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EFFECT OF LIGAMENT GEOMETRY ON THE STRESS AT THE BONE
INSERTION SITES

Nithin Reddy Karna, M.S.

University of Pittsburgh, 2016

Objective: The focus of this study is to identify the significance of the ligament shape at
the bone insertion sites and how it affects the stresses at the locations.

A ligament is a dense bundle of connective tissues made up of fibers that connects one
bone and another bone to control joint motion and transfer load. This study was focused on stress
at the bone insertion site where the ligament attaches to the bone. The present study was done to
determine the importance of using nonlinear elastic properties and non-uniform geometry of the
ligament when analyzed under a tensile load. A 2D axis-symmetry model was considered for the
ligament and the bone was chosen to be a rigid material body and a non- linear static analysis
was performed to assess the stress at the bone- ligament interface.

Results: The von Mises stresses at the insertion sites were predicted. Effect of different
ligament geometry shapes was studied by comparing the stress results.

Clinical or Engineering Relevance: The results allow a better understanding of the

shape of ligament morphology due to the load.
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1.0 INTRODUCTION

11 MOTIVATION

Attachment of dissimilar materials is a major challenge in engineering. Joining two
metals is a challenging task and attaching a metal to a plastic or attaching a bone to a ligament is
a more challenging problem. The two materials have varied material properties like the elastic
modulus and Poisson’s ratio and this difference in material properties will have major effect on
stresses near the attachments. This will result in regions with higher stresses (Stavros et al.,
2006).

The focus in our present study is at the attachment of ligaments to bone. The modulus of
elasticity and Poisson’s ratio of bone is different from that of the soft tissue ligament, which
could result in high stresses at the attachments. The human anterior cruciate ligament (ACL) is
the most injured ligament of the body (Fetto and Marshall 1980), especially during sport
activities (Speer et al., 1995) and accidents (Crowninshield and Pope 1976). So understanding

the stress in ligaments is important to injury of the tissue.



1.2 OBJECTIVE

The objective of present computational study is to study the effect of shape of ligaments on the

stresses at bone ligament insertion site.



20 STRUCTURE AND FUNCTION OF LIGAMENTS

Ligaments are soft connective tissues that are mainly composed of water, collagen and various
amino acids. They are formed by long fibers of collagen. Collagen is composed of groups of
proteins and the elasticity of collagen allows ligaments to stretch and then revert to their un-
deformed shapes when the stress is relieved (K Robi et al,. 2013). Ligaments are hypo cellular
with interconnected, elongated fibroblastic cells in their mid-substance. The main function of
these cells is to maintain the collagen scaffold. Water makes about two-third of the weight of
normal ligaments and out of which 70% of the remaining weight is made up of protein
(V.C.Mow et al,. 2005).

The most important function of the ligaments is to control joint motion. They connect
bones and help control movement of the joint by stabilizing it and keeping it from being
dislocated. They can be subjected to high forces while performing their role in restricting
abnormal joint motion resulting in damage of the ligament due to overloading. However, still the
mechanical properties of individual ligaments, the mechanics of ligament injury, and the

efficiency of reconstructive procedures are not well known.



2.1 LIGAMENT INSERTION

Ligament insertion sites transmit loads to a bone and are hypothesized to be formed in
such a way to reduce the stresses that occur at ligament and bone interfaces (Benjamin et al,
2006). The insertions of a ligament to bone are biomechanically complex. The structure and
shape of the insertion site is different for each ligament and also at the two ends of same
ligament. There are said to be two types of insertions direct and indirect.

At indirect insertion sites, the fibers attach to bone with little or no transitional zone. The
collagen fibers meet bone at acute angles and there is an interface line separating the mineralized
and non-mineralized tissues. This ligament insertion type is characterized by the progression of
collagen fibers that attach into periosteum and sub chondral bone without gradual transition

(Freddie H. Fu et al,. 2008).



Indirect Ligament Insertion

L

flexible fixation

Figure 1: Indirect Ligament Insertion (Freddie H. Fu et al,. 2008)

Direct insertion sites are areas of attachment where bone and attaching ligament occur
over a distance of less than 1mm and consist of a distinct right-angle boundary where collagen
fibers extend out (Suvranu De et al,. 2014). The collagen fibrils quickly pass out of normal
ground substance matric and continue through zones of fibrocartilage, mineralized fibrocartilage
and finally into bone (Cooper et al,. 1970). The direct insertion of the ACL carries more load

than the indirect insertion (D.H. Nawabi et al,. 2014).



\ N ] T e =

LU FAT L= s
.‘

-

|

A

v

: Ti
R0

4
W

A\l I
}; ’ "! non-mineraliped
‘ E 4 cartilage
LWL L —
e e : (T ligament

Figure 2: Direct Ligament Insertion (Freddie H. Fu et al,. 2008)

In Figure 3, the shape of the ligament where it attaches to bone is shown (Kevin D.

Plancher et al,. 2005).



Figure 3: Shape of ligament where it attached the bone (Kevin D Plancher et,.al 2005)

From Figure 3, we note that the ligament can have different shapes and sizes depending

on various parameters.



3.0 BACKGROUND

The most common method of modeling ligaments was using one-dimensional discrete line
elements, which act as tension only springs (Panzer and Cronin 2009). This method was used to
model the system level models as it reduces the complex mechanics of the ligaments to that of a
spring but still allowing for the prediction of joint kinematics. The main disadvantages of this
method were it could not predict the stress in the ligament tissue and the load cannot be
transferred between the ligament and surrounding tissues. Later two dimensional computational
models of ligaments were used which predicted the shear and compressive loading which was
not predicted by the one- dimensional representation. A two-dimensional, plane stress finite
element model of the rabbit ligament in the mid-coronal plane was developed by Matyas et al.
1995 using experimentally determined geometry. The three dimensional ligament models
(Weiss 2005; Pioletti’s 1998) are used for the detailed analysis of the ligament to predict the
mechanics of ligament and understand the stresses in various tunnel positions. Curves describing
the external geometry of the insertion sites were determined experimentally and a solid was
created to join the two curves. Two approaches namely, a realistic approach and an artificial
approach were followed while modeling three dimensional ligament models. In the artificial
method, the geometry of the ligament was assumed to have a constant cross section throughout

the length, whereas, in realistic approach the geometry of the ligament by digitizing the fiber



bundles of the ligament and using cubic spline interpolation to fill the remaining geometry
(Zhang 2008).

There were no previous researches or studies on the shape of the ligament geometry and
how it will effect the stresses at the insertion sites. Also the shape of the ligament geometry was

not focused in any previous research.



4.0 MATERIAL PROPERTIES OF LIGAMENTS

Ligaments are anisotropic, non-linear materials normally subjected to complex loadings
(Giori et al., 1993). The fiber orientations in the ligament is thought to represent an adaptation to
the mechanical loading of ligament and are generally aligned with the long major axis (Zhang
2008). Primary resistance to tensile loading is provided by the collagen fibers, which do not
provide any resistance to compression (Zhang 2008). Experimental data has shown the load-
elongation curve for ligaments to have a nonlinear section at low levels of strain and then a linear
region until it reaches yield point. It is thought that the initial nonlinear section is due to the fact
that in a zero strain position, the collagen fibers are in a crimped configuration, and at a low load
the fibers are in the act of straightening, resulting in a nonlinear load-elongation curve until the
fibers are completely straightened, at which point the load-elongation curve becomes linear (J.A.
Weiss 2001). The ligament apart from exhibiting nonlinear elastic responses also exhibit visco-
elastic properties which are dependent on time and history. This arises due to interaction of
ground substance matrix with water. A typical force- deformation curve for the ligaments where
load is applied in a uni-axial direction along the fibers direction is shown in Figure 4 (Martin

1998).

10
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Figure 4: Force - Deformation curve for ligaments (Martin 1998)

4.1 MATERIAL MODELS

To represent the mechanical behavior of ligaments, continuum models have been
developed. These constitutive equations are used to describe stress-strain behavior of materials
through specification of the dependence of stress on variables, such as deformation gradient, rate
of deformation. It is still a challenge to accurately predict the mechanical behavior of ligaments.
An approach to describe the material behavior of ligament is to fit the mathematical equations in
experimental data. One method is to characterize the ligament as hyper-elastic material. A hyper-
elastic material is a subclass of an elastic material and is a constitutive model for in which the

stress-strain relationship derives from a strain energy density function.

11



The most influential model that was developed for modelling the biological tissues is
Holzapfel-Gasser-Ogden (HGO) model (Holzapfel 2000). In this model the strain energy (W) is

given by:

£ k . 2
W= —3)+ = (B0 —1) (3.1)

where, 11 and 14 are strain invariants defined as I1 = trace (C) and ls= M. (CM), C is the Cauchy-
Green tensor and c, ki and ko are the material parameters of ligament. M is the unit vector
pointing in the direction of tissue fibers before any deformation.

Limbert represented the ligament as a transversely isotropic hyper-elastic material [18]
(Limbert 2001) whose strain energy function took the following form, which was originally

developed by Weiss (1996) as:

w=FE )+ B+ 5 * ()’ (32)

where the strain energy function was split up in contributions from the ground substance (F1) and
the fibers (F2), (I) is the first deviotoric invariant of the deformation tensor, (\) represents the
deviotoric part of stretch along collagen fiber direction, (K) is the bulk modulus and (J) is the
determinant of the deformation tensor. In this model, the ground substance was modeled as
incompressible and isotropic and was regarded as a Neo-Hookean model whose strain energy
function was described as:

Fp=5%Cy =l —3) (3.3)

Ba |

where C; is constant of Neo Hookean model. As the collagen fibers do not support compressive
load, the tensile stretch relationship is characterized by a piece wise continuous function. The
strain energy function for the collagen fibers (F2) is formulated as:

12
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where C; is a factor that scales the exponential stress and Cz controls the rate of un-crimping of
collagen fibers.

The Ogden model expresses the strain energy function W in terms of principal stretches
M, A2 and As. Formulation for the model has pp and ap as material constants (Ogden 1972) and is

given by:

mn

W= ) 2., 4 2,%+2,% — 3) (3.5)

p=1 F

Later Pioletti (1998) developed an isotropic hyper elastic constitutive law for ligaments in
conjunction with an elastic potential developed by Veronda and Westmann (1970) originally
proposed to model finite deformations of the skin in which «, § and C; are material constants of
ligament as

W=axefL3 4 (1,-3) (3.6)

Another model which is commonly used to model hyper elastic material is polynomial
model introduced by Rivlin & Sanders (Rivlin et al,. 1951). It is formulated in terms of the first
and second strain invariants of the Cauchy-Green deformation tensor, with Cj; denoting material

constants. This model is called as Generalized Rivlin Model (Chang et al,. 1991) and is given by

T

W= ) Cyr-3)' -3 (37)

i=0 =0
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In our current study the Piolleti’s constitutive model for a ligament (Equation 3.6) which
is widely adopted by other investigators (Debski et al,. 2004; Pena et al,. 2006) is used for the
modelling the ligament as this was based on an incompressible isotropic hyper-elastic
formulation for ACL and the elastic parameters were determined from curved fitting the
experimental data obtained from the uniaxial tensile tests on human anterior cruciate ligament
(ACL). The results of this model showed good correlation between experimental and theoretical

curves over a range of strain rates (Pioletti 1998).
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5.0 FINITE ELEMENT ANALYSIS

The equations of motion can be combined with a suitable constitutive model to obtain
mathematical solutions to problems with relatively simple geometry and boundary conditions.
But most of the time with a complex geometry and arbitrary boundary and loading conditions
solving these mathematical equations is not easy, so finite element computational analysis is
used. This method offers ability to predict spatial and temporal variations in stress, strain and

contact area/forces (Weiss 2005).

5.1 CONSTITUTIVE MODEL OF LIGAMENTS

The strain energy function proposed by Pioletti (1998) is difficult to implement in Ansys finite
element analysis software as the software cannot accept the material constants of the ligament in
this form (ANSYS Inc. User Manual). So the above strain energy equation (Equation 3.6) was
modified into a polynomial form. The values of material constants a, f and C: in the Pioletti
equation (Equation 3.6) are obtained from the literature which were experimentally calculated
from the stress strain curve of a human ligament. The values for material constants for the

anterior cruciate ligament (ACL) are « = 0.26, f = 11.35 and C; = -1.49. (Pioletti 1998).
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W=axefL3 4 (1,-3) (4.1)

Taking x = I:-3, expanding the terms of Pioletti equation using Taylor series expansion

(Abramowitz 1970)

|"1-1 ':IS' ':1‘4
ﬁ}_i_ﬁ}_I_E}

2! 3! 4!

rxﬁce':'gﬂ=a:[1 + Bx+ + .- (4.2)

Expanding and calculating the coefficients results in a = 0.26; a*f = 2.95; a *$? /2! = 16.74 and
a *3% /3! = 63.35, substituting the values into equation 4.2 gives

W = 0.26 + 2.95*x + 16.74*x2 + 63.35*x3 - 1.49*(I2- 3) (4.3)
When the above equation is compared to the cubic polynomial model form (Equation 3.7),

W = C10*(11-3) + C20*(11-3)2 + C30*(11-3)3 + Co1*(12-3) (4.4)
we get the coefficients of the first, second and third order terms of the polynomial as 2.95, 16.74
and 63.35 respectively which translates to the values of the coefficients of Cio = 2.95; Cxo =
16.74; Cz0 = 63.3592 and Co1 = -1.49 respectively.

To check the difference between the cubic polynomial approximation and the exponential

equation, the graphs of strain energy functions were plotted for strain energy vs strain (figure 4)
for the Pioletti equation and the polynomial model. W1 is the strain energy function form

proposed by Pioletti and W is strain energy function in cubic polynomial form.

W1 = (0.26 * e (11359) (4.5)

W2 =2095*x+ 16.7463 * x2 + 63.3592 * x3 + 0.26 (4.
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From the graph in Figure 5, difference between the energy values of cubic polynomial and

Pioletti models below the strain value of 0.156 is less than 9.6%. So the new model can be used

to model the ligament in finite element analysis.

Energy
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Figure 5: Strain energy vs strain for cubic polynomial model (W) and Pioletti model (W)
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6.0 APPROACH & ANALYSIS

A non-linear finite element analysis (FEA) was performed to model the ligament. A commercial
finite element software (ANSYS v15) was used to evaluate the stresses and displacements due to
the applied load. The bone was assumed to be a rigid material and the ligament was attached to
it. Only the ligament was modeled for finite element analysis. A parametric study was done on
the effect of various ligament geometries was studied. A two dimensional axisymmetric model is

used to model the ligament.

6.1 BOUNDARY AND LOADING CONDITIONS

One end of the ligament was taken to be rigidly fixed with all degrees of freedom constrained
and uniform tensile stress was applied at the other end. A uniform load of 200N (F) is applied on
the right edge (R) of the 2D model and left edge of the ligament (C) is constrained in all degree
of freedom. The top edge of the model is along the axis of symmetry as shown in Figure 6. The

Poisson’s ratio of the ligament was considered as 0.45 (Ozkaya & Nordin 1999).
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Axisymmetric axis

|

200N (F)

|

Figure 6: Boundary and load conditions on the ligament

6.2 GEOMETRY OF LIGAMENT

The length of ligament was taken to be 30 mm. Different cylindrical shapes of ligaments were
modelled by changing the shape parameters. The shapes of the cylinder can be modified by
changing fillet radius or fillet angle or using different edge lengths at both the ends or changing
the curve of the cylindrical height can be modified to create new geometries. Many different
shapes can be created from a cylinder but in our present study we are considering four shapes
which may affect the stresses at the insertion sites. The five different shape cases which were

modeled and analyzed using FEA are:

19



Case I: Variable Edge length (Straight Cylinder)
The length of ligament is fixed as 30mm. The diameter of the cylinder is varied from 10mm to

20mm in intervals of 2mm.

L . ! . - : - R=10 mm

30 mm

Figure 7: Ligament geometry for Case |

Case 11: Variable Edge length (Tapered Cylinder)
The length of ligament is fixed as 30mm and the right edge length (R) is fixed to be

10mm. The left edge (L) of the cylinder is varied from 10mm to 20mm as shown in Figure 8.

R=10 mm

30 mm

Figure 8:Ligament geometry for Case Il
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Case I11: Variable Fillet Radius
The length of ligament is fixed at 30mm and the right edge length (R) is fixed to be
10mm. The fillet radius (F) of the cylinder is varied from 5mm to 1mm and the left edge length

(L) is adjusted accordingly as shown in Figure 9.

Fillet Radius (F)

L 1 R=10 mm

30 mm

Figure 9: Ligament geometry for Case Il

Case IV: Variable Angle (fillet angle)

The length of ligament is 30mm and the right edge length (R) is 10mm. The left edge
length (L) of the cylinder is fixed as 20mm and the fillet angle (A) of the cylinder is varied from
30 degrees to 75 degrees and the length of the straight section is adjusted accordingly as shown

in the Figure 10.
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+ Angle (A)

L R=10 mm

Straight Section

30 mm

Figure 10: Ligament geometry for Case IV

Case V: Variable Minor Radius

he length of ligament is 30mm and the right edge length (R) is set at 20mm. The minor
radius elliptical right hand side from 6mm to 10 mm and the left edge length (L) is adjusted
accordingly based on the major axis that was decided based on the variable radius as shown in

Figure 11.

™ « Minor radius(R)

30 mm

Figure 11: Ligament geometry for Case V
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6.3 FINITE ELEMENT MESHING

Two-dimensional axisymmetric quadrilateral elements are used in the model. The model was
meshed with an element size of 0.09 after evaluating the mesh sensitivity of the ligament model.

Sample meshed model of ligament for each of the five cases is shown below in Figures 12-16.
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Figure 12: Meshed model of the ligament for Case |

Figure 13: Meshed model of the ligament for Case Il

Figure 14: Meshed model of the ligament for Case 11l

Figure 15: Meshed model of the ligament for Case 1V
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Figure 16: Meshed model of the ligament for Case V
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7.0 RESULTS AND DISCUSSION

The goal of the computational analysis was to provide insight into the effect of the shape parameters
of ligament have on the stresses and displacement. In the following section, the stress results will be
discussed for comparison across different shape parameters and the effect of element size. Three
different mesh sizes were studied to see the effect of mesh on the stress and displacement. The

analysis was performed for element sizes of 0.07, 0.09 and 0.25 mm.

7.1  EFFECT OF VARYING DIAMETER

With this geometry, the diameter of the cylinder was varied from 10mm to 20 mm in the
increments of 2 mm and 6 different cases were studied. A sample case is shown below in Figures

17.
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Figure 17: Case | with diameter of 10 mm
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Figures 18-19 compare the end displacement and maximum von mises stress results of the finite
element analysis for different diameter (D) for element size of 0.09. As diameter increases the
displacement and von Mises stress decreases. Values of the maximum von Mises stress,
maximum normal stress in axial and radial direction and end displacement along with the
location where the maximum stress are shown along with the number of nodes and elements in

Appendix B. The maximum stress values are found when the ligament diameter is 210mm.

Figure 18: Maximum displacement vs diameter

55 [Mpa)

valent stre
o

Maximum equ

Figure 19: Maximum von Mises stress vs diameter
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Figures 20-22 shows the effect of the diameter on the normal radial, axial stress and shear stress.
The normal stress in the radial and axial direction decreases with increase in diameter. The shear

stress also decreases as we increase the diameter.

Figure 20: Normal axial stress vs diameter

Figure 21: Normal radial stress vs diameter
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Figure 22: Maximum shear stress vs diameter

Plots of the distributions of the von Mises stress, normal axial stress, shear stress and normal

radial stress for the diameter of 14mm are shown in Figures 23-26.

17.012 Max
15124
13.237
11,349

9462

7.5746
5.6872
3.7093
1.9123 [GErap
0.02494 Min

Figure 23: von Mises stress (MPa) plot for Case | (Diameter 10mm)

13.754 Max
12397
1.4

9.683

83261
6.9652
5.6123
42554
2.8985
1.5416 Min

Figure 24: Normal axial stress (MPa) plot for Case | (Diameter 10mm)
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Figure 25: Normal radial stress (MPa) plot for Case | (Diameter 10mm)
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Figure 26: Shear stress (MPa) plot for Case | (Diameter 10mm)

In the Table 1, the maximum stress values along with the location of the maximum stress
are shown for element size of 0.09. The maximum stresses are located at the corner as shown in

the Figures 23-26.

Table 1: Maximum stress values and location for case | (Element size 0.09)

No of No of Maximum Max Max Shear | Max Normal axial MMax Normal
Diameter | nodes elements | displacement equivalent stress(MPa) stress (MPa)/ radial
{mm) (mm) stress (MPa) / [Location Location stress(MPa) /
Location Location
10 53892 17721 3.841 17.011 9.526 13.753 10.617
12 640393 21114 3.216 12.361 £.885 10.381 7.6774
14 74823 24684 2.718 9.335 5.178 8.098 5.7880
16 86183 28458 2.313 7.254 4.004 6.463 4. 4806
18 98450 32537 1.979 5.765 3.167 5.261 3.5594
20 111173 36766 1.702 4,665 2.554 4,352 2.8820
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Mesh sensitivity studies were performed and Figures 41-44 show the effect of the
different element sizes on the ligament stresses and displacement when the diameter is varied.
There is no variation in the displacement when the mesh size is changed. Figures 41-44 shows
that von Mises stress and normal stress values increases as we decrease the element size from
0.09 to 0.07 and decreases if we increase the element size from 0.09 to 0.25 which shows that the
stress is mesh dependent. The stress increases with the increase the mesh size and also the there
is only a small variation in the stress values for different mesh sizes as the diameter increases so

the mesh size is adequate for the analysis.

Max E

Figure 27: Mesh sensitivity for von Mises stress

gal 5 {Mpaj

Mormal

Figure 28: Mesh sensitivity for normal axial stress
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Figure 29: Mesh sensitivity for normal radial stress
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Figure 30: Mesh sensitivity for shear stress
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7.2 EFFECT OF VARIABLE EDGE LENGTH

With this geometry, the left edge length was varied from 10mm to 20 mm in the increments of 2

mm and 6 different cases were studied. Two sample cases are shown below in Figures 31-32.

B Foed Sppon
| LEE

Figure 31: Case Il for edge length 6mm

Figure 32: Case Il for edge length 10mm

Figures 33-34 compare the end displacement and maximum von mises stress results of the finite
element analysis for different edge length (L) for element size of 0.09. As edge length increases
the displacement and stress decreases. Values of the maximum von Mises stress, maximum
normal stress in axial and radial direction and end displacement along with the location where

the maximum stress are shown along with the number of nodes and elements in Appendix B.
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Figure 33: Maximum displacement vs edge length

B4

{MPa)

fqunakent Stress

Figure 34: von Mises stress vs edge length

Figures 35-36 shows the effect of the edge length on the radial and axial stress. The
normal stress in the radial and axial direction decreases with increase in edge length. The shear
stress also decreases as we increase the edge length and it is maximum at the corner location and

in the surrounding area it is nearly equal to 0 MPa.
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Axial {MPa)

Mormal Stress

Figure 35: normal axial stress vs edge length

Radial (MPa)

Figure 36: normal radial stress vs edge length

Figure 37: maximum shear stress vs edge length

Plots of the distributions of the von Mises stress, normal axial stress, shear stress and

normal radial stress for the edge length of 7mm are shown in Figures 38-41.
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Figure 38: von Mises stress (MPa) plot (Edge length 7mm)
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Figure 39: Normal axial stress (MPa) plot (Edge length 7mm)

Figure 40: Normal radial stress (MPa) plot (Edge length 7mm)
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Figure 41: Shear stress (MPa) plot (Edge length 7mm)
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are shown for element size of 0.09. The results for element size 0.07 and 0.25 are shown in

In the Table 2, the maximum stress values along with the location of the maximum stress

Appendix B-a. The maximum stresses are located at the corner as shown in the Figures 38-41.

Table 2: Maximum stress value and locations for case 11

No of No of Maximum Max von Mises | Shear stress Normal stress | Normal stress
Edge | nodes | elements | displacement stress (MPa) (\MPa) (MPa) / Axaal | (MPa) / Radial
length (mm) Location Location direction direction
(mm) Location Location
10 53892 17721 3.8413 17.011/ Comer | 9.526 / Comer | 13.754 / Comer | 10.617/ Comer
12 59176 19477 3.5147 11.798' Comer | 6.596' Comer | 9.733/ Comer 7.326/ Comer
14 65274 21505 3.251 8.509/ Comer | 4.754/ Comer | 7.118/ Comer 5.285/ Comer
16 71674 23637 3.0273 6.321/ Comer | 3.530/ Comer | 5.316/ Comer 3.900/ Comer
18 78907 26044 2.8356 4.797/ Comer 2.679/ Comer 4.044' Comer 2946/ Comer
20 85819 28346 2.6704 3.707/ Comer 2.071/ Comer 3.123/ Comer 2268/ Comer

Mesh sensitivity studies were performed. Figures 42-45 show the effect of different element
sizes on ligament stresses due to varied edge length. There is no or slight variation in the
displacement when the mesh size is changed. Figures 42-45 shows that von Mises and normal
stress values are increased as the element size decreases from 0.09 to 0.07 and decreases if we
increase the element size from 0.09 to 0.25 which shows that the stress is mesh dependent. The
stress values decreases with the increase in edge length and also the there is only a small
variation in the stress values for different mesh sizes as the edge length increases so the mesh

size is adequate for the analysis.
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Figure 42: Mesh sensitivity for von Mises stress
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Figure 43: Mesh sensitivity for normal axial stress
14
210
g
B 10
3 e
=
% 16
£
Ao
g 2
=
[+]
8 10 12 14 16 18 20 22

Left edge length of the ligament

—&— normal stress radial 009 —8— nommal siress radial 0.25

—— niormal stress radiad O.07

Figure 44: Mesh sensitivity for normal radial stress
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Figure 45: Mesh sensitivity for shear stress

7.3  EFFECT OF VARYING FILLET RADIUS

With this geometry, the fillet radius was varied from 1mm to 5 mm in the increments of 1

mm and five different cases were studied. Two sample cases are shown below in Figures 46 -47.

B Foed Suppont

Figure 46: Case Il with fillet radius 1mm
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Figure 47: Case Il with fillet radius 5mm

Figures 48-52 gives the results of the finite element analysis for different fillet radius for an
element size of 0.09. As fillet radius increases the displacement decreases. Values of the
maximum equivalent stress, normal stress in axial and radial direction and end displacement

along with the location where the maximum stress values are shown in Appendix B-b.
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Figure 48: Maximum displacement vs fillet radius
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Figure 49: von Mises stress vs fillet radius
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Figures 50-51 show the effect of the fillet radius on the normal stress in radial and axial
direction. The normal stress decreases when the fillet radius is increased from 1mm to 2 mm but
increases from 2mm to 5mm, this is because of development of higher stress concentration in
fillet radius of Imm which has a smaller arc and higher element density in that fillet location and

also the maximum stress occurs at the middle of the circle instead of at the transition area.

i ikIPal
b

Figure 50: Normal axial stress vs fillet radius
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Figure 51: Normal radial stress vs fillet radius
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Figure 52: Shear stress vs fillet radius

Plots of the distributions of the von Mises stress, normal axial stress, shear stress and

normal radial stress for the fillet radius of 4mm are shown in Figures 53-56.

Figure 53: von Mises stress (MPa) plot for a fillet radius of 4mm
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Figure 54: Normal axial stress (MPa) plot for a fillet radius of 4mm
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Figure 55: Normal radial stress (MPa) plot for a fillet radius of 4mm
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Figure 56: Shear stress (MPa) plot for a fillet radius of 4mm

In Table 3, the maximum stress values along with the location of the maximum stress are
shown for element size of 0.09. The results for element size 0.07 and 0.25 are shown in

Appendix B-b.
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Table 3: Maximum stress values and location for case 111 mesh size h sixe 0.09

No of No of Maximum Max equivalent | Shear stress | Normal stress | Normal stress
Radius | nodes | elements | displacement stress (MPa) / (MPa) / (MPa) / Axial | (MPa) / Radial
(mm) (mm) Location Location direction/ direction/
Location Location
1 53781 17680 3.827 5.396/ muddle of | 0.0527 /at | 4.322/muddle | 3.125/muddle
the circle transition of the circle of the circle
2 54494 17911 3.809 3.308/ at the 0.0209 /at 3.366/ at the 2.385/ at the
transition transition transition comer
3 55128 18115 3.78%9 3.611/ at the 0.0060 /at 3.699/ at the 2.294/ at the
transition transition transition comer
-+ 56023 18404 3.767 3.819/ at the 0.0017 /at 3915/ at the 2.185/ at the
transition transition transition comer
5 57115 18762 3.742 3912/ at the 0.00034 /at 4.013/ at the 2.064/ at the
transition transition transition comer

Mesh sensitivity studies were performed and Figures 57-60 show the effect of the

different element sizes on the ligament stresses and displacement when the fillet radius is varied.

There is no variation in the displacement when the mesh size is changed. Figures 57-60 shows

that von Mises stress and normal stress values are increased if we decrease the element size from

0.09 to 0.07 and decreases if we increase the element size from 0.09 to 0.25 which shows that the

stress is mesh dependent. The stress increases with the increase in fillet radius and also the there

is only a small variation in the stress values for different mesh sizes as the edge length increases

so the mesh size is adequate for the analysis.
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Figure 57: Mesh sensitivity for von Mises stress
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Figure 58: Mesh sensitivity for normal axial stress
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Figure 59: Mesh sensitivity for normal radial stress

Figure 60: Mesh sensitivity for shear stress
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7.4  EFFECT OF VARYING ANGLE

With this geometry, the angle of the ligament side was varied from 15 degrees to 75 degrees and

four different cases were studied. Two sample cases are shown in Figures 61-62.

Figure 61: Case IV with angle 30 degrees
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Figure 62: Case IV with angle 60 degrees

Figures 63-67 show the results of the finite element analysis for different angle for
element size of 0.09. The values of the maximum equivalent stress, normal stress in axial and
radial direction and end displacement is shown along with the number of nodes and elements
used in the model. (Appendix B-c).
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Figure 63: Maximum displacement vs angle

Figure 64: von Mises stress vs angle

Figures 65-66 shows the effect of the angle on the normal stress in radial and axial
direction. The normal stress in axial direction increase when the angle is increased from 15
degrees to 60 degrees but decreases from 60 degrees to 75 degrees due to the higher stress

concentration in the geometry due to the transition from angle to the straight line.
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Figure 65: Normal axial stress vs angle

Figure 66: Normal radial stress vs angle

Figure 67: Shear stress vs angle

Plots of the distributions of the von Mises stress, normal axial stress, shear stress and normal

radial stress for the fillet angle as 45 degrees are shown in Figures 68-71.
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Figure 68: von Mises stress (MPa) plot for case 1V (angle 45 deg.)
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Figure 69: Normal radial stress (MPa) plot for case IV (angle 45 deg.)
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Figure 70: Normal radial stress (MPa) plot for case IV (angle 45 deg.)
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Figure 71: Shear stress (MPa) plot for case 1V (angle 45 deg.)

In Table 4, the maximum stress values along with the location of the maximum stress are

shown for element size of 0.09. The results for element size 0.07 and 0.25 are shown in

Appendix B-c.
Table 4: Maximum stress values and location for case IV (Element size 0.09)

No of No of Maximum Max Max Shear Max Normal Max Normal
Angle | nodes | elements | displacement | equivalent stress(MPa) axial stress radial

(deg) (mm]} stress (MPa) [Location {MPa)/ Location stress(MPa) /

[ Location Location

30 58400 19189 3.739 4,965/ at the | 1.9150E-06/ at 2.0905/ at the 5.108/at the
transition | the tip transition center

45 60571 19912 3.673 5.634 /at the | 6.6771E-06/ at 1.7881/ at the 5.813/at the
transition | the tip transition center

60 64285 21150 3.533 5.831 fat the | 2.7464E-05 / at 1.3408/ at the 6.044/at the
transition the tip transition center

75 73723 242598 3.107 4.863 /at the | 6.679E-04 / at 1.8702/ at the 5.041/at the
transition | the tip transition center

Figures 72-75 shows the effect of the different mesh sizes on the finite element analysis
was analyzed. Mesh sensitivity studies were performed. There is slight variation in the
displacement when the mesh size is changed. Figure 72-75 shows the effect of different element
sizes on the ligament stresses when the angle is varied. There is a small variation in the von
Mises stress and normal axial and radial stress when the mesh size is varied from 0.07 to 0.25.

As we increase the mesh size from 0.07 to 0.25 there is an increase in the values of equivalent

52



stress and normal stress. But then as the variation is less than 10% the mesh size of 0.09 is

adequate for the analysis.

Figure 72: Mesh sensitivity for von Mises stress
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Figure 73: Mesh sensitivity for normal axial stress
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Figure 74: Mesh sensitivity for normal radial stress
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Figure 75: Mesh sensitivity for shear stress
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7.5 EFFECT OF VARIABLE MINOR RADIUS

A elliptical shape was chose for the ligament attached with minor radius being varied
from 6mm to 10mm in the increments of 1 mm and five different cases were studied. Two

sample cases are shown below in Figures 76-77.

Figure 76: Case V with minor radius of 6mm

Figure 77: Case V with minor radius of 9mm

Figures 78-82 show the results of effect of the minor radius size on the displacement and
maximum von Mises stress for mesh size of 0.09mm. With the increase in minor radius the
displacement decreases but the equivalent stress and normal stress in axial direction increases.

The values of the maximum equivalent stress, normal stress in axial and radial direction and
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displacement is shown along with the number of nodes and elements used in model in Appendix

B-d.
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Figure 78: Displacement vs minor radius
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Figure 79: von Mises stress vs minor radius
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Figure 81: Normal radial stress vs minor radius

Figure 82: Shear stress vs minor radius

Plots of the distributions of the von Mises stress, normal axial stress, shear stress and normal

radial stress for the minor radius of 8mm are shown in Figures 83-86.
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Figure 83: von Mises stress (MPa) plot for minor radius 8mm
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Figure 84: Normal axial stress (MPa) plot for minor radius 8mm
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Figure 85: Normal radial stress (MPa) plot for minor radius 8mm
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Figure 86: Shear stress (MPa) plot for minor radius 8mm

In Table 5, the maximum stress values along with the location of the maximum stress are

shown for element size of 0.09. The results for element size 0.07 and 0.25 are shown in

Appendix B-d.
Table 5: Maximum stress locations for case V ( mesh size 0.09)
No of No of Maximum Max von Max Shear Max Normal Max Normal
Radius | nodes | elements | displacement Mises stress stress (MPa) axial stress radial
(mm) {mm) (MPa) / [ Location | (MPa)/ Location | stress(MPa)/
Location Location
3 55797 18352 3.747 2.95/ atthe | 0.131/ at the 2.893/ at the 1.954 / at the
corner corner corner center
7 57175 18808 3.670 2.965 [ atthe | 0.08431/ at 2.968/ at the 1.842/ at
transition the corner transition center
8 58547 19258 3.605 2.997/ at the 0.00715/ at 3.011/ at the 1.640/ at
transition the corner transition center
9 60070 19759 3.545 3.036/ atthe | 0.00202/ at 3.055/ at the 1.451/ at
transition the corner transition center
10 61657 20280 3.499 3.074/ atthe | 0.000246/at | 3.097/ at the 1.375/ at
transition the corner transition center

Figures 87-90 shows the effect of the different element sizes on the finite element analysis was
analyzed. There is no change in the displacement when we increase or decrease the mesh size. In

Figures 87-90 equivalent stress and normal stress values are increased if we decrease the element
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size from 0.09 to 0.07 and decreases if we increase the element size from 0.09 to 0.25 which
shows that the stress is mesh dependent. Then as the variation is less than 10% the mesh size of

0.09 is adequate for the analysis.

Couivalent direws (MF)
wh

Minor Radius [mm)

Ll F ui W il Bl

Figure 87: Mesh sensitivity for von Mises stress
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Figure 88: Mesh sensitivity for normal axial stress
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Figure 89: Mesh sensitivity for normal radial stress

Figure 90: Mesh sensitivity for shear stress

7.6 DISCUSSION

From the results, we can note that stresses increase as the element size decreases from
0.25 to 0.09 to 0.07. The maximum increase in the von Mises stress with the change in element
size from 0.09 to 0.07 is maximum in case 1 and case Il out of all the cases. The element size has
little or small effect on the displacement values for all the geometry cases. As the mesh becomes

finer, the stresses are more accurate but also the computational time increases significantly. So
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an optimum element size of 0.09 is suitable to get the results as the difference between the stress
values for multiple mesh size is less than 10%.

The Piolleti’s material model which was used to generate the material properties of the
ligament is adequate for modeling the ligament because all the strain values calculated in the
ligament model for different cases are less than 0.156 (Appendix A). The geometry of the
ligament that has the maximum strain value is with the diameter of 10mm in case I, which has a
strain of 0.159 and the maximum error between the Piolleti’s model and the polynomial model is
only 9.9%.

For the geometry with variable cylinder diameter, the maximum stress occurs at the
corners of the cylinder. The maximum stress values decreases as we increase the diameter. The
displacement of the ligament geometry also decreases as we increase the diameter. This
geometry has the highest von Mises stress among all the geometries. The variable cylinder
diameter has the highest effect on the von Mises stress, as we increase the cylinder diameter
from 10mm to 20mm the stress is reduced by 80%.

For the tapered cylinder geometry, the maximum stress values occur at the corners of the
cylinder where it attaches to the rigid bone. The maximum von Mises stress, normal axial and
radial stress decreases as we increase the edge length. The displacement of the ligament
geometry also decreases as we increase the edge length. There was a decrease of 74% in the
maximum von Mises stress as we increased the edge length from 5mm to 10 mm, whereas the
normal axial and radial stress were reduced by approximately 75% and 79%. The shear stress
was reduced by 78%.

For the variable fillet radius geometry, the maximum stress values are located at the

transition where the fillet radius changes into the straight section. In addition, when the fillet
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radius is Imm, the maximum stress values are at the middle of the arc and due to the mesh size
and geometry there are high stress concentrations. When the fillet radius is increased from 2mm
to 5 mm, the stress values increases and the maximum location is at the transition area. The
displacement decreases as we increase the fillet radius. The normal stress in radial direction
decreases when the fillet radius is increased from 1mm to 5mm. The difference in the von Mises
stress as we increase the fillet radius from 1 mm to 5mm is decreased by 27.7% whereas the
normal axial and radial stress is decreased by 30% approximately.

For the geometry with variable angle the maximum equivalent stress values occurs at the
transition where the angle transitions into the straight line. As the angle increases the equivalent
stress increases the equivalent stress increases until 60 degrees but then decreases from 60
degrees to 75 degrees and the maximum stress is at the transition area from the angle to the
straight line.

For the geometry with variable radius of ellipse, the maximum stress values are the
transition where the ellipse transitions into the straight section. All the geometric parameters
studied in this analysis have an impact on the stresses of the ligament. The maximum von Mises
stress values is when the radius of the ellipse is 6mm. The von Mises stress decreases as we
increase the radius of the ellipse. The normal radial and axial stress also decreases as we increase
the radius of the ellipse. The difference in the ligament stresses when the radius is increased from
6mm to 10mm is only 4.8%. This shows that the minor radius has the least effect on the stresses.

The simple cylinder shape of the ligaments has the highest von Mises stress among all the
ligament geometry models as the difference between the maximum von Mises stress is around
80% when the edge length is increased from 5mm to 10 mm. The variable radius models have

the least von Mises stress and as the difference between the stress values when we increase the
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radius is only 4.8%, which shows that, the elliptical radius has the least effect on the ligament

stress. The fillet angle and the minor radius do not have a major effect on the stresses.

Table 6 : Effect of geometry on von Mises stress for the same edge length

Von Mises stress
(Mpa)

Edge tapered Fillet radius variable minor
length diameter radius
(mm)

6 11.798 5.396 2.95

7 8.509 3.308 2.965

8 6.321 3.611 2.997

9 4.797 3.819 3.036

10 3.707 3.912 3.074

The tapered cylinder geometry has the highest von Mises stress for the same insertion site
length among the fillet radius, variable minor radius. From Table 6, we notice that the minor
radius with the 6mm edge length has the least von Mises stress. For higher insertion site length,

there is a reduction in stresses across all the shapes.
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8.0 CONCLUSION

From the results of the computational analysis in the present study, we can notice the
importance of effect of shape of ligament on the stress at insertion sites. Also in the
computational model, the mesh size significantly affects the stress in the ligament. The higher
the mesh size more accurate the results and also more run time, the mesh size of 0.09 is suitable
for meshing the ligament geometry because there is not much variation in the stress values if we
used a mesh size lower than 0.09.

The Piolleti’s material model, which was used for the material properties of the ligament
is adequate for modeling the ligament because all the strain values calculated in the ligament
model for different geometry cases are less than 0.156 for which the model is suitable.

The diameter, edge length and fillet radius have major effect on the stress on the ligament
geometry The stress values are more dependent on the angle in the ligament geometry, so more
importance must be given to the cylinder diameter and fillet radius to evaluate the stresses in the
ligament. The tapered cylinder geometry has the highest von Mises stress for the same insertion

site length among the fillet radius, variable minor radius.
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9.0 LIMITATIONS

There are some limitations in the current model, a 2D axis symmetry model was
considered and also the bone was considered as rigid body. A more realistic approach would be
to use a three dimensional model of ligament while also modeling the bone and modeling the
contacts between the ligament and the bone which would give us better and accurate results.
Also one could include the friction and calculate the contact stresses between ligament and bone
that would help provide more insights into mechanics of human ligament. Also evaluating the
fatigue analysis on ligament could provide much deeper insight into the mechanical properties of
the ligament. Another limitation was the assumption of isotropy. In future work, one could
model the ligament as a transversely isotropic composite like structure. To include anisotropy in
the FE model, one could combine two separate strain energy functions for both the matrix and
fiber. The matrix would be isotropic but the fibers would have a local material coordinate system

applied to the long axis where directionally dependent material properties could be assigned.
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APPENDIX A

MAXIMUM STRAIN VALUES CALCULATED

The strain values for the models are shown below for all the geometry cases. As we note
that the strain values in all the geometries are less than 0.156, we can proceed using Pioletti
material model to accurately model the ligament.

The maximum strain values for the variable cylinder diameter geometry case | are shown

in Table 7.

Table 7 : Maximum strain values for case | (variable cylinder diameter)

Cylinder diameter Maximum strain
(mm/mm)
10 0.159
12 0.145
14 0.141
16 0.137
18 0.133
20 0.128
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The maximum strain values for the variable edge length geometry case Il are shown in

Table 8.

Table 8: Maximum strain values for case Il

Edge length Maximum strain

(mm/mm)
0.1587
0.1442
0.139
0.126

10 0.122

WOt~

The maximum strain values for the variable fillet radius geometry case Il are shown in

Table 9.

Table 9: Maximum strain values for case Il (fillet radius)

Fillet radius (mm) Maximum strain

{rm,/mm)
0.1555
0.1502
0.1444
0.1373
0.1308

LS I T N ]

The maximum strain values for the variable fillet angle geometry case IV are shown in

Table 10.

Table 10: Maximum strain values for case 1V (fillet angle)

Fillet Angle (deg) Maximum strain
{rmm,/mm)
30 0.1458
45 0.1525
60 0.1545
75 0.1458
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The maximum strain values for the variable elliptical minor radius geometry case V are

shown in Table 11.

Table 11: Maximum strain values for case V (minor radius)

Minor Radius (mm) Maximum strain

{rmm,/mm})
0.1558
0.1485
0.13719
0.1245

10 01204

DGO [ = |

Based on the above strain values in Table 7-11, we could use the Piolleti’s model for the

ligament material model.
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APPENDIX B

B.A: CASE II: EFFECT OF VARYING EDGE LENGTH

Below in the table the results of the stress and displacement along with the location of the
maximum stresses along with the number of nodes and elements in the model are shown for the
mesh density of 0.09. The results for the 3 different mesh sizes are also shown in the below table

Mesh Size 0.07

Table 12: Results for the case Il with mesh size 0.07

MNo of Mo of Maximum Max equivalent Shear stress Normal stress Normal stress
Edge | nodes | elements | displacement | stress (MPa)/ | (MPa)/ Location {MPa) / Axial {MPa) / Radial
{mim) {mm) Location direction/ direction/
Location Location
10 85877 28313 3.8414 19.717/ Corner | 11.060/ Corner | 15.8096/ Corner | 12.441/ Corner
12 95523 31528 3.514 13.719/ 7.6835/ Corner | 11.2083/ Corner | 8.5713/ Corner
Corner
14 105519 | 34860 3.251 9.864/ Corner | 5.5211/ Corner | 8.15805/ Corner | 6.1425/ Corner
16 116872 38639 3.027 7.280/ Corner | 4.072%/ Corner | 6.05814/ Corner | 4.5054/ Corner
18 127958 | 42335 2.835 5.506/ Corner | 3.0806/ Corner | 4.59830/ Corner | 3.3926/ Corner
20 139538 | 46185 2.670 4,228/ Corner | 2.3672/ Corner | 3.52580/ Corner | 2.5942/ Corner
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Mesh Size 0.25

Table 13: Results for the case Il with mesh size 0.25

Mo of Mo of Maximum Max equivalent | Shear stress Mormal stress Mormal stress

Edpe | nodes | elements | deformation | stress (MPa)/ {MPa) / {MPa) / Axial {MPa) / Radial
{mm) {mmj} Location Location direction/ direction/
Location Location

10 11360 3673 3.841 10.399/Corner | 5.791/Corner | 8.364 f corner | 6.312/Corner

12 12429 4030 3.514 7.207/Corner | 4.061/Corner | 6.166/ corner 4,434 /Carner

14 13506 4387 3.251 5.348/Corner | 2.968/Corner | 4.586 /corner 3.248/Corner

16 14714 4789 3.027 4.038/Corner | 2.240/Corner | 2.493 /corner 2.450/Corner

18 15813 5152 2.835 3.118/Corner | 1.730/Corner | 2.863/corner 1.890/Corner

20 17200 5613 2.670 2.671/Corner | 1.364/Corner | 2.860 /corner 1.4859/Carner

The contour plots for displacement , maximum equivalent stress , normal stress in axial and

radial direction for the three mesh densities are shown in the below figures when the edge length

is 7mm .
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Figure 91: Displacement (mm) plot for mesh size 0.09
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Figure 92: Equivalent stress (MPa) plot for mesh size 0.09
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Figure 93: Normal axial stress (MPa) plot for mesh size 0.09
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Figure 94: Normal radial stress (MPa) plot for mesh size 0.09
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Mesh size : 0.07
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Figure 95: Displacement (mm) plot for mesh size 0.07

Figure 96: Normal axial stress (MPa) plot for mesh size 0.07
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Figure 97: Normal radial stress (MPa) plot for mesh size 0.07
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Figure 98: Displacement (mm) for mesh size 0.25
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Figure 99: Equivalent stress (MPa) plot for mesh size 0.25

40482 Max
3.6015
3.3347
2,978
26212
2,2645
1.9077
1,551
1,193
0.83751 M

Figure 100: Normal axial stress (MPa) plot for mesh size 0.25
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Figure 101: Normal radial stress (MPa) plot for mesh size 0.25
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B.B: CASE Ill: EFFECT OF VARYING FILLET RADIUS

Below in the table the results of the stress and displacement along with the location of the
maximum stresses along with the no of nodes and elements in the model are shown for the mesh

density of 0.09. The results for the 3 different mesh sizes are also shown in the below table

Table 14: Results for the case I11 with mesh size 0.07

Mo of No of Maximum Max equivalent Shear stress Normal stress MNormal stress
Radius | nodes | elements | displacement stress (MPa) / (MPa) / (MPa) / Axial {MPa) / Radial
{mm) {mm) Location Location direction/ direction/
Location Location
1 86529 28530 3.827 5.492 fat 0.0527 [ at 4,3829 fat 3.2368 [ at the
transition transition transition corner
2 87625 28890 3.809 3.331/at 0.0209/ at 3.3922/at 2.3876/ at the
transition transition transition corner
3 88819 29278 3.789 3.635/at 0.0060/ at 3.7205/at 2.2973/ at the
transition transition transition corner
4 205939 29866 3.767 3.840/at 0.0017/ at 3.9371/at 2.1881/ at the
transition transition transition corner
g 92815 30592 3.742 3.932 /at 0.000346/ at 4.0319/at 2.0669/ at the
transition transition transition corner
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Table 15: Results for the case I11 with mesh size 0.25

No of No of Maximum Max equivalent | Shear stress | MNormal stress Normal stress
Radius | nodes | elements | deformation stress (MPa) / (MPa) / (MPa) / Axial {MPa) / Radial
{mm) Location Location direction/ direction/
Location Location
1 7265 2330 3.827 4,747/ at the 0.0525 fat 3.930/ at the 2.593/ middle
transition transition transition of the circle
2 7371 2364 3.809 3.186/ at the 0.0208/at 3.265/ at the 2.365/ at the
transition transition transition corner
3 7408 2375 3.789 3.453/ at the 0.0060/at 3.549/ at the 2.275/ at the
transition transition transition corner
4 7438 2383 3.767 3.646/ at the 0.0017 /at 3.750/ at the 2.167/ at the
transition transition transition corner
g 7557 2420 3.742 3.771/ at the 0.00034/at 3.871/ at the 2.048/ at the
transition transition transition corner

The contour plots for displacement , maximum equivalent stress , normal stress in axial
and radial direction for the three mesh densities are shown in the Figures 74-85 when the fillet

radius is 4mm.
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Figure 102 Displacement (mm) plot for mesh size 0.09

3.8194 Max
3.3951

29707

2.5463

21219

1.6975

1,273
0.84877
042438
2.294e-6 Min

Figure 103: Equivalent stress (MPa) plot for mesh size 0.09
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Figure 104: Normal axial stress (MPa) plot for mesh size 0.09
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Figure 105: Normal radial stress (MPa) plot for mesh size 0.09
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Figure 106: Displacement (mm) plot for mesh size 0.07
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Figure 107: Equivalent stress (MPa) plot for mesh size 0.07
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Figure 108: Normal axial stress (MPa) plot for mesh size 0.07

Figure 109: Normal radial stress (MPa) plot for mesh size 0.07
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Mesh size : 0.25
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Figure 110: Displacement (mm) plot for mesh size 0.25
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Figure 111: Equivalent stress (MPa) plot for mesh size 0.25
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Figure 112: Normal axial stress (MPa) plot for mesh size 0.25
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Figure 113: Normal radial stress (MPa) plot for mesh size 0.25

B.C: CASE IV: EFFECT OF VARYING ANGLE

In Table 9-10 the results of the stress and displacement along with the location of the maximum
stresses along with the no of nodes and elements in the model are shown for the mesh density of

0.25 and 0.07. The results for the 3 different mesh sizes are also shown in the Table 9-10.
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Table 16: Results for the case IV with mesh size 0.25

No of No of Maximum Max Normal stress Normal stress
Angle nodes | element | deformati equivalent (MPa) / Axial {(MPa) / Radial
(deg) s on (mm) | stress (MPa)/ direction/ direction/
Location Location Location
30 7735 2480 3.739 4,572/ at the 2.0717/ at the 4,7503/at the
transition transition center
45 7961 2554 3.673 5.122 [ at the 1.7704/ at the 5.3225/at the
transition transition center
60 8454 2719 3.533 5.281 / at the 1.3271/ at the 5.5280/at the
transition transition center
75 9575 3094 3.107 4.493 [ at the 1.1538/ at the 4.,6649/at the
transition transition center
Table 17: Results for the case IV with mesh size 0.07
No of No of Maximum Max Normal stress Normal stress
Angle | nodes | elements | deformati equivalent (MPa) / Axial (MPa) / Radial
(deg) on (mm) | stress(MPa)/ direction/ direction/
Location Location Location
30 94900 31287 3.739 5.027/ at the 5.170/ at the 2.0928/at the
transition transition center
45 98474 32477 3.673 5.717/ at the 5.892/ at the 1.7902/at the
transition transition center
60 105170 34709 3.533 5.918/ at the 6.124/ at the 1.3423/at the
transition transition center
75 120550 39841 3.107 4.934/ at the 5.126/ at the 2.1124/at the
transition transition center

The contour plots for displacement , maximum equivalent stress , normal stress in axial

and radial direction for the three mesh densities are shown in the Figures 86-97 for one iteraton

ie when the angle is 45 degrees.
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Figure 114: Displacement (mm) plot for mesh size 0.09
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Figure 115: Equivalent stress (MPa) plot for mesh size 0.09
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Figure 116: Normal axial stress (MPa) plot for mesh size 0.09
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Figure 117: Normal radial stress (MPa) plot for mesh size 0.09

Mesh size : 0.25
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Figure 118: Displacement (mm) plot for mesh size 0.25
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Figure 119: Equivalent stress (MPa) plot for mesh size 0.25
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Figure 120: Normal axial stress (MPa) plot for mesh size 0.25
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Figure 121: Normal radial stress (MPa) plot for mesh size 0.25
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Mesh size 0.07
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Figure 122: Displacement (mm) plot for mesh size 0.07
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Figure 123: Equivalent stress (MPa) plot for mesh size 0.07
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Figure 124: Normal radial stress (MPa) plot for mesh size 0.07
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Figure 125: Normal radial stress (MPa) plot for mesh size 0.07

B.D: CASE V: EFFECT OF VARYING MINOR RADIUS

Below in the table the results of the stress and displacement along with the location of the
maximum stresses along with the no of nodes and elements in the model are shown for the

element size of 0.07 and 0.25.
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Table 18: Results for the case V with mesh size 0.25

No of No of Maximum | Max equivalent | Normal stress Normal stress
Radius | nodes | element | deformati | stress (MPa) / (MPa) / Axial (MPa) / Radial
(mm) s on (mm Location direction/ direction/
o Location Location
6 7418 2381 3.747 5.064/ at the 3.736/ atthe | 3.440/ at center
transition transition
7 7563 2430 3.670 2.954/ at the 2.964/ atthe | 1.852/ at center
transition transition
8 7816 2511 3.605 2.992/ at the 3.006/ atthe | 1.627/ at center
transition transition
9 7941 2552 3.549 3.028/ at the 3.047/ atthe | 1.477/ at center
transition transition
10 8099 2604 3.499 3.064/ at the 3.088/ atthe | 1.362/ at center
transition transition
Table 19: Results for the case V with mesh size 0.07
No of No of Maximum Max Normal stress | Normal stress
Radius | nodes | elemen | deformation equivalent (MPa) / Axial (MPa) / Radial
{mm) ts {mm) stress (MPa) / direction/ direction/
Location Location Location
6 89833 29634 3.747 6.79696 [ at 43171/ at the 4.9027/ at the
the transition transition center
7 92162 30405 3.670 3.05411/ atthe | 2.9684/ at the 1.9269/ at the
transition transition center
8 94694 31241 3.605 2.99843/ at the | 3.0126/ at the 1.6426/ at the
transition transition center
9 97584 32197 3.549 3.03760/ at the | 3.0563/ at the 1.4933/ at the
transition transition center
10 100109 | 33028 3.075 3.07596/ at the | 3.0990/ at the 1.3763/ at the
transition transition center

The contour plots for displacement , maximum equivalent stress , normal stress in axial

and radial direction for the three mesh densities are shown in the Figures 98-109 for one iteraton

ie when the angle is 45 degrees
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Figure 126 : Displacement (mm) plot for mesh size 0.09
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0.0085238

Figure 127: Equivalent stress (MPa) plot for mesh size 0.09
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-0.0018599 Min

Figure 128: Normal axial stress (MPa) plot for mesh size 0.09
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-0.00018161 Min

Figure 129: Normal radial stress (MPa) plot for mesh size 0.09

Mesh Size : 0.25
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Figure 130: Displacement (mm) plot for mesh size 0.25

0.69233
036373
0.035255 M

Figure 131: Equivalent stress (MPa) plot for mesh size 0.25
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Figure 132: Normal axial stress (MPa) plot for mesh size 0.25
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Figure 133: Normal radial stress (MPa) plot for mesh size 0.25

Mesh Size : 0.07
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Figure 134: Displacement (mm) plot for mesh size 0.07
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0.66799
0.33507
0.0021508

Figure 135: Equivalent stress (MPa) for mesh size 0.07
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-0.009106 Min

Figure 136: Normal axial stress (MPa) plot for mesh size 0.07

13000004 4

1.0913
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Figure 137: Normal radial stress (MPa) plot for mesh size 0.07
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