOLATE-SPECIAL FRESH STRAWBERRIES 0.125 0.102 0.198 0.260 
FRANKFURTERS-REFRIGERATED CANDY-CHOCOLATE-SPECIAL -0.191 -0.109 -0.116 -0.108 
FRESH LETTUCE SALAD DRESSING - LIQUID 0.106 0.123 0.135 0.124 
SAUSAGE-BREAKFAST BACON-REFRIGERATED -0.098 -0.061 0.085 0.078 
SOFT DRINKS - POWDERED CANDY-CHOCOLATE-SPECIAL -0.145 -0.086 -0.074 -0.082 
VEGETABLES-BEANS WITH MEAT-SHELF 
STABLE 

CANDY-CHOCOLATE-SPECIAL -0.139 -0.080 -0.159 -0.112 
CANDY-CHOCOLATE-MINIATURES SOUP-CANNED 0.050 0.046 0.116 0.063 
BUTTER MARGARINE AND SPREADS -0.276 -0.181 -0.226 -0.180 
CAT FOOD - DRY TYPE CAT FOOD - WET TYPE -0.112 0.098 0.201 0.252 
ENTREES-REFRIGERATED VEGETABLES - POTATOES - FROZEN 0.066 0.050 0.058 0.070 

Some of the significant associations over the four time periods are between regularly 

purchased staples (milk and bread) and complementary products (cereal and milk, bread and 

peanut butter, and salad mix and salad dressing) or substitutes (butter and margarine).  Not all the 

positive (negative) associations are the result of product pairs being complements (substitutes).  

There are persistent purchasing patterns that are seemingly influenced by each household’s 

lifestyle, the unobservable hidden factor that can only be inferred from one’s past purchasing 

history (Manchanda et al. 2009).  For example, the persistent positive associations between 

purchasing refrigerated entrees and frozen vegetables is likely accounted for by households who 

want to fix meals quickly and conveniently without starting from scratch.  Buying carbonated 

soft drinks is always a negative sign that the consumer will ever purchase fresh strawberries, 

which again appears to relate to lifestyle differences.  
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Certain significant associations change signs through the four time periods, indicative of the 

complex nature of intertemporal effects.  Dry-type cat food and wet-type cat food may be 

considered substitutes.  At time T-1, the purchase of dry type cat food does indicate a lower 

probability of purchasing wet type food at time T.  However, if a household purchased dry-type 

cat food at times T-2, T-3 or T-4, then it is more likely to purchase wet-type food at time T.  

Another example: a household that bought breakfast sausage within the prior two weeks is less 

likely to purchase bacon this week, but the associations turn positive if the purchase of sausage 

was made three or four weeks earlier.  Such behavior may be attributed to variety seeking.  

Candy chocolate and miniature candy chocolate, which seem to be perfect substitutes, show 

positive associations for all four time lags.  This might reflect variety seeking and/or 

heterogeneity across households: given the presence of heavy users and light / non-users in this 

category, previous purchases of one kind of chocolate may suggest a greater likelihood of buying 

chocolate again, even of a different type. 

As emphasized earlier, the key benefit of the proposed CRBM approach is its ability to 

predict future purchase probabilities at the household level, taking into account previous 

purchasing patterns, without having to impose limits on the number of product categories and the 

number of time lags for inclusion in the model.  As further demonstration, we randomly picked a 

household in the dataset that bought groceries in the previous 12 weeks.  Based on the 

household’s purchasing history, the model predicted that the six products the household was 

most likely to buy in the next week were frozen pizza, meat, cat food, fresh salad mix, cake, and 

frozen dinners.  We compared the predictions against the actual purchase data, and found that the 

household did indeed buy those six products.  We made similar predictions for all households in 

the testing data, and found an average error rate of 18.03%, which means that, on average, 
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approximately five out of every six were predicted correctly.  We then compared those results 

with a prediction based on selecting the six most frequently purchased products for each 

household over the previous twelve weeks, which appears to be a reasonable benchmark.  The 

average error rate under this household-level frequency-based prediction achieved a 22.09% 

error rate, which is higher than that for our model.  

1.4.4 Contemporaneous Cross-Category Effects 

In CRBM (as in RBM), the parameters representing associations between hidden and visible 

variables representing contemporaneous category purchases are estimated explicitly.  However, 

there are no parameters explicitly representing associations between the contemporaneous 

category purchases (see Section 2.1 and Hruschka 2014).  Therefore, contemporaneous cross-

category effects have to be estimated indirectly from the associations between visible and hidden 

variables.  We did so using the method advocated by Hruschka (discussed earlier in Section 2.2), 

with variational inference (Appendix 3).  The resulting plot, in Figure 7, shows that most positive 

cross-effects are adjacent to the principal diagonal (i.e., between products with similar purchase 

frequencies), while the negative associations tend to be between categories with disparate 

purchase frequencies.  This pattern seems to confirm previous findings that products with similar 

purchase frequencies tend to have positive contemporaneous associations with each other 

(Manchanda et al. 1999).  Overall, 38.5% of the significant associations are negative (relative to 

76.43% in the case of one period lag, in Figure 6(a))2.  As expected, there are positive 

                                                 

2 We have not dropped the contemporaneous own associations along the principal diagonal which are (trivially) 
significantly positive.  Since a vast majority of the intertemporal own associations are significantly positive (Figure 
6), we retained them in this case (Figure 7) so that comparisons are valid. 



 41 

associations between complements such milk and cookies, and also negative ones between 

substitutes, such as cookies and donuts.  Interestingly, the contemporaneous association between 

milk and orange juice is positive; recall that the association with a one period lag is negative. 

Figure 6 Contemporaneous Effects  

  

1.4.5 Discussion 

The primary purpose of our proposed CRBM model is to predict product purchases at the 

individual (household) level for non-durables when shopping baskets typically contain an 

assortment of items chosen from a large number of possible product categories, such as in the 

context of grocery (supermarket) shopping.  In this context, our model allows for the inclusion of 

a very large number of product categories with potentially interrelated shopping patterns over 

multiple time periods.  The inclusion of such large-scale intertemporal cross-category patterns 

(possible with our CRBM-based model) potentially allows for better predictions. 
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As shown in Section 4.1, the proposed model is able to predict at least as well as, and very 

much more efficiently than, traditional multivariate models, even for small datasets (which can 

be handled by the latter models).  When we expanded the model to consider 100 product 

categories over 12 time periods (Section 4.2), we discovered significant intertemporal cross-

category associations.  This illustrates the benefit of not having to impose a priori limitations on 

the model specification, a freedom allowed by the far greater efficiency of the CRBM approach. 

The intertemporal (contemporaneous) cross-category effects discussed in Sections 4.3 and 

4.4 are interesting from theoretical and managerial perspectives.  However, we note that while 

our model has a tractable and clear model structure that permits meaningful interpretation of the 

results, it does not explain why the particular patterns occur, so that our interpretations are 

speculative and plausible at best.  As discussed in Section 4.4, our interpretations do not parcel 

out individual-level behavioral patterns from cross-household heterogeneity.  There could 

potentially be other confounding effects, such as differences in preferences across members of a 

household.  It should be noted, however, that while the model parameters are estimated at the 

aggregate level, the behavioral predictions are unique to each household, based on the direct (and 

potentially moderating) effects of demographics and the role of hidden variables in the restricted 

Boltzmann machine based approach.3  

                                                 

3 As noted in Section 2.2, heterogeneity can be explicitly modeled in at least two ways, although in our 

application, neither reduced the testing error, and therefore were not incorporated in the final model. 
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1.5 MANAGERIAL IMPLICATIONS 

The outstanding computational efficiency of the proposed model is critical for analyzing, quickly 

and inexpensively, the massive amounts of data available to managers, while capturing complex 

intertemporal cross-category purchasing patterns that would not be possible to discover using 

more traditional approaches.  The ability to predict future behavior based on this analysis is what 

makes our model a potentially valuable tool for marketing decision making. 

One significant application area for our model is personalized mobile couponing.  The model 

can assist managers in multiple ways.  It predicts what consumers are most likely to buy next, 

and marketing managers can send personalized coupons to consumers, based on the predictions, 

in order to increase the coupon redemption rate.  For example, retailers can predict the top six 

products a consumer is most likely to buy next week, and send volume-based coupons for some 

of the products, to provide an incentive for the shopper to buy more units than she otherwise 

would. 

The intertemporal aspect also helps marketers decide the timing of mobile coupon 

campaigns.  As our analysis suggests, the intertemporal patterns of cross-category purchases are 

often complex and non-obvious.  Classifying product pairs as complements or substitutes fails to 

capture this complexity.  For instance, our analysis suggests that consumers who bought 

breakfast sausage are less likely to buy bacon the following two weeks, but more likely to do so 

after two weeks.  Therefore, the coupon might be more effective if sent two weeks after a 

consumer bought sausage, rather than immediately after the purchase of bacon.  

Marketers can also classify the products based on purchasing patterns, for better category 

management and more effective promotions.  The intertemporal effects capture how a product 

purchase decision is influenced by previous purchases.  Instead of a traditional classification 
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scheme, marketers can adopt a consumer-oriented approach, and segment the products by their 

purchasing patterns.  Products in the same segment may be promoted and even possibly 

displayed together, to facilitate the consumers’ shopping process.  For demonstration, we 

segmented the 100 products in the model based on their intertemporal purchasing patterns.  

Products with similar significant intertemporal effects (as captured by the appropriate model 

parameters) are thus likely to be assigned to the same cluster.  We obtained 26 clusters using K-

means, with the optimal number of clusters chosen based on the average silhouette width 

criterion (using a package in R).  The results are shown in Appendix 5.  While the classifications 

based on consumer purchasing patterns are largely similar to conventional classification 

schemes, there are obvious differences.  For example, disposable dishes are grouped with 

carbonated soft drinks, fruit drinks, bottled water, etc. (in Cluster 6), presumably because these 

products tend to be purchased together for parties.  Interestingly, liquid tea does not belong to 

this group, but is in a cluster of its own (#20). 

The proposed model can be applied in more general settings than personalizing mobile 

coupons in marketing.  Better predictions by our model would not only benefit the marketing 

manager, but also assist in inventory management, by providing more accurate demand forecasts 

to design stocking schedules.  

Besides brick-and-mortar supermarkets, this model is especially applicable for online 

retailers, who sell a much more extensive line of products than do traditional stores.  For online 

retailers, the model can be used as part of a consumer recommendation system, to help 

consumers identify what other products they might be interested in, based on their past 

purchasing histories.  Collaborative filtering models based on RBM have already been used for 
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online movie recommendations, and have proven to be very effective (Salakhutdinov et al. 

2007). 

For this paper, we conducted analysis at the product category level.    The proposed model 

may also be used at the brand level directly, to capture brand associations in consumer 

purchasing patterns.  Analysis at that level would enable managers to uncover associations 

among brands across categories, and to design cross-brand promotions based on the captured 

associations.  Furthermore, at the brand level, price and promotion information can be 

incorporated in the model.  Managers then can examine how price and promotions affect 

purchasing decisions across brands, and can determine optimal marketing mix strategies (Hansen 

et al. 2006).  Our model has the power and efficiency to conduct the analysis necessary in very 

reasonable time, even for thousands of brands.  

1.6 CONCLUSION  

Our proposed CRBM based model is a significant extension to the marketing literature on multi-

category joint purchasing decision models, by expanding the number of product categories and 

incorporating multiple time periods.  The model possesses all the benefits provided by traditional 

models, but with the huge advantage of efficient scale-up for big data analysis.  Our approach is 

comprehensive, in that it allows for the inclusion of intertemporal multi-category effects via a 

clearly specified model, without having to impose a priori constraints to ensure model 

tractability.  We showed that, even with small data sets with limited product categories, our 

model fits the data at least as well, and predicts at least as accurately, as do traditional models, 

which do not scale up efficiently. 
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We demonstrated our model’s ability to analyze high-dimensional consumer purchasing data, 

and to capture purchasing patterns helpful for marketing decisions, such as in the area of 

personalized coupon promotions.  The intertemporal, cross-category associations discovered by 

the model can help determine what product coupons to send to a consumer and when to send 

them.  We show that the intertemporal effects may be complex, and may span many product 

categories.  The effects are dynamic and asymmetric, and challenge the conventional notion of 

complements or substitutes. 

Our research may be extended in multiple ways. We conducted our analysis at the product 

category level.  Our model can be used for brand level intertemporal cross-effects analysis, with 

additional input variables, such as price and promotion.  The inclusion of marketing mix 

variables would lead to more useful and actionable insights.  

We modeled consumer purchasing decisions as binary outcomes, and did not explore the 

associations of purchasing decisions in other forms, such as the amount spent in each product 

category or the quantity purchased.  The amount spent may be modeled as a continuous variable, 

and an extension of RBM may be used to model the associations (Hinton 2006). The Poisson 

RBM may be used to model the quantities of products purchased by the consumer.  It would be 

interesting to see if using spending or purchase quantity as the dependent variable (especially at 

the brand level) leads to new consumer insights. 

Consumer heterogeneity can be incorporated either by adding individual-specific intercept 

terms or by integrating a hierarchical Bayesian model with CRBM to form a “Hierarchical Deep 

Model” (HD), as discussed in Section 2.2.   While we did not see any improvement in the 

models’ predictive performance in our application, explicit incorporation of heterogeneity in our 

model is definitely an option.
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Finally, from a consumer behavior perspective, there is a clear opportunity for 

experiment-based research to better understand (and otherwise verify) the complex effects 

suggested by the results of our model. 

2.0  CHAPTER TWO. THE MANY FORMS OF GROUP BUYING: A 

NORMATIVE STUDY OF ALTERNATIVE MECHANISMS 

2.1 INTRODUCTION 

Group buying is an emerging approach to increase sales.  Jing and Xie (2011) define group 

buying as a strategy in which a “seller offers discounted group rates to encourage individual 

consumers to purchase through buying groups.”  In just four years since its launch, Groupon – a 

flag bearer of group buying – has grown to over 260 million subscribers in over 45 countries, and 

with gross billing of $1.55 billion in their most recent quarter (Q1 of 2015, Groupon.com) for a 

10% year-to-year increase.  There were 311 online group buying sites in the USA in 2011 with 

another 176 sites in China (zixun.tuan800.com, June 2014).  The growing popularity of group 

buying sites is in large measure due to the Internet’s unmatched ability to connect consumers 

with each other and with the seller.  Yet academic research on the topic is sparse (see Anand and 

Aron 2003; Dholakia 2011; Jing and Xie 2011). 

A core premise of our normative study is that group buying is not a single, monolithic 

strategy.  Group buying sites employ diverse strategies, with distinct implications.  Groupon, 
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Nuomi (China) and DailyDeal (Germany) follow the volume strategy by which each announces a 

deeply discounted price for a product to its subscribers and does not require any peer 

mobilization on the subscriber’s part.  LivingSocial, Beibeidai (China), and MyDala (India) rely 

on a referral reward strategy under which a buyer initially pays an announced price but can get 

the good for free if she convinces three of her peers to make the purchase.  The now defunct 

Mercata, Tuanche (China), and Groffr (India) have relied on a true collective buying strategy 

wherein buyers get bigger discounts as their group size increases.  Further, each of these 

strategies has subtypes that differ in the extent of market penetration and the underlying 

processes. 

Our normative study examines the product-market conditions under which each of the above 

group buying mechanisms is optimal.  We focus on a local monopolist seller and address the 

following research questions: 

1. Under what conditions of consumer heterogeneity in product knowledge and intrinsic 

valuations should the seller choose group buying over the margin strategy? 

2. When group buying is preferred, which specific strategy (and variant or subtype within 
the strategy) is optimal? 
 

Our consideration of a broader strategy space and a more general form of consumer 

heterogeneity relative to extant studies such as Anand and Aron (2003) and Jing and Xie (2013) 

helps in offering fresh insights on optimal strategies and underlying processes.  The baseline 

mechanism in our model is the margin strategy under which the seller would rather sell fewer 

units of the good at a higher unit margin.  Our key conclusion is that no one strategy is best 

across product market conditions, and therefore the choice of strategy must be judiciously made 

on the basis of the prevailing product-market conditions. 
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Overall, our study helps to point out that while all group buying strategies seek greater 

market penetration (relative to the margin strategy), specific conditions favor a limited vs. 

aggressive pursuit of market penetration even within group buying strategies (e.g., 2-, 3- or 4-

segment collective buying can each be optimal albeit under different product market conditions).   

We are also able to show that group buying is not about relying just on well informed, high 

valuation consumers to bring in their less informed, lower valued peers.  Even the low valuation 

consumers who are well informed can be a channel for drawing other consumers, if the resulting 

drop in price is incentive enough for the lower valuation consumers to make the purchase. 

We find that collective buying and referral reward strategies are actually more profitable than 

the alternatives over a sizable domain.  Along with the two sources of consumer heterogeneity, 

other factors such as the efficiency of information sharing among consumers matter in 

determining the optimal online selling strategy.  While the regions of optimality are complicated, 

we are able to derive some general results that are insightful and managerially relevant especially 

in today’s online environment. 

We start with a brief literature review that helps position our study. Next, we describe the 

model framework, and then present our results based on comparing the profitability of different 

strategies under various product-market conditions.   In the final section, we discuss the 

theoretical contributions and managerial implications of our study, and provide future research 

directions. 
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2.2 LITERATURE AND POSITIONING 

Although group buying has long been practiced and examined in B2B contexts, the online 

B2C group buying phenomenon has caught the attention of both business practitioners and 

academic researchers more recently (Chen et al. 2007).  While there has been significant research 

on online shopping, there has been little work specifically on online selling strategies.  The group 

buying mechanism works differently from traditional selling strategies, and its effectiveness has 

been examined mostly through analytical models (Chen et al. 2010; Chen and Li 2013; Hu et al. 

2013; Kauffman and Wang 2001).  Some researchers have considered group buying as a fixed 

price group discount without information sharing (Marvel and Yang 2008; Chen and Roma 

2011; Surasvadi et al. 2014), while others have emphasized the effect of social interaction in 

group buying (Jing and Xie 2011; Ye et al. 2012). Without consumer interaction, strategic 

consumers either buy the product immediately or just wait until the group buying threshold is 

met (Liang et al. 2013).  In this setting, displaying the number of consumers signed up for the 

deal would probably increase the profitability of group buying (Hu et al 2013).  

Anand and Aron (2003) compare pricing under group buying with posted prices under 

different situations, and find that it is not always optimal for sellers to use group buying. The 

specific model they consider is the Mercata-type collective buying.  They assume implicitly that 

all consumers have perfect information on the seller’s product so that there is no information gap 

among consumers.  Their analysis considers the effect of demand uncertainty on the outcome of 

group buying. 

In contrast, Jing and Xie (2011) focus on the information gap among segments.  Specific 

forms of group buying can help to spread product information via word-of-mouth and thereby 

change consumers’ evaluation of the product. They classify consumers into 2 groups, one 
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perfectly informed about the product and the other not.  Their analytical model does not consider 

demand uncertainty or heterogeneity in intrinsic valuation among consumers. 

Recent empirical research has been based on analysis of data collected from online group 

buying deals. Consistent with previous research, empirical findings show that consumer 

interactions take place during group buying deals, and product information is spread among 

consumers as a result (Byers et al. 2012).  Aside from heterogeneity in product valuation and 

product information, there are other factors that would affect the outcome of a group buying 

deal, such as the threshold effect in terms of the surge of sign-ups when the minimum number of 

consumers required for a group buying deal is reached (Wu et al. 2014; Zhou et al. 2013).  The 

“two-sided platform” is also a distinctive aspect of online group buying and has garnered some 

research interest (Rochet and Tirole 2003; Kim et al. 2012).   

Dholakia (2011) examines the real world impact of daily deals on profits for different 

product categories, and local merchants’ attitude towards daily deals after a first try.  His survey 

results suggest that online daily deals yield disappointing consumer return rates, thereby 

lowering merchants’ willingness to run another daily deal in the future.  More recently, Edelman, 

Jaffe, and Kominers (2011) analyze the profitability of using Groupon to sell experience goods 

based on the parsimonious framework of Bils (1989). 

Our study complements the above stream of research in at least two ways: 

• Blending the perspectives of Anand and Aron (2003) and Jing and Xie (2009), we 

consider a market characterized by heterogeneity in consumers’ intrinsic valuation and 

product knowledge.  Our four-segment conceptualization in which consumers are high or 

low dimension helps unearth process explanations previously unexplored.   

• Together with the above, our consideration of not only the three principal group buying 

strategies but also their subtypes helps clarify the optimal strategy and its underlying 

mechanism in a manner that is new.  For example, we are repeatedly able to show that (a) 



 52 

a group buying strategy need not be about maximizing penetration; (b) a suboptimal 

subtype of a specific strategy may undermine the appeal of the general strategy under 

specific market conditions; (c) under a strategy such as referral reward, the initial buyer 

need not just be the prime consumer (with the highest valuation) but even a subprime 

consumer who sees an opportunity to gain a referral reward through social interaction, 

thereby making the purchase incentive compatible for herself. 

2.3 MODEL  

Our model builds on Jing and Xie’s (2011) framework.  Like them, we focus on a profit 

maximizing monopolist who has ample quantity of a product to offer.  The product’s marginal 

cost is set to zero without loss of generality.  Consumers are surplus maximizers.  They are 

heterogeneous in their level of information about the product (i.e., product knowledge). We 

simply consider two consumer types on this basis, well informed (Hi-Inf) and less uninformed 

(Lo-Inf).  The difference in the information levels between the consumer types is the information 

gap I (see Alba and Hutchinson 1987).   

Specific group buying strategies such as referral reward depend on the influencers – the Hi-

Inf consumers – informing the Lo-Inf consumers to induce the latter to buy the product by 

increasing their product valuation.  Informing a Lo-Inf consumer requires effort on the part of the 

Hi-Inf consumer, who must be incentivized to make the effort.  The referral reward, for example, 

is such an incentive.  The Hi-Inf consumer incurs a cost of effort β in providing information to a 

Lo-Inf consumer to narrow the information gap by one unit.  One unit of information boosts the 

Lo-Inf consumer’s valuation by α. Thus, bridging the entire information gap I increases Lo-Inf 

consumer valuation by α I, while the cost incurred by the Hi-Inf consumer in providing the 
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information is β I. The parameters α, β and I are likely to be product-market specific.  For ease 

of reference, we list all the notations used in our model in Table 1. 

 
 
Table 4  List of Notations 
Notation Description 
Consumer/Segment Types 
Hi-Inf Well informed consumer 
Lo-Inf Less informed consumer 
Hi-Val High intrinsic valuation consumer 
Lo-Val Low intrinsic valuation consumer 
Segment 1 Hi-Val / Hi-Inf consumers 
Segment 2 Hi-Val / Lo-Inf consumers 
Segment 3 Lo-Val / Hi-Inf consumers 
Segment 4 Lo-Val / Lo-Inf consumers 
Parameters 
V Product valuation of Lo-Val / Lo-Inf consumer (Segment 4) 
I Information gap between Hi-Inf and Lo-Inf consumers 
φ Intrinsic product valuation gap between Hi-Val and Lo-Val consumers 
α Impact of one unit of information on a consumer’s product valuation 
β Cost incurred by Hi-Inf consumer to narrow the information gap with 

the Lo-Inf consumer by one unit 
δ Discount factor 
Decision Variables 
P Price  
R Referral Reward 
∆ I Amount of information conveyed by Hi-Inf consumers in educating 

Low-Inf consumers (∆ I ≤ I) 

One of the ways in which we extend Jing and Xie’s framework is by incorporating 

heterogeneity in intrinsic valuations among consumers, capturing the important idea that 

consumers with the same level of product information about the product are likely to have 

different valuations of the product.  Consumers have either high or low intrinsic product 

valuation, with φ denoting the difference in intrinsic valuation between the two consumer types, 

denoted by Hi-Val and Lo-Val. 
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The resulting four segment structure is shown schematically in Figure 1, with the initial 

valuations before the seller introduces incentives that might bridge some of the gaps.  As in Jing 

and Xie, we assume that each segment is of size 1.  Relaxing this assumption is straightforward, 

but the greater complexity does not add any meaningful insights. 

Figure 7 Consumer Segments and Their Initial Valuations 
 Well Informed (Hi-Inf) Less Informed (Lo-Inf) 

High Intrinsic Valuation (Hi-Val) Segment 1: V + φ + α I Segment 2: V + φ 

Low Intrinsic Valuation (Lo-Val) Segment 3: V + α I Segment 4: V 

This four-segment structure provides conceptual and strategic elements of our framework 

vis-à-vis Jing and Xie.  First, our model captures the point that the information dissemination 

aspect of group buying need not originate only from the well informed, high value consumer in 

Segment 1.  Segment 3, informed but with low product valuation, can also be an effective source 

of information.  In fact, informing Segment 2 and bringing it on board might actually make the 

product affordable to Segment 3.  (An illustration of this is LivingSocial’s referral reward 

strategy noted earlier.  The information disseminator can get the product for free in that context.)  

Second, the above heterogeneity structure opens up a broader strategy space, notably in the 

subtypes of each strategy, as will be evidenced by the following discussion and subsequent 

analysis. 

The seller’s strategy space consists of the following: 

• Margin strategy.  Under this baseline strategy, the seller prices the product to clear only 

the one or two highest value segments and does not offer any incentive to promote group 

buying.  At a minimum, Segment 1, with the highest valuation, will be cleared.  The 

choice between Segments 2 and 3 depends on their respective valuations.  Accordingly, 

1-segment and 2-segment margin strategies must be distinguished. 
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• Volume strategy.  Analogous to Groupon’s model, the seller sets the price low enough to 

clear most or all of the segments.  There is no monetary incentive to the fully informed 

segments to inform the other segments.  Rather the lower price is sufficient to make the 

purchase incentive compatible to Segments 2 and/or 4.  We consider 3-segment and 4-

segment volume strategies.  In the former case, Segment 4 forgoes purchase. 

• Referral reward strategy.  Akin to LivingSocial, the seller offers a discount to the Hi-Inf 

consumers (Segments 1 and 3) as an incentive for informing Segments 2 and/or 4 and 

thereby improving the latter’s valuation.  The reward must be sufficient for Segments 1 

and/or 3 to inform while also making the purchase themselves.  Of course, Segments 2 

and 4 do not receive the reward.  The segment(s) that buy after being informed do so at a 

later point in time, and the reward for a referral is also received at this later point, and 

hence discounted (by a factor δ) to reflect the time value of money.  Of course, the time 

difference may (and typically will) be small, in which case δ ≈ 1. 

• Collective buying strategy.  Akin to Mercata’s business model, the seller offers a discount 

tied to the number of consumers who band together to purchase the product.  Similar to 

the referral reward strategy, collective buying is time consuming as consumers have to 

seek out other prospects.  Unlike referral reward, all consumers (or segments) who buy 

collectively will receive the product at the same discounted price. 

The strategies, subtypes and notation used henceforth are provided in Table 2.  The profit-

maximizing seller seeks to maximize profits under each strategy.  The seller’s objective is to 

choose the profit maximizing strategy and subtype for a given set of product-market conditions.  

Table 5  Strategies, Subtypes, and Notation 
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Strategy Subtype and Notation 
Margin Strategy (MS) • 1-segment: MS (1) 

• 2-segment: MS (1, 2) or MS (1, 3) 
Volume Strategy (VS) • 3-segment: VS (1, 2, 3)  

• 4-segment: VS (1, 2, 3, 4) 
Referral Reward Strategy (RRS) • 2-segment: RRS (1, 2)  

• 3-segment: RRS (1, 2, 3) 
• 4-segment: RRS (1, 2, 3, 4) 

Collective Buying Strategy (CBS) • 2-segment: CBS (1, 2) or (1, 3) 
• 3-segment: CBS (1, 2, 3)  
• 4-segment: CBS (1, 2, 3, 4) 

 

2.4 ANALYSIS AND RESULTS 

Our analysis proceeds in two stages.  First, in §4.1, we derive the optimal (or profit maximizing) 

price and/or incentive under each strategy and the corresponding profit.  Under any given 

strategy and subtype, the seller and consumers behave rationally to ensure that the targeted 

number of consumers make the purchase; indeed, doing so is Pareto optimal.  The analysis in 

§4.1 provides the basis for the key results of our research, presented in §4.2, identifying which 

strategy (margin, volume, referral reward or collective buying, each with their subtypes) is 

optimal under a range of product-market conditions. 

  As in Jing and Xie, we set each segment size to 1.  Since  represents the intrinsic valuation 

gap between two equally informed consumers (between Segments 1 and 3, or 2 and 4), and αI 

represents the information-related valuation gap (between Segments 1 and 2, or 3 and 4), the 

magnitudes of ϕ and αI determine the attractiveness of the segments and the effectiveness of 
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alternative strategies.  The seller is aware that consumers’ choices under a given strategy – and 

subtype –fulfill individual rationality and incentive compatibility constraints. 

2.4.1 Optimal Prices and Profits 

In this subsection, we present the optimal prices, profit, and (in the referral reward case) optimal 

reward for each strategy, considering all feasible subtypes under each strategy, in the form of 

Lemmas.  These lemmas then inform our analysis leading to the central results of our research.  

Margin and Volume Strategies. When φ < (or >) Iα, the valuation difference between 

segments 1 and 2 due to the information gap is greater (or less) than that between segments 1 and 

3 due to intrinsic valuation heterogeneity.  Given the profit-maximizing monopolist facing 

rational consumers, the analysis yields the following optimal prices and profits under each 

subtype of the margin and volume strategies: 

Lemma 1. The optimal prices and corresponding profits under margin (MS) and volume (VS) 
strategies are as follows: 

Strategy Subtype Optimal Price Profit 

MS (1) IV αφ ++  IV αφ ++  

MS (1, 2)  φ+V  )(2 φ+V  

MS (1, 3)  IV α+  )(2 IV α+  

VS (1, 2, 3) (φ < αI)  φ+V  )(3 φ+V  

VS (1, 2, 3) (φ > αI)  IV α+  )(3 IV α+  

VS (1, 2, 3, 4) V  V4  

Referral Reward.  While the product is priced at P, the Hi-Inf consumer gets a reward R if 

she is successful in informing the Lo-Inf consumer so that the latter’s valuation of the product 
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increases to make purchase incentive compatible at full price P.  As the Hi-Inf consumer is 

required to make the purchase up front to avail of the reward, she effectively pays P – δ R for the 

product, since the reward is obtained at a later period and hence discounted by δ.  As shown in 

Table 2, there are three subtypes of the referral reward strategy, involving Segments 1 and 2 

only, Segments 1, 2, and 3, and all four segments.  The derivations of the optimal prices, 

rewards, and firm profits for the three cases are provided in Appendix A.1. 

 
 
 
 
 
Lemma 2.  The optimal prices and corresponding profits under the referral reward strategy 

(RRS) are as follows: 
 
Strategy Subtype Optimal Price Optimal Reward Profit 

RRS (1, 2) IV αφ ++   IIV δβαφδ −+++ ))(1(  

RRS (1, 2, 3) IV α+  
α

φαβ )( −I  
α

φαδβαδ )())(2( −
−++

IIV  

RRS (1, 2, 3, 4) 
(φ < αI, Option I) 

φ+V  
α
βφ  

α
δβφφδ −++ ))(3( V  

RRS (1, 2, 3, 4) 
(φ < αI, Option II) 

IV α+   IIV δβαδ 2))(22( −++  

RRS (1, 2, 3, 4) 
(φ > αI) 

IV α+   IIV δβαδ −++ ))(3(  

 

Collective Buying. Under this strategy, Hi-Inf consumers must first educate the Lo-Inf 

consumers to increase the latter’s valuation, and then join with them to drive down the seller’s 

price (assuming that reducing the price is in the seller’s interest).  The lower price provides the 

incentive for Segments 1 and/or 3 to undertake the effort to inform Segments 2 and/or 4.  The 
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consumers in Segment 1 may not expend the effort to fully inform the consumers in Segment 2 

(and/or 4), but only to the extent that is incentive compatible for the concerned parties.   

As the effort to inform the Lo-Inf consumers takes time, profits from collective buying are 

slightly discounted by δ.  Group buying sites typically work with shopping windows of only days 

or weeks, and hence δ should usually be close to 1.  Table 1 indicates the three subtypes of the 

collective buying strategy, involving Segments 1and 2 (or 3), Segments 1, 2, and 3, and all four 

segments.  The derivations of the optimal prices, rewards, and firm profits for the three cases are 

provided in Appendix A.2. 

Lemma 3. The optimal prices and corresponding profits under the collective buying strategy 
(CBS) are as follows: 

 
Strategy Subtype* Optimal Price Profit 

CBS (1, 2) 
βα

αφ
+

++
IV

2

 )(2
2

βα
αφδ

+
++

IV  

CBS (1, 2, 3) (φ < αI) βα
αφβα

+
−

++
2

)( IIV  )
2

)((3
βα
αφβαδ

+
−

++
IIV  

CBS (1, 2, 3, 4) (φ < αI) βα
βφα

22
2 2

+
+

+
IV  )

22
2(4

2

βα
βφαδ

+
+

+
IV  

CBS (1, 2, 3, 4) (φ > αI) βα
α

+
+

2
2 2IV  )

2
2(4

2

βα
αδ

+
+

IV  

* CBS (1, 2) is not feasible for φ < Iα, and CBS (1, 2, 3) is not feasible for φ > Iα.  

Some observations on the optimal prices and profits for different strategies are in order, 

especially with regard to the impact of α, β, ϕ, and I.  Traditional selling strategies (margin and 

volume) do not involve consumer information sharing, and optimal prices and profits are 

therefore independent of the consumer’s cost of information-sharing β.  For group buying 

strategies (RRS and CBS), the optimality is affected not only by the heterogeneity in product 
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information determined by α and I, but also by the heterogeneity in intrinsic valuation ϕ.  The 

relative magnitude of these two sources of heterogeneity in valuations has significant 

implications for optimal prices and profits under RRS or CBS strategies.  Since the magnitudes 

of α, I, β and ϕ determine the profit levels, it is clear that they will determine which strategy (and 

subtype within a strategy) is optimal, which is the focus in the next subsection. 

Comparative statics.  We briefly examine how the prices and profits for different strategies 

are affected by α, I, β and ϕ.  The comparative statics (see Appendix A.3) indicate that the unlike 

the traditional margin or volume strategies, the parameters have a nonlinear impact on optimal 

prices and profits.  There is also a distinct difference between CBS and RRS.  CBS is a more 

nuanced group buying strategy than RRS: the optimal price for CBS is affected by all 

parameters, while for RRS the optimal price is always equal to the valuation of the referrer.  

Therefore, the optimal price under RRS is independent of β, and generally (but not always) 

changes positively with α or ϕ.  Since reward under RRS is higher when β is larger, β negatively 

impacts the profit. 

For CBS, the optimal price will always be non-decreasing in ϕ, but does not does not change 

monotonically in α, I, or β. These parameters interact with each other in a complicated manner in 

determining the optimal price, and consequently their impact on prices and profits can be either 

negative or positive, depending on their levels.  

2.4.2 Relative Attractiveness of Alternative Strategies 

Our focus here is on identifying the optimal (i.e., profit maximizing) strategies under a range of 

conditions.  Since each strategy has subtypes and there are several parameters that interact, we 

present our results in stages for more effective exposition.  We compare (a) RRS alone with MS 
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and VS in §4.2.1, (b) CBS alone with MS and VS in §4.2.2, and finally (c) both RRS and CBS 

with MS and VS (the full strategy space) in §4.2.3.  This sequential presentation more effectively 

clarifies the domains of attractiveness of alternative strategies and the related intuition.  To 

simplify the exposition, but without loss of generality, we set V to 1 which means the lowest 

product valuation among the consumers is 1.  The values of other parameters can be scaled 

proportionately.  In this sub-section, we set the discount factor δ to 1 which is a reasonable 

approximation, as discussed earlier.  Discussion of the impact of a smaller δ is deferred to the 

following sub-section.  

We present the domains of optimality in the form of phase diagrams.  Each figure has panels 

for high, medium and low levels of β (cost to the Hi-Inf consumer of bridging the information 

gap by one unit).  Each panel indicates the optimal strategy as a phase diagram in the two-

dimensional space defined by ϕ (the measure of the heterogeneity in intrinsic valuation) on the 

horizontal axis and α I (the increase in reservation price of the less informed consumers when 

the information gap is fully bridged) on the vertical axis.  The analytical demarcation of the 

boundaries between adjacent regions of optimality is discussed in Appendix B. 

2.4.3 Relative Attractiveness of Margin, Volume and Referral Reward Strategies 

Figure 2 provides the panel of phase diagrams (in color) showing specific thresholds for the 

domains of optimality in this case. 
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Figure 8 Domains of Optimality of Margin, Volume and Referral Reward Strategies 

 
The implications are summarized below. 

Result 1.  Among MS, VS and RRS: the domain of optimality of RRS is larger when β is lower.  

For higher β, VS is optimal when αI ≈ ϕ; MS is optimal otherwise. Specifically: 

(a)  When β is low, RRS dominates VS and MS.  Within RRS:  

(i) RRS (1,2,3,4) is optimal when αI > (ϕ – 1);  

(ii) RRS (1,2) is optimal otherwise. 

(b)  When β is moderate,  

(i) RRS is optimal when αI >1. Within RRS, RRS (1,2) is optimal for αI < (ϕ – 1); RRS 

(1,2,3,4) is optimal otherwise.   

(ii) When αI < 1, MS is optimal for 



 +

>>
2
31 and 1 Iaφφ  and VS is optimal otherwise.  

Within VS, VS(1,2,3,4) is optimal as αI and ϕ approach zero; VS (1,2,3) is optimal 

otherwise.  Within MS, MS (1,2) is optimal. 

(c) When β is large, the domain of optimality of RRS shrinks.  VS is optimal 

for
2
31

3
12 φαφ +

<<
− I .  MS is optimal otherwise.  Further, 
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(i) Within VS: VS (1,2,3) is de facto optimal; VS (1,2,3,4) is optimal only when αI and 

ϕ approach zero.   

(ii) Within MS: MS (1,2) is optimal when
3

12 −
<

φαI ; MS (1,3) is optimal when 

2
31 φα +

>I . 

RRS is a price discrimination strategy; MS and VS are not.  Specifically, under RRS, the 

seller offers a discount for the Hi-Inf Segment 1 (and/or 3) in exchange for bridging the 

information gap with the Lo-Inf Segment 2 (and/or 4).  Segments 2 and 4, when they make the 

purchase, pay full price. 

Low β means information sharing is less burdensome for the Hi-Inf segments.  Therefore, in 

exchange for a relatively small reward, the seller can entice one or both of these segments to 

inform the Lo-Inf segment(s).  Segments 1 and 2 will always buy the product under RRS.  The 

inclusion of Segments 3 and 4 depends further on the intrinsic valuation gap ϕ relative to the 

information-related valuation gap αI.  When the latter is large enough relative to the former, it 

becomes profitable to reward information sharing with even Segment 4, making RRS (1,2,3,4) 

optimal.  

When β is large, the seller would have to offer a significantly higher reward to the Hi-Inf 

segment(s) to motivate them to educate the Lo-Inf segment(s), thus reducing the appeal of RRS 

relative to MS or VS.  Between the latter two strategies, first consider the case of αI ≈ ϕ, which 

means that Segments 2 (Hi-Val / Lo-Inf) and 3 (Lo-Val / Hi-Inf)  are roughly equally appealing to 

the seller who is better off not leaving these two segments untapped.  Thus, VS (1,2,3) is optimal 

in this region.  Now if αI and ϕ are both small, Segment 4 ((Lo-Val / Lo-Inf)) is no longer much 

lower than the other segments in its willingness to pay, and thus VS (1,2,3,4) becomes optimal 

for the seller.  On the other hand, MS is optimal when αI and ϕ are significantly different from 
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each other.  MS (1,2) is optimal when αI << ϕ because of segment 3’s low valuation relative to 

Segment 2, and conversely MS (1,3) is optimal when αI >> ϕ. 

Note, however, that even under high β, there is a region where RRS (1,2,3) is optimal – when 

αI and ϕ are both sufficiently large to make it worthwhile for the seller to incentivize the Hi-Inf 

segments to close the information gap for Segment 2.  Given the large intrinsic valuation gap 

between Segments 2 and 4, it is not profitable for the seller to drop prices to include the latter 

segment.  The relative magnitudes of αI and ϕ are important in defining the region of optimality 

for RRS (1,2,3).  If ϕ is large relative to αI, then a simple volume strategy, VS (1,2,3) is a more 

profitable approach that includes both Segments 2 and 3 among buyers without having to reward 

the informed segments to share information with Segment 2. 

When β is moderate (Result 1(b); the middle panel in Figure 2), RRS is appealing but only 

when the information-related valuation gap is above some threshold (specifically, when αI > 1).  

Moderate β means that referral is less efficient than under low β.  The intuition is that a 

sufficiently high αI provides the opportunity to enhance the valuations of Segment 2 (and 

possibly 4).  β is still moderate enough to facilitate the referral efforts.  As discussed earlier in 

the case of low β, whether RRS (1,2) or RRS (1,2,3,4) is optimal depends on ϕ relative to αI.  

The latter is optimal when αI is relatively large, and vice versa.  (Note that there is an RRS 

(1,2,3) “sliver” within the larger RRS (1,2,3,4) region, where the combination of the product-

market parameter values makes it suboptimal to sell to Segment 4.  The boundary conditions in 

this case are complex and not particularly insightful, and hence not discussed here.) 

When the information-related valuation gap does not exceed the threshold, rewarding 

informed consumers is no longer profitable, and a “traditional” volume or margin strategy 
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becomes optimal.  Depending on the relative values αI and ϕ, MS (1,2), VS (1,2,3) or VS 

(1,2,3,4)  is optimal – as discussed above, for the high β case. 

4.2.2.  Relative Attractiveness of Margin, Volume and Collective Buying Strategies 

Figure 3 provides the panel of phase diagrams (in color) showing specific thresholds for the 

domains of optimality in this case.  

 
 
Figure 9 Domains of Optimality of Margin, Volume and Collective Buying Strategies 

T

he implications are summarized below. 

Result 2.  Among MS, VS and CBS, the domain of optimality of CBS is larger when β is lower.  

For high β, VS is optimal when αI ≈ ϕ; MS is optimal under low ϕ and high αI; CBS is optimal 

elsewhere. Specifically: 

(a) When β is low or moderate, CBS dominates VS and MS.  Within CBS:  

(i) CBS (1,2,3,4) optimal when ; 

(ii) CBS (1,2) is optimal otherwise. 
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(b) When β is large: 

(i) MS (1,3) is optimal for high αI and low ϕ; 

(ii) VS (1,2,3) is optimal when  αI ≈ ϕ. Specifically, VS (1,2,3) is optimal when 
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(iii) CBS is optimal otherwise.  CBS (1,2) is optimal for ϕ>> αI; CBS (1,2,3,4) is 

optimal for low αI and low ϕ; and CBS (1,2,3) is optimal elsewhere.  

Comparing Figures 2 and 3, it is apparent that the regions of optimality for RRS (in Figure 2) 

and CBS (in Figures 3) versus VS and MS are qualitatively similar, although CBS has a larger 

domain of optimality than RRS does.  The 2-, 3-, and 4-segment CBS subtypes are optimal in 

regions of the phase diagrams that are comparable to those for RRS, illustrating that in both 

group buying strategies, each of the subtypes can be optimal under appropriate product-market 

conditions defined by the model parameters.  The rationale for the specific regions of optimality 

as shown in Figure 3 closely parallels that for the RRS case discussed §4.2.1 above, and 

therefore not repeated here. 

While the intuition for the optimality of CBS is analogous to that for RRS, the two strategies 

work differently, which informs their relative attractiveness under different conditions when both 

options are available.  The key insights in this regard are discussed next, as we expand the 

strategy space to include both RRS and CBS along with VS and MS. 
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2.4.4 Relative Attractiveness of Margin, Volume, Referral Rewards and Collective 

Buying Strategies 

We now expand the strategy space to examine the domains of optimality for all four strategies 

under evaluation, with Figure 4 providing the panel of phase diagrams (in color). 

 
 
 
Figure 10 Domains of Optimality of Margin, Volume, Referral Reward and Collective Buying 
Strategies 

 
Result 3.  Among MS, VS, RRS and CBS: RRS is optimal for low β.  As β increases, the domain of 

RRS shrinks and that of CBS expands.  For high β, RRS is suboptimal; VS is optimal when αI ≈ 

ϕ; MS is optimal under low ϕ and high αI; and CBS is optimal elsewhere. Specifically:     

(a) When β is low, RRS dominates.  RRS (1,2,3,4) is optimal when ( )1+< Iαφ ; RRS (1,2) is 

optimal otherwise. 

(b) When β is moderate, the domain of optimality of RRS in (a) shrinks as follows: 

(i) RRS (1,2,3,4) remains optimal when (α –β)I < ϕ < αI. Otherwise CBS (1,2,3,4) 

replaces RRS (1,2,3,4) as the optimal strategy. 

(ii) RRS (1,2) remains optimal when β<α.  Otherwise CBS (1,2) is optimal. 
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(c) When β is large:  

(i) MS (1,3) is optimal for high αI and low ϕ; 

(ii) VS (1,2,3) is optimal for αI ≈ ϕ;  

(iii) CBS is optimal elsewhere.  Within CBS, CBS (1,2) is optimal for ϕ>> αI; CBS 

(1,2,3,4) is optimal for low αI and low ϕ; CBS (1,2,3) is optimal elsewhere. 

RRS is optimal when the cost of information sharing (β) is low, but as β increases, CBS 

takes over from RRS as the dominant strategy; at sufficiently high β there are regions where VS 

and MS are optimal along with CBS.   

Under RRS, the Hi-Inf segment is rewarded more heavily for making the effort to educate 

Lo-Inf consumers to the extent needed (and thereby maximally raise the latter’s valuation).  On 

the other hand, under CBS, the price discount (“reward”) for a Hi-Inf consumer decreases as the 

Lo-Inf segments are better educated, because this raises their product valuations which implies 

higher collective buy prices.  Hi-Inf consumers in CBS have the incentive to educate their Lo-Inf 

peers as in RRS but do not have to expend as much effort because the product is discounted for 

all consumers based on the volume realized.  Further, from the seller’s perspective, the price at 

which Lo-Inf segments can be cleared under CBS is higher compared to the volume strategy 

because information sharing raises the valuation of the Lo-Inf consumers.  Thus, CBS emerges as 

an effective compromise between RRS and volume strategies as β increases and RRS is no 

longer dominant owing to the greater cost of information sharing.  (Note that in CBS, the seller 

chooses a price schedule that sets the price at a point between the valuations of the Hi-Inf and 

Lo-Inf segments.) 

Consider Result 3(a) and the left panel of Figure 4.  Given the low β, the Hi-Inf segments 1 

(and 3) can educate Segments 2 (and 4) without much effort.  Under RRS, a modest reward from 
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the seller to the informed segments is sufficient to bridge the entire information gap, thus 

maximally raising valuations for segments 2 and 4.  By contrast, with CBS, the Hi-Inf segments 

have the incentive to educate the Lo-Inf segments only to the extent that raises their valuations to 

make the purchase.  As a result, the market’s total valuation is less under CBS than under RRS, 

thereby making RRS more profitable for the seller.  RRS, as a price discrimination strategy, 

helps the seller by getting the full-information price out of Segment 2 (and possibly 4) while 

offering a targeted discount to segment 1 (and possibly 3).  The regions of optimality for RRS 

(1,2) versus RRS (1,2,3,4) and the underlying logic are exactly as discussed in §4.2.1, and 

therefore not repeated here. 

Conversely, when β is high (Result 3(c) and the right panel of Figure 4), RRS is dominated 

by other strategies.  Indeed, with RRS out of the picture, the phase diagram in this case is the 

same as the corresponding panel in Figure 3 in §4.2.2, and our earlier discussion explaining the 

results applies. 

The interesting case is that of moderate β (the middle panel in Figure 4 and Result 3(b)) 

because it involves both RRS and CBS in their 2- and 4-segment subtypes.  In effect, we need to 

understand why, as β increases from low to moderate, a part of RRS (1,2) is taken over by CBS 

(1,2) and a part of RRS (1,2,3,4) is taken over by CBS (1,2,3,4). 

The boundaries between RRS (1,2,3,4) and CBS (1,2,3,4) and between RRS (1,2) and CBS 

(1,2) are formally stated in Result 3(b).  CBS (1,2,3,4) appears as a diagonal strip within the RRS 

(1,2,3,4) region, defined by the condition stated in Result 3 (b) (i).  In effect, there is a tradeoff 

between intrinsic valuation gap ϕ and the information-based valuation gap αI.  As long as the 

intrinsic valuation gap exists within the range defined by Result 3(b)(i), CBS (1,2,3,4) is optimal, 

otherwise, RRS (1,2,3,4) is optimal.  In the case of RRS (1,2) and CBS (1,2), the boundary 
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condition is more straightforward (Result 3(b)(ii)) – when α (the valuation impact of a unit of 

information) is less than β (the cost of sharing one unit of information), CBS (1,2) takes over 

from RRS (1,2).  Given our discussion of how the two group buying strategies operate, these 

results make sense.  

From Figures 2, 3, and 4, we observe that a three-segment group buying strategy (CBS 

(1,2,3) or RRS (1,2,3)) is optimal only when β is large.  The region of optimality is clearly 

defined on one boundary, with VS (1,2,3) – αI must be greater than ϕ to make the group buying 

strategy more attractive than the corresponding volume strategy.  Also, for CBS (1, 2, 3) to be 

optimal, β must be sufficiently large.  Otherwise, CBS (1,2,3,4) is optimal if αI is low (in which 

case segment 4 is included) and MS (1,3) is optimal if αI is high (the Lo-Inf segments are 

unattractive given the large information gap, and too expensive to inform, given high β). 

2.4.5 Impact of Discount Factor on Optimal Strategies 

Our analysis in §4.2 has assumed that the discount factor δ = 1, effectively focusing on situations 

where there is little delay in the transactions  (which covers a vast majority of real world cases – 

for example, most online deals only stay valid for a few days). Nevertheless, we extend our 

discussion in this subsection to consider the implications of the discount factor δ less than 1, 

focusing on broad, qualitative insights.  (We will readily share the mathematical details with 

interested readers.) 

In our analysis, δ comes into play only in the case of those group buying strategies where 

there is consumer interaction involved.  Thus, margin or volume strategies are immune to the 
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changes in δ.  These traditional strategies become more attractive relative to group buying 

strategies as δ becomes smaller (that is, as the time value of money becomes more significant). 

The impact of the discount factor is different between RRS and CBS.  In the case of CBS, the 

transaction will not occur until (and unless) the information sharing process has reached the point 

where the valuation of the Lo-Inf consumer(s) has been raised sufficiently to motivate purchase.  

A lengthy information sharing process results in a lower (discounted) overall consumer surplus, 

implying lower profit for the seller. 

In the case of RRS, the Hi-Inf consumer would buy the product first and then attempt to 

persuade the Lo-Inf consumer(s) to buy in order to get the referral reward.  Therefore, only the 

part of the profit generated from the Lo-Inf consumers’ transactions would be delayed and 

negatively affected.  Thus, in general, CBS is more sensitive to the changes in discount factor 

than RRS, and thereby is at a relative disadvantage as δ decreases. 

Even if RRS is impacted less relative to CBS by the discount factor, both are adversely 

affected, unlike MS or VS.  Thus, the traditional volume or margin strategies dominate group 

buying strategies when the discount factor becomes sufficiently large. Therefore, the group 

buying strategies – CBS in particular – are unlikely to be optimal if the information sharing 

process is expected to span a very long period of time.  Fortunately, this rarely happens in real 

world applications. 
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2.5 CONCLUSION 

Three factors have motivated this study.  First, while group buying sites have mushroomed in the 

real world, especially in the USA and Asia, academic work on the topic is still in its early stages.  

Second, a detailed but not exhaustive search online reveals that a large majority of the online 

group buying sites are based on the daily deal model of Groupon.  The relevance of alternative 

mechanisms of group buying seems to be grossly overlooked at least among practitioners.  Third, 

analytically-oriented academic studies on the topic have taken a rather restricted view of 

consumer heterogeneity and have ignored variants of specific strategies.  Doing so limits the 

scope of the guidelines from extant studies.   

Recall that we consider four core strategies – margin (MS), volume (VS), referral reward 

(RRS), and collective buying (CBS) – and their subtypes.  We discuss below the scope and 

potential of these strategies.  We also note the limitations and future research directions. 

2.5.1 Theoretical Implications 

Whereas Anand and Aron (2003) consider consumer heterogeneity in intrinsic valuation and 

Jing and Xie (2009) consider heterogeneity in valuation tied to consumers’ product knowledge, 

we model both forms of heterogeneity.  This is significant because it maps on to a broader array 

of products and segments, opens up a larger strategy space, and clarifies how a group buying 

strategy such as collective buying is not always about increasing sales volume. 

The following are among the study’s salient theoretical implications: 

• Collective buying and referral reward, the two group buying strategies in which the seller 

is really able to co-opt some segments of consumers to persuade others, turn out to be the 
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most widely optimal.  A subtype of one of these strategies prevails except when the 

informed consumers find the process of informing their less informed peers very costly.   

• Between collective buying and referral reward, the latter benefits from the power of price 

discrimination: the seller is able to target the reward at the consumers who persuaded 

their peers to buy.  However, the strength of collective buying lies in its ability to find a 

balance between the power of information sharing and the power of an outright price 

discount.  This balance makes CBS appealing when the cost of information sharing is not 

low. 

• Our modeling approach and results underscore that group buying should not be seen 

primarily as selling to the most number of consumers.  RRS or CBS can be optimal even 

when the bulk of the market is deliberately not served.  This can happen when 

heterogeneity is large on both product knowledge and intrinsic valuation.  Group buying 

succeeds here by informing and tapping the less informed consumers and forgoing the 

informed consumers who have lower intrinsic valuation.  We see this facet of group 

buying as pull marketing at its best. 

• The conventional wisdom on RRS appears to be that the highest valued consumers would 

buy first and can be roped in to attract their peers.  While we do not dispute this, we show 

that RRS can appeal to the well informed but lower valuation consumers who anticipate 

that the referral reward will make it incentive compatible for them to engage in 

information sharing.   

2.5.2 Managerial Implications 

The principal motivation for our study comes from the proliferation and diversity of group 

buying sites around the world.  Our modeling approach and findings have the following 

implications for practitioners exploring the potential of group buying: 

• No one form of group buying is optimal and the choice of strategy is sensitive to the 

product market conditions (as captured by our model parameters).  This suggests that 
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firms relying on one group buying vehicle – e.g., Groupon – across products and markets 

are probably not tapping into the full richness of group buying.   

• Our model incorporates the information gap and the cost of bridging this gap.  We would 

surmise that the gap is greater for higher ticket experience goods such as consumer 

electronics and vacation packages.  The cost of bridging the gap would be greater when 

network or interaction among consumers within the social system is more difficult.  

Under a combination of these circumstances, we would recommend CBS as with 

Tuanche or Mercata (now defunct) over Living Social (RRS) or Groupon (VS). 

• When the information gap is low and the cost of information sharing is moderate, a 

LivingSocial-type RRS is appropriate.  Car rentals or manicure services arguably fall in 

this category.  But even here, we would not favor LivingSocial’s formulaic “get service 

free in exchange for three referrals.” This is a riskier all-or-nothing type approach.  A 

better alternative might be to get x% off for each referral, as this reduces the burden of 

finding three individuals in a not-so-well networked social environment. 

2.5.3 Research Limitations and Future Research Directions 

Despite our arguably more general approach to modeling the group buying problem, we have 

relied on simplifying assumptions for the sake of model tractability.  These limit the study’s 

scope while offering opportunities for future research.   

We have assumed that while the valuation of the less informed segment(s) increases through 

peer referral, the informed segment’s valuation does not increase.  However, group buying sites 

for homes such as Zhongtuan in China and Groffr in India are hoping to tap the network effect 

when friends and family come together to buy a block of apartments.  Modeling the presence of 

network externality should make the analysis more relevant to such settings.   

The seller in our model is assumed to pick one of the strategies in the study to sell the 

product.  It could be argued that the seller can resort to a combination of group buying strategies 
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such as referral reward and margin strategies.  It would be interesting to examine which 

combination of strategies might work best in tandem. 

Our approach is entirely analytical.  The rise of group buying sites provides the opportunity 

for rich datasets for similar products but across strategies.  It would be interesting to take some of 

the propositions to data so as to validate or modify the current guidelines.  
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APPENDIX 1  GLOSSARY OF NOTATION 

The symbols used to describe the model are summarized in the following table  

 
A  dimensional vector  representing a consumer’s 

purchasing decision over  products at time t 

 
A  dimensional hidden vector   

 
Normalizing constant of a probability function 

 
Constant terms in probability functions for  and  

 
Associations between product purchase decision and 

hidden variable  

 
Dynamic terms in probability functions for  and  

 
A  dimensional vector D representing a consumer’s 

demographic background 

 

Past purchasing decision for product i’ and time t-m  

 
Association between product purchase decision and 
hidden variable moderated by demographic variable dp at 
time t 

 

Intertemporal effect of purchasing decision for product i at 
time t-m on the purchasing decision for product i at time t, 
moderated by demographic variable dp. The product i at 
time t-m may refer to a different product in all I product 
categories than the product i at time t 

 

Intertemporal effect of purchasing decision for product i at 
time t-m on the hidden variable j at time t, moderated by 
demographic variable dp.  

 
direct effect of demographic dp on purchasing decisions  
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Intertemporal effect of purchasing decision for product i at 
time t-m on the hidden variable j at time t 

 
Increment for parameter update at iteration t 

 
Learning rate 

 
Momentum term 

 

APPENDIX 2 HIERARCHICAL BAYESIAN PRIOR 

Figure A-2 Hierarchical Bayesian Prior 

 

For simple illustration, intertemporal effects and demographic terms are not included in 

following models. In order to model heterogeneity among households, we can first place a 

second multinomial hidden layer on the first layer.  (Salakhutdinov et al 2013 ): 
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Where the multinomial hidden variable has K units, and is sampled M times. 
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For each consumer n, the multinomial hidden variable has a prior distribution parameterized by 

Фn 
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Фn then are assumed to be generated from a global Dirichlet distribution 

 

α is generated from a gamma distribution (Teh 2010).  

If we integrate out the parameter Фn, the multinomial hidden variable follows a Dirichlet-

Multinomial distribution 

)(~|)2( Θ−Θ lMultinomiaDirichlethnk  

For parameter inference, we can use MCMC sampling (Figure 8). 

APPENDIX 3 VARIATIONAL (MEAN FIELD) INFERENCE FOR THE 

MODEL 

According to KL divergence (Salakhutinov et al. 2013) 
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We can use a factorized distribution Q to approximate the posterior of Ht as follows  
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To maximize the lower bound, we set the derivative to zero and then
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To predict Xt, we set estimate the expected value E(Xt) by solving simultaneously 

the above equation and the conditional 

probability
)exp(1

1)|1()(
∑−−+

===

J
jtjii

titit h
HxPxE

ββ
 

We compared the prediction results from variational inference with that of sampling methods.  

Both methods have very similar performance, in terms of prediction accuracy. 

APPENDIX 4 TRAINING ALGORITHM FOR THE FINAL MODEL 

The model in this paper is coded in Matlab. The skeleton of the code appears in Taylor and 

Hinton (2009). 

1. Divide the dataset into N mini-batches , with corresponding past purchasing 

decisions and household demographics D. Randomly initialize the gradient matrices 

and parameter matrices  Set the momentum  the learning rate , the 

dropout probability p, and the weight decay w 
2. For q=1:Q (the number of iterations through the data set) do 
3.     For n=1:N (the number of batches) do 

Sample a binary matrix B ~p 
 

Sample a binary matrix  
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End for 
4. End for 
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APPENDIX 5       CLUSTERING PRODUCTS ACCORDING TO 

INTERTEMPORAL EFFECTS 

Product Category Cluster Product Category Cluster
CHEESE   COTTAGE   1 FRESH LETTUCE     9
FRANKFURTERS REFRIGERATED     1 PEANUT BUTTER     9
VEGETABLES BEANS WITH MEAT SHELF STABLE 1 VEGETABLES BEANS GREEN CANNED   9
TOILET TISSUE     2 POPCORN   UNPOPPED   9
PAPER TOWELS     2 CIGARETTES      10
FACIAL TISSUE     2 DRY DINNERS   PASTA  11
SEAFOOD TUNA SHELF STABLE   2 SPAGHETTI MARINARA SAUCE    11
DETERGENTS   LIGHT DUTY  2 PASTA   MACARONI   11
DINNERS FROZEN     3 SAUSAGE DINNER     11
ENTREES   POULTRY   1 3 SEASONING DRY     11
ENTREES   ITALIAN   1 3 SOFT DRINKS   POWDERED  12
SANDWICHES REFRIGERATED FROZEN    3 COOKIES      13
EGGS FRESH     4 BAKERY CAKES FRESH    13
BACON REFRIGERATED     4 TOASTER PASTRIES     13
CHEESE PROCESSED SLICES AMERICAN   4 BAKERY DOUGHNUTS FRESH    13
SAUSAGE BREAKFAST     4 LUNCHMEAT SLICED REFRIGERATED    14
SUGAR GRANULATED     4 LUNCHMEAT DELI POUCHES REFRIGERATED   14
SOUP CANNED     5 SOFT DRINKS   LOW CALORIE 15
BATTERIES      5 PIZZA FROZEN     15
CEREAL   HOT   5 SNACKS   TORTILLA CHIPS  15
NUTS   CANS   5 SNACKS   PRETZELS   15
VEGETABLES   MIXED   FROZEN 5 SNACKS   REMAINING   15
NUTS   BAGS   5 CRACKERS   FLAVORED SNACK  15
SOUP MIXES   DRY  5 CRACKERS   CHEESE   15
SOFT DRINKS   CARBONATED  6 FRESH MEAT     16
BAKERY BUNS FRESH    6 ENTREES REFRIGERATED     16
PRECUT FRESH SALAD MIX   6 CANDY CHOCOLATE     17
FRUIT DRINKS OTHER CONTAINER   6 CANDY NON CHOCOLATE    17
WATER BOTTLED     6 CANDY CHOCOLATE SPECIAL    17
FRUIT JUICE   ORANGE  6 CANDY CHOCOLATE MINIATURES    17
FROZEN NOVELTIES     6 MAGAZINES SELECTED TITLES    18
VEGETABLES   POTATOES   FROZEN 6 VIDEO PRODUCTS PRERECORDED    18
SALAD DRESSING   LIQUID  6 FRESH STRAWBERRIES     19
DISPOSABLE DISHES     6 FRESH TOMATOES     19
PAIN REMEDIES   HEADACHE  7 TEA   LIQUID   20
COLD REMEDIES   ADULT  7 CAT FOOD   WET TYPE 21
NUTRITIONAL SUPPLEMENTS     7 CAT FOOD   DRY TYPE 21
DETERGENTS   HEAVY DUTY  8 CHEESE   SHREDDED   22
TOOTHPASTE      8 CHEESE   PROCESSED   CREAM 22
SHAMPOO AEROSOL  LIQUID  LOTION 8 DAIRY   SOUR CREAM  22
DEODORANTS   PERSONAL   8 YOGURT REFRIGERATED     23
GUM CHEWING SUGARFREE    8 FRESH CARROTS     23
DAIRY MILK REFRIGERATED    9 FRESH FRUIT REMAINING    23
BAKERY   BREAD   FRESH 9 FRESH APPLES     23
CEREAL   READY TO EAT 9 FRUIT DRIED AND SNACKS   23
SNACKS   POTATO CHIPS  9 DOG   CAT TREATS  24
ICE CREAM   BULK  9 DOG FOOD   WET TYPE 24
MARGARINE AND SPREADS    9 BUTTER      25
FRESH POTATOES     9 DESSERTS   RTS SINGLE SERVINGS 26
GROUND AND WHOLE BEAN COFFEE  9 GRANOLA   YOGURT BARS  26  
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APPENDIX 6 OPTIMAL PRICES, REWARDS AND PROFITS UNDER 

ALTERNATIVE COLLECTIVE BUYING AND REFERRAL REWARD 

STRATEGIES 

 
6.1. Referral Reward Strategy (RRS) 

RRS (1, 2) 
Here segment 1 receives a reward R contingent on the referred segment 2 making the purchase at 
the posted price P.  The delay in the referral process is reflected in the revenue from segment 2 
and the reward to segment 2 getting discounted at rate δ.  Constraint (i) ensures incentive 
compatibility for the segment 1 to successfully refer segment 2; (ii) ensures incentive 
compatibility for segment 2; (iii) notes that the information shared is weakly less than the 
original information gap.  (Similar constraints apply in the other RRS cases that follow.) 
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RRS (1, 2, 3) 
This applies only for the case ϕ<αI (i.e., segment 2 has a lower valuation than 3 to begin with. 
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RRS (1, 2, 3, 4)  
Case (a): ϕ<αI  
Here, wherein segment 3’s valuation is higher than those of segments 2 and 4 to begin with, 
there are two options: (i) in which is best to recruit segment 4 (the lowest valuation segment) 
through referral and (ii) in which segments 1 and 3 refer, inform and raise the valuations of both 
segments 2 and 4. Of course, segment 4’s information gap has to be bridged more to make the 
segment appealing to the seller. 
 
Option (i): Segment 4 is referred; segment 2’s valuation is high enough to buy at posted price 
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otherwise. 0 and 
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Option (ii): Segments 2 and 4 are referred 
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Case (b): ϕ>αI   
The price here is no higher than the valuation of segment 3, i.e., IV α+ . 

otherwise 0 and 
)+(3 when  and  yields This

 (iv) ;0 (iii) ;0(ii) ;0(i) s.t.

)(3 
,,

==
>=+=

≥+≥∆≥=−∆+≥∆−

−+=
∆

RVP
IRIVP

PIVIIPIVIR

RPPMaximize
RIP

βadβa
aaβ

dπ

  

 
6.2. Collective Buying Strategy (CBS) 
 
CBS (1, 2) 
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     2 

 

Here constraint (i) under the objective function ensures that the price is low enough for the fully 
informed consumer in segment 1 to inform the less informed consumer in 2.  Constraint (ii) 
ensures that the increase in price tied to the increased valuation of segment 2 is incentive 
compatible to the seller and segment 2.  Constraint (iii) ensures the shared information can at 
most bridge the original information gap I.  Similar constraints are imposed in the derivations to 
follow. 
 
CBS (1, 2, 3)  
Two cases arise in the 3-segment setting: ϕ<αI (or respectively ϕ>αI) when segment 3 has a 
higher valuation (or respectively lower valuation) than segment 2 prior to information sharing.  
However, ϕ>αI represents the case when the less informed segment 2 has a higher valuation to 
begin with than segment 3 (the fully informed segment with lower intrinsic valuation).  Any 
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further information between 1 and 2 will further widen the gap between segments 2 and 3.  Thus, 
CBS (1, 2, 3) will collapse to CBS (1, 2).  As such, the following derivation is when ϕ<αI. 
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The constraints in the objective function ensure incentive compatibility for the seller and 
segments 1, 2 and 3 required for the sustainability of CBS (1, 2, 3). 
 
CBS (1, 2, 3, 4) 
Two cases matter: (a) ϕ<αI, i.e., when segment 3 has a higher valuation than segment 2 prior to 
information sharing and (b) ϕ>αI.   
 
Case (a): ϕ<αI  
Here segments 2 and 4 both have lower valuations than segment 3.  It is optimal for segments 1 
and 3 to inform 2 and 4, albeit differentially, to raise their valuations to the seller’s price level.  
The constraints under the objective function below make it incentive compatible for all four 
segments to purchase the product at price P. 
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Case (b): ϕ>αI  
Here segments 1 and 2 focus on reducing the information gap of segment 4 such that it becomes 
incentive compatible for 4 (and the other segments) to purchase the product at price P. 
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Appendix 6.3. Comparative Statics 
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APPENDIX 7 PHASE DIAGRAMS ON OPTIMAL STRATEGIES: 

ANALYTICAL DEMARCATION OF BOUNDARIES 

 
Tied to §4.2 of the paper on the relative attractiveness of alternative strategies, we make paired 
comparisons here of alternative strategies (and their subtypes) to demarcate the boundary 
conditions under which each pair of strategies generate the same profits. The boundary 
conditions will indicate how the product market conditions represented by the parameter values 
impact the choice of strategy.  This appendix will help clarify why some boundaries in the phase 
diagrams are lines and others are not. In all following comparisons, segment 4’s valuation V and 
discount factor δ are set to 1.  We follow the same notation as in the text.  (The paired 
comparisons shown here are limited to those strategies that are not dominated across the 
appropriate parameter space.) 
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