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Programmed cell death and its role in
inflammation
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Abstract

Cell death plays an important role in the regulation of inflammation and may be the result of inflammation.
The maintenance of tissue homeostasis necessitates both the recognition and removal of invading microbial
pathogens as well as the clearance of dying cells. In the past few decades, emerging knowledge on cell death
and inflammation has enriched our molecular understanding of the signaling pathways that mediate various
programs of cell death and multiple types of inflammatory responses. This review provides an overview of the
major types of cell death related to inflammation. Modification of cell death pathways is likely to be a logical
therapeutic target for inflammatory diseases.
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Introduction
One of the most important factors in the development
and homeostasis of organisms is the balance between
cell survival and cell death. Early in 1960, apoptosis
was considered the only standard programmed cell
death form [1, 2], whereas necrosis was mostly
considered an ‘accidental’ cell death that occurred in
response to physical and chemical insults. Following
the progression in cell death research, a tight link was
demonstrated between molecularly defined cell death
and inflammation. In host defense, programmed cell
death can act in a protective manner; the death of in-
fected cells may reduce microbial infections, separate
uninfected neighboring cells, and alert the host
through danger signals and inflammatory mediators.
This review depicts intimate interconnections between
cell death and inflammation and the pivotal protein in
each special mechanistic module that executes the
process of cell death and inflammation.
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Review
Necrosis, necroptosis, and inflammation
Traditionally, necrosis is considered the primary form
of cell death caused by inflammation. Necrosis was his-
torically viewed as an accidental subroutine, largely
resulting from very harsh physicochemical stimuli,
including abrupt changes in temperature, osmotic
pressure, or pH. Necrosis is morphologically identified
by the swelling of organelles, increased cell volume,
disruption of the plasma membrane, and loss of intra-
cellular content. Necrosis is recognized as a cause of
inflammation; the release of intracellular materials,
which are termed as damage-associated molecular
patterns (DAMPs), can trigger inflammatory reactions.
DAMPs are the key to the pathogenesis of sterile in-
flammation, including gout, atherosclerosis, ischemia-
reperfusion, and Alzheimer’s disease. For example, the
DAMP molecule high-mobility group box 1 (HMGB1)
can be released from necrotic cells and, in turn, stimulates
neighboring cells via the receptor for advanced-glycation
end-products (RAGE) to express proinflammatory cyto-
kines, chemokines, and adhesion molecules, therefore
inducing inflammation [3]. Recent studies using genetic
approaches [4–7] and chemical inhibitors of necrosis [4, 8,
9] demonstrated the existence of multiple pathways of
regulated necrosis.
Among the pathways of regulated necrosis, necrop-

tosis is currently most frequently mentioned and
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Fig. 1 Model of TNF receptor signaling regulation of cell fate. Upon the binding of TNF to its receptor TNFR1, RIP1 is recruited to TNFR1 and is
subsequently ubiquitinated. The polyubiquitinated RIP1, in turn, binds to NEMO, the regulatory subunit of NF-kB, to promote NF-κB activation, which
leads to the induction of pro-survival genes to counter the death signals. Cell survival is a result of this pathway. The polyubiquitinated RIP1 can also
migrate to the cytoplasm, where RIP1 is de-ubiquitinated by A20, the de-ubiquitylating enzyme. RIP1 and RIP3 can then form a pro-necrotic complex
followed by phosphorylation on both kinases and induction of necroptosis. In circumstances in which caspase-8 is activated, RIP1 and RIP3 can be
cleaved by caspase-8, and the pro-necrotic complex is blunted, which stimulates the cell to undergo apoptosis
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investigated. Generally, necroptosis is defined as cell
death mediated through a pathway that depends on
the receptor-interacting protein kinase (RIP)1-RIP3
complex and that can be inhibited by Necrostatin-1
(Nec-1) [10] (Fig. 1). Necroptosis is induced by a class
of death receptors that includes tumor necrosis factor
receptor (TNFR)1, TNFR2, and Fas. Of these, the
TNF-α/TNFR-induced pathway is the most widely
studied. Binding of TNF-α to the extracellular portion
of TNFR1 causes allosteric changes in the intracellular
portion of TNFR1 followed by the release of the
silencer of death domains (SODD) from the intracellu-
lar domain of TNFR1 [11]. TNFR1 and TNFR2 form
complex I containing a death domain (e.g., TNF-α
receptor-associated death domain (TRADD)), RIP1,
Fas-associated death domain (FADD), and several E3
ubiquitin ligases, such as TNF-α receptor associated
factor 2/5 (TRAF2/5) and inhibitor of apoptosis pro-
teins (IAPs) cIAP1 and cIAP2 [12]. RIP1 is initially
recruited to complex I and is polyubiquitinated by
TRAF2/5, cIAP1, and cIAP2 [13, 14]. Because RIP1
exhibits a biphasic effect based on its ubiquitination
state, complex I is situated at the crossroads of cell
survival and death. Deubiquitination of RIP1 can
inhibit the NF-κB pathway, which promotes cell death
pathways. Whether TRADD is required for necropto-
sis potentially depends upon the type of stimulus.
TNFR1 activation together with the absence of c-IAPs
(IAP antagonist treatment), translation inhibition
(cyclohexamide treatment), or RIP1 deubiquitination
by the deubiquitinating enzyme (DUB) CYLD may
promote the translocation of RIP1 to a secondary
cytoplasmatic complex, Complex II [15–17]. Complex
II is formed by the death domain containing protein
FADD, caspase-8 and cFLIP. Complex II may activate
either apoptotic or necroptotic downstream signaling
pathways. Activation of caspase-8 drives complex II
into a pro-apoptosis state by cleaving RIP1 and RIP3.
However, when the apoptosis pathway is inhibited, a
complex named the “necrosome” is formed (Fig. 1).
The necrosome is primarily composed of RIP1 and
RIP3 and distinctly enhances necroptosis [18].
The pseudokinase MLKL is a substrate of RIP3

required for necroptosis [4, 19]. Unlike its previous dis-
covered function in regulating mitochondrial fission,
MLKL recruitment and phosphorylation caused by
RHIM-dependent oligomerization and intramolecular
RIP3 autophosphorylation [20, 21] results in an activated
state able to induce necroptosis [22]. Furthermore,
several studies have deciphered a role for MLKL in
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necroptosis. MLKL oligomerization induced by RIP3 and
plasma membrane localization is associated with its cyto-
toxicity [23–26]. MLKL binds to phosphatidylinositol
phosphates (PIPs) [23, 25] and subsequently modifies
sodium or calcium influx through ion channels, thereby
increasing osmotic pressure and promoting plasma mem-
brane rupture [24, 26, 27].
The mechanism by which the necrosome causes cell

death remains unclear. Necroptosis shares some identi-
cal sub-cellular events with necrosis, such as oxidative
burst, mitochondrial membrane hyperpolarization, lyso-
somal membrane permeabilization, and plasma membrane
permeabilization. However, the mechanisms underlying
those processes might be different [28]. Reactive oxygen
species (ROS) potentially lead to cell death by directly oxi-
dizing or triggering various downstream pathways in the
mitochondria [29–31]. RIP3 accelerates mitochondrial ROS
production and mitochondrial metabolism through the
activation of a series of metabolism-related enzymes,
including NADPH and JNK [32, 33]. Mitochondria also
contribute to necrotic cell death through an ADP/ATP-re-
lated pathway in addition to ROS production. Adenine
nucleotide translocase (ANT), an ADP/ATP carrier located
in the inner mitochondrial membrane, is required for the
synthesis of ATP in the mitochondria. RIP1-dependent
inhibition of ANT is reportedly involved in the pro-
grammed necrosis induced by TNF-α and zVAD-fmk,
whereas the later potentially blocks the ability of ANT to
transport cytoplasmic ADP and thereby induces massive
ATP depletion in mitochondria. The activity of ANT is
potentially affected by interactions with VDAC and cyclo-
philin D (CYPD). Two other potential executional proteins
are cPLA2 and lipoxygenase (LOXs). cPLA2 plays an im-
portant role in TNF-α-induced necrotic cell death in L929
cells and MEFs [34]. LOXs acts as a downstream effector of
PLA2 and leads to the disruption of organelle and plasma
membranes [35]. LOXs is reportedly involved in both apop-
tosis and necrosis induced by TNF-α, although the exact
mechanism has yet to be defined [36, 37].
Necroptosis is able to trigger inflammation. This effect

has been observed in a study using mice with deletion of
FADD [38] or Casp8 [39] in intestinal epithelial cells
(IECs) in which RIP3-dependent cell death caused intes-
tinal inflammation. RIP3-mediated necroptosis may play
a role in the pathogenesis of Crohn’s disease, as evi-
denced by the high RIP3 expression in Paneth cells of
these patients [39]. Necroptosis has been found to
stimulate the immune system to elicit inflammatory
responses and has also been characterized in animal
models of acute pancreatitis, ischemic injury, and neuro-
degeneration [9, 40–42]. RIP3−/− mice are protected
from systemic inflammation caused by TNF stimulation
and experimental sepsis induced by cecal ligation and
puncture (CLP) [43, 44]. RIP1 and RIP3 also play crucial
roles in the pathogenesis of Salmonella enterica serovar
and S. typhimurium infection [45]. Necrotic macro-
phages have been observed in atherosclerosis lesions
from both human patients and animals [46]. RIP3-
dependent necroptosis is a key driver for inflammation
in atherosclerosis; RIP3 deficiency alleviates macro-
phage necrosis in advanced atherosclerosis lesions in
atherosclerosis-prone LDL-R−/− or ApoE−/− mice [47].
The contribution of RIP1-dependent necroptosis to
multiple organ failure has also been observed in models
of ischemia reperfusion (IR) and can be rescued by
Nec-1 inhibitor [48–50]. In addition, necroptosis has
been shown to contribute to neuronal damage in neo-
natal brain injury [51].
Taken together, necrosis and necroptosis are en-

dogenous triggers of inflammation that influence host
disease outcomes. Determining the relative contribu-
tion of necroptosis-dependent and -independent path-
ways in inflammation may lead to new and more
specific therapeutic targets.

Apoptosis and inflammation
Apoptosis is one of the major types of cell death and has
been well defined for many years. Two independent
apoptotic signaling cascades, the extrinsic and intrinsic
pathways, have been distinguished [52]. The extrinsic
pathway is triggered by binding of Fas plasma membrane
death receptor to Fas ligand (Fas-L) and other similar
receptors, such as TNFR 1 and its relatives [53]. Fas-L
combines with Fas to form a death complex. The Fas/
Fas-L composite recruits death domain-containing pro-
tein (FADD) and pro-caspase-8, aggregating to become
the death-inducing signaling complex (DISC). Conse-
quently, the protein complex activates pro-caspase-8,
which proceeds to trigger pro-caspase-3, the penultimate
enzyme for the execution of the apoptotic process [54].
The intrinsic pathway also leads to apoptosis but under
the control of mitochondrial pro-enzymes. When a cell
is stimulated by either extracellular stimuli or intracellu-
lar signals, the outer mitochondrial membranes become
permeable to internal cytochrome c, which is then
released into the cytosol. Cytochrome c associates with
the adaptor protein Apaf-1 to form the apoptosome,
which triggers downstream caspase 9 [55]. Once acti-
vated, caspases-8, −9, and −10 process the executioner
caspases-3 and −7. Mature caspases-3 and −7 cleave a
large set of substrates, ultimately resulting in the charac-
teristic morphological and biochemical hallmarks of
apoptosis, such as phosphatidylserine exposure, nuclear
condensation, membrane blebbing, and genomic DNA
fragmentation.
Many factors and signaling pathways that are activated

by inflammation are involved in the regulation of cell
apoptosis. Absent in melanoma 2 (AIM2), a member of
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the pattern recognition receptors (PRRs) in the cyto-
plasm, has been found to activate caspase-3 in parallel
with caspase-1 [56]. AIM2 can recognize DNA released
by the cytosolic bacteria [57], whereas NLRP3, another
member of the cytoplasmic PRRs, responds to the bac-
terial pore-forming toxin nigericin [58], both of which
elicit apoptotic caspase activation [59, 60]. Apoptotic
responses can be observed in wild type cells responding
to AIM2 or NLRP3 stimuli [58]. AIM2 and NLRP3
inflammasome-dependent apoptosis requires caspase-8,
which is recruited to the inflammasome through inter-
action between its DED domains and the PYD of
apoptosis-associated speck-like protein containing a
caspase activation and recruitment domains (CARD),
an adaptor molecule of the inflammasome [57, 58, 61].
In contrast, BCL-2 can negatively regulate NLRP3
inflammasome activation by preventing the cytosolic
release of mitochondrial DNA [62].
Apoptotic cells can expose “eat me” signals, which

are either newly expressed molecules or existing mole-
cules modified by oxidation, to initiate phagocytosis of
the apoptotic cells [63]. The process of phagocytosis of
apoptotic cells represents an anti-inflammatory mech-
anism. Phosphatidyl serine (PS) localized to the outer
leaflet of the plasma membrane is the predominant “eat
me” molecule upon apoptosis [63, 64]. Specific mole-
cules such as milk fat globule epidermal growth factor
8 (MFG-E8) links PS to phagocyte avb3 integrin [63],
whereas growth-arrest-specific 6 (GAS6) links PS to the
receptor tyrosine kinase MER [63]. PS acts as a ligand
for the T-cell immunoglobulin domain and mucin do-
main (TIM)-4 molecule on macrophages and dendritic
cells (DC) [65], and TIM-4 helps promote the uptake of
apoptotic cells [66]. Two other molecules, brain-
specific angiogenesis inhibitor 1 (BAI1) and stabilin-2,
have also been shown to mediate uptake of apoptotic
cells via recognition of PS [67, 68].
Apoptotic cells are rarely detected under physiological

conditions, but the presence of uncleared apoptotic cells
has been linked to several different diseases, including
infection and inflammation. PAMPs and DAMPs are
detected by the tissue-resident cells in response to an
acute infection or tissue injury. Next, leukocytes aggre-
gate near to the site of inflammation; innate immune
cells, such as neutrophils, are often the first cells to
appear, whereas mononuclear cells and macrophages ac-
cumulate later [69]. This initial robust immune response
is designed to destroy invading pathogens and enhance
tissue repair [70, 71]. After eliminating the initial threat,
leukocyte recruitment ceases, and the previously re-
cruited cells are disposed. The main clearance route of
leukocytes is local neutrophil apoptosis and subsequent
phagocytosis [72, 73], although they can be cleared
through transepithelial migration into the airway lumen
in the context of lung inflammation [74] or via lymphatic
vessels [75]. The phagocytosis of pathogens, such as
Escherichia coli or Staphylococcus aureus, promotes neu-
trophil apoptosis following neutrophil recruitment, which
is termed phagocytosis-induced cell death (PICD) [76].
This response is believed to be primarily protective for the
host, and incidentally, pharmacological acceleration of
neutrophil apoptosis is protective in pneumococcal
meningitis by reducing the incidence of brain hemorrhage
[77]. The failed clearance of apoptotic neutrophils can
lead to a prolonged inflammatory response, and this
phenomenon has been observed in disease, including
chronic obstructive pulmonary disease (COPD) [78],
pulmonary fibrosis [79] and cystic fibrosis [80]. The
production of ROS by neutrophils involves this
impaired phagocytosis process, in which ROS activate
the GTPase RHOA in surrounding phagocytes and re-
duces apoptotic cell engulfment by neighboring cells
[81–84]. Alveolar macrophages from patients with
severe asthma and children with poorly controlled
asthma are defective in clearing apoptotic cells [85, 86].
As the mainstay of treatment in asthma, corticosteroids
not only induce eosinophil apoptosis [87] but also en-
hance monocyte-derived macrophage engulfment [88].
The mechanism underlying the enhanced clearance
seems dependent on the binding of protein S to apop-
totic cells and the upregulation of tyrosine-protein
kinase MER on the surface of macrophages [89].
Recently, airway epithelial cells have been found to be
capable of engulfing neighboring apoptotic cells, and
deficiency of this engulfing function increases pro-
inflammatory mediator production and exacerbates
airway inflammation [90]. Apoptotic cells are well
established to induce the synthesis of anti-inflammatory
mediators such as TGF-β, prostaglandin E2, and platelet
activating factor by macrophages [91, 92].
To summarize, contrary to traditional model, specific

PRRs may activate apoptotic signaling pathways. More
importantly, the clearance of apoptotic cells and neutro-
phil apoptosis in the host further affects inflammation.
Therapeutic induction of neutrophil apoptosis at the
inflammatory site may be a powerful pro-resolution
intervention and could fulfill the clinical need to prevent
the harmful consequences of inflammation.

Pyroptosis and inflammation
Pyroptosis is a form of cell death that depends on
caspase-1 activation. Pyroptosis features rapid plasma-
membrane rupture and release of proinflammatory
intracellular content. Cell lysis during pyroptosis results
from caspase-1-mediated processes [93–101]. Plasma
membrane pores dependent on caspase-1 dissipate
cellular ionic gradients, producing a net increased
osmotic pressure, water influx, cell swelling, and
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eventual osmotic lysis, followed by release of inflamma-
tory intracellular content [102]. Cell death due to pyr-
optosis results in a measurable cellular size increase and
cleavage of chromosomal DNA [95, 97, 102–105].
The inflammasome, a caspase-1-containing complex

that activates the proinflammatory cytokines IL-1β and
IL-18 and results in proinflammatory cell death, is one
of the drivers of pyroptosis. The inflammasome activates
caspase-1 through a Nod-like receptor (NLRP1, 3, 6, 7,
12, NLRC4), AIM2, or Pyrin, all of which contain a
CARD or pyrin domain (PYD) [106, 107]. Many inflam-
masomes recruit the ASC adaptor via homotypic inter-
actions. Additional ASC molecules are incorporated via
CARD-CARD and PYD-PYD interactions, until all ASC
molecules are collected into a single focus. The recruit-
ment of procaspase-1 into the ASC focus via CARD-
CARD interactions results in its dimerization and
proximity-induced autoproteolytic processing into the
p10 and p20 subunits. This processed and catalytically
active caspase-1 cleaves pro-IL-1β and pro-IL-18.
We recently reported that HMGB1 acting through

RAGE on macrophages (or macrophage membrane)
triggers dynamin-dependent endocytosis of HMGB1,
which in turn initiates a cascade of cellular and molecu-
lar events. These events include cathepsin B activation
and release from ruptured lysosomes, followed by pyrop-
tosome formation and caspase-1 activation, which serves
Fig. 2 Model of macrophage endocytosis of HMGB1 induces pyroptosis. HMG
endocytosis of HMGB1, which in turn initiates a cascade of cellular and molec
lysosomes followed by pyroptosome formation and caspase-1 activation, whi
as a mechanism underlying the HMGB1-induced macro-
phage pyroptosis (Fig. 2) [108].
A recent study demonstrated that after pyroptosis,

ASC specks accumulate in the extracellular space, where
they promote further maturation of IL-1β [109]. In
addition, phagocytosis of ASC specks by macrophages
induces lysosomal damage and nucleation of soluble
ASC as well as activation of IL-1β in recipient cells
[109]. These findings indicate that pyroptotic cell-
released inflammasomes serve as danger signals pro-
moting enhanced activation of macrophages.
Pyroptotic cells secrete the inflammatory cytokines IL-

1β and IL-18 following caspase-1 activation. IL-1β is a
potent endogenous pyrogen that stimulates fever,
leukocyte tissue migration and expression of diverse
cytokines and chemokines [110]. IL-18 induces IFNγ
production and is important for the activation of T cells,
macrophages and other cell types [111]. Cytokine secre-
tion occurs through caspase-1-dependent pores in the
plasma membrane. Pharmacological inhibition of cell
lysis does not prevent caspase-1-dependent pore forma-
tion and cytokine secretion, suggesting that lysis is not
required for the release of active IL-1β and IL-18 [102].
Thus, cytokine secretion and cell lysis are both down-
stream consequences of caspase-1-dependent pore for-
mation. Notably, caspase-1 activation cannot trigger
pyroptosis in all cell types; specifically, epithelial cells
B1 acting through RAGE on macrophages triggers dynamin-dependent
ular events. These include CatB activation and release from ruptured
ch promotes HMGB1-induced pyroptosis
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use caspase-1 activation to prevent cell death [112]. For
example, caspase-1 activation stimulates lipid production
and membrane repair in response to the pore-forming
toxins aerolysin and α-toxin [112].
In addition to caspase-1, caspase-11 has also been

found to be involved in pyroptosis [113–115]. A recent
study revealed that caspase-11 participates in the process
of non-canonical inflammasome activation downstream
of a cytosolic ligand released from bacteria [116, 117].
Pyroptosis may protect against infection and induces

pathological inflammation. However, exuberant or in-
appropriate caspase-1 activation and pyroptosis can be
detrimental. During infection, caspase-1 activation
helps to clear pathogens, such as Salmonella [118,
119], Francisella [120], Legionella [101, 121], Shigella
[122], Anaplasma phagocytophilum [123], Burkholderia
thailandensis [124], Burkholderia pseudomallei [125] and
Listeria [126]. Mutations in NLR proteins can lead to
improper caspase-1 activation and can cause heredi-
tary autoinflammatory syndromes [127]. Moreover,
caspase-1 is involved in the pathogenesis of several
diseases characterized by inflammation and cell death,
including myocardial infarction [128], cerebral ischaemia
[129], neurodegenerative diseases [130], inflammatory
bowel disease [131], and endotoxic shock [132].
As one of the most recently recognized types of cell

death, pyroptosis exhibits a particular relationship
with common pathogens, and clinic inflammatory
disease for caspase-1 connects to both cell death and
pro-inflammation directly. Pyroptosis and other cas-
pase 1-dependent processes are therefore relevant to
our understanding of the pathophysiology of inflam-
matory disease.

Pyronecrosis and inflammation
Pyronecrosis is another necrosis-like cell death process
that is independent of caspase-1 and caspase-11 but is
dependent on ASC and lysosomal protein cathepsin B.
Pyroptosis results in the cellular secretion of the pro-
inflammatory mediator HMGB1 [133]. Recent studies
have demonstrated that pyronecrosis can be induced by
several pathogens, including Neisseria gonorrhoeae [134],
Toxoplasma gondii parasitophorous [135], Bacillus
anthracis lethal toxin [136] and Staphylococcus aureus
[137]. The mechanism underlying pyronecrosis remains
unclear at present and requires further investigation.

NETosis and inflammation
NETosis is a special form of polymorphonuclear
neutrophil (PMN) death that releases neutrophil extra-
cellular traps (NETs) [138]. NETs are web-like struc-
tures released by neutrophils that are composed of
decondensed chromatin in complex with different neu-
trophil proteins that can capture, neutralize, and kill
microbes. These large extracellular structures provide a
physical barrier to prevent microbial dissemination and
increase the local concentration of antimicrobial effectors
[139, 140]. There are two types of NETosis that can be
distinguished by the occurrence time as early and late.
The more frequently observed type is late NETosis, as
NET release via cell death is a slow process (120–
240 min) and is defined as suicidal NETosis. This form
of suicide is an NADPH oxidase–dependent cellular
death process requiring chromatin decondensation,
followed by nuclear envelope disintegration and
mixing of nucleic acids and granule proteins within a
large intracellular vacuole [141]. However, it remains
unclear how oxidants participate in the dismantling of
the nuclear envelope and mixing of the NET compo-
nents. Classically, suicidal NETosis occurs following
stimulation by phorbol myristate acetate (PMA)
through activation of protein kinase C and the Raf–
mitogen-activated protein kinase (MEK)–extracellular
signal-regulated kinase (ERK) pathway. NADPH assists in
the translocation of neutrophil elastase from cytosolic
granules into the nucleus, where it aids in chromatin
breakdown via histone cleavage. Myeloperoxidase (MPO)
is required for chromatin and nuclear envelope break-
down and granular mixing within the NET vacuole. One
hundred twenty minutes after intracellular NET forma-
tion, the neutrophil outer membrane ruptures, and the
mature NET is extruded.
The early form of NETosis occurs rapidly in response

to a pathogen, e.g., after in vitro Staphylococcus aureus
stimulation for 5–60 min. Early NETosis has also been
termed vital NETosis in some studies [142]. In general,
NETosis begins when the nucleus loses its characteris-
tic lobulated architecture. Subsequently, nuclear mem-
branes disassemble, and the chromatin decondenses
into the cytoplasm while the plasma membrane
remains intact. Finally, the plasma membrane bursts,
leading to NET released [138]. This process is mainly
dependent on ROS, such as superoxide generated by
the NADPH oxidase Nox2. This mechanism spares the
PMN outer membrane, thereby allowing the PMN to
continue to function, even to the point of becoming
anuclear. There are three major differences between
suicidal NETosis and vital NETosis, including the
nature of the inciting stimuli and the timing, the func-
tional capacity of the PMNs during NET release, and
the mechanisms employed to make and release NETs.
In addition to PMN, NETosis has also been observed in
eosinophils and mast cells [143]. Therefore, the more
generalized term ‘ETosis’ maybe more accurate [144].
NETs can kill a number of pathogenic bacteria directly,

beyond just capturing and immobilization [145–148].
Studies demonstrate that NETs can inactivate bacterial
virulence factors, such as IpaB from S. flexneri [138].



Yang et al. Military Medical Research  (2015) 2:12 Page 7 of 12
NETs may also serve to opsonize certain fungi, such as A.
fumigatus via long pentraxin 3 [149]. NETs generated
from PMNs can inhibit the growth of Aspergillus [145]
and kill C. albicanscan, even the opportunistic pathogen
P. aeruginosa [150]. The gram-negative bacterium K.
pneumoniae is not sufficient to induce NETosis in isolated
neutrophils ex vivo but is a good inducer in a mouse lung
infection model [151]. Human immunodeficiency virus
(HIV)-1 has been shown to induce NETosis through a cell
death pathway [152]. Feline leukemia virus (FeLV) was
able to inhibit neutrophil activation by inhibiting the acti-
vation of PKC to reduce ROS production [153].
Numerous types of inflammation are associated with

NETs and NETosis. NETs are observed in acute lung
injury (ALI) models of both infection- or sterile- related
by influenza virus [154, 155], bacteria or bacterial com-
ponent LPS [156–158], fungi [148, 159, 160], and trans-
fusion [161, 162]. Among them, human neutrophil
antigen (HNA)-3a causes the most severe transfusion-
related ALI and has been shown to promote NETosis in
human neutrophils in vitro [161]. Extracellular neutro-
phil elastase release via NETosis may be an important
cause of lung tissue damage and cystic fibrosis progres-
sion [163]. NETs have been shown to form scaffolds in
circulation that promote thrombus formation by inter-
acting with the endothelium, platelets, coagulation
factors and red blood cells, which cause deep vein
thrombosis. IL-8 and ROS release from endothelial cells
can recruit and trigger neutrophils to form NETs, which
subsequently promote damage to the endothelium
through the binding of histones [164].
As a specific cell death type for neutrophils, NETosis

help capture numerous pathogenic bacteria and virus.
Further insight into the interaction between NETs and
invaders would deepen the understanding of the
inflammation process. Furthermore, NETotic products
could be treated as prognostic biomarkers for inflam-
matory disorders, and whether the produces correlate
with clinical outcome in a variety of diseases requires
further translational investigation.

Autophagy and inflammation
Autophagy is a genetically regulated and evolutionarily
conserved pathway for the degradation of subcellular
components [165, 166]. Autophagy has previously been
classified as a form of programmed cell death to describe
a form of caspase-independent necrosis-like cell death
associated with the accumulation of autophagosomes in
cells [167]. This classification is now controversial, and
the casual relationship between autophagy and cell death
remains uncertain [168, 169].
Autophagy formation begins when an autophagic iso-

lation membrane (also known as a phagophore) engulfs
a portion of cytoplasm [170]. Beclin 1, the serine/
threonine protein kinase ULK1, autophagy-related LC3
proteins, and γ-aminobutyric acid receptor-associated
proteins are key regulators of phagophore formation [170].
A phagophore sequesters captured cytoplasmic cargo, and
a double-membraned autophagosome is formed following
elongation and closure. Autophagosome formation is
largely controlled by mammalian target of rapamycin
(mTOR). Inhibition of mTOR leads to the interaction
between ULK1 and AMPK [171, 172], which in turn
recruits the type III PI3 kinase VPS34 to promote the
development of autophagosome [173, 174]. The deg-
radation of the captured cargo begins when the
double-membraned autophagosome matures into a
single membrane-delimited autolysosome [175, 176].
Following this step, lysosomes can be recycled from
autolysosomes, thereby permitting the cell to reuse a
critical component required for further autophagy.
PRR signaling induced by PAMPs and DAMPs can

activate autophagy. For instance, TLRs can cooperate
with autophagy in response to PAMPs [177, 178], and
NLRs interact with ATGs to localize autophagy [179,
180]. Inflammatory cytokines such as IL-1 family mem-
bers [181, 182] and IFNγ [183–185] are also involved in
the activation of autophagy, whereas TH2 cell-associated
cytokines, IL-4 and IL-13, inhibit autophagy [184].
Multiple studies have confirmed the important role of

autophagy during the infection process. Autophagy pro-
tects organism from infectious disease by degrading
intracellular bacteria, viruses, and protozoan pathogens
[186–188].
The role of autophagy in regulating inflammation has

been demonstrated in Crohn’s disease and sepsis.
Crohn’s disease is a type of chronic inflammation. Poly-
morphisms in the genes encoding the autophagy-related
proteins Atg2a, Atg4a, Atg4d, death-associated protein,
immunity-related GTPase family M protein (IRGM), and
ULK-1 have been found to be associated with suscepti-
bility to Crohn’s disease [189–191]. NOD2 mutations
cause impairment in autophagosome induction and bac-
terial clearance [179]. Autophagy formation downstream
of NOD2 activation controls IL-1β and IL-6 release
[192, 193] and results in the tolerogenic presentation of
commensal bacterial components on MHC class II com-
plexes in dendrite cells [180]. Inhibition of autophagy in
septic mice boosts inflammatory cytokine levels and
increases mortality. This effect may due to the failure to
clear damaged or dysfunctional mitochondria, which
activate the NLRP3 inflammasome [194]. We have re-
cently demonstrated that hemorrhagic shock (HS) acting
through HMGB1/TLR4 signaling upregulates NOD2
expression in alveolar macrophages (AM) and subse-
quently sensitizes AM to the NOD2 ligand MDP, which
leads to exacerbated inflammation in the lung. Moreover,
upregulated NOD2 signaling induces autophagy in AM,
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which in turn negatively regulates lung inflammation via a
mechanism that involves suppression of NOD2-RIP2
signaling and inflammasome activation. PMNs coun-
teract this anti-inflammatory effect of autophagy via a
NAD(P)H oxidase-derived ROS mechanism; therefore,
PMNs enhance post-HS lung inflammation [195].
Although the relationship between autophagy and

cell death remains uncertain, several members of the
inflammation process are involved in autophagy. The
function of autophagy in related inflammatory diseases
requires further investigation. A better understanding
of the relevance of the contribution of autophagy to
inflammatory diseases has great clinical potential.
Conclusion and prospective
Emerging evidence has demonstrated the tight links
between cell death and inflammation. A better appre-
ciation of the cross-regulatory relationships between
different forms of cell death and pathways will be cru-
cial for understanding their roles in the inflammation
process. It is important that we realize the therapeutic
possibility of targeting programed cell death in pa-
tients. Our understanding of the molecular pathways
of programed cell death will allow the development of
reagents that control cell death, thereby serving as a novel
strategy for interventions in inflammatory diseases. Some
types of cell death that do not seem to be related to
inflammation may also be considered in future studies in
light of their possible interaction with inflammation; these
approaches will help us better understand the entire
inflammatory process network.
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