
CONSTRAINING INFLATION THROUGH JOINT

OBSERVATIONS OF THE PRIMORDIAL

GRAVITATIONAL WAVE BACKGROUND

by

Jerod M. Caligiuri

B.S., Pennsylvania State University, 2003

M.S., University of Pittsburgh, 2013

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of Arts and Sciences in partial

fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2016



UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

DEPARTMENT OF PHYSICS AND ASTRONOMY

This dissertation was presented

by

Jerod M. Caligiuri

It was defended on

Aug 3, 2016

and approved by

Arthur Kosowsky, Professor, Dept. of Physics and Astronomy, University of Pittsburgh

Andrew Zentner, Associate Professor, Dept. of Physics and Astronomy, University of

Pittsburgh

Jefferey Newman, Associate Professor, Dept. of Physics and Astronomy, University of

Pittsburgh

Adam Leibovich, Professor and Dept. Chair, Dept. of Physics and Astronomy, University

of Pittsburgh

Tobias Marriage, Assistant Professor, Dept. of Physics and Astronomy, Johns Hopkins

University

Dissertation Advisor: Arthur Kosowsky, Professor, Dept. of Physics and Astronomy,

University of Pittsburgh

ii



ABSTRACT

CONSTRAINING INFLATION THROUGH JOINT OBSERVATIONS OF

THE PRIMORDIAL GRAVITATIONAL WAVE BACKGROUND

Jerod M. Caligiuri, PhD

University of Pittsburgh, 2016

The standard cosmological model leaves many questions unanswered. An early period of

accelerated expansion of the Universe, referred to as inflation, resolves these issues. It

provides a means to generate perturbations in matter and density that lead to the formation

of structure as well as in gravitational waves. Inflation preserves fluctuations by driving them

beyond the causal horizon. Their wavelengths trace the time they exit and their amplitude

reveals the expansion rate and inflationary potential energy at exit. Measurements of these

fluctuations is therefore a powerful probe of the inflationary Universe. After providing the

necessary overview of background cosmology and inflation, I explore our ability to constrain

viable models using joint measurements at vastly separated length scales and frequencies.

Particular attention is paid to observations of the tensor power spectrum at large scales

through measurements of the B-mode polarization of the cosmic microwave background

and at small scales by direct detection using interferometric gravitational wave detectors.

First, I consider a simple test of the inflationary consistency relation and discuss a simple

means to constrain the running of the tensor spectral index. Secondly, I investigate more

generally how joint observations can restrict viable models and reveal a highly constrained

class of likely expansion histories and potential energies driving the expansion. Within

these remaining classes of models, subsets are revealed by their spectral tilts at small scales.

Thus, the addition of a measure of the tensor spectral tilt at solar system scales amplifies the

restrictive power to identify valid inflationary models. I conclude with a discussion of the
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possible addition of constraints of both the tensor and scalar power spectrum at intermediate

scales and some for the challenges that future experiments will need to overcome.
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PREFACE

All you really need to know for the moment is that the universe is a lot more complicated than

you might think, even if you start from a position of thinking it’s pretty damn complicated

in the first place.

- Douglas Adams (1992). Mostly Harmless

We, as humans, have always struggled to understand the Universe and our place in it. The

moment we believe we have figured something out, the more questions and complications

arise. It is a constant spotlight on our ignorance but also an adventure with infinite avenues

of revelation. Not long ago in the grandness of time, our view of the Universe was an earthen

disk floating on a vast sea. Our perspective has grown to a potentially infinite Universe with

potentially infinite worlds. This vastness is filled with ripples not unlike the sea of our human

infancy. The cosmic postal service of particles, light, and gravity delivers to us postcards

from foreign realms long ago, whose delivery times are restricted by a cosmic speed limit.

Acceptance of these parcels gives a humble reminder of our ignorance while providing hints

to help us on our journey toward enlightenment. Insight comes from all around us. We just

need to know when and where to welcome it. Our ability to continue to find new ways to

probe the unknown is a testament to human curiosity, tenacity, and ingenuity.
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1.0 A BRIEF HISTORY OF STANDARD COSMOLOGY AND

MOTIVATIONS

The standard cosmological model is a triumph of modern science, but there is still much to be

learned. Today, evidence suggests that only about 5% of the content of the Universe is well

understood. We can, however, confidently estimate the evolutionary history of the Universe

all the way back to the first fractions of a second. Hubble’s observational conclusion in 1929

that the Universe is expanding [7] and the accidental discovery of the residual light from an

earlier hot, dense stage of the Universe by Penzias and Wilson in 1965 [8], and thereafter

improvements of these measurements have continually generated support for this story.

Dark matter, first proposed by Zwicky in 1933 [9] (erroneously by Oort a year before

[10]), was needed to explain the observed unexpectedly high velocites of galaxies in the Coma

cluster. Later the presence of this unseen matter was suggested by the measurements of the

rotation curve (velocity as a function of radius) of the Andromeda galaxy [11, 12]. Since

then the presence of dark matter has found strong support in observations of gravitational

lensing [13, 14], the cosmic microwave background (CMB hereafter) [15, 1], baryon acoustic

oscillations [16], and the lyman-α forest [17]. The best estimates today suggest that roughly

85% of the matter content of the Universe is of this unknown form [1]. The quest to detect

and constrain candidate models for dark matter has become an entire subfield of its own

(see e.g. [18, 19, 20, 21] among many others).

Also puzzling is dark energy. First proposed as a cosmological constant by Einstein to

ensure a static Universe [22], it was largely discarded after Hubble’s confirmation of the

Universe’s expansion [7]. The more recent discovery of the acceleration of the expansion of

the Universe by Perlmutter, Riess, Schmidt et.al. in 1998 [23, 24, 25] has brought about

its rebirth in contemporary cosmology. In order to counteract the deceleration effects of
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gravity due to the matter and radiation content of the Universe, the total energy content of

the Universe must be dominated by something with a roughly constant energy density that

effectively has a negative pressure. Best estimates today indicate that approximately 70%

of the total energy content of the Universe is in this form [1].

The enigmas of dark matter and dark energy aside, the presence and overall quantity of

them in the Universe is known with remarkable precision [1]. They have become pillars of the

modern standard cosmological model, to the extent that it is referred to as Λ (dark energy)

C (cold) D (dark) M (matter). Perhaps more puzzling than the nature of the majority of the

Universe are the seemingly coincidental properties that our Universe has. What happened

at the earliest moments of expansion and produce the Universe as it is today?

Despite the success of the standard cosmological model, new physics is needed to probe

the natal moments of existence. This need is easily illustrated by the so-called monopole,

horizon, and flatness problems; there is an abundance of literature on the subject so I will

not go into great detail). The energy scales required to investigate the physical principles

dominating this period of the Universe’s evolution are beyond the reach of even the most

optimistic of future earthly particle accelerator experiments. This leaves the detection of

cosmological signatures as the best hope for gathering evidence to improve our understanding

of this elusive piece of cosmic history. A leading theory to describe this early evolution is

referred to as inflation.

Inflation is an accelerated period of expansion in the early Universe first proposed by

Guth and others [26, 27, 28, 29, 30, 31, 32, 33, 34, 35]) in order to address the monopole,

horizon, and flatness problems stated above. The past 25 years has seen a zoological kingdom

of inflationary models proposed by theorists that typically involve one or more scalar fields

driving the expansion.

This thesis is an investigation into the potential to probe the history of inflation using

the relic gravitational wave background. Multiple observations at widely separated scales

have the power to unveil the expansion history and the potential of the scalar field powering

the expansion. I begin with an overview of the necessary background cosmology and present

the basics of the cosmological problems that inflation solves in § 2. I continue with the

fundamentals of scalar field inflation § 3. I include an overview of slow-roll approximations
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as well as the generation of scalar and tensor perturbations that seed structure formation,

anisotropies in the CMB, and the gravitational wave background. It is these tensor pertur-

bations that provide a direct probe of the inflationary epoch free from the complications of

baryonic physics ever present in studies of scalar perturbations. I then present two studies

of how joint observations of tensor perturbations at vastly separated length (and frequency)

scales can be used as a powerful probe of the nature and history of inflation in § 4, 5. I

conclude in § 6 with a discussion of other prospects and future experiments that may move

us closer to achieving the monumental goal of unveiling the earliest moments of time.
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2.0 THE BASICS OF STANDARD COSMOLOGY AND ITS PROBLEMS

2.1 INTRODUCTION

Standard cosmology tells the tale of the Universe’s history back to a time when it was∼ 10−12

seconds old. This model is built upon the assumption that the Universe is homogeneous

and isotropic. Based on these assumptions, we can write a metric that is invariant under

rotation and translation. Maintaining a static comoving spatial geometry, the evolution

of the spacial Universe is contained within the scale factor, a(t). This is the Friedmann-

Lemâıtre-Robertson-Walker (FLRW) metric, and can be written

ds2 = dt2 − a(t)2dx2 (2.1)

= dt2 − a(t)2

[
dr2

1− kr2
+ r2dΩ2

]
(2.2)

in Cartesian and spherical coordinates respectively. Here k describes the curvature of the

Universe. For k = −1,+1, or 0 the Universe is open, closed, or flat. The variables x and r

represent comoving distance in Cartesian and spherical coordinates, and dΩ = sin θdθdφ is

the solid angle on the sphere. I have chosen the unit convention of setting c = kB = ~ = 1

and will continue to do so throughout unless otherwise noted.

From General Relativity we have Einstein’s field equations:

Gµν = 8πGTµν . (2.3)
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Here Gµν is called the Einstein tensor, G is Newton’s gravitational constant, and Tµν is the

stress-energy tensor. In an FLRW spacetime,

T µν =


ρ

−p

−p

−p

 , (2.4)

where ρ is energy density and p is pressure. Remember that we are working with c = 1 and

so these are of the same units. Conserving stress-energy by taking its covariant derivative

we find the continuity equation:

ρ̇+ 3(ρ+ p)
ȧ

a
= 0. (2.5)

It is standard to define an equation of state such that

p = wρ. (2.6)

For pressureless matter w = 0, for radiation w = 1/3, and for a negative pressure cosmo-

logical constant w = −1. The continuity equation together with Einstein’s field equations

provide: (
ȧ

a

)2

=
8π

3m2
pl

ρ− k

a2
(2.7)

ä

a
= − 4π

3m2
pl

(ρ+ 3p). (2.8)

These are referred to as the Freidmann and Raychaudhuri equations, respectively. If we

consider the Raychaudhuri equation, which describes the acceleration of the Universe, and

only consider cases of matter, radiation, and Λ domination, we find that for matter and

radiation, ä < 0. The expansion is slowing down. For the case with only dark energy, ä > 0.

The expansion rate is increasing. In general, the energy density in Eqs. (2.4), (2.5), and (2.8)

represents the total energy density of the Universe. This is the sum of matter, radiation, and

dark energy. Knowing that matter scales as a−3, radiation as a−4, and dark energy remains

constant, we can replace ρ with this sum and their scaling relation. It is standard to define

the Hubble parameter H ≡ ȧ
a
. We can also define the critical density to be that where k = 0,

5



ρcrit ≡
3m2

plH
2

8π
such that a Universe at this density will expand asymptotically to a halt. If

we scale the energy densities to the critical density, we can then define Ω ≡ ρ
ρcrit

. We can

also define Ωk ≡ − k
(aH)2

. Given these definitions, scaling to the critical density today, setting

the scale factor today to a0 = 1, and calling the Hubble parameter today H0, we arrive at a

convenient form of the Freidmann Equation:

H2 = H2
0

(
ΩMa(t)−3 + ΩRa(t)−4 + ΩΛ + Ωka(t)−2

)
, (2.9)

where ΩM,R,Λ,k are the energy densities of matter, radiation, dark energy, and curvature

respectively today scaled to today’s critical density. Note that the energy density due to

matter includes both baryonic matter and dark matter (ΩM = Ωb + ΩDM). From the above

definitions and the Freidmann equation in Eq. (2.8), it can also be show that Ωk = 1−Ω at

any time, where Ω = ΩMa(t)−3 + ΩRa(t)−4 + ΩΛ. The Planck collaborationhas provided the

strongest current constraints on these parameters [1]. These are presented in Table (1).

Table 1: Cosmological parameter constraints from Ref. [1]. Errors are presented at 68%

confidence unless otherwise indicated. the Hubble parameter describing the expansion rate

of the Universe is given by H0. Ω’s are energy densities scaled to the critical density in

the Universe today. Ωb, DM are the scaled energy densities of baryonic and dark matter,

respectively, such that Ωb + ΩDM = ΩM . ΩΛ,R,k are the relative energy densities of dark

energy, radiation, and curvature.

H0(kms−1Mpc−1) 67.74± 0.46

Ωb 0.048598± 0.000305

ΩDM 0.258896± 0.002179

ΩΛ 0.6911± 0.0062

ΩR 9.17± 1.9× 10−6

Ωk 0.0008± 0.0013

General relativity, the metric, and the Freidmann equation create the foundation that

modern cosmology is built upon. The above described enables us to unlock the history of

our Universe almost entirely. Those still unrevealed moments are the focus of this work.
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2.2 HORIZONS AND TIME

Using the Freidmann equation, it is a simple task to solve for a(t). When considering this with

the metric, we can determine the comoving distance a photon would travel in some amount

of time since the Big Bang. As this is the absolute farthest any information or particle can

travel in the indicated amount of time it is known as the (comoving) cosmological horizon,

determined by

dH(t) =

∫ t

0

dt′

a(t′)
. (2.10)

The proper (physical) horizon size is simply the comoving horizon times the scale factor.

We can look at the simple examples of the Universe being dominated by only one type of

energy. When dominated by matter, dH ∝ t1/3, when dominated by radiation dH ∝ t1/2, and

a Universe with only dark energy will have dH ∝ e−H0t. For the cases of matter or radiation

domination, the comoving horizon grows. However for a Universe having only a cosmological

constant, the comoving horizon actually shrinks. Because the Universe has recently become

dominated by dark energy, the horizon is now shrinking. What this implies is that as the

horizon grows, more space is inside of it and therefore causally connected to everything else

within the horizon. Now that our comoving horizon is shrinking, regions of space are being

driven out of contact from our region of the Universe (the Hubble volume).

Not only can we describe the size of the causally connected region of the Universe at any

time, but we can also describe its age. We can solve for proper time and age if we scale the

solution to the Freidmann equation such that a0 = 1. It is often convenient to introduce a

temporal analog to comoving distance, called conformal time:

dτ =
dt

a(t)
. (2.11)

Note that in units with c = 1, the conformal time τ defined by Eq. 2.11 is equal to the

comoving horizon, Eq. 2.10.
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2.3 PROBLEMS IN STANDARD FLRW COSMOLOGY

Despite the power and successes of the standard cosmological paradigm, there are issues

that still exist. Why are massive monopoles not observed? Why is the Universe so flat?

Why is the Universe so smooth when at recombination patches across the sky were out of

causal contact? How are the slight perturbations that lead to structure formation generated?

Without answers to these questions, we are left with a set of specific, possibly coincidental,

initial conditions that some would try to explain through the anthropic principle. I do not

find this answer to be acceptably scientific. In this section I provide a brief overview of these

issues but save their resolution by inflation for § 3.

2.3.1 The Monopole Problem

A general gauge theory theorem states that the breaking of any group to the standard model

gauge group will result in nonperturbative, stable field configurations called monopoles; these

are point-like topological defects with an effective mass of (e.g. m ∼ 1016 GeV) determined

by the symmetry breaking scale (temperature of T ∼ 1014 GeV). This massive monopole

is surrounded by a magnetic field with non-zero divergence (an effective magnetic charge)

[36]. The Kibble mechanism [37] implies that a lower bound on their spatial density should

be around one per horizon volume at the time of symmetry breaking. This will lead to the

dominance of matter in the energy content of the Universe that is well above the critical

density, causing a halt of expansion and a recollapse. This is clearly not the case. The

absence of monopoles requires a particular initial configuration or a mechanism to dilute

their presence into negligibility.

2.3.2 The Flatness Problem

Observations reveal that the Universe has a conveniently simple Euclidean spacial geometry.

It is flat [1]. When the Universe is dominated by an energy density that results in a negative

pressure, the geometry is driven further toward flattness. Despite the fact that we are

currently in an epoch that is dominated by such an energy density (dark energy), this has
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not been the case for the majority of cosmic history. During periods where the Universe is

dominated by matter or radiation, curvature grows. The evolution of curvature with respect

to the scale factor is given by

d|Ωk|
d ln a

= (1 + 3w)|Ωk|(Ωk + 1), (2.12)

where Ωk and a are the unitless curvature density and scale factor respectively. The equation

of state parameter is given by w = 0, 1/3,−1 for matter, radiation, and dark energy. This

is discuss further in § 3.1.3. Notice that if w > −1/3 curvature grows. In order to arrive

at a flat Universe after an extended period of evolution governed by matter or radiation,

these periods must have begun in a state of flatness. Considering the fact that curvature

has been increasing over the majority of cosmic evolution, the curvature when the Universe

was 10−12 seconds old would have to have beeen Ωk . 10−60 [36]. Flatness is a unstable

condition unless expansion is accelerating. If the Universe were in fact not flat at the onset

of radiation and matter domination, it would either recollapse on itself or be driven apart

before structures could form as they exist today. Can we generalize the geometry of the

Universe and still end in flatness or was this simply a particular initial condition?

2.3.3 The Horizon Problem

The CMB is the residual light released when photons decoupled and fell out of equilibrium

with matter (zdec ≈ 1100 or a(tdec) ∼ 10−3). Of course since then the light has redshifted

by the same factor of ∼ 103 in wavelength. The slight density fluctuations in matter that

eventually lead to structure formation correspond directly to temperature fluctuations in the

CMB sky if the perturbations are adiabatic. The observed temperature of the CMB today

is TCMB = 2.725± 0.002 K [2] with fluctuations first measured by the COBE mission to be

∆T/T ∼ 10−5 [38]. Directions separated by more than 1◦ on the sky today trace back to

points at last scattering which have separations larger than the horizon at that time. Those

points cannot have ever been in causal contact during the expansion history of the standard

cosmological model.

9



2.4 OBSERVED PERTURBATIONS

As discussed in the previous section (§ 2.3.3), the Universe (and CMB) is extremely uniform

and smooth. There are, however, fluctuations. These fluctuations are ∼ 10−5. It is common

practice to represent these at any point on the sky as a spherical harmonic expansion:

∆T (n̂)

T
≡ Θ(n̂) =

∞∑
l=2

l∑
m=−l

almYlm(n̂), (2.13)

Where ∆T (n̂) is the temperature fluctuation about the mean CMB temperature, T , in the

location n̂ on the sky. The summation begins at l = 2 because the monopole represents the

average all sky CMB temperature and the dipole is due to the doppler shifting as a result

of the motion of our solar system. This representation of the temperature perturbations is a

unitless quantity, but it is also typical to multiply Eq. (2.13) by the temperature of the CMB

in units of µK. To very good approximation, these anisotropies appear to be consistant with

a Gaussian random field [39].

The Planck experiment observed the CMB at a remarkable ≈ 3′ scale resolution which

is shown in Fig. 1 [3]. The mean CMB temperature and the dipole due to the motion of the

solar system have been subtracted. The non-blackbody spectrum of the galactic emission has

enabled its removal, and a best-fit blackbody projection is present in its stead. The hot and

cold spots are the relative fluctuations to the average CMB temperature (≈ 2.725± 0.002K

[2]).

We can statistically characterize the CMB sky using only the angular power spectrum:

δll′δmm′Cl ≡ 〈alma∗l′m′〉 . (2.14)

The average in 2.14 is over an imagined ensemble of CMB skies in a statistically homogeneous

Universe. We only have 1 observable sky, so we can estimate the power spectrum by averaging

over the 2l + 1 values of m:

Cl =
1

2l + 1

∑
m

|alm|2. (2.15)

.
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Figure 1: The CMB sky (temperature) as seen by the Planck experiment [3]. The mean

temperature and dipole due to motion have been removed. The galactic signal has been

removed and replaced with a best-fit blackbody signal that maintains the same statistics of

the rest of the CMB sky. Image courtesy of ESA and the Planck Collaboration.

The temperature spectrum peaks at l ≈ 200 corresponding to the fluctuations on degree

scale patched in the CMB sky, which is the horizon size at the time of decoupling. If these are

modes that have just entered the horizon at that time, they have not had time to thermalize

with their surroundings or dilute with expansion prior to last scattering. Correlations at

larger angular scales are also present. These are the effects of modes entering the horizon

after decoupling. These large angle correlations are directly linked to the horizon problem

described in § 2.3.3.

We observe anisotropies as a 2D spherical slice of 3D primordial perturbations. Density

perturbations cause localized gravitational wells. Photons exiting these regions at last scat-
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tering are thus redshifted and result in the observed CMB temperature fluctuations. These

3D fluctuations can be represented as the power spectrum P (~k). The power spectrum is

defined by 〈
X(~k)X∗(~k′)

〉
=

2π2

k3
PX(~k)(2π)3δ3(~k − ~k′), (2.16)

where X(~k) is some dimensionless field, for example curvature perturbation (which is re-

lated to the fractional density perturbation on scales inside the horizon) or tensor perturba-

tion amplitudes, and ~k are the continuous Fourier mode vectors. In an isotropic Universe,

P (~k) → P (k) because of the absence of directional dependence. Observations of Cl’s thus

put constraints on P (k), the primordial power spectrum of perturbations (e.g. see [40]). I

will focus on P (k) rather than Cl but address them here to reinforce the fact that the Cl’s

are the directly observed quantities. The characteristic parameters of P (k) (to be discussed

later) are constrained from these observation.

If the fluctuations are adiabatic, the clumps of dark matter, baryonic matter, and radia-

tion will all coincide on the same locations with the same fractional densities resulting in a

net curvature perturbation. Isocurvature (also referred to as entropy) perturbations, on the

other hand, do not require coincident perturbations of the same fractional densities. Such

a case will not result in curvature perturbations but rather the same total curvature every-

where. Adiabatic perturbation peaks in the temperature and polarization power spectra are

anticorrelated which would not be generically true for entropy perturbations [41]. Current

observations are consistent with perturbations being adiabatic [40].

Anisotropies are not only present in the temperature of the CMB but also in polarization.

This is the result of Thomson scattering of unpolarized photons incident from multiple

directions simultaneously. If the intensity were equal, the resulting light would be fully

unpolarized. However, due to the presence of anisotropies with a quadrapole component

during last scattering, there are slight differences in the incident light intensity, resulting in

a net polarization after Thomson scattering.

Polarization of the CMB is broken into two components: a gradient mode (E-mode) and

a curl mode (B-mode) [42, 43]. Such orientations are 45◦ rotations from each other. These

modes are orthogonal combinations of the Q and U Stokes parameters for linear polarization
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(also 45◦ rotations from each other). We can expand combinations of these in terms of spin

weighted spherical harmonics as

Q(n̂)± iU(n̂) =
∞∑
l=2

l∑
m=−l

a±lmY
±
lm(n̂). (2.17)

We can therefore define the E and B polarization modes in terms of these expansion coeffi-

cients:

a±lm = aElm ± iaBlm. (2.18)

As with temperature perturbations, this spherical expansion of polarization enables the

characterization of E and B-modes with angular power spectra as defined in Eq. (2.14). The

temperature and polarization auto and cross power spectra are shown in Table 2.

Table 2: The temperature and E and B mode polariation angular power spectra.

Auto Spectra Cross Spectra

δll′δmm′C
TT
l ≡

〈
aTlma

T∗
l′m′

〉
δll′δmm′C

TE
l ≡

〈
aTlma

E∗
l′m′

〉
δll′δmm′C

EE
l ≡

〈
aElma

E∗
l′m′

〉
δll′δmm′C

TB
l ≡

〈
aTlma

B∗
l′m′

〉
δll′δmm′C

BB
l ≡

〈
aBlma

B∗
l′m′

〉
δll′δmm′C

EB
l ≡

〈
aElma

B∗
l′m′

〉
There are two conventions typically used to describe these CMB polarization modes.

Here I have chosen to employ spin 2 spherical harmonics due to the relative polarization

orientations of the Q and U Stokes parameters and their transformation properties under

rotations [44]. The other convention is to write these quantities in terms of the polarization

tensor, thus requiring the use of tensor spherical harmonics [45]. The expansion (regardless of

the convention of choice) enables us to formulate power spectra for polarization analogously

to temperature. The computation of the expansion coefficients can be done using readily

available public codes such as CMBFast [5], CAMB [4, 46] and CLASS [6]. To visualize these

polarization modes, I have simulated a low resolution CMB sky using CAMB [4, 46] and
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overlaid the polarization vectors. Fig. 2a only contains E-mode polarization while Fig. 2b

has polarization vectors rotated by 45◦ to convert the E-modes in Fig. 2a into pure B-modes.

The primordial E-modes are primarily sourced by the same density (or scalar) pertur-

bations with only a small contribution from tensor just as the temperature anisotropies.

The primordial B-modes, however, are most commonly considered to be sourced by tensor

perturbations, peaking at a multipole of l ≈ 80. Identifying the primordial power spec-

trum (tensor or scalar) requires precise characterization of the foreground contributions to

the observed signals. This is particularly difficult with B-modes, as the foreground signals

dominate observations. B-mode producing galactic dust and the conversion of E-modes to B-

modes by gravitational lensing of CMB photons by large scale structure dominate the signal

at all scales. The lensing signal peaks at l ≈ 1000. Both of these signals have been detected

in B-mode polarization (e.g. [51, 148]). Lensing has also been measured by exploiting its

non-Gaussian nature (e.g. [142]) and through its correlation with large scale structure (e.g.

[141]).

Figure 3 (courtesy Lyman Page) shows the most up to date, as I write this, compilation

of power spectra data from the Planck, ACTPol, SPTPol, BICEP2/Keck, and Polarbear

experiments. The increase in error at small multipoles (large angular scales) is unavoidable.

This is referred to as cosmic variance and is the result of low sampling. After all, we only

have one sky. This limits the information that can be obtained on the largest of scales, and

no amount of technological advancement will be able to overcome it.

Troublesome as of late is the presence of B-mode producing dust. Efforts are underway

to characterize the dust in order to find the possible signal that lies beneath (for example, see

[51]). To date primordial B-mode polarization of the CMB has not been positively detected.

If it were not for the presence of perturbation in the Universe, you would not be reading

this. Gravitational attractions would never have been strong enough to cause regions to

collapse and structures to form. ΛCDM gives no explanation of the existence of these

anisotropies. This too leads to the initial condition question. Again, we need to go beyond

standard cosmology in an attempt to explain the observed anisotropies and consequently the

structures that exist in the Universe.
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(a) CMB sky with only E-mode polarization.

(b) CMB sky with on B-mode polarization.

Figure 2: Simulated CMB sky using CAMB [4]. Polarization vectors are plotted over the

temperature map.
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CMB at 150 GHz

courtesy L. Page

Figure 3: The most recent compilation of CMB power spectra data from Planck, ACTPol,

SPTPol, BICEP2/Keck, and Polarbear. This includes TT, EE, and BB power spectra

(courtesy Lyman Page).
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3.0 INFLATION

Inflation is a period of accelerated expansion in the early Universe. For inflation to be a

viable solution it needs to have specific characteristics. It needs to resolve the monopole,

flatness, and smoothness issues as well as provide a means to generate the perturbations that

seed structure formation. Another crucial requirement for inflation is that it has to end. In

this chapter I will demonstrate how an epoch of early accelerated expansion resolves the

issues discussed in § 2 in the simplest scenario of a cosmological constant-like acceleration.

I will then introduce the dynamics of an expansion driving scalar field and characterize the

power spectra produced. I will only consider single field inflation. These models predict

perturbations to be Gaussian, isotropic, and adiabatic, all of which are consistent with

observation today.

3.1 SOLVING FLRW PROBLEMS

3.1.1 Accelerated Expansion

Accelerated expansion is easily demonstrated for a Universe dominated by a cosmological

constant that is representative of a constant background energy density, ΩΛ. In this case mat-

ter and radiation contributions are negligible (i.e. ΩM ,ΩR ≈ 0). The Freidmann equation,

Eq. (2.9), simplifies to

H = Ω
1/2
Λ H0, (3.1)
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which is a constant. Recall that H = ȧ
a
. Differentiating to find the acceleration of the scale

factor yields

ä

a
= ΩΛH

2
0 = H2. (3.2)

Thus ä > 0; the expansion of the Universe is accelerating. The scale factor as a function of

time takes the exponential form

a(t) = aie
H(t−ti), (3.3)

where ai and ti are the initial scale factor and time at the onset of this phase of acceleration.

Because H is constant (or close to it) during accelerated expansion, we can use the number

of e-foldings of expansion as a time analog given by the relation:

dN

dt
= −H. (3.4)

Here the negative represents the fact that we are counting down toward the end of the

accelerated phase.

How are horizons behaving? The physical (proper) horizon is still growing at the speed

of light, this hasn’t changed. But what about the comoving horizon? Recall that in units

of c = 1, the comoving horizon and the conformal time are interchangeable. The comoving

horizon (and conformal time) will evolve according to

dτ =
dt

a(t)
(3.5)

=
1

ai
e−Htdt. (3.6)

Integrating starting at some initial time we find

τ = − 1

a(t)H
. (3.7)

There is a striking implication to Eq. 3.7. As the cosmological clock moves forward, the

conformal time decreases. This behaves similarly to the number of e-foldings: we are counting

back to the end of our accelerated phase. Because the conformal time and the comoving

horizon are analogously interchangeable, this also reveals that the comoving horizon size is
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shrinking! So the physical horizon is growing at the speed of light, but points in space are

being driven apart so rapidly that they are overtaking the growth of the physical horizon

making their causally connected realms shrink. This is where we shall find the solution to

our woes.

3.1.2 Dilution of Monopoles

We have already discussed how our lack of observation of massive magnetic monopoles is

in conflict with particle theory’s prediction of their existence. If monopoles were produced

O(1) per Hubble volume, and inflation lasted for N ∼ 60 e-foldings (for reasons to be

briefly discussed later). The number density of monopoles would dilute by a factor of ∼ e180

during inflation! True the horizon began growing again after inflation, however in a matter

dominated Universe, for example, when H0 = 67.7 km s−1 Mpc−1 and ΩM ≈ 0.3, it would

take ≈ 6× 1024 Gyrs for the comoving horizon to grow 60 e-foldings. So it would take this

long to return to having roughly 1 monopole in the Hubble Volume. So where are all the

monopoles? They were blown away.

3.1.3 Solving the Flatness Problem

As discussed in § 2.3.2, the Euclidean spacial geometry of the Universe seems to be strangely

particular. Recall that the curvature density can be represented at any time by Ωk = 1−Ω,

where Ω is the total energy density of matter, radiation, and dark energy at some time of

interest. Using the continuity equation and the Freidmann equation (Eq. (2.5) and (2.8)),

it can be shown that [52]

d|Ω− 1|
d ln a

= (1 + 3w)Ω|Ω− 1|, (3.8)

where w is again the equation of state parameter. This lets us examine the behavior of

curvature with respect to the scale factor depending on the domination epoch.

For periods of matter or radiation domination, the equation of state parameter would be

w = 0 and w = 1/3 respectively. During these times Eq. (3.8) results in

d|Ω− 1|
d ln a

> 0. (3.9)
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Therefore curvature increases (positively or negatively) as the scale factor grows unless the

initial condition is the perfectly balanced instability of flat.

For periods of constant energy density with w = −1, we find

d|Ω− 1|
d ln a

< 0. (3.10)

The curvature is decreasing. This is exactly what has been happening recently during this

period of dark energy domination, but it is also our means to arrive at flatness by inflation.

Inflation can provide an extended period of accelerated expansion. Without having an

estimate on an initial condition for curvature nor a restriction on the total number of e-

foldings that took place during inflation, there are no limits as to how much inflation could

have flattened the Universe before it ended.

3.1.4 Solving the Horizon Problem

As discussed briefly in § 2.3.3, widely separated patches on the sky have the same temper-

ature. Perturbations that do exist show correlations at large angular scales. In standard

cosmology there is no way that they could have been in causal contact at any time in cosmic

history. That being the case, they could never have equilibrated to a common temperature

nor communicated to have said correlations. One explanation is that the initial condition of

the Universe was smooth with preexisting small fluctuations. This is not the only possibility.

Using the Freidmann equation, Eqs. (2.8) and (2.9), and selecting a comoving length

scale λ, a relationship between the comoving length, horizon, and curvature is found to be(
λ

dH

)2

|Ω− 1| = constant. (3.11)

Differentiating and utilizing Eq. (3.8), we find

d

d ln a

(
λ

dH

)
= −1

2

(
λ

dH

)
Ω(1 + 3w). (3.12)
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All terms except d
d ln a

(
λ
dH

)
and (1 + 3w) are positive-definite. Any w < −1/3 results

in negative pressure and positively accelerated expansion (see Eqs. (2.6) and (2.8)). For

w > −1/3 we have a decelerated expansion. From Eq. (3.12) we find

d

d ln a

(
λ

dH

)
< 0; w > −1

3
(3.13)

d

d ln a

(
λ

dH

)
> 0; w < −1

3
. (3.14)

So when the equation of state is such that expansion is slowing, comoving length scales are

growing slower than the comoving horizon and these lengths are entering. This is the case

for matter or radiation domination. When the equation of state results in an accelerate ex-

pansion, the ratio of comoving lengths and horizon is increasing. Therefore comoving lengths

are growing faster than the horizon, and these lengths are exiting the horizon. This suggests

that if there was an extended period of accelerated expansion at early times, more space

was in causal contact at early times before being driven out of communication. Comparing

the comoving horizon size at last scattering (the CMB) to the comoving separation of points

on opposite sides of the sky, we can estimate that at least 60 e-foldings of inflation were

necessary for those points to have been in contact at some time in the past (see [36] where

entropy is used to argue this point).

3.1.5 The Perturbation Problem: A Heuristic Solution

Section 2.4 introduced ΛCDM’s inability to explain the generation of the small Gaussian,

adiabatic anisotropies and inhomogeneities that lead to the formation of structure and are

observed in the CMB. In this section I present a heuristic solution offered by inflation. This

is an important part of this work, so more attention will be devoted to it later in this chapter.

The solution to the perturbation question is linked to that of the horizon problem in

§ 3.1.4. The selection of λ to represent comoving length scales was intentional, as it can

also represent wavelengths of perturbations. If we consider fields well within the horizon

(including photons, density, and even gravity), they may experience quantum fluctuations

that are Gaussian, adiabatic, homogeneous, and isotropic. During inflation they are red-

shifted to classical lengths and driven to superhorizon scales. Henceforth they are frozen.
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As they reenter the horizon after inflation ends, they become observable and recommence

their evolution. Inflation thus generates the classical perturbations that we observe by driv-

ing quantum fluctuations to classical scales and beyond the horizon, preserving them from

equilibrating into non-existence before returning to our causal realm.

3.2 DYNAMICS OF SCALAR FIELD INFLATION

Now that we have discussed how inflation solves the problems of the standard cosmological

model, we need to address the way to end inflation. By driving inflation with a scalar field,

we establish a viable mechanism. I will only consider a minimally coupled single field for two

reasons: 1. these are the simplest models and 2.Multi-field models can be phenomenologically

represented under a single field. I am also only considering flat spacetimes.

Using the FLRW metric in the form

gµν =


1

−a2(t)

−a2(t)

−a2(t)

 , (3.15)

where µ, ν = 0, 1, 2, 3, the Lagrange density of a scalar field having potential V (φ) can be

written as

Lφ =
1

2
gµν∂µφ∂νφ− V (φ). (3.16)

We can find the equation of motion for the field φ by minimizing the action,

S =

∫
dx4
√
−gL. (3.17)

We find the equation of motion to be

φ̈+ 3Hφ̇−∇2φ+
∂V (φ)

∂φ
= 0, (3.18)
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where overdots represent derivatives with respect to cosmological time. If we assume a locally

homogeneous scalar field, sufficient inflation will drive this to span the entire Hubble volume.

Therefore it is safe to state ∇2φ ≈ 0. Eq. (3.18) then simplifies to

φ̈+ 3Hφ̇+ V ′(φ) = 0. (3.19)

Notice that the 3Hφ̇ term acts as drag. It is this term that supplies energy to the expansion

of the Universe. Our assumption of ∇2φ ≈ 0 does not account for small perturbations in φ,

which is the subject for § 3.4.1.

If we use the stress-energy tensor for a scalar field

Tµν = ∂µφ∂νφ− gµνLφ, (3.20)

and recall for a that for a perfect fluid with pressure p and density ρ as in Eg. (2.4), we find

ρ =
1

2
φ̇2 + V (φ) (3.21)

p =
1

2
φ̇2 − V (φ). (3.22)

Substituting these in the Freidmann equation, Eq. (2.8), yeids

H2 =
8π

3m2
pl

[
1

2
φ̇2 + V (φ)

]
. (3.23)

Defining a new parameter to represent the equation of state [52]

ε ≡ 3

2

(
p

ρ
+ 1

)
=

4π

m2
pl

(
φ̇

H

)2

, (3.24)

the Raychaudhuri equation (see Eq. 2.8) becomes

ä

a
= H2(1− ε). (3.25)

Here ε describes the speed of φ with respect to the expansion rate. Note that according to

Eq. (3.25) when ε < 1, the universe is undergoing accelerated expansion, and when ε = 1,

acceleration halts. This is the moment inflation ends. Having a means to end is critically

important. Without it, the Universe would eternally exponentiate, and all points in space
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would eventually become causally disconnected. The definition provided in Eq. (3.24) also

enables us to rewrite the number of e-foldings, Eq. (3.4), as

N = −
∫
Hdt = −

∫
H

φ̇
dφ =

2
√
π

mpl

∫
dφ√
ε
. (3.26)

Using the Freidmann equation above, Eq. (3.23), and the definition of ε, Eq. (3.24), it can

be show that

ε = −d lnH

d ln a
=

1

H

dH

dN
(3.27)

H ∝ eεN . (3.28)

Finally, we can also include a parameter that describes the acceleration of the field with

respect to the drag term in the equation of motion (Eq. (3.19)) [52]:

η = − φ̈

Hφ̇
= ε+

1

2ε

dε

dN
. (3.29)

The use of ε and η simplify our descriptions of the behavior of the field during its evolution

and we will use them extensively.

In summary, I have demonstrated how a scalar field can produce a period of accelerated

expansion. I have also shown how the dynamics of a scalar field produce an end to inflation.

The formalism and parameterization established will also simplify our descriptions. In the

next section, § 3.3, I will illustrate the standard simplified scenario where the field potential

dominates the energy (φ̇2 � V (φ)) and the acceleration in the equation of motion is negligible

(|φ̈| � 1). This is commonly referred to as the slow-roll approximation.
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3.3 SLOW-ROLL

In order to obtain a significant number of e-foldings, the Universe needs to have a phase

where the field evolves slowly. In such a state, the energy density will be dominated by the

field’s potential, and its acceleration will be negligible:

1

2
φ̇2 � V (φ) (3.30)

|φ̈| ≈ 0. (3.31)

These are referred to as the slow-roll conditions. Such a state of evolution is necessary to a

certain degree, otherwise inflation would end too quickly before producing the properties of

our observable Universe.

During slow-roll we can see from the equation of motion, Eq. (3.18, that

3Hφ̇ ≈ −V ′(φ); (3.32)

the drag term is balanced with the slope of the potential. Without an already existing accel-

eration, the field cannot establish an acceleration and thus can maintain an extended period

of inflation. Granted this is unfavorable because we need inflation to end, but recall that

we are only approximating that φ̈ ≈ 0. There will in fact be a small amount of acceleration

that will grow over time, letting the speed of the field build, and thus eventually end in-

flation. Even though the slow-roll approximation does not suitably describe the evolution

as inflation comes to an end, it is a functioning descriptor during the extended period of

slow evolution. From Eq. (3.31) we can see that deep into slow-roll φ̇2 ≈ 0, impying that

φ̇ ≈ zero. This then extends to Eq. (3.32) such that V ′(φ) ≈ 0 making the potential very

close to flat. Please note that these are approximate statements intended to illustrate the

extreme behaviors during slow roll.

If we consider the Freidmann equation, Eq. (3.23), we see that during slow-roll, the

expansion rate of the Universe is governed solely by the potential of the field:

H2 ≈ 8π

3m2
pl

V (φ). (3.33)
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The above approximations suggest that deep in slow-roll when the potential is approximately

constant, so the Hubble parameter is as well. In this situation, then, expansion behaves as

though driven by a cosmological constant. Thus the scale factor grows exponentially,

a ∝ eHt = e−N . (3.34)

As the field approaches the minimum of the potential, slow-roll approximations are no longer

valid. Eqs. (3.33) and (3.34) do, however, illustrate an important quality: expansion is no

longer driven by the potential. Inflation is over.

Using the equation of motion and the Freidmann equation during slow-roll (Eqs. (3.32)

and (3.33)), epsilon takes on a new form:

ε ≈
m2
pl

16π

(
V ′

V

)2

. (3.35)

The number of e-foldings between some φ and φ∗ at the end of inflation is

N ≈ − 8π

m2
pl

∫ φ∗

φ

V

V ′
dφ, (3.36)

as follows from Eq. (3.26). From Eq. (3.29) we can also write the acceleration parameter:

η ≈
m2
pl

8π

[
V ′′

V
− 1

2

(
V ′

V

)2
]
. (3.37)

In this context ε and η are referred to as the slow-roll paramters. As both V and H are

approximately constant, we can simply define ε and η in terms of H instead of V , converting

via Eq. (3.33). This is the convention used in § 5.

During slow-roll we can fully characterize the evolution of the field and the expansion rate

of the Universe using the slow-roll parameters, the Hubble parameter, and/or the potential.

We unfortunately do not know the potential driving inflation, but the predictions from a

given model can be tested by observation. In § 5 I discuss how observational constraints

can be used to identify the evolutionary history and potential throughout ∼ 40 e-foldings

of expansion without the assumption of specific models, but next we need to discuss how

inflation generates perturbations.

26



3.4 GENERATING PERTURBATIONS: A CLOSER LOOK

3.4.1 Production

In § 2.4 and § 3.1.5 I reviewed the observed, seemingly coincidental presence anisotropies

in the Universe and qualitatively described how an early period of accelerated expansion

resolves this issue. Now let us further explore perturbation production (and preservation)

by inflation.

If we consider a free scalar field, ψ, that is decoupled from the metric, it behaves as a

spectator field and does not effect the evolution of the Universe. Note that this scalar field

is not the one driving inflation as discussed previously. Such a scalar field can represent

density or gravitational perturbations. I will be working in terms of conformal time (see

Eq. (2.11), and their derivatives will be noted with overdots. This is not to be confused with

cosmological time derivatives. Let us also continue to assume the presence of a flat FRLW

metric.

Because the field of interest is decouple and free, the Lagrange density takes the simple

form

L =
1

2
gµν∂µψ∂νψ. (3.38)

We can rewrite the metric conveniently as

gµν = a2(t)ηµν , (3.39)

where

ηµν =


1

−1

−1

−1

 , (3.40)

is the Minkowski metric describing a static Eucliean spacetime. By writing the metric in

this way, we can work in terms conformal temporal elements and comoving spacial elements.
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Minimizing the action having the Lagrangian in Eq. (3.38), we arrive at the equation of

motion for our field perturbation:

ψ̈ + 2
ȧ

a
ψ̇ −∇2ψ = 0. (3.41)

Fourier expanding ψ makes the equation of motion become

ψ̈k + 2
ȧ

a
ψ̇k + k2ψ = 0, (3.42)

where k is the comoving wavenumber (momentum state, or frequency, whichever you prefer)

such that

kphys =
k

a
. (3.43)

For simplicity and as the end result will be directionally independent, we only need to

consider its magnitude.

A field redefinition (as shown, for example, in [52])

uk ≡ aψk (3.44)

transforms the Fourier space equation of motion, Eq. (3.42), into the Klein-Gordon equation,

ük +

[
k2 − ä

a

]
uk = 0. (3.45)

For modes far outside or deep within the horizon, the resulting mode evolution can be easily

shown. Note that these solutions do not account for any evolution during horizon crossing.

For extremely long wavelength (small frequency) modes such that k � ä/a, the Klein-

Gordon equation (Eq. (3.45)) simplifies enormously to

aük = äuk. (3.46)

The solution has the trivial form uk ∝ a. Recalling our redefinition of our field in Eq. (3.44),

the resulting perturbation amplitude ψk = constant. So for modes well outside the horizon,

perturbations are “frozen”, no longer evolve, and are preserved until they return to causal

connection.
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In the opposite extreme, short wavelength modes have k � ä/a, and the Klein-Gordon

equation, Eq. (3.45), becomes a standard harmonic oscillator:

ük + k2uk = 0. (3.47)

The solution has the form

uk(τ) =
1√
2k

(
Ake

−ikτ +Bke
ikτ
)
, (3.48)

where τ is conformal time and k is the comoving wave number.

We can make this example even more illuminating if we consider the slow-roll condition

that ε ≈ constant. Considering a ∝ e−N and H ∝ eεN and recalling Eqs (3.4) and (2.11)

for the number of e-folds before the end of inflation and conformal time, respectively, the

Raychaudhuri equation, Eq. (2.8), can be written in the form [52]

ä

a
= (aH)2(2− ε). (3.49)

Now we can rewrite the Klein-Gordon equation, Eq. (3.45), as

ük +
[
k2 − (aH)2(2− ε)

]
uk = 0; (3.50)

Recall that the overdots are derivatives with respect to conformal time and we are working

in terms of comoving wavenumbers. It can also be shown that

τ =

(
1

ε− 1

)(
1

aH

)
, (3.51)

enabling Eq. (3.50) to take the form of a Bessel equation [52]:

τ 2(1− ε)2ük +
[
(kτ)2(1− ε)2 + (ε− 2)

]
uk = 0. (3.52)

The solutions to Eq. (3.52) take the form

uk =
√
−kτ [AJν(−kτ) +BYν(−kτ)] , (3.53)

where

ν =
3− ε

2(1− ε)
(3.54)
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and Jν and Yν are Bessel functions of the first and second kind, respectively.

To see the meaning of this result more clearly, let us consider the case of a pure de Sitter,

exponential expansion with ε = 0, corresponding to a Bessel index of ν = 3/2. Our solution

now appears as

uk =

(
kτ − i
kτ

)[
Aeikτ +Be−ikτ

]
. (3.55)

As we saw previously in Eq. (3.48), modes well within the horizon (large k) behave as

harmonic oscillators. Looking at Eq. (3.55), we return to the same conclusion. (As we

should!). For high frequency modes, the metric should approach a static, flat Minkowski

space, referred to as a Bunch-Davies vacuum. In such a case, vacuum state boundary

conditions and quantization normalization specify our solutions in Eq. (3.55) to be [53, 52]

uk =
1√
2k
eikτ . (3.56)

The normalized short wavelength solution in Eq. (3.56) provides us with the normalization

of the general solution:

uk =
1√
2k

(
kτ − i
kτ

)
eikτ . (3.57)

Let us check to see whether the long wavelength solution matches our previous result above

(which was a constant). For long wavelength modes that are well outside the horizon, k → 0.

Here Eq. (3.57) becomes

uk ≈
1√
2k

(
i

−kτ

)
. (3.58)

If we continue with our simplified assumption that ε = 0 and recall from Eq. (3.51), we can

replace τ to arrive at

uk =
iaH√
2k3/2

. (3.59)

Utilizing our definition ψk ≡ uk/a we see that ψ = constant. Specifically

ψk =
iH√
2k3/2

, (3.60)
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Our long wavelength modes are again “frozen.” These modes are of central interest as

they represent the primordial perturbations that reenter the horizon after inflation and seed

structure formation.

The above Bessel function solution is still an approximation. We made the assumption

that ε ≈ 0 and H ≈ constant throughout. If this were in fact true, inflation would never

end. We also only considered the extreme solutions. Modes continue to evolve as they

cross the horizon and transition from evolving within and being fronzen without. A more

robust and general approximate solution is obtained via the Wentzel- Kramers-Brillouin

(WKB) approximation [54] or establishing a hierarchy of slow–roll–like parameters [55] whose

evolution is governed by a system of first order linear differential equations [56, 57]. The

later of these methods is applied in § 5.

We can now define the power spectrum to be

P (k) ≡ k3

2π2

〈
ψ2
k

〉
. (3.61)

In the long wavelength limit when perturbations are superhorizon and letting
√
〈ψ2

k〉 = |ψk|,

we have

P (k) =

(
H

2π

)2

. (3.62)

Note that this is independent of k, and as long as H ≈ constant, the spectrum has equal

power for all modes. This is the well known Harrison−Zeldovich spectrum [58, 59].

3.4.2 Scalar Perturbations

The generation of perturbations discussed in the previous section, § 3.4.1, is generalized

for free decoupled spectator fields. Density perturbations are sourced by perturbations in

the inflaton field itself, therefore we cannot treat this case as a fully decoupled field. It is

perturbations in φ discussed in § 3.2 that lead to the seedling density perturbations, δρ. As

is done with temperature anisotropies, density perturbations are described as their fractional
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departure from the mean, δ ≡ δρ/ρ̄. These density perturbations induce local gravitational

fluctuations via the Poisson equation:

∇2Φ = 4πGρ̄a2δ, (3.63)

where ∇ is a comoving gradient and gives rise to the factor of a2 on the right hand side. In

the Newtonian limit of General Relativity, the local gravitational potential is representative

of fluctuations in the metric (FLRW), i.e.

ds2 = a2
[
(1 + 2Φ)dτ 2 − (1− 2Φ)δijdx

idxj
]
. (3.64)

Because the scalar inflationary field is sourcing the density perturbations, we need to

investigate its behavior in a locally perturbed metric. We can treat the field as a comoving

fluid with four-velocity ui = 0 when i 6= 0. Thus the fluid four-velocity is just representative

of its flow through time. As such uµφ,µ = φ̇ in the case of homogeneity. By rewriting

the stress-energy tensor in terms of φ̇ and the fluid four-velocity, and using our generalized

definitions of density and pressure in Eq. (3.22), we can arrive to the familiar equation of

motion of the field (Eq. (3.19)),

φ̈+ 3Hφ̇+ V ′(φ) = 0. (3.65)

A full derivation can be found in [52].

A linear relation exists between the local gravitational potential perturbation to the

metric and the local scalar curvature perturbation, R, the Ricci scalar. The derivation can

be found in [60] and results in

Φ = −3(1 + w)

5 + 3w
R, (3.66)

where w is the equation of state parameter. These perturbations are what make their way

to us as temperature anisotropies in the CMB via the Sachs-Wolfe effect [61].

Let us return to the fluid velocity. Because we are working in the comoving frame and the

fluid velocity is time-like, we can equate it to the perturbed time component of the metric,

u0 =
√

1 + 2Adt (3.67)
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where I am using A to represent the perturbation in time. To first order in A this becomes

u0 = (1 + A)dt = a(1 + A)dτ. (3.68)

Its covariant, conformal derivative (remember this is only temporal) then represents a per-

turbation in the local Hubble parameter. A very hand wavy simplification of a regular

conformal time derivative illustrates this point:

du0

adτ
=

ȧ

a
(1 + 2A) (3.69)

= H(1 + 2A) (3.70)

= H + δH. (3.71)

For a much more detailed and proper derivation see [52]. If we only consider long wavelengths

outside the horizon (those frozen) and properly perform the covariant derivative, we find that

1

3
u0

;0 ≈ H

[
1− A− 1

aH

∂R
∂τ

]
. (3.72)

This behaves just as a perturbed Hubble parameter.

Recall the definition of the number of e-foldings, Eq. (3.4),

N ≡ −
∫
Hdt. (3.73)

We can now consider a local number of e-folds N ′ such that

N ′ = −
∫
H

[
1− A− 1

aH

∂R
∂τ

]
a(1 + A)dτ. (3.74)

To first order in A and ∂R
∂τ

it simplifies to

N ′ = −
∫

(H − ∂R
∂t

)dt (3.75)

N ′ = N +R (3.76)

R = N ′ −N. (3.77)

We can see that the curvature perturbation is simply the difference between the local number

and background e-foldings of expansion.
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Let us now connect the local curvature fluctuations to the perturbations of the scalar

density field. Let

R = δN → dN, (3.78)

and

dN =
dN

dφ
dφ. (3.79)

It follows that

dN =
H

φ̇
dφ→ R =

H

φ̇
δφ. (3.80)

Similar to the definition of the power spectrum in Eq. (3.61), we can write the curvature

power spectrum as

PR(k) =
k3

2π2

〈
R2
〉
→ k3

2π2

(
H

φ̇

)2 〈
δφ2

k

〉
. (3.81)

Letting ψk from Eq. (3.60) represent ψk = δφk = iH√
2k3/2

as our perturbed scalar field frozen

outside the horizon, we can rewrite the curvature power spectrum as

PR(k) =
H4

2πφ̇2
. (3.82)

From our definition in Eq. (3.24) and writing φ̇ in terms of ε, we arrive to the standard form

of the curvature power spectrum:

PR(k) =
H2

πm2
plε
. (3.83)

This is a scale independent Harrison-Zeldovich spectrum under slow roll. As H and ε de-

part from approximate constants, this spectrum will depart from scale independence. Note

that unlike tensor modes which will be discussed in the next section, matter perturbations

continue to grow due to gravity while still outside the horizon during radiation and matter

domination until the onset of dark energy epoch. Those that reenter during radiation dom-

ination stall in growth until matter-radiation equality. Extracting the spectrum generated

by inflation requires taking the continued evolution into account. In this work the focus is
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on the primordial tensor spectrum, so I refrain from an in depth exploration of the contin-

ued evolution of scalar modes. I admit that the above skips over the quantization and full

derivation of the curvature perturbations, but the details are not relevant here. For a full

and thorough treatment see, e.g., [60, 52].

After all of that, we can finally see the primordial power spectrum of curvature (scalar)

perturbations. To summarize, Eq. (3.83) describes the rms amplitude of each k mode of cur-

vature perturbations as generated by inflation. Isotropically and homogeneously distributed

perturbations in the inflationary field are stretched to classical scales. These then remain

isotropically and homogeneously distributed in the Universe and are Gaussian in nature.

Perturbations in the inflationary field seed density perturbations that are directly coupled to

curvature perturbations and all species of produced particles, thus they are adiabatic. The

temperature anisotropies in the CMB that make their way to us are primarily the result of

the Sachs-Wolfe effect as photons climb out of the local gravitational potential.

We can now present the standard parameterization of the power spectrum that establishes

constrainable observables. As is typical we can approximate the power spectrum as a power

law:

PR(k) = Ask
ns−1, (3.84)

where As and ns are the amplitude and spectral index, respectively. The index is commonly

referred to as the tilt of the power spectrum. Note that As has to be scaled to a specific

mode which acts as a pivot point to the spectrum. In other words,

PR(k) = As|k0

(
k

k0

)ns−1

. (3.85)

We can determine the tilt directly from the power spectrum and find

ns − 1 =
d lnPR
d ln k

. (3.86)

Going beyond a standard power law, we can include variations in the tilt, called the running.

This is defined as

αs =
dns
d ln k

. (3.87)
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When a mode exits the horizon, its comoving wavenumber is approximately equal to the

inverse of the Hubble radius (the horizon) such that k = aH. This gives us a connection

between derivatives with respect to k and N :

d ln k = d ln (aH) =
1

aH

d(aH)

dN
dN = (ε− 1)dN. (3.88)

After some algebra, considering the definitions of the slow-roll parameters (Eqs. (3.24) and

(3.29)), the approximations that a ∝ e−N and H ∝ eεH , and the link provided above in

Eq. (3.88), we find the relation

ns − 1 ≈ −4ε+ 2η. (3.89)

We now have a direct connection between a constrainable parameter and those that describe

inflation. Constraints from the Planck experiment have resulted in As = 2.142 ± 0.0049 ×

10−9, ns = 0.9667 ± 0.0040, and αs = −0.002 ± 0.0013 evaluated at (k = 0.002 Mpc−1) at

68% confidence [1].

3.4.3 Tensor Perturbations

In section § 3.4.1 we derived the power spectrum for free decoupled scalar field perturbations.

Consider now the longitudinal and transverse polarization state tensor perturbations of the

metric to behave as independent scalar fields such that

δgij = hij =

(
32π

m2
pl

)1/2

(ψ+ê
+
ij + ψxê

×
ij), (3.90)

where the + and × states are the longitudinal and transverse states, respectively, and the

prefactor is a chosen normalization. Then

〈
h2
k

〉
=

64π

m2
pl

〈
ψ2
k

〉
, (3.91)

where hk is the strain amplitude of the tensor perturbations. The tensor power spectrum

can be written as

PT (k) =
k3

2π2

〈
h2
k

〉
=

64π

m2
pl

k3

2π2

〈
ψ2
k

〉
. (3.92)
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Using our solution for ψk in Eq. (3.60) we find

PT (k) =
16H2

πm2
pl

. (3.93)

Note that as long as H ≈ constant during slow-roll, this is also scale independent. As with

the scalar spectrum, as H evolves this spectrum will depart from its flat behavior. Also,

the tensor power spectrum only depends on H (or by proxy V ). Hence primordial tensor

perturbations provide a direct link to the expansion history and potential during inflation.

We can parameterize the tensor power spectrum and approximate it as a power law of k

so that

PT (k) = ATk
nT , (3.94)

where AT and nT are the amplitude and spectral index for the tensor spectrum just as we

had for scalars. We also need to scale it to a pivot value k0 (chosing the same as with PR in

Eq. (3.85)),

PT (k) = AT |k0

(
k

k0

)nT

. (3.95)

By scaling the scalar and tensor power spectra to the same wave mode, we can introduce a

new parameter linking the two spectra,

r =
AT
AS

∣∣∣∣
k0

(3.96)

referred to as the tensor to scalar ratio. Taking the power spectra in Eqs. (3.93) and (3.83)

we can relate r to ε and find

r = 16ε. (3.97)

We can also find the tensor spectral index via

nT =
d lnP (k)

d ln k
. (3.98)

Using the link between derivatives with respect to k and N in Eq. (3.88) and Eq. (3.28), we

find that

nT =
−2ε

1− ε
≈ −2ε, (3.99)
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where the latter approximation is made deep in slow-roll when ε is small. As with the scalar

spectrum, we can also allow for variability in the tensor tilt, called the running of the spectral

index, by defining

αT =
dnT
d ln k

. (3.100)

By combining Eqs. (3.97) and (3.99) we arrive at a linear relation between the tensor to

scalar ratio and the tensor spectral index, known as the consistency relation:

r = −8nT . (3.101)

This relation predicts that during slow-roll inflation there is a degeneracy between the am-

plitude and tilt of the tensor spectrum. If the largest scale anisotropies exited the horizon

≈ 60 e-foldings before the end of inflation while the inflationary field was slowly rolling,

confirming constraints of this relation will give strong support to inflationary models. These

anisotropies are potentially observable as B-mode polarization states in the CMB. The con-

version of gravitational waves into B-modes will not be shown here but can be found in

[45, 62]. Current constraints on the tensor-to-scalar ratio are only upper bounds, r < 0.07

at 95% confidence, made by the BICEP2/Keck Array [63].

As the gravitational waves are free to propagate unhindered through the Universe as

opposed to the complicated baryonic physics that muddy our observations of scalar per-

turbations, direct detection of the stochastic relic background provides a clear window into

the inflationary epoch. However, the redshifting of these perturbations due to the contin-

ued expansion of the Universe after modes reenter the horizon still needs to be taken into

account.

The observable power spectrum today will be different from the primordial. This can be

represented by

P (k, t0) = T 2(τk)P (k, 0), (3.102)

where P (k, t0) is the tensor power spectrum today, T (τk) is the transfer function accounting

for mode evolution after mode k reenters the horizon, and P (k, 0) is the primordial power

spectrum discussed above.
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As gravitational waves are only effected by the evolution of the scale factor since crossing

back into the causal horizon, the transfer function is simply approximated by the ratio of

the scale factor at reentry to the scale factor today:

T (τk) =
ak
a0

. (3.103)

Recall that k is the wavenumber of each mode, and the wavelengths are therefore λ = 2π/k.

Modes cross back into the horizon when their wavelengths are equal to the horizon size. To

find the scale factor as a function of modes k as they reenter, we can perform the integral

for the horizon size,

2π

k
= dH =

∫ k

0

da

a2H
(3.104)

and invert to find a(k).

Care needs to be taken in pursuit of a(k), as during radiation domination, particles are

“freezing-out” and becoming non-relativistic as temperatures drop below roughly their mass.

This change in relativistic degrees of freedom causes fluctuations in the growth of the scale

factor expressed as

a =

(
g∗s(T0)

g∗s(T )

)1/3(
T0

T

)
, (3.105)

where T0 is the CMB temperature today, T is the temperature of the Universe at some time in

the past, and the g∗s’s are the number of relativistic degrees of freedom at their corresponding

temperatures. This is found by conserving entropy and noting that temperature scales as

1/a. The number of relativistic degrees of freedom is estimated by [36]

g∗s =
∑

i=bosons

gi

(
Ti
T

)3

+
7

8

∑
i=fermions

gi

(
Ti
T

)3

, (3.106)

where the sums are performed over all species of relativistic bosons and fermions, respectively,

Ti is the temperature of those relativistic species, and gi is the degrees of freedom of each

species. With the exception of neutrinos, particles become non-relativistic as they fall out

of equilibrium with the photon bath. Therefore the only occasion where Ti 6= T will be for

neutrinos after they decouple. Anisotropic stress produced by anisotropies in the neutrino

field during freeze-out and free streaming also contributes a ∼ 20% to 30% reduction for
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modes reentering the horizon during radiation domination [64, 65]. More specifically these

are the modes that enter before matter–radiation equality, thus k > keq = 0.405. There

is a smooth and rapid decline of this effect during the transition from matter to radiation

dominance. These effects can be seen in Fig. 4. Note that the transfer function behaves

as k−2 for modes that reenter during matter domination, while for those entering during

radiation domination it acts as k−1. The features in the range of k ∼ 101 to 107 Mpc−1

are the result of particle freezing out, or becoming non-relativistic, as the Universe expands

and cools. This then alters the expansion rate and subsequently the transfer function. The

log-log plotting scale exaggerates these features as described above.

We can now characterize the stochastic background as a dimensionless energy density of

gravitational waves:

ΩGW =
1

ρcrit

dρGW
d ln k

, (3.107)

where ρGW is the energy density of the background gravitational waves and ρcrit is the critical

density of the Universe today. This quantity is directly related to the tensor power spectrum.

Rewriting it in terms of the power spectrum, it becomes

ΩGW =
k2

6H2
0

P (k, t0) (3.108)

=
k2

6H2
0

P (k, 0)T 2(tk). (3.109)

A derivation of this expression can be found in [66, 67], but note that the conventions used

are slightly different. An example of a resulting gravitational wave background is provided

in Fig. 5. This example includes the transfer function discussed above and it assumes a

primordial power spectrum with r = 0.05 and an unrealistic constant tilt following the

consistency relation.

As discussed in this section, the strength of each mode is directly linked to the expansion

rate and the potential driving it during inflation. In § 4 and 5 this will be explored further and

exploited. I have neglected to explore the effects of reheating on the spectrum. Reheating is

the transition period between inflation and radiation domination when the inflationary scalar

field converts into particles that decay and transfer their energy to “reheat” the primordial
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Figure 4: Tensor transfer function which accounts for the evolution of k-modes since reen-

tering the horizon until today. This includes an approximate 20% reduction for modes

reentering the horizon during radiation domination. The features between k ∼ 101 and 107

Mpc−1 are the result of particle becoming non-relativistic as the Universe cools. This in turn

affects the expansion rate and therefore the transfer function. The log-log scaling highlight

this effect.

plasma [68]. Reheating effects would only become apparent to observations at scales of

k ∼ 1015 Mpc−1 if it spanned an extended period of time and finished at TRH . 109 GeV

[69]. Reheating is an interesting area of study, but in this work I neglect its effects and

assume the process was rapid and ended at high temperatures TRH ∼ 1015 − 1016 GeV.
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Figure 5: An example gravitational wave background today. This is the unitless gravitational

energy density spectrum plotted with a log-log scaling. It assumes a simple constant tilt

primordial tensor spectrum with r = 0.05 and nT = −r/8.
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4.0 TESTING INFLATION WITH THE CONSISTENCY RELATION

AND RUNNING OF THE TENSOR SPECTRAL INDEX FROM

MULTISCALE MEASUREMENTS

This chapter was published on 16 May, 2014 in Physical Review Letters under the title

“Inflationary Tensor Perturbations after BICEP2” with Arthur Kosowsky [70]. It was moti-

vated by the excitement generated by the BICEP2 possible detection of primordial B-mode

polarization at a higher than expected amplitude. Of course this was later realized to be, to

a significant degree, a result of galactic dust [110, 63].

4.1 INTRODUCTION

The remarkable observations of the BICEP experiment [73], if correct, may reveal the ex-

istence of tensor perturbations in the universe with an unexpectedly large amplitude. The

measured B-mode component of the polarization power spectrum [42, 43] is consistent with

a scale-invariant gravitational wave background with a tensor-scalar ratio of r = 0.2. These

tensor perturbations could arise from inflation in the early universe, but further charac-

terization of the signal is needed to make this case compelling. The large amplitude of

the signal creates a realistic possibility for two independent tests of an inflationary origin

for the tensor perturbations: one, higher precision measurements of the B-mode polariza-

tion, and two, the direct detection of the gravitational wave background with space-based

interferometry. Previous work has considered this pairing of experiments as an inflation

probe [74, 75, 76, 77, 78, 79, 80], but their combination becomes far more informative if the

amplitude of the tensor perturbations is as large as r = 0.2.
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Inflation generally produces a power-law power spectrum for both scalar and tensor

perturbations, PS(k) = AS (k/k0)nS−1 and PT (k) = AT (k/k0)nT (see, e.g., the classic review

[81]). The scalar perturbation amplitude AS and spectral index ns have been determined to

high precision through measurements of the microwave background temperature anisotropies

[82, 83, 84]. Thus the amplitude of tensor perturbations is generally characterized by the

tensor-scalar ratio, r ≡ PT/PS, evaluated at the fiducial wavenumber k0 ≡ 0.002 Mpc−1.

The simplest models of inflation, which involve a single dynamical degree of freedom

evolving slowly compared to the expansion rate of the universe (single field, slow-roll models)

predict a relation between the tensor-to-scalar ratio and the tensor power law index known

as the consistency relation, r = −8nT [85]. This connection arises because both the tensor

and scalar power spectrum arise from the single degree of freedom. If tensor perturbations

with r = 0.2 are generated by inflation, the naive expectation is nT = −0.025.

This value for nT will be observable with anticipated microwave background polarization

experiments. Our ability to measure nT is limited by cosmic variance, which provides a

fundamental limit to how well the tensor power spectrum can be measured: we only have

a single sky to measure. The cosmic variance of the B-mode polarization power spectrum

multipole CBB
l is approximately σl =

√
2/(2l + 1)fskyC

BB
l , where fsky is the fraction of the

full sky mapped by a given experiment. In addition to tensor perturbations, gravitational

lensing of the larger E-mode polarization component will produce B-mode polarization con-

tributing to this cosmic variance [86]. However, with sufficiently sensitive high-resolution

polarization maps, the lensing signal can be measured directly using the characteristic non-

gaussian distribution of polarization which lensing creates. Knox and Song [87] originally

estimated how well the polarization field can be “delensed” using a quadratic maximum-

likelihood estimator of Hu and Okamoto [88], finding cosmic variance due to the residual

lensing signal of roughly 10% for a perfect sky map. Subsequent work by Hirata and Seljak

[89] demonstrated that an iterative application of the quadratic estimator can push delensing

significantly further, given maps of sufficient sensitivity and angular resolution. The ability

of an experiment with very low noise to measure nT from a B-mode polarization map will

be determined by the cosmic variance from the sum of the primordial tensor signal plus the

residual lensing signal after any delensing procedure.
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4.2 CONSTRAINING INFLATION VIA THE CONSISTENCY RELATION

Here we estimate the ability of several nominal future polarization experiments to constrain

nT and test the consistency relation (see also [90, 91, 92, 93] for similar estimations of nT

constraints for weaker signals). Sensitivity and angular resolutions of these experiments are

given in Table 1; for all cases we assume a sky coverage of fsky = 0.5, corresponding to

a single ground-based experiment. We assume no foreground contamination or systematic

errors; to make these assumptions more believable for a ground-based experiment, we only

consider power spectrum measurements with l > 50, corresponding to angular scales smaller

than 4 degrees. (A detailed foreground study for future polarization satellite missions [94]

estimates that, for r = 0.2, the tensor B-mode signal will dominate over the foreground B-

mode signal for more than 75% of the sky, so the assumption of foreground-cleaned maps from

multi-frequency experiments reasonable.) We also assume the theoretical power spectrum

of gravitational lensing is known exactly, which will be a good assumption for upcoming

experiments based on our knowledge of structure growth in the standard cosmological model.

Uncertainties in the lensing model (currently around 2% in the lensing amplitude, e.g. Fig. 12

of [95]) will only cause small changes to these results. We assume the residual lensing signal

amplitude given by Seljak and Hirata [89] (listed in Table 1) for the given map sensitivities

and angular resolution.

Table 3: Parameters of model polarization experiments.

Experiment σQ,U (µK-arcmin) beam (FWHM) (arcmin) lensing residual [89]

Example A 1.41 4 10%

Example B 0.5 4 5%

Example C 0.25 4 1%

Figure 6 displays allowed values for each experiment in the r-nT plane, for a fiducial

model with r = 0.2 and nT = −0.025 satisfying the inflationary consistency relation. These

have been calculated using a simple quadratic likelihood evaluated on a grid of models in the
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parameter plane. We compute CBB
l using the CAMB package [4] and use only multipoles

50 < l < 2000 in computing the likelihoods, with a pivot scale k0 = 0.002 Mpc−1 . Including

higher multipoles has a negligible effect on the likelihoods; the inclusion of lower multipoles

also has only a small effect, due to cosmic variance. Improving angular resolution to 2

arcminutes will decrease the lensing residual marginally, by roughly 10% (see Fig. 5 in Ref.

[89]). Constraints on nT improve dramatically as the map sensitivity increases from 1.4

µK-arcmin to 0.25 µK-arcmin, due to better delensing. At the lower sensitivity value, given

by Example C, nT has a normal error of around 0.006, so is measured to be different from 0

at around 4σ. With perfect cleaning of lensing, the significance away from 0 for Example C

would increases marginally from 4σ to 5σ, but improving on the residual lensing contribution

in Example C requires a more sophisticated treatment of delensing [89]. The same sensitivity

and resolution for a full-sky map, presumably from a satellite mission, would increase sky

coverage by a factor of 2, decreasing the cosmic-variance limited errors by a factor of
√

2,

and give a normal error on nT of around 0.004, constraining nT away from zero at a 6σ level.

If the actual amplitude of the tensor perturbations turns out to be r = 0.1 instead of

r = 0.2 (consistent with an alternate foreground dust model in [95]), then the consistency-

relation value of nT decreases by a factor of 2, while the B-mode signal used to measure nT

also decreases in amplitude by a factor of 2. Then a full-sky map with the sensitivity of

Example C provides a determination of nT with error around 0.006, which is now different

from 0 at a 2σ significance. The consistency relation still passes a strong test, but we are not

able to distinguish between a consistency-relation inflation model and a naive scale-invariant

tensor background of unspecified origin.

The example experiments in Table 1 represent a range encompassing possible sensitivities

for a so-called “Stage 4” microwave background experiment [96, 97]. The ability to measure

nT depends strongly on the sensitivity in this range. Polarization maps with 4 arcminute

resolution or better and map sensitivity of 0.25 µK-arcmin or better can decisively test

the inflationary consistency relation between r and nT for the BICEP value of r = 0.2.

A measurement of nT obeying the consistency relation and inconsistent with the generic

scale-invariant spectrum nT = 0 would provide highly non-trivial evidence in favor of the

tensor perturbations arising from a simple single-field, slow-roll inflation epoch in the early
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Figure 6: Likelihood countours in the r-nT plane for the model polarization experiments in

Table 1. The fiducial model is r = 0.2 and nT = −0.025, indicated by ∗. The dotted line

indicates the inflation consistency relation. The vertical line indicates nT = 0 for reference.

(Left) Full lensing contribution to the cosmic variance error. (Center) Residual lensing

contribution after delensing (see Table 1 for residual lensing noise levels), and (Right) No

lensing contribution to the cosmic variance, for comparison.

universe. Note that a value of nT different from the inflation consistency relation would not

necessarily rule out inflation as the source of the tensor perturbations, but could alternately

give valuable information that the inflation mechanism was more complicated than a simple

slow-roll model, provided the tensor perturbations did arise from inflation.
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4.3 B-MODE OBSERVATION AND DIRECT DETECTION OF

GRAVITATIONAL WAVES TO CONSTRAIN THE RUNNING OF

THE TENSOR SPECTRAL INDEX

The second test of inflation is a direct detection of the tensor perturbations using space-

based interferometry. A stochastic background of gravitational waves with a scale-invariant

power-law spectrum and an amplitude of r = 0.2 results in a tensor energy density of

ΩGWh
2 ' 10−15. Fortuitously, this tensor amplitude is about the value which maximizes the

direct detection amplitude at terrestrial scales [74, 66]. NASA’s Big Bang Observer (BBO)

concept study [98], an extension of the Laser Interferometer Space Antenna (LISA) proposal

to higher sensitivities and shorter satellite separations, would detect this signal at a frequency

of 0.1 Hz with a significance of 100σ with one year of observing [99, 100], in the absence

of confusion noise from white-dwarf binaries at cosmological distances [100]. Such a binary

background will be isotropic with a steeply falling power spectrum; a nonisotropic binary

contribution from the Milky Way would also need to be accounted for. A second more spec-

ulative stochastic gravitational wave contribution could arise from a possible early-universe

phase transition at the electroweak scale [101, 102]. For high-precision characterization of

the primordial signal, the competing backgrounds would either need to be modeled with

comparable precision, or interferometric measurements would need to have a low-frequency

cutoff, reducing the detection significance for BBO substantially [99]. Experiments with

greater sensitivity and higher frequency ranges than BBO have been contemplated: Kudoh

et al. [99] have calculated that with an 0.2 Hz lower frequency cutoff, their “Fabry-Perot

DECIGO” [103, 104] would detect the r = 0.2 gravitational wave background at 10σ, while

their “Ultimate DECIGO” [105] would detect it at 5× 104σ.

The B-mode polarization of the microwave background arises from tensor modes with a

characteristic wavelength of k−1
0 ' 100 Mpc, while direct detection experiments probe char-

acteristic wavelengths of c/ν = 2×10−2 A.U., a range covering a factor of 1015 in wavelength.

A determination of r and nT in the B-mode power spectrum means that the tensor spectrum

can be extrapolated to smaller wavelengths, assuming a perfect power law spectrum. The

amplitude at a smaller scale will have an uncertainty governed by the uncertainties in r and
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nT at the larger scale, like those displayed in Fig. 1. If r = 0.2, a full-sky B-polarization

map with sensitivity below 1 µK arcmin will determine nT = −0.025 with an error of around

0.004. Then extrapolating to a scale 1015 times smaller in wavelength using two different

values of nT differing by 0.004 gives an amplitude difference of 20%. This is much larger

than the difference due to uncertainty in r which we can ignore.

A direct detection experiment which could measure the tensor amplitude to significantly

better than 20% could thus detect a difference from the predicted amplitude with an un-

certainty of around 20% of the measured amplitude. Such a difference would arise if the

spectrum is not a perfect power law, but rather has some variation in its power law with

scale. In analogy with the running of the density perturbation spectrum [106], define the

running of the tensor spectral index αT ≡ dnT/d ln k. A value of αT = 2 × 10−4 will result

in a difference in amplitude of 20% when extrapolated over a factor of 1016 in wavelength;

so by comparing with the values of r and nT measured from B-mode polarization, a direct

measurement of the tensor amplitude with interferometry can measure αT with an error of

around 2×10−4. (If r = 0.1, then the error on running becomes weaker by about factor of 2.)

Discussions of tensor perturbations until now have commonly claimed that any measurement

of αT is hopeless – but we see that it is likely possible to measure the tensor running better

than scalar running, if precise measurements of both r and nT are obtained from B-mode

polarization.

Direct detection of the gravitational wave background with a very high significance, by

some future experiment like Ultimate DECIGO, would allow a second measurement of nT ,

at a wavelength of around 0.02 A.U. Then this value could be compared with the spectrum

extrapolated from the B-mode nT plus the running required to give the measured amplitude

at A.U. scales. Consistency would demonstrate that a constant-running approximation to

the tensor power spectrum is valid, and further verify the inflationary origin of this back-

ground; in this case, we can hope to have six measured quantities characterizing the physics

of inflation (the amplitude, power law index, and running for both scalar and tensor per-

turbations). If the two values do not match, it would show that further parameters aside

from a spectral index and a constant running are required to adequately describe the tensor

power spectrum over these scales.
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4.4 DISCUSSION

Inflation was invented to solve a well-known litany of cosmological conundrums: the flat-

ness and isotropy of the universe and the absence of magnetic monopoles. Inflation also

provides a simple mechanism for generating a primordial gaussian random distribution of

nearly scale-invariant density perturbations and phase-coherent acoustic oscillations, which

gives an excellent match to observed microwave background temperature anisotropies and the

large-scale distribution of galaxies. Aside from these well-observed signals, inflation makes a

completely generic prediction of a nearly scale-invariant background of tensor perturbations,

which once generated will propagate unimpeded until the present day, and unchanged save

for their dilution and stretching due to the expansion of the universe. But the amplitude

of this stochastic background depends on the unknown energy scale of inflation. Prior to

St. Patrick’s Day 2014, we had only suggestive and somewhat controversial theoretical rea-

sons that the tensor amplitude was large enough ever to detect. If the B-mode polarization

measured by BICEP is due to inflationary tensor perturbations, their amplitude is a factor

of 10 to 100 larger than cautious optimists had hoped. As a result, we suddenly and un-

expectedly have within our reach the chance to probe the unknown physics governing the

universe at an age of 10−36 seconds and an energy scale of 1016 GeV, with two completely

different experimental approaches. We are surely obliged to try.
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5.0 UNVEILING THE INFLATIONARY HISTORY AND POTENTIAL

WITH JOINT CONSTRAINTS OF CMB B-MODES AND

INTERFEROMETRIC DIRECT DETECTION

This chapter was published in Physical Review D in May 2015 under the title “The History

of Inflation from Microwave Background Polarimetry and Laser Interferometry” in collabo-

ration with Arthur Kosowsky (U. Pittsburgh), William Kinney (U. Buffalo), and Naoki Seto

(U. Kyoto) [71]. Since the time of publication, new upper bounds on the tensor–to–scalar

ratio have been established. The current estimate is r < 0.07 at 95% confidence [63].

5.1 INTRODUCTION

The pursuit of comsological B-mode microwave background polarization [42, 43] at large

angular scales has seen a burst of attention in the past year since the BICEP2 experiment [73]

announced the possibility of a detection in March 2014. Further investigation has revealed

that the dominant source of this signal is actually galactic dust [107, 108, 109, 110] rather

than being cosmological in nature. This does not rule out the existance of cosmological B-

modes, but it is now clear that detecting a cosmological B-mode signal at significantly lower

amplitude than the BICEP2 signal requires better characterization of foreground polarization

signals via multi-frequency measurements. If we ultimately measure a primordial B-mode

signal, it may provide an otherwise unobtainable window into physics at extremely high

energies and the evolution of the Universe during its earliest moments.

A period of exponential expansion in the early Universe, known as inflation, resolves

several observational difficulties with the standard cosmological model (e.g., [26, 27, 28, 29,
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30, 31, 32, 33, 34, 35]). Such a period of expansion can be driven by some component with

a nearly constant energy density, such as the potential energy of an effective scalar field

(the “inflaton”). During this epoch, quantum fluctuations in the inflaton field are amplified

into classical density perturbations which grow by gravitational instability into the structures

visible in the Universe today. Likewise, quantum fluctuations in the tensor components of the

inflating spacetime are amplified into a stochastic background of gravitational waves, with

a nearly scale-invariant power spectrum and an amplitude depending on the energy scale of

inflation. Once generated, these tensor perturbations propagate almost freely through the

Universe, their wavelengths increased by the expansion of the Universe and their amplitudes

decreased by the same factor once the wavelength comes inside the horizon.

The hallmark of an inflationary gravitational wave background is its extremely wide

range in wavelengths, roughly from the scale of the horizon today down to terrestrial scales.

If inflation occurred when the temperature of the Universe was around the Grand Unifica-

tion scale of 1016 GeV, the gravitational wave background will produce a pattern of B-mode

polarization large enough to be seen by upcoming experiments. Remarkably, an inflationary

tensor perturbation signal of roughly this amplitude will likely also be detectable directly

with future space-based laser interferometers [111, 75, 76, 77, 78, 79, 80, 112, 113, 114].

Direct detection will probe wavelengths that are 15 orders of magnitude smaller than those

inducing microwave background signals; measurements at these two scales span a large por-

tion of the observable inflation epoch, and may therefore reveal the physical process driving

inflation.Gravitational wave backgrounds of smaller amplitude are more difficult to detect

at both cosmological and local scales.

A recent paper showed that an interferometric detection of the inflationary tensor signal

will provide qualitatively new information about inflation, namely a precise measurement of

any departure from a pure power-law spectrum [70]. If we can obtain information about infla-

tion at widely varying scales, a natural question arises: ultimately, how well can the history

of inflation, and the physics driving it, be determined? Here, we determineconstraints on the

expansion history during inflation, as well as the corresponding effective potential governing

the evolution of the inflaton, from future measurements at both microwave background and

interferometer scales. We use a Monte Carlo method to generate random inflation models
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with an initially slowly varying inflaton value (the so-called “slow roll” condition) at the

time when perturbations on the scale of the horizon today are generated [57, 115] and which

satisfy current measurements [110]. Of these models, only a very small fraction satisfy tensor

amplitude constraints at the few percent level on both scales, and the resulting expansion

histories during inflation are strongly constrained.

Other recent works use similar techniques to constrain inflation. Ref. [116] considers

only microwave background measurements; our results show that the additional information

from an interferometric detection greatly restricts the range of acceptable inflation models.

Ref. [79] focused on detectability of tensor perturbations in specific models by interferome-

ters of a given sensitivity. We extend this work to consider the generic features of inflation

models satisfying a particular pair of B-mode polarization and interferometer measurements.

Ref. [78] considered models with the largest interferometer signals. We also consider interfer-

ometer measurements with sufficient sensitivity to constrain both the amplitude and spectral

index of tensor perturbations at local scales, providing additional ability to discriminate be-

tween inflationary expansion histories.

5.2 METHODS

We compute the dynamical history and resulting scalar and tensor perturbation spectra for

random inflation models chosen via the technique of Monte Carlo inflation flow potential

reconstruction [57, 115]. The dynamics of an inflation model can be written in terms of the

value of an effective scalar field φ (the “inflaton”) and its potential energy V (φ); inflation

occurs when the energy density is dominated by the inflaton potential energy. The field φ

will evolve towards the minimum of the potential as inflation progresses. It is convenient to

use the value of the effective inflaton field φ during inflation as a time parameter; this can

be done as long as φ evolves monotonically to smaller values. The Hubble parameter during

inflation, H ≡ (1/a)da/dt with a(t) the scale factor, can be used to construct a hierarchy of
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“slow-roll parameters” [55]

ε ≡ m2
Pl

4π

(
H ′(φ)

H(φ)

)2

,

σ ≡ mPl

π

[
1

2

(
H ′′

H

)
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(
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)2
]
,

`λH ≡
(
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Pl

4π
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H`

d(`+1)H

dφ(`+1)
, ` ≥ 2. (5.1)

where primes are derivatives with respect to φ and the Planck mass mPl sets the energy

units. The evolution of the parameters during inflation is determined by a system of first-

order linear equations [56, 57],

dε

dN
= ε (σ + 2ε) ,

dσ

dN
= −5εσ − 12ε2 + 2

(
2λH

)
,

d
(
`λH

)
dN

=

[
`− 1

2
σ + (`− 2) ε

] (
`λH

)
+ `+1λH. (5.2)

In these equations the time variable is the number of expansion e-folds before the end of

inflation N ≡ ln(aend/a) where
d

dN
=

mPl

2π1/2

√
ε
d

dφ
. (5.3)

Given a solution for ε(φ), H(φ) can be obtained from the definition of ε, which then requires

normalization given the observed amplitude of the scalar power spectrum [117]. The effective

potential V (φ) then follows from the equation of motion for H(φ),

H2(φ)

[
1− 1

3
ε(φ)

]
=

8π

3m2
Pl

V (φ). (5.4)

Particular models of inflation are obtained by choosing initial values for the slow-roll

parameters; their dynamical evolution corresponds to some trajectory in the slow-roll pa-

rameter space. In practice, we truncate the hierarchy Eqs. (5.2) above ` = 8 (corresponding

to a restricted subset of exact inflation models) and then evolve the evolution equations

until inflation ends, which we take as the condition ε = 1. Once the slow-roll parameters are

all determined throughout inflation as a function of N , the primordial comoving curvature
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perturbation δρ/ρ arising from the scalar perturbations and the tensor/scalar ratio r are, to

second-order in the slow roll parameters, given by [55, 118],

δρ

ρ
' H

2πmPl

√
ε
,

r ' 16ε [1− C (σ + 2ε)] (5.5)

with C ≡ 4(ln 2 + γ) − 5 = 0.0814514, where γ ' 0.577 is Euler’s constant, and using

the WMAP normalization convention for r [119]. Then the perturbation amplitudes as

a function of N can be converted to amplitudes as a function of comoving wavenumber

k at the end of inflation by the relation a(N)H(N) = k. Generating scalar and tensor

perturbations for a random sampling of inflation models is thus reduced to choosing random

initial points in the slow-roll parameter space. The resulting primordial scalar perturbation

power spectrum PS(k) ' AS(k/k0)nS−1 and tensor power spectrum PT (k) ' AT (k/k0)nT

are both approximate power laws on cosmological scales around k0 = 0.05 Mpc−1, with

r ≡ AT/AS.

We initially generate 2 × 104 models within an ellipsoidal parameter space region with

principal axes 0.952 < nS < 0.981 and 0.0 < r < 0.1; these ranges are consistent with the

95% confidence region from current Planck [117], WMAP polarization [120], and

BICEP2/Keck+Planck microwave background measurements [110], as well as baryon acous-

tic oscillation measurements from the Sloan Digital Sky Survey Data Release 9 [121], the

6dF Galaxy Survey [122], and the WiggleZ Dark Energy Survey [123] (shown in Fig. 5 of

Ref. [124]), while the running of the scalar spectral index was restricted to be arbitrarily

small (−0.001 < dnS/d ln k < 0.001). Note that the most recent Planck release [1] provides

a constraint of −0.015 < dnS/d ln k < 0.011 at 95% confidence. We have not adjusted for

this allowed range of values as it will not alter the conclusions of this work and by the

time the measurements discussed here are achieved, constraints on dnS/d ln k will likely be

at least as strong as we are considering. For simplicity, parameter degeneracies have not

been considered. More specifically, this is done by initially setting φ0 = 0, H(φ0) = 1,

and randomly selecting ε ∈ [0, 0.1], σ ∈ [−0.1, 0.], 3λ ∈ [−0.05, 0.05], 4λ ∈ [−0.005, 0.005],

5λ ∈ [−5 × 10−4, 5 × 10−4], 6λ ∈ [−5 × 10−5, 5 × 10−5], 7λ ∈ [−5 × 10−6, 5 × 10−6], and

8λ ∈ [−5 × 10−7, 5 × 10−7] with a uniform probability distribution. The models are then
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freely evolved to the end of inflation when ε = 1. If inflation lasts for the desired 60 efold-

ings of expansion, the expansion rate is then renormalized to the amplitude of the scalar

power spectrum. Those models that produce consistent values of r, nS, and dnS/d ln k at

N = 60 as stated above are then saved. The full tensor spectrum is then computed by exact

numerical evaluation of the mode equation for the cosmological background defined by the

selected solution to the flow equations, in place of the slow-roll approximation in Eq. (5.5).

The corresponding inflation potential V (φ) is also computed numerically for each model.

Models are not restricted to remain slowly-rolling throughout this evolution (as is appearent

in Fig. 7, where models evolve more rapidly and steepen). In particular, toward the end of

inflation (low values of N), a departure from slow-roll is required for inflation to come to an

end.

We then select the subset of models consistent with tensor amplitudes at cosmological

scales corresponding to a fiducial tensor-scalar ratio of r = 0.05±0.001, a precision obtainable

by currently anticipated experiments.

Given the tensor perturbation spectrum from a particular inflation model, we obtain

the tensor spectrum in the present Universe using well-known techniques for computing

the transfer function for the amplitudes and wavelengths [77, 125, 126, 64], assuming the

standard ΛCDM cosmology [117]. For simplicity, we assume that the reheating phase after

inflation, in which the energy density stored in the kinetic energy of the inflaton field is

converted to a thermal bath of relativistic particles, occurs rapidly on a time scale short

compared to the Hubble time. We then compute a signal for both B-mode polarization and

laser interferometry from the tensor perturbations in each model.

The most recent joint analysis by the Planck and BICEP2/Keck collaborations limit the

tensor-scalar ratio to r < 0.12 at 95% C.L. [110]. For interferometers, a stochastic gravi-

tational wave power spectrum is often expressed as ΩGW(f), the fraction of critical density

in gravitational waves per unit logarithmic frequency interval. We assume a particular fidu-

cial model of the local tensor perturbations with an amplitude of ΩGW = 8.2 × 10−17 at a

frequency of f = 0.25 Hz. We then consider a measurement of this amplitude with a 2σ

standard error of around 8%: this corresponds to the reference strain sensitivity u
√
Sbase(f)

of the DECIGO effective interferometer design given in Fig. 2 of [127], with u = 1/5, 3
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years of observation, and a low-frequency cutoff of 0.2 Hz to minimize the contaminating

astrophysical foreground signal from white dwarf binaries. We also assume perfect removal

of neutron star and black hole binary signals. (One interferometer design attaining these

specifications comprises four sets of three detectors with optimal sensitivity around 1 Hz.

Each group can effectively generate two independent interferometers by taking appropriate

combinations of data streams from the set. Pairs of these groups will have overlapping or-

bits to facilitate correlation analysis. Such an experiment is clearly ambitious, but achievable

with known technology at a cost comparable to current large physics and astronomy efforts.)

A particular inflation model is considered consistent with the fiducial interferometer signal

if its amplitude is within the 2σ range for ΩGW over the frequency band from 0.2 to 20 Hz.

5.3 RESULTS

Of the 2× 104 models generated, 568 are consistent with a fiducial cosmological amplitude

corresponding to r = 0.05± 0.001 for modes that exited the horizon 60 efoldings before the

end of inflation. Fig. 7 displays the expansion rate, H, and the effective potential driving

the expansion, V , for this subset in violet. The left panels demonstrate the evolution of

the expansion rate and potential, respectively, as they are plotted as a function of the time

analog representing the number of efoldings before the end of inflation. The right panels

show the same quantities as a function of the effective scalar field driving inflation, thus

illustrating the physical behavior of the expansion and energy during inflation.

The addition of direct detection constraints by an interferometer further decreases the

allowed family of models. A local scale measurement of ΩGW(k0 = 1.6 × 1014 Mpc−1) =

8.2× 10−17 corresponds to modes that were driven outside the causal horizon approximately

20 efoldings before the end of inflation. Models consistent with this fiducial amplitude

within 8% (the 2σ confidence interval for a DECIGO-like experiment with sensitivy scaled

by u = 1/5 at this fiducial amplitude) are displayed in Fig. 7 in blue. This additional local

scale constraint reduces the number of allowed models to 93, 16% of those consistent with

the future cosmological constraints and 0.5% of those consistent with current measurements.
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Figure 7: The expansion rates in the form of the Hubble parameter, H, and the effective

potentials driving the evolution of the expansion, V , are shown. All models consistent with

r = 0.05 ± 0.001 at cosmological scales are plotted in violet. Those models that are also

consistent at local scales with ΩGW(k0 = 1.6×1014Mpc−1) = (8.2±0.69)×10−17 are plotted

in blue. Note that modes with wave number k = 1.6× 1014Mpc−1 correspond to frequencies

f = 0.25 Hz. Right Column: H and V as a function of the number of efoldings before

the end of inflation in the top and bottom panels respectively. Right Column: H and V

as a function of the effective scalar field, φ driving inflation in the top and bottom panels

respectively.
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Qualitatively, all models consistent with constraints at cosmological and local scales show

similar behavior, as illustrated by the blue curves in the left panels in Fig. 7 between N = 60

and N = 20. A slight increase in the range of model behavior can be seen for 40 > N > 20,

which then translates to a widening of possibilities toward the end of inflation when the

fields are departing from slow-roll conditions. Without intermediate and late inflationary

epoch constraints on the tensor spectral amplitudes, we can identify properties of the local

scale spectrum in order to further constrain the family of models permissible by observation.

Specifically, the variety of allowable model amplitudes during intermediate and late time

inflationary epochs will also reveal a distribution of spectral tilts, nT , at local scales. For

example, the blue curves in Fig. 7, demonstrate a distribution of spectral tilts, nT, for modes

with wave numbers of k = 1.6 × 1014Mpc−1 that exited the horizon 20 efoldings before

inflation ended. This distribution is shown in Fig. 8.

A group of allowed models are clustered around spectral tilts of nT = −0.06 at local

scales. The tail in the distribution toward higher values of nT is easily associated with

the models in Fig. 7 that fall more rapidly during intermediate epochs and then require

a plateauing behavior in order to satisfy the required number of efoldings of expansion.

These models all lie below the simpler main group of curves during intermediate times and

above toward the end of inflation. These outlying models can be ruled out if interferometric

measurements obtained sensitivity levels to constrain the tilt to nT = −0.06±0.02 or better.

In order to achieve these constraints at 95% confidence, the previously discussed DECIGO

experiment will need a sensitivity level scaling parameter u = 1/25, an additional factor of

5 below the strain sensitivity (or a factor of 25 below the sensitivity to ΩGW) used above

(u = 1/5). This is a factor of 625 increase in sensitivity to ΩGW beyond the base design for

DECIGO.

Applying these spectral tilt constraints to the models consistent at both cosmological

and local scales as shown in blue in Fig. 7 (albeit without constricting the constraints on

local scale amplitudes), we further reduce the number of consistent models to 78. This

subset is illustrated in Fig. 9 in black, plotted over the models shown in Fig. 7. To further

illustrate the distribution of each of these subsets of models, Fig. 10 indicates the mean and

the band containing 95% of the models about the mean for each family of curves shown
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Figure 8: The distribution of spectral tilts of models consistent with cosmological constraints

with amplitudes corresponding to r = 0.05 ± 0.001 and at local scales with ΩGW = (8.2 ±

0.69)×10−17 at 95% confidence for modes with wavenumber k = 1.6×1014Mpc−1 that exited

the horizon 20 efoldings before the end of inflation.
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in Fig. 9. Here, the blue curves from Fig. 9 have their mean plotted as blue and the 95%

spread of models shown as gray. Similarly for the violet curves from Fig. 9, the mean and

95% spread of models about the mean are shown in Fig. 10 as black and violet respectively.

Although this additional constraint has not greatly reduced the number of allowed models, it

has significantly restricted the qualitative behavioral forms. If the local scale spectral index

were measured to be nT = −0.02 ± 0.02, only a few models with more complex potential

shapes would be consistent.

This conclusion will hold even for a tensor spectrum with a lower amplitude than the

fiducially chosen value, provided that the amplitude can still be measured on both scales

with similar fractional errors as used here. Of course, the lower the amplitude, the more

technically challenging these measurements become. For amplitudes significantly below r =

10−3, confusion with the residual gravitational lensing signal will prevent measurement of

the tensor amplitude using B-mode polarization [128, 129], while the binary confusion limit

becomes an increasing problem for interferometer measurements.

5.4 DISCUSSION

These results clearly demonstrate the capacity of combined measurements of the tensor power

spectrum at both microwave background and interferometric scales to constrain the history

and physics of inflation. The family of inflation models consistent with both measurements

is vastly restricted compared to inflation models consistent only with an amplitude mea-

surement at a single scale. Furthermore, the combined measurements determine the inflaton

potential and expansion history over a wide range of field values and evolutionary epochs.

We have assumed B-mode polarization measurements of the tensor amplitude with preci-

sion at the r = 0.001 level; upcoming polarization experiments with increased sensitivity

and frequency coverage are expected to surpass this (see, e.g., [130]). We also assume a

future interferometer measurement of the tensor amplitude at the 8% level, which will be

challenging but feasible if there is in fact a measureable cosmological tensor signal. Pushing

the sensitivity of interferometric experiments farther opens the possibilty of further restrict-
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Figure 9: The same models as shown in Fig. 7. The smaller subset of models that have local

scale tensor spectral tilts of nT ∈ [−0.08,−0.04] are plotted in black.
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Figure 10: The mean and 95% spread about the mean of models shown in Fig. 9. Here

the potentials and expansion rates consistent with r = 0.05 ± 0.001 with 2σ confidence at

cosmological scales (corresponding to 60 efoldings before the end of inflation), as well as at

local scales (corresponding to 20 efoldings before the end of inflation) with 8%, 2σ error on

the amplitude have their mean plotted in blue and the spread of models illustrated as a gray

band. The set of models that additionally have spectral tilt constraints at local scales in the

range of −0.08 < nT < −0.04 have their mean plotted in black with their spread about the

mean as a violet band.
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ing the family of allowed models via the tilt of the spectra at these scales. Clearly such a

measurement vastly restricts the behavioral variety of consistent inflationary models.

It may seem surprising that the tilt of the tensor spectrum varies so greatly between scales

corresponding to 60 and 20 efoldings before the end of inflation. Recall, however, that during

slow-roll ε ∝ (V ′/V )2, where the prime indicates the derivative with respect to the effective

scalar field φ and V is the effective potential of that scalar field. As illustrated in Fig. 7 and

9, the potentials drop by a factor of approximately 3 between N = 60 and N = 20. When

plotted as a function of φ, this roughly corresponds to the interval of φ ∈ [0.0, 1.0]. In this

interval, the slope of the potential steepens only slightly. Taking both the slight steepening

of the slope and the drop in the value of the potential into consideration, we estimate epsilon

to increase by a factor of at least 9. Our fiducial selection of models at N = 60 have

amplitudes corresponding to r = 0.05± 0.001 and have tilts centered on nT = −6.25× 10−3

(as to be expected according to the slow-roll consistency relation, r = −8nT). Moving to

N = 20 and increasing ε by a factor of roughly 9 then results in a distribution of tilts at

these scales to be centered on roughly nT ≈ −0.06. This is consistent with what we have

found in the distribution of tilts at local scales, as illustrated in Fig. 8, and is indicative of

the dominance of slow-roll behavior throughout these 40 efoldings of evolution. The outlying

models underwent brief departures from slow-roll evolution before returning to ensure the

necessary number of efoldings of expansion are completed. This behavior directly translates

to the tilt of the spectrum at local scales, thus providing a probe of the expansion history and

effective potential driving inflation during epochs corresponding to otherwise unmeasureable

scales.

We have made the simplifying physical assumption that reheating after inflation happens

quickly, i.e. on a time scale less than a Hubble time, so it has little effect on the expan-

sion history of the Universe. Some models of reheating take significantly longer than this,

resulting in a period of matter-dominated expansion prior to the usual radiation-dominated

era which can modify the tensor amplitude at small scales (e.g., [131]). Measurements of

both the tensor amplitude and the scalar spectral index will give interesting constraints on

the duration of any reheating epoch [132]. An extension of the present analysis to include

reheating will be considered elsewhere.
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The numerical analysis in this paper does not have a rigorous quantification of Monte

Carlo coverage of the inflation model space. The truncation of the slow-roll hierarchy at a

given order results in only a particular subset of inflation models in the allowed model space.

Larger computational efforts can include higher-order truncations, effectively expanding the

model space which is explored, and more total models in each Monte Carlo, which will

sharpen statistical conclusions. It is unlikely that models not available in our 8th-order slow-

roll hierarchy will change our conclusions in a qualitative sense, since the allowed models span

a wide range of potentials, as is visible in Fig. 7. However, whether rare successful models

exist which are clearly different from the family of models identified here is an interesting open

question. These rare cases may be further constrained by additional sources of information.

The results presented here show that a detection of inflationary tensor perturbations

at two widely separated scales, the cosmological scale via B-polarization of the microwave

background and the Earth-Moon scale via a space-based laser interferometer, will determine

the dynamical history of the Universe during the inflation era. In turn, such measurements

will give strong constraints on fundamental physics at energy scales of 1016 GeV, inaccessible

by any other means.
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6.0 CONCLUSIONS

Inflation stretches quantum tensor and curvature fluctuations to classical scales. These

modes are preserved after being driven beyond the horizon. As such, wavelengths (and

frequencies) are tracers of the times when those perturbations exited the horizon, the value of

the scalar field φ driving expansion, and the number of e-foldings that remain before inflation

ends. Perturbation amplitudes on the other hand are directly linked to the expansion rate and

the potential of the inflationary scalar field. Measurements of these primordial perturbations

across a range in frequencies provide a mapping of the expansion history and the evolution of

the potential with respect to N and φ. As discuss in § 5, a joint constraint of the amplitude

of the primordial tensor power signal at CMB and solar system scales greatly reduces the

viable models of potentials and expansion histories during inflation as shown in Fig. 7 of

§ 5. The addition of intermediate measurements (perhaps at N ≈ 40) would amplify the

constrainability of inflationary histories and the underlying physics therein.

Successfully measuring the primordial tensor power spectrum at any scale is no small

task. The excitement generated by the first detection of B-mode polarization by BICEP

2 [95] and the subsequent revelation that the signal is largely due to dust foregrounds

[110, 63, 133] is a clear example of that. Dust, sensitivity, and the ever present experimental

systematics are the dragons that must be tamed to reach the underlying primordial signal.

Foreground dust produced B-mode polarization must be accurately characterized if a

subdominant primordial signal is to be revealed [134]. Efforts are underway to accomplish

this. The BFORE mission has been proposed specifically designed to probe the presence of

polarization producing galactic dust to supplement existing experiments [135]. With accurate

dust modeling, future CMB missions such as Core [136], LiteBIRD [137], PIXIE [130], EPIC

[138], and PRISM [139] will have the sensitivity to detect a tensor-to-scalar ratio of r ∼ 10−3
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to 10−4. As is discussed in § 4, missions such as these may even have the ability to measure

the tilt of the power spectrum if lensing is accurately taken into account.

The lensing B-mode signal has a significant presence at all scales and peaks at l ≈ 1000.

It is the result of E-modes converting to B-modes as polarized light is deflected by structure

on its journey to us [140]. The lensing signal, which will be non-Gaussian, can be estimated

using a quadratic estimator formed from alm’s at different angular scales (different values of

l and m) in temperature and polarization [88, 87, 89]. The Atacama Cosmology Telescope

(ACT) has successfully estimated the gravitational lensing of the CMB using this method

[142]. Using the fact that the cosmic infrared background (CIB) traces structure, the South

Pole Telescope (SPT) and ACT have cross correlated the CMB with the CIB to detect

lensing as well [141, 143]. Recently the lensing B-mode signal has been detected directly by

the BICEP2/Keck experiment for the first time [148]. With high map sensitivity, the effects

of lensing can be strongly constrained, giving access to any underlying primordial B-mode

signal.

Direct detection of gravitational waves at small scales has significant challenges as well.

The Laser Interferometer Gravitational Wave Observatory’s (LIGO) recent first detection

of gravitational waves due to coalescing black holes [149] is a technological and scientific

triumph, giving promise to future experiments. Development of a space based gravita-

tional wave interferometer is the next step. The LISA (Laser Interferometer Space Antenna)

Pathfinder experiment, designed to test the sensitivities of the free-fall interferometric tech-

nologies needed for full gravitational wave experiments, was a huge success [150]. This paves

the way for space based gravitational wave observatories, beginning with the Evolved Laser

Interferometer Space Antenna (eLISA) [151]. The success of the first space-based interfer-

ometers is critical for missions such as DECIGO to launch and begin their search for the

primordial gravitational wave background.

As is the case with the CMB scale primordial tensor perturbations, foreground sources

can hide the local primordial signal. At small scales these sources are astrophysical in

nature. Some examples are core collapse supernovae and inspiraling and coalescing compact

binaries, each of which has a distinct spectral fingerprint. These signals should be roughly

isotropic across the sky. Because they span the history of stellar activity in the Universe, they
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should be numerous. The superposition of inspiraling compact binary signals will produce

an isotropic stochastic background. Burst events by mergers or core collapse supernovae will

create a shot noise signal due to their lower event rate, short duration, and signal strength.

Bursts that are frequent enough to have a slight overlap in their waveforms can also contribute

a “popcorn” background signal. For a visual example of the three types of astrophysical

signals, see Fig. 2 of [152]. The non-Gaussian nature of the latter two signals provides a

means to distinguish them from any underlying Gaussian spectrum. The first of these three

signals is continuous and likely Gaussian, making it a troublesome mask for the primordial

signal. Fortunately the compact binary foreground signal has a frequency cut off that can be

exploited. The highest frequencies possible will be just before objects merge. White dwarf

- white dwarf binaries are likely to contribute a large portion of the stochastic astrophysical

background. Their signals will cut off at frequencies of ∼ 10−2 to 10−1 Hz. Thus a frequency

window is available & 10−1 Hz (corresponding to k & 1013 Mpc−1) where a large portion of

the astrophysical contaminant is not present. Future mission such as the Big Bang Observer

(BBO) Stage 2 [153] and advanced stages of the DECi-hertz Interferometer Gravitational

wave Observatory (DECIGO) [103, 104] may have the sensitivity at these frequencies to

constrain the amplitude of the stochastic background of inflationary gravitational waves at

solar system scales. This prospective sensitivity was utilized in § 4 and § 5.

Any additional constraints on the tensor spectrum at other scales drastically limit the

consistent expansion histories and potentials. Qualitatively, Figs. 9 and 10 suggest that

the tilt of the tensor spectrum at local scales is strongly correlated to the properties at

intermediate scales for relatively smooth potentials. Intermediate scale observations would

potentially confirm or falsify this trait. Intermediate measurements will also reveal the

presence or lack of rapid variations. The discovery of such potentials would indicate that

the assumptions of smooth, decreasing potentials in the reconstruction technique of § 5 are

invalid. Pulsar timing arrays (PTAs) are experiments working at such scales in a frequency

range of f ∈ [10−9, 10−7] Hz (or k ∈ [107, 109] Mpc−1) (e.g. see [154]). Unfortunately even

the “optimal” PTA observing over a 20 year period with an array of 200 pulsars would be

unable to detect the tensor spectrum at the current upper limits on the tensor-to-scalar

ratio r < 0.07 [63] with nT ≤ 0 in the absence of any unlikely extreme behavior [155, 154].
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They would, however, be able to rule out or detect primordial signals that have blue tilts at

CMB scales with nT > 0 (see Fig.1 of [154]). In principle intermediate scale measurements

with strong constraints would amplify our ability to identify the evolutionary history during

inflation across ∼ 40 e-foldings of expansion, but PTAs are not likely to provide them.

As used in § 5, measurements of the primordial scalar power spectrum also put restric-

tions on the allowed inflation models. Currently we have confident measures of the scalar

amplitude and tilt from the CMB. The addition of constraints at other scales would put

further restrictions. Care must be taken at smaller scales, however, as the power spec-

trum is in the fully non-linear regime [144]. At scales corresponding to clusters and larger

corresponding to k ∈ [0.01, 5] Mpc−1, LSS sheds some light on the primordial power spec-

trum [156]. By mapping the galaxy and cluster density field, all sky surveys such as Euclid

[157] and the Large Synoptic Survey Telescope (LSST) [158] may provide such constraints.

Galaxies and baryonic matter unfortunately may not be exact tracers of dark matter halos.

This creates uncertainty in the form of a bias factor which needs to be accounted for in

order to confidently arrive at the primordial scalar power spectrum [159, 160]. As discussed

above, weak gravitational lensing of background photons provides a tracer of the LSS mat-

ter distribution. Measurements of weak lensing thus provide substantial constraints on the

power spectrum [145]. This bypasses (and constrains [146, 147]) the bias associated with

photometric mapping of structure and gives a clearer window to the matter power spectrum.

There are other more subtle tracers of LSS that can be explore. Before reionization neu-

tral hydrogen was in abundance. Electron spin flips to lower energy states in hydrogen emit

light with a wavelength of 21 cm. These emission lines can therefore be used as a tracer of

gas overdensities, a proxy to matter and curvature perturbations. Observations can provide

constraints on the primordial matter power spectrum for modes with roughly k ∈ [0.1, 1]

[162, 163]. The Hydrogen Epoch of Reionization Array (HERA) [164] and the Omniscope

[165] may realize this goal. As is with all observations, foregrounds (natural or human made)

will certainly be problematic for these efforts. Along with emission lines, absorption can be

exploited. Light emitted from quasars and active galactic nuclei at high redshifts is readily

absorbed by intervening hydrogen gas, specifically by the Lyman α transition. On its jour-

ney to us, the light encounters many absorbers. The intervening hydrogen clumps are at
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different redshifts, creating a “forest” of Lyman α absorption lines in the observed spectrum.

This forest thus traces the growth of structure and matter perturbations across a wide range

of redshifts, enabling the estimation of the scalar power spectrum of modes k ∈ [0.1, 20]

[166, 167, 168].

On subgalactic scales the detection of subtle effects due to dark matter subhalos can

probe the primordial matter power spectrum. Microlensing detections in our own galaxy

can be used to constrain the abundance of dark matter subhalos [169]. Dark matter decay

and annihilation detections originating from such halos has also been proposed to track their

abundances [170, 171]. It may also be possible to utilize precise measurements of galactic

dynamics [172] and tidal tail and stream distortions [173, 174] to trace the presence of these

halos. Identifying the dark matter subhalos within our galaxy can lead to constraints on the

power spectrum on scales corresponding roughly to k ∈ [1, 104] Mpc−1.

Another potential avenue for constraining small scales of the scalar power spectrum is

through spectral distortions of the CMB. Perturbations entering the horizon before decou-

pling are thermally washed away by Silk dampening. The original state of slight disequilib-

rium, however, results in scattering events that distort the spectrum from a pure blackbody.

Such events should take place in the redshift range of z ≈ 104 to 106 corresponding to fre-

quencies of k ≈ 101 to 104 Mpc−1. These distortions may be detectable by missions like

PIXIE due to the large number of frequency channels [175, 176].

Figure 11 summarizes the various experiments and methods to constrain the scalar and

tensor power spectra discussed above (i.e.CMB, 21 cm, Lyman α, CMB spectral distortion,

LSS and weak lensing, dark matter subhalo mapping by various means, PTAs and space-

based interferometric gravitational wave observatories) and their effective frequency bands.

Blue and red lines indicate the experiments will constrain the tensor and scalar primordial

power spectrum, respectively. The CMB is designate black as it holds the potential to

constrain both power spectra. The “Subhalo” label is inclusive of microlensing, dark matter

decay and annhiliations, and intragalactic dynamics and tidal stream distortion. Fig. 11 is

not intended to represent the relative sensitivity of these experiments; the offsets are merely

for clarity.

The direct detection of gravitational waves by LIGO [149], the first measurements of B-
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Figure 11: The effective frequency bands of experiments to constrain the tensor and scalar

power spectra. Blue (red) lines indicate the experiment will constrain the tensor (scalar)

power spectrum. Black is used for the CMB to indicate that it will constrain both spectra.

The “Subhalo” label is an umbrella category that includes microlensing, dark matter decay

and annhiliations, and intragalactic dynamics and tidal stream distortion. Offsets are for

clarity and not to be taken as relative sensitivity.
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mode polarization by the BICEP2 experiment [95], and the exceded sensitivity expectations

of the LISA Pathfinder mission [150] are not detections of the primordial gravitational relic

themselves, but they are vast technological strides on the path to finding it. Future missions

may finally reveal this elusive background. Independent measurements will be a great test

of the inflationary paradigm. Multiple joint constraints of scalars and tensors at widely

separated length scales, however, will hone in on the the expansion history and potential

of inflation across roughly 40 e-foldings of evolution. This will not only shed light on the

evolution of the Universe when it was between 10−36 and 10−32 seconds old, but it will also

reveal physics at energy scales of O(1016) GeV. These energies are unreachable by Terran

particle accelerators. This is an exciting time in cosmology. We are approaching a summit

of discovery in our pursuit of the beginning. The view we find will surely be spectacular.
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