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CONTRIBUTIONS TO THE THEORY OF SENSITIVITY 

AND STABILITY ANALYSIS OF MULTI-CRITERIA DECISION 

MODELS, WITH APPLICATIONS TO MEDICAL DECISION MAKING  

Magda Gabriela Sava, PhD 

University of Pittsburgh, 2016 

 

Patients are faced with multiple alternatives when selecting the preferred method for 

colorectal cancer screening, and there are multiple criteria to be considered in the decision 

process. We model patients’ choices using a multi-criteria decision model, and propose a new 

approach for characterizing the idiosyncratic preference regions for individuals and for groups of 

similar patients.  

We propose an extension of the sensitivity and stability analyses for Analytic Network 

Models developed by May et al. (2013). We study ANP models to understand how preference 

regions are created, and how boundaries can be characterized, as the number of criteria increases. 

For the two-criteria and three-criteria sensitivity and stability analyses, piecewise linear functions 

and triangular mesh generation, respectively, are used to approximate the boundaries between 

two adjacent preference regions. We use optimization methods to find the best approximations 

for the core stability and solution stability regions for cases where two and three criteria are 

perturbed simultaneously, and there exist an arbitrary number of alternatives. We define 

sensitivity and stability measures that can be implemented in practice, and that can be considered 

as a starting point in any medical decision making process.  
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We apply our newly developed methodology to randomly chosen patients, and show how 

insights derived from the sensitivity and stability of patients’ preferences might be used within 

the medical decision making process. Individualized stability analysis is informative, but the 

generalization to groups of similar patients may be even more important for healthcare providers. 

Our comparisons reveal that a patient’s age may be an effective discriminating factor that should 

be taken into consideration when extending the individualized sensitivity and stability analysis to 

groups of patients with similar characteristics. 
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1.0 INTRODUCTION 

 

“Sometimes you just need some reassurance about  

your Choice before you take any decision” 

Auliq Ice 

1.1. BACKGROUND 

 How do people make decisions? How influenced are they by changes that might appear 

in their preferences? Those are questions that need to be answered. Our judgments are based on 

current knowledge, experience and expertise. What happens if additional information is 

available? How will the additional information influence our preferences, and, ultimately, our 

decision making process? Can this change in preferences be quantified mathematically and 

predicted?  Could a mathematical measure of the change guide the decision making process 

towards better outcomes?  

An important component of the decision making process is a determination of the 

sensitivity and the stability of the decision maker’s initially most preferred alternative. Should 

one implement the most preferred alternative, or, instead, select the next most preferred 

alternative if it is less sensitive to changes in the environment, and, hence, may be more stable? 

Sensitivity and stability analysis provide insights for answering that question. Determining how 

sensitive and stable our preferences and decisions are, and how they are influenced by changes in 

the available information, may provide information regarding the most appropriate solution to be 

chosen.  
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Because the decision making environment we consider in this dissertation is complex and 

involves multiple criteria, we need a methodology that represents that complexity, and helps to 

measure influences among the components of the system used to make decisions. One such 

methodology is the Analytic Hierarchy Process/Analytical Network Process (Saaty, 1980; Saaty, 

1986; Saaty and Vargas, 2013). May et al. (2013) proposed an innovative approach for studying 

the sensitivity and stability analysis of Analytic Network Process (ANP) models. In that paper, 

the authors (1) generated a systematic non-random sample of the perturbation space; (2) 

approximated, with hyperplanes, the boundaries of the preference regions in the perturbation 

space in which the different alternatives are ranked first, and (3) found stability regions within 

the preference regions, using the Euclidean center method (Arbel and Vargas, 2007). The 

Euclidean center method generates spheres to measure stability. A basic assumption that 

simplifies the implementation of the Euclidean center method is that the region in which the 

maximum volume spheres are inscribed must be convex. In general, preference regions 

generated by perturbations of ANP models are simply connected, but may be non-convex.  

 Medical decision making is characterized by multiple criteria, subjective information, and 

sometimes incomplete information, so it is a highly suitable area for the application of our work. 

In medical decision making, preferences may change rapidly, and are influenced by multiple 

factors. Within the context of medical decision making, we chose to apply the methodology 

developed in this dissertation to the problem of selecting the most appropriate colorectal cancer 

screening option. That problem is particularly challenging, because patient preferences are 

related to the level of medical knowledge the patient has, and to the information he was exposed 

to before making a medical decision. We analyzed how sensitive and how stable individual 

patients’ preferences are, as additional information about the criteria, with respect to which the 
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screening alternatives are compared, is given to the patients. Even though individualized 

analyses might be more beneficial, healthcare providers are also interested in learning about 

generalized analyses of the sensitivity and stability of preferences that can be applied directly to 

patients categorized as having an average risk of being diagnosed with colorectal cancer. 

Preliminary results of the generalization of the analysis to groups of patients with similar 

preferences, using age as discriminating factor, are presented.  

 

 

1.2. OBJECTIVES OF THIS DISSERTATION 

There are several objectives of the research presented in this dissertation: 

1. To extend the sensitivity and stability methodology of May et al. (2013) to two and 

three-dimensional spaces; 

2. To develop measures of: (a) the core stability of the most preferred alternative, (b) the 

solution stability, and (c) criteria sensitivity, and, 

3. To apply the methodology developed to a medical decision making problem. 

 

The primary contributions of this research are: 

1. To extend the procedure in May et al. (2013) by estimating solution stability using 

ellipsoids instead of spheres, because ellipsoids cover more volume of the preference 

region than spheres do; 

2. To approximate the boundaries of the preference regions using piecewise linear 

functions instead of hyperplanes, for the two-dimensional case, and by triangular 
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mesh generation, for the three-dimensional case; and to measure the classification 

error induced by the piecewise linear boundary approximations;   

3. To develop an algorithm to approximate the maximal-volume ellipsoid that can be 

inscribed in a non-convex region within a higher dimensional space (n ≥ 2); 

4. To develop a measure of the core stability of the most preferred alternative, as given 

by the maximal spheroid inscribed in the perturbation region, centered at 0𝑛, and of 

the direction of change in stability derived from the vector of perturbations that 

determines the fastest change in preferences; 

5. To develop a measure of the solution stability, by comparing the relative areas of 

each preference region within the perturbation space to the relative areas of the 

corresponding maximal-volume inscribed ellipsoids; 

6. To determine the alternative that is the most stable, among a set of alternatives, with 

respect to given pairs or triplets of criteria; 

7. To apply the methodology to support the selection of the most appropriate option 

among colorectal cancer screening alternatives. We apply the methodology to a single 

patient, and compare the results for the situations when pairs and triplets of criteria 

are changed simultaneously. We study the feasibility of generalizing the methodology 

to groups of patients with similar characteristics, considering age as the 

discriminating factor. 

A measure of the area (volume in n-dimensional space,  n ≥ 2) of the preference regions 

is an estimate of the stability of the solutions. Thus, if a solution/alternative is the most preferred, 

should one implement that alternative, even if its stability is low, or should one find the most 

stable alternative? In addition, we could determine under what conditions the most preferred 
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alternative becomes the most stable one. Chapter 4 provides such an exposition, in the context of 

a medical decision making problem, and how the healthcare provider can use the results 

provided by the sensitivity and stability analysis to guide or influence the patient in the medical 

decision making process.  

 

 

1.3. OVERVIEW OF CHAPTERS 

The remainder of the dissertation is organized as follows. In Chapter 2 we present a 

review of the literature on approximating nonlinear boundaries using piecewise linear functions, 

on approximating the nonlinear boundaries in higher dimensional space using mesh generation, 

on the problem of inscribing the maximal ellipsoid within a convex set, and regarding how 

patients make decisions about colorectal cancer screening using AHP/ANP models.  

In Chapter 3, we extend May et al.’s stability region methodology, propose an algorithm 

to approximate the nonlinear boundaries of two-dimensional regions using piecewise linear 

functions and triangular mesh generation for the three-dimensional case, develop a nonlinear 

programming model for inscribing the maximum ellipsoid in a higher dimensional region (n ≥ 2) 

that might be non-convex, and propose measures of sensitivity and stability that can be used as 

practical guidelines.  

In Chapter 4 we apply the methodology to a medical decision making problem about 

choosing the most appropriate colorectal cancer screening option for a patient categorized as 

having an average risk of being diagnosed with colorectal cancer. Individualized sensitivity and 

stability analysis are performed for individual patients for the two and three-criteria cases, and 

the medical implications, based on the analysis, are presented. The analyses for two different 
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patients are compared, to illustrate the similarities and the differences in their preferences. Using 

age as a discriminating factor, we present preliminary results of the generalization of the 

sensitivity and stability analysis to groups of patients with similar characteristics.  

In Chapter 5 we summarize the conclusions of our research, and present future research 

directions that address the limitations of the current approach.  
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2.0 LITERATURE REVIEW 

 

 

2.1. INTRODUCTION 

This dissertation is concerned with: (1) the development of sensitivity and stability 

analysis for multi-criteria decision models, such as the Analytic Hierarchy Process (AHP) and 

the Analytic Network Process (ANP); (2) the approximation of the boundaries of regions in two 

and three-dimensional space; (3) inscribing maximal area/volume ellipsoids in non-convex sets; 

and (4) the development of stability measures that can be applied to difficult decision processes, 

such as medical decision making, specifically as related to colorectal cancer screening.  

This literature review identifies two types of sensitivity analyses previously developed 

for the AHP models: (1) the sensitivity analysis of judgements, which analyzes the effect of 

judgments’ randomness on the stability of the rank order of alternatives; (2) the sensitivity 

analysis of priorities, based on changes in the vectors of the supermatrix, and how such changes 

impact the ranking of alternatives. May et al. (2013) includes a thorough review of the 

AHP/ANP sensitivity literature; the other topics are discussed in this chapter. 
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2.2. PIECEWISE LINEAR APPROXIMATION 

In this dissertation, instead of approximating each boundary of the preference regions 

with a single hyperplane, as in May et al. (2013), we use piecewise linear hyperplanes. In the 

two-dimensional case, those hyperplanes are line segments. A piecewise linear hyperplane is a 

collection of linear subspaces with dimensionality n-1, where n is the dimension of the current 

space. The primary reason for using a set of hyperplanes, instead of a single hyperplane, to 

model each boundary, is because the preference regions are, in general, not convex. Note that the 

literature on piecewise linear approximations is usually based on an assumption that the 

functions to be approximated are known; that is not true for the boundaries that we address in 

this dissertation. See Lin et al. (2013) for a review of piecewise linearization methods. The 

AHP/ANP solution process (Saaty, 1980) does not provide the user with functions that define the 

boundaries of the preference regions (May et al., 2013).  The preference regions are initially 

estimated pointwise, by perturbing the data and repeating the solution process. Because the 

region labeling of each point in space is determined by a numerical process, which is subject to 

numerical error, the boundaries of the preference regions are not well defined. Our problem 

consists of separating sets of data, the preference regions, with hyperplanes. The equivalent of 

the problem, in the two-dimensional case, is to find piecewise linear approximations of the 

boundaries between the preference regions, within the perturbation space. 

 Williams (1978) developed an algorithm for approximating planar curves by the smallest 

possible number of linear segments. The solution obtained does not necessarily provide the 

minimum number of segments for a given error tolerance parameter. The algorithm also cannot 

deal with a reverse in the direction of the curve. Dunham (1986) presents an algorithm that finds 

the optimal linear approximation to a planar curve, by generating the minimum number of 
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segments needed to describe the shape. The method requires, as inputs, the end points of the 

curve. Sato (1992) proposed an optimal piecewise linear approximation of a planar curve, using 

dynamic programming. The algorithm determines a point choice function, which establishes a 

relationship between the original points that describe the curve, and the points selected to be used 

for the piecewise linear approximation to the curve. The primary goal of the dynamic 

programming model is to determine the optimal point choice function that generates the maximal 

arc length of the curve.  

 Bennett and Mangasarian (1992) formulated a linear program that discriminates between 

k disjoint sets, by generating a k-piecewise linear surface, if one exists, or an approximate 

separation for the case when the sets are not separable. The function obtained is convex, and is 

the maximum of k linear functions. Bredensteiner and Bennett (1999) proposed two methods to 

discriminate between multiple classes, using a piecewise linear separator. The first method uses a 

robust linear programming (RLP) model to construct a discriminant function that separates a 

class from the other k-1 classes. The k-RLP model is a generalization of the RLP developed by 

Bennett and Mangasarian (1992), and it is limited to piecewise linear discriminants. The second 

method constructs a piecewise linear support vector machine (SVM), using a single quadratic 

program. The model can be generalized to the piecewise nonlinear case. 

 May et al. (2013) used the approach developed in Bennett and Mangasarian (1992) to 

construct hyperplanes that separate the preference regions; each pair of preference regions was 

separated by a single hyperplane. As a result, the regions defined by the separating hyperplanes 

are convex. May et al. used the Euclidean center method to inscribe spheres in the separated 

regions. Given the goal of using a geometric shape to capture as much as possible of the area of a 

plane region, because the area of the plane region is a measure of the stability of the associated 
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solution, ellipsoids are superior to spheres. That is because, in general, they may include more 

from the area/volume of the preference regions in which they are inscribed. We next discuss the 

literature on the inscription of maximal area ellipsoids in plane regions.  

 

 

2.3. MESH GENERATION IN HIGHER DIMENSIONAL SPACE 

Mesh generation is a methodology that generates a mesh of polygons, or of polyhedrons, 

to approximate the geometric surfaces characterized by both convex and non-convex regions 

(Thompson et al., 1985). A polygonal mesh is a collection of vertices, edges and faces that define 

the space that was approximated (Edelsbrunner, 2001). The different types of mesh generation 

are differentiated by the shape used to approximate the faces of the polygon (e.g. triangles, 

quadrilaterals or convex polygons).  

When the number of criteria used in the network increases, so does the dimensionality of 

the space of the preference regions. In the three-dimensional case, the area/volume of the 

preference regions can be approximated by pyramids, whose top vertices are at the center of the 

region, and whose triangular bases define the boundary approximation. To keep the boundary 

approximation piecewise linear, so that we can use linear constraints in our nonlinear 

programming model, we approximate the separating boundaries using Delaunay’s triangulation. 

Thus, given a set of points on the boundary, Delaunay’s method ensures that the circumcircle 

associated with each triplet contains no other point from the set of points considered, in its 

interior, and maximizes the minimum angle of all the angles described by the triangles formed 

(Delaunay, 1934). There are multiple algorithms based on the Delaunay principle. We use the 

one described by de Berg et al. (2008), which provides an unstructured grid connecting triplets of 
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the boundary points (Mavriplis, 1996). Based on that matrix, we construct the set of inequalities 

that describe the separating hyperplanes in the three-dimensional space. 

 

 

2.4. MAXIMAL INSCRIBED ELLIPSOID 

 The problem of inscribing a maximal ellipsoid within a given convex set is not new. John 

(1948) proved that each convex body in n-dimensional Euclidean space 𝑅𝑛 contains a unique 

ellipsoid of maximal volume. Based on John’s theorem, Ball (1992) obtained the necessary and 

sufficient conditions for the maximal inscribed ellipsoid within a convex body to be the closed 

Euclidean unit ball 𝐵2
𝑛. Maximal inscribed ellipsoids are used repeatedly as part of the ellipsoid 

method for convex optimization (Tarasov et al. 1988), so there has been considerable interest in 

efficient methods for approximating them in polytopes. Khachiyan and Todd (1993) proposed a 

polynomial-time algorithm for inscribing the maximal ellipsoid in a polytope, by modeling it as 

the problem of inscribing the maximal paraboloid in a polyhedral cone. Anstreicher (2002) 

includes an optimization model that obtains an ellipsoid whose volume is at least a factor 𝑒−𝜀 of 

the maximum possible in O(m3.5 ln(mR/ε)) operations, and shows that the computational 

complexity may be reduced even more if the analytic center of the polyhedron is computed 

before approximating the maximum volume inscribed ellipsoid.  

The current literature on the inscription of the maximal ellipsoid within a given set does 

not cover the non-convex case. When faced with non-convex sets, researchers use 

convexification methods in order to apply the algorithms already developed for the convex case 

(Bajaj and Dey, 1990; Lien and Amato, 2006, 2007). 
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2.5. MEDICAL DECISION MAKING USING AHP/ANP MODELS 

 Analytic Hierarchy Process (AHP) models have been proven to be a “friendly” technique 

to ascertain patients’ preferences, and to help them make medical decisions. An initial attempt to 

categorize the AHP applications in healthcare, and to identify the methodological impact, was 

made by Liberatore et al. (2008). The authors reviewed 50 articles, classified them into seven 

categories based on their purpose, and concluded that AHP could be a promising decision 

support tool for medical decision making. Schmidt et al. (2015) provide a comprehensive review 

of the last ten years of applications of the AHP models in healthcare. Their research purpose was 

to identify how accurately the method has been implemented in studies, and to assess the quality 

of the results obtained. The authors concluded that there is an increased interest in applying the 

AHP models to various healthcare problems, but there exist inconsistencies in how the studies 

were conducted. They propose the development of standard guidelines that will help unify the 

research framework in healthcare and medical decision making, by enabling a consistent 

application of the AHP methodology.  

Dolan (1994) conducted a study to determine if patients have the capability and the 

willingness to use the AHP methodology to make clinical decisions. A group of 20 volunteers 

were interviewed, and asked to use an AHP-based model to choose among five colorectal cancer 

screening options. His results showed that 90% of the patients were capable of performing the 

pairwise comparisons necessary, and suggested that AHP models could be a practical tool in 

assisting in the medical decision making process. 

 Recently, Dolan and his team conducted an extended pilot study, created to help patients 

make the best medical decision regarding colorectal cancer screening. He designed an AHP-

based model. His model includes four main criteria, one of which has three sub-criteria, to 
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ascertain patients’ preferences among ten screening alternatives. In his initial results, Dolan et al. 

(2002) concluded that the AHP model improved the patients’ decision making process, but he 

could not find any statistical evidence of the effect of the model on the implementation of the 

decision obtained. In their later studies, Dolan et al. (2013) emphasized even more the usefulness 

of the AHP-based model in identifying the preferences of individual patients and the necessity of 

including patients’ preferences in the medical decision making process. They aggregated the 

individual results of 484 patients to determine the average weights over the four main criteria in 

the model. The purpose was to generalize the individual preferences to those of the group and, 

finally, to the entire population of patients faced with the medical decision of choosing among 

colorectal cancer screening options. Dolan et al. (2014) also refined their initial model by 

combining multiple multi-criteria decision analysis methods in order to determine the best 

approach to assess, as accurately as possible, the patients’ preferences regarding colorectal 

cancer screening options.  

 Analytic Network Process (ANP) models may be challenging to apply to medical 

decision making problems because of the extensive input data they require, so there are very few 

articles which use the methodology in studies. Saaty and Vargas (1998) proposed a model that 

combined the ANP framework with statistics to support the medical diagnosis process, by 

incorporating both statistical data and expert judgments. Carter et al. (1999) compared the results 

provided by three multi-criteria decision methods – AHP, ANP, and a Markov process, when 

used to determine the optimal treatment strategy in early-stage breast cancer. Wang et al. (2014) 

studied using the AHP and ANP methodologies for choosing the most appropriate intervention 

for type-2 diabetes.  
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3.0 METHODOLOGY 

 

 

3.1. INTRODUCTION 

 Chapter 3 presents the methodological contributions made, in this dissertation, to the 

theory of sensitivity and stability analysis of multi-criteria decision models. We focus on the 

Analytical Hierarchy Process (AHP)/Analytical Network Process (ANP) models, when two or 

three criteria are perturbed simultaneously. The methodology has been developed for the most 

general case of an Analytical Network Process model – the situation in which there is feedback 

between the criteria and alternatives clusters and within the clusters. Analyzing the most general 

case ensures the applicability of the technique to simpler models, such as the Analytical 

Hierarchy Process (AHP). We begin by extending the study of stability from spheres to 

ellipsoids, because ellipsoids capture more volume within the perturbations space than do 

spheres. We approximate the separating boundaries using piecewise linear functions for the two-

dimensional case, and use mesh generation via triangles for the three-dimensional case. We 

propose nonlinear programing models to inscribe the maximal ellipsoid within a non-convex set 

defined in two and three-dimensional space. Finally, we define measures of sensitivity and 

stability to enable the practical application of the methodology.  
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3.2. STABILITY ELLIPSOIDS IN CONVEX SETS 

 In May et al. (2013), the core stability of the solution to an AHP/ANP model was defined 

as the region of the perturbation space in which the initial solution remains most preferred. To 

study core stability, not all of the boundaries of the perturbation space are required. What is 

required is (1) the solution to the original problem, and (2) the boundaries that separate the 

preference region for the most preferred alternative from the regions associated with the other 

alternatives, if those regions share a boundary with the region associated with the most preferred 

alternative.  

Assume that the k
th

 alternative is the most preferred alternative in the original study. In 

order to determine the region over which the k
th

 alternative remains ranked first (core stability), 

we first identify all the hyperplanes that separate the k
th

 alternative from the other alternatives. 

To do this (May et al. 2013) proceeded as follows. 

The sets to be separated are created by selecting the points in the perturbation space and 

finding out which alternative has the largest limiting priority, as given by the supermatrix. Let 

( )iX be the subset of X  for which the thi alternative is ranked first. Let ( , )B i j be the boundary 

separating ( )iX and ( )jX . The boundary need not be linear but we use linear boundaries because 

doing so reduces the amount of computation necessary and simplifies the interpretation of the 

results.   

The stability problem can be modeled as a set of binary classification problems. A binary 

classification problem consists of discriminating between two given point sets A and B, with m1 

and m2 points, respectively, in the n-dimensional real space n
R , by using as few of the n 

dimensions of the space as possible. Following Mangasarian (1997), geometrically our approach 

constructs a plane in n
R  defined by  
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{ | ; }n TP x x x w   R  

with normal nwR  and distance 

2
w


to the origin (

2w is the Euclidean norm of the vector 

𝑤), while suppressing as many of the components of w  as possible. In addition, the set  must 

lie, to the extent possible, in the open half space { | ; }n Tx x x w  R and the set  in the open 

half space{ | ; }n Tx x x w  R . Let A  and B  denote the matrices representing the sets and 

, respectively, where 1m n
A


R and 2m n

B


R . The problem is to find variables w and  such 

that Aw  and Bw  . Because strict inequalities are not possible in an LP formulation, the 

variables are rescaled by the positive constant  
1 21,..., , 1,...,

min ,i j
i m j m

Aw B w 
 

   where iA and jB

are the i
th

 and j
th

 rows of the corresponding matrices. To keep the notation simple, the variables 

are denoted the same as before the rescaling took place. Bennett and Mangasarian (1992) 

proposed the following robust, i.e., 0w  is excluded, linear programming formulation: 

Find , ,  and w y z to  

Minimize 
1 2

T Te y e z

m m
   

Subject to  

0, 0

Aw e e y

Bw e e z

y z





   

  

   

where (1,...,1)Te 
.
 

In our problem, instead of separating just two sets, we need to separate n sets. Then the 

robust linear programing formulation is given by: 
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Find vectors , 1,...,iw i n , , , 1,..., ,ijy i j n i j  , and   to  

Minimize  
, 1

T Tn
ij ji

i j i j
i j

e y e y

m m



 

Subject to  

( ) ( )

( ) ( )

0, , 1,..., ,

i i j i j ij

j j i j i ji

ij

w w e e y

w w e e y

y i j n i j

 

 

     

    

  

A

A  

where , 1,...,im i n are the number of points in the sets. 

The result is a set of hyperplanes that separate the sets in pairs. For two sets i and j, the 

equation of the separating hyperplane is given by ( )T

i j i jx w w     . Thus, the boundary 

separating alternatives i and k is given by  

 
( , ) : ( ) ,  1,2,..., ,T

i k i kB i k x w w i n i k      , (3.1) 

Using the hyperplanes generated by the relation (3.1), we calculate the sphere of stability for the 

k
th

 alternative. The spheres of solution stability for the other alternatives, the ones dominated by 

the k
th

 alternative, may be used to identify the regions over which those dominated alternatives 

would become dominant and remain dominant. 

In perturbation space, the sphere of core stability for the k
th

 alternative is centered at        

0 = (0,…,0), the point at which no element in the supermatrix is perturbed away from its original 

value. The radius of that sphere is the distance from the origin to the nearest boundary. The 

distance from any point to a hyperplane described by (3.1) is given by  

  

(3.2) 

x

2

( )
( )

T

i j i j

ij

i j

w w
d

w w

   




x
x
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The region in perturbation space over which the k
th

 alternative is the most preferred 

alternative, 𝑿(𝑘), is defined by 

 1( ) ( ,..., ) | 1 1, ( ) , 1,..., ,n T

n i i k i kk x x x w w i n i k           X x R x  

Thus, the minimum distance from 0 = (0, …, 0) to a boundary, beyond which the k
th

 alternative 

ceases to be the initially most preferred alternative, is the greatest radius of a hypersphere of 

perturbations, centered at 0 = (0, …, 0), within which the k
th

 alternative remains the most 

preferred alternative. The equation of the hypersphere is given by: 

 .   (3.3) 

Hence, as long as a perturbation satisfies  

 

the k
th

 alternative remains the most preferred alternative. 

The spheres of solution stability for the dominated alternatives, that is, the regions in the 

perturbation space over which each of them become dominant and remain dominant, may be 

constructed using similar reasoning. For each alternative i, the center and the radius of the sphere 

of stability need to be determined. Because, by assumption, all of the boundaries of the partitions 

in perturbation space are linear, the problem of determining the spheres of stability for the 

dominated alternatives is known as the Euclidean center problem of a linear programming model 

(Dantzig and Thapa 1997). The spheres of stability are the largest spheres that can be inscribed 

in the regions (ℎ), ℎ = 1,2, … , 𝑛, ℎ ≠ 𝑘 . 

2

1 ,
2

min ,1
i kT

i n i k
i kw w

 

  

   
       

x x

1 2( , ,..., )T

nx x xx

2

1 ,
2

min ,1
i kT

i n i k
i kw w

 

  

   
       

x x



19 

 

 Hyperspheres may not be the largest volume stability regions that can be inscribed in the 

preference regions. In general, ellipsoids should capture more volume than spheres. To show 

this, consider the following convex polyhedron { | , 1,..., }T

i iP x a x b i m   . An ellipsoid is 

defined by 2( , ) { | ( ) ( ) 1}n TE d B x x d B x d     , where d is the center of the ellipsoid and 

n nB   is a diagonal matrix with positive entries given by the radii of the ellipsoid, i.e., 

 
2

1

1i i

i

m
x d

r

i





  . The maximal volume inscribed ellipsoid problem consists of finding the matrix 

B and the vector d, such that 𝐸(𝑑, 𝐵) has maximum volume and it is contained in the polyhedron 

P. Following the formulation by Boyd and Vandenberghe (2004), B and d may be found by 

solving the problem: 

2

{ln(Det )}

. .,

,  1,2,...,T

i i i

Max B

s t

Ba a d b i m  

   (3.4) 

where 
1/2

max2
( )T T

i i iBa a B Ba   
 is the spectral norm of iBa , i.e., the principal eigenvalue of 

the matrix ( ) ( )TBa Ba , and Det B  is the determinant of the matrix B (the volume of the ellipsoid). 

 

Example: The example used in May et al. (2013) has the supermatrix given in Table 1. 

Table 1. The supermatrix from May et al. (2013) 

Goal 
Goal 

C1 C2 A1 A2 A3 

 0 0 0 0 0 0 

C1 0.2 0 0 0.07 0.35 0.63 

C2 0.8 0 0 0.63 0.35 0.07 

A1 0 0.5 0.1 0 0.18 0.12 

A2 0 0.4 0.4 0.18 0 0.18 

A3 0 0.1 0.5 0.12 0.12 0 
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The preference regions generated by perturbing criteria C1 and C2 have the corner points given 

in Table 2. 

Table 2. Cartesian coordinates of the preference regions 

 Cartesian coordinates (x,y) 

Set A1 (1,0); (1,-1); (0.212,-1); (0.962,0) 

Set A2 (1,0.05); (1,1); (0.25,1); (-1,0.375); (-1,-1); (0.212,-1) 

Set A3 (0,1); (0,0.875); (-1,0.375); (-1,1) 

 

Using the implementation of convex optimization in MATLAB by Grant and Boyd 

(2008), and Grant and Boyd (2013) we obtain the ellipsoids shown in Figure 1. 

 

Figure 1. Core and solution stability ellipsoids within the perturbation space 

 

Table 3 provides a comparison of the ellipsoids in Figure 1 with the spheres that were 

obtained in May et al. (2013). Table 3 shows that the ellipsoids capture about 50% more of the 

volume of the preference regions than the spheres. 
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Table 3. Volume of the maximum ellipsoids versus maximum spheres 

Alternative Ellipsoid center Ellipsoid semi-axes 

Volume of the 

inscribed 

ellipsoid 

Volume of the 

inscribed 

sphere 

Set A1 (0.7373; -0.6498) 
a = 0.2063 

b = 0.3860 
0.2502 0.2164 

Set A2 (0,-0.0152) 
a = 0.7464 

b = 1.1884 
2.7869 1.8625 

Set A3 (-0.5833,0.7917) 
a = 0.1739 

b = 0.432 
0.2360 0.1789 

Total 3.2731 (81.82%) 2.2578 (56.44%) 

 

Given that the inscribed geometric shapes are intended to model, as closely as possible, 

the regions in which they are inscribed, the more volume captured, the better the model. As the 

example shows, ellipsoids are superior to spheres for measuring stability. The difficulty in 

applying the mathematical programming formulation (3.4) to the AHP/ANP problem, though, is 

that the preference regions are not always convex. Using a single hyperplane to separate adjacent 

pairs of regions, as was done in May et el. (2013), creates convex regions. Such a simple 

separation approach is accurate only when the true boundary is linear, and, as is shown in the 

next section, the true boundaries between adjacent preference regions are generally nonlinear. 

Thus, a more precise way of proceeding is to approximate the nonlinear boundaries by piecewise 

linear functions, which remain tractable because of their linearity, and reduce the approximation 

error as compared with the use of hyperplanes. As the number of dimensions within the space 

increases (e.g. 𝑛 = 3), mesh generation methods, using triangulation, are needed to approximate 

the separating planes between the preference regions.  
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3.3. PIECEWISE LINEAR BOUNDARY APPROXIMATIONS - TWO-

DIMENSIONAL CASE 

Consider the network depicted in Figure 2. The supermatrix associated with that network 

is given by: 

𝑊 = (
0 0 0
𝑊21 𝑊22 𝑊23

0 𝑊32 𝑊33

) 

 

Figure 2. A network with two criteria and n alternatives 

 

Because the matrix W is column stochastic, perturbations of it need to be made in such a 

way as to preserve both stochasticity and the proportionality of the unperturbed entries in a 

column. Perturbations are created by increasing or decreasing all of the entries of a row by the 

same percentage. Because all the entries in a supermatrix must be between zero and one, 

perturbations that increase a value are based on a percentage of the distance between the entry’s 

original value and the distance to the upper bound of one. Perturbations that decrease a value are 

based on a percentage of the distance between the entry’s original value and the distance to the 
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lower bound of zero. That is, given an entry ijw , a perturbation 1 1ij    results in a new entry 

'

ijw given by  

 0

(1 )  0

ij ij ij ij

ij

ij ij ij ij

w w if
w

w w if

 

 

 
  

  

    (3.5) 

The sets to be separated are created by selecting the points in the perturbation space, and 

then finding out which alternative has the greatest limiting priority, as given by the supermatrix. 

Let ( )iX  be the subset of the space of perturbations X for which the i
th

 alternative is ranked first.  

Theorem 1. The preference regions{ ( ),  1,..., }i i nX  are simply connected. 

Proof:  

The space of perturbations X  is the product space [ 1,1]m , where m is the number of 

elements perturbed. By definition, X  is compact. In addition, it is simply connected, because 

each perturbation induces a supermatrix W. By Perron–Froebenius theory (Keener 1993), 

because W is a stochastic matrix, there always exists a real positive eigenvalue equal to 1 and a 

corresponding real nonnegative eigenvector w. Wilkinson (1965) showed that small continuous 

perturbations of the entries of W induce small continuous perturbations of its eigenvectors, and, 

specifically, of w. Thus, the space of perturbations is mapped, via a continuous function, into the 

space of priorities represented by the principal eigenvector of the supermatrix W. In addition, the 

limiting priorities obtained from the supermatrix W add to unity. Hence, the space of 

perturbations is mapped, via a continuous function, into the hyperplane 1Te w  . Because the 

image of a simply connected space via a continuous function is also simply connected, the space 

of priorities resulting from the space of perturbations is also simply connected. In addition, it is 

also compact. 



24 

 

 The space of perturbations X  may be written as the union of subspaces { ( ), 1,..., }.i i nX

Thus, 
1

( )
n

i

i


X X , but not all the preference regions have non-null intersections. Because the 

space X is compact and a subset of n , it is closed and bounded. The subspaces ( )iX  must also 

be closed and bounded, because, otherwise, there would be holes between them. If the ( )iX  were 

open sets instead of closed ones, then there would be holes in X , and X  would not be simply 

connected. Of course, the ( )iX ’s could be open sets if two adjacent regions have a non-null 

intersection, i.e., they overlap. However, an overlap would imply that perturbations could yield 

non-unique priorities, i.e., there could be perturbations that would yield multiple dominating 

alternatives. That is not possible, unless the perturbations are exactly on the boundaries of the 

dominating alternatives, and, in such a case, the priorities would be the same as for the 

dominating alternatives. Thus, there are no holes in X , and because it is compact and simply 

connected, all the ( )iX ’s must also be compact and simply connected. Q.E.D. 

 

Corollary: The preference regions { ( ),  1,..., }i i nX are closed, in the topological sense. 

Proof: Follows from Theorem 1. Q.E.D. 

 

           Let ( , )B i j be the boundary separating ( )iX  and ( )jX . Let ( )iw  be the priority values of 

the i
th

 alternative corresponding to the perturbations in ( )iX . Because the regions are simply 

connected, the boundary between the regions ( )iX  and ( )jX
 consists of perturbations points for 

which ( )iw = ( )jw . In addition, it is possible that a preference region could have multiple 
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neighbors. Thus, if the preference regions ( )iX , ( )jX
 and ( )kX

 are neighbors, then the boundary 

( , , )B i j k  will consist of all the perturbations for which ( )iw  = ( )jw  = ( )kw .  

Let ( , ) ( ) ( )i j i j  X X  be the set of perturbations that form the boundary between ( )iX

and ( )jX . The boundary between any pair of preference regions ( )iX  and ( )jX  is given by a 

function ( ) 0ijf   , ( , )i j  . In the two-dimensional case, the boundary consists of points

( , ).i j  A difficulty is that the equality of the priorities, i.e., ( )iw  = ( )jw , is impossible in 

practice, due to the limited precision of numerical computation. Thus, the best one can do is to 

find the perturbations for which the difference between ( )iw  and ( )jw is sufficiently small, that 

is, ( ) ( )i j  w w . 

 

 

3.3.1. An algorithm to generate the piecewise linear approximations 

To approximate ( , ) ( ) ( )i j i j  X X  with a piecewise linear function of order m (i.e., m 

segments), we proceed as follows:  

(1) Select (m+1) points in ( , )i j , { ( , ),  0,1,..., }k ik jkx k m   . 

(2) Order the points selected { ( , ),  0,1,..., }k ik jkx k m    according to the proximity of 

adjacent points, as measured by the Euclidean distance, i.e., find a point

1 , 1 , 1( , )k i k j kx     that is the closest point to ( , )k ik jkx   . 

(3) Minimize the number of segments required, by determining if several points lie in a 

straight line: 
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a. Select the first three adjacent points and compute the area of the triangle 

formed by them. If they are in a straight line, then select the first and third 

point.  

b. Select another adjacent point, and repeat step 3(a) until no more points are 

aligned for the segment being constructed. 

(4) Construct the linear segments: 

a.  If the point ( , )k ik jkx   is the closest point to the point ( , )h ih jhx   , then join 

them with a line: 

( , ) ( , ) ( , )j i i j ija h k b h k c h k    

, ,( , )j j k j ha h k    , , ,( , )i i h i kb h k    , , , , , , ,( , ) 2ij j k i k j k i h j h i hc h k         .   

b. Select the last point of the segment constructed in (4.a), and proceed as in (3) 

to build the next segment. 

(5) Stop when the last point is reached. 

The boundary ( , ) ( ) ( )i j i j  X X  is then described by a set of linear equations  

,( , ) :  { ( , ) (   0, ) ( , , ,) , }j i i j ij ih i i kB i j a h k b h k c hh k k m           (3.6) 

 

Example: Consider the network structure depicted in Figure 2 and the randomly generated 

supermatrix given in Table 4. 
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Table 4. A randomly generated supermatrix for a network with the structure of Figure 2 

Goal 
Goal 

C1 C2 A1 A2 A3 A4 A5 A6 

 0 0 0 0 0 0 0 0 0 

C1 0.4831 0 0.0254 0.1359 0.1711 0.1616 0.1636 0.0821 0.2676 

C2 0.5169 0.0984 0 0.2016 0.1523 0.1936 0.1782 0.3915 0.0126 

A1 0 0.1236 0.0386 0 0.1279 0.0203 0.2929 0.3562 0.0101 

A2 0 0.1297 0.1920 0.1643 0 0.1372 0.1059 0.0423 0.2323 

A3 0 0.1528 0.1990 0.1896 0.0974 0 0.0052 0.0317 0.3322 

A4 0 0.1522 0.2486 0.0543 0.1519 0.1695 0 0.0444 0.1109 

A5 0 0.1864 0.1727 0.1485 0.1210 0.0572 0.1351 0 0.0343 

A6 0 0.1569 0.1237 0.1060 0.1785 0.2606 0.1190 0.0517 0 

 

The limiting priorities resulting from the supermatrix in Table 4 are given in Table 5: 

Table 5. Priorities of the six alternatives from the supermatrix of Table 4 

Alternative Priority 

A1 0.1588 

A2 0.1751 

A3 0.1762 

A4 0.1667 

A5 0.1497 

A6 0.1732 

 

Next, we perturb all the entries of rows 2 and 3 of the Table 4 supermatrix, using formula 

(3.5), with a perturbation increment 𝛼 = 0.002. The number of perturbation levels is 𝑚 = 999 

for each of the two criteria, so, for the given value of the increment, the matrix of perturbations 

has 998,001 rows. The perturbation regions for which each of the six alternatives dominate 

within the space [-1,1]
2
 are portrayed in Figure 3. 
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Figure 3. Dominance regions within the perturbation space 

  

The perturbation space [-1,1]
2
 is partitioned into six regions. Thus, we need to determine 

the piecewise linear boundaries between the following pairs of alternatives: A1-A6; A2-A3; A2-

A4; A2-A6; A3-A4; A3-A5; A3-A6; A4-A5 and A5-A6. To obtain those boundaries, we only 

need the points classified as boundary points. Figure 4 shows the boundary points between the 

six regions obtained from the sample of 998,001 perturbations, using a cut-off value of 
510  , 

i.e., we consider that a point belongs to the boundary between two regions i and j if the priorities 

of the alternatives iA  and jA  satisfy 
5( ) ( ) 10i j    w w . 
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Figure 4. Boundary points between pairs of alternatives for 
510   

 

In addition to the boundary points, we need to find points that may be on the boundary of 

more than two regions. To find them, we consider all ∑ 𝐶𝑘
66

𝑘=2 = 57 possible combinations of 

three regions. We identified the following three-region intersection points: regions A3, A4 and 

A5, point (0.400; -0.128); regions A2, A3 and A4, point (-0.121; 0.108); regions A2, A3 and A6, 

point (-0.285; -0.195) and regions A3, A5 and A6, point (0.400; -0.342). 

Next, in order to simplify the problem, rather than using all the points on the boundaries 

between two regions, we select boundary points using a grid of 𝛽 = 0.1 over the perturbations of 

the first criterion (C1). The points obtained in such a fashion are used to construct the piecewise 

linear approximations. The ordering process begins from an intersection point, if one exists. 

Using the ordered points in pairs, we determine the piecewise linear approximation for the given 

boundaries following the algorithm described in section 3.3.1. The systems of inequalities 

describing each of the six regions for the example are given in Appendix A. 
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Figure 5 shows the approximated piecewise linear boundaries within the perturbation 

space.  

 

Figure 5. Approximated piecewise linear boundaries within the perturbation space 

 

 

3.3.2. Goodness of fit 

 To determine how well the piecewise linear algorithm approximates the nonlinear 

boundaries between pairs of regions, we calculate the percentage of points misclassified by the 

system of linear inequalities describing each region. That is, we know from the 988,001 points 

generated in the [-1,1]
2
, the actual region to which each point belongs. We compare those actual 

regions with the regions to which the points are assigned by the piecewise linear boundaries. The 

numbers of correctly classified points, and the number of misclassified points, are given in Table 

6. Note that the number of misclassified points is less than 1% for each of the six regions. Thus, 

it appears that the piecewise linear algorithm provides a good approximation to the nonlinear 

boundaries between the preference regions. 
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Table 6. Goodness of fit – piecewise linear algorithm 

Alternative 
Total points 

(within the region) 

Correct classified points  

(counts and %) 

Misclassified points 

(counts and %) 

A1 130,112 129,759 (99.729%) 353 (0.271%) 

A2 80,539 80,401 (99.829%) 138 (0.171%) 

A3 58,673 58,210 (99.211%) 463 (0.789%) 

A4 379,268 378,967 (99.921%) 301 (0.079%) 

A5 206,933 206,598 (99.838%) 335 (0.162%) 

A6 142,476 142,372 (99.927%) 104 (0.073%) 

TOTAL 998,001 996,307 (99.83%) 1,694 (0.169%) 

 

 

3.4. STABILITY ELLIPSOIDS FOR NON-CONVEX SETS – TWO-

DIMENSIONAL CASE 

The problems of core and solution stability within the preference regions are of high 

importance when analyzing how sensitive the model results are to changes in their inputs. In 

Section 3.2, we showed that ellipsoids are superior to spheres when constructing the stability 

regions, because they capture more volume. The formulation by Boyd and Vandenberghe (2004) 

is applicable only to convex sets, but for the example in Figure 3, only three of the preference 

regions (A1, A4 and A5) are convex. 

In this section we propose a nonlinear programming model for approximating the 

maximal volume ellipsoid that can be inscribed in a two-dimensional non-convex set. Given the 

set of boundary points ∆(𝑖, 𝑗) and the system of inequalities describing the boundaries between 

each pair of regions, i.e. 𝐵(𝑖, 𝑗), we formulated the following model: 
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{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝑚𝑎𝑥 𝜋‖𝑎‖2‖𝑏‖2
𝑠. 𝑡.

 𝑎𝑇𝑏 = 0
𝑎𝑇𝑎 − 𝑏𝑇𝑏 ≥ 0

min1≤𝑖≤𝑚‖𝑝
𝑖 − 𝑓1‖ − ‖𝑝𝑖 − 𝑓2‖ ≥ 2‖𝑎‖

min1≤𝑗≤𝑛(𝑟𝑗𝑥𝐴 + 𝑠𝑗𝑦𝐴 ≤ 𝑡𝑗)

min1≤𝑗≤𝑛(𝑟𝑗𝑥𝐴′ + 𝑠𝑗𝑦𝐴′ ≤ 𝑡𝑗)

min1≤𝑗≤𝑛(𝑟𝑗𝑥𝐵 + 𝑠𝑗𝑦𝐵 ≤ 𝑡𝑗)

min1≤𝑗≤𝑛(𝑟𝑗𝑥𝐵′ + 𝑠𝑗𝑦𝐵′ ≤ 𝑡𝑗)

𝑚𝑖𝑛{𝑝1
𝑖 } ≤ 𝑐1, 𝑥𝐴, 𝑥𝐴′ , 𝑥𝐵, 𝑥𝐵′ ≤ 𝑚𝑎𝑥{𝑝1

𝑖 }

𝑚𝑖𝑛{𝑝2
𝑖 } ≤ 𝑐2, 𝑦𝐴, 𝑦𝐴′ , 𝑦𝐵, 𝑦𝐵′ ≤ 𝑚𝑎𝑥{𝑝2

𝑖 }

−1 ≤ 𝑎1, 𝑎2, 𝑏1, 𝑏2 ≤ 1
𝑖 = 1,2, … ,𝑚
𝑗 = 1,2, … , 𝑛

    (3.7) 

where (𝑐1, 𝑐2) are the coordinates of the ellipsoid center C; 𝑎1, 𝑎2 are the offsets for the semi-

major axis a; 𝑏1, 𝑏2 are the offsets for the semi-minor axis b; ‖𝑎‖2, ‖𝑏‖2 are the Euclidean 

norms of the two semi-axes; 𝑝1, 𝑝2, … , 𝑝𝑚 are the boundary points describing the preference 

region, with 𝑝1 = (𝑝1
1, 𝑝2

1); 𝑓1(𝑥𝑓1, 𝑦𝑓1), 𝑓
2(𝑥𝑓2, 𝑦𝑓2) the focal points of the ellipsoid; 𝐴(𝑥𝐴, 𝑦𝐴), 

𝐴′(𝑥𝐴′ , 𝑦𝐴′), 𝐵(𝑥𝐵, 𝑦𝐵), 𝐵
′(𝑥𝐵′ , 𝑦𝐵′) are the coordinates of the extreme points of the semi-major 

axis a and semi-minor axis b, respectively; and 𝑟𝑗𝑥 + 𝑠𝑗𝑦 ≤ 𝑡𝑗 ,   𝑢𝑗 ≤ 𝑥 ≤ 𝑣𝑗  are the inequalities 

that define the boundaries. 

 

Example: Using the example described previously, we determined the maximal volume 

ellipsoids that can be inscribed in the six preference regions identified. Three of the regions 

approximated in Figure 5, A1, A4 and A5, are convex. For those regions, ellipsoids may be 

determined using the formulation in (3.4). The other three approximated preference regions, A2, 

A3 and A6, are non-convex, for which we use the mathematical program (3.7). A representation 

of the stability ellipsoids is depicted in Figure 6. 
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Figure 6. Solution stability ellipsoids within the perturbation space 

 

 

3.5. TRIANGULAR MESH GENERATION FOR THREE-DIMENSIONAL 

BOUNDARY APPROXIMATIONS 

As the number of criteria within the network increases, analyzing the sensitivity and 

stability of the solution obtained becomes more complex. In order to retain the notion of 

piecewise linear boundaries in spaces of dimension greater than two, we use mesh generation, 

particularly triangulation, to approximate the boundaries between the preference regions in a 

higher dimensional space (𝒏 > 𝟐). Mesh generation uses piecewise polygons or convex 

polyhedrons to approximate the geometric surfaces characterized by non-convex regions 

(Thompson et al., 1985; Edelsbrunner, 2001). To differentiate among the preference regions in a 

three-dimensional space, we approximate the separating boundaries using Delaunay’s 
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triangulation method, which ensures that the circumcircle associated with each triplet of points in 

the boundary contains no other boundary point in its interior (Delaunay, 1934; de Berg et al. 

2008). The method gives us an unstructured grid, connecting triplets of the boundary points, 

which can be used to construct the set of inequalities describing the separating hyperplanes 

(Mavriplis, 1996). 

Consider the network represented in Figure 7. The supermatrix associated with the network in 

Figure 7 is column stochastic, and the simultaneous perturbations with respect to all three criteria 

are made using relation (3.8) 

 0

(1 )  0

ijk ijk ijk ijk

ijk

ijk ijk ijk ijk

w w if
w

w w if

 

 

 
  

  

    (3.8) 

 

Figure 7. A network with three criteria and n alternatives 

  

Similarly, as with the two-dimensional case, the sets to be separated are created by selecting only 

the boundary points in the three-dimensional perturbation space, and determining which 

alternative dominates by having the largest limiting priority. 
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3.5.1. An algorithm to generate the piecewise triangular approximation 

 Let 𝐵(𝑖, 𝑗) be the boundary between regions 𝑿(𝑖) and 𝑿(𝑗), and ∆(𝑖, 𝑗) ⊆ 𝑿(𝑖)⋂𝑿(𝑗) the 

set of perturbations for which 𝒘(𝑖) = 𝒘(𝑗). For the three-dimensional case, the boundary 𝐵(𝑖, 𝑗) 

is given by the function ( ) 0ijf   , ( , )i j  , with 𝛿 = (𝛿𝑖, 𝛿𝑗 , 𝛿𝑘). To approximate ∆(𝑖, 𝑗) ⊆

𝑿(𝑖)⋂𝑿(𝑗) with a piecewise triangular mesh, we proceed as follows: 

1. Select (m+1) points in ( , )i j , with {𝑥ℎ = (𝛿𝑖ℎ, 𝛿𝑗ℎ, 𝛿𝑘ℎ), ℎ = 0,1, … ,𝑚}. 

2. Determine the triplets of boundary points from ( , )i j  which can form a triangle 

within the three-dimensional perturbation space, using the Delaunay triangulation 

algorithm as developed by de Berg et al. (2008)
1
. 

3. The output matrix M gives the number of possible combinations of vertices for the 

triangular mesh, based on the order of the points in the original input for Step (2): 

𝑀 = (
𝑝𝑜𝑖𝑛𝑡 𝑛𝑜.  𝑥𝑖1 𝑝𝑜𝑖𝑛𝑡 𝑛𝑜. 𝑥𝑗2 𝑝𝑜𝑖𝑛𝑡 𝑛𝑜. 𝑥𝑘3

…
…

),  

where 𝑖 = 1, . . . , 𝑚 + 1; 𝑗 = 1, . . . , 𝑚; 𝑘 = 1, . . . , 𝑚 − 1  

and  𝑀′ = (
 (𝛿𝑖1, 𝛿𝑗1, 𝛿𝑘1) (𝛿𝑖2, 𝛿𝑗2, 𝛿𝑘2) (𝛿𝑖3, 𝛿𝑗3, 𝛿𝑘3)

…
…

) is the matrix containing 

the corresponding Cartesian coordinates for each triplet. 

4. Construct the separating hyperplane generated by any set of three vertices from M.  

We use the first point in M’ for illustrative purposes. Let 𝑥1 = (𝛿𝑖1, 𝛿𝑗1, 𝛿𝑘1), 

𝑥2 = (𝛿𝑖2, 𝛿𝑗2, 𝛿𝑘2) and 𝑥3 = (𝛿𝑖3, 𝛿𝑗3, 𝛿𝑘3),  

                                                           
1
 de Berg, M., Cheong, O., van Kreveld, M., Overmars, M., 2008. Computatioal geometry. Algorithm and 

applications. 3ed, Springer, pp. 199-208. 
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a. Determine the direction vectors 𝑥1𝑥2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (𝛿𝑖2 − 𝛿𝑖1)𝑖̂ + (𝛿𝑗2 − 𝛿𝑗1)𝑗̂ + (𝛿𝑘2 −

𝛿𝑘1)𝑘̂ and 𝑥1𝑥3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (𝛿𝑖3 − 𝛿𝑖1)𝑖̂ + (𝛿𝑗3 − 𝛿𝑗1)𝑗̂ + (𝛿𝑘3 − 𝛿𝑘1)𝑘̂. 

b. Calculate the normal vector  

𝑥1𝑥2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ×  𝑥1𝑥3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = |

𝑖̂ 𝑗̂ 𝑘̂
𝛿𝑖2 − 𝛿𝑖1 𝛿𝑗2 − 𝛿𝑗1 𝛿𝑘2 − 𝛿𝑘1
𝛿𝑖3 − 𝛿𝑖1 𝛿𝑗3 − 𝛿𝑗1 𝛿𝑘3 − 𝛿𝑘1

| 

c. The equation of the hyperplane is given by 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0, where  

𝑎 = |
𝛿𝑗2 − 𝛿𝑗1 𝛿𝑘2 − 𝛿𝑘1
𝛿𝑗3 − 𝛿𝑗1 𝛿𝑘3 − 𝛿𝑘1

|, 𝑏 = − |
𝛿𝑘2 − 𝛿𝑘1 𝛿𝑖2 − 𝛿𝑖1
𝛿𝑘3 − 𝛿𝑘1 𝛿𝑖3 − 𝛿𝑖1

|, 

𝑐 = |
𝛿𝑖2 − 𝛿𝑖1 𝛿𝑗2 − 𝛿𝑗1
𝛿𝑖3 − 𝛿𝑖1 𝛿𝑗3 − 𝛿𝑗1

|,  and 𝑑 = −(𝑎𝛿𝑖1 + 𝑏𝛿𝑗1 + 𝑐𝛿𝑘1). 

Set the conditions for any given point 𝑥ℎ = (𝛿𝑖ℎ, 𝛿𝑗ℎ, 𝛿𝑘ℎ) to be in the interior 

of the triangle ∆𝑥1𝑥2𝑥3, using the barycentric coordinates approach developed 

by Shirley et al. (2009): 𝛼 =
|𝑥ℎ𝑥2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   × 𝑥ℎ𝑥3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |

|𝑥1𝑥2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   × 𝑥1𝑥3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|
, 𝛽 =

|𝑥ℎ𝑥3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   × 𝑥ℎ𝑥1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |

|𝑥1𝑥2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   × 𝑥1𝑥3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|
,  𝛾 = 1 − 𝛼 − 𝛽 

and 0 ≤ 𝛼, 𝛽, 𝛾 ≤ 1, where:  

| 𝑥1𝑥2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ×  𝑥1𝑥3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ | = 𝑑𝑒𝑡 |

𝑖̂ 𝑗̂ 𝑘̂
𝛿𝑖2 − 𝛿𝑖1 𝛿𝑗2 − 𝛿𝑗1 𝛿𝑘2 − 𝛿𝑘1
𝛿𝑖3 − 𝛿𝑖1 𝛿𝑗3 − 𝛿𝑗1 𝛿𝑘3 − 𝛿𝑘1

| 

| 𝑥ℎ𝑥2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  ×  𝑥ℎ𝑥3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | = 𝑑𝑒𝑡 |

𝑖̂ 𝑗̂ 𝑘̂
𝛿𝑖2 − 𝛿𝑖ℎ 𝛿𝑗2 − 𝛿𝑗ℎ 𝛿𝑘2 − 𝛿𝑘ℎ
𝛿𝑖3 − 𝛿𝑖ℎ 𝛿𝑗3 − 𝛿𝑗ℎ 𝛿𝑘3 − 𝛿𝑘ℎ

| 

and  |  𝑥ℎ𝑥3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ×  𝑥ℎ𝑥1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   | = 𝑑𝑒𝑡 |

𝑖̂ 𝑗̂ 𝑘̂
𝛿𝑖3 − 𝛿𝑖ℎ 𝛿𝑗3 − 𝛿𝑗ℎ 𝛿𝑘3 − 𝛿𝑘ℎ
𝛿𝑖1 − 𝛿𝑖ℎ 𝛿𝑗1 − 𝛿𝑗ℎ 𝛿𝑘1 − 𝛿𝑘ℎ

|. 

5. Stop when the last triplet from matrix M is reached. 

The boundary ∆(𝑖, 𝑗) ⊆ 𝑿(𝑖)⋂𝑿(𝑗) is then described by a set of n planar equations, 

where n is the total number of triangles generated in Step (3), of the form: 
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𝐵(𝑖, 𝑗): {𝑎𝑘𝑥 + 𝑏𝑘𝑦 + 𝑐𝑘𝑧 + 𝑑𝑘 = 0, 𝑘 = 1, . . . , 𝑛}   (3.9) 

 

Example: Consider the network represented in Figure 7 and the associated randomly generated 

supermatrix from Table 7. 

Table 7. A randomly generated supermatrix for a network with the structure of Figure 7 

Goal 
Goal 

C1 C2 C3 A1 A2 A3 

 0 0 0 0 0 0 0 

C1 0.3 0 0 0 0.07 0.13 0.5 

C2 0.4 0 0 0 0.5 0.07 0.13 

C3 0.3 0 0 0 0.13 0.5 0.07 

A1 0 0.5 0.1 0.4 0 0.18 0.12 

A2 0 0.4 0.4 0.5 0.18 0 0.18 

A3 0 0.1 0.5 0.1 0.12 0.12 0 

 

The limiting priorities resulting from the supermatrix given in Table 7 are 0.3348 for 

alternative A1, 0.4125 for alternative A2, and 0.2516 for alternative A3. We perturb 

simultaneously all the entries of rows 2, 3 and 4 of the supermatrix in Table 7, using formula 

(3.8), with a perturbation increment 𝛼 = 0.02. The level of perturbation 𝛼 was chosen so as to 

result in fewer than one million perturbed matrices. The number of perturbation levels is 𝑚 = 99 

for each of the three criteria perturbed, so the matrix of perturbations has 970,300 rows. Different 

perspectives of the perturbation regions for each of the three alternatives dominating within the 

perturbation space [−1; 1]3 are represented in Figure 8 and Figure 9. 
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Figure 8. Preference regions within the three-dimensional perturbation space 
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Figure 9. Preference regions within the three-dimensional perturbation space for the dominating 

alternatives 

 

 The three-dimensional perturbation space [−1; 1]3 is partitioned into three regions, thus 

we need to determine the piecewise triangular meshes that approximate the nonlinear boundaries 

between regions A1-A2 and A2-A3, using only the boundary points between the pairs of regions. 

Figure 10 shows the boundary points used as input to the algorithm described in Section 3.5.1. 

The points were obtained from the initial sample of 970,300 perturbations, using, as the selection 

criterion, |𝒘(𝑖) − 𝒘(𝑗)| < 𝜀 = 10−4. To obtain “enough” points for generating good 

approximations of the triangular meshes we used a more lenient threshold for the three-

dimensional case.  
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Figure 10. Boundary points between pairs of alternatives for 𝜺 = 𝟏𝟎−𝟒 

 

 Using the MATLAB functions implemented to generate the Delaunay triangulation, we 

determined the boundaries between the preference regions. Figure 11 shows multiple 

perspectives of the approximated piecewise triangular boundaries, within the three-dimensional 

perturbation space, between regions A1 and A2, and between A2 and A3, respectively. The 

combinations of boundary points generating the triangles within the piecewise triangular 

boundaries and the associated planar equations defining the regions over which each alternative 

dominates, are detailed in Appendix B.  



41 

 

Figure 11. Approximated piecewise triangular boundaries within the three-dimensional 

perturbation space 

 

 

3.6. STABILITY ELLIPSOIDS FOR NON-CONVEX SETS – THREE-

DIMENSIONAL CASE 

 We need to define the maximal inscribed ellipsoid within the three-dimensional 

preference regions to determine how stable the initial solution is, and to describe the stability 

region of the dominated alternatives, as the complexity of the network increases. The complexity 

of the analysis increases as the number of the simultaneously perturbed criteria increases. In 

addition, the preference regions are non-convex. So, we propose an extension of the nonlinear 

programming model from section 3.4 to the three-dimensional case. 

Given the set of boundary points ∆(𝑖, 𝑗) separating two regions, and the matrix 𝑀′ 

containing the corresponding Cartesian coordinates for each triplet describing the piecewise 
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triangular boundary 𝐵(𝑖, 𝑗), we can formulate the following nonlinear programming model to 

approximate the maximal inscribed ellipsoid within a three-dimensional non-convex set: 

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 𝑚𝑎𝑥 

4

3
𝜋‖𝑎‖2‖𝑏‖2‖𝑐‖2
𝑠. 𝑡.

𝑎𝑇𝑏 = 0
𝑎𝑇𝑐 = 0
𝑏𝑇𝑐 = 0

𝑎𝑇𝑎 − 𝑏𝑇𝑏 ≥ 0
𝑏𝑇𝑏 − 𝑐𝑇𝑐 ≥ 0

(𝑝1
𝑖−𝑐𝑒1)

2

‖𝑎‖2
+
(𝑝2
𝑖−𝑐𝑒2)

2

‖𝑏‖2
+
(𝑝3
𝑖−𝑐𝑒3)

2

‖𝑐‖2
≥ 1

𝛼̅1𝑇 = (𝐴̅𝑇 − 𝑂̅𝑇)𝑀′−1 ≥ 0

𝛼̅2𝑇 = (𝐴′̅
𝑇
− 𝑂̅𝑇)𝑀′−1 ≥ 0

𝛼̅3𝑇 = (𝐵̅𝑇 − 𝑂̅𝑇)𝑀′−1 ≥ 0

𝛼̅4𝑇 = (𝐵′̅̅ ̅
𝑇
− 𝑂̅𝑇)𝑀′−1 ≥ 0

𝛼̅5𝑇 = (𝐶̅𝑇 − 𝑂̅𝑇)𝑀′−1 ≥ 0

𝛼̅6𝑇 = (𝐶′̅̅̅
𝑇
− 𝑂̅𝑇)𝑀′−1 ≥ 0

∑ 𝛼𝑖
𝑘 ≤ 13

𝑖=1

−1 ≤ 𝑐𝑒1, 𝑐𝑒2, 𝑐𝑒3 ≤ 1
−1 ≤ 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3, 𝑐1, 𝑐2, 𝑐3 ≤ 1

𝑖 = 1,2, … ,𝑚
𝑗 = 1,2, … , 𝑛

   (3.10) 

where (𝑐𝑒1, 𝑐𝑒2, 𝑐𝑒3) are the coordinates of the ellipsoid center C; 𝑎1, 𝑎2, 𝑎3 are the offsets for 

the semi-axis a; 𝑏1, 𝑏2, 𝑏3 are the offsets for the semi-axis b; 𝑐1, 𝑐2, 𝑐3 are the offsets for the semi-

axis c, with 𝑎 ≥ 𝑏 ≥ 𝑐; ‖𝑎‖2, ‖𝑏‖2, ‖𝑐‖2 are the Euclidean norms of the three semi-axes; 

𝑝1, 𝑝2, … , 𝑝𝑚 are the boundary points describing the preference region, with 𝑝1 = (𝑝1
1, 𝑝2

1, 𝑝3
1); 

𝐴(𝑥𝐴, 𝑦𝐴, 𝑧𝐴), 𝐴
′(𝑥𝐴′ , 𝑦𝐴′ , 𝑧𝐴′), 𝐵(𝑥𝐵, 𝑦𝐵, 𝑧𝐵), 𝐵

′(𝑥𝐵′ , 𝑦𝐵′ , 𝑧𝐵′), 𝐶(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶), 𝐶
′(𝑥𝐶′ , 𝑦𝐶′ , 𝑧𝐶′) 

are the coordinates of the extreme points of the semi-axes a, b and c, respectively; 𝑀′ is the 

matrix with the Cartesian coordinates for each triplet describing the piecewise triangular 

boundary 𝐵(𝑖, 𝑗); 𝛼̅𝑘 is the vector of coefficients associated with the linear combination 

determined by each triplet from matrix 𝑀′; and 𝑂̅𝑇 is an arbitrary point in the three-dimensional 
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perturbation space, used to construct pyramids associated with each of the triangles 

approximating the boundary 𝐵(𝑖, 𝑗) to ensure that the ellipsoids were contained in the region 

described by the boundary. 

 

Example: For the example in Section 3.5, we approximate the maximal inscribed ellipsoids 

within the non-convex preference regions, using the nonlinear optimization model (3.10). Figure 

12 depicts the maximal stability ellipsoids for each of the three preference regions within the 

three-dimensional perturbation space. 

 

a) Preference region A3    b) Preference region A1 
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c) Preference region A2 

Figure 12. Solution stability ellipsoids within the three-dimensional perturbation space 

 

 

3.7. MEASURES OF SENSITIVITY AND STABILITY 

Interpreting the sensitivity and stability measures begins with the most preferred 

alternative in the initial study. The study of core stability tells us how the most preferred 

alternative remains most preferred after perturbations have taken place. We measure core 

stability using the largest sphere centered at the origin of the perturbation space, i.e., (0,0,0).  

Definition 1: The Core stability of the most preferred alternative 𝐴𝑖 is given by the maximum 

sphere that can be inscribed in the perturbation region, centered at 0𝑛. The dimensionality of the 

perturbation space [−1; 1]𝑛 is given by the number of criteria perturbed simultaneously 

Definition 2: The direction of change in stability of 𝐴𝑖 is a vector of perturbations (𝛿1, . . , 𝛿𝑛), 

where n represents the number of criteria perturbed, for which the most preferred alternative 𝐴𝑖 
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is replaced by another alternative 𝐴𝑗.  The distance from the origin is given by [∑ 𝛿𝑖
2𝑛

𝑖=1 ]
1/2

= 𝑟, 

where r is the radius of the core stability sphere.  

Definition 3: The perturbation stability over a set of criteria (𝐶𝑖 …𝐶𝑗) is given by the distance 

from the center of the core solution stability sphere for the most preferred alternative 𝐴𝑖 to the 

closest boundary 𝐵(𝑖, 𝑗), i.e., the radius of the core stability sphere.  

Combining the perturbation stability with the direction of change in stability, we obtain 

insight about the maximum change in the weights of the criteria that keeps the most preferred 

alternative invariant, i.e., still the most preferred. Alternatively, it could be viewed as the 

minimum change in the weights of the criteria that will make another alternative most preferred.  

Mathematically, the minimum change is given by r, the radius of the core solution stability 

sphere.  The direction of change will determine which alternative becomes the most preferred 

one. 

The preference regions in perturbation space are simply connected, closed, and not-

necessarily-convex sets. Because we approximate the boundaries of the preference regions by 

piecewise linear functions, their areas, in the two-dimensional case, or volumes, in the three-

dimensional case, can be obtained analytically, by adding the areas/volumes of all the 

triangles/pyramids that can be formed by points on the boundary of the regions. The relative 

area/volume of the preference regions could be used as a measure of solution stability. The 

relative volume of the stability ellipsoids generated is an approximation to the relative areas of 

the preference regions. Further, we determine the solution stability for all the alternatives 

dominating in the perturbation space, by using the largest ellipsoid that can be inscribed in the 

preference region.  
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Definition 4: The solution stability of an alternative 𝐴𝑖 is given by the maximum volume of the 

inscribed ellipsoid in the associated preference region.  

For the most preferred alternative 𝐴𝑖, the relation between the maximum core stability 

sphere and the maximum solution stability ellipsoid is a measure of the level of stability of a 

decision. The level of stability measure should be particularly useful in difficult decisions, e.g., 

medical decisions involving the selection of alternative treatments. 

Definition 5: The level of solution stability of the most preferred alternative 𝐴𝑖 is determined by 

the ratio of the volume of the core stability sphere to the volume of the stability ellipsoid of the 

most preferred alternative.  

 The current sensitivity and stability analysis is developed at the level of perturbing 

simultaneously pairs and triplets of criteria. Given this restrictive setting, an analysis of the 

stability evolution on sets of criteria is necessary to understand how perturbations in the model 

inputs change the most preferred solution or make the solution invariant. 

Definition 6: An alternative Ai is pairwise more stable than another alternative Aj with respect to 

a set of criteria if the stability ellipsoid of Ai is larger than that of Aj. 

Definition 7: An alternative is more stable than all other alternatives with respect to a set of 

criteria if the alternative is pairwise more stable than all other alternatives. 

Definition 8: An alternative is the most stable alternative among a set of alternatives if it is 

more stable than all other alternatives with respect to a set of criteria. 

 The theoretical guidelines described in this section can be a starting point for any 

sensitivity and stability analysis performed on practical multi-criteria decision making models.  
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4.0 AN ILLUSTRATION OF SENSITIVITY AND STABILITY 

ANALYSIS IN MEDICAL DECISION MAKING 

 

 

4.1. INTRODUCTION 

 Medical decision making is an important research area for both patients and providers. 

How patients make medical decisions, given their limited knowledge, and how providers can 

learn from the decisions patients make, and generalize their findings to groups of patients with 

similar characteristics, are two questions that still need to be answered. In this chapter, we apply 

the methodology developed in Chapter 3 to the colorectal cancer screening problem, showing 

how the decision process evolves from simultaneous changes in two criteria to changes in three 

criteria, and from a single patient to groups of patients.  

 

 

4.2. SINGLE PATIENT STABILITY ANALYSIS FOR COLORECTAL 

CANCER SCREENING – PAIRS OF CRITERIA 

 Colorectal cancer is one of the leading causes of mortality among cancer patients in the 

United States. It is also one of the most preventable forms of cancer. The current colorectal 

cancer screening guidelines recommend multiple screening options for patients who are 

classified as having an average risk for colorectal cancer (U.S. Preventive Service Task Force 
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2008). Currently, there are ten screening options from which patients and healthcare providers 

may choose (Table 8). The alternatives available are either invasive or non-invasive procedures, 

or a combination of the two types.  

Table 8. Screening options for colorectal cancer 

Screening options  

Annual Fecal Occult Blood Test with sensitivity 20% A1 Non-invasive 

Annual Fecal Occult Blood Test with sensitivity 40% A2 Non-invasive 

Flexible Sigmoidoscopy every 5 years A3 Invasive 

Fecal DNA test every 5 years A4 Non-invasive 

Annual immunochemical fecal occult 

blood test 
A5 Non-invasive 

Annual Fecal Occult Blood Test and flexible 

Sigmoidoscopy every 5 years 
A6 Both 

CT colonography A7 Non-invasive 

Double contrast barium enema A8 Invasive 

Annual Immunochemical Fecal Occult Blood Test and 

flexible Sigmoidoscopy every 5 years 
A9 Both 

Colonoscopy every 10 years A10 Invasive 

 

Dolan et al. (2013) proposed an Analytic Hierarchy Process (AHP)–based model (see 

Figure 13) to ascertain patients’ preferences among the ten alternatives for colorectal cancer 

screening. Participants used the standard AHP pairwise comparison method to compare the 

screening options, and to judge the relative priorities of the criteria involved in the decision. Data 

were collected from primary healthcare practices in Rochester, NY, Birmingham, AL, and 

Indianapolis, IN. From the total sample of 484 patients reported in the paper, we used 395 

patients for the purposes of our analysis. The 395 patients considered had complete demographic 

information and judgments elicitation. Because selection of screening alternatives should be a 

decision made between the patient and the healthcare provider, we illustrate the applicability of 
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our methodology by analyzing first the sensitivity and the stability of the initial selection of a 

single patient. The results of the analysis provide information to the healthcare provider about 

the patient’s preferences over the set of screening alternatives and how fast those preferences 

could change, if the patient is presented with additional information about the criteria used to 

discriminate among the alternatives.  

 

Figure 13. The AHP model for ascertaining patient preferences
2
 

 

Consider a 70 year old male patient who requires screening. He is asked to state his 

preferences regarding the ten colorectal cancer screening options, based on the model presented 

in Figure 13. His judgments, with respect to the six criteria (Table 9) and ten alternatives, are 

summarized in the supermatrix presented in Table 10. 

 

 

 

                                                           
2
 Dolan, J.G., Boohaker, E., Allison, J., Imperiale, T.F. (2013). Can streamlined multi-criteria decision analysis be 

used to implement shared decision making for colorectal cancer screening? Medical Decision Making, 34(6). 
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Table 9. The six criteria considered in the AHP-based model 

 Criteria 

C1 Prevent Cancer 

C2 Avoid Side Effects 

C3 Minimize False Positives 

C4 Procedure Frequency 

C5 Procedure Preparation 

C6 Procedure Complexity 

 

Table 10. The supermatrix for the 70 year-old male patient 

 

 

The limiting priorities corresponding to the supermatrix from Table 10, and the ranking 

of the ten screening options, are given in Table 11. 
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Table 11. Priorities and ranking of the ten screening alternatives 

Ranking Alternative Priority 

1 Colonoscopy every 10 years A10 0.4842 

2 Flexible Sigmoidoscopy every 5 years A3 0.1715 

3 
Annual Immunochemical Fecal Occult Blood Test and 

flexible Sigmoidoscopy every 5 years 
A9 0.1404 

4 Double contrast barium enema A8 0.0757 

5 CT colonography A7 0.0669 

6 Annual immunochemical fecal occult blood test A5 0.0230 

7 
Annual Fecal Occult Blood Test and flexible 

Sigmoidoscopy every 5 years 
A6 0.0184 

8 Fecal DNA test every 5 years A4 0.0084 

9 Annual Fecal Occult Blood Test with sensitivity 20% A1 0.0077 

10 Annual Fecal Occult Blood Test with sensitivity 40% A2 0.0033 

 

According to the priorities in Table 11, the alternative most preferred by the patient, 

given his current preferences, is Colonoscopy every 10 years (A10). The two most important 

criteria for the patient are Prevent Cancer (C1) and Avoid Side Effects (C2). They capture about 

89% of the criteria weights.  We would like to know: 

1. Is the most preferred alternative also the most stable one?  

2. Which criteria are most sensitive to input changes? 

To answer these questions, we considered all pairs of criteria - 15 possibilities, based on 

the six criteria associated with the model presented in Figure 13. We then perturbed 

simultaneously both criteria in the pair, using a 0.002 perturbation increment. The perturbation 

threshold was chosen so as to provide “enough” sampling data for the sensitivity and stability 

analysis. Using these data we calculated: (a) the volume of each preference region present in the 

perturbation space; (b) the volume of the core stability sphere around the origin; and (c) the 
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volumes of the maximal solution ellipsoids.  In addition, we identified the sets of perturbations 

that would lead to a change in preference away from A10. The results for the 70 years old male 

patient are displayed in Table 12. A graphical representation of the preference regions in the 

perturbation space, the core stability sphere, and the solution stability ellipsoids can be seen in 

Appendix C.  

  Table 12. Results of the new sensitivity and stability analysis for the patient 
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Consider the first row of Table 12. We first selected the pair of criteria that are perturbed 

simultaneously – Prevent Cancer (C1) and Avoid Side Effects (C2). We then identified the 

resulting preference regions for all alternatives that are most preferred across all perturbations of 

the two selected criteria. For perturbations of C1 and C2, only Flexible Sigmoidoscopy every 5 

years (A3) and Colonoscopy every 10 years (A10) would be selected. We approximated the 

areas of the two associated regions as a percentage of the total perturbation space. The total 

perturbation space has an area of four because the perturbation space is defined as [−1; 1]2. For 

the pair of criteria Prevent Cancer (C1) and Avoid Side Effects (C2), the screening alternative 

Flexible Sigmoidoscopy every 5 years (A3) covers approximately 30% of the perturbation space, 

while the other dominating alternative, Colonoscopy every 10 years (A10), dominates over a 

region that is twice as large.  

Next, we estimated the volume of the core stability sphere, and its relative volume with 

respect to the preference region of the initial most preferred alternative – in our case, 

Colonoscopy every 10 years (A10).  

To determine the direction of the shortest-length vector that results in a switch in the 

most preferred alternative, i.e., from A10 to A3, we identified the associated perturbation pair  

(-0.304, 0.333) and calculated the new adjusted criteria weights (0.4541, 0.4454). We also 

determined what would be the “new” most preferred alternative, A3, based on the minimum 

change necessary in the criteria weights, as given by the perturbation pair.  

We were also interested in approximating the preference regions using a regular shape, 

by inscribing the maximal ellipsoid within those regions. For the first pair of criteria, only two 

screening alternatives dominate. We calculated the volume of the ellipsoids, and their relative 

measures, with respect to the associated preference regions. Note that the stability ellipsoid for 
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the screening alternative Colonoscopy every 10 years (A10) captures approximately 75% of its 

preference region, while the stability ellipsoid for Flexible Sigmoidoscopy every 5 years (A3) 

covers only 46% of its region. A reason for the reduced coverage for A3 is that certain 

preference regions are non-convex, which makes it more difficult to capture as much of their 

area using a regular shape. The maximal inscribed ellipsoid is the best approximation of the 

interior of a convex hull that we have available at this point. We do not have a metric that 

assesses the goodness-of-fit of the ellipsoid approximation, but future research might analyze 

how the sensitivity and stability analysis is affected by the quality of the ellipsoid approximation.  

One last measure, displayed in Table 12, is the ratio between the stability sphere and the 

stability ellipsoid for the most preferred alternative - Colonoscopy every 10 years (A10). This 

ratio will be used to characterize the level of solution stability.  

Overall, the results for the 70 years old patient, summarized in Table 12, indicate that 

only three of the ten possible screening alternatives could ever dominate - Flexible 

Sigmoidoscopy every 5 years (A3), Annual Immunochemical Fecal Occult Blood Test (A5) and 

Colonoscopy every 10 years (A10). For half of the pairs of criteria considered, only the 

screening alternatives Flexible Sigmoidoscopy every 5 years (A3) and Colonoscopy every 10 

years (A10) appear in the perturbation space. For the other half, which includes either Procedure 

Preparation (C5) or Procedure Complexity (C6) in the pair of criteria, a third screening 

alternative appears – the Annual Immunochemical Fecal Occult Blood Test (A5).  

The volume of the stability sphere varies between a minimum of 0.1232 and a maximum 

of 0.6393, providing information about the region in which the initially most preferred 

alternative remains the most preferred one, despite the perturbations applied to the criteria. For 

all pairs considered, only one vector of perturbations determines the fastest switch in preference. 
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If the minimum perturbation determining a change in preferences is applied, the patient most 

frequently switches from the initially most preferred screening alternative, Colonoscopy every 10 

years (A10), to Flexible Sigmoidoscopy every 5 years (A3). Exceptions are three pairs of 

criteria: Minimize False Positive (C3) - Procedure Preparation (C5); Minimize False Positive 

(C3) - Procedure Complexity (C6); and Procedure Preparation (C5) - Procedure Complexity 

(C6), for which the increase in the importance of the criteria causes the patient to switch to a 

non-invasive screening procedure, Annual Immunochemical Fecal Occult Blood Test (A5). The 

change in preferences may be accomplished by different combinations of perturbations applied 

to the criteria weights, namely, (1) one criterion is increased while the second one is decreased; 

(2) both criteria are decreased; or (3) both criteria are increased simultaneously.  

 For the preference regions identified for each pair of criteria, we constructed the stability 

ellipsoids as the maximal regular shape that can be inscribed in the preference region space. The 

maximal ellipsoid captures between 68% and 82% of the region associated with the screening 

alternative Colonoscopy every 10 years (A10). The maximal ellipsoid approximation captures 

less of the region for the other two alternatives – between 46% and 79% for Flexible 

Sigmoidoscopy every 5 years (A3) and between 42% and 79% for Annual Immunochemical 

Fecal Occult Blood Test (A5). The decrease in the proportion captured is most likely due to the 

non-convexity of those preference regions. Note that the stability sphere may capture as little as 

9% of the ellipsoid and as much as 30%. This means that the stability sphere captures a similar 

percentage of the preference region, so that the maximal ellipsoid may be used to approximate 

the preference region when sampling the perturbation space becomes difficult. We can conclude 

that the maximal stability ellipsoid may be considered a good approximation of the preference 
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region when increasing the dimensionality of the problem. Smaller values of the ratio would 

have led to an opposite conclusion.  

The analysis of the sensitivity and stability of the initial solution begins with the 

identification of the core stability, meaning the largest sphere that can be inscribed around the 

origin of the perturbation space in which the initial solution lies. Using the results from Table 12, 

the initially most preferred screening option, Colonoscopy every 10 years (A10), is more stable 

with respect to the pair of criteria Prevent Cancer (C1) and Avoid Side Effects (C2), where the 

core stability sphere has the greatest volume, and it is less stable with respect to the pair of 

criteria Avoid Side Effects (C2) and Procedure Frequency (C4), where the core stability sphere 

has the smallest volume. For all other pairs of criteria considered in the analysis, the area of the 

core stability sphere is between these two extreme values. Comparing the volume of the core 

stability sphere in the two extreme situations with the volume of the associated preference 

region, the ratio of the two measures indicates that the core stability measure captures more of 

the preference region for the first pair of criteria, Prevent Cancer (C1) - Avoid Side Effects (C2), 

and less of the preference region for the second pair of criteria, Avoid Side Effects (C2) - 

Procedure Frequency (C4).  

Plots of the core stability spheres and of the solution stability ellipsoids for the pairs of 

criteria Prevent Cancer (C1) - Avoid Side Effects (C2) and Avoid Side Effects (C2) - Procedure 

Frequency (C4) are depicted in Figure 14. 
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Figure 14. The perturbation space for the pairs of criteria C1C2 and C2C4 

 

The core stability spheres provide information about the direction of change in stability 

and about the perturbation stability over a given pair of criteria, determined by the magnitude of 

the perturbation necessary to determine a change in preference. The set of perturbations (𝛿1, 𝛿2) 

over the pair of criteria (𝐶1, 𝐶2), for which the most preferred alternative – in this case, 

Colonoscopy every 10 years (A10),  is replaced by another alternative 𝐴𝑗, is the vector indicating 

the direction of change in stability. Given a vector of perturbations, we can calculate the distance 

from the origin to the closest separating boundary 𝐵(𝑖, 𝑗), and its length will be equal to the 

length of the radius r of the core stability sphere. Identification of the set (𝛿1, 𝛿2) enables the 

determination of the minimum change to be made in the weights of the two criteria, necessary to 

make a different alternative most preferred.  

For the pair of criteria Prevent Cancer (C1) - Avoid Side Effects (C2), the vector of 

minimum perturbations, if made, change the most preferred alternative from Colonoscopy every 

10 years (A10) to Flexible Sigmoidoscopy every 5 years (A3). Analyzing the direction of the 
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change in stability, the change occurs when the importance of the criterion Prevent Cancer (C1) 

decreases and the importance of the criterion Avoid Side Effects (C2) increases. Initially, the 

difference between those two criteria weights was significant. As their importance become 

almost equal, the patient changes his preference to Flexible Sigmoidoscopy every 5 years (A3).  

For the pair of criteria Avoid Side Effects (C2) - Procedure Frequency (C4), the vector of 

minimum perturbations has the same effect as the vector for the pair of criteria Prevent Cancer 

(C1) - Avoid Side Effects (C2). The most preferred screening alternative changes from 

Colonoscopy every 10 years (A10) to Flexible Sigmoidoscopy every 5 years (A3). But, for C2-

C4, the change happens only when the importance of both criteria increase significantly, as 

compared with their initial values. Comparing the magnitude of the minimum change necessary 

for the two extreme situations analyzed, the change in preference for the pair of criteria Avoid 

Side Effects (C2) - Procedure Frequency (C4) occurs more quickly than does the change for C1-

C2, because the values of the perturbations determining the minimum change are smaller for C2-

C4.  

 A different change in the most preferred alternative happens when the pair of criteria 

contains either Procedure Preparation (C5) or Procedure Complexity (C6). Consider the pair of 

criteria Minimize False Positive (C3) and Procedure Preparation (C5). The vector of 

perturbations tells us that, as the importance of both criteria increases, with the criterion 

Procedure Preparation (C5) experiencing a greater increase in its weight, the patient switches his 

preference from Colonoscopy every 10 years (A10) to Annual Immunochemical Fecal Occult 

Blood Test (A5). A similar change occurs for the pairs of criteria Minimize False Positive (C3) - 

Procedure Complexity (C6), and Procedure Preparation (C5) - Procedure Complexity (C6).  
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 The perturbation stability analysis of all pairs of criteria indicates that the only other two 

screening alternatives that could become most preferred, under changes in the criteria weights, 

are Flexible Sigmoidoscopy every 5 years (A3) and Annual Immunochemical Fecal Occult 

Blood Test (A5). How quickly the change in the most preferred alternative occurs is a function of 

the direction of change in stability, given by the vector of perturbations associated with each of 

the pairs of criteria. For nine pairs of criteria, the change in the most preferred alternative 

happens when both criteria weights are increased. For one set of criteria, decreasing the weight 

of both criteria brings about the switch. For five pairs of criteria, one of the criteria needs to be 

increased, and the second one is needs to be decreased.  

For all the alternatives present in the perturbation space, we construct the maximal 

inscribed ellipsoid within the preference region to define the solution stability. In our example, 

alternatives Colonoscopy every 10 years (A10), Flexible Sigmoidoscopy every 5 years (A3), and 

Annual Immunochemical Fecal Occult Blood Test (A5) always dominate, within the perturbation 

space determined by all pairs of criteria. For all pairs of criteria, the volume of the maximal 

ellipsoid, as a measure of the solution stability, varies between 46% and 82% of the preference 

region. Knowing that the preference regions for real-life applications are not necessarily convex, 

we consider, at this point, the maximal ellipsoids to be a good approximation of how stable an 

alternative can be with respect to its preference region.  

The screening alternative Colonoscopy every 10 years (A10) is characterized by two 

levels of stability: core stability, for being the alternative initially most preferred by the patient; 

and solution stability, defined by the maximal ellipsoid inscribed within the preference region. 

The level of solution stability, calculated as the ratio of the core stability sphere to the maximal 

inscribed ellipsoid, provides information about how much of the preference space, approximated 
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by the maximum ellipsoid, is covered by the core stability sphere. As the dimensionality of the 

perturbation space increases, sampling a sufficient number of points to adequately approximate 

the preference regions may become a challenge. The maximum ellipsoids provide good 

approximations of the preference regions, and the comparison of the ellipse that includes the 

origin with the core stability sphere provides a measure of the stability of the initially most 

preferred alternative.  

Insight can also be derived from a consideration of the evolution of the most preferred 

alternative as the criteria weights are varied. With respect to all sets of criteria, the screening 

alternative Colonoscopy every 10 years (A10) is pairwise more stable, because the associated 

solution stability ellipsoids have a greater volume than do the other alternatives that may be most 

preferred. That observation implies that Colonoscopy every ten years (A10) is the most stable 

alternative among all sets of alternatives with respect to all pairs of criteria, because it is more 

stable than the other alternatives that may be most preferred in this case, namely, Flexible 

Sigmoidoscopy every 5 years (A3) and Annual Immunochemical Fecal Occult Blood Test (A5). 

Based on the measures of sensitivity and stability we defined, the screening alternative 

Colonoscopy every 10 years (A10) is not only the most preferred one, but also the most stable of 

the entire set of alternatives. Thus, it should be used for screening the patient. We should take 

into consideration that small changes in the criteria weights, as the patient obtains more 

knowledge, could drastically change the most preferred alternative. The results obtained should 

be treated as a starting point for understanding the patient’s preferences regarding his optimal 

screening alternative for colorectal cancer.  
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4.2.1. Medical implications of the stability analysis 

The findings in this section, about how sensitive and stable are the preferences of the 70 

year old patient regarding the set of ten colorectal cancer screening alternative, are of interest 

from a methodological point of view. But what might be the medical implications of our results? 

How can our findings help the healthcare provider better understand the underlying structure of 

the patient’s preferences, and how to incorporate that structure into the medical decision making 

process? 

The first medical implication of the analysis is that only three of the original colorectal 

cancer screening alternatives appear to be appropriate for this patient: two invasive procedures, 

Colonoscopy every 10 years (A10) and Flexible Sigmoidoscopy every 5 years (A3); and one 

non-invasive procedure, Annual Immunochemical Fecal Occult Blood Test (A5). The early 

identification of that subset of the alternatives could help the healthcare provider during the 

discussions with the patient, and could help ensure that the screening procedure chosen is one 

that best meets the patient preferences and priorities. The medical decision making process will 

incorporate, in this situation, both the patient’s preferences, as revealed by the analysis, and the 

healthcare provider’s expertise, based on the medical literature and on the medical history of the 

patient. The analysis of a larger set of similar patients, which would identify the subset of options 

that are candidates for domination, might help guideline panels and other policy makers 

eliminate potential options that are less compatible with the majority of patients’ preferences.  

Another medical implication of the sensitivity and stability analysis that could make it 

clinically useful is the quick identification of the key pairs of criteria that could determine a 

switch in patient preferences. For the patient analyzed, Colonoscopy every 10 years (A10) was 

the initially most preferred screening option. If the healthcare provider considers, based on the 
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patient’s medical history, that this screening alternative might not be the most appropriate one, 

he could consider attempting to influence the patient’s decision, by taking into consideration the 

sensitivity and stability analysis results. For example, suppose the healthcare provider believes 

that Flexible Sigmoidoscopy every 5 years (A3) is a medically superior alternative for the 

patient. Our analysis tells the healthcare provider that he should emphasize to the patient the 

importance of the possible side effects that might result, at the patient’s age, from having a 

Colonoscopy, as compared with having a Flexible Sigmoidoscopy, and how important it is for 

the patient to increase the frequency of the screening procedure. That strategy for the healthcare 

provider is provided by the analysis of the core stability of the initially most preferred screening 

alternative, and by the direction of fastest change in stability of the pair of criteria Avoid Side 

Effects (C2) - Procedure Frequency (C4). If, on the other hand, the healthcare provider would 

like the patient to follow up with a non-invasive colorectal cancer screening option – the Annual 

Immunochemical Fecal Occult Blood Test, he should emphasize the extensive preparation 

necessary to undergo a Colonoscopy procedure, and how complex the procedure is at the 

patient’s current age. That strategy for the healthcare provider results from the analysis made 

with the pair of criteria Procedure Preparation (C5) - Procedure Complexity (C6). 

In conclusion, the sensitivity and stability analysis of the patient’s preferences regarding 

the colorectal cancer screening options might be more useful for the healthcare provider than for 

the patient. Understanding the patient’s preferences could help the healthcare provider to guide 

the patient through the medical decision making process to an outcome that is both acceptable to 

the patient and medically appropriate.  
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4.3. COMPARING THE STABILITY ANALYSES OF TWO PATIENTS 

 Custom tailoring a sensitivity and stability analysis for an individual patient might be 

appropriate if there are particular considerations involved with that patient. For routine cases, 

patients classified as having an average risk for colorectal cancer, it may be sufficient to partition 

the space of patients based on their preferences, and to produce a generic analysis that would be 

a good approximation across each partition of the space. A generic analysis could be created by 

generalizing the sensitivity and stability analysis for individual patients in each partition, if we 

could first identify the characteristics that are relevant to determine how similar the patients’ 

preferences are. In this section, we compare the results of the sensitivity and stability analyses 

for two patients, to determine those differentiating characteristics. The extension of the 

individual sensitivity and stability analysis to groups of patients with similar characteristics is 

discussed in Section 4.5.  

 Consider the patient analyzed in Section 4.2, a 70-year-old male from the Midwest 

(Patient A), and a different patient, an 80-year-old female from the Southeast (Patient B). The 

two patients were chosen randomly from the data set. For both patients, we used the model 

depicted in Figure 13 to ascertain their preferences among the ten colorectal cancer screening 

alternatives. The importance given to each of the six criteria by the two patients is shown in 

Table 13. 
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Table 13. Importance of the criteria for the two patients 

 Patient A Patient B 

Ranking Criteria 
Criteria 

weights 
Criteria 

Criteria 

weights 

1 Prevent Cancer (C1) 0.6890 Prevent Cancer (C1) 0.5810 

2 Avoid Side Effects (C2) 0.2060 
Minimize False Positives 

(C3) 
0.2480 

3 
Minimize False Positives 

(C3) 
0.0770 Avoid Side Effects (C2) 0.1130 

4 Procedure Preparation (C5) 0.0220 Procedure Complexity (C6) 0.0379 

5 Procedure Complexity (C6) 0.0054 Procedure Frequency (C4) 0.0145 

6 Procedure Frequency (C4) 0.0015 Procedure Preparation (C5) 0.0056 

 

Patient B’s judgments, with respect to the six criteria (Table 13) and to the ten 

alternatives, are summarized in the supermatrix presented in Table 14. 

Table 14. The supermatrix for the 80 year-old female patient (Patient B) 

 

 

The limiting priorities corresponding to the supermatrix from Table 14, and the ranking 

of the ten screening options, are given in Table 15. 
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Table 15. Priorities and ranking of the ten screening alternatives for Patient B 

Ranking Alternative Priority 

1 Colonoscopy every 10 years A10 0.4229 

2 Flexible Sigmoidoscopy every 5 years A3 0.1681 

3 CT colonography A7 0.1670 

4 Double contrast barium enema A8 0.1034 

5 Annual Fecal Occult Blood Test with sensitivity 20% A1 0.0342 

6 Annual Fecal Occult Blood Test with sensitivity 40% A2 0.0299 

7 
Annual Immunochemical Fecal Occult Blood Test and 

flexible Sigmoidoscopy every 5 years 
A9 0.0256 

8 Annual immunochemical fecal occult blood test A5 0.0197 

9 
Annual Fecal Occult Blood Test and flexible 

Sigmoidoscopy every 5 years 
A6 0.0149 

10 Fecal DNA test every 5 years A4 0.0144 

 

 Our goal, in this section, is to determine how similar are the preferences of the two 

patients considered, using the results of their individual sensitivity and stability analyses, and 

what  factors might be used to differentiate between the two patients. We first performed the 

individual sensitivity and stability analysis for Patient B, following the approach used in Section 

4.2. The numerical results of the analysis are shown in Table 16. 
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Table 16. Results of the new sensitivity and stability analysis for Patient B 

 

  

The sensitivity and stability analysis described in Table 16 for Patient B was performed 

by simultaneously perturbing pairs of criteria. For each of the 15 pairs of criteria considered in 

the analysis, we identified first the dominating preference regions within the perturbation space. 

For Patient B, only three of the ten screening alternatives ever dominate in the perturbation 

space: the non-invasive screening procedure, Annual Fecal Occult Blood Test with sensitivity 

20% (A1), and the invasive procedures, Flexible Sigmoidoscopy every 5 years (A3), and 
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Colonoscopy every 10 years (A10). For each of the preference regions, we approximated its area 

as a fraction of the total perturbation space and as a proportion of the maximal volume possible. 

Note that the non-invasive screening alternative Annual Fecal Occult Blood Test with sensitivity 

20% (A1) dominates in the perturbations space only when the importance of the criterion 

Procedure Preparation (C5) is increased. Even though C5 has the smallest weight in the initial 

patient ranking (Table 13), as its importance increases, the patient could switch from the initially 

most preferred invasive screening alternative, Colonoscopy every 10 years (A10), to a non-

invasive screening alternative, Annual Fecal Occult Blood Test with sensitivity 20% (A1). 

From a medical perspective, these results tell the healthcare provider that: (1) only three 

out of the ten colorectal cancer screening options are viable for this patient; and (2) it might be 

more beneficial for the patient to follow-up with a less invasive or even a non-invasive colorectal 

cancer screening procedure. If, based on Patient B’s medical history, the non-invasive screening 

alternative might be the most appropriate option, the healthcare provider might consider 

emphasizing the increased level of preparation necessary to undertake a Colonoscopy (A10) 

compared with the Annual Fecal Occult Blood Test with sensitivity 20% (A1) in order to guide 

the patient’s preferences. 

For the majority of the pairs of criteria, the initially most preferred screening alternative, 

Colonoscopy every 10 years (A10), captures most of the perturbation space – from a minimum 

of 42% of the space, up to a maximum of 77%, followed, in size, by Flexible Sigmoidoscopy 

every 5 years (A3) – between 8% and 57% of the perturbation space. Changes occur when the 

third screening alternative dominates in the perturbation space, as a result of the increase in the 

weight of the criterion Procedure Preparation (C5). The increase in C5 increases the volume of 

the preference region associated with the screening alternative Annual Fecal Occult Blood Test 
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with sensitivity 20% (A1) above the volume of the alternative Flexible Sigmoidoscopy every 5 

years (A3), indicating that Patient B will most likely change her preference from A3 to A1.  

Clinically, this information tells the healthcare provider that, if he or the patient considers 

that Procedure Preparation (C5) is an important criterion to be taken into consideration when 

making the medical decision regarding the most appropriate colorectal cancer screening option, 

the patient will more likely follow up with the Annual Fecal Occult Blood Test with sensitivity 

20% (A1) rather than with Flexible Sigmoidoscopy every 5 years (A3).  

 Next, we were interested in estimating the volume of the stability sphere, and in 

calculating its relative volume with respect to that of the preference region. For Patient B, the 

initially most preferred screening alternative was Colonoscopy every 10 years (A10). The 

calculated volume of the stability sphere varies between a minimum of 0.1277 and a maximum 

of 1.0788, providing information about the area in which the initially most preferred screening 

alternative remains the most preferred one, when perturbations are applied to each pair of 

criteria.  

Consider the stability sphere of smallest radius. Denote its radius by r, and by 𝐶𝑖 and 𝐶𝑗 

the pair of criteria defining the perturbation space that includes the smallest sphere. Then there 

exists a vector v, in the 𝐶𝑖x𝐶𝑗 space, such that the point (0,0) + (
𝑟

‖𝑣‖
+ 𝜀) ∙ 𝑣 lies in a region 

dominated by an alternative other than A10. The direction of the vector v is the direction of the 

fastest preference change. For patient B, the pair of criteria determining the smallest stability 

sphere, and the fastest switch in preferences, is Avoid Side Effects (C2) and Procedure 

Frequency (C4). If we perturb the criteria weights for C2-C4 by the values determining the 

minimum change – increasing the importance of both criteria, Patient B switches her preference 
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from the initially most preferred screening alternative, Colonoscopy every 10 years (A10), to 

Flexible Sigmoidoscopy every 5 years (A3).  

At the other extreme, the slowest change in preferences, and the largest stability sphere 

around the original most preferred alternative, A10, occurs in the space determined by the pair of 

criteria Prevent Cancer (C1) and Procedure Preparation (C5). The pair of perturbations applied to 

the criteria weights of C1 and of C5, by decreasing the importance of the first criterion and 

increasing the importance of the second criterion, results in a change in Patient B’s preferences 

from Colonoscopy every 10 years (A10), to Annual Fecal Occult Blood Test with sensitivity 

20% (A1).  

Across all pairwise-perturbation combinations considered, Patient B’s preferences change 

when one of the following pattern appears (1) both criteria are increased (e.g. C2-C4), (2) one 

criterion is decreased and the second one is increased (e.g. C1-C2) or (3) both criteria are 

decreased simultaneously (e.g. C1-C3).  

From a medical point of view, analysis of the stability sphere volume and of the direction 

of fastest change provides the healthcare provider with the following insights. One, if A10 is not 

the most appropriate screening option for Patient B, the care provider might consider discussing 

with the patient the importance of the criteria C2 and C4, because that pair determines the fastest 

change in preferences. Two, if Colonoscopy every 10 years (A10) is the best screening option for 

the patient, the care provider might stress the importance of the pair of criteria Prevent Cancer 

(C1) and Procedure Preparation (C5). Three, if the non-invasive screening alternative Annual 

Fecal Occult Blood Test with sensitivity 20% (A1) might be the most appropriate option, the 

healthcare provider might focus on the increased level of preparation necessary to undertake 

A10.  
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We also approximated the preference regions, using the maximal stability ellipsoids that 

can be inscribed in those regions. For each pair of criteria, we calculated the volume of the 

maximal ellipsoid, and its relative measures with respect to the associated preference regions. 

The number of ellipsoids that need to be inscribed in each perturbation space generated by a pair 

of criteria 𝐶𝑖x𝐶𝑗  is given by the number of distinct preference regions that occur for that pair of 

criteria. For eleven pairs of criteria, two screening alternatives always dominate - Flexible 

Sigmoidoscopy every 5 years (A3) and Colonoscopy every 10 years (A10). For the other four 

pairs of criteria, a third screening option appears – Annual Fecal Occult Blood Test with 

sensitivity 20% (A1). Note that the stability ellipsoids capture more of the preference regions for 

alternatives A10 – between 64% and 80%, and for A3 – between 62% and 77%, as compared 

with the area captured by the stability ellipsoids for alternative A1 – with a range of values 

between 34% and 78%.  

One reason for the difference in captured ratio is that the preference regions for screening 

alternative A1 are more non-convex than are the preference regions associated with the other two 

screening alternatives, A3 and A10, decreasing the goodness-of-fit of the (convex) ellipsoid to 

the preference region (Figure 16). Due to the model’s complexity, the preference regions for A1, 

A3, and A10, within the perturbation space generated by a pair of criteria 𝐶𝑖x𝐶𝑗 , are non-convex. 

We approximated the maximal inscribed ellipsoid using the nonlinear optimization model 

described in Chapter 3. We do not currently have a metric to assess the level of goodness-of-fit 

of our approximation, as compared to the maximal inscribed ellipsoid within a preference region 

which was first convexified. Future research will analyze how the sensitivity and stability 

analysis could be affected by the quality of the ellipsoid approximation. Overall, the stability 
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ellipsoids are considered a good approximation of the preference regions as we increase the 

number of criteria perturbed simultaneously. 

From a clinical perspective, these results tell the healthcare provider that, for Patient B, 

the invasive colorectal cancer screening options, Colonoscopy every 10 years (A10) and Flexible 

Sigmoidoscopy every 5 years (A3), dominate more of the perturbation space as additional 

information is presented to the patient with respect to pairs of criteria. Based on the analysis of 

the 15 pairs of criteria, there are only five situations in which Patient B prefers the non-invasive 

screening option Annual Fecal Occult Blood Test with sensitivity 20% (A1). Those situations 

occur only when Patient B gives more importance to the criterion Procedure Preparation (C5). 

Taking into consideration Patient B’s age (she is 80 years old), criterion C5 might be of greater 

importance than initially considered. That, and her medical history, might influence a decision as 

to which is the best colorectal cancer screening option for her.   

The last measure of interest is the ratio between the stability sphere and the stability 

ellipsoid for the most preferred alternative, Colonoscopy every 10 years (A10). The ratio is used 

to characterize the level of solution stability. For Patient B, the ratio is between 9% and 52%, 

meaning that the stability of the most preferred initial screening alternative is highly imprecise, 

and depends on the particular pair of criteria considered. 

As mentioned at the beginning of this section, our goal is to isolate the factors that could 

help us identify how similar or how different are the patients’ preferences regarding the 

colorectal cancer screening options available. To identify these characteristics, we compare the 

sensitivity and stability analyses of the two patients considered, Patient A and Patient B, focusing 

on the elements that might be the basis for generalization. Figures 15 and 16 graphically show 

which alternatives dominate within the perturbation space, as perturbations are applied to each of 



72 

 

the 15 pairs of criteria. A pairwise stability matrix of preferences was defined for each of the two 

patients, for Patient A in Figure 15 and for Patient B in Figure 16, to display the preference 

regions, core stability spheres, and solution stability ellipsoids.  

 

 

Figure 15. Patient A pairwise stability matrix of preferences 
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Figure 16. Patient B pairwise stability matrix of preferences 

 

In order to compare the sensitivity and stability analyses of the two patients, we would 

like to know: 

1. How stable are the preferences of the patients? 

2. What are the differences and similarities between the two patients? 

Analyzing the pairwise stability matrices of preferences (Figure 15 and Figure 16), for 

both patients, only three of the ten screening alternatives ever dominate in any of the perturbation 

space: Colonoscopy every 10 years (A10), Flexible Sigmoidoscopy every 5 years (A3), and 

Annual Immunochemical Fecal Occult Blood Test (A5) for Patient A; and Colonoscopy every 10 

years (A10), Flexible Sigmoidoscopy every 5 years (A3), and Annual Fecal Occult Blood Test 

with sensitivity 20% (A1) for Patient B. The set of viable alternatives, for either patient, are a 

combination of invasive and non-invasive procedures. While the two invasive procedures are the 
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same for both patients, Colonoscopy every 10 years (A10) and Flexible Sigmoidoscopy every 5 

years (A5), the preferences for a non-invasive procedure are different. Patient A prefers an 

Annual Immunochemical Fecal Occult Blood Test (A5), while Patient B prefers an Annual Fecal 

Occult Blood Test with sensitivity 20% (A1).  

These findings suggest to the healthcare provider that the two patients have both 

similarities and differences in preferences. One, only three colorectal cancer screening options 

are viable for each patient, a fact that could better guide the medical decision making process 

regarding the best colorectal cancer screening option to be chosen. Two, the preferred invasive 

screening procedures are the same, A3 and A10, but the non-invasive one is different – A5 for 

Patient A and A1 for Patient B. One of the factors that could determine the similarity in 

preferences is test accuracy - Colonoscopy every 10 years (A10) and Flexible Sigmoidoscopy 

every 5 years (A5) have the highest accuracy rates, while age could determine the difference in 

preferences. Medically, the Annual Immunochemical Fecal Occult Blood Test is preferred for the 

younger patients.  

The study of sensitivity and stability of preferences begins with core stability. Core 

stability is defined as the maximum sphere that can be inscribed around the origin. It provides 

the region where the initially most preferred screening alternative remains the most preferred 

one, despite the perturbations applied to the criteria. For both patients, alternative A10 is the 

initially most preferred screening option. For Patient A, A10 is most stable with respect to the 

pair of criteria Prevent Cancer (C1) and Avoid Side Effects (C2), the combination of criteria that 

determines the largest core stability sphere, while for Patient B, the most preferred alternative 

A10 is most stable with respect to the pair of criteria Prevent Cancer (C1) and Procedure 

Preparation (C5). The greatest stability of the initially most preferred screening alternative A10 
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is achieved under different conditions for the two patients. Even though both patients consider 

the criterion Prevent Cancer (C1) to be very important, the second criterion from the pair 

determining the highest stability is different. For Patient A it is C2, and for Patient B it is C5. 

Age can be considered the differentiating factor in this situation, too. Patient A is a younger 

patient, 70 years old, so he is more concerned with avoiding the possible side effects. Patient B is 

80 years old, and she is more concerned with the complexity of the preparation for the procedure. 

At the other extreme, the most preferred screening alternative Colonoscopy every 10 years (A10) 

is least stable with respect to the pair of criteria Avoid Side Effects (C2) and Procedure 

Frequency (C4) for both patients, because that combination of criteria generates the smallest core 

stability sphere. The implication is that, for both patients, the initially most preferred screening 

alternative A10 is more sensitive with respect to the pair of criteria C2 and C4. That pair will 

determine the fastest change in patients’ preferences. 

If, from a medical perspective, the healthcare provider would like to recommend 

Colonoscopy every 10 years (A10) as the screening option to be chosen by the patients, he 

should highlight to Patient A how minimal are the possible side effects at his age, while to 

Patient B he should emphasize that the procedure preparation is not as complex as in the past. 

Alternatively, if the care provider considers that Colonoscopy every 10 years (A10) is not the 

most appropriate screening procedures to be used, he should emphasize, to both patients, the 

importance of avoiding side effects at their age, and that a more frequent colorectal cancer 

procedure might be preferable at their age. As patients consider C2 and C4 to be more important, 

they are predicted to switch their preferences toward the colorectal cancer procedure Flexible 

Sigmoidoscopy every 5 years (A3).  
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The differences in core stability are determined by the variations in the criteria weights 

for the two patients (Table 13). Patient A gives greater weight to the importance of the criteria 

Prevent Cancer (C1) and Side Effects (C2), while Patient B considers the criteria Prevent Cancer 

(C1) and Minimize False Positives (C3) to be more important. We also compared the ratio of the 

volume of the core stability sphere to the volume of the associated preference region. For both 

patients, the more stable the initially preferred screening alternative, the greater the volume 

captured by the core stability sphere. Conversely, the less stable the initial preferred screening 

alternative, the smaller the volume of the core stability sphere is, as compared to the volume of 

the associated preference region.  

The core stability sphere provides information about the direction of change in stability, 

and about the perturbation stability, given by the magnitude of the minimum perturbation 

necessary to determine the change. Consider the situation in which the initially most preferred 

screening option for Patient A is also the most stable one for the pair of criteria Prevent Cancer 

(C1) and Avoid Side Effects (C2). The vector of minimum perturbations associated with this pair 

of criteria determines a change from A10 to A3. The direction of change in stability indicates 

that the change in preferences occurs when a decrease in the importance of C1 is combined with 

an increase in the importance of C2. The perturbation stability indicates that the magnitude of the 

perturbations needs to be applied in such a way as to make the two criteria almost equal in their 

importance. Initially, criterion C1 had the greatest importance. For Patient B, the initially most 

preferred screening alternative A10 is most stable with respect to the pair of criteria Prevent 

Cancer (C1) and Procedure Preparation (C5). Following the perturbation vector associated with 

C1 and C5 is associated with a change in preference from A10 to Annual Fecal Occult Blood 

Test with sensitivity 20% (A1). The direction of change in stability shows that the switch in 
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preferences happens if the importance of C1 decreases, while the importance of C5 increases. 

The perturbation stability indicates that the magnitude of perturbations necessary to be applied to 

the two criteria weights need to be significant for C1. Its importance needs to decrease by almost 

a half, accompanied with a slight increase in C5.  

From a clinical perspective these results means that if it is to Patient A’s benefit to 

follow-up with a less invasive and more frequent colorectal cancer procedure, such as Flexible 

Sigmoidoscopy every 5 years (A3), even though A10 has the greatest stability, the care provider 

should talk with the patient about the importance of avoiding any possible side effects at his age, 

while assuring him that the accuracy of the test in detecting and preventing cancer is as high as 

the accuracy for Colonoscopy. For Patient B, if the healthcare provider places increased 

emphasis on the extensive procedure preparation, combined with the assurance that, at the 

patient’s current age, an annual non-invasive colorectal cancer screening option might be more 

beneficial to prevent cancer, the patient is predicted to switch his preferences towards the 

screening alternative Annual Fecal Occult Blood Test with sensitivity 20% (A1).  

For both patients, the initially most preferred screening option is least stable with respect 

to the pair of criteria Side Effects (C2) and Procedure Frequency (C4). For both patients, the 

unique vector of minimum perturbations is associated with a change in preferred alternative from 

A10 to Flexible Sigmoidoscopy every 5 years (A3). The direction of change in stability is the 

same for both patients. A simultaneous increase in both of the two criteria weights of 

approximately equal magnitude leads to the switch in preferences.  

A different change in patients’ preferences occurs when the pair of criteria analyzed 

contains, for Patient A, either Procedure Preparation (C5) or Procedure Complexity (C6), and for 

Patient B only Procedure Preparation (C5). In such a situation, Patient A is inclined to choose a 
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non-invasive screening procedure, switching from Colonoscopy every 10 years (A10) to Annual 

Immunochemical Fecal Occult Blood Test (A5), and the direction of change in stability is a 

function of the pair of criteria considered. For Patient A there are only three combinations of 

criteria that determine the switch to the non-invasive screening option: (1) Minimize False 

Positives (C3) - Procedure Preparation (C5); (2) Minimize False Positives (C3) - Procedure 

Complexity (C6); and (3) Procedure Preparation (C5) or Procedure Complexity (C6). When both 

Procedure Preparation (C5) and Procedure Complexity (C6) are paired with Minimize False 

Positives (C3), the perturbation stability indicates that the weight of criterion C3 requires a small 

positive perturbation, while either C5 or C6 needs to be increased considerably. When the two 

criteria C5 and C6 are paired together, then the change in preferences occurs when both criteria 

are increased by almost the same amount.  

Patient B switches from A10 to the non-invasive screening option Annual Fecal Occult 

Blood Test with sensitivity 20% (A1) when the criterion Procedure Preparation (C5) is perturbed 

along with one of the following three criteria (1) Prevent Cancer (C1); (2) Minimize False 

Positive (C3); and (3) Procedure Complexity (C6). The direction of change in stability is a 

function of the criterion with which C5 is paired. When paired with C1, the criterion with the 

greatest weight for Patient B, perturbation stability indicates that the change in preferences 

occurs when C1 is significantly decreased while C5 is just slightly increased. When paired with 

either C3 or C6, the switch to A1 occurs when criterion C5 is increased considerably more than 

either C3 or C6.  

In summary, the core stability analysis implies that even though the two patients have the 

same initially most preferred alternative, Colonoscopy every 10 years (A10), the stability of that 

solution differs for the two patients. A primary reason for the stability differences is the 
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differences in weights assigned to the six criteria by the two patients. Medically, these findings 

are more important for the healthcare provider. Using the results of how stable is the initially 

most preferred alternative, the healthcare provider can decide which pair of criteria to emphasize 

when discussing the possible screening options with the patient. Based on the patient’s age and 

medical history (which was not accessible to us during this research), the care provider can 

“guide” the patient towards the most appropriate colorectal cancer screening option, while taking 

into consideration the patient’s preference.  

For both patients, only three out of the ten screening alternatives ever dominate in the 

perturbation space. For Patient A, the viable screening options are: Colonoscopy every 10 years 

(A10), Flexible Sigmoidoscopy every 5 years (A3), and Annual Immunochemical Fecal Occult 

Blood Test (A5). For Patient B, the viable screening options are: A10, A3, and Annual Fecal 

Occult Blood Test with sensitivity 20% (A1). The solution stability for the preference regions 

within the perturbation space over which each alternative dominates is approximated by the 

volume of the maximal ellipsoid that can be inscribed within the regions. To obtain a good 

sampling of the perturbation space requires intensive numerical computation. As a result, the 

maximal ellipsoid is considered, at this point of our research, to be the best approximation of the 

preference region when sampling the space becomes computationally difficult. For Patient A, for 

all pairs of criteria, the volume of the maximal ellipsoid varies between 42% and 82% of the 

preference region. Similarly, for Patient B, those volumes vary between 34% and 80% of the 

preference region. These percentages tell us that the entire preference region cannot be covered 

by a single convex, regular shape, due to non-convex shapes of the preference regions. For 

Patient A, the preferences regarding the screening options are more solution stable than are the 

preferences for Patient B because the maximal ellipsoid for Patient A covers more of his 
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preference region than does the corresponding region for Patient B. Future research may identify 

a more appropriate way of approximating the preference region. Currently, for any new pair of 

criteria 𝐶𝑖x𝐶𝑗, if it satisfies any of the equations of the maximal ellipsoids, we can identify the 

preference region associated. As each pair of criteria is perturbed, the region described by the 

solution stability ellipsoid differs between the two patients. So it might be of interest to know the 

range of values that will satisfy each of the maximal ellipsoid associated with a dominating 

preference region.  

From a medical perspective, the maximal ellipsoids are useful in identifying what will be 

the most preferred colorectal cancer screening option as patient preferences change, and as the 

importance of the criteria weights is adjusted. Having available the range of values over which 

each preference is solution stable could guide the healthcare provider when discussing with the 

patient the set of colorectal cancer screening options viable for him based on his preferences.  

For both patients, the initially most preferred screening alternative, A10, is characterized 

by both core stability and solution stability. Comparing the level of solution stability, calculated 

as the ratio between the area of the core stability sphere and area of the solution stability 

ellipsoid, for Patient A, the ratio is between 9% and 30%, while for Patient B it is between 9% 

and 52%. This means that the preferences of Patient B with respect to the initially most preferred 

screening alternative have a higher level of solution stability for certain pairs of criteria, as 

compared with the preferences of Patient A. The maximal level of solution stability is greater for 

Patient B.  

Clinically, the greater level of solution stability may tell the care provider that it might be 

easier to influence Patient A’s preferences, and to recommend either a less invasive screening 

option or a non-invasive one, than it would be to influence the preferences of Patient B. Age 
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might be the differentiating factor in this situation. As patients age, they may be increasingly 

reluctant to change or to adjust their preferences, leading to longer discussions between the 

Patient and the healthcare provider.  

We are also interested in how the patients’ preferences for the most preferred screening 

alternative, Colonoscopy every 10 years (A10), change or remain unchanged as the criterion 

weights change. For both patients, the initially most preferred alternative is pairwise most stable 

with respect to all pairs of criteria, because the stability ellipsoids for A10 have greater volumes 

than do the stability ellipsoids of other dominating alternatives. This means that A10 is the most 

stable alternative among all sets of alternatives, because it is the most stable screening 

alternative with respect to the other screening options for both patients.  

In conclusion, for both patients, Colonoscopy every 10 years (A10) is not only the most 

preferred one. It is also the most stable of the entire set of alternatives. But small changes in a 

patient’s judgments could drastically change the preferred screening option. The switch in 

preference can be either in the direction of a less invasive screening option, e.g. Flexible 

Sigmoidoscopy every 5 years (A3), or towards a non-invasive screening alternative, A5 for 

Patient A and A1 for Patient B.  

 In this section, we presented the sensitivity and stability analysis for two patients faced 

with the same medical decision: to choose the best colorectal cancer screening procedure, based 

on their current knowledge and preferences. The individual analysis of preferences is time 

consuming, and it may not be feasible in all circumstances. Thus, our goal was to identify the 

factors that could help us cluster the patients. Our results revealed that: (1) the age of the patient 

appears to be the most important differentiating factor when patients decide over the non-

invasive procedure: (2) the criteria that determine the core stability of the initially most preferred 
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screening alternative are also influenced by patient’s age. Patient A is younger (70 years old) so 

he is more worried about the possible side effects associated with the procedure, while Patient B 

(80 years old) is more concerned with the complexity of the preparations for the screening 

procedure; (3) when deciding the frequency of the screening procedure recommended, the 

healthcare provider takes into consideration the patients age – a more frequent procedure might 

be recommended if the patient is older; (4) if the healthcare provided would like to guide the 

patient towards a screening option different from the initially most preferred one, he should take 

into consideration the patient’s age . Older patients might change their preferences more slowly 

than do younger ones. Therefore, we are going to use the age of the patients as the discriminating 

factor when clustering the patients, and generalizing the individual sensitivity and stability 

analysis to groups of patients. Preliminary results of our approach regarding generalization will 

be presented in the last section of this chapter.  

 

 

4.4. SENSITIVITY AND STABILITY ANALYSIS WHEN MORE THAN 

TWO CRITERIA ARE PERTURBED 

The majority of the AHP/ANP models are designed with more than two criteria, with 

respect to which the set of alternatives are evaluated. For example, the AHP-based model 

proposed by Dolan et al. (2013), to determine patients’ preferences regarding colorectal cancer 

screening options, has six criteria (Figure 13). Our analysis of the sensitivity and stability of 

preferences began by looking at the changes that happen when pairs of criteria are perturbed 

simultaneously. But how sensitive and stable is the most preferred screening option when three 

criteria are perturbed at once? This section discusses the changes that occur in our analysis, from 



83 

 

both the methodological and application perspective, when we perform a three-criteria sensitivity 

and stability analysis. For illustrative purposes, we consider the 70-year-old patient analyzed in 

Section 4.2.  

As the number of criteria changed simultaneously increases, the methodology for 

determining how sensitive and stable the initially most preferred alternative is, needs to be 

adjusted to accommodate the characteristics of three-dimensional space. Table 17 presents the 

methodological differences between the two-dimensional and the three-dimensional sensitivity 

and stability analyses. 

The first change that occurs, as the number of criteria perturbed simultaneously increases 

from two to three, is the number of combinations that need to be generated. The number of 

triplets 𝐶𝑖x𝐶𝑗x𝐶𝑘 analyzed is greater than the number of pairs 𝐶𝑖x𝐶𝑗 , and is a function of the 

number of criteria considered in the model. This change is also associated with the increase of 

the perturbation space dimensionality. Each triplet is analyzed over the cube [−1,1]3. After the 

number of triplets needed to be analyzed is determined, it is necessary to sample the perturbation 

space associated with each triplet in such a way as to obtain enough points for the sensitivity and 

stability analysis, while also keeping the data set at a manageable number of points. Given those 

considerations, the mesh size for the three-dimensional case, 𝛽2, is going to be greater than the 

mesh size used in the two-dimensional case, 𝛽1. We set 𝛽1 = 0.002 for the two-criteria 

sensitivity analysis. For the three-criteria analysis, the mesh size was 𝛽2 = 0.02. 
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Table 17. Methodological differences between the two and three-dimensional cases 

 Two-dimensional case Three-dimensional case 

Number of criteria simultaneously 

perturbed 
2 criteria 3 criteria 

Number of combinations analyzed 

(n – the number of criteria in the 

model) 

𝐶𝑛
2 pairs 𝐶𝑛

3 triplets 

Perturbation space dimensionality 

and type 
[−1,1]2 - square [−1,1]3 - cube 

Perturbation level (for sampling the 

space) 
𝛽1 𝛽2 

Dominating alternatives within the 

perturbation space 
𝐴𝑖 , 𝐴𝑗 , 𝐴𝑘 𝐴𝑖 , 𝐴𝑗 , 𝐴𝑘 

Characterization of preference 

regions 
Convex and non-convex Non-convex 

Characterization of the boundaries 

between the preference regions 

Piecewise linear 

approximation 

Piecewise triangular 

approximation 

Core stability Sphere Hypersphere 

Direction of the fastest change in 

core stability 
𝑣 = (𝑝1, 𝑝2) 𝑣 = (𝑝1, 𝑝2, 𝑝3) 

Solution stability Ellipse Ellipsoid 

 

The next step in the sensitivity and stability analysis is to determine the set of alternatives 

that appear in the perturbation space associated with each triplet of criteria. The preference 

region where each alternative dominates is calculated based on the largest limiting priority. Due 

to the complexity of the models, the majority of the preference regions within a three-

dimensional perturbation space will be non-convex, compared with the two-dimensional case, 

where both convex and non-convex preference regions were obtained. Using our empirical 

results, the following statement appears to hold. 

Conjecture 1: Every alternative that dominates in a non-empty region of the [-1,1]
2 

space of 

perturbations also dominates in at least one non-empty region of the [-1,1]
3 

space of 

perturbations.  
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We do not yet have a mathematical proof of Conjecture 1, nor a counterexample to it. Future 

research will determine the correlation between the dominance of an alternative over a non-

empty region and the dimensionality of the perturbation space.  What seems more intuitive is that 

if an alternative dominates in a region of the [-1,1]
3
 perturbation space that it should also 

dominate in all the 2-dimensional subspaces generated from the 3-dimensional region. 

 After identifying the regions within the perturbation space dominated by different 

alternatives, we need to approximate the separating boundaries between those regions. For the 

three-dimensional case, the boundaries are calculated using a piecewise triangular approximation 

– the extension of the piecewise linear boundaries from the two-dimensional space. The 

algorithm calculating the boundaries is described in Section 3.5.1. Determining the separating 

boundaries becomes more complex in the three-dimensional case because of the large number of 

triangles that need to be generated. Given the extensive numerical computations necessary, the 

goodness-of-fit of the boundaries approximation via a triangular mesh will typically be less than 

the goodness-of-fit in the two-dimensional case.  

 The analysis of the core stability of the initially most preferred alternative is obtained by 

generating the largest ellipse, for the two-dimensional case, and the largest ellipsoid, for the 

three-dimensional case, that can be inscribed around the origin of the space [−1,1]𝑚, where m is 

the number of criteria perturbed simultaneously. As the dimensionality of the perturbation space 

used for the analysis of the sensitivity and stability of preferences increases, the volume of the 

core stability hypersphere decreases. Based on our empirical results obtained so far, the 

following conjecture can be stated.  

Conjecture 2: The volume of the core stability hypersphere decreases as the perturbation space 

dimensionality increases. 
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Based on the methodology we developed, a smaller volume of the core stability 

hypersphere is associated with a lower stability of the initially most preferred alternative. This 

means that the following statement can be considered. 

Conjecture 3: As the number of criteria perturbed simultaneously increases, the initially most 

preferred alternative is less stable with respect to a given set of criteria (pair or triplet). 

 How fast the preferences change from the initially most preferred alternative to another 

alternative is given by the direction of fastest change vector. The length of that vector represents 

the minimum perturbation necessary to be made in order to determine a switch in preferences. Its 

direction indicates the way in which the criteria should be changed in order to bring about the 

change. The number of elements of the vector is equal to the number of criteria perturbed 

simultaneously. For the three-criteria analysis, the vector has the form 𝑣 = (𝑝1, 𝑝2, 𝑝3). We have 

not yet identified if there is any preservation of the direction of the fastest change as the number 

of criteria perturbed simultaneously is increased. Future research will address how the direction 

of fastest change in preferences is affected by an increase in the number of criteria changed at 

once. 

 The solution stability analysis of all of the preference regions associated with an 

alternative and present in the perturbation space is obtained by generating the maximal inscribed 

ellipse/ellipsoid within a given preference region. Based on the preference region type, convex or 

non-convex, different optimization models are used to calculate the largest ellipsoid that can be 

inscribed within each region. For the convex case, an already established model exists (see 

Section 3.2). For the non-convex case, we proposed a new non-linear programming model, 

which was extended to the three-dimensional case also (see Section 3.4 and Section 3.6).  
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 In the first part of this section, we presented the methodological differences that result 

when the number of criteria changed simultaneously is increased to three.  The second part 

focuses on the changes that occur in the sensitivity and stability analysis from an application 

perspective. To illustrate our findings, we consider the 70-year- old male patient analyzed in 

Section 4.2. His preferences were assessed using the AHP-based model depicted in Figure 13. 

Based on his judgements, the importance of the six criteria considered in the model was 

presented in Table 9, and the supermatrix associated was synthetized in Table 10.  

 As the number of criteria perturbed simultaneously is increased to three, the number of 

combinations necessary to be analyzed increases to 20. In the two-dimensional case, only 15 

pairs were analyzed. For each triplet, the three-dimensional perturbation space was generated 

using an incremental perturbation level of 𝛽2 = 0.02, that yielded 970,200 number of points 

utilized to be used in the analysis. The results of the three-criteria sensitivity and stability 

analysis for the patient are reported in Table 18. For each of the 20 triplets, we identified the 

preference regions associated with a given perturbation space, the core stability hypersphere, the 

direction of the fastest change in preference, and the new preferred alternative when the switch 

happens.  The maximal inscribed ellipsoids within the preference regions are not presented in 

this section due to the increased computational resources needed to generate all, and are left as a 

subject of future research. The practical differences between the two-criteria and the three-

criteria analyses for the patient analyzed are presented in Table 19.  
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Table 18. Results of the three-criteria sensitivity and stability analysis for the patient 
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Table 19. Two-criteria versus three-criteria sensitivity and stability analysis 

 Two-criteria case Three-criteria case 

Number of criteria perturbed 

simultaneously  
2 criteria 3 criteria 

Number of combinations analyzed 15 pairs 20 triplets 

Perturbation level used to 

generate the perturbation space 
𝛽1 = 0.002 𝛽2 = 0.02 

Number of points within each 

perturbation space 
998,001 970,299 

Initially most preferred 

alternative 

A10 - Colonoscopy every 10 

years 

A10 - Colonoscopy every 10 

years 

Dominating alternatives within 

the perturbation space 

A3 - Flexible sigmoidoscopy 

every 5 years 

A5 - Annual immunochemical 

fecal occult blood test 

A10 - Colonoscopy every 10 

years 

A3 - Flexible sigmoidoscopy 

every 5 years 

A5 - Annual immunochemical 

fecal occult blood test 

A10 - Colonoscopy every 10 

years 

Criteria determining the presence 

of the non-invasive screening 

option Annual immunochemical 

fecal occult blood test (A5) 

C5 – Procedure Preparation 

C6 - Procedure Complexity 

C3 – Minimize False Positive 

C5 – Procedure Preparation 

C6 - Procedure Complexity 

Smallest core stability 

sphere/spheroid  

C2-C4 Avoid Side Effects and 

Procedure Frequency  

C2-C3-C4 Avoid Side Effect, 

Minimize False Positive and 

Procedure Frequency  

Direction of the fastest change in 

stability and vector’s magnitude  

𝑣 = (0.122, 0.156) 
‖𝑣‖ = 0.198 

𝑣 = (0.12, 0.06, 0.12) 
‖𝑣‖ = 0.180 

New preferred alternative based 

on the fastest change 

A3 - Flexible sigmoidoscopy 

every 5 years 

A3 - Flexible sigmoidoscopy 

every 5 years 

Largest core stability 

sphere/spheroid 

C1-C2 Prevent Cancer and 

Avoid Side Effects  

C1-C2-C3 Prevent Cancer, 

Avoid Side Effects and 

Minimize False Positive 

Direction of the slowest change in 

stability and vector’s magnitude 

𝑣 = (−0.304, 0.333) 
‖𝑣‖ = 0.450 

𝑣 = (−0.32, 0.32, 0) 
‖𝑣‖ = 0.452 

New preferred alternative based 

on the slowest change 

A3 - Flexible sigmoidoscopy 

every 5 years 

A3 - Flexible sigmoidoscopy 

every 5 years 

 

 As hypothesized in Conjecture 1, the colorectal cancer screening alternatives that 

dominate in the three-criteria analysis are the same ones that dominate in the perturbation space 

for the two-criteria analysis. The alternatives are: Colonoscopy every 10 years (A10), Flexible 

Sigmoidoscopy every 5 years (A3), and Annual Immunochemical Fecal Occult Blood Test (A5). 

But not all the screening options are present in all the 20 combinations analyzed. The difference 



90 

 

that appears in the three-dimensional case it is that the non-invasive screening procedure Annual 

Immunochemical Fecal Occult Blood Test (A5) is preferred by the patient whenever one of the 

criteria Minimize False Positive (C3), Procedure Preparation (C5), and Procedure Complexity 

(C6), or a combination of those criteria, is present in the triplet. By comparison, in the two-

dimensional case, only criteria C5 and C6 determined the presence of screening alternative A5 

within the perturbation space. Another difference for three-criteria sensitivity analysis it is that 

the presence of alternative A5 decreases the volume of another screening option, the Flexible 

Sigmoidoscopy every 5 years (A3). 

 From a medical perspective, the results above indicate that if the healthcare provider 

would like the patient to follow-up with the non-invasive colorectal cancer screening option 

Annual Immunochemical Fecal Occult Blood Test (A5), he should add, into the discussion, that 

the percentage of false positive tests for A5 is equivalent to that obtained from the initially most 

preferred screening option, A10.  

 Analyzing the core stability of the initially most preferred screening alternative 

Colonoscopy every 10 years (A10), consistent with Conjecture 2, the core stability spheroid in 

the three-criteria case has a smaller volume than does the core stability sphere in the two-criteria 

case. This means that, as stated in Conjecture 3, as the number of criteria perturbed 

simultaneously is increased from two to three, the initially most preferred screening alternative is 

less stable with respect to the triplets, because it covers less of the preference region. The fastest 

change in preferences, which is associated with the smallest core stability hypersphere, is 

generated by the triplet of criteria Avoid Side Effects (C2), Minimize False Positive (C3), and 

Procedure Frequency (C4). The direction of the fastest change vector indicates that the switch in 

preferences from A10 to Flexible Sigmoidoscopy every 5 years (A3) occurs when all the three 
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criteria are increased. In the two-criteria case, two of the criteria in the triplet, C2 and C4, are the 

same ones generating the smallest spheroid in the two-dimensional case. Adding criterion C3 

determines a faster change in patient’s preferences. The magnitude of the direction of change 

vector in the three-criteria case (0.180) is smaller than the magnitude of the vector for the two-

criteria case (0.198). 

 If the healthcare provider would like to bring out a change in the patient’s preferences to 

the less invasive screening procedure Flexible Sigmoidoscopy every 5 years (A3), he can use 

these findings to inject into the discussion with the patient, information about the reduced side 

effects associated with A3 (C2); the necessity of a more frequent procedure at the patient’s age 

and based on his medical history (C4) – screening alternative A10 was performed every 10 years, 

and about the similar percentage of false positive tests obtained with either of the two procedures 

(C3) – A10 and A3. If initially, based solely on the two-criteria results, the care provider talked 

only about criteria C2 and C4, adding the medical information about C3 will bring out a faster 

switch in preferences. So, from a medical perspective, if the goal of the healthcare provider is to 

suggest to the patient that he/she should follow-up with another screening alternative, other than 

the initially most preferred one, talking about the importance of three criteria will result in a 

much faster change in preferences. 

 In contrast, the largest stability hypersphere is associated with the triplet of criteria 

Prevent Cancer (C1), Avoid Side Effects (C2), and Minimize False Positive (C3), similar with 

the two-criteria analysis, in which the pair C1 and C2 generated the largest core stability sphere. 

With respect to C1, C2, and C3, the initially most preferred screening alternative, A10, will 

remain the most preferred one over the widest range of perturbations. In this situation, the 

change in preferences will happen more slowly. and only when the first criterion C1 is 
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decreased, the second criterion C2 is increased, and the third criterion C3 is also increased, as a 

result of which the patient will switch to the less invasive screening procedure, Flexible 

Sigmoidoscopy every 5 years (A3).  The direction of the slowest change in preferences is given 

by the minimum perturbation vector 𝑣 = (−0.32, 0.32, 0).  

 From a medical decision making perspective, this tells the healthcare provider that if he 

would like the patient to follow-up with the invasive screening procedure, Colonoscopy every 10 

years (A10), he should explain to the patient (1) the increased benefits of a colonoscopy in 

preventing cancer, compared with other procedures, (2) the relatively decreased probability of 

side effects given the patient’s age, and (3) how reliable the procedure is when minimizing false 

positive results.      

 The screening alternative selected as the result of a switch generated in the direction of 

the vector of fastest change appears to differ in the three-criteria case from the one selected in the 

two-criteria case. In 19 of the triplets considered for analysis, the change in preferences is from 

the initially most preferred screening alternative A10 to the less invasive screening option A3. 

Only once does the fastest change in preference indicate a change towards the non-invasive 

screening option A5.  In the two-criteria case the switch from A10 to A5 happened three times. 

 Based on all the triplets analyzed, the initially most preferred screening option, 

Colonoscopy every 10 years (A10), is the most stable alternative with respect to all triplets of 

criteria, but its stability is less than it was in the two-criteria analysis, as hypothesized in 

Conjecture 3. This result might influence the way the healthcare provider might use the 

information provided by the sensitivity and stability analysis to guide the patient during the 

medical decision making process.  
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 In this section we presented the changes that result when the number of criteria perturbed 

simultaneously is increased, and the medical implications associated with such a change. Which 

of the two approaches should be used in practice? Is the two-criteria sensitivity and stability 

analysis sufficient to guide both the healthcare provider and the patient though the medical 

decision making process? Or are the insights from the three-criteria analysis necessary to provide 

the additional information to lead to a best outcome? Future research will look into this issue, 

and try to identify what will be the “optimal” number of criteria that should be perturbed 

simultaneously, from the practical perspective.  Also future research will investigate the behavior 

of the direction of fastest change as the number of criteria changed at once is increased.  

 

 

4.5. GENERALIZATION OF SENSITIVITY AND STABILITY ANALYSIS 

TO GROUPS OF PATIENTS WITH SIMILAR CHARACTERISTICS 

 Individualized sensitivity and stability analysis provides insights for understanding a 

single patient’s preferences regarding the available colorectal cancer screening options. The 

drawback of individual analysis is the time required to perform it, a time requirement that may 

make individual-level analysis infeasible within the time allocated to a medical appointment. In-

depth, detailed analysis might be useful for patients who are predicted to have a high risk of 

being diagnosed with colorectal cancer, but a different approach might be more practical in order 

to inform healthcare providers about how preferences change for average risk patients.    

 In this section, we present preliminary results about generalizing our methodology for 

individual sensitivity and stability analysis to groups of patients with similar characteristics, 

because we believe that group-level analyses would be useful for discussions with average risk 
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patients. Based on our findings from Section 4.3, where we compared two patients’ sensitivity 

and stability analysis, we consider age as the discriminating factor when clustering our patients. 

 We divided the 395 patients from our initial dataset into seven age groups between 50 

and 80 years-old. Patient participation in the study that generated our data set was voluntary, and 

the majority of patients who agreed to participate were between 50 and 65 years old. Within each 

age group we determined the similarity of patients’ preferences. We used the Hilbert metric to 

calculate the distances between the set of alternatives’ priorities for a given patient with the 

priorities of each of the other patients from that age group. The Hilbert metric was chosen as a 

measure of similarity because it is the only metric defined in the eigenvectors/eigenvalues space 

(Genest and Shang, 1996). Let 𝑤1 = (𝑤1
1, … , 𝑤10

1 ) and 𝑤2 = (𝑤1
2, … , 𝑤10

2 ) be the limiting 

priorities of the ten screening alternatives for two patients. The distance between the two sets of 

priorities, as given by the Hilbert metric, is defined as: 

𝑑1(𝑤
1, 𝑤2) = 𝑙𝑜𝑔

𝑚𝑎𝑥𝑘(
𝑤𝑘
1

𝑤𝑘
2)

𝑚𝑖𝑛𝑘(
𝑤𝑘
1

𝑤𝑘
2)

    (4.1)  

where 𝑘 = 1, . . . ,10. 

The distances between each pair of patients’ preferences among the ten colorectal cancer 

screening alternatives were calculated using the relation (4.1), and summarized in the Hilbert 

metric matrix for each age group. For example, in the 50-year-old age group, there are 68 

patients, so the Hilbert metric matrix associated with this age group contains 2,278 distinct 

entries. An excerpt of that matrix is presented in Table 20. 
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Table 20. Excerpt of the Hilbert metric matrix associated with the age group 50 

 

 

Within each age bracket, we used the SPSS two-step clustering (auto-clustering) routine 

(Zhang et al., 1996; Chiu et al., 2001) to group the patients, using, as input, the Hilbert metric 

matrix which measures the similarity of the patients’ preferences. The optimal number of clusters 

is determined automatically, based on the AIC criterion. The following graph shows the steps we 

followed in our analysis for generalization (Figure 17). 

 

Figure 17. Generalization process to identify clusters of patients with similar characteristics 

 

Colorectal cancer 
screening patients 

(n = 395) 

Hilbert matrix & 
two-step clustering 

Age 
group 50 

2 clusters 

Age 
group 55 

4 clusters 

Age 
group 60 

5 clusters 

Age 
group 65 

2 clusters 

Age 
group 70 

3 clusters 

Age 
group 75 

2 clusters 

Age 
group 80 

2 clusters 



96 

 

For each age group and cluster type we determined: the number of patients, the most 

preferred alternatives and the associated priorities range, and the range of values for the six 

criteria included in the model. The results are presented in Table 21.  

The majority of the 395 patients in the study were between 50 and 65 years of age. 

Analyzing the number of clusters into which the patients were grouped, note that patients in the 

50, 65, 75, and 80 year-old groups have preferences that are less volatile than those in the 55, 60, 

and 70 year old groups, because they are subdivided into fewer clusters. Because we only have a 

fixed data set to work with, we do not know if that difference is due to a structural change in 

decision behavior, or to an idiosyncrasy of the available data. Surveying a large set of patients 

might resolve that uncertainty. 

Considering the combinations of the most preferred initial screening alternative 

associated with each cluster, we can conjecture that, based on the age group, only certain 

screening options are viable. For example, the 80-year-old group of patients appears to prefer 

one of the following three screening alternatives: Flexible Sigmoidoscopy every 5 years (A3), 

Colonoscopy every 10 years (A10), and Annual Fecal Occult Blood Test with sensitivity 20% 

(A1). Additionally, for each screening alternative that is preferred by the patients, we identified 

the range of values associated with the priorities. That additional information may help to predict 

the preference structure of a new patient.  
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Table 21. Primary characteristics of the clusters based on age group 
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Table 21. Primary characteristics of the clusters based on age group (cont.) 

 

   

From a medical perspective, the clustering analysis tells the healthcare provider, based on 

the patient’s age group, the expected degree of fluctuation in the patient’s preferences. Also, as 

shown in Table 21, the set of screening alternatives viable for each age group is less than the ten 

colorectal cancer screening options currently available. So, identifying the appropriate 

alternatives for each age group could simplify the medical decision making process, by focusing 

only on the options that are likely to be more important for the patient. Having additional 

numerical information about how important the initially most preferred screening alternative is 

for the patient could help the care provider when discussing other alternatives with the patient. 

Our current approach for the sensitivity and stability analyses for multi-criteria decision 

making models is based on the assumption that we perturb simultaneously pairs or triplets of 

criteria. That is the reason why we also identified, for each age group and cluster, the range of 

values for the six criteria used to compare the ten colorectal cancer screening options. The 

combined information with respect to the most preferred screening option, the associated interval 

of priorities, and the range of values for the six criteria could provide guidance towards the 

identification of the type of any new patient within a certain age group. 
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From a clinical perspective, our future results will help the healthcare provider to 

construct guidelines that will enable a better understanding of patients’ preferences regarding the 

colorectal cancer screening options.  
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5.0 CONCLUSIONS AND FURTHER RESEARCH 

 

 

In this dissertation, we extended the sensitivity and stability analysis for multi-criteria 

decision models, such as the Analytical Hierarchy Process/Analytical Network Process, 

previously developed by May et al. (2013). We applied our new methodology to a real medical 

decision making problem, and showed how the results of the methodology could be used in 

actual clinical situations.  

After studying multiple simple ANP models, we found that the boundaries between the 

preference regions are typically nonlinear, so that using a single hyperplane to separate adjacent 

preference regions, as was done in May et al., may introduce unacceptably large errors in 

defining the separating boundaries between regions. We developed an algorithm to approximate 

the nonlinear boundaries using piecewise linear functions for the two-criteria sensitivity and 

stability analysis. A measure of the goodness-of-fit of the proposed algorithm measures the 

increased precision of the piecewise-linear approximation. In order to accommodate three-

criteria perturbations, we used an algorithm that generates a triangular mesh to approximate the 

nonlinear boundaries between the preference regions.  

 Stability of the solution is an important concept for AHP/ANP models. Stability can be 

defined for the initially most preferred alternative and also for the other alternatives that appear 

in the perturbation space as criteria are changed simultaneously. The core stability, which is 

directly related to the initially preferred alternative, was measured by the largest sphere, for the 
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two-criteria case, or by the largest hypersphere or 3-sphere, for the three-criteria case, that can be 

inscribed around the origin of the perturbation space. To measure the solution stability, we 

proposed the adoption of ellipsoids to describe it, rather than spheres, because they capture more 

of the perturbation space associated with a given alternative. To obtain the maximal volume 

ellipsoids that can be inscribed within a convex set we used a convex optimization program. Due 

to the nonlinearity of the boundaries, some of the preference regions may not be convex. 

Currently, in the literature, we are not aware of the existence of an optimization model to solve 

the problem of inscribing a maximal volume ellipsoid in a non-convex region. We proposed two 

nonlinear programming models to approximate it in a dimensional space greater than or equal to 

two.  

 A set of sensitivity and stability measures were defined to enable the application of the 

methodology to practical problems. The theoretical guidelines constitute a starting point for the 

application of our analysis to multi-criteria decision making problems. The practical insights that 

result from our methodology are specific to each real-life problem.  

 To illustrate our approach, we applied the methodology developed to actual data from a 

medical decision making problem involving the task of determining the best screening option for 

a patient having an average risk for colorectal cancer. Single patient sensitivity and stability 

analyses were developed for situations in which pairs and triplets of criteria were perturbed 

simultaneously. Important theoretical and medical insights were identified, to validate the 

importance of sensitivity and stability analysis for multi-criteria decision making models when 

applied to real-life situations. Our findings revealed that the results of the analysis of a patient’s 

preferences may be useful to the healthcare provider. Knowing how a patient’s preferences 

change based on additional knowledge might help the care provider to guide the patient towards 
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a specific medical decision that might not be the patient’s initially most preferred screening 

option. The comparison between two randomly chosen patients revealed that the generalization 

of the sensitivity and stability analysis to groups of patients with similar characteristics might be 

approached by using age as a discriminatory factor. Preliminary results of the generalization to 

groups of patients, and the medical implications, are presented in Section 4.5. 

Currently, we are working on performing the two-criteria individualized sensitivity and 

stability analyses for all 395 patients within our dataset. The information provided by the 

analysis of preferences will be added to the current results, in order to enable the prediction of 

preference behavior of a new patient, based on our generalization. 

Our current analysis is limited to the study of the sensitivity and stability of preferences 

as two and three criteria are changed simultaneously. Further work of the theory developed in 

this dissertation might include:  

(1) Extending the methodology to the n-dimensional case – n criteria and m 

alternatives within a given network;  

(2) Determining a more efficient way of generating the perturbation space using 

sparse grid stochastic collocation method for the n-dimensional case; 

(3)  Deriving practical guidelines from the stability measures that could be used in the 

medical decision making process or other decision processes involving multi-criteria 

decision making models; 

(4) Studying the numerical accuracy of the approximation of the solution stability 

using ellipsoids, and assessing if the sensitivity and stability analysis is affected by the 

quality of the ellipsoid-based approximation to the region; 
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(5) Determining if the set of alternatives that dominate a region in the perturbation 

space is a function of the dimensionality of the perturbation space; 

(6) Studying how the direction of fastest change in preferences is affected by the 

dimension of the perturbation space; 

(7) Identifying the “optimal” number of criteria that should be perturbed 

simultaneously, from a practical perspective; 

(8) Addressing how to preserve the direction of fastest change as the number of 

criteria perturbed increases; 

(9) Exploring how stability results change with changes in patient preferences over a 

neighborhood of similar matrices; 

(10) Showing how insights derived for a particular individual may be applied, perhaps 

with minor adjustments, to patients with sufficiently similar preferences; 

(11) Extending the single patient model to a team-based architecture, in which the 

doctors’ expertise is combined with patient preferences, resulting in a shared decision 

making model. The result of a shared decision making model is an individualized patient 

choice that may be closely tailored to a patient’s expressed desires, presumably resulting 

in improved patient satisfaction and superior clinical outcomes. 
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APPENDIX A. THE SYSTEMS OF INEQUALITIES THAT DEFINE THE 

REGIONS WHERE THE ALTERNATIVES DOMINATE 
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APPENDIX B. THE OUTPUT MATRIX M AND THE ASSOCIATED PLANAR 

EQUATIONS THAT DEFINE THE REGIONS WHERE THE ALTERNATIVES 

DOMINATE 

 

Region A1 

𝑀12 =

[
 
 
 
 
𝑽𝟏 𝑽𝟐 𝑽𝟑
208 282 263
171 157 147

⋯
468 482 428
483 493 482]

 
 
 
 

→

{
 
 

 
 
0.0016𝑥 + 0.0024𝑦 + 0.0032𝑧 + 0.00104 ≤ 0
−0.066𝑥 + 0.0288𝑦 + 0.0056𝑧 + 0.0547 ≤ 0

…
−0.0036𝑥 + 0.0032𝑦 + 0.0028𝑧 + 0.00399 ≤ 0
−0.0004𝑥 + 0.0004𝑦 + 0.0004𝑧 + 0.00041 ≤ 0

 

Total number of planar equations describing region A1 is 922. 

Region A2 

𝑀12 =

[
 
 
 
 
𝑽𝟏 𝑽𝟐 𝑽𝟑
208 282 263
171 157 147

⋯
468 482 428
483 493 482]

 
 
 
 

→

{
 
 

 
 
0.0016𝑥 + 0.0024𝑦 + 0.0032𝑧 + 0.00104 ≥ 0
−0.066𝑥 + 0.0288𝑦 + 0.0056𝑧 + 0.0547 ≥ 0

…
−0.0036𝑥 + 0.0032𝑦 + 0.0028𝑧 + 0.00399 ≥ 0
−0.0004𝑥 + 0.0004𝑦 + 0.0004𝑧 + 0.00041 ≥ 0

 

𝑀23 =

[
 
 
 
 
𝑽𝟏 𝑽𝟐 𝑽𝟑
17 16 36
13 17 28

⋯
130 107 134
146 130 142]

 
 
 
 

→

{
 
 

 
 
−0.0004𝑥 − 0.0028𝑦 + 0.0028𝑧 + 0.00346 ≥ 0
−0.0012𝑥 − 0.0088𝑦 + 0.0084𝑧 + 0.01055 ≥ 0

…
−0.0004𝑥 − 0.0032𝑦 + 0.0028𝑧 + 0.00363 ≥ 0
0.0008𝑥 − 0.002𝑦 + 0.0032𝑧 + 0.0037 ≥ 0

 

Total number of planar equations describing region A2 is 922+291 = 1213. 

Region A3 

𝑀23 =

[
 
 
 
 
𝑽𝟏 𝑽𝟐 𝑽𝟑
17 16 36
13 17 28

⋯
130 107 134
146 130 142]

 
 
 
 

→

{
 
 

 
 
−0.0004𝑥 − 0.0028𝑦 + 0.0028𝑧 + 0.00346 ≤ 0
−0.0012𝑥 − 0.0088𝑦 + 0.0084𝑧 + 0.01055 ≤ 0

…
−0.0004𝑥 − 0.0032𝑦 + 0.0028𝑧 + 0.00363 ≤ 0
0.0008𝑥 − 0.002𝑦 + 0.0032𝑧 + 0.0037 ≤ 0

 

Total number of planar equations describing region A3 is 291. 
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APPENDIX C. CORE (SPHERE) AND SOLUTION STABILITY 

(ELLIPSOIDS) REGIONS WITHIN THE PERTURBATION SPACE FOR ALL 

TWO-CRITERIA PAIRS 
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