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Objective: The focus of this study is to identify the significance of the ligament shape at 

the bone insertion sites and how it affects the stresses at the locations.  

A ligament is a dense bundle of connective tissues made up of fibers that connects one 

bone and another bone to control joint motion and transfer load. This study was focused on stress 

at the bone insertion site where the ligament attaches to the bone. The present study was done to 

determine the importance of using nonlinear elastic properties and non-uniform geometry of the 

ligament when analyzed under a tensile load.  A 2D axis-symmetry model was considered for the 

ligament and the bone was chosen to be a rigid material body and a non- linear static analysis 

was performed to assess the stress at the bone- ligament interface.   

Results: The von Mises stresses at the insertion sites were predicted. Effect of different 

ligament geometry shapes was studied by comparing the stress results.   

Clinical or Engineering Relevance: The results allow a better understanding of the 

shape of ligament morphology due to the load.  
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1.0  INTRODUCTION 

1.1 MOTIVATION 

Attachment of dissimilar materials is a major challenge in engineering. Joining two 

metals is a challenging task and attaching a metal to a plastic or attaching a bone to a ligament is 

a more challenging problem. The two materials have varied material properties like the elastic 

modulus and Poisson’s ratio and this difference in material properties will have major effect on 

stresses near the attachments. This will result in regions with higher stresses (Stavros et al., 

2006).  

The focus in our present study is at the attachment of ligaments to bone. The modulus of 

elasticity and Poisson’s ratio of bone is different from that of the soft tissue ligament, which 

could result in high stresses at the attachments. The human anterior cruciate ligament (ACL) is 

the most injured ligament of the body (Fetto and Marshall 1980), especially during sport 

activities (Speer et al., 1995) and accidents (Crowninshield and Pope 1976). So understanding 

the stress in ligaments is important to injury of the tissue. 
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1.2 OBJECTIVE 

The objective of present computational study is to study the effect of shape of ligaments on the 

stresses at bone ligament insertion site.  
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2.0  STRUCTURE AND FUNCTION OF LIGAMENTS 

Ligaments are soft connective tissues that are mainly composed of water, collagen and various 

amino acids. They are formed by long fibers of collagen. Collagen is composed of groups of 

proteins and the elasticity of collagen allows ligaments to stretch and then revert to their un-

deformed shapes when the stress is relieved (K Robi et al,. 2013). Ligaments are hypo cellular 

with interconnected, elongated fibroblastic cells in their mid-substance. The main function of 

these cells is to maintain the collagen scaffold. Water makes about two-third of the weight of 

normal ligaments and out of which 70% of the remaining weight is made up of protein 

(V.C.Mow et al,. 2005). 

The most important function of the ligaments is to control joint motion. They connect 

bones and help control movement of the joint by stabilizing it and keeping it from being 

dislocated. They can be subjected to high forces while performing their role in restricting 

abnormal joint motion resulting in damage of the ligament due to overloading. However, still the 

mechanical properties of individual ligaments, the mechanics of ligament injury, and the 

efficiency of reconstructive procedures are not well known.  
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2.1 LIGAMENT INSERTION 

Ligament insertion sites transmit loads to a bone and are hypothesized to be formed in 

such a way to reduce the stresses that occur at ligament and bone interfaces (Benjamin et al, 

2006). The insertions of a ligament to bone are biomechanically complex. The structure and 

shape of the insertion site is different for each ligament and also at the two ends of same 

ligament. There are said to be two types of insertions direct and indirect.  

At indirect insertion sites, the fibers attach to bone with little or no transitional zone. The 

collagen fibers meet bone at acute angles and there is an interface line separating the mineralized 

and non-mineralized tissues. This ligament insertion type is characterized by the progression of 

collagen fibers that attach into periosteum and sub chondral bone without gradual transition 

(Freddie H. Fu et al,. 2008). 
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Figure 1: Indirect Ligament Insertion (Freddie H. Fu et al,. 2008) 

 

Direct insertion sites are areas of attachment where bone and attaching ligament occur 

over a distance of less than 1mm and consist of a distinct right-angle boundary where collagen 

fibers extend out (Suvranu De et al,. 2014). The collagen fibrils quickly pass out of normal 

ground substance matric and continue through zones of fibrocartilage, mineralized fibrocartilage 

and finally into bone (Cooper et al,. 1970). The direct insertion of the ACL carries more load 

than the indirect insertion (D.H. Nawabi et al,. 2014). 
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Figure 2: Direct Ligament Insertion (Freddie H. Fu et al,. 2008) 

 

 

 

 

In Figure 3, the shape of the ligament where it attaches to bone is shown (Kevin D. 

Plancher et al,. 2005).  
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Figure 3: Shape of ligament where it attached the bone (Kevin D Plancher et,.al 2005) 

 

From Figure 3, we note that the ligament can have different shapes and sizes depending 

on various parameters.  
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3.0  BACKGROUND 

The most common method of modeling ligaments was using one-dimensional discrete line 

elements, which act as tension only springs (Panzer and Cronin 2009). This method was used to 

model the system level models as it reduces the complex mechanics of the ligaments to that of a 

spring but still allowing for the prediction of joint kinematics. The main disadvantages of this 

method were it could not predict the stress in the ligament tissue and the load cannot be 

transferred between the ligament and surrounding tissues. Later two dimensional computational 

models of ligaments were used which predicted the shear and compressive loading which was 

not predicted by the one- dimensional representation. A two-dimensional, plane stress finite 

element model of the rabbit ligament in the mid-coronal plane was developed by Matyas et al. 

1995 using experimentally determined geometry.  The three dimensional ligament models 

(Weiss 2005; Pioletti’s 1998) are used for the detailed analysis of the ligament to predict the 

mechanics of ligament and understand the stresses in various tunnel positions. Curves describing 

the external geometry of the insertion sites were determined experimentally and a solid was 

created to join the two curves. Two approaches namely, a realistic approach and an artificial 

approach were followed while modeling three dimensional ligament models. In the artificial 

method, the geometry of the ligament was assumed to have a constant cross section throughout 

the length, whereas, in realistic approach the geometry of the ligament by digitizing the fiber 
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bundles of the ligament and using cubic spline interpolation to fill the remaining geometry 

(Zhang 2008). 

There were no previous researches or studies on the shape of the ligament geometry and 

how it will effect the stresses at the insertion sites. Also the shape of the ligament geometry was 

not focused in any previous research. 
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4.0  MATERIAL PROPERTIES OF LIGAMENTS 

 

Ligaments are anisotropic, non-linear materials normally subjected to complex loadings 

(Giori et al., 1993). The fiber orientations in the ligament is thought to represent an adaptation to 

the mechanical loading of ligament and are generally aligned with the long major axis (Zhang 

2008). Primary resistance to tensile loading is provided by the collagen fibers, which do not 

provide any resistance to compression (Zhang 2008). Experimental data has shown the load-

elongation curve for ligaments to have a nonlinear section at low levels of strain and then a linear 

region until it reaches yield point. It is thought that the initial nonlinear section is due to the fact 

that in a zero strain position, the collagen fibers are in a crimped configuration, and at a low load 

the fibers are in the act of straightening, resulting in a nonlinear load-elongation curve until the 

fibers are completely straightened, at which point the load-elongation curve becomes linear (J.A. 

Weiss 2001). The ligament apart from exhibiting nonlinear elastic responses also exhibit visco-

elastic properties which are dependent on time and history. This arises due to interaction of 

ground substance matrix with water. A typical force- deformation curve for the ligaments where 

load is applied in a uni-axial direction along the fibers direction is shown in Figure 4 (Martin 

1998). 
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Figure 4: Force - Deformation curve for ligaments (Martin 1998) 

 

4.1 MATERIAL MODELS 

 

To represent the mechanical behavior of ligaments, continuum models have been 

developed. These constitutive equations are used to describe stress-strain behavior of materials 

through specification of the dependence of stress on variables, such as deformation gradient, rate 

of deformation. It is still a challenge to accurately predict the mechanical behavior of ligaments. 

An approach to describe the material behavior of ligament is to fit the mathematical equations in 

experimental data. One method is to characterize the ligament as hyper-elastic material. A hyper- 

elastic material is a subclass of an elastic material and is a constitutive model for in which the 

stress-strain relationship derives from a strain energy density function. 
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The most influential model that was developed for modelling the biological tissues is 

Holzapfel-Gasser-Ogden (HGO) model (Holzapfel 2000). In this model the strain energy (W) is 

given by: 

 

where, I1 and I4 are strain invariants defined as I1 = trace (C) and I4= M. (CM), C is the Cauchy-

Green tensor and c, k1 and k2 are the material parameters of ligament. M is the unit vector 

pointing in the direction of tissue fibers before any deformation. 

 Limbert represented the ligament as a transversely isotropic hyper-elastic material [18] 

(Limbert 2001) whose strain energy function took the following form, which was originally 

developed by Weiss (1996) as: 

   

where the strain energy function was split up in contributions from the ground substance (F1) and 

the fibers (F2), (Ῐ) is the first deviotoric invariant of the deformation tensor, (λ) represents the 

deviotoric part of stretch along collagen fiber direction, (K) is the bulk modulus and (J) is the 

determinant of the deformation tensor. In this model, the ground substance was modeled as 

incompressible and isotropic and was regarded as a Neo-Hookean model whose strain energy 

function was described as: 

                                                                       

 where C1 is constant of Neo Hookean model. As the collagen fibers do not support compressive 

load, the tensile stretch relationship is characterized by a piece wise continuous function. The 

strain energy function for the collagen fibers (F2) is formulated as:  
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where C2 is a factor that scales the exponential stress and C3 controls the rate of un-crimping of 

collagen fibers. 

The Ogden model expresses the strain energy function W in terms of principal stretches 

λ1, λ2 and λ3. Formulation for the model has µp and αp as material constants (Ogden 1972) and is 

given by:  

                                                               

Later Pioletti (1998) developed an isotropic hyper elastic constitutive law for ligaments in 

conjunction with an elastic potential developed by Veronda and Westmann (1970) originally 

proposed to model finite deformations of the skin in which 𝛼𝛼, 𝛽𝛽 and C1 are material constants of 

ligament as   

                         

Another model which is commonly used to model hyper elastic material is polynomial 

model introduced by Rivlin & Sanders (Rivlin et al,. 1951). It is formulated in terms of the first 

and second strain invariants of the Cauchy-Green deformation tensor, with Cij denoting material 

constants. This model is called as Generalized Rivlin Model (Chang et al,. 1991) and is given by 
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In our current study the Piolleti’s constitutive model for a ligament (Equation 3.6) which 

is widely adopted by other investigators (Debski et al,. 2004; Pena et al,. 2006) is used for the 

modelling the ligament as this was based on an incompressible isotropic hyper-elastic 

formulation for ACL and the elastic parameters were determined from curved fitting the 

experimental data obtained from the uniaxial tensile tests on human anterior cruciate ligament 

(ACL). The results of this model showed good correlation between experimental and theoretical 

curves over a range of strain rates (Pioletti 1998). 
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5.0  FINITE ELEMENT ANALYSIS 

The equations of motion can be combined with a suitable constitutive model to obtain 

mathematical solutions to problems with relatively simple geometry and boundary conditions. 

But most of the time with a complex geometry and arbitrary boundary and loading conditions 

solving these mathematical equations is not easy, so finite element computational analysis is 

used. This method offers ability to predict spatial and temporal variations in stress, strain and 

contact area/forces (Weiss 2005).
                  

 

5.1 CONSTITUTIVE MODEL OF LIGAMENTS 

The strain energy function proposed by Pioletti (1998) is difficult to implement in Ansys finite 

element analysis software as the software cannot accept the material constants of the ligament in 

this form (ANSYS Inc. User Manual). So the above strain energy equation (Equation 3.6) was 

modified into a polynomial form. The values of material constants 𝛼𝛼, 𝛽𝛽 and C1 in the Pioletti 

equation (Equation 3.6) are obtained from the literature which were experimentally calculated 

from the stress strain curve of a human ligament. The values for material constants for the 

anterior cruciate ligament (ACL) are 𝛼𝛼 = 0.26, 𝛽𝛽 = 11.35 and C1 = -1.49. (Pioletti 1998). 
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Taking x = I1-3, expanding the terms of Pioletti equation using Taylor series expansion 

(Abramowitz 1970) 

        

Expanding and calculating the coefficients results in 𝛼𝛼 = 0.26; 𝛼𝛼*𝛽𝛽 = 2.95; 𝛼𝛼 *𝛽𝛽2 /2! = 16.74 and 

𝛼𝛼 *𝛽𝛽3 /3! = 63.35, substituting the values into equation 4.2 gives 

W = 0.26 + 2.95*x + 16.74*x2 + 63.35*x3 – 1.49*(I2 - 3)                                           (4.3) 

When the above equation is compared to the cubic polynomial model form (Equation 3.7), 

W = C10*(I1-3) + C20*(I1-3)2 + C30*(I1-3)3 + C01*(I2-3)                                               (4.4) 

 we get the coefficients of the first, second and third order terms of the polynomial as 2.95, 16.74 

and 63.35 respectively which translates to the values of the coefficients of C10 = 2.95; C20 = 

16.74; C30 = 63.3592 and C01 = -1.49 respectively.  

 To check the difference between the cubic polynomial approximation and the exponential 

equation, the graphs of strain energy functions were plotted for strain energy vs strain (figure 4) 

for the Pioletti equation and the polynomial model. W1 is the strain energy function form 

proposed by Pioletti and W2 is strain energy function in cubic polynomial form.  

 

𝑊𝑊1 = (0.26 ∗ e (11.35𝑥𝑥))                                                                                                   (4.5) 

 

W2 = 2.95 ∗ 𝑥𝑥 + 16.7463 ∗ 𝑥𝑥2 + 63.3592 ∗ 𝑥𝑥3 + 0.26                                           (4. 
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From the graph in Figure 5, difference between the energy values of cubic polynomial and 

Pioletti models below the strain value of 0.156 is less than 9.6%. So the new model can be used 

to model the ligament in finite element analysis. 

 

Figure 5: Strain energy vs strain for cubic polynomial model (W2) and Pioletti model (W1) 

 

 

 

 



 18 

6.0  APPROACH & ANALYSIS 

A non-linear finite element analysis (FEA) was performed to model the ligament. A commercial 

finite element software (ANSYS v15) was used to evaluate the stresses and displacements due to 

the applied load. The bone was assumed to be a rigid material and the ligament was attached to 

it. Only the ligament was modeled for finite element analysis.  A parametric study was done on 

the effect of various ligament geometries was studied. A two dimensional axisymmetric model is 

used to model the ligament. 

 

6.1 BOUNDARY AND LOADING CONDITIONS 

 

One end of the ligament was taken to be rigidly fixed with all degrees of freedom constrained 

and uniform tensile stress was applied at the other end. A uniform load of 200N (F) is applied on 

the right edge (R) of the 2D model and left edge of the ligament (C) is constrained in all degree 

of freedom. The top edge of the model is along the axis of symmetry as shown in Figure 6. The 

Poisson’s ratio of the ligament was considered as 0.45 (Ozkaya & Nordin 1999). 
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Figure 6: Boundary and load conditions on the ligament 

 

 

6.2 GEOMETRY OF LIGAMENT 

 

The length of ligament was taken to be 30 mm. Different cylindrical shapes of ligaments were 

modelled by changing the shape parameters. The shapes of the cylinder can be modified by 

changing fillet radius or fillet angle or using different edge lengths at both the ends or changing 

the curve of the cylindrical height can be modified to create new geometries. Many different 

shapes can be created from a cylinder but in our present study we are considering four shapes 

which may affect the stresses at the insertion sites. The five different shape cases which were 

modeled and analyzed using FEA are: 
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Case I: Variable Edge length (Straight Cylinder) 

The length of ligament is fixed as 30mm. The diameter of the cylinder is varied from 10mm to 

20mm in intervals of 2mm.  

 

Figure 7: Ligament geometry for Case I 

 

Case II: Variable Edge length (Tapered Cylinder) 

The length of ligament is fixed as 30mm and the right edge length (R) is fixed to be 

10mm. The left edge (L) of the cylinder is varied from 10mm to 20mm as shown in Figure 8. 

 

 

Figure 8:Ligament geometry for Case II 
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Case III: Variable Fillet Radius 

 The length of ligament is fixed at 30mm and the right edge length (R) is fixed to be 

10mm. The fillet radius (F) of the cylinder is varied from 5mm to 1mm and the left edge length 

(L) is adjusted accordingly as shown in Figure 9. 

 

Figure 9: Ligament geometry for Case III 

 

Case IV: Variable Angle (fillet angle)  

The length of ligament is 30mm and the right edge length (R) is 10mm. The left edge 

length (L) of the cylinder is fixed as 20mm and the fillet angle (A) of the cylinder is varied from 

30 degrees to 75 degrees and the length of the straight section is adjusted accordingly as shown 

in the Figure 10. 
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Figure 10: Ligament geometry for Case IV 

 

 

Case V: Variable Minor Radius 

he length of ligament is 30mm and the right edge length (R) is set at 10mm. The minor 

radius elliptical right hand side from 6mm to 10 mm and the left edge length (L) is adjusted 

accordingly based on the major axis that was decided based on the variable radius as shown in 

Figure 11.  

 

Figure 11: Ligament geometry for Case V 
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6.3 FINITE ELEMENT MESHING 

Two-dimensional axisymmetric quadrilateral elements are used in the model. The model was 

meshed with an element size of 0.09 after evaluating the mesh sensitivity of the ligament model. 

Sample meshed model of ligament for each of the five cases is shown below in Figures 12-16. 
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Figure 12: Meshed model of the ligament for Case I 

 

Figure 13: Meshed model of the ligament for Case II 

 

Figure 14: Meshed model of the ligament for Case III 

 

Figure 15: Meshed model of the ligament for Case IV 
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Figure 16: Meshed model of the ligament for Case V 
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7.0  RESULTS AND DISCUSSION 

The goal of the computational analysis was to provide insight into the effect of the shape parameters 

of ligament have on the stresses and displacement. In the following section, the stress results will be 

discussed for comparison across different shape parameters and the effect of element size. Three 

different mesh sizes were studied to see the effect of mesh on the stress and displacement. The 

analysis was performed for element sizes of 0.07, 0.09 and 0.25 mm.  

 

7.1 EFFECT OF VARYING DIAMETER 

 

With this geometry, the diameter of the cylinder was varied from 10mm to 20 mm in the 

increments of 2 mm and 6 different cases were studied. A sample case is shown below in Figures 

17. 
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Figure 17: Case I with diameter of 10 mm 
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Figures 18-19 compare the end displacement and maximum von mises stress results of the finite 

element analysis for different diameter (D) for element size of 0.09. As diameter increases the 

displacement and von Mises stress decreases. Values of the maximum von Mises stress, 

maximum normal stress in axial and radial direction and end displacement along with the 

location where the maximum stress are shown along with the number of nodes and elements in 

Appendix B. The maximum stress values are found when the ligament diameter is 10mm. 

 

Figure 18: Maximum displacement vs diameter 

 

  Figure 19: Maximum von Mises stress vs diameter 
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 Figures 20-22 shows the effect of the diameter on the normal radial, axial stress and shear stress. 

The normal stress in the radial and axial direction decreases with increase in diameter. The shear 

stress also decreases as we increase the diameter. 

 

Figure 20: Normal axial stress vs diameter 

 

     

Figure 21: Normal radial stress vs diameter 
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Figure 22: Maximum shear stress vs diameter 

 

Plots of the distributions of the von Mises stress, normal axial stress, shear stress and normal 

radial stress for the diameter of 14mm are shown in Figures 23-26. 

 

Figure 23: von Mises stress (MPa) plot for Case I (Diameter 10mm) 

 

 

Figure 24: Normal axial stress (MPa) plot for Case I (Diameter 10mm) 
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Figure 25: Normal radial stress (MPa) plot for Case I (Diameter 10mm) 

 

 

Figure 26: Shear stress (MPa) plot for Case I (Diameter 10mm) 

 

In the Table 1, the maximum stress values along with the location of the maximum stress 

are shown for element size of 0.09. The maximum stresses are located at the corner as shown in 

the Figures 23-26. 

 

Table 1:  Maximum stress values and location for case I (Element size 0.09) 
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Mesh sensitivity studies were performed and Figures 41-44 show the effect of the 

different element sizes on the ligament stresses and displacement when the diameter is varied.  

There is no variation in the displacement when the mesh size is changed. Figures 41-44 shows 

that von Mises stress and normal stress values increases as we decrease the element size from 

0.09 to 0.07 and decreases if we increase the element size from 0.09 to 0.25 which shows that the 

stress is mesh dependent. The stress increases with the increase the mesh size and also the there 

is only a small variation in the stress values for different mesh sizes as the diameter increases so 

the mesh size is adequate for the analysis.   

 

Figure 27: Mesh sensitivity for von Mises stress 

   

 

  Figure 28: Mesh sensitivity for normal axial stress 
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Figure 29: Mesh sensitivity for normal radial stress 

 

  Figure 30: Mesh sensitivity for shear stress 
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7.2 EFFECT OF VARIABLE EDGE LENGTH 

With this geometry, the left edge length was varied from 10mm to 20 mm in the increments of 2 

mm and 6 different cases were studied. Two sample cases are shown below in Figures 31-32. 

 

Figure 31: Case II for edge length 6mm 

 

 

Figure 32: Case II for edge length 10mm 

 

Figures 33-34 compare the end displacement and maximum von mises stress results of the finite 

element analysis for different edge length (L) for element size of 0.09. As edge length increases 

the displacement and stress decreases. Values of the maximum von Mises stress, maximum 

normal stress in axial and radial direction and end displacement along with the location where 

the maximum stress are shown along with the number of nodes and elements in Appendix B.  



 35 

 

Figure 33: Maximum displacement vs edge length 

      

  Figure 34: von Mises stress vs edge length 

   

 Figures 35-36 shows the effect of the edge length on the radial and axial stress. The 

normal stress in the radial and axial direction decreases with increase in edge length. The shear 

stress also decreases as we increase the edge length and it is maximum at the corner location and 

in the surrounding area it is nearly equal to 0 MPa. 
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Figure 35: normal axial stress vs edge length 

    

             Figure 36: normal radial stress vs edge length 

 

 

Figure 37: maximum shear stress vs edge length 

 

 Plots of the distributions of the von Mises stress, normal axial stress, shear stress and 

normal radial stress for the edge length of 7mm are shown in Figures 38-41. 
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Figure 38: von Mises stress (MPa) plot (Edge length 7mm) 

 

Figure 39: Normal axial stress (MPa) plot (Edge length 7mm) 

 

 

Figure 40:  Normal radial stress (MPa) plot (Edge length 7mm) 

 

Figure 41: Shear stress (MPa) plot (Edge length 7mm) 
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In the Table 2, the maximum stress values along with the location of the maximum stress 

are shown for element size of 0.09. The results for element size 0.07 and 0.25 are shown in 

Appendix B-a. The maximum stresses are located at the corner as shown in the Figures 38-41. 

 

Table 2: Maximum stress value and locations for case II 

 

  

Mesh sensitivity studies were performed. Figures 42-45 show the effect of different element 

sizes on ligament stresses due to varied edge length. There is no or slight variation in the 

displacement when the mesh size is changed. Figures 42-45 shows that von Mises and normal 

stress values are increased as the element size decreases from 0.09 to 0.07 and decreases if we 

increase the element size from 0.09 to 0.25 which shows that the stress is mesh dependent. The 

stress values decreases with the increase in edge length and also the there is only a small 

variation in the stress values for different mesh sizes as the edge length increases so the mesh 

size is adequate for the analysis.  
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Figure 42: Mesh sensitivity for von Mises stress 

       

  Figure 43: Mesh sensitivity for normal axial stress 

 

Figure 44: Mesh sensitivity for normal radial stress 
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  Figure 45: Mesh sensitivity for shear stress 

  

7.3 EFFECT OF VARYING FILLET RADIUS 

 With this geometry, the fillet radius was varied from 1mm to 5 mm in the increments of 1 

mm and five different cases were studied. Two sample cases are shown below in Figures 46 -47. 

 

 

Figure 46: Case III with fillet radius 1mm 
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Figure 47: Case III with fillet radius 5mm 

Figures 48-52 gives the results of the finite element analysis for different fillet radius for an 

element size of 0.09. As fillet radius increases the displacement decreases. Values of the 

maximum equivalent stress, normal stress in axial and radial direction and end displacement 

along with the location where the maximum stress values are shown in Appendix B-b.  

 

Figure 48: Maximum displacement vs fillet radius 

     

   Figure 49: von Mises stress vs fillet radius 



 42 

 

 Figures 50-51 show the effect of the fillet radius on the normal stress in radial and axial 

direction. The normal stress decreases when the fillet radius is increased from 1mm to 2 mm but 

increases from 2mm to 5mm, this is because of development of higher stress concentration in 

fillet radius of 1mm which has a smaller arc and higher element density in that fillet location and 

also the maximum stress occurs at the middle of the circle instead of at the transition area. 

 

Figure 50: Normal axial stress vs fillet radius 

 

 

Figure 51: Normal radial stress vs fillet radius 
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Figure 52: Shear stress vs fillet radius 

 Plots of the distributions of the von Mises stress, normal axial stress, shear stress and 

normal radial stress for the fillet radius of 4mm are shown in Figures 53-56. 

 

Figure 53: von Mises stress (MPa) plot for a fillet radius of 4mm 

 

 

Figure 54: Normal axial stress (MPa) plot for a fillet radius of 4mm 
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Figure 55: Normal radial stress (MPa) plot for a fillet radius of 4mm 

 

 

Figure 56: Shear stress (MPa) plot for a fillet radius of 4mm 

 

 

In Table 3, the maximum stress values along with the location of the maximum stress are 

shown for element size of 0.09. The results for element size 0.07 and 0.25 are shown in 

Appendix B-b. 
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Table 3: Maximum stress values and location for case III mesh size h sixe 0.09 

 

 Mesh sensitivity studies were performed and Figures 57-60 show the effect of the 

different element sizes on the ligament stresses and displacement when the fillet radius is varied.  

There is no variation in the displacement when the mesh size is changed. Figures 57-60 shows 

that von Mises stress and normal stress values are increased if we decrease the element size from 

0.09 to 0.07 and decreases if we increase the element size from 0.09 to 0.25 which shows that the 

stress is mesh dependent. The stress increases with the increase in fillet radius and also the there 

is only a small variation in the stress values for different mesh sizes as the edge length increases 

so the mesh size is adequate for the analysis.  
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Figure 57: Mesh sensitivity for von Mises stress 

 

 

 Figure 58: Mesh sensitivity for normal axial stress 
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Figure 59: Mesh sensitivity for normal radial stress 

    

 

  Figure 60: Mesh sensitivity for shear stress 
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7.4 EFFECT OF VARYING ANGLE 

With this geometry, the angle of the ligament side was varied from 15 degrees to 75 degrees and 

four different cases were studied. Two sample cases are shown in Figures 61-62. 

 

 

Figure 61: Case IV with angle 30 degrees 

 

 

Figure 62: Case IV with angle 60 degrees 

 

 Figures 63-67 show the results of the finite element analysis for different angle for 

element size of 0.09. The values of the maximum equivalent stress, normal stress in axial and 

radial direction and end displacement is shown along with the number of nodes and elements 

used in the model. (Appendix B-c). 
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Figure 63: Maximum displacement vs angle 

 

 

   Figure 64: von Mises stress vs angle 

 

 Figures 65-66 shows the effect of the angle on the normal stress in radial and axial 

direction. The normal stress in axial direction increase when the angle is increased from 15 

degrees to 60 degrees but decreases from 60 degrees to 75 degrees due to the higher stress 

concentration in the geometry due to the transition from angle to the straight line.  
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Figure 65: Normal axial stress vs angle 

      

 

   Figure 66: Normal radial stress vs angle 

 

Figure 67: Shear stress vs angle 

 

Plots of the distributions of the von Mises stress, normal axial stress, shear stress and normal 

radial stress for the fillet angle as 45 degrees are shown in Figures 68-71. 
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Figure 68: von Mises stress (MPa) plot for case IV (angle 45 deg.) 

 

Figure 69: Normal radial stress (MPa) plot for case IV (angle 45 deg.) 

 

Figure 70: Normal radial stress (MPa) plot for case IV (angle 45 deg.) 
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Figure 71: Shear stress (MPa) plot for case IV (angle 45 deg.) 

 

In Table 4, the maximum stress values along with the location of the maximum stress are 

shown for element size of 0.09. The results for element size 0.07 and 0.25 are shown in 

Appendix B-c. 

Table 4: Maximum stress values and location for case IV (Element size 0.09) 

 

 

 Figures 72-75 shows the effect of the different mesh sizes on the finite element analysis 

was analyzed. Mesh sensitivity studies were performed. There is slight variation in the 

displacement when the mesh size is changed. Figure 72-75 shows the effect of different element 

sizes on the ligament stresses when the angle is varied. There is a small variation in the von 

Mises stress and normal axial and radial stress when the mesh size is varied from 0.07 to 0.25. 

As we increase the mesh size from 0.07 to 0.25 there is an increase in the values of equivalent 
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stress and normal stress.  But then as the variation is less than 10% the mesh size of 0.09 is 

adequate for the analysis.  

 

Figure 72: Mesh sensitivity for von Mises stress 

 

  Figure 73: Mesh sensitivity for normal axial stress 
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Figure 74:  Mesh sensitivity for normal radial stress 

 

  Figure 75: Mesh sensitivity for shear stress 
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7.5 EFFECT OF VARIABLE MINOR RADIUS 

 A elliptical shape was chose for the ligament attached with minor radius being varied 

from 6mm to 10mm in the increments of 1 mm and five different cases were studied. Two 

sample cases are shown below in Figures 76-77. 

 

 

Figure 76: Case V with minor radius of 6mm 

 

 

Figure 77: Case V with minor radius of 9mm 

 

Figures 78-82 show the results of effect of the minor radius size on the displacement and 

maximum von Mises stress for mesh size of 0.09mm. With the increase in minor radius the 

displacement decreases but the equivalent stress and normal stress in axial direction increases. 

The values of the maximum equivalent stress, normal stress in axial and radial direction and 
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displacement is shown along with the number of nodes and elements used in model in Appendix 

B-d. 

 

Figure 78: Displacement vs minor radius 

 

 

  Figure 79: von Mises stress vs minor radius 
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Figure 80: Normal axial stress vs minor radius 

 

Figure 81: Normal radial stress vs minor radius 

 

 

Figure 82: Shear stress vs minor radius 

 

Plots of the distributions of the von Mises stress, normal axial stress, shear stress and normal 

radial stress for the minor radius of 8mm are shown in Figures 83-86.  
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Figure 83: von Mises stress (MPa) plot for minor radius 8mm 

 

 

Figure 84: Normal axial stress (MPa) plot for minor radius 8mm 

 

 

Figure 85: Normal radial stress (MPa) plot for minor radius 8mm 
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Figure 86: Shear stress (MPa) plot for minor radius 8mm 

 

In Table 5, the maximum stress values along with the location of the maximum stress are 

shown for element size of 0.09. The results for element size 0.07 and 0.25 are shown in 

Appendix B-d.    

  

Table 5: Maximum stress locations for case V ( mesh size 0.09) 

 

 

Figures 87-90 shows the effect of the different element sizes on the finite element analysis was 

analyzed. There is no change in the displacement when we increase or decrease the mesh size. In 

Figures 87-90 equivalent stress and normal stress values are increased if we decrease the element 
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size from 0.09 to 0.07 and decreases if we increase the element size from 0.09 to 0.25 which 

shows that the stress is mesh dependent. Then as the variation is less than 10% the mesh size of 

0.09 is adequate for the analysis.  

 

Figure 87: Mesh sensitivity for von Mises stress 

 

 

  Figure 88: Mesh sensitivity for normal axial stress 
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Figure 89: Mesh sensitivity for normal radial stress 

 

Figure 90: Mesh sensitivity for shear stress 

7.6 DISCUSSION 

 From the results, we can note that stresses increase as the element size decreases from 

0.25 to 0.09 to 0.07. The maximum increase in the von Mises stress with the change in element 

size from 0.09 to 0.07 is maximum in case 1 and case II out of all the cases. The element size has 

little or small effect on the displacement values for all the geometry cases. As the mesh becomes 

finer, the stresses are more accurate but also the computational time increases significantly. So 
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an optimum element size of 0.09 is suitable to get the results as the difference between the stress 

values for multiple mesh size is less than 10%.  

The Piolleti’s material model which was used to generate the material properties of the 

ligament is adequate for modeling the ligament because all the strain values calculated in the 

ligament model for different cases are less than 0.156 (Appendix A). The geometry of the 

ligament that has the maximum strain value is with the diameter of 10mm in case I, which has a 

strain of 0.159 and the maximum error between the Piolleti’s model and the polynomial model is 

only 9.9%.  

For the geometry with variable cylinder diameter, the maximum stress occurs at the 

corners of the cylinder. The maximum stress values decreases as we increase the diameter. The 

displacement of the ligament geometry also decreases as we increase the diameter. This 

geometry has the highest von Mises stress among all the geometries. The variable cylinder 

diameter has the highest effect on the von Mises stress, as we increase the cylinder diameter 

from 10mm to 20mm the stress is reduced by 80%. 

For the tapered cylinder geometry, the maximum stress values occur at the corners of the 

cylinder where it attaches to the rigid bone. The maximum von Mises stress, normal axial and 

radial stress decreases as we increase the edge length. The displacement of the ligament 

geometry also decreases as we increase the edge length. There was a decrease of 74% in the 

maximum von Mises stress as we increased the edge length from 5mm to 10 mm, whereas the 

normal axial and radial stress were reduced by approximately 75% and 79%. The shear stress 

was reduced by 78%.  

For the variable fillet radius geometry, the maximum stress values are located at the 

transition where the fillet radius changes into the straight section. In addition, when the fillet 
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radius is 1mm, the maximum stress values are at the middle of the arc and due to the mesh size 

and geometry there are high stress concentrations. When the fillet radius is increased from 2mm 

to 5 mm, the stress values increases and the maximum location is at the transition area. The 

displacement decreases as we increase the fillet radius. The normal stress in radial direction 

decreases when the fillet radius is increased from 1mm to 5mm. The difference in the von Mises 

stress as we increase the fillet radius from 1 mm to 5mm is decreased by 27.7% whereas the 

normal axial and radial stress is decreased by 30% approximately.  

For the geometry with variable angle the maximum equivalent stress values occurs at the 

transition where the angle transitions into the straight line. As the angle increases the equivalent 

stress increases the equivalent stress increases until 60 degrees but then decreases from 60 

degrees to 75 degrees and the maximum stress is at the transition area from the angle to the 

straight line. 

For the geometry with variable radius of ellipse, the maximum stress values are the 

transition where the ellipse transitions into the straight section. All the geometric parameters 

studied in this analysis have an impact on the stresses of the ligament. The maximum von Mises 

stress values is when the radius of the ellipse is 6mm. The von Mises stress decreases as we 

increase the radius of the ellipse. The normal radial and axial stress also decreases as we increase 

the radius of the ellipse. The difference in the ligament stresses when the radius is increased from 

6mm to 10mm is only 4.8%. This shows that the minor radius has the least effect on the stresses. 

The simple cylinder shape of the ligaments has the highest von Mises stress among all the 

ligament geometry models as the difference between the maximum von Mises stress is around 

80% when the edge length is increased from 5mm to 10 mm. The variable radius models have 

the least von Mises stress and as the difference between the stress values when we increase the 
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radius is only 4.8%, which shows that, the elliptical radius has the least effect on the ligament 

stress. The fillet angle and the minor radius do not have a major effect on the stresses. 

 

 

Table 6 : Effect of geometry on von Mises stress for the same edge length 

 

The tapered cylinder geometry has the highest von Mises stress for the same insertion site 

length among the fillet radius, variable minor radius. From Table 6, we notice that the minor 

radius with the 6mm edge length has the least von Mises stress. For higher insertion site length, 

there is a reduction in stresses across all the shapes.   
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8.0  CONCLUSION 

From the results of the computational analysis in the present study, we can notice the 

importance of effect of shape of ligament on the stress at insertion sites. Also in the 

computational model, the mesh size significantly affects the stress in the ligament. The higher 

the mesh size more accurate the results and also more run time, the mesh size of 0.09 is suitable 

for meshing the ligament geometry because there is not much variation in the stress values if we 

used a mesh size lower than 0.09.  

The Piolleti’s material model, which was used for the material properties of the ligament 

is adequate for modeling the ligament because all the strain values calculated in the ligament 

model for different geometry cases are less than 0.156 for which the model is suitable. 

The diameter, edge length and fillet radius have major effect on the stress on the ligament 

geometry The stress values are more dependent on the angle in the ligament geometry, so more 

importance must be given to the cylinder diameter and fillet radius to evaluate the stresses in the 

ligament. The tapered cylinder geometry has the highest von Mises stress for the same insertion 

site length among the fillet radius, variable minor radius. 
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9.0  LIMITATIONS 

There are some limitations in the current model, a 2D axis symmetry model was 

considered and also the bone was considered as rigid body. A more realistic approach would be 

to use a three dimensional model of ligament while also modeling the bone and modeling the 

contacts between the ligament and the bone which would give us better and accurate results. 

Also one could include the friction and calculate the contact stresses between ligament and bone 

that would help provide more insights into mechanics of human ligament. Also evaluating the 

fatigue analysis on ligament could provide much deeper insight into the mechanical properties of 

the ligament. Another limitation was the assumption of isotropy. In future work, one could 

model the ligament as a transversely isotropic composite like structure. To include anisotropy in 

the FE model, one could combine two separate strain energy functions for both the matrix and 

fiber. The matrix would be isotropic but the fibers would have a local material coordinate system 

applied to the long axis where directionally dependent material properties could be assigned.  
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APPENDIX A 

MAXIMUM STRAIN VALUES CALCULATED    

The strain values for the models are shown below for all the geometry cases. As we note 

that the strain values in all the geometries are less than 0.156, we can proceed using Pioletti 

material model to accurately model the ligament.  

The maximum strain values for the variable cylinder diameter geometry case I are shown 

in Table 7. 

Table 7 : Maximum strain values for case I (variable cylinder diameter) 
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The maximum strain values for the variable edge length geometry case II are shown in 

Table 8. 

Table 8: Maximum strain values for case II 

 

 

The maximum strain values for the variable fillet radius geometry case III are shown in 

Table 9. 

Table 9: Maximum strain values for case III (fillet radius) 

 

The maximum strain values for the variable fillet angle geometry case IV are shown in 

Table 10. 

 

Table 10: Maximum strain values for case IV (fillet angle) 
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The maximum strain values for the variable elliptical minor radius geometry case V are 

shown in Table 11. 

 

Table 11: Maximum strain values for case V (minor radius) 

 

Based on the above strain values in Table 7-11, we could use the Piolleti’s model for the 

ligament material model. 
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APPENDIX B 

B.A: CASE II: EFFECT OF VARYING EDGE LENGTH 

 Below in the table the results of the stress and displacement along with the location of the 

maximum stresses along with the number of nodes and elements in the model are shown for the 

mesh density of 0.09. The results for the 3 different mesh sizes are also shown in the below table  

Mesh Size 0.07 

 

   Table 12: Results for the case II with mesh size 0.07 
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Mesh Size 0.25 

 

Table 13: Results for the case II with mesh size 0.25 

 

 

The contour plots for displacement , maximum equivalent stress , normal stress in axial and 

radial direction for the three mesh densities  are shown in the below figures when the edge length 

is 7mm .  
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Figure 91: Displacement (mm) plot for mesh size 0.09 

 

Figure 92: Equivalent stress (MPa) plot for mesh size 0.09 

 

Figure 93: Normal axial stress (MPa) plot for mesh size 0.09 

 

Figure 94: Normal radial stress (MPa) plot for mesh size 0.09 
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Mesh size : 0.07 

 

Figure 95: Displacement (mm) plot for mesh size 0.07 

 

Figure 96: Normal axial stress (MPa) plot for mesh size 0.07 

 

Figure 97: Normal radial stress (MPa) plot for mesh size 0.07 
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Figure 98: Displacement (mm) for mesh size 0.25 

 

Figure 99: Equivalent stress (MPa) plot for mesh size 0.25 

 

Figure 100: Normal axial stress (MPa) plot for mesh size 0.25 

 

Figure 101: Normal radial stress (MPa) plot for mesh size 0.25 
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B.B: CASE III: EFFECT OF VARYING FILLET RADIUS 

Below in the table the results of the stress and displacement along with the location of the 

maximum stresses along with the no of nodes and elements in the model are shown for the mesh 

density of 0.09. The results for the 3 different mesh sizes are also shown in the below table  

Table 14: Results for the case III with mesh size 0.07 
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Table 15: Results for the case III with mesh size 0.25 

 

 

The contour plots for displacement , maximum equivalent stress , normal stress in axial 

and radial direction for the three mesh densities  are shown in the Figures  74-85 when the fillet 

radius is 4mm. 
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Figure 102 Displacement (mm) plot for mesh size 0.09 

 

Figure 103: Equivalent stress (MPa) plot for mesh size 0.09 

 

Figure 104: Normal axial stress (MPa) plot for mesh size 0.09 

 

Figure 105: Normal radial stress (MPa) plot for mesh size 0.09 
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Figure 106: Displacement (mm) plot for mesh size 0.07 

 

Figure 107: Equivalent stress (MPa) plot for mesh size 0.07 

 

Figure 108: Normal axial stress (MPa) plot for mesh size 0.07 

 

Figure 109: Normal radial stress (MPa) plot for mesh size 0.07 
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Mesh size : 0.25 

 

Figure 110: Displacement (mm) plot for mesh size 0.25 

 

 

Figure 111: Equivalent stress (MPa) plot for mesh size 0.25 
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Figure 112: Normal axial stress (MPa) plot for mesh size 0.25 

 

Figure 113: Normal radial stress (MPa) plot for mesh size 0.25 

 

B.C: CASE IV: EFFECT OF VARYING ANGLE 

In Table 9-10 the results of the stress and displacement along with the location of the maximum 

stresses along with the no of nodes and elements in the model are shown for the mesh density of 

0.25 and 0.07. The results for the 3 different mesh sizes are also shown in the Table 9-10. 
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Table 16: Results for the case IV with mesh size 0.25 

 

Table 17: Results for the case IV with mesh size 0.07 

 

 

The contour plots for displacement , maximum equivalent stress , normal stress in axial 

and radial direction for the three mesh densities  are shown in the Figures 86-97 for one iteraton 

ie when the angle is 45 degrees. 

 

 

 

  



 82 

 

Figure 114: Displacement (mm) plot for mesh size 0.09 

 

Figure 115: Equivalent stress (MPa) plot for mesh size 0.09 

 

Figure 116: Normal axial stress (MPa) plot for mesh size 0.09 
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Figure 117: Normal radial stress (MPa) plot for mesh size 0.09 

 

     Mesh size : 0.25 

 

Figure 118: Displacement (mm) plot for mesh size 0.25 

 

Figure 119: Equivalent stress (MPa) plot for mesh size 0.25 
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Figure 120: Normal axial stress (MPa) plot for mesh size 0.25 

 

Figure 121:  Normal radial stress (MPa) plot for mesh size 0.25 
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Mesh size 0.07 

 

 

 

Figure 122: Displacement (mm) plot for mesh size 0.07 

 

Figure 123: Equivalent stress (MPa) plot for mesh size 0.07 
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Figure 124: Normal radial stress (MPa) plot for mesh size 0.07 

 

Figure 125:  Normal radial stress (MPa) plot for mesh size 0.07 

 

 

B.D: CASE V: EFFECT OF VARYING MINOR RADIUS 

Below in the table the results of the stress and displacement along with the location of the 

maximum stresses along with the no of nodes and elements in the model are shown for the 

element size of 0.07 and 0.25.  
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Table 18: Results for the case V with mesh size 0.25 

 

 

Table 19: Results for the case V with mesh size 0.07 

 

The contour plots for displacement , maximum equivalent stress , normal stress in axial 

and radial direction for the three mesh densities  are shown in the Figures 98-109 for one iteraton 

ie when the angle is 45 degrees  
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Figure 126 : Displacement (mm) plot for mesh size 0.09 

 

Figure 127: Equivalent stress (MPa) plot for mesh size 0.09 

 

Figure 128: Normal axial stress (MPa) plot for mesh size 0.09 
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Figure 129: Normal radial stress (MPa) plot for mesh size 0.09 

 

 

Mesh Size : 0.25 

 

Figure 130: Displacement (mm) plot for mesh size 0.25 

 

 

Figure 131: Equivalent stress (MPa) plot for mesh size 0.25 
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Figure 132: Normal axial stress (MPa) plot for mesh size 0.25 

 

Figure 133: Normal radial stress (MPa) plot for mesh size 0.25 

 

 

 

 

Mesh Size : 0.07 

 

Figure 134: Displacement (mm) plot for mesh size 0.07 
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Figure 135: Equivalent stress (MPa) for mesh size 0.07 

 

 

Figure 136: Normal axial stress (MPa) plot for mesh size 0.07 

 

 

 

Figure 137: Normal radial stress (MPa) plot for mesh size 0.07 
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