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ABSTRACT

ANALYSIS AND PDE ON METRIC MEASURE SPACES: SOBOLEV

FUNCTIONS AND VISCOSITY SOLUTIONS

Xiaodan Zhou, PhD

University of Pittsburgh, 2016

We study analysis and partial differential equations on metric measure spaces by investigating

the properties of Sobolev functions or Sobolev mappings and studying the viscosity solutions

to some partial differential equations.

This manuscript consists of two parts. The first part is focused on the theory of Sobolev

spaces on metric measure spaces. We investigate the continuity of Sobolev functions in the

critical case in some general metric spaces including compact connected one-dimensional

spaces and fractals. We also construct a large class of pathological n-dimensional spheres

in Rn+1 by showing that for any Cantor set C ⊂ Rn+1 there is a topological embedding

f : Sn → Rn+1 of the Sobolev class W 1,n whose image contains the Cantor set C.

The second part is focused on the theory of viscosity solutions for nonlinear partial dif-

ferential equations in metric spaces, including the Heisenberg group as an important special

case. We study Hamilton-Jacobi equations on the Heisenberg group H and show uniqueness

of viscosity solutions with exponential growth at infinity. Lipschitz and horizontal convexity

preserving properties of these equations under appropriate assumptions are also investigated.

In this part, we also study a recent game-theoretic approach to the viscosity solutions of var-

ious equations, including deterministic and stochastic games. Based on this interpretation,

we give new proofs of convexity preserving properties of the mean curvature flow equations

and normalized p-Laplace equations in the Euclidean space.
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1.0 INTRODUCTION

Analysis on metric measure spaces is a new area in contemporary mathematics that has been

developed since the nineties. Because of its general setting it plays a fundamental role in the

unification of methods that previously have been developed separately for different areas of

mathematics [4, 5, 55, 59]. Besides the pure mathematical importance of these problems,

analysis on metric spaces has been widely applied to image reconstruction theory, optimal

transport, control theory, robotics and mathematical biology.

In the first part of this manuscript, we study the Sobolev functions on general metric

measure spaces. The theory of Sobolev spaces is one of the main tools in analysis on metric

spaces. Let (X, d, µ) denote a metric space equipped with a doubling measure µ. Given a

Borel function u : X → R, we say that a Borel function g : X → [0,∞] is an upper gradient

of u if

|u(γ(a))− u(γ(b))| ≤
ˆ
γ

g

for every rectifiable curve γ : [a, b] → X. The Newtonian-Sobolev space N1,p(X) is defined

as the collection of all p-integrable functions with p-integrable upper gradients [112]. The

notion of upper gradient is an important generalization of the length of the gradient.

While the N1,p spaces can be defined on general metric measure spaces, without ad-

ditional information about the structure of the underlying metric space the theory is not

interesting. Indeed, if there are no rectifiable curves in the space then N1,p = Lp. On the

other hand the theory of N1,p spaces is very rich when X supports the so called p-Poincaré

inequality. Spaces supporting Poincaré inequalities introduced by Heinonen and Koskela

[56], provide a good structure to study first-order analysis. Metric measure spaces support-

ing an abstract Poincaré inequality are highly connected. Spaces like fractals with limited
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connectedness do not belong to this class. However, in this case, one can define the Haj lasz-

Sobolev space M1,p(X) as the collection of all p-integrable functions for which there exist

nonnegative g ∈ Lp(X) such that

|u(x)− u(y)| ≤ d(x, y)
(
g(x) + g(y)

)
, (1.0.1)

for x, y ∈ X \ E where µ(E) = 0. We denote the collection of nonnegative Borel function g

as above by D(u).

There are many other extensions of the classical theory of Sobolev spaces to the settings

of metric measure spaces [4, 5, 24, 46, 49, 112]. Under suitable assumptions, some of or all

these Sobolev spaces defined via different approaches coincide [59, 74]. We will review some

basic definitions and theorems of Sobolev functions on metric measure spaces in Chapter 2

and Chapter 3.

In the Euclidean space, Sobolev functions u ∈ W 1,1([a, b]) are absolutely continuous.

When n ≥ 2, u(x) = log | log |x|| provides an example of a discontinuous Sobolev functions

in W 1,n(Bn(0, e−1)) in the n-dimensional space. We are interested in investigating the con-

tinuity of the Sobolev functions in the critical case, i.e., p = n, on metric measure spaces.

From the above examples, we conjecture that the Sobolev functions in the critical case may

lose the continuity if the Hausdorff dimension is greater than 1. In Chapter 4, we first gen-

eralize the characterization of the Sobolev functions by absolute continuity to some metric

spaces X that are compact, connected and have finite one-dimensional Hausdorff measure.

Note that there are many extensions of the definitions of absolutely continuous functions to

more general settings and much research has been done on the connections between these

absolutely continuous functions and Sobolev functions. Malý [93] extended this definition

to n-dimensional Euclidean space by replacing the pairwise disjoint subintervals [ai, bi] with

pairwise disjoint balls Bi and |u(bi) − u(ai)| with (osc(u(Bi)))
n. Kinnunen and Tuominen

[76, Theorem 4] proved that on a doubling space X functions in the Haj lasz Sobolev space

M1,1(X) [46] coincide with Hölder continuous functions outside a set of small Hausdorff

content.

The definition of classical absolutely continuous functions can be modified in the following

way in our settings. Recall that a simple curve is a curve without self intersections. In what

2



follows Hs stands for the s-dimensional Hausdorff measure.

Definition 1.0.1 ([121]). Let (X, d,H1) be a compact, connected metric measure space

with H1(X) < ∞. A function u : X → R is said to be absolutely continuous (denoted

u ∈ AC(X)) if for any ε > 0, there is a positive number δ such that

∑
i

|u ◦ γi(`i)− u ◦ γi(0)| < ε,

for any finite collection of pairwise disjoint arc-length parametrized simple curves γi : [0, `i]→

X satisfying
∑

i `i < δ.

In the real line, absolutely continuous functions are differentiable almost everywhere and

the fundamental theorem of calculus holds. For a compact, connected metric space X with

H1(X) <∞, there exists a good parametrization (Theorem 2.3.3) that can decompose this

space as a countable union of pairwise disjoint simple curves and a set with 1-dimensional

Hausdorff measure zero [5, Theorem 4.4.8]. We have the following result.

Theorem 1.0.2 ([121]). Let (X, d,H1) be a compact, connected metric measure space with

H1(X) <∞. If u ∈ AC(X), then there is an upper gradient g ∈ L1(X) of u, such that, for

any rectifiable curve γ : [a, b]→ X, we have

|u(γ(a))− u(γ(b))| ≤
ˆ
γ

g.

For an absolutely continuous function u ∈ AC(X), if the upper gradient g in Theorem

1.0.2 is p-integrable, we write u ∈ ACp(X). By definition, it follows that ACp(X)∩Lp(X) ⊂

N1,p(X). On the other hand, we can verify that all Sobolev functions in N1,p(X) belong to

the class AC(X) and the associated upper gradients g are p-integrable. Thus, we have the

following result.

Theorem 1.0.3. Let (X, d,H1) be a compact and connected metric measure space with

H1(X) <∞. Then u ∈ N1,p(X) if and only if u ∈ ACp(X) and u ∈ Lp(X). In other words,

N1,p(X) = ACp(X) ∩ Lp(X).

3



We also prove that if a compact metric space is quasiconvex and 1-Ahlfors regular, then

X supports p-Poincaré inequality for 1 ≤ p <∞. Recall that a metric space X is s-Ahlfors

regular if there exists a constant C0 ≥ 1 such that C−1
0 rs ≤ µ(B(r)) ≤ C0r

s for any ball

B(r) ⊂ X with 0 < r < diam(X). A metric space is quasiconvex if there exists a constant C

such that any two points x, y ∈ X can be joined by a rectifiable curve of length bounded by

Cd(x, y). It follows that absolutely continuous functions with p-integrable upper gradient

can be identified with the Sobolev functions defined via different approaches.

Theorem 1.0.4 ([121]). Let (X, d,H1) be a compact, quasiconvex and 1-Ahlfors regular

metric measure space. Let 1 < p <∞. Then

ACp(X) ∩ Lp(X) = N1,p(X) = P 1,p(X) = M1,p(X).

This result extends the characterization of Sobolev functions by absolute continuity

known in the 1-dimensional intervals to more general 1-dimensional spaces. In the next

theorem, we deal with some fractal type metric spaces. We prove the uniform continuity of

Sobolev functions in s-Ahlfors regular spaces with s ≤ 1. Note that Ahlfors regular spaces

include a large class of fractals generated by iterated function systems satisfying the open

set condition.

Theorem 1.0.5 ([122]). Let (X, d,Hs) be an s-Ahlfors regular metric space and 0 < s ≤ 1.

If u ∈M1,s(X, d,Hs), then u is uniformly continuous. Moreover, there exists a constant C,

such that for any ball B ⊂ X,

oscB |u| = sup
x,y∈B

|u(x)− u(y)| ≤ C
(ˆ

2B

gsdHs
) 1

s
,

where g ∈ D(u) ∩ Ls(X).

In Chapter 5, we generalized a construction of the famous Alexander horned sphere,

which provides a counterexample to the Schoenflies Theorem in R3. Namely we managed

to construct a Sobolev embedding from the n-dimensional sphere to the (n+ 1)-dimensional

Euclidean space whose image contains an arbitrary Cantor set. Recall that a Cantor set

is any compact, totally disconnected and perfect set. The main theorem can be stated as

follows.

4



Theorem 1.0.6 ([52]). For any Cantor set C ⊂ Rn+1, n ≥ 2, there is an embedding

f : Sn → Rn+1 such that

(a) f ∈ W 1,n(Sn,Rn+1),

(b) C ⊂ f(Sn),

(c) f−1(C) ⊂ Sn is a Cantor set of Hausdorff dimension zero,

(d) f is a smooth diffeomorphism in Sn \ f−1(C).

Note that such a sphere f(Sn) can be very pathological due to topological complexity

of wild Cantor sets in Rn+1. Note also that the Cantor set C may have positive (n + 1)-

dimensional Lebegue measure. The Sobolev regularity of such a homeomorphism has not

been known previously. Moreover our construction generalizes not only the Alexander horned

sphere, but also provides a new class of Sobolev homomorphisms without the Luzin property.

We also prove in Theorem 5.5.1 that there are uncountably many such embeddings f : S2 →

R3 of class W 1,2(S2,R3) which are not equivalent.

In the second part of this manuscript, we study viscosity solutions to some partial differ-

ential equations. Since 1980s, the theory of viscosity solution for nonlinear partial differential

equations has been developed and applied to a wide range of fields. It provides existence

and uniqueness of weak solutions to a very general class of fully nonlinear equations in the

space of continuous functions [27, 80]. A recent trend is to extend this theory to metric mea-

sure spaces; see [3, 40] for some results of first order Hamilton-Jacobi equations on general

metric spaces. We study viscosity solutions to a class of second order equations. We focus

on the setting of sub-Riemannian manifolds [21], which not only play a very important role

in general analysis on metric spaces but also has applications in many other fields including

robotic control, neuroscience and digital image reconstruction. We aim to develop the vis-

cosity solution theory for nonlinear parabolic equations in the Heisenberg group H, which is

known as the simplest example of sub-Riemmanian manifold.

In Chapter 6, we review some basic definitions and properties of Heisenberg group and

the theory of viscosity solutions. Then we study viscosity solutions of the following semilinear

parabolic equations{
ut − tr(A(∇2

Hu)∗) + f(p,∇Hu) = 0 in H× (0,∞), (1.0.2)

u(·, 0) = u0 in H, (1.0.3)

5



in the Heisenberg group, where A is a given 2 × 2 symmetric positive-semidefinite matrix

and the function f : H× R2 → R satisfies the following Lipschitz assumptions.

(A1) There exists L1 > 0 such that

|f(p, w1)− f(p, w2)| ≤ L1|w1 − w2| (1.0.4)

for all p ∈ H and w1, w2 ∈ R2.

(A2) There exists L2(ρ) > 0 depending on ρ > 0 such that

|f(p, w)− f(q, w)| ≤ L2(ρ)|p · q−1|G (1.0.5)

for all p, q ∈ H with |p|, |q| ≤ ρ and all w ∈ R2.

Here | · |G denotes the Korányi gauge in H,

|p|G =
(
(x2

p + y2
p)

2 + 16z2
p

) 1
4

for all p = (xp, yp, zp) ∈ H. We first show uniqueness of viscosity solutions to the above

equation with exponential growth at infinity.

Theorem 1.0.7 (Uniqueness of solutions, [89]). Assume that (A1) and (A2) hold. Let

u0 ∈ C(H). Then there is at most one continuous viscosity solution u of (1.0.2)–(1.0.3)

satisfying the following exponential growth condition at infinity:

(G) For any T > 0, there exists k > 0 and CT > 0 such that |u(p, t)| ≤ CT e
k〈p〉 for all

(p, t) ∈ H× [0, T ].

Among many properties of the viscosity solutions, the Lipschitz and convexity preserving

properties are known to be important for various linear and nonlinear parabolic equations

arising in geometry, material sciences and image processing. Suppose that u : Rn× [0,∞)→

R is a solution of a certain parabolic equation with initial condition u0. The property reads

as follows: when u0 is Lipschitz continuous (resp. convex), the unique solution u(x, t) is

Lipschitz (resp., convex) in x as well for any t ≥ 0. The convexity preserving property of

viscosity solutions was proved to hold in a very general class of degenerate parabolic equations

[39]. It is natural to ask whether the Lipschitz and convexity preserving properties also hold

6



for nonlinear parabolic equations in the Heisenberg group. Note that the notion of convexity

of functions in the Heisenberg group is known [30, 91]. More precisely, a function u is said

to be Lipschitz continuous in H if there exists L > 0 such that

|u(p)− u(q)| ≤ LdL(p, q)

for all p, q ∈ H, and horizontally convex in H if

u(p · h−1) + u(p · h) ≥ 2u(p)

for any p ∈ H and any h ∈ H0, where

H0 = {h ∈ H : h = (h1, h2, 0) for h1, h2 ∈ R}.

It turns out that in general such properties cannot be expected in the Heisenberg group.

Some restrictions on the class of solutions proved to be necessary. In fact, we obtained the

Lipschitz continuity and convexity preserving properties with respect to the right invariant

metric dR(p, q) = |p · q−1|G, which is invariant only under right translations and therefore

not equivalent to the usual gauge metric give by dL(p, q) = |p−1 · q|G.

Let us also present our results in a simple case. A more general version of Lipschitz

preserving is given in Theorem 6.4.2.

Theorem 1.0.8 (Preservation of right invariant Lipschitz continuity, [89]). Assume that

f : R2 → R is Lipschitz. Let u ∈ C(H× [0,∞)) be the unique solution of

ut − tr(A(∇2
Hu)∗) + f(∇Hu) = 0 in H× (0,∞), (1.0.6)

with u(·, 0) = u0(·) satisfying the growth condition (G). If there exists L > 0 such that

|u0(p)− u0(q)| ≤ LdR(p, q)

for all p, q ∈ H, then

|u(p, t)− u(q, t)| ≤ LdR(p, q)

for all p, q ∈ H and t ≥ 0.

7



For the case of first order Hamilton-Jacobi equations (A = 0), if in addition we assume

that f : R2 → R is in the form that f(ξ) = m(|ξ|) with m : R → R locally uniformly

continuous, then the Lipschitz preserving property of a bounded solution can be directly

shown without the evenness assumption. We refer the reader to Theorem 6.4.4, which

answers a question asked in [98]. A more general question on Lipschitz continuity of viscosity

solutions was posed in [8], but it is not clear if our method here immediately applies to that

general setting.

As for the case of h-convexity preserving property, we obtain the following:

Theorem 1.0.9 (Preservation of right invariant h-convexity, [89]). Assume that f : R2 → R

is Lipschitz. Let u ∈ C(H × [0,∞)) be the unique solution of (1.0.6) with u(·, 0) = u0(·)

satisfying the growth condition (G). Assume in addition that f is concave in R2, i.e.,

f(ξ) + f(η) ≤ 2f

(
1

2
(ξ + η)

)
(1.0.7)

for all ξ, η ∈ R2. If u0 is right invariant h-convex in H; that is,

u0(h−1 · p) + u0(h · p) ≥ 2u0(p)

for all p ∈ H and h ∈ H0, then so is u(·, t) for all t ≥ 0.

Although the result above only concerns the right invariant definitions of Lipschitz con-

tinuity or convexity, we can obtain the left-invariant preserving properties under certain

additional assumptions. For instance, the notions of left invariant and right invariant Lips-

chitz continuity or convexity are equivalent when functions are even or vertically even. This

implies the Lipschitz or h-convexity preserving property of an even function or vertically

even function.

On the other hand, there are also many affirmative examples for Lipschitz and convexity

preserving in the Heisenberg group. In the last section of Chapter 6, we give a list of several

such examples. It is certainly natural to ask whether the preserving of left invariant convexity

holds without these symmetry assumptions. This remains as a future problem we aim to

address.

In Chapter 7, we will study the game-theoretic interpretation of the viscosity solutions

to some fully nonlinear partial differential equations [90]. The discrete game interpretations
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of various elliptic and parabolic PDEs ([78, 100, 101, 79, 97, 96], etc) have recently attracted

great attention. The game related methods are also used as a new tool in different contexts.

For example, the fattening phenomenon for mean curvature flow is rigorously proved via

games without using parabolic theory by Liu [88]. Armstrong and Smart [7] proved the

uniqueness for infinity harmonic functions using a method related to the tug-of-war games

in [100]. A recent work [92] provides a new proof of Harnack’s inequality for p-Laplacian by

stochastic games. All of these results largely simplify the original PDE proofs and indicate

a strong potential of applicability of the game-theoretic approach.

Due to the works [78, 96, 100, 101], one may find a family of discrete games, whose value

functions uε converge, as ε→ 0, to the unique solution u of a class of quasilinear parabolic

equations including level set mean curvature flow and normalized p-Laplace equations. We

revisit the convexity preserving properties in the Euclidean space for these two classes of

equations by respectively using the game-theoretic approximations first proposed in [96] and

[78]. Our new proofs are based on investigating game strategies or iterated applications of

Dynamic Programming Principles (DPP), which are very different from the standard proofs

in the literature. We look to the convexity preserving property of uε rather than that of

u. For the p-Laplace equations (2 ≤ p ≤ ∞), the convexity of uε follows directly from an

iteration of the corresponding DPP. However, for the level set mean curvature flow equation,

extra work is needed since the control set of the players in the game is not convex. We then

introduce a modified game and manage to show the convexity by comparing the limits of

value functions as ε→ 0. This game-theoretic method can also be applied to study convexity

preserving of the level sets of mean curvature flow equations and the Neumann boundary

problems.
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2.0 REVIEW OF METRIC MEASURE SPACES

In this chapter, we give a review of some definitions and properties of metric measure spaces.

The abstract metric measure spaces will play a crucial role in the first four chapters. The

main references for this chapter are the books by Ambrosio and Tilli [5], Evans and Gariepy

[33], Heinonen, Koskela, Shanmugalingam and Tyson [58]. Proofs for the theorems without

specifications can be found in the above books.

2.1 BASIC DEFINITIONS IN METRIC MEASURE SPACES

Let X denote a set, and 2X the collection of subsets of X. Let C denote a general constant

whose value can change even in the same chain of estimates.

Definition 2.1.1. A mapping µ : 2X → [0,∞] is called a measure on X if

(1) µ(∅) = 0, and

(2) µ(A) ≤
∑∞

k=1 µ(Ak) for any A ⊂
⋃∞
k=1 Ak.

Definition 2.1.2. A set A ⊂ X is µ-measurable if for every set B ⊂ X,

µ(B) = µ(A ∩B) + µ(B \ A).

Notice that in some textbooks, the mapping µ defined in Definition 2.1.1 is called “outer

measure” while the term “measure” is defined by restricting µ to the collection of all µ-

measurable sets.

A collection of subsets A ⊂ 2X is a σ-algebra if it satisfies ∅, X ∈ A; A ∈ A implies that

X \A ∈ A; Ak ∈ A(k = 1, · · · ) implies that
⋃∞
k=1 Ak ∈ A. The collection of measurable sets
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forms a σ-algebra in X. The smallest σ-algebra in X containing all open sets is called the

Borel σ-algebra. The sets in the Borel σ-algebra are called Borel sets.

Let us recall some basic definitions.

(1) A measure µ on X is regular if for every set A ⊂ X, there exists a µ-measurable set B

such that A ⊂ B and µ(A) = µ(B).

(2) A measure µ on X is called Borel if every Borel set is µ-measurable.

(3) A measure µ on X is Borel regular if µ is Borel and for every A ⊂ X, there exists a Borel

set B such that A ⊂ B and µ(A) = µ(B).

(4) A measure µ on X is a Radon measure if µ is Borel regular and µ(K) < ∞ for every

compact set K ⊂ X.

Definition 2.1.3. A function d : X ×X → [0,∞) is called a metric on X if it satisfies

(1) d(x, y) = d(y, x) for all x, y ∈ X;

(2) d(x, y) = 0 if and only if x = y;

(3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then the pair (X, d) is called a metric space. We denote open and closed balls in the

metric space as

B(x, r) = {y ∈ X : d(x, y) < r} and B(x, r) = {y ∈ X : d(x, y) ≤ r}.

Sometimes B(x, r) are abbreviated as B. We use 2B to denote a concentric ball of B

with twice the radius and Bn denotes a ball in the Euclidean space Rn.

A metric space (X, d) equipped with a Borel measure µ is called a metric measure space

and denoted as (X, d, µ). In what follows, we always assume that 0 < µ(B) <∞, for every

ball B ⊂ X. We say that µ is doubling if there exists a constant Cd ≥ 1 such that for every

ball B ⊂ X,

µ(2B) ≤ Cdµ(B).

If (X, d, µ) is a doubling metric measure space, then there exists a constant C > 0 such

that
µ(B(x, r))

µ(B(x0, r0))
≥ C

( r
r0

)s
11



whenever x ∈ B(x0, r0), r ≤ r0 and s = logCd/ log 2 is called the associated homogeneous

dimension.

Let µ, ν be Radon measures on a metric space X. Then ν is called absolutely continuous

with respect to µ, written ν << µ, provided µ(A) = 0 implies ν(A) = 0 for all A ⊂ X. The

following theorem is often referred to as Radom-Nikodym theorem.

Theorem 2.1.4. Let µ, ν be Radon measures on a metric space X with ν << µ. Then there

is a µ-measurable function g : X → [0,∞) such that

ν(A) =

ˆ
A

g dµ

for all µ-measurable sets A ⊂ X.

Given a set A in a metric space (X, d), the diameter of this set is

diam(A) = sup{d(x, y)|x, y ∈ A}.

We next define a very important measure, called Hausdorff measure on a metric space.

Definition 2.1.5. (1) Let A ⊂ X, 0 ≤ s <∞, 0 < δ ≤ ∞. Define

Hs
δ(A) = inf

{ ∞∑
j=1

α(s)
(diamCj

2

)s | A ⊂ ∞⋃
j=1

Cj, diamCj ≤ δ
}
,

where

α(s) =
πs/2´∞

0
e−xxs/2dx

.

(2) For A and s above, define

Hs(A) = lim
δ→0
Hs
δ(A) = sup

δ>0
Hs
δ(A).

We call Hs s-dimensional Hausdorff measure on X.

It can be verified thatHs is a Borel regular measure and n-dimensional Hausdorff measure

Hn coincides with the Lebesgue measure Ln on the Euclidean space Rn.

Definition 2.1.6. The Hausdorff dimension of a set A ⊂ X is defined to be

Hdim(A) = inf{0 ≤ s <∞ | Hs(A) = 0}.
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If k > Hdim(A), then Hk(A) = 0, and if k < Hdim(A), then Hk(A) =∞. If k = Hdim(A),

nothing can be said about the value of Hk(A).

Definition 2.1.7. Let (X, d, µ) be a metric space equipped with a Borel measure µ and let

s > 0. We say that a metric measure space (X, d, µ) is s-Ahlfors regular if there is a constant

CA ≥ 1, such that

C−1
A rs ≤ µ(B(x, r)) ≤ CAr

s, for any x ∈ X and 0 < r < diam(X).

If X is s-Ahlfors regular with respect to a Borel regular measure µ, then X has Hausdorff

dimension precisely s. Moreover, µ is comparable to the Hausdorff measure Hs, that is, there

exist constant C ≥ 1 such that

C−1Hs(E) ≤ µ(E) ≤ CHs(E),

for all Borel sets E ⊂ X. This implies that X is s-Ahlfors regular with respect to Hs [55,

Exercise 8.11.].

Definition 2.1.8. A metric space (X, d) is uniformly perfect if there exists a constant

0 < c < 1 such that for all x ∈ X and 0 < r < diam(X),

B(x, r) \B(x, cr) 6= ∅.

It is well known that s-Ahlfors regular metric spaces are uniformly perfect. Indeed, if X

is s-Ahlfors regular with constant CA, then B(x, r) \ B(x, cr) 6= ∅ for any 0 < c < C
−2/s
A .

Suppose to the contrary that B(x, r) \B(x, cr) = ∅. This would imply

C−1
A rs ≤ Hs(B(x, r)) = Hs(B(x, cr)) ≤ CA(cr)s

so C
−2/s
A ≤ c, which is a contradiction. This is observed in some earlier papers, for example

[114].

Let f : X → R be a function on a metric space. If there exists a constant L ≥ 0 such

that

|f(x)− f(y)| ≤ Ld(x, y)
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for all x, y ∈ X, we say that f is a Lipschitz function on X. The smallest constant L with

this property will be denoted by ‖f‖Lip. For α ∈ (0, 1), if there exists a constant L ≥ 0 such

that

|f(x)− f(y)| ≤ Ld(x, y)α

for all x, y ∈ X, we say that f is an α-Hölder continuous function.

2.2 CURVES IN METRIC MEASURE SPACES

A curve in a metric space (X, d) is a continuous map from an interval into X. We usually

denote a curve as γ : [a, b]→ X, and the image of a curve γ([a, b]) as Γ.

We define the length of a curve γ : [a, b]→ X as

`(γ) = sup{
k∑
i=1

d(γ(ti), γ(ti−1)), a = t0 < t1 < · · · < tk = b},

where the supremum is taken over all finite sequences of {ti} ⊂ [a, b] defined as above. If

`(γ) < ∞, then we say the curve γ is a rectifiable curve. Every rectifiable curve admits

a parametrization by arc-length, that is, there exists a parametrization of Γ, denoted as

γ̃ : [0, `(γ)]→ X such that `(γ̃|[0,t]) = t for any t ∈ [0, `(γ)]. This arc-length parametrization

γ̃ is a 1-Lipschitz mapping.

Definition 2.2.1. For a curve γ : [a, b] → X we define speed at a point t ∈ (a, b) as the

limit

|γ′|(t) = lim
h→0

d(γ(t+ h), γ(t))

|h|
,

if the limit exists.

Theorem 2.2.2. For every Lipschitz curve γ : [a, b] → X speed exists almost everywhere

and

`(γ) =

ˆ b

a

|γ′|(t) dt.
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If a rectifiable curve is parametrized by arc-length γ̃, then |γ̃′(t)| = 1 for almost every

point t ∈ [0, `(γ̃)].

We say a metric space X is quasiconvex if there is a constant C ≥ 1 such that every

two points x, y ∈ X can be joined by a curve with length less than or equal to Cd(x, y). A

metric space is called proper if bounded and closed sets are compact. The following theorem

guarantees the existence of geodesics in proper metric spaces.

Theorem 2.2.3. Suppose a metric space X is proper and path connected, that is, every

two points x, y can be joined by a rectifiable curve in X. Then there exists a shortest curve

γ : [a, b] → X connecting x and y, that is, γ(a) = x and γ(b) = y. The shortest curve is

injective.

Next, we define the integral along a rectifiable curve.

Definition 2.2.4. Let γ : [a, b] → X be a rectifiable curve and g : X → [0,∞] be a Borel

measurable function. Then we define

ˆ
γ

g =

ˆ `(γ)

0

g(γ̃(t)) dt,

where γ̃ is the arc-length parametrization of the given curve.

We also give the generalization of the Euclidean area formula to the case of Lipschitz

maps f from the Euclidean space Rn into a metric space X. The proof can be found in [77,

Corollary 8].

Theorem 2.2.5 (Area fomula). Let f : Rn → X be Lipschitz. Then

ˆ
Rn

θ(x)Jn(mdfx) dx =

ˆ
X

∑
x∈f−1(y)

θ(x) dHn(y)

for any Borel function θ : Rn → [0,∞] and

ˆ
A

θ(f(x))Jn(mdfx) dx =

ˆ
X

θ(y)H0(A ∩ f−1(y)) dHn(y)

for A ∈ B(Rn) and any Borel function θ : X → [0,∞].
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Here Jn(mdfx) in the Jacobian of the metric derivative. We will however, be interested in

a special case where the Lipschitz mapping into X is just an injective arc-length parametrized

rectifiable curve γ : [0, `] → X. In this case, J1(mdfx) in the above theorem is the metric

derivative |γ′|(t) and hence it equals 1. Let Γ = γ([0, `]) and g : X → [0,∞] be a Borel

function. Applying the area formula, we get

ˆ `

0

g(γ(s)) ds =

ˆ
Γ

g(y) dH1(y).

If N ⊂ X and H1(N) = 0, the area formula also implies that H1(γ−1(N)) = 0.

2.3 RECTIFIABILITY OF ONE-DIMENSIONAL COMPACT AND

CONNECTED SPACES

We list here several important results about the parametrization of compact and connected

metric measure spaces with finite H1 measure.

The first result proved by Schul [110, Lemma 2.3] gives a Lipschitz parametrization of

such spaces.

Lemma 2.3.1. Let K ⊂ X be a compact connected set of finite H1 measure. Then there is a

Lipschitz function γ : [0, 1]→ K such that γ([0, 1]) = K and ‖γ‖Lip ≤ 32H1(K). Moreover,

if K is 1-Ahlfors-regular, then

R

C
≤ H1(γ−1(B(x,R))) ≤ CR ∀x ∈ K, 0 < R ≤ diam(K), (2.3.1)

where C is a constant depending only on the 1-Ahlfors regularity constant of the set K.

The proofs of the following two theorems can be found in [5, Theorem 4.4.7, Theorem

4.4.8].

Theorem 2.3.2 (First rectifiability theorem). If X is a compact and connected set and

H1(X) < ∞, then every pair of points x, y ∈ X can be connected by a injective rectifiable

curve.
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We call curves without self-intersections simple curves, that is, there is an injective

parametrization of such curves.

Theorem 2.3.3 (Second rectifiability theorem). If X is compact, connected, and H1(X) <

∞, then there exist countably many arc-length parametrized simple curves γi : [0, `i] → X

such that

H1(X \
∞⋃
i=1

γi([0, `i])) = 0.

We briefly describe the construction of this parametrization. Since X is compact, we can

choose x, y ∈ X such that

d(x, y) = diam(X).

By Theorem 2.3.2, we can join x, y by an arc-length parametrized simple curve γ0 : [0, `0]→

X and we denote the range of this curve as Γ0. Suppose that we have already constructed

Γ0, · · · ,Γk with the following properties:

(1) Γi ⊂ X, i = 0, · · · , k;

(3) Each curve γi : [0, `i]→ X with Γi = γi([0, `i]) is a simple arc-length parametrized curve;

(2) Each intersection Γi ∩
⋃
j<i Γj consists of a single point, for i = 1, · · · , k.

Let

dk = sup
x∈X

d
(
x,

k⋃
i=0

Γi
)
.

If dk = 0, then X =
⋃k
i=0 Γi and we are done. If dk > 0 for all k, by compactness we

can choose xk ∈ X and yk ∈ ∪ki=0Γi such that d(xk, yk) = dk. Connect xk and yk with an

arc-length parametrized simple curve γk+1 such that γk+1(0) = xk and γk+1(`k+1) = yk+1.

Let

t̃ = inf{t ∈ [0, `k+1]| γk+1(t) ∈
k⋃
i=0

Γi}

and define Γk+1 = γk+1([0, t̃]). We get that Γk+1 ⊂ X is an arc-length parametrized simple

curve and the intersection of Γk+1 and
⋃k
i=0 Γi consists of one single point. We can continue

this construction. Since
⋃∞
i=0 Γi may not be closed, we may have

X \
∞⋃
i=0

Γi 6= ∅.
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We omit the arguments to estimate the above set X \
⋃∞
i=0 Γi has 1-dimensional Hausdorff

measure zero.

It is easy to see from this construction that these simple curves intersect with each other

at most at one point. If two curves intersect with each other, then the intersection point

must be the endpoint of one of these curves.
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3.0 SOBOLEV FUNCTIONS ON METRIC MEASURE SPACES

The theory of Sobolev functions has been widely applied in different areas of mathematics

including calculus of variations, partial differential equations, and so on. In this chapter,

we will first give a brief review of the classical theory of Sobolev functions. We refer to the

book by Evans and Gariepy [33] and notes by Haj lasz [48] for the definitions and proofs of

the theorems.

There are various extensions of the classical theory of Sobolev functions to general metric

measure spaces and their connections with variational problems, geometric function theory

and many related fields have been studied since the nineties. These results constitute a

significant part of analysis on metric measure spaces. In this chapter, we list several impor-

tant definitions of Sobolev functions on metric measure spaces and also give the definition

of spaces supporting Poincaré inequalities in the end. Doubling metric measure spaces that

support Poincaré inequalities provide a setting in which different definitions of Sobolev spaces

are equivalent. The main source for these materials are the survey paper by Haj lasz [47] and

the book by Heinonen, Koskela, Shanmugalingam and Tyson [58].

3.1 SOBOLEV FUNCTIONS IN THE EUCLIDEAN SPACE

3.1.1 Definitions and basic properties

In this section Ω will denote an open subset of Rn, C∞c (Ω) be the collection of all smooth

functions with compact support in Ω and C∞(Ω) be the collection of all smooth functions

in Ω.
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Definition 3.1.1. Let u ∈ L1
loc(Ω) and 1 ≤ i ≤ n. We say gi ∈ L1

loc(Ω) is the weak partial

derivative of u with respect to xi if

ˆ
Ω

u
∂ϕ

∂xi
= −

ˆ
Ω

giϕ

for all ϕ ∈ C∞c (Ω).

It is easy to verify that given a function u ∈ L1
loc(Ω), if the weak partial derivative exists,

then it is uniquely defined Ln almost everywhere. We write

∂u

∂xi
= gi

and

∇u =
( ∂u
∂x1

, . . . ,
∂u

∂xn

)
Definition 3.1.2. For 1 ≤ p < ∞, the function u belong to the Sobolev space W 1,p(Ω) if

u ∈ Lp(Ω) and the weak partial derivatives ∂u/∂xi exist and belong to Lp(Ω) for 1 ≤ i ≤ n.

If u ∈ W 1,p(Ω), define

‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) + ‖∇u‖Lp(Ω),

and we can verify that the above definition is a norm and Sobolev spaces equipped with this

norm is a Banach space.

Theorem 3.1.3 (Meyers-Serrin). The smooth functions C∞(Ω) are dense in W 1,p(Ω).

According to this theorem, the Sobolev functions can also be defined as the completion

of all smooth functions with respect to the Sobolev norm. Moreover, if Ω = Rn, C∞c (Rn) is

dense in W 1,p(Rn).

The Sobolev embedding theorems are among the most important results in the theory

of Sobolev spaces. We list some results below.
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Theorem 3.1.4 (Gagliardo-Nirenberg-Sobolev inequality). Let 1 ≤ p < n, we define

p∗ =
np

n− p
,

and call p∗ the Sobolev conjugate of p. Then for all u ∈ W 1,p(Rn), there exists a constant

C(p, n), such that

‖u‖Lp∗(Rn) ≤ C‖∇u‖Lp(Rn).

Theorem 3.1.5. For each n < p <∞, there exists a constant C(p, n) such that

|u(x)− u(y)| ≤ C|x− y|1−
n
p ‖∇u‖Lp(B)

for all x, y ∈ B and u ∈ W 1,p(B).

As a corollary, if u ∈ W 1,p(Ω) and n < p < ∞ then u is locally Hölder continuous with

exponent 1−n/p. However, when 1 ≤ p < n, Sobolev functions need not be continuous. For

example, u(x) = 1/|x|1/2 ∈ W 1,1(B2(0, 1)) and it is discontinuous in the origin.

The above examples and theorems show that in Rn, the properties of Sobolev functions

W 1,p are very different when p > n and p < n. We often call Sobolev functions in W 1,p with

p = n the Sobolev functions in the critical case. The embedding result in the critical case is

as follows.

Theorem 3.1.6 (Trudinger). Let Ω ⊂ Rn be a bounded Lipschitz domain. Then there exist

constants C1, C2 depending on Ω only such that

 
Ω

exp
( |u− uΩ|
C1‖∇u‖Ln(Ω)

) n
n−1 ≤ C2.

for any u ∈ W 1,n(Ω).
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Here and in what follows we will use notation

uΩ =

 
Ω

u dµ =
1

µ(Ω)

ˆ
Ω

u dµ.

When p = n and n ≥ 2, u(x) = log | log |x|| provides an example of a discontinuous

function in W 1,n(Bn(0, 1)). When n = 1, functions in W 1,1([a, b]) are absolutely continuous.

A function u : [a, b]→ R is absolutely continuous if for every ε > 0, there exists a δ > 0 such

that

k∑
i=1

|u(bi)− u(ai)| < ε,

for any finite collection of pairwise disjoint subintervals
⋃k
i=1[ai, bi] ⊂ [a, b] satisfying

k∑
i=1

|bi − ai| < δ.

We denote the collection of absolutely continuous functions on [a, b] as AC([a, b]). An abso-

lutely continuous function u is differentiable almost everywhere and we denote this pointwise

derivative as u′. In fact, u ∈ AC([a, b]) if and only if there exist g ∈ L1([a, b]) such that

u(x) = u(a) +

ˆ x

a

g(t) dt.

Moreover, u′(t) = g(t) almost everywhere. In other words absolutely continuous functions

are exactly the functions for which the fundamental theorem of calculus is true.

We denote the collection of all absolutely continuous functions with u′ ∈ Lp([a, b]) as

ACp([a, b]). Upon choosing a representative, we have ACp([a, b]) = W 1,p([a, b]).

The following result is the classical Poincaré inequality.

Theorem 3.1.7. If u ∈ W 1,p(B(r)) and 1 ≤ p <∞, then

(  
B

|u− uB|p dx
)1/p ≤ C(n, p)r

(  
B

|∇u|p dx
)1/p

.
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3.1.2 Equivalent characterizations

In this section, we give several equivalent definitions of Sobolev spaces in Rn. In the previous

section, we have seen the equivalence of Sobolev functions in W 1,p([a, b]) with absolutely

continuous functions in ACp([a, b]). This characterization has a higher dimensional analog.

If Ω ⊂ R is open, we say that u ∈ AC(Ω) if u is absolutely continuous on every compact

interval in Ω.

Definition 3.1.8. Let Ω ⊂ Rn be an open set. We say that u is absolutely continuou on

lines, u ∈ ACL(Ω), if the function u is Borel measurable and for almost every line ` parallel

to one of the coordinate axes, u|` ∈ AC(Ω ∩ `).

Since absolutely continuous functions in the real line are differentiable almost everywhere,

u ∈ ACL(Ω) has partial derivative almost everywhere and hence ∇u is defined almost

everywhere. We say that u ∈ ACLp(Ω) if u ∈ Lp(Ω) ∩ ACL(Ω) and |∇u| ∈ Lp(Ω).

Theorem 3.1.9. For 1 ≤ p <∞ and any open set Ω ⊂ Rn,

W 1,p(Ω) = ACLp(Ω).

Moreover, the pointwise partial derivatives of an ACLp(Ω) function equal the weak partial

derivatives.

Let M be the Hardy-Littlewood maximal function defined as

Mu(x) = sup
r>0

 
B(x,r)

|u(y)| dy

and

MRu(x) = sup
0<r<R

 
B(x,r)

|u(y)| dy

for x ∈ Rn.

Theorem 3.1.10. For u ∈ Lp(Rn), 1 < p <∞, the following conditions are equivalent

(1) u ∈ W 1,p(Rn),
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(2) There exists 0 ≤ g ∈ Lp(Rn) and σ ≥ 1 such that

 
B

|u− uB| dx ≤ r
(  

σB

gp dx
)1/p

on every ball B of any radius r.

(3) There exists 0 ≤ g ∈ Lp(Rn) and σ ≥ 1 such that

|u(x)− u(y)| ≤ |x− y|
(
g(x) + +g(y)

)
almost everywhere.

The second condition follows from the Poincaré inequality 3.2.1 and Hölder inequality. It

is first proved by Koskela and MacManus [82]. The third condition for u ∈ W 1,p(Rn) stems

from the following inequality

|u(x)− u(y)| ≤ |x− y|
(
(M|∇u|p(x))1/p + (M|∇u|p(y))1/p

)
a.e..

This characterization is first proved by Haj lasz [46].

3.2 SOBOLEV FUNCTIONS ON THE METRIC MEASURE SPACES

Note that the conditions (2) and (3) in Theorem 3.1.10 do not involve derivatives and only

involve metric and measure in Rn. Each of this condition can be used to define a version of

Sobolev spaces in general metric measure spaces and will be discussed in Sections 3.2.1 and

3.2.2. However, in Theorem 3.1.9, the notion of almost all lines parallel to coordinate axes

and the notion of gradient do not apply to the general metric measure spaces. Instead, we will

introduce the modulus of the path family and the notion of upper gradient as replacements.

The Sobolev space based on this approach is called Newton Sobolev space and will be

discussed in Section 3.2.3.
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3.2.1 Sobolev spaces M1,p

Definition 3.2.1. Let (X, d, µ) be a metric space equipped with a Borel measure µ. For

0 < p < ∞ we define the Haj lasz Sobolev space M1,p(X, d, µ) to be the set of all functions

u ∈ Lp(X) for which there exists a nonnegative Borel function g ≥ 0 such that

|u(x)− u(y)| ≤ d(x, y)
(
g(x) + g(y)

)
almost everywhere.

Denote by D(u) the class of all nonnegative Borel functions g that satisfy the above in-

equality. Thus u ∈ M1,p(X, d, µ) if and only if u ∈ Lp(X) and D(u) ∩ Lp 6= ∅. The space

M1,p(X, d, µ) is linear and we define

||u||M1,p = ||u||Lp + inf
g∈D(u)

||g||Lp .

When p ≥ 1, || · ||M1,p is a norm and M1,p(X) is a Banach space [46]. For studies and

applications of Haj lasz Sobolev spaces with 0 < p < 1, see for example [47, 68, 83, 84, 85].

According to Theorem 3.1.10, in the Euclidean space and 1 < p <∞,

M1,p(Rn, | · |,Ln) = W 1,p(Rn, | · |,Ln).

The equivalence of M1,p and W 1,p also holds on smooth domains Ω in Rn. However, in

general, M1,1 ( W 1,1. For example, function u(x) = −x/(|x| log |x|) ∈ W 1,1(I) but it does

not belong to M1,1(I), where I = (−1/4, 1/4).

An analog of the Sobolev embedding theorems holds for functions in M1,p(X, d, µ), where

X is a doubling space with constant Cd and the associated homogeneous dimension s =

logCd/ log 2 plays the role of dimension in the Euclidean space. The following embedding

theorem is proved by Haj lasz [46].

Theorem 3.2.2. Let X be a doubling space and fix a ball B ⊂ X of radius r, σ > 1. Assume

that u ∈ M1,p(σB, d, µ) and g ∈ D(u) ∩ Lp(X), where 0 < p < ∞. There exist constants

C,C1 and C2 depending on Cd, p and σ only such that

(1) If 0 < p < s, then u ∈ Lp∗(B), p∗ = sp/(s− p), and

inf
c∈R

(  
B

|u− c|p∗ dµ
)1/p∗ ≤ Cr

(  
σB

gp dµ
)1/p

.
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(2) If p = s, then  
B

exp
(
C1
µ(σB)1/s

r

|u− uB|
‖g‖sL(σB)

)
dµ ≤ C2.

(3) If p > s, then u is Hölder continuous on B and

|u(x)− u(y)| ≤ Crs/pd(x, y)1−s/p(  
σB

gp dµ
)1/p

for x, y ∈ B.

3.2.2 Sobolev spaces P 1,p

Definition 3.2.3. Fix σ ≥ 1 and 0 < p < ∞. We say that a pair (u, g), u ∈ L1
loc(X),

0 ≤ g ∈ Lploc(X) satisfies the p-Poincaré inequality if the following inequality holds:

 
B

|u− uB|dµ ≤ r

( 
σB

gpdµ

) 1
p

(3.2.1)

on every ball B of radius r and σB ⊂ X.

The class of u ∈ Lp(X) for which there exists 0 ≤ g ∈ Lp(X) so that the pair (u, g)

satisfies the p-Poincaré inequality will be denoted by P 1,p
σ (X, d, µ) and

P 1,p(X, d, µ) =
⋃
σ≥1

P 1,p
σ (X, d, µ).

By Theorem 3.1.10, the Sobolev space P 1,p defined above is equivalent with the classical

Sobolev space in the Euclidean setting.

Theorem 3.2.4. Let (X, d, µ) be a doubling metric measure space and s = log2Cd is the

associated homogeneous dimension. If p ≥ s/(s+ 1), then

M1,p(X) ⊂ P 1,p(X).

The above theorem is proved by Haj lasz [47]. We also give the general Sobolev embedding

theorem for P 1,p(X). This result is due to Haj lasz and Koskela [49].

Theorem 3.2.5. Let (X, d, µ) be a doubling metric measure space and s = log2Cd be the

associated homogeneous dimension. Assume the pair u ∈ Lp(X) and 0 ≤ g ∈ Lp(X) satisfies

the p-Poincaré inequality (3.2.1) with 0 < p <∞ and σ > 1.
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(1) If 0 < p < s, then for every 0 < h < p∗ = sp/(s− p)

inf
c∈R

(  
B

|u− c|hdµ
)1/h ≤ Cr

(  
6σB

gp dµ
)1/p

.

If in addition g ∈ Lq, p < q < s, then

inf
c∈R

( 
B

|u− c|q∗dµ
)1/q∗ ≤ Cr

(  
6σB

gq dµ
)1/q

,

where q∗ = sq/(s− q) and B is any ball of radius r.

(2) If p = s, then ˆ
B

exp
(C1µ(6σB)1/s|u− uB|

r‖g‖Ls(6σB)

)
dµ ≤ C2.

(3) If p > s, then u is locally Hölder continuous and

|u(x)− u(y)| ≤ Crs/pd(x, y)1−s/p(  
6σB0gp

dµ
)1/p

for x, y ∈ B, where B is an arbitrary ball of radius r0.

The constants in the theorem depend on p, q, h, Cd and σ.

3.2.3 Sobolev spaces N1,p

Definition 3.2.6. Let Γ be a collection of non constant rectifiable curves, and let F (Γ) be

the family of all Borel measurable functions ρ : X → [0,∞] such that

ˆ
γ

ρ ≥ 1 for every γ ∈ Γ.

For each 1 ≤ p <∞ we define

Modp(Γ) = inf
ρ∈F(Γ)

ˆ
X

ρpdµ.

The number Modp(Γ) is called the p-modulus of the family Γ.

We can verify that Modp is a measure on the family of all nonconstant rectifiable curves

in X. If some property holds for all nonconstant rectifiable curves except a subcollection Γ

with Modp(Γ) = 0, then we say that the property holds for p-a.e. curve. By the following

theorem, we can see that this notion of p-a.e. curve is a natural generalization of almost

every line parallel to a given coordinate axe.
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Theorem 3.2.7. Points in Qn = [0, 1]n = [0, 1]×Qn−1 will be denoted by x = (x1, x
′). Let

1 ≤ p < ∞. For a Borel subset E ⊂ Qn−1, consider the family of straight segments passing

through E and parallel to x1, i.e.,

ΓE = {γx′ : [0, 1]→ Qn : γx′ = (t, x′), x′ ∈ E}.

Then Modp(ΓE) = 0 if and only if Ln(E) = 0.

Definition 3.2.8. Let u : X → R be a Borel function. We say that a Borel function

g : X → [0,∞] is an upper gradient of u if

|u(γ(a))− u(γ(b))| ≤
ˆ
γ

g

for every rectifiable curve γ : [a, b] → X. We say that g is a p-weak upper gradient of u if

the above inequality holds for p-a.e. curve.

If g is a p-weak upper gradient of u which is finite a.e., then for every ε > 0, there is an

upper gradient gε of u such that

gε ≥ g everywhere, and ‖gε − g‖Lp < ε.

This shows that a p-weak upper gradient of u can be nicely approximated by an upper

gradient.

Moreover, the notion of upper gradient is a natural generalization of the length of the

gradient. If u ∈ C∞(Ω) and Ω ⊂ Rn, then we can verify that |∇u| is an upper gradient of

u. Furthermore, |∇u| is the least upper gradient in the sense that if g ∈ L1
loc(Ω) is another

upper gradient of u, then g ≥ |∇u| a.e.. In fact, we have a stronger result.

Theorem 3.2.9. Any function u ∈ W 1,p(Ω), 1 ≤ p <∞ has a representative for which |∇u|

is a p-weak upper gradient. On the other hand, if g ∈ L1
loc(Ω) is a p-weak upper gradient of

u, then g ≥ |∇u| a.e..
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Let 1 ≤ p < ∞. Ñ1,p(X, d, µ) is the class of all Lp-integrable Borel functions on X for

which there exists a p-integrable p-weak upper gradient. With each u ∈ Ñ1,p(X, d, µ) we

associate a seminorm

‖u‖Ñ1,p(X,d,µ) = ‖u‖Lp + inf
g
‖g‖Lp ,

where the infimum is taken over all p-weak upper gradients g of u.

Definition 3.2.10. We define an equivalence relation in Ñ1,p(X, d, µ) by u ∼ v if

‖u− v‖Ñ1,p(X,d,µ) = 0.

Then the space N1,p(X, d, µ) is defined as the quotient space Ñ1,p(X, d, µ)/ ∼ and it is

equipped with the norm

‖u‖N1,p = ‖u‖Ñ1,p .

This space N1,p(X, d, µ) with the above norm is a Banach space for 1 ≤ p <∞ and it is

a natural generalization of the classical Sobolev space W 1,p to the setting of metric spaces.

Theorem 3.2.11. If Ω ⊂ Rn is open and 1 ≤ p <∞, then

N1,p(Ω, | · |,Ln) = W 1,p(Ω, | · |,Ln)

as sets and the norms are equal.

3.3 SPACES SUPPORTING THE POINCARÉ INEQUALITY

The notion of an abstract Poincaré inequality on metric measure spaces was introduced by

Heinonen and Koskela [56]. Metric measure spaces that are doubling and support an abstract

Poincaré inequality provide a good structure to study the first-order analysis.
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Definition 3.3.1. Let p ≥ 1. A metric measure space (X, d, µ) is said to support a p-

Poincaré inequality if there exists constants C, λ ≥ 1 such that for all measurable functions,

the following holds:  
B

|u− uB|dµ ≤ CdiamB

( 
λB

gpdµ

) 1
p

,

for every pair of functions u : X → R and g → [0,∞] where u is measurable, and g is an

upper gradient for u.

For examples of spaces supporting Poincaré inequalities, we give a partial list below:

Euclidean spaces, compact Riemannian manifolds, complete Riemannian manifolds with

nonnegative Ricci curvature [19, 108], Carnot groups and general sub-Riemannian manifolds

equipped with Carnot-Caratheodory metrics [49, 54, 57], boundaries of hyperbolic buildings

[18], metric spaces with quantitative topology [111] and the Laakso spaces [86]. If X is

complete, doubling and supports a p-Poincaré inequality for p ≥ 1, then X is quasiconvex

[24, Theorem 17.1.][49, Proposition 4.4]. In this manuscript, we will prove that each compact,

quasiconvex and 1-Ahlfors regular space also supports p-Poincaré inequality for 1 ≤ p <∞.

As mentioned before, a doubling metric measure spaces that supports Poincaré inequal-

ities provides a very good setting such that different definitions of Sobolev spaces are equiv-

alent. The proof of the following theorem can be found in [47, Theorem 11.3]

Theorem 3.3.2. Let (X, d, µ) be a complete metric measure space with µ Borel and doubling.

If 1 < p <∞ and the space supports the q-Poincaré inequality for some 1 ≤ q < p, then

M1,p(X, d, µ) = N1,p(X, d, µ) = P 1,p(X, d, µ).

By Hölder’s inequality, we know that any metric measure space that supports a (1, p)-

Poincaré inequality also supports a (1, q)-Poincaré inequality for 1 ≤ p ≤ q. Keith and

Zhong [74, Theorem 1.0.1] proved that the parameter p > 1 in the space supporting Poincaré

inequality is also open ended on the left in a doubling metric space. We list their result as

below.

Theorem 3.3.3. Let p > 1 and (X, d, µ) be a complete metric measure space with µ Borel

and doubling, that admits a (1, p)-Poincaré inequality. Then there exists ε > 0 such that

(X, d, µ) admits a (1, q)-Poincaré inequality for every q > p− ε, quantitatively.
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Combining the above two theorems, we have the following corollary.

Corollary 3.3.4. Let (X, d, µ) be a complete metric measure space with µ Borel and dou-

bling. If 1 < p <∞ and the space supports the p-Poincaré inequality, then

M1,p(X, d, µ) = N1,p(X, d, µ) = P 1,p(X, d, µ).
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4.0 SOBOLEV FUNCTIONS IN THE CRITICAL CASE ON METRIC

MEASURE SPACES

Let Ω ⊂ Rn be a domain. We define the critical exponent of the Sobolev space W 1,p(Ω) to

be p = n. This is because that when p > n, W 1,p functions are Hölder continuous while for

p < n they need not be continuous at any point. This notion can be extended to the settings

of metric measure spaces. If (X, d, µ) is a doubling metric measure space then we define

the critical exponent for the Sobolev space M1,p(X), P 1,p(X) or N1,p(X) to be equal to the

homogeneous dimension p = s. This definition is suggested by the corresponding Sobolev

embedding Theorems 3.2.2 and 3.2.5.

From the examples in the Euclidean spaces, we conjecture that the Sobolev functions in

the critical case may be discontinuous if the homogeneous dimension satisfies s > 1. Thus

we turn to investigate the continuity of Sobolev functions on metric measure spaces with

dimensions less than or equal to 1. One natural generalization is to compact, connected 1-

dimensional metric spaces. We give the definition of the absolutely continuous functions on

such spaces and prove the equivalence of Newton Sobolev functions in N1,1(X) and absolutely

continuous functions. Moreover, by proving that the spaces support Poincaré inequality, we

get the equivalence of these absolutely continuous functions with Sobolev functions defined

via different approaches.

Another direction is to look at metric spaces with dimension s ≤ 1. We focus on the

case of s-Ahlfors regular metric spaces which include a large class of fractals and we prove

the uniform continuity of Haj lasz Sobolev functions with explicit estimates.
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4.1 ON COMPACT, CONNECTED METRIC SPACES WITH H1(X) <∞

4.1.1 Absolutely continuous functions on the metric spaces

We define absolutely continuous functions on spaces of finite 1-dimensional measure as fol-

lows.

Definition 4.1.1. Let (X, d,H1) be a compact, connected metric space with H1(X) < ∞.

A function u : X → R is absolutely continuous if for any ε > 0, there is a positive number δ

such that ∑
i

|u ◦ γi(`i)− u ◦ γi(0)| < ε,

for any collection of pairwise disjoint arc-length parametrized simple curves γi : [0, `i] → X

with total length
∑

i `i < δ.

Let V (f, [a, b]) denote the total variation of a mapping f : [a, b]→ X on [a, b]. The total

variation of a mapping on a interval is defined as

V (f, [a, b]) := sup

{
k∑
i=1

d(f(ti), f(ti−1)), a = t0 < t1 < · · · < tk = b

}
,

where the supremum is taken over all finite sequences of {ti} ⊂ [a, b] defined as above. We

can replace |u ◦ γi(`i) − u ◦ γi(0)| by V (u ◦ γi, [0, `i]) in the above definition, and get an

equivalent definition.

We denote the above class of absolutely continuous functions on X by AC(X). Let

X = [a, b], it is easy to verify this definition is consistent with the classical definition.

We prove that the absolutely continuous functions defined above are uniformly continuous

on a quasiconvex metric space.

Proposition 4.1.2. Let (X, d, µ) be a compact, quasiconvex metric measure space with

H1(X) < ∞. If a function u : X → R is absolutely continuous, then it is uniformly

continuous.

Proof. Given an arbitrary positive number ε > 0, it suffices to find δ > 0 such that |u(x)−

u(y)| < ε whenever d(x, y) < δ for x, y ∈ X.
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Since X is compact and path-connected, two arbitrary points x, y ∈ X can be joined

by a shortest curve. We denote the arc-length parametrization of this shortest curve by

γ0 : [0, `0]→ X with γ0(0) = x and γ0(`0) = y. Thus,

|u(x)− u(y)| = |u(γ0(0))− u(γ0(`0))| = |u ◦ γ0(0)− u ◦ γ0(`0)|.

The fact that the space is quasiconvex means that there is a curve connecting x, y with

length ` ≤ Cd(x, y). Thus, the length of the shortest curve `0 ≤ ` ≤ Cd(x, y).

Since u ∈ AC(X), for an arbitrary positive number ε > 0, there is δ0 > 0, such that if

the length of a simple curve `0 < δ0, then

|u ◦ γ0(`0)− u ◦ γ0(0)| < ε.

In particular, let δ < C−1δ0, then `0 ≤ Cd(x, y) < δ0. It implies that

|u(x)− u(y)| < ε.

4.1.2 Absolutely continuous characterization of Sobolev functions

In this section, we will show that the absolutely continuous functions we define are actually

the same as Newton Sobolev functions.

Theorem 4.1.3. Let (X, d,H1) be a compact, connected metric measure space with H1(X) <

∞. If u ∈ AC(X), then there is an upper gradient g ∈ L1(X) for u, that is, for any rectifiable

curve γ : [a, b]→ X, we have

|u(γ(a))− u(γ(b))| ≤
ˆ
γ

g.
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Proof. By Theorem 2.3.3, we know that there is a countable collection of simple curves in

X and a set N1 with H1(N1) = 0 such that

X =
∞⋃
i=1

γi((0, `i)) ∪N1.

Let Γi = γi([0, `i]), then the intersection of Γi are Γj is empty for i 6= j. Indeed, the simple

curves from Theorem 2.3.3 meet at the endpoints only as we excluded the endpoints here.

We denote u ◦ γi by ui. If u ∈ AC(X), then ui ∈ AC((0, `i)). Thus, u′i(t) exists almost

everywhere for t ∈ (0, `i). Moreover, we have

ui(`i)− ui(0) =

ˆ `i

0

u′i(s) ds,

and
`i∨
0

ui =

ˆ `i

0

|u′i(s)| ds.

We denote the collection of points x ∈ X such that u′i(γ
−1
i (x)) does not exist as N2, and

N0 = N1 ∪N2. It is clear that H1(N0) = 0. Then we define a function g : X → R as follows,

g(x) =

|u
′
i(γ
−1
i (x))| if x ∈ X \N0

∞ if x ∈ N0.

(4.1.1)

This function g is integrable on X. In fact, by definition and area formula, we have

ˆ
X

g dH1 =

ˆ
X\N0

g dH1

=
∑
i

ˆ
Γi

g dH1

=
∑
i

ˆ `i

0

g(γi(s)) ds

=
∑
i

ˆ `i

0

|u′i(s)| ds

=
∑
i

`i∨
0

ui.
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Since γi is injective and H1(X) <∞, it implies that

∑
i

`γi =
∑
i

H1(Γi) ≤ H1(X) <∞.

Thus, for any ε > 0, there exists a natural number n0 such that
∑∞

i=n0+1 `γi < ε. By

Definition 4.1.1, it implies that
∑∞

i=n0+1

∨`i
0 ui can be sufficiently small.

ˆ
X

g dH1 =
∑
i

`i∨
0

ui

=

n0∑
i=1

`i∨
0

ui +
∞∑

i=n0+1

`i∨
0

ui <∞.

We next prove that g is an upper gradient for the function u ∈ AC(X), that is, for any

rectifiable curve γ : [a, b]→ X, we have

|u(γ(a))− u(γ(b))| ≤
ˆ
γ

g.

Let γ : [a, b]→ X be a rectifiable curve and Γ = γ([a, b]). Since Γ is compact, connected

and H1(Γ) < ∞, there exists a shortest curve joining γ(a) and γ(b) in Γ. We denote the

arc-length parametrization of this injective curve by γ0 : [0, `]→ Γ with

γ0(0) = γ(a) and γ0(`) = γ(b). (4.1.2)

Let Γ0 = γ0([0, `]). Applying the area formula we obtain that

ˆ
γ0

g =

ˆ `

0

g(γ0(s)) ds

=

ˆ
Γ0

g(x) dH1

≤
ˆ

Γ

g(x) dH1

≤
ˆ
γ

g.

(4.1.3)

Since u ∈ AC(X), it follows that u0 = u◦γ0 ∈ AC([0, `]) and u′0 exists almost everywhere.

Let I = {i ∈ N : H1(Γ0 ∩ Γi) 6= 0}. Then Γ0 is the union of
⋃
i∈I(Γ0 ∩ Γi) and a null set.
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Let i ∈ I and x ∈ Γi ∩ Γ0 such that u′0(γ−1
0 (x)), u′i(γ

−1
i (x)) both exist and t = γ−1

0 (x) is

a density point of γ−1
0 (Γi ∩ Γ0). By definition,

|u′0(t)| = lim
h→0

|u0(t+ h)− u0(t)|
|h|

= lim
h→0

|u(γ0(t+ h))− u(γ0(t))|
|h|

.

Since t is a density point in the measurable set γ−1
0 (Γi ∩ Γ0), when h is sufficiently small,

there exists t + h ∈ γ−1
0 (Γi ∩ Γ0). We denote γi(s) = γ0(t) and γi(s

′) = γ0(t + h). By

construction, the curve γi is the shortest curve joining γi(s) and γi(s
′). Since γ0 and γi are

both parametrized by arc-length, it follows that

|s− s′| = `γi(s,s′) ≤ `γ0(t,t+h) = |h|.

It follows that

|u′0(t)| = lim
h→0

|u(γ0(t+ h))− u(γ0(t))|
|h|

≤ lim
|s−s′|→0

|u(γi(s
′))− u(γi(s))|
|s− s′|

= |u′i(s)|.

By area formula, for the injective arc-length parametrized curves γi and γ0, the H1 measure

of the preimage of a null set is zero. Thus, it implies that

|u′0(t)| ≤ |u′i(s)| = |u′i(γ−1
i (γ0(t)))| = g(γ0(t))

holds almost everywhere for t ∈ [0, `]. It follows that

|u0(`)− u0(0)| ≤
ˆ `

0

|u′0(t)| dt

≤
ˆ `

0

g(γ0(t)) dt

=

ˆ
γ0

g.

(4.1.4)
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Combining inequalities (4.1.2), (4.1.3), (4.1.4), we get

|u(γ(a))− u(γ(b))| = |u(γ0(0))− u(γ0(`))|

= |u0(0)− u0(`)|

≤
ˆ
γ0

g

≤
ˆ
γ

g.

(4.1.5)

Thus, we verify that g ∈ L1(X) is an upper gradient of u.

If u ∈ AC(X) ∩ L1(X), then Theorem 4.1.3 implies that u ∈ N1,1(X). If we further

assume that u ∈ ACp(X), that is, the upper gradient g defined in (4.1.1) belongs to Lp(X).

It follows that u ∈ N1,p(X) and ACp(X) ⊂ N1,p(X). On the other hand, we need the

following lemma [59, Proposition 6.3.3].

Lemma 4.1.4. Let u : X → R be a function and γ : [0, `]→ X be an arc-length parametrized

rectifiable curve in X. Assume that ρ : X → [0,∞] is a Borel function such that ρ is

integrable on γ and the pair (u, ρ) satisfies the upper gradient inequality on γ and each of its

compact subcurves. Then u ◦ γ is absolutely continuous and the inequality

|(u ◦ γ)′(t)| ≤ (ρ ◦ γ)(t),

holds for almost every t ∈ [0, `]

If u ∈ N1,p(X), then it has a p-integrable upper gradient ρ and (u, ρ) satisfies the upper

gradient inequality for any arc-length parametrized simple rectifiable curves in X, that is,

|u(γ(`))− u(γ(0))| ≤
ˆ `

0

ρ(γ(s))ds.

The absolute continuity of integral implies immediately that u ∈ AC(X).

Moreover, if u ∈ N1,p(X), the upper gradient g defined in (4.1.1) is p-integrable. Let

u ∈ N1,p and γi be the simple curves as in the proof of Theorem 4.1.3. Lemma 4.1.4 implies

that

|(u ◦ γi)′(t)| ≤ (ρ ◦ γi)(t).
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For almost everywhere x ∈ X, the above inequality implies that

g(x) = |(u ◦ γi)′(γ−1
i (x))| ≤ ρ(x).

The upper gradient g defined in (4.1.1) is bounded by a p-integrable function ρ almost

everywhere in X. It implies that g ∈ Lp(X) and u ∈ ACp(X). Combining the above facts,

we get the following characterization.

Theorem 4.1.5. Let (X, d,H1) be a compact and connected metric measure space with

H1(X) <∞ and let 1 ≤ p <∞. Then u ∈ N1,p(X) if and only if u ∈ ACp(X) ∩ Lp(X). In

other words

N1,p(X) = ACp(X) ∩ Lp(X).

4.1.3 Spaces supporting the Poincaré inequality

In this section, we will show that a compact, quasiconvex and 1-Ahlfors regular metric

measure space supports Poincaré inequality. Thus, it implies the equivalence of absolutely

continuous functions with Sobolev functions defined via different approaches.

Theorem 4.1.6. Let (X, d,H1) be a compact, quasiconvex and 1-Ahlfors regular metric

measure space. Then it supports p-Poincaré inequality for 1 ≤ p <∞.

Proof. It suffices to show that X supports the 1-Poincaré inequality. Let B(O, r) ⊂ X be an

arbitrary ball in X and x, y ∈ B. There exists a rectifiable curve that joins x and y. Since X

is compact and quasiconvex, there exists a shortest curve connecting x and y [47, Theorem

3.9]. We denote the arc-length parametrization of this shortest curve as γ : [0, `]→ X such

that γ(0) = x and γ(`) = y.

Let u be a Borel function and g be an upper gradient of u. Then

|u(x)− u(y)| ≤
ˆ `

0

g(γ(s)) ds. (4.1.6)

Denote Γ = γ([0, `]) and λ = 3C, where C is the quasiconvex constant of X.
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For an arbitrary point z ∈ Γ, let `γ(x,z) denotes the length of the shortest curve joining

x and z. Then `γ(x,z) ≤ `. Since X is quasiconvex, there is a curve γ̃(x, y) connecting x and

y such that `γ̃(x,y) ≤ Cd(x, y). It implies that

d(z,O) ≤ d(z, x) + d(x,O)

≤ `γ(x,z) + r

≤ `+ r

≤ `γ̃(x,y) + r

≤ Cd(x, y) + r

≤ λr.

Thus, every point z ∈ Γ belongs to the ball λB = B(O, λr). It implies that

ˆ `

0

g(γ(s)) ds =

ˆ
Γ

g(y) dH1(y)

≤
ˆ
λB

g(y) dH1(y).

(4.1.7)

Finally, combining (4.1.6), (4.1.7), we get

|u(x)− uB| ≤
 
B

|u(x)− u(y)| dz

≤
 
B

ˆ `

0

g(γ(s)) dsdz

≤
 
B

ˆ
λB

g(y) dH1(y)dz

= H1(λB)

 
λB

g(y) dH1(y).

(4.1.8)

Since X is 1-Ahlfors regular, it follows that

 
B

|u(x)− uB| dH1 ≤ Cdiam(B)

 
λB

g(z) dH1(z).
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Remark 4.1.7. In fact, instead of assuming quasiconvexity, in the proof of this theorem, it

suffice to assume a weaker condition that the space X is C-LLC1, that is, there exists a

constant C ≥ 1 so that for each x ∈ X and r > 0, any pair of points in B(x, r) can be

joined by a curve in B(x,Cr). With this condition, we still have that the shortest curve

connecting any two points x and y is contained in B(x,Cd(x, y)) and the argument in the

above theorem works.

When a complete doubling metric measure X supports the p-Poincaré inequality with

1 < p < ∞, the Newton Sobolev spaces N1,p(X), the Poincaré Sobolev spaces P 1,p(X) and

Haj lasz Sobolev spaces M1,p(X) are equivalent [47, Theorem 11.3]. Combined with Theorem

4.1.5, we obtain the following corollary.

Corollary 4.1.8. Let (X, d,H1) be a compact, quasiconvex, 1-Ahlfors regular metric measure

space. Then

ACp(X) ∩ Lp(X) = N1,p(X) = P 1,p(X) = M1,p(X),

for 1 < p <∞ and the first two equalities also hold for p = 1.

4.2 ON S-AHLFORS REGULAR METRIC SPACES WITH S ≤ 1

The theory of Newton Sobolev spaces and Poincaré Sobolev spaces apply very well to the

spaces with sufficiently many nonconstant rectifiable curves. However, when comes to the

spaces with limited connectivity properties, the theory of Haj lasz Sobolev spaces is rich

without any assumption on connectivity of the space. Haj lasz Sobolev spaces on fractals

have been investigated in [61, 102, 106, 120].

In this section, we will investigate the Haj lasz Sobolev functions in the critical case

M1,s on s-Ahlfors regular spaces with 0 < s ≤ 1. An important class of Ahlfors regular

spaces is provided by fractals. Many fractals are generated by iterated function systems. A

contraction S on D ⊂ Rn is a Lipschitz mapping with Lipschitz constant 0 < c < 1, i.e.

|S(x)− S(y)| ≤ c|x− y|,
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for all x, y ∈ D. A finite family of contractions {S1, · · · , Sm}, with m ≥ 2, is called an

iterated function system or IFS. We say that Si satisfy the open set condition if there exists

a non-empty bounded open set V such that

m⋃
i=1

Si(V ) ⊂ V

with the union disjoint. Hutchinson [64] proved that fractals generated by iterated function

systems satisfying the open set condition are Ahlfors regular. For example, the ternary

Cantor set C equipped with the Euclidean distance is s-Ahlfors regular with s = log 2
log 3

[35,

Example 2.7].

The main theorem of this section states as follows.

Theorem 4.2.1. Let (X, d,Hs) be an s-Ahlfors regular metric space and 0 < s ≤ 1. If

u ∈M1,s(X, d,Hs), then u is uniformly continuous. Moreover, there exists a constant C > 0,

such that for any ball B ⊂ X,

sup
x,y∈B

|u(x)− u(y)| ≤ C
(ˆ

2B

gsdHs
) 1

s
, (4.2.1)

where g ∈ D(u) ∩ Ls(X).

The restriction that s ≤ 1 is necessary in our statement, since we apply the reverse

Minkowski inequality in the proof. We conjecture that there always exist discontinuous

Sobolev functions in M1,s(X) when X is an s-Ahlfors regular space with s > 1.

We need the following lemma.

Lemma 4.2.2. Let X be a uniformly perfect space. Then there is a constant 0 < C0 < 1

such that for any ball B(x, r) with 0 < r < diam(X), there is a sequence of balls {Bi}∞i=1 =

{B(xi, C
i
0r)}∞i=1 ⊂ B(x, r) satisfying

(1) Bi ∩Bj = ∅, if i 6= j,

(2) Bi ⊂ B(x,Ci−1
0 r) \B(x,Ci

0r).
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Proof. Since X is uniformly perfect, there exists a constant 0 < c < 1 such that for all x ∈ X

and 0 < r < diam(X),

B(x, r) \B(x, cr) 6= ∅.

Fix a number C1 = c/2. Clearly, 0 < C1 < 1.

Fix a ball B(x, r) ⊂ X with 0 < r < diam(X) and let y ∈ B(x, r) \B(x, cr). Then

B(y, C1r) ⊂ B(x,C−1
1 r) \B(x,C1r).

We can construct a sequence of balls B1, B2 . . . ⊂ B(x, r) in the following way. Let

r̂i = C2i−1
1 r and B̂i = B(x, r̂i). By the previous argument, for each B̂i, there exists xi such

that

B(xi, C1r̂i) ⊂ B(x,C−1
1 r̂i) \B(x,C1r̂i).

Let ri = C1r̂i = C2i
1 r, so

B(xi, ri) ⊂ B(x, ri−1) \B(x, ri).

Let C0 = C2
1 . Clearly, 0 < C0 < 1. Let Bi = B(xi, ri) = B(xi, C

i
0r). Since these balls

are contained in disjoint annuli, Bi ∩Bj = ∅ for i 6= j.

From the construction, the balls in this sequence satisfy

Bi ⊂ B(x,Ci−1
0 r) \B(x,Ci

0r).

This completes the proof.

We now can complete the proof of the main result, following some ideas from [45].

Proof of Theorem 4.2.1. By definition, for u ∈ M1,s(X, d,Hs), there exists g ∈ Ls(X) such

that

|u(x)− u(y)| ≤ d(x, y)
(
g(x) + g(y)

)
,

when x, y ∈ X \ E and Hs(E) = 0.

Let E0 = {x ∈ X \ E : g(x) < ∞}. Clearly, Hs(X \ E0) = 0. Fix a ball B(z, r) ⊂ X.

We will prove that

sup
x,y∈B(z,r)∩E0

|u(x)− u(y)| ≤ C
( ˆ

B(z,2r)

gsdHs
) 1

s
.
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Let x, y ∈ B(z, r) ∩ E0. According to Lemma 4.2.2, there exists a sequence of disjoint

balls {Bi}∞i=1 = {B(xi, C
i
0r)}∞i=1 ⊂ B(x, r) such that

Bi = B(xi, C
i
0r) ⊂ B(x,Ci−1

0 r) \B(x,Ci
0r).

Let ri = Ci
0r, then

Bi = B(xi, ri) ⊂ B(x,C−1
0 ri) \B(x, ri).

Clearly, for each i ∈ N, we can find zi ∈ Bi ∩ E0 such that

g(zi) ≤
( 1

Hs(Bi)

)1/s(ˆ
Bi

gsdHs
)1/s

≤ C

ri

(ˆ
Bi

gsdHs
)1/s

.

Notice that zi ∈ Bi ⊂ B(x,C−1
0 ri) implies that d(x, zi) ≤ C−1

0 ri. It follows that

|u(x)− u(zi)| ≤ d(x, zi)
(
g(x) + g(zi)

)
≤ Crig(x) + C

(ˆ
Bi

gsdHs
)1/s

.

Hence, limi→∞ u(zi) = u(x). Thus,

|u(z1)− u(x)| ≤
∞∑
i=1

|u(zi)− u(zi+1)|

=
∞∑
i=0

d(zi, zi+1)
(
g(zi) + g(zi+1)

)
. (4.2.2)

Since zi ∈ Bi, zi+1 ∈ Bi+1 and Bi, Bi+1 ⊂ B(x,C−1
0 ri), we have that

d(zi, zi+1) ≤ Cri.

Moreover, ri+1 = C0ri and so the inequality (4.2.2) implies that

|u(z1)− u(x)| ≤
∞∑
i=0

Cri

( 1

ri

( ˆ
Bi

gsdHs
)1/s

+
1

ri+1

( ˆ
Bi+1

gsdHs
)1/s
)

≤ C
∞∑
i=0

(ˆ
Bi

gsdHs
)1/s

≤ C
( ∞∑
i=0

ˆ
Bi

gsdHs
)1/s

≤ C
( ˆ

B(x,r)

gsdHs
)1/s

. (4.2.3)
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The second to last inequality follows from the reverse Minkowski inequality and the last

inequality follows from the fact that the balls in the sequence {Bi}∞i=1 ⊂ B(x, r) are pairwise

disjoint.

Notice that z1 ∈ B1 ⊂ B(x, r) ⊂ B(z, 2r) and

g(z1) ≤ C

r1

(ˆ
B1

gsdHs
)1/s

≤ C

r

(ˆ
B(z,2r)

gsdHs
)1/s

.

Similarly, we can find w1 ∈ B(y, r) ⊂ B(z, 2r) such that

|u(w1)− u(y)| ≤ C
(ˆ

B(y,r)

gsdHs
)1/s

, (4.2.4)

and

g(w1) ≤ C

r

( ˆ
B(z,2r)

gsdHs
)1/s

.

Since z1, w1 ∈ B(z, 2r), we also have

|u(z1)− u(w1)| ≤ d(z1, w1)(g(z1) + g(w1))

≤ C
( ˆ

B(z,2r)

gsdHs
)1/s

. (4.2.5)

Applying triangle inequality and combining the inequalities (4.2.3), (4.2.4), (4.2.5), we

have

sup
x,y∈B(z,r)∩E0

|u(x)− u(y)| ≤ C
( ˆ

B(z,2r)

gsdHs
) 1

s
.

This and the absolute continuity of the integral imply uniform continuity of u|X\E0 . Hence

u uniquely extends to a uniformly continuous function on X and the inequality (4.2.1)

follows.

Remark 4.2.3. A closer inspection of the proof of the main theorem suggests that the estimate

(4.2.1) also holds under the weaker conditions that the metric space (X, d,Hs) is uniformly

perfect and satisfies the condition that there exists a constant C > 0 such that for all x ∈ X

and 0 < r < diam(X),

Hs(B(x, r)) ≥ Crs.

However, to get the uniform continuity of the function by this inequality (4.2.1), the

condition that Hs(B(x, r)) ≤ Crs seems necessary.
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5.0 SOBOLEV EMBEDDING OF A SPHERE CONTAINING AN

ARBITRARY CANTOR SET IN THE IMAGE

Let Sn denotes the standard unit sphere in Rn+1. In 1924 J. W. Alexander [1], constructed a

homeomorphism f : S2 → f(S2) ⊂ R3 so that the unbounded component of R3 \ f(S2) is not

simply connected. In particular it is not homeomorphic to the complement of the standard

ball in R3. This famous construction known as the Alexander horned sphere can be easily

generalized to higher dimensions. The aim of this chapter is to show that a large class of

pathological topological n-dimensional spheres, including the Alexander horned sphere, can

be realized as the images of Sobolev W 1,n homeomorphisms, each of which being a smooth

diffeomorphism outside of a Cantor set in Sn of Hausdorff dimension zero.

5.1 INTRODUCTION

Recall also that the Sobolev space W 1,p consists of functions in Lp whose distributional

gradient is in Lp. By f ∈ W 1,p(Sn,Rn+1) we will mean that the components of the mapping

f : Sn → Rn+1 are in W 1,p.

By an embedding we will mean a homeomorphism onto the image i.e., f : X → Y is an

embedding if f : X → f(X) is a homeomorphism. In the literature such an embedding is

often called a topological embedding. The main result of this chapter reads as follows.

Theorem 5.1.1. For any Cantor set C ⊂ Rn+1, n ≥ 2, there is an embedding f : Sn → Rn+1

such that

(a) f ∈ W 1,n(Sn,Rn+1),
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(b) C ⊂ f(Sn),

(c) f−1(C) ⊂ Sn is a Cantor set of Hausdorff dimension zero,

(d) f is a smooth diffeomorphism in Sn \ f−1(C).

Our construction resembles that of the Alexander horned sphere and it will be clear that

it can be used to construct a version of the Alexander horned sphere f : Sn → f(Sn) ⊂ Rn+1

so that f ∈ W 1,n and f is a smooth diffeomorphism outside a Cantor set of Hausdorff

dimension zero.

A similar technique to the one used in the proof of Theorem 5.1.1 has also been employed

in a variety of different settings [15, 14, 22, 44, 51, 50, 66, 67, 71, 94, 104, 103, 116, 118, 117].

According to Theorem 5.1.1 we can construct a topological sphere in R3 that is W 1,2

homeomorphic to S2 and that contains Antoine’s necklace. Antoine’s necklace is a Cantor

set in R3 whose complement is not simply connected. Hence the unbounded component

of R3 \ f(S2) is also not simply connected. This gives a different example with the same

topological consequences as those of the Alexander horned sphere. In fact, using results of

Sher [113] we will show that there are uncountably many “essentially different” examples.

For a precise statement see Theorem 5.5.1.

One cannot in general demand the function constructed in the theorem to be in W 1,p, p >

n. Indeed, if f ∈ W 1,p(Sn,Rn+1), then the image f(Sn) has finite n-dimensional Hausdorff

measure, but a Cantor set in Rn+1 may have positive (n + 1)-dimensional measure and in

that case it cannot be contained in the image of f . The fact that the image f(Sn) has finite

n-dimensional measure follows from the area formula and the integrability of the Jacobian

of f . The fact that the area formula is satisfied for mappings f ∈ W 1,p(Sn,Rn+1) with

p > n is well known and follows from the following observations. The area formula is true

for Lipschitz mappings [33, Theorem 3.3.2]. The domain Sn is the union of countably many

sets on which f is Lipschitz continuous [33, Section 6.6.3] plus a set of measure zero. On

Lipschitz pieces the area formula is satisfied. Since the mapping f maps sets of measure

zero to sets of n-dimensional Hausdorff measure zero [60, Theorem 4.2], the area formula is

in fact true for f . The proof presented in [60, Theorem 4.2] is in the case of mappings into

Rn, but the same proof works in the case of mappings into Rn+1.

It is well known, [60, Theorem 4.9], that any homeomorphism f : Ω → f(Ω) ⊂ Rn of
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class W 1,n, where Ω ⊂ Rn is open, has the Lusin property, i.e. it maps sets of measure

zero to sets of measure zero. Reshetnyak [105] observed that this is no longer true for

embeddings f ∈ W 1,n(Sn,Rm), when m > n ≥ 2. In his example he considered n = 2

and m = 3, see also [28, Example 5.1]. Later Väisälä [115] generalized it to any n ≥ 2

and m > n. In the constructions of Reshetnyak and Väisälä a set of measure zero is

mapped to a set of positive n-dimensional Hausdorff measure. Theorem 5.1.1 also provides

an example of this type. Indeed, if a Cantor set C ⊂ Rn+1 has positive (n+ 1)-dimensional

measure, then the embedding f ∈ W 1,n(Sn,Rn+1) from Theorem 5.1.1 maps the set f−1(C)

of Hausdorff dimension zero onto the set C ⊂ f(Sn) of positive (n+ 1)-dimensional measure.

Actually, in a context of the Lebesgue area a similar example has already been constructed by

Besicovitch [15, 14], but Besicovitch did not consider the Sobolev regularity of the mapping.

The construction of Besicovitch is very different from that of Reshetnyak and Väisäla and

it is more related to ours. While Besicovitch’s construction deals with a particular Cantor

set, we deal with any Cantor set and we prove that the resulting mapping f belongs to the

Sobolev space W 1,n.

5.2 CANTOR SETS AND TREES

The following classical result [119, Theorem 30.3] provides a characterization of spaces that

are homeomorphic to the ternary Cantor set: A metric space is homeomorphic to the ternary

Cantor set if and only if it is compact, totally disconnected and has no isolated points. Recall

that the space is totally disconnected if the only non-empty connected subsets are one-point

sets. In what follows by a Cantor set we will mean any subset of Euclidean space that is

homeomorphic to the ternary Cantor set.

5.2.1 Ternary Cantor set

The ternary Cantor set will be denoted by C. It is constructed by removing the middle third

of the unit interval [0, 1], and then successively deleting the middle third of each resulting
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subinterval. Denote by Ik all binary numbers i1 . . . ik such that ij ∈ {0, 1} for j = 1, 2, . . . , k,

and by I∞ all binary infinite sequences i1i2 . . . Clearly, the ternary Cantor set C can be

written as

C =
∞⋂
k=1

⋃
i1...ik∈Ik

Ii1...ik ,

where Ii1...ik is one of the 2k closed intervals in the k-th level of the construction of the Cantor

set C; the binary number i1 . . . ik denotes the position of this interval: If ik = 0, it is the left

subinterval of Ii1...ik−1
, otherwise it is the right subinterval.

We also have that for any k ∈ N

C =
⋃

i1...ik∈Ik
Ci1...ik

where Ci1...ik = C ∩ Ii1...ik .

Note that points in the Cantor set C can be uniquely encoded by infinite binary sequences.

Indeed, if i = i1i2 . . . ∈ I∞, then

{ci} =
∞⋂
k=1

Ii1...ik =
∞⋂
k=1

Ci1...ik

consists of a single point ci ∈ C and

C =
⋃
i∈I∞
{ci}.

5.2.2 Cantor trees

Let C ⊂ Rn+1 be a Cantor set and let f : C → C be a homeomorphism. We will write

Ci1...ik = f(Ci1...ik) and ci = f(ci) for i ∈ I∞. Since the mapping f is uniformly continuous,

max
i1...ik∈Ik

(diamCi1...ik)→ 0 as k →∞. (5.2.1)

For each k and each i1 . . . ik ∈ Ik we select a point Ai1...ik such that

• The point Ai1...ik does not belong to C,

• The distance of the point Ai1...ik to Ci1...ik is less than 2−k,

• Ai1...ik 6= Aj1...j` if i1 . . . ik 6= j1 . . . j`.
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It is easy to see that if i = i1i2 . . . ∈ I∞, then

Ai1...ik → ci = f(ci) as k →∞.

Indeed, ci ∈ Ci1...ik so

|Ai1...ik − ci| < 2−k + diamCi1...ik → 0 as k →∞.

Now we are ready to build a Cantor tree by adding branches Ji1...ikik+1
connecting Ai1...ik to

Ai1...ikik+1
. The precise construction goes as follows.

By translating the coordinate system we may assume that the distance between the

origin in Rn+1 and the Cantor set C is greater than 100 (that is way too much, but there is

nothing wrong with being generous).

Let J0 and J1 be smooth Jordan arcs (smoothly embedded arcs without self-intersections)

of unit speed (i.e., parametrized by arc-length) connecting the origin 0 to the points A0 and

A1 respectively. We also assume that

• The curve J0 does not intersect with the curve J1 (except for the common endpoint 0).

• The curves J0 and J1 avoid the Cantor set C.

• The curves J0 and J1 meet the unit ball Bn(0, 1) ⊂ Rn × {0} ⊂ Rn+1 lying in the

hyperplane of the first n coordinates only at the origin and both curves exit Bn(0, 1) on

the same side of Bn(0, 1) in Rn+1.

The curves J0 and J1 will be called branches of order 1.

A simple topological observation is needed here. While the topological structure of a

Cantor set C inside Rn+1 may be very complicated (think of Antoine’s necklace), no Cantor

set can separate open sets in Rn+1. Indeed, by [63, Corollary 2 of Theorem IV 3] compact sets

separating open sets in Rn+1 must have topological dimension at least n but the topological

dimension of a Cantor set is 0, [63, Example II 3]. Hence we can connect points in the

complement of a Cantor set by smooth Jordan arcs that avoid the Cantor set. Moreover we

can construct such an arc in a way that it is arbitrarily close to the line segment connecting

the endpoints.
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Recall that the ε-neighborhood of a set A is the set of all points whose distance to the

set A is less than ε.

Suppose that we have already constructed all branches Ji1...ik of order k ≥ 1. The

construction of the branches of order k + 1 goes as follows. {Ji1...ik+1
} is a family of 2k+1

curves such that

• Ji1...ik+1
is a smooth Jordan arc parametrized by arc-length that connects Ai1...ik (an

endpoint of the branch Ji1...ik) to Ai1...ikik+1
.

• The curves Ji1...ik+1
do not intersect with the Cantor set C, they do not intersect with

each other (except for the common endpoints) and they do not intersect with previously

constructed branches of orders less than or equal to k (except for the common endpoints).

• The image of the curve Ji1...ik+1
is contained in the 2−k-neighborhood of the line segment

Ai1...ikAi1...ik+1
.

• The angle between the branch Ji1...ik and each of the emerging branches Ji1...ik0 and

Ji1...ik1 at the point Ai1...ik where the curves meet is larger than π/2.

The reason why we require the last condition about the angles is far from being clear at the

moment, but it will be clarified in the end of this section.

In what follows, depending on the situation, Ji1...ik will denote either the curve (a map

from an interval to Rn+1) or its image (a subset of Rn+1), but it will always be clear from

the context what interpretation we use.

A Cantor tree is the closure of the union of all branches

T =
∞⋃
k=1

⋃
i1...ik∈Ik

Ji1...ik .

We also define Tk to be the tree with branches of orders less than or equal to k removed.

Formally

Tk = T \Bk where Bk =
k⋃
s=1

⋃
i1...is∈Is

Ji1...is .

Note that the set Tk is not closed – it does not contain the endpoints Ai1...ik .

The branches Ji1...ik+1
are very close to the sets Ci1...ik in the following sense.
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Lemma 5.2.1. A branch Ji1...ik+1
is contained in the 2−k+2 + diamCi1...ik neighborhood of

Ci1...ik .

Proof. A branch Ji1...ik+1
connects the points Ai1...ik and Ai1...ik+1

. The distance of Ai1...ik and

Ai1...ik+1
to the set Ci1...ik is less than 2−k (because Ci1...ik+1

⊂ Ci1...ik). Hence

|Ai1...ik − Ai1...ik+1
| < 2 · 2−k + diamCi1...ik

so by the triangle inequality the line segment Ai1...ikAi1...ik+1
is contained in the 3 · 2−k +

diamCi1...ik neighborhood of Ci1...ik . Since Ji1...ik+1
is contained in the 2−k neighborhood of

the line segment, the lemma follows.

Corollary 5.2.2. Tk is contained in the

εk := 2−k+2 + max
i1...ik∈Ik

(diamCi1...ik)

neighborhood of the Cantor set C and εk → 0 as k →∞.

Proof. Indeed, the branches of Tk are of the form Ji1...is+1 , s ≥ k. Each such branch is

contained in the 2−s+2 + diamCi1...is neighborhood of Ci1...is ⊂ C. Since s ≥ k and Ci1...is ⊂

Ci1...ik we have

2−s+2 + diamCi1...is ≤ 2−k+2 + diamCi1...ik

so Tk is contained in the εk neighborhood of C. The fact that εk → 0 follows from (5.2.1).

The proof is complete.

Since the sets Bk are compact and their complements Tk = T \Bk are in close proximity

of C by Corollary 5.2.2, it easily follows that

T = C ∪
∞⋃
k=1

⋃
i1...il∈Ik

Jii...ik .

The idea of the proof of Theorem 5.1.1 is to build a surface that looks very similar to the

tree T with one dimensional branches Ji1...ik of the tree T replaced by smooth thin surfaces

built around the curves Ji1...ik ; such surfaces will be called tentacles. The parametric surface

f : Sn → Rn+1 will be constructed as a limit of smooth surfaces fk : Sn → Rn+1. This

sequence will be defined by induction. In the step k we replace all branches Ji1...ik by smooth
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surfaces – tentacles. Such surfaces will be very close to the branches Ji1...ik and they will pass

through the endpoints Ai1...ik . The only place where the set Tk gets close to the branch Ji1...ik

is the endpoint Ai1...ik where the two branches Ji1...ik0 and Ji1...ik1 of the set Tk emerge. The

surface around Ji1...ik , and passing through the point Ai1...ik will be orthogonal to the curve

Ji1...ik at the point Ai1...ik . Since the branches Ji1...ik0 and Ji1...ik1 emerging from that point

form angles larger than π/2 with Ji1...ik the surface will not intersect the branches Ji1...ik0

and Ji1...ik1. By making the surfaces around Ji1...ik thin enough we can make them disjoint

from the set Tk (note that Ai1...ik does not belong to Tk).

5.3 SOBOLEV TENTACLES

It is well known and easy to prove that η(x) = log | log |x|| ∈ W 1,n(Bn(0, e−1)). Define the

truncation of η between levels s and t, 0 < s < t <∞ by

ηts(x) =


t− s if η(x) ≥ t,

η(x)− s if s ≤ η(x) ≤ t

0 if η(x) ≤ s.

Fix an arbitrary τ > 0. For every δ > 0 there is a sufficiently large s such that η̃δ,τ := ηs+τs

is a Lipschitz function on Rn with the properties:

supp η̃δ,τ ⊂ Bn(0, δ/2),

0 ≤ η̃δ,τ ≤ τ and η̃δ,τ = τ in a neighborhood B(0, δ′) of 0,
ˆ
Rn

|∇η̃δ,τ |n < δn.

The function η̃δ,τ is not smooth because it is defined as a truncation, however, mollifying

η̃δ,τ gives a smooth function, denoted by ηδ,τ , with the same properties as those of η̃δ,τ listed

above. In particular ˆ
Rn

|∇ηδ,τ |n < δn. (5.3.1)
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The graph of ηδ,τ restricted to the ball Bn(0, δ) is contained in the cylinder

{(x1, . . . , xn+1)|x2
1 + . . .+ x2

n ≤ δ2, 0 ≤ xn+1 ≤ τ}, (5.3.2)

and it forms a slim “tower” around the xn+1-axis. The function ηδ,τ equals zero in the annulus

Bn(0, δ) \ Bn(0, δ/2) and equals τ in the ball Bn(0, δ′).

Consider now a smooth Jordan arc γ : [−1, τ + 1] → Rn+1 parametrized by arc-length.

We want to construct a smooth mapping γδ : Bn(0, δ) → Rn+1 whose image will be a

smooth, thin, tentacle-shaped surface around the curve γ|[0,τ ]. To do this we will apply a

diffeomorphism Φ mapping the cylinder (5.3.2) onto a neighborhood of the image of the curve

γ. The tentacle-like surface will be the image of the graph of ηδ,τ under the diffeomorphism

Φ.

The construction of a diffeomorphism Φ follows a standard procedure. Let

v1, . . . , vn : [−1, τ + 1]→ TRn+1

be a smooth orthonormal basis in the orthogonal complement of the tangent space to the

curve γ, i.e., for every t ∈ [−1, τ+1], 〈v1(t), . . . , vn(t), γ′(t)〉 is a positively oriented orthonor-

mal basis of Tγ(t)Rn+1. Now we define

Φ(x1, . . . , xn+1) = γ(xn+1) +
n∑
i=1

xivi(xn+1) for x ∈ Rn+1 with −1 ≤ xn+1 ≤ τ + 1.

Clearly, Φ is smooth and its Jacobian equals 1 along the xn+1 axis, −1 < xn+1 < τ+1. Hence

Φ is a diffeomorphism in a neighborhood of any point on the xn+1-axis, −1 < xn+1 < τ + 1.

Using compactness of the image of the curve γ it easily follows that there is a δ0 > 0 such

that for all 0 < δ < δ0, Φ is a diffeomorphism in an open neighborhood of the cylinder

(5.3.2). Now we define

γδ : Bn(0, δ)→ Rn+1, γδ(x1, . . . , xn) = Φ(x1, . . . , xn, ηδ,τ (x1, . . . , xn)).

Since
∂γδ
∂xi

=
∂Φ

∂xi
+

∂Φ

∂xn+1

∂ηδ,τ
∂xi
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it follows that

|Dγδ| ≤
√
n‖DΦ‖∞(1 + |∇ηδ,τ |),

where ‖DΦ‖∞ is the supremum of the Hilbert-Schmidt norms |DΦ| over the cylinder (5.3.2).

Hence using (5.3.1), for every ε > 0 we can find δ > 0 so small that

ˆ
Bn(0,δ)

|Dγδ|n ≤ C(n)‖DΦ‖n∞δn < ε. (5.3.3)

Observe that δ depends on γ (because ‖DΦ‖∞ depends on γ).

The tentacle γδ maps the annulus Bn(0, δ) \Bn(0, δ/2) onto the isometric annulus in the

hyperplane orthogonal to γ at γ(0). Indeed, for x ∈ Bn(0, δ) \ Bn(0, δ/2), ηδ,τ (x) = 0 and

hence

γδ(x) = Φ(x1, . . . , xn, 0) = γ(0) +
n∑
i=1

xivi(0)

is an affine isometry. For a similar reason γδ maps the ball Bn(0, δ′) onto the isometric ball

in the hyperplane orthogonal to γ at γ(τ). Finally for x ∈ Bn(0, δ/2) \Bn(0, δ′), γδ creates a

smooth thin surface around the curve γ that connects the annulus at γ(0) with the ball at

γ(τ).

Composition with a translation allows us to define a tentacle γδ : Bn(p, δ) → Rn+1

centered at any point p ∈ Rn.

5.4 MAIN RESULT

We will construct the Sobolev embedded surface f : Sn → Rn+1 as a limit of smooth

embedded surfaces fk : Sn → Rn+1.

By replacing Sn with a diffeomorphic submanifold (still denoted by Sn) we may assume

that it contains the unit ball

Bn = Bn(0, 1) ⊂ Rn × {0} ⊂ Rn+1.

lying in the hyperplane of the first n coordinates.
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Since the distance of the Cantor set C to the origin is larger than 100, the only parts of

the Cantor tree T that are close to Bn are the branches J0 and J1 that connect the origin to

A0 and A1. Since the branches meet Bn only at the origin and leave Bn on the same side of

Bn, we can assume that Sn meets T only at the origin.

Now we will describe the construction of f1. We want to grow two tentacles from Sn near

the branches J0 and J1 all the way to points A0 and A1, but we want to make sure that the

tentacles do not touch the set T1.

To do this we choose two distinct points p0, p1 ∈ Bn close to the origin and modify the

curves J0 and J1 only near the origin, so that the modified Jordan arcs γ0 and γ1 emerge

from the points p0 and p1 instead of the origin, and they are orthogonal to Bn at the points

p0 and p1. The curves γ0 and γ1 quickly meet with J0 and J1 and from the points where

they meet they coincide with J0 and J1, so all non-intersection properties of the curves are

preserved. Since the curves are modified only at their beginnings, outside that place they

are identical with J0 and J1.

Next, we find δ1 > 0 so small that the balls Bn(p0, δ1) and Bn(p1, δ1) are disjoint and

contained in Bn and that there are disjoint tentacles

γiδ1 : Bn(pi, δ1)→ Rn+1 for i = 0, 1

along the curves γ0 and γ1 such that

ˆ
B(pi,δ1)

|Dγiδ1|
n < 4−n for i = 0, 1.

Observe that γiδ1(pi) = Ai for i = 0, 1.

Note that the images of small balls Bn(p0, δ
′
1) and Bn(p1, δ

′
1) are isometric balls, orthog-

onal to the curves γ0 and γ1 (and hence to the curves J0 and J1) at the endpoints A0 and

A1. Since the branches J00, J01 form angles larger than π/2 with the curve γ0 at A0 and the

branches J10, J11 form angles larger than π/2 with the curve γ1 at A1 we may guarantee, by

making the tentacles sufficiently thin, that they are disjoint from the set T1 (observe that

the endpoints A0 and A1 do not belong to T1).

Also each annulus Bn(pi, δ1) \ Bn(pi, δ1/2) for i = 0, 1 is mapped isometrically by γiδ1

onto an annulus centered at γi(0) = pi in the hyperplane orthogonal to γi at γi(0) = pi.
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Since the curve γi is orthogonal to Bn at γi(0) = pi, the annulus Bn(pi, δ1) \ Bn(pi, δ1/2) is

mapped isometrically onto itself. By choosing an appropriate orthonormal frame vi1, . . . v
i
n in

the definition of γiδ1 we may assume that γiδ1 is the identity in the annulus. This guarantees

that the mapping

f1(x) =


γ0
δ1

(x) if x ∈ Bn(p0, δ1),

γ1
δ1

(x) if x ∈ Bn(p1, δ1),

x if x ∈ Sn \ (Bn(p0, δ1) ∪ Bn(p1, δ1))

is continuous and hence smooth. The construction guarantees also that f1 is a smooth

embedding of Sn into Rn+1 with the image that is disjoint from T1.

The mapping f1 maps the small balls Bn(p0, δ
′
1) and Bn(p1, δ

′
1) onto isometric balls cen-

tered at A0 and A1 respectively with f1(pi) = Ai for i = 0, 1. Now the mapping f2 will be

obtained from f1 by adding four more tentacles: from the ball f1(Bn(p0, δ
′
1)) centered at A0

there will be two tentacles connecting this ball to the points A00 and A01 and from the ball

at f1(Bn(p1, δ
′
1)) centered at A1 there will be two tentacles connecting this ball to the points

A10 and A11. More precisely the inductive step is described as follows.

Suppose that we have already constructed a mapping fk, k ≥ 1 such that

• fk is a smooth embedding of Sn into Rn+1 whose image is disjoint from Tk.

• There are 2k disjoint balls Bn(pi1...ik , δk) ⊂ Bn and 2k tentacles

γi1...ikδk
: Bn(pi1...ik , δk)→ Rn+1

for i1 . . . ik ∈ Ik such that

3 γi1...ikδk
(pi1...ik) = Ai1...ik .

3 The image of γi1...ikδk
is in the 2−k neighborhood of the curve Ji1...ik .

3 We have ˆ
Bn(pi1...ik ,δk)

|Dγi1...ikδk
|n dx < 4−nk. (5.4.1)

• The mapping fk satisfies

fk =

 γi1...ikδk
in Bn(pi1...ik , δk) for i1 . . . ik ∈ Ik,

fk−1 in Sn \
⋃
i1...ik∈Ik B

n(pi1...ik , δk).
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Observe that fk(pi1...ik) = Ai1...ik and that for some small 0 < δ′k < δk, fk maps balls

Bn(pi1...ik , δ
′
k) onto isometric balls centered at Ai1...ik .

Now we will describe the construction of the mapping fk+1.

For each i1 . . . ik ∈ Ik we choose two points

pi1...ik0, pi1...ik1 ∈ Bn(pi1...ik , δ
′
k)

and modify the curves Ji1...ik0 and Ji1...ik1 to γi1...ik0 and γi1...ik1 in a pretty similar way as

we did for the curves γ0 and γ1: the new curves γi1...ik0 and γi1...ik1 emerge from the points

fk(pi1...ik0) and fk(pi1...ik1), they are orthogonal to the ball fk(Bn(pi1...ik , δ
′
k)) at these points

and then they quickly meet and coincide with Ji1...ik0 and Ji1...ik1.

We find δk+1 > 0 so small that

• The balls

Bn(pi1...ik0, δk+1),Bn(pi1...ik1, δk+1) ⊂ Bn(pi1...ik , δ
′
k)

are disjoint.

• There are tentacles

γi1...ikiδk+1
: Bn(pi1...iki, δk+1)→ Rn+1 for i = 0, 1

such that

3 γi1...ikiδk+1
(pi1...iki) = Ai1...iki.

3 The image of γi1...ikiδk+1
is in the 2−(k+1) neighborhood of the curve Ji1...iki.

3 The tentacles do not intersect and they avoid the set Tk+1

3 We have ˆ
Bn(pi1...iki,δk+1)

|Dγi1...ikiδk+1
|n dx < 4−n(k+1).

The condition about the distance of the tentacle to the curve Ji1...iki can be easily guaranteed,

because the curve γi1...iki can be arbitrarily close to Ji1...iki and the tentacle can be arbitrarily

thin.

Because the curves γi1...iki, i = 0, 1, are orthogonal to the balls fk(Bn(pi1...ik , δ
′
k)) at the

points γi1...iki(0) = fk(pi1...iki), by choosing appropriate orthonormal frames in the definition

of γi1...ikiδk+1
we may guarantee one more condition
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• γi1...ikiδk+1
= fk in Bn(pi1...iki, δk+1) \ Bn(pi1...iki, δk+1/2).

We are using here the fact that both γi1...ikiδk+1
and fk are isometries in that annulus. Now we

define

fk+1 =

 γ
i1...ikik+1

δk
in Bn(pi1...ik+1

, δk+1) for i1 . . . ik+1 ∈ Ik+1,

fk in Sn \
⋃
i1...ik+1∈Ik+1 Bn(pi1...ik+1

, δk+1).

As before fk+1 is a smooth embedding of Sn into Rn+1 whose image is disjoint from Tk+1.

Let

Wk =
⋃

i1...ik∈Ik
Bn(pi1...ik , δk).

Clearly, Wk is a decreasing sequence of compact sets and

E :=
∞⋂
k=1

Wk

is a Cantor set E ⊂ Bn ⊂ Sn. By making the sequence δk converge to zero sufficiently fast

we may guarantee that the Hausdorff dimension of E equals zero. Similarly as in the case

of the ternary Cantor set, points in the set E can be encoded by infinite binary sequences

For i = i1i1 . . . ∈ I∞ we define

{ei} =
∞⋂
k=1

Bn(pi1...ik,δk) so E =
⋃
i∈I∞
{ei}.

Now we define

f(x) =


x if x ∈ Sn \W1,

fk(x) if x ∈ Wk \Wk+1, k = 1, 2, . . .

ci if x = ei ∈ E, i ∈ I∞.

Recall that ci = f(ci) is a point of the Cantor set C.

Lemma 5.4.1. f = fk when restricted to Sn \Wk+1.

Proof. The lemma can be easily proved by induction. Let f0 = id . By the definition of f ,

f = f0 in Sn \W1. Suppose now that f = fk in Sn \Wk+1. According to the construction

of fk+1, fk+1 = fk in Sn \Wk+1, but the definition of f yields f = fk+1 in Wk+1 \Wk+2 so

f = fk+1 in

(Sn \Wk+1) ∪ (Wk+1 \Wk+2) = Sn \Wk+2.

This proves the lemma.
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Since each of the mappings fk is a smooth embedding whose image does not intersect

with the Cantor set C it follows from the lemma that f restricted to the open set Sn \ E is

a smooth embedding and f(Sn \E)∩C = ∅. In the remaining Cantor set E, the mapping f

is defined as a bijection that maps E onto C. Therefore the mapping f is one-to-one in Sn

and C ⊂ f(Sn).

It remains to prove that f is continuous and that f ∈ W 1,n.

First we will prove that f ∈ W 1,n. The mapping f is bounded and hence its components

are in Ln. Since the mapping f is smooth outside the Cantor set E of Hausdorff dimension

zero, according to the characterization of the Sobolev space by absolute continuity on lines,

[33, Section 4.9.2], it suffices to show that the classical derivative of f defined outside of E

(and hence a.e. in Sn) belongs to Ln(Sn). We have

ˆ
Sn
|Df |n =

ˆ
Sn\E
|Df |n =

ˆ
Sn\W1

|Df |n +
∞∑
k=1

ˆ
Wk\Wk+1

|Dfk|n

≤
ˆ
Sn\W1

|Df |n +
∞∑
k=1

ˆ
Wk

|Dfk|n.

Since f(x) = x in Sn \W1, we do not have to worry about the first term on the right hand

side and it remains to estimate the infinite sum.

Note that fk = γi1...ikδk
in Bn(pi1...ik , δk) so (5.4.1) yields

ˆ
Bn

(pi1...ik ,δk)

|Dfk|n =

ˆ
Bn

(pi1...ik ,δk)

|Dγi1...ikδk
|n < 4−nk.

Hence ˆ
Wk

|Dfk|n =
∑

i1...ik∈Ik

ˆ
Bn

(pi1...ik ,δk)

|Dfk|n < 2k · 4−nk < 2−nk

so
∞∑
k=1

ˆ
Wk

|Dfk|n <
∞∑
k=1

2−nk <∞.

This completes the proof that f ∈ W 1,n.

Remark 5.4.2. Replacing the estimate in (5.4.1) by ε4−nk one can easily modify the con-

struction so that the mapping f will have an arbitrarily small Sobolev norm W 1,n.

It remains to prove that f is continuous. We will need
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Lemma 5.4.3. f(Bn(pi1...ik , δk)) is contained in the

rk := 2−k+4 + diamCi1...ik−1

neighborhood of Ci1...ik−1
.

Proof. If x ∈ Bn(pi1...ik , δk) ∩ E, then x = ei for some i ∈ I∞ with the first k binary digits

equal i1, . . . , ik i.e., i = i1 . . . ik . . . Hence

f(x) = f(ei) = ci = ci1...ik... ∈ Ci1...ik−1
.

If x ∈ Bn(pi1...ik , δk) \ E, then there is s ≥ k such that

x ∈ Bn(pi1...ikik+1...is , δs) \Ws+1 ⊂ Ws \Ws+1

for some binary numbers ik+1, . . . , is.

Since f = fs in Ws \ Ws+1 and fs = γi1...isδs
in Bn(pi1...is , δs) we conclude that f(x) =

γi1...isδs
(x).

It remains to show that the image of γi1...isδs
is contained in the rk neighborhood of Ci1...ik−1

.

By Lemma 5.2.1, Ji1...is is in the 2−s+3 + diamCi1...is−1 neighborhood of Ci1...is−1 . Also

the image of γi1...isδs
is contained in the 2−s neighborhood of Ji1...is so the image of γi1...isδs

is

contained in the

2−s+4 + diamCi1...is−1

neighborhood of Ci1...is−1 . Since Ci1...is−1 ⊂ Ci1...ik−1
and

2−s+4 + diamCi1...is−1 ≤ 2−k+4 + diamCi1...ik−1

the lemma follows.
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Now we are ready to complete the proof of continuity of f . Clearly, f is continuous on

Sn\E so it remains to prove its continuity on the Cantor set E. Let ei ∈ E, i = i1i2 . . . ∈ I∞.

Since f(ei) = ci we need to show that for any ε > 0 there is δ > 0 such that if |x− ei| < δ,

then |f(x)− ci| < ε.

Let ε > 0 be given. Let k be so large that

2−k+4 + 2 diamCi1...ik−1
< ε

and let δ > 0 be so small that

Bn(ei, δ) ⊂ Bn(pi1...ik , δk).

If |x−ei| < δ, then x ∈ Bn(pi1...ik , δk) so by Lemma 5.4.3, f(x) belongs to the rk neighborhood

of the set Ci1...ik−1
. Since ci ∈ Ci1...ik−1

, the distance |f(x)− ci| is less than

rk + diamCi1...ik−1
= 2−k+4 + 2 diamCi1...ik−1

< ε.

The proof is complete. 2

5.5 UNCOUNTABLE INEQUIVALENT EMBEDDINGS

We say that two embeddings f, g : Sn → Rn+1, are equivalent if there is a homeomorphism

h : Rn+1 → Rn+1 such that h(f(Sn)) = g(Sn). In this section, we will prove that there are

uncountably many inequivalent embeddings as in Theorem 5.1.1 in R3.

Theorem 5.5.1. There are uncountably many embeddings f : S2 → R3 of class W 1,2(S2,R3)

which are not equivalent.
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The theorem can be generalized to higher dimensions, but we consider the case n = 2 only

because our proof is based on a result of Sher [113] about Cantor sets in R3. Generalization of

Theorem 5.5.1 to n ≥ 3 would require a generalization of Sher’s result to higher dimensions.

Since this would be a work of purely technical nature with predicted answer, we do not find

it particularly interesting.

Antoine’s necklace A is a Cantor set that is constructed iteratively as follows: Inside a

solid torus A0 in R3 (iteration 0) we construct a chain A1 (iteration 1) of linked solid tori so

that the chain cannot be contracted to a point inside the torus A0. A1 is a subset of R3, the

union of the linked tori. Iteration n + 1 is obtained from the iteration n by constructing a

chain of tori inside each of the tori of An (i.e. inside each of the connected components of

An). Again An+1 is a subset of R3 – the union of all tori in this step of construction. We

also assume that the maximum of the diameters of tori in iteration n converges to zero as n

approaches to infinity. Antoine’s necklace is the intersection A =
⋂∞
n=0 An. For more details

we refer to [113].

Antoine’s necklace has the following properties:

• R3 \ A is not simply connected.

• For any x ∈ A and any r > 0, A ∩ B3(x, r) contains Antoine’s necklace.

The first property is well known [99, Chapter 18] while the second one is quite obvious:

B3(x, r) contains one of the tori T of one of the iterations (actually infinitely many of such

tori) and T ∩ A is also Antoine’s necklace because of the iterative nature of the procedure.

We also need the following observation.

Lemma 5.5.2. Let A be Antoine’s necklace and let M be a smooth 2-dimensional surface

in R3. Then A ∩M is contained in the closure of A \M , A ∩M ⊂ A \M .

Proof. Suppose to the contrary that for some x ∈ A∩M , and some r > 0 we have B3(x, r)∩

(A \ M) = ∅. By taking r > 0 sufficiently small we can assume that B3(x, r) ∩ M is

diffeomorphic to a disc. More precisely, there is a diffeomorphism Φ of R3 which maps

B3(x, r) ∩ M onto the ball B2(0, 2) in the xy-coordinate plane. Note that by the second

property listed above B3(x, r)∩A contains Antoine’s necklace denoted by Ã. Since Ã∩ (A \

M) = ∅ we have Ã ⊂ B3(x, r)∩M so Φ(Ã) ⊂ B2(0, 2) and (B2(0, 2)×R)\Φ(Ã) is not simply
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connected. By [99, Theorem 13.7 p.93] there is a homeomorphism h of the ball B2(0, 2) onto

itself in such that Φ(Ã) is mapped onto the standard ternary Cantor set C on the x-axis. This

homeomorphism can be trivially extended to a homeomorphism of B2(0, 2) × R by letting

H(x, y, z) = (h(x, y), z). Clearly the complement of H(Φ(Ã)) in B2(0, 2) × R is not simply

connected. On the other hand since H(Φ(Ã)) = C, the complement of this set is simply

connected in B2(0, 2)× R which is a contradiction.

The key argument in our proof is the following result of Sher [113, Corollary 1] that we

state as a lemma.

Lemma 5.5.3. There is an uncountable family of Antoine’s necklaces {Ai}i∈I such that

for any i, j ∈ I, i 6= j there is no homeomorphism h : R3 → R3 with the property that

h(Ai) = Aj.

For each of the sets Ai, let fi : S2 → R3 be an embedding as in Theorem 5.1.1 with the

property that Ai ⊂ fi(S2) and fi(S2) \Ai is a smooth surface (but not closed). It remains to

prove that for i 6= j there is no homeomorphism h : R3 → R3 such that h(fi(S2)) = fj(S2).

Suppose to the contrary that such a homeomorphism h exists. We will show that h(Ai) = Aj

which is a contradiction with Lemma 5.5.3.

Clearly,

h(Ai) = (h(Ai) ∩ Aj) ∪ (h(Ai) ∩ (fj(S2) \ Aj)).

Since fj(S2) \ Aj is a smooth surface, Lemma 5.5.2 yields

h(Ai) ∩ (fj(S2) \ Aj) ⊂ h(Ai) \ (fj(S2) \ Aj) = h(Ai) ∩ Aj ⊂ Aj

so h(Ai) ∩ (fj(S2) \Aj) = ∅ and hence h(Ai) ⊂ Aj. Applying the same argument to h−1 we

obtain that h−1(Aj) ⊂ Ai so Aj ⊂ h(Ai) and hence h(Ai) = Aj. The proof is complete. 2
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6.0 SEMILINEAR EVOLUTION EQUATIONS IN THE HEISENBERG

GROUP

Since 1980s, the theory of viscosity solutions for nonlinear partial differential equations has

been developed and applied to a wide range of fields. It provides existence and uniqueness of

weak solutions to a very general class of fully nonlinear equations in the space of continuous

functions [27, 80]. We refer to the book by Koike [80] and the notes by Manfredi [95] for a

brief review of the classical theory of viscosity solutions.

A recent trend is to extend the viscosity solution theory to metric measure spaces. Sub-

Riemannian spaces play a central role in analysis on metric measure spaces and apply to

a wide range of fields including robotic control and image reconstruction. The Heisenberg

group H, which is known as the simplest example of sub-Riemmanian manifolds provides

a good setting for the generalization of the viscosity solution theory. We will give a brief

introduction of Heisenberg group in the first section.

This chapter is concerned with the uniqueness and the Lipschitz and convexity preserving

properties for viscous Hamilton-Jacobi equations on the Heisenberg group H:

{
ut − tr(A(∇2

Hu)∗) + f(p,∇Hu) = 0 in H× (0,∞), (6.0.1)

u(·, 0) = u0 in H, (6.0.2)

where A is a given 2×2 symmetric positive-semidefinite matrix and the function f : H×R2 →

R satisfies certain assumptions to be made explicit later. Here ∇Hu, (∇2
Hu)∗ are respectively

the horizontal gradient and the horizontal symmetrized Hessian of the unknown function u

in space, and u0 is a given locally uniformly continuous function in H.
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Many of our results in this work also hold for more general fully nonlinear degenerate

parabolic equations of the type

ut + F
(
p,∇Hu, (∇2

Hu)∗
)

= 0 in H× (0,∞) (6.0.3)

under proper regularity assumptions on F . We however focus on (6.0.1) for simplicity of

exposition.

We first show uniqueness of viscosity solutions to the equations with exponential growth

at infinity and then turn to investigate the Lipschitz and convexity preserving of the unique

viscosity solution. It turns out that in general, such properties cannot be expected to hold

in the Heisenberg group. Some restrictions on the class of solutions prove to be necessary.

Thus, we pose several appropriate conditions and prove that the Lipschitz continuity and

horizontal convexity property of the solutions is preserved under these assumptions. On the

other hand, there are also many affirmative examples of Lipschitz and convexity preserving

in the Heisenberg group.

6.1 THE HEISENBERG GROUP H

6.1.1 Definitions and basic properties

The Heisenberg group H is the space R3 endowed with the non-commutative group multi-

plication

(xp, yp, zp) · (xq, yq, zq) =

(
xp + xq, yp + yq, zp + zq +

1

2
(xpyq − xqyp)

)
,

for all p = (xp, yp, zp) and q = (xq, yq, zq) in H. Note that the group inverse of p = (xq, yq, zq)

is p−1 = (−xq,−yq,−zq). The Korányi gauge is given by

|p|G = ((p2
1 + p2

2)2 + 16p2
3)1/4,

and the left-invariant Korányi or gauge metric is

dL(p, q) = |p−1 · q|G.
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The Lie Algebra of H is generated by the left-invariant vector fields

X1 =
∂

∂x
− y

2

∂

∂z
;

X2 =
∂

∂y
+
x

2

∂

∂z
;

X3 =
∂

∂z
.

One may easily verify the commuting relation X3 = [X1, X2] = X1X2 −X2X1.

The horizontal gradient of u is given by

∇Hu = (X1u,X2u)

and the symmetrized second horizontal Hessian (∇2
Hu)∗ ∈ S2×2 is given by

(∇2
Hu)∗ :=

 X2
1u (X1X2u+X2X1u)/2

(X1X2u+X2X1u)/2 X2
2u

 .

Here Sn×n denotes the set of all n× n symmetric matrices.

We denote by H0 the set of horizontal vectors of the form (h1, h2, 0), or equivalently

left-invariant vector fields of the form h1X1 + h2X2. The horizontal subspace at a point p

is the two dimensional space spanned by X1(p) and X2(p) and it can be identified with the

left translation of H0 by p, that is,

p ·H0 = Linear− span{X1(p), X2(p)}.

A piecewise smooth curve s 7→ γ(s) ∈ H is called horizontal if its tangent vector γ′(s) is

in the linear span of {X1(γ(s)), X2(γ(s))} for every s such that γ′(s) exists; in other words,

there exist a(s), b(s) ∈ R satisfying

γ′(s) = a(s)X1(γ(s)) + b(s)X2(γ(s))

whenever γ′(s) exists. We denote

‖γ′(s)‖ =
(
a2(s) + b2(s)

) 1
2 .
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Given p, q ∈ H, denote

Γ(p, q) = {horizontal curves γ(s) (s ∈ [0, 1]): γ(0) = p and γ(1) = q}.

Chow’s theorem states that Γ(p, q) 6= ∅; see, for example, [13]. The Carnot-Carathéodory

metric is then defined to be

dCC(p, q) = inf
γ∈Γ(p,q)

ˆ 1

0

‖γ′(s)‖ ds.

We next give the Taylor expansion of a smooth function u : H → R. By the fact that

|p|2G ≈ x2 + y2 + |z|, we obtain the horizontal Taylor expansion at point p0 = (x0, y0, z0):

u(p) = u(p0) + 〈∇u(p0), p−1
0 · p〉+

1

2
〈(∇2

Hu(p0))∗h, h〉+ o(|p−1
0 · p|2), (6.1.1)

where ∇u(p0) is the full gradient of u at p0 and the vector h is a horizontal projection of the

vector p−1
0 · p.

6.1.2 Metrics on H

Besides the left-invariant Korányi metric dL and Carnot-Carathéodory metric dCC , the func-

tion dR(p, q) = |p·q−1|G for any p, q ∈ H defines another metric on H, which is right invariant;

in fact, dR(p, q) = dL(p−1, q−1) for any p, q ∈ H.

It is known that dL is bi-Lipschitz equivalent to the Carnot-Carathéodory metric dCC

[21, 95]. The metrics dL and dR are not bi-Lipschitz equivalent, which is indicated in the

example below.

Example 6.1.1. One may choose

p = (1− ε, 1 + ε, ε), q = (1, 1, 0)

with ε > 0 small, then by direct calculation, we have dL(p, q)4 = |p−1 · q|4G = 4ε4 and

dR(p, q)4 = |p · q−1|4G = 4ε4 + 64ε2, which indicates that one cannot expect the existence of

a constant C > 0 such that dR(p, q) ≤ CdL(p, q) for all p, q ∈ H. A variant of this example

shows that the reverse inequality also fails in general.
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Although the metrics above are not bi-Lipschitz equivalent, it turns out that one is locally

Hölder continuous in relative to the other.

Proposition 6.1.2. For any ρ > 0, there exists Cρ > 0 such that

dL(p, q) ≤ CρdR(p, q)
1
2 (6.1.2)

and

dR(p, q) ≤ CρdL(p, q)
1
2 (6.1.3)

for any p, q ∈ H with |p|, |q| ≤ ρ.

Proof. We only show (6.1.2). The proof of (6.1.3) is similar. Set p = (xp, yp, zp) and q =

(xq, yq, zq). It is then clear that we only need to show that there exists some C > 0 depending

only on ρ such that∣∣∣∣zp − zq +
1

2
xpyq −

1

2
xqyp

∣∣∣∣
≤ C

(
(|xp − xq|2 + |yp − yq|2)2 + 16

(
zp − zq −

1

2
xpyq +

1

2
xqyp

)2
) 1

4

for all p, q ∈ H with |p|, |q| ≤ ρ.

Let δ = ((|xp − xq|2 + |yp − yq|2)2 + 16|zp − zq − 1
2
xpyq + 1

2
xqyp|2)

1
4 ≤ 1. Then it is clear

that ∣∣∣∣zp − zq +
1

2
xpyq −

1

2
xqyp

∣∣∣∣ ≤ δ2

4
+ |xpyq − xqyp|

=
δ2

4
+ |(xp − xq)yq − xq(yp − yq)| .

It follows that∣∣∣∣zp − zq +
1

2
xpyq −

1

2
xqyp

∣∣∣∣ ≤ δ2

4
+ (|xp − xq|2 + |yp − yq|2)

1
2 (x2

q + y2
q )

1
2 .

Noticing that x2
q + y2

q ≤ ρ2, we then have∣∣∣∣zp − zq +
1

2
xpyq −

1

2
xqyp

∣∣∣∣ ≤ δ2

4
+ ρ(|xp − xq|2 + |yp − yq|2)

1
2 ≤ δ2

4
+ ρδ =

(
δ

4
+ ρ

)
δ.

We conclude the proof by choosing C = 1/4 + ρ.
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6.1.3 Lipschitz continuity

We discuss Lipschitz continuity with respect to dL and dR.

It is easily seen that the function f0 : H→ R given by f0(p) = |p|G is a Lipschitz function

with respect to dL and dR, due to the triangle inequality. But there exist functions that are

Lipschitz with respect to one of the metrics but not with respect to the other. An example,

following Example 6.1.1, is as below.

Example 6.1.3. Fix q = (1, 1, 0) ∈ H as in Example 6.1.1. Let fq : H → R defined by

fq(p) = dR(p, q) for every p ∈ H, which satisfies

|fq(p)− fq(p′)| = |dR(p, q)− dR(p′, q)| ≤ dR(p, p′)

for all p, p′ ∈ H. But there is no constant L > 0 such that

fq(p)− fq(p′) ≤ LdL(p, p′)

for all p, p′ ∈ H, for otherwise we may take p = (1− ε, 1 + ε, ε) and p′ = q, and get

dR(p, p′) ≤ LdL(p, p′),

which is not true when ε > 0 small, as explained in Example 6.1.1. However, by Proposition

6.1.2, the function fq is still locally 1/2-Hölder continuous with respect to dL.

On the other hand, not all functions that are (locally) Lipschitz with respect to dL or

dR are (locally) Lipschitz with respect to the Euclidean metric. The simplest example is the

function f(p) = |p|G for p ∈ H.

We conclude this section by showing the equivalence of Lipschitz continuity with respect

to both metrics for functions with symmetry. We include in our discussions two different

types of evenness.

Definition 6.1.4 (Even functions). We say a function f : H → R is even (or symmetric

about the origin) if f(p) = f(p−1) for all p ∈ H. We say f is vertically even (or symmetric

about the horizontal coordinate plane) if f(p) = f(p) for all p ∈ H, where

p = (x, y,−z) for any p = (x, y, z) ∈ H. (6.1.4)
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Since |p · q−1|G = |p−1 · q|G = |(p−1)−1 · q−1|G for any p, q ∈ H, the following result is

obvious.

Proposition 6.1.5 (Equivalence of Lipschitz continuities). Let f : H → R be a function

that is either even or vertically even in H. Then f is Lipschitz continuous with respect to dL

if and only if f is Lipschitz continuous with respect to dR.

6.1.4 Horizontal convexity

For any point p ∈ H, we denote the line segment joining p · h−1 and p · h by [p · h−1, p · h],

which is always a line segment contained in the horizontal subspace p ·H0.

Definition 6.1.6 ([91, Definition 4.1]). Let Ω be an open set in H and u : Ω → R be an

upper semicontinuous function. The function u is said to be horizontally convex or h-convex

in Ω, if for every p ∈ H and h ∈ H0 such that [p · h−1, p · h] ⊂ Ω, we have

u(p · h−1) + u(p · h) ≥ 2u(p). (6.1.5)

One may also define convexity of a function through its second derivatives in the viscosity

sense.

Definition 6.1.7. Let Ω be an open set in H and u : Ω → R be an upper semicontinuous

function. The function u is said to be v-convex in Ω if

(∇2
Hu)∗(p) ≥ 0 for all p ∈ H (6.1.6)

in the viscosity sense.

It is clear that u ∈ C2(Ω) is v-convex if it satisfies (6.1.6) everywhere in Ω. It is known

that the h-convexity and v-convexity are equivalent [91]. The following example shows that

h-convexity is very different from convexity in the Euclidean sense.

71



Example 6.1.8. Let

f(x, y, z) = x2y2 + 2z2 (6.1.7)

for all (x, y, z) ∈ H. It is not difficult to verify that f is h-convex. Indeed, for any p =

(x, y, z) ∈ H and h = (h1, h2, 0) ∈ H0, we have

f(p · h) + f(p · h−1)

= 2x2y2 + 4z2 + 3x2h2
2 + 3y2h2

1 + 2h2
1h

2
2 + 6xyh1h2

≥ 2f(p) + 3(xh2 + yh1)2 + 2h2
1h

2
2 ≥ 2f(p).

The function f is an example of (globally) h-convex functions in H that is not convex in R3.

6.2 REVIEW OF VISCOSITY SOLUTIONS

6.2.1 Viscosity solutions in Rn

In this section, we review the viscosity solution theory for the general second-order fully

nonlinear equations arising in various fields:

F (x, u(x),∇u(x),∇2u(x)) = 0, (6.2.1)

where x = (x1, x2, . . . , xn) ∈ Rn are independent variables, u : Rn → R is the unknown

function, and ∇u = (ux1 , ux2 , . . . , uxn) and ∇2u respectively denote the gradient and Hessian

of u with respect to x. Here F is a continuous function defined on Rn × R × Rn × Sn×n,

where Sn×n stands for the set of all symmetric n× n matrices.

We are particularly interested in the class of equations with the following assumptions:

(1) (Ellipticity) F (x, r, p,X) is decreasing in X, i.e.,

F (x, r, p,X) ≤ F (x, r, p, Y ) for all X, Y ∈ Sn×n such that X ≥ Y .

(2) (Monotonicity) F (x, r, p,X) is increasing in r.
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Regarding the notation X ≥ Y , we recall that there is a natural partial ordering in Sn×n;

indeed, X ≥ Y means that X − Y is positive semi-definite. We call F is proper if the above

two conditions are satisfied.

The viscosity approach is particularly useful when F is not in the divergence form, i.e.,

the structure of F does not allow integration. We provide the definition of viscosity solutions

of (6.2.1) in a bounded domain Ω ⊂ Rn.

Definition 6.2.1. We say u ∈ C(Ω) is a viscosity subsolution (resp., supersolution) of (6.2.1)

in Ω if for any test function φ ∈ C2(Ω) and x0 ∈ Ω such that u − φ attains a maximum

(resp., minimum) over Ω at x0, we have

F (x0, u(x0),∇φ(x0),∇2φ(x0)) ≤ 0 (resp., F (x0, u(x0),∇φ(x0),∇2φ(x0)) ≥ 0.)

We call u is a viscosity solution if it is both a viscosity subsolution and a viscosity superso-

lution.

Remark 6.2.2. It is possible to give equivalent definitions by replacing the maximum /min-

imum in the definition above with “strict (unique) maximum/minimum” or “local maxi-

mum/minimum”.

Remark 6.2.3. We usually take C1 test functions if F is a first order operator. In fact,

one may choose to use smooth (C∞) functions as tests in Definition 6.2.1 and get another

equivalent definition [38, Proposition 2.2.3].

Remark 6.2.4. It is also possible to define subsolutions for the space of all upper semicon-

tinuous functions on Ω, denoted by USC(Ω). Similarly, the lower semicontinuous function

space (LSC(Ω)) can be used to define supersolutions.

We may think of the test for subsolutions in Definition 6.2.1 in a more geometric way by

considering that φ touches u from above at x0. If u is a viscosity subsolution or supersolu-

tion, we essentially require the derivatives of the test function φ to fulfill the corresponding

inequality. The next result indicates that viscosity solutions are weak solutions which agree

with classical solutions if their regularity is adequate.

Proposition 6.2.5. Assume that F is proper. Then u is a classical solution of (6.2.1) in Ω

if and only if u is a viscosity solution and u ∈ C2(Ω).
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There are various approaches to the existence theorem of viscosity solutions to a certain

equation. We list several well-known methods.

1. Vanishing viscosity method: We may add an artificial viscosity in the equation to get a

smoother solution and pass to the limit as the viscosity approaches 0.

2. Optimal control/differential game: We set up an optimal control or game problem, whose

value function represents or approximates the viscosity solution.

3. Perron’s method: The supremum of all subsolutions or the infimum of all supersolutions

with boundary data constraint gives a viscosity solution.

The vanishing viscosity method is one of the classical methods to find solutions to fully

nonlinear equations. One may refer to the early work [26] for more details. Perron’s method

is also classical but was first adopted in the theory of viscosity solutions by Ishii [65].

In general, proving the uniqueness is usually harder than proving the existence and

stability in the study of the viscosity solutions. Thus, the comparison principle is the main

issue of the viscosity solutions. In order to state the comparison principle, we introduce the

following equivalent definitions of viscosity solutions.

Definition 6.2.6. A pair (η,X), where η ∈ Rn and X is an n × n symmetric matrix,

belongs to the second order superjet (resp., subjet) of an upper semicontinuous (resp., lower

semicontinuous) function u at point x0 if

u(x0 + h) ≤ u(x0) + 〈η, h〉+
1

2
〈X · h, h〉+ o(|h|2)

(resp., u(x0 + h) ≥ u(x0) + 〈η, h〉+
1

2
〈X · h, h〉+ o(|h|2))

as h→ 0. The collection of all of these pairs, is denoted by J2,+u(x0) (resp., J2,−u(x0)).

We also introduce a sort of closure of jets J
2,±
u(x0) as the collection of (η,X) ∈ Rn×Sn

such that there exists a sequence xk ∈ Ω and a sequence (ηk, Xk) ∈ J2,±u(xk) satisfying

(xk, u(xk), ηk, Xk)→ (x0, u(x0), η,X)

as k →∞.

Proposition 6.2.7. For u : Ω→ R, the following conditions are equivalent:
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(1) u is a viscosity subsolution (resp., supersolution)of (6.2.1).

(2) For x ∈ Ω and (η,X) ∈ J2,+u(x) (resp., J2,−u(x)), we have F (x, u(x), η,X) ≤ 0 (resp.,

≥ 0).

(3) For x ∈ Ω and (η,X) ∈ J2,+
u(x) (resp., J

2,−
u(x)), we have F (x, u(x), η,X) ≤ 0 (resp.,

≥ 0).

We next state the maximum principle for semicontinuous functions, which is essential

for the proof of uniqueness of the viscosity solutions.

Theorem 6.2.8 (Crandall-Ishii-Jensen-Lions). Let Ω be a bounded domain in Rn. Let the

function u be upper semicontinuous and v be lower semicontinuous in Ω. Suppose that for

x ∈ ∂Ω we have

lim sup
y→x

u(y) ≤ lim inf
y→x

v(y)

where both sides are not ∞ or −∞ simultaneously. If u− v has an interior local maximum

sup
Ω

(u− v) > 0

then we have: For τ > 0, we can find points pτ , qτ ∈ Ω such that

(1)

lim
τ→∞

τφ(pτ − qτ ) = 0,

where φ(p) = |p|2,

(2) there exists a point p̂ ∈ Ω such that pτ → p̂ and

sup
Ω

(u− v) = u(p̂)− v(p̂) > 0,

(3) there exist n× n symmetric matrices Xτ , Yτ and vectors ητ so that

(ητ , Xτ ) ∈ J
2,+

(u, pτ ),

and

(ητ , Yτ ) ∈ J
2,+

(u, qτ ),

(4) Xτ ≤ Yτ .

As a corollary, we give the comparison principle for the viscosity solutions of (6.2.1).
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Corollary 6.2.9. Let Ω be a bounded domain in Rn and F in (6.2.1) be proper and Lipschitz.

Let the function u be a subsolution of (6.2.1) and v be a supersolution of (6.2.1) in Ω. Suppose

that for x ∈ ∂Ω we have

lim sup
y→x

u(y) ≤ lim inf
y→x

v(y)

where both sides are not ∞ or −∞ simultaneously. Then we have u(x) ≤ v(x) for x ∈ Ω.

6.2.2 Viscosity solutions in H

We also define the viscosity solutions in H via semijets.

Definition 6.2.10. A pair (η,X), where η ∈ R3 and X is an 2 × 2 symmetric matrix,

belongs to the second order superjet (resp., subjet) of an upper semicontinuous (resp., lower

semicontinuous) function u at point p0 if

u(p) ≤ u(p0) + 〈η, p−1
0 · p〉+

1

2
〈X · h, h〉+ o(|p−1

0 · p|2)

(resp., u(p0 · h) ≥ u(p0) + 〈η, h〉+
1

2
〈X · h, h〉+ o(|p−1

0 · p|2)

as |p−1
0 · p| → 0, where h is the horizontal projection of p−1

0 · p. The collection of all of these

pairs, is denoted by J2,+u(p0) (resp., J2,−u(p0)).

As in the case of Euclidean spaces, we can also define the closure of jets J
2,±
u(p0) in a

similar way. Consider a continuous function F (p, u, η,X) : H × R × R3 × S(R2) → R. We

will assume that F is proper, that is, F is increasing in u and decreasing in X.

Definition 6.2.11. A lower semicontinuous (resp., upper semicontinuous) function u is a

viscosity supersolution of the equation

F (p, u(p),∇u(p), (∇2u(p))∗) = 0 (6.2.2)

if whenever (η,X) ∈ J2,−u(p0) (resp., (η,X) ∈ J2,+u(p0)) we have

F (p0, u(p0), η,X) ≥ 0 (resp., F (p0, u(p0), η,X) ≤ 0).

Equivalently, if φ touches u from below (resp., above) at p0, is C2 in X1, X2 and C1 in X3,

then we must have

F (p0, u(p0),∇φ(p0), (∇2φ(p0))∗) ≥ 0 (resp., F (p0, u(p0),∇φ(p0), (∇2φ(p0))∗) ≤ 0).
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By the continuity of F , J2,±u(p0) in the above definition can be replaced by J
2,±
u(p0).

A viscosity solution is defined as being both a viscosity subsolution and a viscosity superso-

lution.

The following maximum principle is proved by Bieske [16].

Theorem 6.2.12. Let Ω be a bounded domain in H. Let the function u be upper semicon-

tinuous and v be lower semicontinuous in Ω. Suppose that for x ∈ ∂Ω we have

lim sup
y→x

u(y) ≤ lim inf
y→x

v(y)

where both sides are not ∞ or −∞ simultaneously. If u− v has an interior local maximum

sup
Ω

(u− v) > 0

then we have: For τ > 0, we can find points pτ , qτ ∈ Ω such that

(1)

lim
τ→∞

τφ(pτ · q−1
τ ) = 0,

where φ(p) = x4 + y4 + z2,

(2) there exists a point p̂ ∈ Ω such that pτ → p̂ and

sup
Ω

(u− v) = u(p̂)− v(p̂) > 0,

(3) there exist 2× 2 symmetric matrices Xτ , Yτ and vectors ητ ∈ R3 so that

(ητ , Xτ ) ∈ J
2,+

(u, pτ ),

and

(ητ , Yτ ) ∈ J
2,+

(u, qτ ),

(4) Xτ ≤ Yτ + o(1) as τ →∞. This condition means if ξ ∈ R2, we have

〈Xτξ, ξ〉 − 〈Yτξ, ξ〉 ≤ a(τ)|ξ|2,

where a(τ)→ 0 as τ →∞.

Similarly, we give the comparison principle for the viscosity solutions of (6.2.2) in H.
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Corollary 6.2.13. Let Ω be a bounded domain in H and F in (6.2.2) be proper and Lipschitz.

Let the function u be a subsolution of (6.2.2) and v be a supersolution of (6.2.2) in Ω. Suppose

that for x ∈ ∂Ω we have

lim sup
y→x

u(y) ≤ lim inf
y→x

v(y)

where both sides are not ∞ or −∞ simultaneously. Then we have u(x) ≤ v(x) for x ∈ Ω.

6.3 UNIQUENESS OF UNBOUNDED SOLUTIONS

Uniqueness of viscosity solutions of various nonlinear equations in the Heisenberg group is

studied in [16, 17, 95, 98] etc. But most of these results are either for a bounded domain

or for bounded solutions. It is less understood when the domain and solution are both

unbounded in the Heisenberg group. To the best of our knowledge, the only known result on

uniqueness for time-dependent equations in this case is due to Haller Martin [53], where a

comparison principle is established for a class of nonlinear parabolic equations including the

horizontal Gauss curvature flow of graphs in the Carnot group. The comparison principle in

[53] is for solutions with polynomial growth at infinity while ours is for exponential growth,

but our assumptions on the structure of the equations are stronger.

In this section, motivated by a Euclidean argument in [11], we present a proof of a

comparison principle for (6.0.1) with exponential growth at space infinity. Our result and

proof are different from those of [53].

We need the following Lipschitz continuity of f .

(A1) There exists L1 > 0 such that

|f(p, w1)− f(p, w2)| ≤ L1|w1 − w2| (6.3.1)

for all p ∈ H and w1, w2 ∈ R2.

(A2) There exists L2(ρ) > 0 depending on ρ > 0 such that

|f(p, w)− f(q, w)| ≤ L2(ρ)|p · q−1|G (6.3.2)

for all p, q ∈ H with |p|, |q| ≤ ρ and all w ∈ R2.
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Here | · |G denotes the Korányi gauge in H, i.e.,

|p|G =
(
(x2

p + y2
p)

2 + 16z2
p

) 1
4

for all p = (xp, yp, zp) ∈ H. Note that (A2) is not the usual local Lipschitz continuity in

H, since the distance between p, q ∈ H defined by dR(p, q) = |p · q−1|G is invariant only

under right translations and therefore not equivalent to the usual gauge metric give by

dL(p, q) = |p−1 · q|G or the Carnot-Carathéodory metric.

Our comparison principle is as below.

Theorem 6.3.1 (Comparison principle for unbounded solutions). Assume that the Lips-

chitz conditions (A1) and (A2) hold. Let u and v be respectively an upper semicontinuous

subsolution and a lower semicontinuous supersolution of (6.0.1). Assume that for any fixed

T > 0, there exist k > 0 and CT > 0 depending on T such that

u(p, t)− v(p, t) ≤ CT e
k〈p〉 (6.3.3)

for all (p, t) ∈ H× [0, T ], where

〈p〉 = (1 + x4 + y4 + 16z2)
1
4 for all p = (x, y, z) ∈ H. (6.3.4)

If u(p, 0) ≤ v(p, 0) for all p ∈ H, then u ≤ v in H× [0,∞).

Proof of Theorem 6.3.1. We aim to show that u ≤ v in H × [0, T ) for any fixed T > 0. By

the growth assumption, there exist k > 0 and CT > 0 satisfying condition (6.3.3). Take an

arbitrary constant β > min{k, 1} and then α > 0 to be determined later. Set

g(p, t) = eαt+β〈p〉 (6.3.5)

for (p, t) ∈ H× [0,∞). Recall that 〈p〉 is a function of p ∈ H given in (6.3.4). If p = (x, y, z),

we have by direct calculations

∇H〈p〉 =

(
x3 − 4yz

(1 + x4 + y4 + 16z2)
3
4

,
y3 + 4xz

(1 + x4 + y4 + 16z2)
3
4

)
, (6.3.6)
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which implies that there exists µ > 0 such that

|∇Hg(p, t)| ≤ βµg(p, t) (6.3.7)

for all (p, t) ∈ H× [0,∞).

We assume by contradiction that u(p, t)− v(p, t) takes a positive value at some (p, t) ∈

H× (0,∞). Then there exists σ ∈ (0, 1) such that

u(p, t)− v(p, t)− 2σg(p, t)− σ

T − t

attains a positive maximum at (p̂, t̂) ∈ H× [0, T ). For all ε > 0 small, consider the function

Φ(p, q, t, s) = u(p, t)− v(q, s)− σΨε(p, q, t, s)−
(t− s)2

ε
− σ

T − t

with

Ψε(p, q, t, s) = ϕε(p, q) +K(p, q, t, s),

ϕε(p, q) =
1

ε
dR(p, q)4 =

|p · q−1|4

ε
, K(p, q, t, s) = g(p, t) + g(q, s).

Then Φ attains a positive maximum at some (pε, qε, tε, sε) ∈ H2 × [0, T )2. In particular,

Φ(pε, qε, tε, sε) ≥ Φ(p̂, p̂, t̂, t̂),

which implies that

|pε · q−1
ε |4

ε
+

(tε − sε)2

ε
≤u(pε, tε)− v(qε, sε)− σg(pε, tε)− σg(qε, sε)−

σ

T − tε

−
(
u(p̂, t̂)− v(p̂, t̂)− 2σg(p̂, t̂)− σ

T − t̂

)
.

(6.3.8)

Since, due to (6.3.3), the terms u(pε, tε)− v(qε, tε)− σg(pε, tε)− σg(qε, sε) are bounded from

above uniformly in ε, we have

dR(pε, qε)→ 0 and tε − sε → 0 as ε→ 0. (6.3.9)
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We notice that pε, qε are bounded, since otherwise the right hand side of (6.3.8) will tend

to −∞. Therefore, by taking a subsequence, still indexed by ε, we have pε, qε → p ∈ H and

tε, sε → t ∈ [0, T ). It follows that

lim sup
ε→0

u(pε, tε)− v(qε, sε)− σg(pε, tε)− σg(qε, sε)−
σ

T − tε
≤ u(p, t)− v(p, t)− 2σg(p, t)− σ

T − t
,

which yields

ϕε(pε, qε)→ 0 as ε→ 0.

Also, it is easily seen that t > 0 and therefore tε, sε > 0 thanks to the condition that

u(·, 0) ≤ v(·, 0) in H.

In order to apply the Crandall-Ishii lemma (cf. [27]) in our current case, let us recall the

definition of semijets adapted to the Heisenberg group: for any (p, t) ∈ H× (0,∞) and any

locally bounded upper semicontinuous function u in H× (0,∞),

P 2,+
H u(p, t) =

{
(τ, ζ,X) ∈ R× R3 × S2×2 : u(q, s) ≤u(p, t) + τ(s− t)

+〈ζ, p−1 · q〉+
1

2
〈Xh, h〉+ o(|p−1 · q|2G)

}
,

where h denotes the horizontal projection of p−1 · q. Similarly, we may define

P 2,−
H u(p, t) =

{
(τ, ζ,X) ∈ R× R3 × S2×2 : u(q, s) ≥ u(p, t) + τ(s− t)

+〈ζ, p−1 · q〉+
1

2
〈Xh, h〉+ o(|p−1 · q|2G)

}

for any locally bounded lower semicontinuous function u. Also, the closure P
2,+

H is the set of

triples (τ, ζ,X) ∈ R× R3 × S2×2 that satisfy the following: there exist (pj, tj) ∈ H× [0,∞)

and (τj, ζj, Xj) ∈ P 2,+
H (pj, tj) such that

(pj, tj, u(pj, tj), τj, ζj, Xj)→ (p, t, u(p, t), τ, ζ,X) as j →∞.

The closure set P
2,−
H of P 2,−

H can be similarly defined. We refer to [17] for more details.
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We now apply the adaptation of the Crandall-Ishii lemma to the Heisenberg group [95, 17]

and get for any λ ∈ (0, 1)

(a1, ζ1, X) ∈ P 2,+

H u(pε, tε) and (a2, ζ2, Y ) ∈ P 2,−
H v(qε, sε)

such that

a1 − a2 = ασK(pε, qε, tε, sε) +
σ

(T − tε)2
, (6.3.10)

〈Xw,w〉 − 〈Y w,w〉 ≤ 〈(σM + λσ2M2)wpε ⊕ wqε , wpε ⊕ wqε〉, (6.3.11)

and the horizontal projections of ζ1, ζ2 ∈ R3 can be written respectively as ξ + η1 and ξ + η2

(in R2) with

ξ = ∇p
Hϕε(pε, qε) = −∇q

Hϕε(pε, qε),

η1 = βσ∇Hg(pε, tε), η2 = −βσ∇Hg(qε, sε).

Here w = (w1, w2) ∈ R2 is arbitrary, M = (∇2Ψε)
∗(pε, qε, tε, sε) is a 6× 6 symmetric matrix,

and

wpε =

(
w1, w2,

1

2
w2xpε −

1

2
w1ypε

)
(6.3.12)

and

wqε =

(
w1, w2,

1

2
w2xpε −

1

2
w1yqε

)
(6.3.13)

with pε = (xpε , ypε , zpε) and qε = (xqε , yqε , zqε).

It is easily seen that M = M1 +M2, where

M1 = ∇2ϕε(pε, qε)

and

M2 = ∇2K(pε, qε) =

∇2g(pε, tε) 0

0 ∇2g(qε, sε)

 .

However, the algebraic complexity is quite more challenging in the non-commutative case.

Following the calculation in the comparison arguments in [17] (and also [16, 95]), with the

help of a computer algebra system, we get that there exists C > 0 such that

〈(M1 + λM2
1 )wpε ⊕ wqε , wpε ⊕ wqε〉 ≤

C

ε
|w|2(zpε − zqε −

1

2
xpεyqε +

1

2
xqεypε)

2 (6.3.14)
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for any λ > 0 small. We next follow the strategy in the Euclidean case from [11]. With the

help of a computer algebra system, we simplify the left hand side of the following inequalities

and obtain a constant Cβ > 0 depending only on β, such that

〈M2(wpε ⊕ wqε), (wpε ⊕ wqε)〉 ≤
1

ε
|w|2CβK(pε, qε, tε, sε), (6.3.15)

〈M1M2(wpε ⊕ wqε), (wpε ⊕ wqε)〉

≤ 1

ε
|w|2CβK(pε, qε, tε, sε)

∣∣∣∣zpε − zqε − 1

2
xpεyqε +

1

2
xqεypε

∣∣∣∣ (6.3.16)

and

〈M2
2 (wpε ⊕ wqε), (wpε ⊕ wqε)〉 ≤ |w|2CβK2(pε, qε, tε, sε). (6.3.17)

We remark that the existence of Cβ here is essentially due to the boundedness of ∇H〈p〉

and ∇2
H〈p〉 in H.

By (6.3.11) and (6.3.14), we may take λ > 0 sufficiently small, depending on the size of

ε, p, t, and β, such that

〈Xw,w〉 − 〈Y w,w〉

≤ Cσ

ε
|w|2(zpε − zqε −

1

2
xpεyqε +

1

2
xqεypε)

2 + 2σ|w|2CβK(pε, qε, tε, sε).
(6.3.18)

We next apply the definition of viscosity sub- and supersolutions and get

a1 − tr(AX) + f(pε, ξ + η1) ≤ 0 (6.3.19)

and

a2 − tr(AY ) + f(qε, ξ + η2) ≥ 0. (6.3.20)

By subtracting (6.3.20) from (6.3.19), we have

a1 − a2 ≤ tr(AX)− tr(AY ) + f(qε, ξ + η2)− f(pε, ξ + η1),

which yields, by (6.3.18) and (A1),

a1 − a2 ≤
Cσ

ε
‖A‖(zpε − zqε −

1

2
xpεyqε +

1

2
xqεypε)

2 + L2(ρ)|pε · q−1
ε |

+ (2σCβ‖A‖+ 2βµσL1)K(pε, qε, tε, sε)

(6.3.21)
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with ρ = |p|+ 1 for ε > 0 sufficiently small.

Since we have (6.3.9), we now can take ε > 0 small to get

C

ε
(zpε − zqε −

1

2
xpεyqε +

1

2
xqεypε)

2 + L2(ρ)|pε · q−1
ε | ≤

σ

T 2
.

Taking λ > 0 accordingly small and

α > 2Cβ‖A‖+ βµLf ,

we reach a contradiction to (6.3.10).

An immediate consequence is certainly the uniqueness of solutions with at most expo-

nential growth at space infinity.

Corollary 6.3.2 (Uniqueness of solutions). Assume that (A1) and (A2) hold. Let u0 ∈

C(H). Then there is at most one continuous viscosity solution u of (6.0.1)–(6.0.2) satisfying

the following exponential growth condition at infinity:

(G) For any T > 0, there exists k > 0 and CT > 0 such that |u(p, t)| ≤ CT e
k〈p〉 for all

(p, t) ∈ H× [0, T ].

.

The existence of viscosity solutions of (6.0.1)–(6.0.2) is not the main topic of this chapter,

but we remark that it is possible to adapt Perron’s method [27] to our current case in the

Heisenberg group, under various extra assumptions on the function f . For example, one may

further assume on (6.0.1) that

(A3) |f(p, ξ)| ≤ Cf (1 + |ξ|) for some Cf > 0 and all p ∈ H, ξ ∈ R2.

In this case, it is not difficult to verify by computation that u = Cg(p, t) + Cf t and u =

−Cg(p, t)− Cf t are respectively a supersolution and a subsolution of (6.0.1) for any C > 0

and β > 0 when α > 0 is sufficiently large. Indeed, we have

ut = Cαg + Cf ,

| tr(A(∇2
Hu)∗)| ≤ C‖A‖β2µ2g,
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and

|f(p,∇Hu)| ≤ CCfβµg + Cf ,

where µ is the same constant as in the proof of Theorem 6.3.1. Therefore, by (A3), we get

ut − tr(A(∇2
Hu)∗) + f(p,∇Hu) ≥ 0

when α > ‖A‖β2µ2 + Cfβµ. The verification for u is similar.

If there exist C > 0 and k > 0 such that

−Cek〈p〉 ≤ u0(p) ≤ Cek〈p〉 for all p ∈ H, (6.3.22)

then classical arguments [27] show that the supremum over all subsolutions bounded by u

and u is in fact a unique continuous solution. We state the result below without more details

in its proof.

Corollary 6.3.3. Assume the Lipschitz conditions (A1), (A2) and the growth condition

(A3). Let u0 ∈ C(H) satisfy (6.3.22) for some C > 0 and k > 0. Then there exists a unique

continuous solution u of (6.0.1)–(6.0.2) satisfying the exponential growth condition (G).

6.4 LIPSCHITZ PRESERVING PROPERTIES

In the Euclidean space, Lipschitz continuity preserving of the solutions to some partial

differential equations is a very important property: when the initial value u0 is Lipschitz

continuous , the unique solution u(x, t) is Lipschitz continuous in x as well for any t ≥ 0.

In what follows, assuming appropriate growth conditions for the initial value u0 and

its derivatives, we sketch a proof of these properties for the unique smooth solution of the

classical heat equation:

ut −∆u = 0 in Rn × (0,∞), (6.4.1)

with u(·, 0) = u0(·) in Rn, where ∆u denotes the usual (Euclidean) Laplacian operator acted

on u.
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By differentiating the equation with respect to the space variables, one may easily see

that each of the components of∇u satisfies the heat equation (6.4.1), which, by the maximum

principle, implies that ∇u(·, t) is bounded for any t ≥ 0 if ∇u0 is bounded in Rn.

We intend to extend these preserving properties to nonlinear equations in the Heisenberg

group H. Notions and properties of Lipschitz continuity and convexity in the Heisenberg

group are available in the literature [30, 91, 70]. Recall that a function u is said to be

Lipschitz continuous in H if there exists L > 0 such that

|u(p)− u(q)| ≤ LdL(p, q)

for all p, q ∈ H. It is clear that Lipschitz continuity is left invariant.

As observed above, besides necessary applications of a comparison principle, the key in

the straightforward proofs for the Euclidean case lies at differentiating the equation and

interchanging derivatives. This is however not applicable directly in the Heisenberg group,

since the mixed second derivatives in the Heisenberg group are not commutative in general.

In fact, our counterexamples show that preserving of Lipschitz continuity fail even for very

simple linear equations; see Examples 6.4.1.

On the other hand, there are many examples on Lipschitz preserving in the Heisenberg

group. We have seen from the previous sections that there are some sufficient conditions to

guarantee the equivalence between Lipschitz continuity of a function with respect to both

metrics dL and dR; see Definition 6.1.4, Proposition 6.1.5 and Proposition 6.5.6.

We thus can obtain the Lipschitz continuity properties by first investigating them with

respect to the right invariant metric dR and then using the additional assumptions to get

the Lipschitz continuity with respect to dL.

In this section, we strengthen the assumption (A2) on f ; we assume

(A2’) the function f(p, ξ) is globally Lipschitz continuous in p with respect to the metric dR,

i.e., there exists L0 > 0 such that

|f(p, ξ)− f(q, ξ)| ≤ L0|p · q−1|G (6.4.2)

for all p, q ∈ H and ξ ∈ R2.
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6.4.1 Right invariant Lipschitz continuity preserving

We first discuss the Lipschitz continuity based on the standard gauge metric dL (or equiv-

alently, the Carnot-Carathéodory metric). It turns out that even the simplest first order

linear equation will not preserve such Lipschitz continuity.

Example 6.4.1. Fix h0 = (1, 1) ∈ R2. Let us consider the equation

ut − 〈h0,∇Hu〉 = 0 in H

with u(p, 0) = u0(p) = |p|G for p ∈ H. By direct verification and Corollary 6.3.2, the unique

solution is

u(p, t) = |p · ht|G = dR(p, h−1t),

where h = (1, 1, 0) ∈ H0. However, it is not Lipschitz continuous with respect to dL. Indeed,

similar to Example 6.1.3, one may choose p1 = (−t − ε,−t + ε,−εt) and p2 = tv−1 =

(−t,−t, 0), which gives

u(p1, t)− u(p2, t) = |p1 · p−1
2 |G = (4ε4 + 64ε2t2)

1
4

but

dL(p1, p2) = |p−1
1 · p2|G =

√
2ε.

The example above directs us to first consider the Lipschitz continuity with respect to

dR. The following result is an immediate consequence of Theorem 6.3.1.

Theorem 6.4.2 (Preserving of right invariant Lipschitz continuity). Assume that f : H ×

R2 → R satisfies the assumptions (A1), (A2’) and (A3). Let u ∈ C(H × [0,∞)) be the

unique solution of (6.0.1)–(6.0.2) satisfying the growth condition (G). If there exists L > 0

such that

|u0(p)− u0(q)| ≤ LdR(p, q) (6.4.3)

for all p, q ∈ H, then

|u(p, t)− u(q, t)| ≤ (L+ L0t)dR(p, q) (6.4.4)
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for all p, q ∈ H and t ≥ 0. In particular, there exists Cρ > 0 depending on ρ > 0 and t ≥ 0

such that

|u(p, t)− u(q, t)| ≤ CρdL(p, q)
1
2 (6.4.5)

for all p, q ∈ H with |p|, |q| ≤ ρ. Moreover, when f does not depend on the space variable p,

(6.4.4) holds with L0 = 0.

Proof. By symmetry, we only need to prove that

u(p, t)− u(h−1 · p, t) ≤ (L+ L0t)|h|G (6.4.6)

for all p, h ∈ H and t ≥ 0. It suffices to show that

v(p, t) = u(h−1 · p, t) + (L+ L0t)|h|G

is a supersolution of (6.0.1)–(6.0.2) for any h ∈ H. To this end, we recall the left invariance

of horizontal derivatives in the Heisenberg group, which implies that v is a supersolution of

vt − tr(A∇2
Hv) + f(h−1 · p,∇Hv) = L0|h|G in H× (0,∞).

Since

|f(h−1 · p,∇Hv)− f(p,∇Hv)| ≤ L0|h|G

due to (6.4.2), we easily see that v is a supersolution of (6.0.1). Also, by (6.4.3), we have

u(p, 0) ≤ v(p, 0) for all p ∈ H. We conclude the proof of (6.4.6) by applying Theorem 6.3.1.

The Hölder continuity (6.4.5) follows from Proposition 6.1.2.

In view of Proposition 6.1.5, we may use the theorem above to show the preserving

of Lipschitz continuity in the standard gauge metric under the assumption of evenness or

vertical evenness.
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Corollary 6.4.3 (Lipschitz preserving of even solutions). Assume that f : H × R2 → R

satisfies the conditions (A1), (A2’) and (A3). Let u ∈ C(H× [0,∞)) be the unique solution

of (6.0.1)–(6.0.2) satisfying the growth condition (G). Assume also that u(·, t) is an even or

vertically even function. If there exists L > 0 such that

|u0(p)− u0(q)| ≤ LdL(p, q) (6.4.7)

for all p, q ∈ H, then

|u(p, t)− u(q, t)| ≤ (L+ L0t)dL(p, q) (6.4.8)

for all p, q ∈ H and t ≥ 0. In particular, when f does not depend on the space variable p,

then (6.4.8) holds with L0 = 0.

6.4.2 A special class of Hamilton-Jacobi equations

For the case of first order Hamilton-Jacobi equations (A = 0), if in addition we assume that

f : R2 → R is in the form that f(ξ) = m(|ξ|) with m : R→ R locally uniformly continuous,

then the Lipschitz preserving property of a bounded solution can be directly shown without

the evenness assumption. More precisely, we study equations in the form of

ut +m(|∇Hu|) = 0 in H× (0,∞), (6.4.9)

where m : R→ R is a locally uniformly continuous function, with initial condition u(·, 0) =

u0(·) bounded Lipschitz continuous with respect to dL in H. Since the assumption on m is

quite weak, our uniqueness and existence results for unbounded solutions in Section 6.3 do

not apply.

For solutions bounded in space, see [98] for a uniqueness theorem and a Hopf-Lax formula

when the Hamiltonian ξ 7→ m(|ξ|) is assumed to be convex and coercive. For instance, when

m(|ξ|) = |ξ|2/2, the unique solution of (6.4.9) can be expressed as

u(p, t) = inf
q∈H

{
t

2
d2
CC

(
0,

(
q−1 · p
t

))
+ u0(q)

}
. (6.4.10)

The Lipschitz preserving property (with respect to dL or dCC) was left as an open question

in [98]; see also [8] for a related open question but for more general Hamiltonians. In contrast
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to the Euclidean case, it is not obvious how to prove the Lipschitz continuity by using the

Hopf-Lax formula (6.4.10). We here give an answer to this question using a PDE approach.

Theorem 6.4.4 (Lipschitz preserving for special Hamilton-Jacobi equations). Suppose that

m : R→ R is locally uniformly continuous. Let u be the unique viscosity solution of (6.4.9)

with u(·, 0) = u0(·) bounded in H. If u0 is Lipchitz with respect to dL in H, i.e., there exists

L > 0 such that (6.4.7) holds for any p, q ∈ H, then for all t ≥ 0

|u(p, t)− u(q, t)| ≤ LdL(p, q)

for all p, q ∈ H.

Proof. Under the assumptions above, it is known [98] that for any fixed T > 0, there is a

unique bounded continuous viscosity solution in H× [0, T ). We only need to show that

u(p, t)− u(q, t) ≤ LdL(p, q)

for all p, q ∈ H and t ∈ [0, T ). The other part can be shown by a symmetric argument.

By Young’s inequality applied to (6.4.7), we obtain

u0(p)− u0(q) ≤ LdL(p, q)4

4δ4
+

3Lδ
4
3

4
(6.4.11)

for all δ > 0 and p, q ∈ H. It then suffices to show that

u(p, t)− u(q, t) ≤ LdL(p, q)4

4δ4
+

3Lδ
4
3

4
(6.4.12)

for all δ > 0 and p, q ∈ H. To this end, we fix δ > 0 and prove below that

uL(p, t) = inf
q∈H

{
u(q, t) + CdL(p, q)4

}
with C = L/4δ4 is a supersolution of (6.4.9). Suppose there exist a bounded open set

O ⊂ H× (0, T ), φ ∈ C2(O) and (p̂, t̂) ∈ O such that

(uL − φ)(p̂, t̂) < (uL − φ)(p, t)
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for all (p, t) ∈ O. We may also assume that φ(p, t)→ −∞ when (p, t)→ ∂O. Then for any

ε > 0 sufficiently small,

Φε(p, q, t, s) = u(q, t) + CdL(p, q)4 − φ(p, s) +
(t− s)2

ε

attains a minimum at (pε, qε, tε, sε) ∈ H×H× [0,∞)× [0,∞). A standard argument yields

pε, qε → p̂ and tε, sε → t̂ as ε→ 0, which, in particular, implies that tε, sε 6= 0. The minimum

also implies that

∇Hφ1(pε) = ∇Hφ(pε, sε) and φt(pε, sε) =
2(tε − sε)

ε
, (6.4.13)

where φ1(p) = CdL(p, qε)
4.

We next apply the definition of supersolutions and get

a+m(|∇Hφ2(qε)|) ≥ 0, (6.4.14)

where

a =
2(tε − sε)

ε
and φ2(q) = −CdL(pε, q)

4.

By (6.4.13), in order to prove that uL is a supersolution, we only need to substitute ∇Hφ2(qε)

in (6.4.14) with ∇Hφ1(pε). By direct calculation, we have

∇p
HdL(p, q)4 = 4

(
δ1(δ2

1 + δ2
2)− 4δ2δ3, δ2(δ2

1 + δ2
2) + 4δ1δ3

)
and

∇q
HdL(p, q)4 = 4

(
− δ1(δ2

1 + δ2
2)− 4δ2δ3, −δ2(δ2

1 + δ2
2) + 4δ1δ3

)
with p = (xp, yp, zp), q = (xq, yq, zq) and

δ1 = xp − xq, δ2 = yp − yq, δ3 = zp − zq +
1

2
xpyq −

1

2
xqyp,

This reveals that ∇p
HdL(p, q)4 6= −∇q

HdL(p, q)4 and therefore ∇Hφ1(pε) 6= ∇Hφ2(qε) in gen-

eral; see [36] for more details on this aspect. However, their norms stay the same, i.e.,

|∇p
HdL(p, q)4| = |∇q

HdL(p, q)4|, which turns out to be a key ingredient in this proof. In fact,

we have

|∇p
HdL(p, q)4| = |∇q

HdL(p, q)4| = 4dL(p, q)2(δ2
1 + δ2

2)
1
2 ,
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which implies that |∇Hφ1(pε)| = |∇Hφ2(qε)| and their boundedness uniformly in ε. Hence,

due to (6.4.13), the equation (6.4.14) is now rewritten as

φt(pε, sε) +m(|∇Hφ(pε, sε)|) ≥ 0.

By sending ε → 0 and using the continuity of m, we conclude the verification that uL is a

supersolution. It follows that vL = uL + 3Lδ
4
3/4 is also a supersolution of (6.4.9). Thanks

to (6.4.11), we have u(p, 0) ≤ vL(p, 0), which implies (6.4.12) by Theorem 6.3.1.

6.5 CONVEXITY PRESERVING PROPERTIES

It is well known that the convexity preserving property holds for a large class of fully nonlinear

equations in the Euclidean space [39]. The definition reads as follows: when the initial value

u0 is convex, the unique solution u(x, t) is convex in x as well for any t ≥ 0. Concerning

convexity in the Heisenberg group, the notion of h-convexity (and equivalently v-convexity)

turns out to be a natural extension of the Euclidean version. However, we cannot expect

such convexity to be preserved in general. In fact, h-convexity is not preserved even for the

first order linear equation.

Example 6.5.1 (Linear first order equations). We again consider the linear equation

ut − 〈h0,∇Hu〉 = 0 in H (6.5.1)

with h0 = (1, 1) and u(x, y, z, 0) = f(x, y, z) with f defined as in (6.1.7) for all (x, y, z) ∈ H.

Let h = (1, 1, 0) ∈ H0. As verified in Example 6.1.8, u(·, 0) is h-convex in H. However, the

unique solution

u(p, t) = f(p · ht) = (x+ t)2(y + t)2 + 2

(
z +

1

2
xt− 1

2
yt

)2

(6.5.2)

is not h-convex for any t > 0. In fact, the symmetrized Hessian is given by

(∇2
Hu)∗(p, t) =

 2(y + t)2 + (y − t)2 4(x+ t)(y + t)− (x− t)(y − t)

4(x+ t)(y + t)− (x− t)(y − t) 2(x+ t)2 + (x− t)2

 .

92



It is therefore easily seen that

(∇2
Hu)∗(t, t, 0, t) =

 8t2 16t2

16t2 8t2

 ,

which shows that u(·, t) is not h-convex around the point p = (t, t, 0) ∈ H for any t > 0.

The loss of convexity preserving is due to the non commutativity of the Heisenberg group

product. Although the h-convexity of a function is preserved under left translations, it is not

necessarily preserved under right translations, as indicated in Example 6.5.1. We therefore

consider right invariant h-convexity first and get left invariant h-convexity preserving in some

special cases.

Finally, our study of the convexity preserving property in the Heisenberg group is also

inspired by recent works on horizontal mean curvature flow in sub-Riemannian manifolds

[20, 36]. The mean curvature flow in Rn is known to preserve convexity [62], but it is not

clear if such a property also holds in H in general. Our analysis about convexity is only for

the simpler equation (6.0.1). However, an explicit solution of the mean curvature flow in H

that does preserve convexity can be found in Example 6.6.3; see also [36].

6.5.1 Right invariant h-convexity preserving

Definition 6.5.2 (Right invariant h-convexity). Let Ω be an open set in H and u : Ω→ R be

an upper semicontinuous function. The function u is said to be right invariant horizontally

convex or right h-convex in Ω, if for every p ∈ H and h ∈ H0 such that [h−1 · p, h · p] ⊂ Ω,

we have

u(h−1 · p) + u(h · p) ≥ 2u(p). (6.5.3)

Following the proof of Theorem 6.3.1, we can show a convexity maximum principle and

get the theorem below.

Theorem 6.5.3 (Preservation of right invariant h-convexity). Suppose that the assumptions

(A1), (A2) and (A3) hold. Let u ∈ C(H× [0,∞)) be the unique viscosity solution of (6.0.1)–

(6.0.2) satisfying the growth condition (G). Assume in addition that f is right invariant
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concave in H× R2, i.e.,

f(h−1 · p, ξ) + f(h · p, η) ≤ 2f

(
p,

1

2
(ξ + η)

)
(6.5.4)

for all p ∈ H, h ∈ H0 and ξ, η ∈ R2. If u0 is right invariant h-convex in H, then so is u(·, t)

for all t ≥ 0.

Proof of Theorem 6.5.3. By definition, we aim to show that

u(h−1 · p, t) + u(h · p, t) ≥ 2u(p, t)

for any p ∈ H, h ∈ H0, t ≥ 0. We assume by contradiction that there exist (p0, h0, t0) ∈

H×H0 × [0,∞) such that

u(h−1
0 · p0, t0) + u(h0 · p0, t0) < 2u(p0, t0).

Then there exists a positive maximizer (p̂, ĥ, t̂) ∈ H×H0 × [0, T ) of

2u(p, t)− u(h−1 · p, t)− u(h · p, t)− 3σg(p, t)− σ

m− |h|4G
− σ

T − t

with some constants m > |ĥ|4G, T > t̂ and σ > 0 small. Here g(p, t) = eαt+β〈p〉 with α > 0 to

be determined later and any fixed β > k. We next consider

Φ(p, q, r, h, t, s, τ) = 2u(r, τ)− u(h−1 · p, t)− u(h · q, s)− σΨε(p, q, r, t, s, τ)

−ψε(t, s, τ)− σ

m− |h|4G
− σ

T − τ
,

where

ψε(t, s, τ) =
(t− s)2

ε
+

(t− τ)2

ε
+

(s− τ)2

ε
,

Ψε(p, q, r, t, s, τ) = φε(p, q, r) +K(p, q, r, t, s, τ)

with

φε(p, q, r) =
|p · r−1|4

ε
+
|q · r−1|4

ε

and

K(p, q, r, t, s, τ) = g(r, τ) + g(p, t) + g(q, s).
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It follows that Φ has a maximizer (pε, qε, rε, hε, tε, sε, τε). As before, we denote

pε = (xpε , ypε , zpε), qε = (xqε , yqε , zqε), rε = (xrε , yrε , zrε).

Due to the penalization at space infinity, we have φε(pε, qε, rε) bounded from above

uniformly in ε. By a standard argument, we can show that there exists p ∈ H, h ∈ H0 and

t ∈ [0, T ) such that, up to a subsequence,

pε, qε, rε → p, hε → h, tε, sε, τε → t (6.5.5)

and

φε(pε, qε, rε)→ 0 (6.5.6)

as ε→ 0.

Since u0 is right invariant h-convex, we have t > 0 and therefore tε, sε, τε > 0 when ε is

sufficiently small.

Denote u−(p, t) = u(h−1
ε ·p, t) and u+(p, t) = u(hε ·p, t). We now apply the Crandall-Ishii

lemma in the Heisenberg group and get, for any λ ∈ (0, 1),

(a1, ζ1, X1) ∈J2,−
u−(pε, tε), (a2, ζ2, X2) ∈ J2,−

u+(qε, sε),

(a3, ζ3, X3) ∈ J2,+
u(rε, τε)

such that

2a3 − a1 − a2 =
σ

(T − τε)2
+ σαK(pε, qε, rε, tε, sε, τε), (6.5.7)

the horizontal projections of ζi can be expressed as ξi + ηi (i = 1, 2, 3) with

−ξ1 = σ∇p
Hφε(pε, qε, rε), −ξ2 = σ∇q

Hφε(pε, qε, rε), 2ξ3 = σ∇r
Hφε(pε, qε, rε),

−η1 = σ∇Hg(pε, tε), −η2 = σ∇Hg(qε, sε), 2η3 = σ∇Hg(rε, τε),

and

〈(2X3 −X1 −X2)w,w〉 ≤ 〈(σM + λσ2M2)wpε ⊕ wqε ⊕ wrε , wpε ⊕ wqε ⊕ wrε〉, (6.5.8)
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for all w ∈ R2, where M = ∇2Ψε(pε, qε, rε, hε, tε, sε, τε) is a 9× 9 symmetric matrix, wpε , wqε

are respectively taken as in (6.3.12) and (6.3.13), and

wrε =

(
w1, w2,

1

2
w2xrε −

1

2
w1yrε

)
.

By calculation, it is easily seen that

2ξ3 = ξ1 + ξ2. (6.5.9)

We next set

M1 = ∇2φε(pε, qε, rε)

and

M2 = ∇2K(pε, qε, rε, tε, sε, τε)

Then M = M1 + M2. To investigate the right hand side of (6.5.8), we first give estimates

the terms involving M1, which is a variant of (6.3.14) for three space variables. Note that

M1 = M ′
1 +M ′′

1 ,

where

M ′
1 =

1

ε
∇2|p · r−1|4, M ′′

1 =
1

ε
∇2|q · r−1|4.

By direct calculations, we get

〈M ′
1wpε ⊕ wqε ⊕ wrε , wpε ⊕ wqε ⊕ wrε〉 = 0,

〈M ′′
1wpε ⊕ wqε ⊕ wrε , wpε ⊕ wqε ⊕ wrε〉 = 0

and

〈M ′2
1 wpε ⊕ wqε ⊕ wrε , wpε ⊕ wqε ⊕ wrε〉 =

512

ε
m2

1|w|2,

〈M ′′2
1 wpε ⊕ wqε ⊕ wrε , wpε ⊕ wqε ⊕ wrε〉 =

512

ε
m2

2|w|2,

〈M ′
1M

′′
1wpε ⊕ wqε ⊕ wrε , wpε ⊕ wqε ⊕ wrε〉 =

256

ε
m1m2|w|2,

where

m1 = zpε − zrε +
1

2
ypεxrε −

1

2
xpεyrε , m2 = zqε − zrε +

1

2
yqεxrε −

1

2
xqεyrε .
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It follows that

〈(M1 + λM2
1 )wpε ⊕ wqε ⊕ wrε , wpε ⊕ wqε ⊕ wrε〉 ≤

512λ

ε
(m2

1 +m2
2 +m1m2)|w|2, (6.5.10)

which implies that

〈(M1 + λM2
1 )wpε ⊕ wqε ⊕ wrε , wpε ⊕ wqε ⊕ wrε〉 ≤

C

ε
|w|2(|pε · r−1

ε |4 + |qε · r−1
ε |4) (6.5.11)

for some C > 0 independent of ε and λ. On the other hand, with the help of computer

algebra system, we obtain estimates similar to (6.3.15), (6.3.16) and (6.3.17). In fact, we get

a constant Cβ such that, when λ > 0 is small enough (depending on ε),

〈M2(wpε ⊕ wqε ⊕ wrε), (wpε ⊕ wqε ⊕ wrε)〉 ≤ Cβ|w|2K(pε, qε, rε, tε, sε, τε) (6.5.12)

〈λ(M1M2 +M2M1 +M2
2 )(wpε ⊕ wqε ⊕ wrε), (wpε ⊕ wqε ⊕ wrε)〉

≤ 2Cβ|w|2K(pε, qε, rε, tε, sε, τε)
(6.5.13)

for some constant µ > 0 independent of ε, β and σ and satisfying (6.3.7). As remarked in

the proof of Theorem 6.3.1, we obtain the constant Cβ thanks to the boundedness of ∇H〈p〉

and ∇2
H〈p〉 in H.

Combining (6.5.8), (6.5.11) and (6.5.13), we have

〈(2X3 −X1 −X2)w,w〉 ≤ Cσ

ε
‖w‖2(|pε · r−1

ε |4 + |qε · r−1
ε |4)

+ 2σ‖w‖2CβK(pε, qε, rε, tε, sε, τε).

(6.5.14)

when λ > 0 and σ > 0 are sufficiently small.

Since the horizontal derivatives are left translation invariant, the functions u− and u+

are respectively solutions of

(u−)t − tr(A∇2
Hu−) + f(h−1

ε · p,∇Hu−) = 0 in H× (0,∞)

and

(u+)t − tr(A∇2
Hu+) + f(hε · p,∇Hu+) = 0 in H× (0,∞).
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Applying the definition of viscosity subsolutions and supersolution, we have

a1 − tr(AX1) + f(h−1
ε · pε, ξ1 + η1) ≥ 0, (6.5.15)

a2 − tr(AX2) + f(hε · qε, ξ2 + η2) ≥ 0, (6.5.16)

a3 − tr(AX3) + f(rε, ξ3 + η3) ≤ 0. (6.5.17)

Subtracting (6.5.15) and (6.5.16) from twice (6.5.17), we get

2a3 − a1 − a2 ≤ trA(2X3 −X1 −X2) + E, (6.5.18)

where

E = f(h−1
ε · pε, ξ1 + η1) + f(hε · qε, ξ2 + η2)− 2f(rε, ξ3 + η3)

It follows from the concavity assumption (6.5.4), the relation (6.5.9) and (A1)-(A2) that

E ≤ f(h−1
ε · pε, ξ1 + η1)− f(h−1

ε · rε, ξ1 + η1) + f(hε · qε, ξ2 + η2)− f(hε · rε, ξ2 + η2)

+ f(h−1
ε · rε, ξ1 + η1) + f(hε · rε, ξ2 + η2)− 2f(rε,

1

2
(ξ1 + ξ2 + η1 + η2))

+ 2f(rε,
1

2
(ξ1 + ξ2 + η1 + η2))− 2f(rε, ξ3 + η3)

≤ LR(|h−1
ε · rε · p−1

ε · h|+ |h−1
ε · rε · q−1

ε · hε|) + Lf |η1 + η2 − 2η3|
(6.5.19)

with R = (|p|+ 1) and ε > 0 small. Also, by (6.3.7), we have

|η1 + η2 − 2η3| ≤ 2(|η1|+ |η2|+ |η3|) = 2σβµK(pε, qε, rε, tε, sε, τε).

In view of (6.5.14), (6.5.18) and (6.5.19), we then obtain

2a3 − a1 − a2

≤Cσ
ε

(|pε · r−1
ε |4 + |qε · r−1

ε |4) + LR|h−1
ε · rε · p−1

ε · h|+ LR|h−1
ε · rε · q−1

ε · hε|

+ 2σ(Cβ‖A‖+ Lfβµ)K(pε, qε, rε, tε, sε, τε).

(6.5.20)

In view of (6.5.5) and (6.5.6), we can take ε > 0 small such that

Cσ

ε
(|pε · r−1

ε |4 + |qε · r−1
ε |4) + LR|h−1

ε · rε · p−1
ε · h|+ LR|h−1

ε · rε · q−1
ε · hε| <

σ

T 2
,
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which, by (6.5.20), implies

2a3 − a1 − a2 ≤
σ

T 2
+ 2σ(Cβ‖A‖+ Lfβµ)K(pε, qε, rε, tε, sε, τε).

It clearly contradicts (6.5.7) when α is chosen to satisfy

α > 2‖A‖Cβ + 2Lfβµ.

One may further generalize this result for (6.0.3) by assuming that F is concave in all

arguments.

Remark 6.5.4. The concavity assumption (6.5.4) on the operator f is stronger than the as-

sumptions of the convexity results in the Euclidean space as shown in [39, 69]. In particular,

the concavity of ξ 7→ f(p, ξ) is not needed in the Euclidean case. We here need this assump-

tion, since there are no expressions of h-convexity in H corresponding to the following one

for the Euclidean convexity

u(ξ) + u(η) ≥ 2u

(
ξ + η

2

)
for all ξ, η ∈ Rn. It is not clear to us whether the assumption (6.5.4) can be weakened.

Example 6.5.5. Let us revisit Example 6.5.1. Since the equation (6.5.1) and the solution

(6.5.2) satisfy all of the assumptions in Theorem 6.5.3, the right invariant h-convexity of the

solution is preserved, though the h-convexity is not. Indeed, if u(p, t) is given by (6.5.2),

then by direct calculation we obtain, for all p = (x, y, z), h = (h1, h2, 0) and t ≥ 0,

u(h · p, t) + u(h−1 · p, t)

= (x+ h1 + t)2(y + h2 + t)2 + 2

(
z +

1

2
h1y −

1

2
h2x+

1

2
(x+ h1)t− 1

2
(y + h2)t

)2

= 2(x+ t)2(y + t)2 + 4

(
z +

1

2
xt− 1

2
yt

)2

+ (h1(y + t)− h2(x+ t))2 + 2h2
1(y + t)2

+ 2h2
2(x+ t)2 + 8(x+ t)(y + t)h1h2 + 2h2

1h
2
2

= 2(x+ t)2(y + t)2 + 4

(
z +

1

2
xt− 1

2
yt

)2

+ 3(h1(y + t) + h2(y + t))2 + 2h2
1h

2
2

≥ 2(x+ t)2(y + t)2 + 4

(
z +

1

2
xt− 1

2
yt

)2

= 2u(p, t).
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6.5.2 Left invariant h-convexity preserving

We next discuss some special cases, where h-convexity and right invariant h-convexity are

equivalent.

Proposition 6.5.6 (Evenness). Let u be an even or vertically even function on H . Then

u is h-convex in H if and only if u is right invariant h-convex in H.

Proof. By definition, u is h-convex if u satisfies (6.1.5) for any p ∈ H and h ∈ H0. Since u is

even, it is easily seen that (6.1.5) holds if and only if

u(h · p) + u(h−1 · p) ≥ u(p),

where p is given as in (6.1.4), or

u(h · p−1) + u(h−1 · p−1) ≥ u(p−1)

for all p ∈ H and h ∈ H0, which is equivalent to saying

u(h · p) + u(h−1 · p) ≥ u(p) for all p ∈ H and h ∈ H0.

Another sufficient condition for equivalence between the h-convexity and the left h-

convexity of a function u on H is that u has a separate structure; namely,

u(x, y, z) = f(x, y) + g(z) (6.5.21)

for any (x, y, z) ∈ H.

Proposition 6.5.7 (Separability). Let u be a function on H with a separate structure as in

(6.5.21). Then u is h-convex in H if and only if u is right invariant h-convex in H.
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Proof. Suppose u can be written as in (6.5.21). Setting p = (x, y, z) and h = (h1, h2), we

then have

u(p · h) = f(x+ h1, y + h2) + g(z +
1

2
xh2 −

1

2
yh1);

u(p · h−1) = f(x− h1, y − h2) + g(z − 1

2
xh2 +

1

2
yh1);

u(h · p) = f(x+ h1, y + h2) + g(z +
1

2
yh1 −

1

2
xh2);

u(h−1 · p) = f(x− h1, y − h2) + g(z − 1

2
yh2 +

1

2
xh2).

It is easily seen that in this case

u(p · h−1) + u(p · h) = u(h−1 · p) + u(h · p),

which immediately yields the equivalence of (6.1.5) and (6.5.3) in H.

The following result on preserving of the h-convexity itself is an immediate consequence

of Theorem 6.5.3, Propositions 6.5.6 and 6.5.7.

Corollary 6.5.8 (H-convexity preserving under evenness or separability). Assume that f

satisfies (A1)–(A3) and the concavity condition (6.5.4) for all p ∈ H, h ∈ H0 and ξ, η ∈ R2.

Let u ∈ C(H× [0,∞)) be the unique viscosity solution of (6.0.1)–(6.0.2) satisfying the growth

condition (G). Assume in addition that for any t ≥ 0, u(·, t) either is an even or vertically

even function or has a separable structure as in (6.5.21). If u0 is h-convex in H, then so is

u(·, t) in H for all t ≥ 0.

6.6 MORE EXAMPLES

In this section, we provide more examples, where the h-convexity is preserved.

Example 6.6.1. Let u0(x, y, z) = (x2 + y2)2 − 8z2. It is not difficult to see that u0 is an

h-convex function in H. Consider the heat equation

ut −∆Hu = 0 in H× (0,∞) (6.6.1)
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with u(·, 0) = u0 in H, where ∆H denotes the horizontal Laplacian operator in the Heisenberg

group, i.e., ∆Hu = tr(∇2
Hu)∗. The unique solution of (6.6.1) in this case is

u(x, y, z, t) = (x2 + y2)2 − 8z2 + 12(x2 + y2)t+ 24t2 (6.6.2)

for all (x, y, z) ∈ H and t ≥ 0 and it actually preserves the h-convexity of the initial value

u0.

Example 6.6.2. The solution as in (6.6.2) looks special, since it can be written as the sum of

a function of x, y, t and a function of z. A more complicated solution of the heat equation

(6.6.1) is

u(x, y, z, t) = (x2 + y2)z2 +
1

24
(x2 + y2)3 + (4z2 + 2(x2 + y2)2)t+ 17(x2 + y2)t2 +

68

3
t3 (6.6.3)

which contains mixed terms of x, y and z. By direct calculation, one can also show that

u(·, t) satisfies (6.1.6) in H in the classical sense for everywhere t ≥ 0.

Example 6.6.3. We recall another example in [36] for the level-set mean curvature flow

equation in H. The equation is of the form

ut − |∇Hu| divH

(
∇Hu

|∇Hu|

)
= 0 in H× (0,∞), (6.6.4)

where divH stands for the horizontal divergence operator in the Heisenberg group. An

explicit solution is

u(x, y, z, t) = (x2 + y2)2 + 16z2 + 12(x2 + y2)t+ 12t2.

This is also an example of h-convexity preserving but unfortunately is not covered by our

current results.
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7.0 A GAME-THEORETIC PROOF OF CONVEXITY PRESERVATION

OF SOME NONLINEAR DIFFERENTIAL EQUATIONS

Among many properties of the viscosity solutions, the convexity preserving property is known

to be important for various linear and nonlinear parabolic equations arising in geometry,

material sciences and image processing. This property of viscosity solutions was proved to

hold in a very general class of degenerate parabolic equations using the so called convexity

maximum principle in the Euclidean spaces [39]. We have also seen some discussions of this

property on the Heisenberg group in the previous chapter.

The discrete game interpretations of various elliptic and parabolic PDEs ([78, 100, 101,

79, 97, 96], etc) have recently attracted great attention. The game related methods are also

used as a new tool in different contexts. We will introduce the game interpretation of the

level set mean curvature flow equation and normalized p-Laplace equations.

Based on game-theoretic interpretations, we give a simpler proof of the convexity pre-

serving of the level sets and solutions to the mean curvature flow equation in R2. Our

method also applies to normalized parabolic p-Laplace equations. Our new proofs are based

on investigating game strategies or iterated applications of Dynamic Programming Principles

(DPP), which is very different from the standard proofs in the literature. We also use this

method to study convexity preserving for the Neumann boundary problems.

7.1 CONVEXITY PRESERVING PROPERTIES

The mean curvature flow describes the motion of a surface in Rn governed by the law that

the normal velocity is equal to the mean curvature. The convexity preserving property for
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mean curvature flow is a well-known result by Huisken [62], saying that an evolving surface

by mean curvature stays convex if the initial surface is convex; see also [37] for the two

dimensional case in detail. This property was later formulated in terms of level set method

in [34] and [39].

(MCF)

ut − |∇u| div

(
∇u
|∇u|

)
= 0 in Rn × (0,∞), (7.1.1)

u(x, 0) = u0(x) in Rn, (7.1.2)

where u0 is assumed to be a Lipschitz continuous function in Rn.

In [34] and [39], those authors proved the following.

Theorem 7.1.1. Suppose u0 is a Lipschitz continuous function on Rn. Let u be the unique

viscosity solution of (MCF). If the set {x ∈ Rn : u0(x) ≥ 0} is convex, then the set {x ∈

Rn : u(x, t) ≥ 0} is also convex for any t ≥ 0.

The proof in [34] is based on a regularization of the mean curvature operator for the

corresponding stationary problem in a convex domain Ω ⊂ Rn, that is,

(SP)

−∆G
1 u = −|∇u| div

(
∇u
|∇u|

)
= 1 in Ω, (7.1.3)

u = 0 on ∂Ω, (7.1.4)

and an application of more classical convexity maximum principle by Korevaar [81] and

Kennington [75] for C2 solutions of uniformly elliptic equations. In two dimensions, Barron,

Goebel and Jensen [12] recently gave a PDE proof for the convexity of level sets for any

strict subsolution or strict supersolution of −∆G
1 u = 0.

The convexity (concavity) preserving property of viscosity solutions was later studied for

a general class of degenerate parabolic equations in [39], including the mean curvature flow

equation and normalized p-Laplace equations.

(PL)

ut − tr

((
I + (p− 2)

∇u⊗∇u
|∇u|2

)
∇2u

)
= f(x) in Rn × (0,∞), (7.1.5)

u(x, 0) = u0(x) in Rn, (7.1.6)

where f : Rn → R is a given continuous function.

We list the theorem for the convexity preserving of the viscosity solutions to (MCF).
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Theorem 7.1.2. Suppose u0 is a concave and Lipschitz continuous function on Rn. Let u

be the unique viscosity solution of (MCF). Then u(x, t) is also concave in x for any t ≥ 0.

The classical argument relies on a generalized version of convexity comparison principle;

we refer to [69] for related results. More precisely, it is shown, by adding more variables in

the usual comparison theorem, that the continuous solution u satisfies

u(x, t) + u(y, t)− 2u(z, t) ≤ |x+ y − 2z|

for any x, y, z ∈ Rn and t ≥ 0 if the same holds initially:

u0(x) + u0(y)− 2u0(z) ≤ |x+ y − 2z|.

The concavity preserving property is then a special case when z = (x + y)/2. We remark

that the convexity of solutions to various PDEs has also been extensively studied in [72, 73,

107, 31, 2] etc.

7.2 GAME INTERPRETATIONS OF VISCOSITY SOLUTIONS

7.2.1 Tug of War game and normalized parabolic p-Laplace equations

Let us first discuss a game interpretation of parabolic normalized ∞-Laplace equation.


ut − tr

(
∇u⊗∇u
|∇u|2

∇2u

)
= 0 in Rn × (0,∞),

u(x, 0) = u0(x) in Rn.

Fix ε > 0 be the stepsize of the game. The game starts from x ∈ Rn. Repeat N(= [2t/ε2])

times the following.

(1) Toss a fair coin;

(2) The winner of the first step choose a vector v in the ball B(0, ε) (abbreviated as Bε);

(3) The game position moves from x to x+ v.
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Fix any strategies SI of Player I and SII of Player II. Let yN denote the final stage of

this game under SI and SII . Player I (II) minimizes (maximizes) the value of u0 at yN .

Denote by uε(x, t) the value function:

uε(x, t) = inf
SI

sup
SII

E(u0(yN)),

where E stands for the expectation. This game described above is often referred to as

tug-of-war game. Dynamic Programming Principle (DPP) of this game is

uε(x, t) =
1

2
sup
v∈Bε

uε
(
x+ v, t− ε2

2

)
+

1

2
inf
v∈Bε

uε
(
x+ v, t− ε2

2

)
.

Following the argument in [96], one can prove uε → u locally uniformly as ε→ 0.

Then we discuss the game interpretation of normalized p-Laplace equations (PL) with

2 ≤ p ≤ ∞. Fix ε > 0 be the stepsize of the game. The game starts from x ∈ Rn. Let

σp =


1

2(p+n)
if 2 ≤ p <∞,

1
2

if p =∞.

Repeat N(= [t/σpε
2]) times the following.

(1) Toss a biased coin with probabilities α to get heads and β to get tails, α + β = 1;

(2) If they get heads, they play a tug-of-war game;

(3) If they get tails, the game state moves randomly in the ball B(xn, ε).

Fix any strategies SI of Player I and SII of Player II. Let yN denote the final stage of

this game under SI and SII . Player I (II) minimizes (maximizes) the value of u0 at yN .

Denote by uε(x, t) the value function:

uε(x, t) = inf
SI

sup
SII

ESI ,SII
(u0(yN)).

This game described above is often referred to as tug-of-war game with noise.

The equation is related to the DPP below:

uε(x, t) =
α

2
sup
v∈Bε

uε(x+ v, t− σpε2) +
α

2
inf
v∈Bε

uε(x+ v, t− σpε2)

+ β

 
v∈Bε

uε(x+ v, t− σpε2) dv + ε2f(x).
(7.2.1)
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uε(x, t) = u0(x) for all x ∈ Rn and t < ε2. (7.2.2)

Here α ≥ 0, β ≥ 0 satisfy α+ β = 1 and are determined by the choice of p. In fact, it is

known from [96, 97] that

α =
p− 2

p+ n
and β =

2 + n

p+ n
.

The presence of the constant σp in (7.2.1) is due to the different forms of DPP for our

convenience later; in contrast to [96], our formula does not use averages with respect to t.

One may show that uε converges, as ε→ 0, to the unique solution u of (PL) locally uniformly

in Rn × [0,∞) by following [96].

7.2.2 The deterministic game and the mean curvature flow equations

Let us first review the game proposed in [78] for motion by curvature. A marker, representing

the game position or game state, is initialized at x ∈ R2 from time 0. The maturity time

given is denoted by t. Let the step size for space be ε > 0. Time ε2 is consumed for each

step. The total game steps N can be regarded as [t/ε2].

Two players, Player I and Player II, participate in the game: Player I intends to maximize

at the final state an objective function, which in our case is u0, while Player II is to minimize

it. At each turn,

(1) Player I chooses in R2 a unit vector v;

(2) Player II has the right to keep or reverse the choice of Player I, which determines a sign

b = ±1;

(3) The marker is moved from the present state x to x+
√

2εbv.

To give a mathematical description, we denote

S1 = {v ∈ R2 : |v| = 1}.

Then the inductive state equation writes as zk+1 = zk +
√

2εbkvk, k = 0, 1, . . . , N − 1;

z0 = x,
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where vk ∈ S1 and bk = ±1.

Hereafter, for any x ∈ Rn and s ∈ [0,∞), z(s;x) = zm stands for the game state at the

step m = [s/ε2] starting from x under the competing strategies so that our games look like

continuous ones. The value function is defined as

uε(x, t) := max
v1∈S1

min
b1=±1

. . . max
vN∈S1

min
bN=±1

u0(z(t;x)). (7.2.3)

It is also known [78, Appendix B] that uε preserves Lipschitz continuity of u0 in space. The

dynamic programming principle is as below:

uε(x, t) = max
v∈S1

min
b=±1

uε(x+
√

2εbv, t− ε2), (7.2.4)

It is employed to show the following theorem. We assume that

(A) u0 is a bounded and Lipschitz continuous function in R2 satisfying that u0 ≥ a and u0−a

has compact support Ka for some constant a ∈ R.

Theorem 7.2.1 (Theorem 1.2 in [78]). Assume that u0 satisfies (A). Let uε be the value

function defined as in (7.2.3). Then uε converges, as ε→ 0, to the unique viscosity solution

of (MCF) uniformly on compact subsets of R2 × (0,∞).

We recall the definition of viscosity solutions for (MCF) below.

Definition 7.2.2 ([38]). A locally bounded upper (resp., lower) semicontinuous function

u is called a subsolution (resp., supersolution) of (7.1.1) if for any (x0, t0) ∈ R2 and φ ∈

C2(R2× [0,∞)) such that u−φ attains a (strict) maximum (resp., minimum) at (x0, t0), we

have

φt − |∇φ| div

(
∇φ
|∇φ|

)
≤ 0 at (x0, t0), (7.2.5)(

resp., φt − |∇φ| div

(
∇φ
|∇φ|

)
≥ 0 at (x0, t0)

)
when ∇φ(x0, t0) 6= 0 and

φt(x0, t0) ≤ 0, (resp., φt(x0, t0) ≥ 0)

when ∇φ(x0, t0) = 0 and ∇2φ(x0, t0) = O.
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A locally bounded continuous function u is called a solution if it is both a subsolution

and a supersolution. A subsolution (resp., supersolution, solution) u of (7.1.1) is said to be

a subsolution (resp., supersolution, solution) of (MCF) if it further satisfies u(x, 0) ≤ u0(x)

(resp., u(x, 0) ≥ u0(x), u(x, 0) = u0(x)) for all x ∈ R2.

7.2.3 A modified game

Let us slightly change the rules of the game described above: we keep the basic setting of

the game and the objectives of both Players, but at each round, we now ask that

(1) Player I chooses v, v′ ∈ S1;

(2) Player II determines b = ±1 and b′ = ±1;

(3) The marker is moved from the present state x to x+
√

2ε
2

(bv + b′v′).

Under the new rules above, we may define the value function

wε(x, t) := max
v1,v′1∈S1

min
b1,b′1=±1

. . . max
vN ,v

′
N∈S1

min
bN ,b

′
N=±1

u0(z̃(t;x)), (7.2.6)

where z̃(t;x) = z̃N is the solution of the following state equation: z̃k+1 = z̃k +

√
2ε

2
(bkvk + b′kv

′
k), k = 0, 1, . . . , N − 1;

z0 = x,

It is clear that the new dynamic programming principle is

wε(x, t) = max
v,v′∈S1

min
b,b′=±1

wε

(
x+

√
2ε

2
(bv + b′v′), t− ε2

)
, (7.2.7)

for any t ≥ ε2. The Lipschitz preserving property of wε can be shown by following [78,

Appendix B].

Proposition 7.2.3 (Lipschitz continuity preserving property). Let wε be the value function

associated to the modified game described above. If there exists L > 0 such that

|u0(x)− u0(y)| ≤ L|x− y| for any x, y ∈ R2,

then wε(x, t) satisfies

|wε(x, t)− wε(y, t)| ≤ L|x− y| for any x, y ∈ R2, t ≥ 0 and ε > 0. (7.2.8)
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Proof. We prove this result by induction. By (7.2.7), we have

wε(x, ε2) = max
v,v′∈S1

min
b,b′=±1

u0

(
x+

√
2ε

2
(bv + b′v′)

)

wε(y, ε2) = max
v,v′∈S1

min
b,b′=±1

u0

(
y +

√
2ε

2
(bv + b′v′)

)
.

Let v0, v
′
0 be the maximizer in the first relation and b0, b

′
0 be the minimizer (with respect to

the choice of v = v0, v
′ = v′0) in the second. We have

wε(x, ε2)− wε(y, ε2) ≤ u0

(
x+

√
2ε

2
(b0v0 + b′0v

′
0)

)
− u0

(
y +

√
2ε

2
(b0v0 + b′0v

′
0)

)
,

which, in view of the Lipschitz continuity of u0, implies that

wε(x, ε2)− wε(y, ε2) ≤ L|x− y| for all x, y ∈ R2 and ε > 0.

By applying this argument repeatedly and (7.2.7), we are led to

wε(x, t)− wε(y, t) ≤ L|x− y| for all x, y ∈ R2 and ε > 0.

Then (7.2.8) follows immediately by interchanging the roles of x and y.

We next compare this modified game with the original game. In fact, we can show that

the relaxed upper limit

w(x, t) = limsup∗
ε→0

wε(x, t) = lim sup
ε→0

{wδ(y, s) : |y − x|+ |t− s| < ε, δ < ε}

is a subsolution of (MCF).

Theorem 7.2.4 (Subsolution). Assume that u0 satisfies (A). Let wε be the value functions

defined as in (7.2.6). Then w as defined above is a subsolution of (7.1.1) with w(·, 0) ≤ u0

in R2.

We present a detailed proof of Theorem 7.2.4, since the game setting is quite different

from the original games in [78]. The following elementary result, whose proof can be found

in [41], is needed in our argument.
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Lemma 7.2.5 (Lemma 4.1 in [41]). Suppose p is a unit vector in R2 and X is a real

symmetric 2× 2 matrix. Then there exists a constant M > 0 that depends only on the norm

of X, such that for any unit vector ξ ∈ R2,

|〈Xp⊥, p⊥〉 − 〈Xξ, ξ〉| ≤M |〈ξ, p〉|, (7.2.9)

where p⊥ denotes a unit orthonormal vector of p.

Remark 7.2.6. By homogeneity, when p is not necessarily a unit vector, the relation (7.2.9)

still holds for all ξ ∈ R2 provided that p⊥ is orthogonal to p and |p⊥| = |p| = |ξ|.

Proof of Theorem 7.2.4. We first show that w is a subsolution of (7.1.1). Let us assume that

there exist (x0, t0) ∈ Q = R2 × (0,∞) and φ ∈ C2(Q) such that

w(x, t)− φ(x, t) < w(x0, t0)− φ(x0, t0) for all (x, t) ∈ Q.

Then by definition of w, there exists (xε, tε) ∈ Q such that (xε, tε) → (x0, t0), wε(xε, tε) →

w(x0, t0), and

(wε − φ)(xε, tε) ≥ (wε − φ)(x, t)− ε3

for any (x, t) in a neighborhood of (x0, t0) with size independent of ε. By (7.2.7), we then

have

φ(xε, tε) ≤ max
v,v′∈S1

min
b,b′=±1

φ

(
xε +

√
2ε

2
(bv + b′v′), tε − ε2

)
+ ε3.

Applying Taylor expansion, we are led to

ε2φt ≤ max
v,v′∈S1

min
b,b′=±1

{√
2ε

2
〈∇φ, bv + b′v′〉

+
ε2

4
〈∇2φ(bv + b′v′), (bv + b′v′)〉

}
+ o(ε2) at (xε, tε).

(7.2.10)

We denote by I the right hand side evaluated at (xε, tε).

One may first compare 〈∇φ(xε, tε), v〉 and 〈∇φ(xε, tε), v
′〉 to determine b or b′. For

example, if

|〈∇φ(xε, tε), v〉| ≤ |〈∇φ(xε, tε), v
′〉|, (7.2.11)
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then we may choose b′0 such that

−|〈∇φ(xε, tε), v
′〉| = 〈∇φ(xε, tε), b

′
0v
′〉

and thus 〈∇φ, bv + b′0v
′〉 ≤ 0 for either b = ±1 by (7.2.11). Therefore we have at (xε, tε)

I ≤ max
v,v′

min
b

{
−
√

2ε

2
|〈∇φ, bv + b′0v

′〉|+ ε2

4
〈∇2φ(bv + b′0v

′), (bv + b′0v
′)〉

}
+ o(ε2). (7.2.12)

In what follows, we always assume (7.2.11) and keep the choice b′ = b′0.

Case A. Assume ∇φ(x0, t0) 6= 0, which in turn implies that ∇φ(xε, tε) 6= 0 for all ε > 0

small. We apply Lemma 7.2.5 and Remark 7.2.6 with

p = |bv + b′0v
′| ∇φ(xε, tε)

|∇φ(xε, tε)|
, ξ = bv + b′0v

′, X = ∇2φ(xε, tε),

and get ∣∣∣∣〈∇2φ(bv + b′0v
′), (bv + b′0v

′)〉 − |bv + b′0v
′|2
〈
∇2φ
∇⊥φ
|∇φ|

,
∇⊥φ
|∇φ|

〉∣∣∣∣
≤ M |bv + b′0v

′|
|∇φ|

|〈∇φ, bv + b′0v
′〉|

for any v, v′ ∈ S1. Hence, we have from (7.2.12)

I ≤ ε2∆G
1 φ+ εΦ + o(ε2) at (xε, tε), (7.2.13)

where we denote

∆G
1 φ =

〈
∇2φ
∇⊥φ
|∇φ|

,
∇⊥φ
|∇φ|

〉
= |∇φ| div

(
∇φ
|∇φ|

)
,

and

Φ(x, t) = max
v,v′

min
b

{
−
√

2

2
|〈∇φ(x, t), bv + b′0v

′〉|+ ε

(
|bv + b′0v

′|2

4
− 1

)
∆G

1 φ(x, t)

+
εM

4|∇φ(x, t)|
|bv + b′0v

′||〈∇φ(x, t), bv + b′0v
′〉|
}
.

(7.2.14)

Here we denote for any function φ(x, t) ∈ C1(R2) with x = (x1, x2),

∇⊥φ = (−∂φ/∂x2, ∂φ/∂x1) .
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We next estimate Φ(xε, tε) for ε > 0 sufficiently small. Indeed, we discuss two different cases.

If there exists a subsequence εk such that the maximum attains at v and v′ (depending on

εk) and as k →∞,

either |〈∇φ(xεk , tεk), v〉| → c or |〈∇φ(xεk , tεk), v′〉| → c

for some c > 0, then it is clear that there exists b = ±1 also depending on εk satisfying

|〈∇φ(xεk , tεk), bv + b′0v
′〉| > c,

since

max
b
|〈∇φ(x, t), bv + b′0v

′〉| ≥ 1

2
(|〈∇φ(x, t), v + b′0v

′〉|+ |〈∇φ(x, t),−v + b′0v
′〉|)

= max{|〈∇φ(x, t), v〉|, |〈∇φ(x, t), b′0v
′〉|}.

In view of (7.2.14), this yields immediately that

lim sup
εk→0

Φ(xεk , tεk) ≤ −
√

2c

2
.

The remaining case is that, for any ε > 0 small, the maximum of Φ is attained at v and v′

such that

|〈∇φ(xε, tε), v〉| → 0 and |〈∇φ(xε, tε), v
′〉| → 0 as ε→ 0.

We denote ηε = ∇φ(xε, tε)/|∇φ(xε, tε)| and η⊥ε = ∇⊥φ(xε, tε)/|∇φ(xε, tε)|. Let us take a

modulus of continuity ω such that

max{|〈ηε, v〉|, |〈ηε, v′〉|} ≤ ω(ε).

Without loss of generality, we may assume

∣∣b′0v′ − η⊥ε ∣∣ ≤ ω(ε).

(Otherwise, we have |b′0v′ + η⊥ε | ≤ ω(ε) and apply the similar argument below.) Then we

may pick b such that ∣∣bv − η⊥ε ∣∣ ≤ ω(ε).
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It follows that under this choice,∣∣∣∣14 |bv + b′0v
′|2 − 1

∣∣∣∣ =
1

4
|bv − b′0v′|2 ≤

1

2

(
|bv − η⊥ε |2 + |b′0v′ − η⊥ε |2

)
≤ ω2(ε).

It follows from (7.2.14) that

Φ(xε, tε) ≤ Cεω2(ε) + Cεω(ε)

for some C > 0 independent of ε. Hence, in either case, by (7.2.13), we have

ε2φt ≤ ε2∆G
1 φ+ o(ε2) at (xε, tε). (7.2.15)

Dividing the inequality by ε2 and sending ε→ 0, we obtain (7.2.5).

Case B. It remains to show the viscosity inequality

φt(x0, t0) ≤ 0 (7.2.16)

under the conditions that ∇φ(x0, t0) = 0 and ∇2φ(x0, t0) = O.

Case B-1. Suppose that there exists a subsequence ∇φ(xεk , tεk) 6= 0 for k arbitrarily large.

Then we may repeat the argument as in Case A and reach (7.2.15) again. We then obtain

(7.2.16) immediately, since in the present case ∇2φ(xε, tε)→ ∇2φ(x0, t0) = O as ε→ 0.

Case B-2. If ∇φ(xε, tε) = 0 for all ε > 0, then it follows immediately from (7.2.10) that

ε2φt(xε, tε) ≤ Cε2‖∇2φ(xε, tε)‖+ o(ε2),

for some C > 0 independent of ε, which yields (7.2.16).

2. We finally show that w(x, 0) ≤ u0(x). To this end, we construct a game barrier at

every fixed x0 ∈ R2. It is easily seen that for any δ > 0, there exits Kδ > 0 such that

u0(x) ≤ w0(x) = u0(x0) + δ +Kδ|x− x0|2 for all x ∈ R2.

We now play the games with objective function w0 starting from any x in a neighborhood

of x0. In the first step, we have∣∣∣∣∣x− x0 +

√
2ε

2
(bv + b′v′)

∣∣∣∣∣
2

= |x− x0|2 +
√

2ε〈x− x0, bv + b′v′〉+
ε2

2
|bv + b′v′|2.
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Note that for any v, v′, Player II can pick b′ (or b) so that

〈x− x0, bv + b′v′〉 ≤ 0

for any b (or any b′). This can be done by fixing b′ such that 〈b′v′, x− x0〉 = −|〈v′, x− x0〉|

if |〈v′, x− x0〉| ≥ |〈v, x− x0〉|. Such a strategy yields

∣∣∣∣∣x− x0 +

√
2ε

2
(bv + b′v′)

∣∣∣∣∣
2

≤ 2ε2 + |x− x0|2

for any v, v′. Repeating this strategy of Player II regardless of choices by Player I, we get

wε(x, t) ≤ w0(x) + 2Kδt.

This means w(x0, 0) ≤ w0(x0) ≤ u0(x0) + δ. We conclude the proof by letting δ → 0.

The following comparison result is an immediate consequence of Theorem 7.2.4 and the

proof is due to [25, 34].

Corollary 7.2.7 (Comparison theorem). Suppose that u is the viscosity solution of (MCF)

and w is the upper relaxed limit of the game value wε associated to the modified game. Then

w ≤ u in R2 × (0,∞).
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7.3 GAME-THEORETIC PROOFS OF CONVEXITY-PRESERVING

PROPERTIES

7.3.1 Convexity-preserving for the solutions to the normalized parabolic p-

Laplace equations

Recall the DPP related to the normalized parabolic p-Laplace equations is:

uε(x, t) =
α

2
sup
v∈Bε

uε(x+ v, t− σpε2) +
α

2
inf
v∈Bε

uε(x+ v, t− σpε2)

+ β

 
v∈Bε

uε(x+ v, t− σpε2) dv + ε2f(x),
(7.3.1)

uε(x, t) = u0(x) for all x ∈ Rn and t < ε2. (7.3.2)

We next use the game to prove the following.

Theorem 7.3.1. Assume that u0 and f are both convex and Lipschitz continuous in Rn.

Suppose that the function uε satisfying (7.3.1)–(7.3.2) converges to the solution u of (PL).

Then the solution u(x, t) is convex in x for any t ≥ 0; namely,

1

2
u(x− h, t) +

1

2
u(x+ h, t) ≥ u(x, t) (7.3.3)

for any x, h ∈ Rn and t ≥ 0.

Proof. It suffices to show (7.3.3) with u replaced by uε. Let us take a look at the first game

step:

uε(x± h, σpε2) =
α

2
sup
v∈Bε

u0(x± h+ v) +
α

2
inf
v∈Bε

u0(x± h+ v)

+ β

 
v∈Bε

u0(x± h+ v) dv + ε2f(x± h),
(7.3.4)
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We assume that the infimum appearing in each equalities in (7.3.4) above is attained respec-

tively at v1, v2 ∈ Bε and also assume that supv∈Bε
u0(x + v) = u0(x + v̂) for some v̂ ∈ Bε.

(These can be rigorously justified by taking errors into account.) Hence, we have

uε(x+ h, σpε
2) ≥ α

2
u0(x+ h+ v̂) +

α

2
u0(x+ h+ v1)

+ β

 
v∈Bε

u0(x+ h+ v) dv + ε2f(x+ h);

uε(x− h, σpε2) ≥ α

2
u0(x− h+ v̂) +

α

2
u0(x− h+ v2)

+ β

 
v∈Bε

u0(x− h+ v) dv + ε2f(x− h).

By convexity of u0 and f , we get

uε(x+ h, σpε
2) + uε(x− h, σpε2)

≥ αu0(x+ v̂) + αu0

(
x+

v1 + v2

2

)
+ 2β

 
v∈Bε

u0(x+ v) dv + 2ε2f(x)

≥ α sup
v∈Bε

u0(x+ v) + α inf
v∈Bε

u0(x+ v) + 2β

 
v∈Bε

u0(x+ v) dv + 2ε2f(x).

(7.3.5)

Since, by definition, the right hand side is just 2uε(x, σpε
2), we have

uε(x+ h, σpε
2) + uε(x− h, σpε2) ≥ 2uε(x, σpε

2).

We repeat the argument and end up with

uε(x+ h, t) + uε(x− h, t) ≥ 2uε(x, t)

for any t ≥ 0. Sending ε→ 0, we get the convexity desired.
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7.3.2 Convexity-preserving for level sets of the mean curvature flow equations

For future use, let D0
c and E0

c respectively denote the open and closed c-superlevel set of u0

for any c ≥ a; that is,

D0
c = {x ∈ R2 : u0(x) > c}; E0

c = {x ∈ R2 : u0(x) ≥ c}.

Then we have D0
c ⊂ D0

d and E0
c ⊂ E0

d for any c ≥ d. Moreover, we have D0
c =

⋃
d>cE

0
d .

Lemma 7.3.2 (Monotonicity). Suppose that u0 satisfies (A). Assume that the superlevel set

E0
c for each c ≥ a is convex. Let uε be the value function associated to the game. Then

uε(x, t) ≤ uε(x, s) for all x ∈ R2, t ≥ s ≥ 0 and ε > 0. (7.3.6)

In particular, u(x, t) ≤ u(x, s) for all x ∈ R2, t ≥ s ≥ 0.

Proof. Let us fix ε > 0. We begin our proof by claiming that for every x ∈ R2 and any

v ∈ S1, there exists b = ±1 such that

u0

(
x+
√

2εbv
)
≤ u0(x). (7.3.7)

Indeed, assume that for some v ∈ S1 and some λ > u0(x),

u0

(
x−
√

2εv
)
, u0

(
x+
√

2εv
)
≥ λ.

By convexity of the superlevel set E0
λ, x = 1

2
(x−
√

2εv)+ 1
2
(x+
√

2εv) ∈ E0
λ which contradicts

the assumption that u0(x) < λ.

Now let us incorporate the claim in our games. Notice that for any game position z(s;x)

from an arbitrary x ∈ R2 after time s > 0, depending on the choices v1, b1, v2, b2, . . . , vN , bN

of both players (N = [s/ε2]), Player II may use the strategy described above to ensure

max
v∈S1

min
b=±1

u0

(
z(s;x) +

√
2εbv

)
≤ u0(z(s;x)) for any v ∈ S1.

By applying this strategy from step N to N ′ = [t/ε2], we obtain

max
vN+1

min
bN+1

. . .max
vN′

min
bN′

u0

(
z(s;x) +

√
2ε

N ′∑
i=N+1

bivi

)
≤ u0(z(s;x)).

118



Taking the extrema on both sides of the inequality above over bN , vN , bN−1, vN−1, . . . , b1

and v1 in order, we get (7.3.6) by definition. It follows immediately that u(x, t) ≤ u(x, s) for

all t ≥ s, by passing to the limit as ε→ 0 in (7.3.6) with application of Theorem 7.2.1.

Theorem 7.3.3 (Convexity of level sets). Suppose that u0 satisfies (A). Assume that each

superlevel set E0
c (c ≥ a) of u0 is convex. Let uε be the value function associated to the game.

Then every superlevel set of uε(·, t) is almost convex for any t ≥ 0 and ε > 0 in the sense

that there exists a modulus ω of continuity depending on u0 such that for any x, y ∈ R2 and

t ≥ 0,

uε
(
x+ y

2
, t

)
≥ c− ω(ε) (7.3.8)

provided that uε(x, t) ≥ c and uε(y, t) ≥ c. In particular, all superlevel sets of the solution

u(·, t) of (MCF) are convex for every t ≥ 0.

Proof of Theorem 7.3.3. We assume x 6= y, since otherwise the statements are trivial. Since

uε(x, t) ≥ c and uε(y, t) ≥ c, we have uε(x, s) ≥ c and uε(y, s) ≥ c for s ≤ t as well in virtue

of the monotonicity shown in Lemma 7.3.2. (In particular, u0(x) ≥ c and u0(y) ≥ c.)

Then for any s ≤ t, there must exist maximizing strategies SIx,s and SIy,s of Player I such

that regardless of the choices of Player II, we have u0(z(s;x)) ≥ c and u0(z(s; y)) ≥ c if SIx,s

and SIy,s are applied respectively in the games starting from x and y.

We next consider the game started from (x+y)/2. In this case, Player I has the following

possible of move: he keeps choosing v = (x−y)/|x−y| until the game position enters B√2ε(x)

or B√2ε(y). Here Br(ξ) denotes the open ball centered at ξ ∈ Rn with radius r. Without

loss of generality, suppose that Player II chooses to let z(τ ; (x+ y)/2) ∈ B√2ε(x) after time

τ(≤ t). Then Player I may use SIx,s with s = t − τ to bring the game position to ξ ∈ Rn,

which depends on the response of Player II to SIx,s. However, the same strategy of Player II

may send x to z(s;x), which is in the
√

2ε-neighborhood of ξ. Since u0(z(s;x)) ≥ c, we get

the following estimate:

u0(ξ) ≥ u0(z(s;x))− ω0(
√

2ε) ≥ c− ω0(
√

2ε).
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The remaining case is that Player II may choose to let the game position wander away

from the neighborhoods of x and y. But in this case the final position η must still stay on

the line segment between x and y and therefore

u0(η) ≥ c,

due to the facts that u0(x) ≥ c and u0(y) ≥ c and the assumption that superlevel sets of u0

are convex.

Since each of game outcomes is just for one possible strategy of Player I and his optimal

strategy should be even better, we end up with (7.3.8) with ω(x) set to be ω0(
√

2x).

Now in order to prove the statement concerning u, we only need to take the limit using

Theorem 7.2.1. More precisely, for any δ > 0, there exists ε > 0 such that

uε(x, t) ≥ c− δ and uε(y, t) ≥ c− δ.

Our argument above yields

uε
(
x+ y

2
, t

)
≥ c− δ − ω(ε).

We conclude the proof by letting δ → 0.

Remark 7.3.4. In the theorem above, we do not assume the concavity of u0 itself but the

convexity of its level sets. Our convexity result is therefore only for the convexity of level

sets as well. Also, to study convexity of a particular level, it is not restrictive to assume that

all level sets of u0 are convex curves. Note that changing the other level sets of u0 will not

affect the evolution of the particular level set in question [34, 25, 38].

Remark 7.3.5. An alternative method, without assuming the convexity of all level sets but

strict convexity of the initial level set, is to investigate the convexity of the level sets of

the solution to (SP) with Ω (strictly) convex. The stationary problem has a similar game-

theoretic approximation [78] but the value function uε(x) in this case is defined to be the

optimized first exit time of the domain starting from x ∈ Ω. It is not difficult to see that

the argument in the proof of Theorem 7.3.3 applies exactly to this case as well. A new PDE

proof for this problem was recently given in [12].
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7.3.3 Convexity-preserving for the solutions to the mean curvature flow equa-

tions

We next show the convexity preserving property for the solution itself. Due to an opposite

choice of orientation, we here discuss instead the equivalent concavity preserving property,

which, under the assumption (A), means that the solution u(x, t) of (MCF) is concave with

respect to x in its open superlevel set

Dt
a := {x ∈ Rn : u(x, t) > a}

if u0 is concave in Ka.

Theorem 7.3.6 (Concavity preserving of the solution). Suppose that u0 satisfies (A). As-

sume that u0 is concave in Ka. Let uε and wε be respectively the value functions of the

original game and the modified game. Then uε(x, t) satisfies

uε(x+ h, t) + uε(x− h, t) ≤ 2wε(x, t), (7.3.9)

for any x, h ∈ R2, t > 0 and ε > 0 if

uε(x+ h, t) > a and uε(x− h, t) > a. (7.3.10)

Moreover, the solution u(x, t) of (MCF) is concave with respect to x in Dt
a for any t ≥ 0.

To show this result, we need the following elementary result related to our games.

Lemma 7.3.7. Let Ω be an open set in R2. Suppose that w,W ∈ C(R2) satisfy

(1) w > a in Ω for some a ∈ R and w = a on R2 \ Ω;

(2) for all x, h ∈ R2 such that x± h ∈ Ω,

w(x+ h) + w(x− h) ≤ W (x). (7.3.11)
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Then for any constant λ > 0,

max
v∈S1

min
b=±1

w(x+ h+ λbv) + max
v∈S1

min
b=±1

w(x− h+ λbv)

≤ max
v1,v2∈S1

min
b1,b2=±1

W

(
x+

λ

2
(b1v1 + b2v2)

) (7.3.12)

provided that

max
v∈S1

min
b=±1

w(x+ h+ λbv) > a and max
v∈S1

min
b=±1

w(x− h+ λbv) > a. (7.3.13)

Proof. We take v+ and v− such that

max
v

min
b
w(x± h+ λbv) = min

b
w(x± h+ λbv±)(> a), (7.3.14)

Let us next pick b± such that

W

(
x+

λ

2
(b+v+ + b−v−)

)
= min

b1
min
b2

W

(
x+

λ

2
(b1v+ + b2v+)

)
,

which implies that

W

(
x+

λ

2
(b+v+ + b−v−)

)
≤ max

v1,v2
min
b1,b2

W

(
x+

λ

2
(b1v1 + b2v2)

)
. (7.3.15)

On the other hand, by (7.3.14), we have

max
v∈S1

min
b=±1

w(x± h+ λbv) ≤ w(x± h+ λb±v±). (7.3.16)

Due to (7.3.16) and (7.3.13) we have x ± h + λb±v± ∈ Ω, since w(x ± h + λb±v±) > a. We

finally obtain (7.3.12) by combining (7.3.11), (7.3.15) and (7.3.16).
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Proof of Theorem 7.3.6. Fix ε > 0 and set D̂t
a := {x ∈ Rn : uε(x, t) > a}. We first apply

Lemma 7.3.7 with λ =
√

2ε, Ω = Ka and

w(x) = u0(x) and W (x) = 2u0(x).

Since it is clear that (7.3.11) holds due to the concavity of u0 in Ka, we get

max
v∈S1

min
b=±1

w(x+ h+
√

2εbv) + max
v∈S1

min
b=±1

w(x− h+
√

2εbv)

≤ max
v1,v2∈S1

min
b1,b2=±1

W

(
x+

√
2ε

2
(b1v1 + b2v2)

)

if both terms on the left hand side are greater than a. This amounts to saying that

uε(x+ h, ε2) + uε(x− h, ε2) ≤ 2wε(x, ε2) (7.3.17)

for all x, h provided that uε(x±h, ε2) > a. Noticing that uε(x, ε2) and wε(x, ε2) are Lipschitz

continuous in x, due to Proposition 7.2.3 and [78, Appendix B], we can continue using Lemma

7.3.7 with λ =
√

2ε, Ω = D̂ε2

a and

w(x) = uε(x, ε2) and W (x) = 2wε(x, ε2).

Analogously, we obtain

uε(x+ h, 2ε2) + uε(x− h, 2ε2) ≤ 2wε(x, 2ε2)

if uε(x± h, 2ε2) > a, thanks to the dynamic programming principle:

uε(x+ h, 2ε2) = max
v∈S1

min
b=±1

uε(x+ h+
√

2εbv, ε2);

uε(x− h, 2ε2) = max
v∈S1

min
b=±1

uε(x− h+
√

2εbv, ε2);

wε(x, 2ε2) = max
v1,v2∈S1

min
b1,b2=±1

wε

(
x+

√
2ε

2
(b1v1 + b2v2), ε2

)
.

We keep iterating the arguments above and eventually get

uε(x+ h,Nε2) + uε(x− h,Nε2) ≤ 2wε(x,Nε2), (7.3.18)
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for any x, h ∈ Rn satisfying (7.3.10). This is exactly the desired inequality (7.3.9). Since

ε > 0 is arbitrary in (7.3.18), by passing to the limits as ε→ 0 and applying Theorem 7.2.1,

we get

u(x+ h, t) + u(x− h, t) ≤ 2w(x, t)

provided that x ± h ∈ Dt
a. The concavity preserving property for the solution u follows

immediately from the comparison that w ≤ u in Corollary 7.2.7.

The concavity or convexity preserving property does not precisely hold on the discrete

level in general. In other words, one cannot expect in general that

uε(x− h, t) + uε(x+ h, t) ≤ 2uε(x, t)

for all x, h ∈ R2, t > 0 and ε > 0. We give an example to show this.

Example 7.3.8. Let u0 be Lipschitz and concave in R2. Suppose that the level set {x ∈ R2 :

u0(x) = 0} consists of the positive axes. We assume that u0 > 0 in the first quadrant. Let

x0 =
(√

2ε/2,
√

2ε/2
)

and h = (
√

2ε/2,−
√

2ε/2).

When ε > 0 is taken small, it is easily seen that uε(x0± h, ε2) = 0, since the maximizing

choices of v for Player I to start the game at x0 +h or x0−h can be the ones along the axes.

On the other hand, at the point x0, the outcome after one step is always negative no matter

what choice Player I makes, i.e., uε(x0, ε
2) < 0. We therefore have

uε(x0 + h, ε2) + uε(x0 − h, ε2) ≥ 2uε(x0, ε
2),

although u0 is concave. One may easily modify this example to have u0 also satisfy (A).
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7.3.4 Convexity-preserving with Neumann boundary condition of the mean cur-

vature flow equations

Our game-theoretic approach to convexity can be extended to the Neumann problems as

well. In this section, we assume that Ω is a smooth bounded convex domain in R2 and ν(x)

denote the unit outward normal to ∂Ω. We consider the Neumann boundary problem for

the level set curvature flow equation in Ω:

(NP)


ut − |∇u| div

(
∇u
|∇u|

)
= 0 in Ω× (0,∞), (7.3.19)

∇u(x, t) · ν(x) = 0 for x ∈ ∂Ω and t > 0, (7.3.20)

u(x, 0) = u0(x) for all x ∈ Ω. (7.3.21)

Hereafter we assume an analogue of (A):

(A1) u0 is a bounded Lipschitz continuous function in Ω satisfying that u0 ≥ a and u0− a has

compact support Ka ⊂ Ω for some constant a ∈ R.

We refer [43, 109] for existence and uniqueness for viscosity solutions of this problem.

7.3.4.1 Billiard games for the Neumann condition We first recall a billiard game

interpretation for this problem in [42]. For any t ≥ 0, x ∈ Ω and v ∈ S1, let St(x, v) ∈ Ω

denote the position of billiard motion starting from x with initial direction v and with

distance of travel equal to t; see [42, Definition 2.1].

In view of [42, Lemma 2.3], we have

St(x, v) = x+ tv − αt(x, v), (7.3.22)

where αt(x, v) ∈ R2 is called a boundary adjustor, satisfying |αt(x, v)| ≤ 2t. More precisely,

we may write

αt(x, v) =
∞∑
k=0

ckν(yk), (7.3.23)

with ck ∈ R, yk ∈ ∂Ω ∩Bt(x).

We apply this billiard dynamics to our game setting by slightly changing the game rules

introduced in Section 7.2.2. We restrict the starting point x to be in Ω and substitute the

rule (3) with the following:
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(3)’ The marker is moved from the present state x to S
√

2ε(x, bv).

We may define the value function uε to be in the same form of (7.2.3) by establishing a new

state equation:  zk+1 = S
√

2ε(zk, bkvk), k = 0, 1, . . . , N − 1;

z0 = x,
(7.3.24)

where vk ∈ S1 and bk = ±1.

Theorem 7.3.9. [42, Theorem 1.1] Assume that Ω is a smooth bounded convex domain in

R2. Let uε be the value function associated to the game above. Then uε converges, as ε→ 0,

to the unique viscosity solution of (NP) uniformly on compact subsets of Ω× [0,∞).

Remark 7.3.10. There is more than one way to generate the boundary condition of Neumann

type in games. One may simply adopt direct constraints of game trajectories in the domain

to establish tug-of-war game interpretations of Neumann boundary problem for the infinity

Laplacian in [23, 6]. Their method relies on the special structure of the infinity Laplacian and

is not applicable in our present case. A different but more relevant approach is presented in

[29] for the Neumann problems for a general class of elliptic and parabolic equations without

assuming the boundedness and convexity of the domain, where the author uses boundary

projection instead of our billiard motion. The game convergence result in [29] does not

include (NP), but it is possible to adapt the argument to our case.

7.3.4.2 Convexity of level sets As in the preceding sections, we take for any t ≥ 0

Dt
c = {x ∈ Ω : u(x, t) > c}, Et

c = {x ∈ Ω : u(x, t) ≥ c} and Γtc = Et
c \Dt

c.

We aim to show that for any fixed c ≥ a, E0
c being convex implies that Et

c is convex for any

t ≥ 0. We assume

(A2) E0
c is convex for any c ≥ a.

It is clear that under the assumption (A2), for any x ∈ Ω with u0(x) = c ≥ a, there exists

a supporting line Lx of E0
c passing through x; that is, Lx divides R2 into two half planes,

only one of which has nonempty intersection with D0
c . We denote by ξ(x) the outward unit

normal to the half plane containing D0
c .
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We will also use a compatibility condition as given below:

Definition 7.3.11 (Compatibility condition). For any u0 satisfying (A2), we say u0 is

(weakly) compatible with the Neumann boundary condition (7.3.20) if for any τ > 0 small

and x0 ∈ ∂Ω there exists a supporting line Lx0 with normal ξ(x0) satisfying

u0(Sτ (x0, v)) ≤ u0(x0) (7.3.25)

for all v ∈ S1 with 〈v, ξ(x0)〉 ≥ 0.

Theorem 7.3.12 (Convexity preserving for the Neumann problem). Assume that Ω is a

smooth bounded convex domain in R2. Let u be the unique viscosity solution of (NP) with

u0 satisfying (A1) and (A2). Assume that u0 also satisfies the compatibility condition as in

Definition 7.3.11. Then the superlevel sets Et
c of u(·, t) for any t ≥ 0 are convex for any

t ≥ 0.

In order to prove this theorem, we again need a monotonicity result similar to Lemma

7.3.2.

Lemma 7.3.13 (Monotonicity for the Neumann problem). Suppose that u0 satisfies (A1)

and (A2). Assume that u0 also satisfies the compatibility condition. Let uε be the value

function associated to the billiard game described above. Then

uε(x, t) ≤ uε(x, s) for all x ∈ Rn, t ≥ s ≥ 0 and ε > 0. (7.3.26)

In particular, the solution u is monotone in time, i.e., u(x, t) ≤ u(x, s) for all x ∈ Rn,

t ≥ s ≥ 0.

Proof. Let us fix ε > 0. We claim this time that for every x ∈ Rn,

sup
v∈S1

inf
b=±1

u0

(
S
√

2ε(x, bv)
)
≤ u0(x). (7.3.27)

Indeed, for any v ∈ S1, one may pick b̂ = ±1 such that 〈ξ(x), b̂v〉 ≥ 0. If the billiard

motion does not touch ∂Ω in the initial direction b̂v, then by convexity of the superlevel set

with level u0(x), we get

u0

(
S
√

2ε(x, b̂v)
)
≤ u0(x).
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In the case that the billiard trajectory hits ∂Ω, we have

S
√

2ε(x, b̂v) = S
√

2ε−τ (y, b̂v), (7.3.28)

where y = x + τ b̂v ∈ ∂Ω denotes the first hitting position with τ ≥ 0. For the same reason

as above, y must belong to the lower level of u0, i.e., u0(y) ≤ u0(x). We next apply the

compatibility condition to get

u0(S
√

2ε−τ (y, b̂v)) ≤ u0(y),

which by (7.3.28) yields

u0(S
√

2ε(x, b̂v)) ≤ u0(x).

The rest of the proof, similar to that in the proof of Lemma 7.3.2 consists in the iteration

of (7.3.27) and passing to the limit as ε→ 0 with application of Theorem 7.3.9. We omit it

and refer the reader to the proof of Lemma 7.3.2.

The proof of Theorem 7.3.12 is essentially the same as that of Theorem 7.3.3. However, in

the proof of Theorem 7.3.3 we used the Lipschitz continuous dependence of game strategies

on the initial positions and directions, which is not clear in the current case for the billiard

motion. We thus provide a slightly different proof by choosing a subsequence of game values.

This proof also works for Theorem 7.3.3.

Proof of Theorem 7.3.12. We take x, y ∈ Ω with x 6= y and u(x, t), u(y, t) ≥ c for some t ≥ 0

and c ≥ a. We aim to show that u(x+y
2
, t) ≥ c. We set εm = |x−y|

2
√

2m
for any positive integer

m. In view of Theorem 7.3.9, for any δ > 0 small, there exists m sufficiently large, such that

uεm(x, t), uεm(y, t) ≥ c− δ.

We then have uε(x, s) ≥ c− δ and uε(y, s) ≥ c− δ for s ≤ t as well due to Lemma 7.3.13.

Then for any s ≤ t, there must exist maximizing strategies SIx,s and SIy,s of Player I such

that regardless of the choices of Player II, we have u0(z(s;x)) ≥ c−2δ and u0(z(s; y)) ≥ c−2δ

if SIx,s and SIy,s are applied respectively in the games starting from x and y.

We next consider the game started from (x + y)/2. If Player I keeps choosing v =

(x − y)/|x − y| until the game position reaches x or y. Without loss of generality, suppose
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that Player II chooses to let z(τ ; (x + y)/2) = x after time τ(≤ t). Then Player I may use

SIx,s with s = t− τ to bring the game position to ξ ∈ Rn, which depends on the response of

Player II to SIx,s. This yields

u0(z(t; (x+ y)/2)) = u0(z(s;x)) ≥ c− 2δ.

Player II may choose to let the game position wander away from the neighborhoods of x and

y. In this case the final position η must still stay on the line segment between x and y and

therefore

u0(η) ≥ c− 2δ,

due to the assumption that superlevel sets of u0 are convex.

Since the above game estimate is for a fixed strategy of Player I, we get

uεm
(
x+ y

2
, t

)
≥ c− 2δ.

Thanks to Theorem 7.3.9, we conclude the proof by passing to the limit as m→∞ and then

δ → 0.

Remark 7.3.14. As mentioned in Remark 7.3.10, it is possible to have a game approximation

result without the boundedness and convexity assumptions on Ω, following [29]. Therefore

one may also expect that the convexity preserving property still holds without assuming

the boundedness and convexity of Ω. In fact, without convexity of Ω, we can use the same

argument to prove that Et
c preserves convexity relative to Ω under the assumption (A1),

(A2) and the compatibility condition. To be more precise, we have

u

(
x+ y

2
, t

)
≥ c

whenever x, y ∈ Ω and t ≥ 0 satisfy u(x, t), u(y, t) ≥ c and kx+(1−k)y ∈ Ω for all k ∈ [0, 1].
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We finally make some remarks on the compatibility condition in Definition 7.3.11. Let

us discuss a smooth special case. Suppose u0 is of class C2 and concave in Ω. Then u0 is

compatible with the Neumann boundary condition if there is σ > 0 such that

〈∇u0(x0), ν(y)〉 ≥ 0 and ∇2u0(x0) ≤ −σI. (7.3.29)

for any x0 ∈ ∂Ω and any y ∈ Bσ(x0) ∩ ∂Ω.

Indeed, in this case one may choose ξ(x0) = −∇u0(x0)/|∇u0(x0)|. To simplify notation,

we write ξ0 instead of ξ(x0). For any v ∈ S1 with 〈v, ξ0〉 ≥ 0, we write

v = τ1ξ0 + τ2ξ
⊥
0 ,

where ξ⊥0 is the unit vector orthogonal to ξ0 and τ1 ≥ 0, τ2 ∈ R satisfy τ 2
1 + τ 2

2 = τ 2. We

apply Taylor expansion to get

u0(Sτ (x0, v)) = u0(x0) + τ1〈∇u0(x0), ξ0〉 − 〈∇u0(x0), ατ (x0, v)〉

+
1

2
〈∇2u0(x0)(τv − ατ (x0, v)), (τv − ατ (x0, v))〉+ o(|τv − ατ (x0, v)|2),

which, due to (7.3.29) and (7.3.23), implies (7.3.25) for τ sufficiently small.

It is worth pointing out that the curvature flow Γt fails to preserve convexity in general

if the compatibility condition as in Definition 7.3.11 is not satisfied.

Example 7.3.15. Consider the special case when Ω = (−1, 1)×R and Γt can be expressed as

the graph of a function y = v(x, t) for (x, t) ∈ [−1, 1]× [0,∞), we deduce
vt −

vxx
1 + v2

x

= 0 in (−1, 1)× (0,∞), (7.3.30)

vx(−1, t) = vx(1, t) = 0 for all t > 0, (7.3.31)

v(x, 0) = v0(x) for all x ∈ [−1, 1]. (7.3.32)

It is known [87, 9, 10] that there still exists a unique viscosity solution of this problem for

any Lipschitz continuous function even when v0 does not fulfill the compatibility condition.

Suppose that v0 is an even Lipschitz function on [−1, 1] with

(v0)x(1) = −(v0)x(−1) > 0.

Then for any t ≥ 0, the unique solution v(x, t) must also be even in x.
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On the other hand, one may extend v0 to a Lipschitz function on R in a periodic manner

and then solve the corresponding Cauchy problem in R× [0,∞). It is clear that the solution

is still space periodic for any time. Moreover, it is shown by Ecker and Huisken [32] that

the solution ṽ(x, t) is smooth for any t > 0, which implies that ṽx(±1, t) = 0 and ṽ cannot

be convex around x = ±1. This means that the restriction of ṽ on [−1, 1] × [0,∞) is the

unique solution of (7.3.30)–(7.3.32). The failure of being convex near x = ±1 remains with

such a restriction.

For the same reason as explained above, one cannot in general expect the viscosity

solution of (NP) itself to be convexity preserving without assuming a more restrictive com-

patibility condition.
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