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Abstract

The complexity of chronic pain and the challenges of pharmacotherapy highlight the importance of development
of new approaches to pain management. Gene therapy approaches may be complementary to pharmacotherapy
for several advantages. Gene therapy strategies may target specific chronic pain mechanisms in a tissue-specific
manner. The present collection of articles features distinct gene therapy approaches targeting specific mechanisms
identified as important in the specific pain conditions. Dr. Fairbanks group describes commonly used gene therapeutics
(herpes simplex viral vector (HSV) and adeno-associated viral vector (AAV)), and addresses biodistribution and potential
neurotoxicity in pre-clinical models of vector delivery. Dr. Tao group addresses that downregulation of a voltage-gated
potassium channel (Kv1.2) contributes to the maintenance of neuropathic pain. Alleviation of chronic pain through
restoring Kv1.2 expression in sensory neurons is presented in this review. Drs Goins and Kinchington group
describes a strategy to use the replication defective HSV vector to deliver two different gene products (enkephalin
and TNF soluble receptor) for the treatment of post-herpetic neuralgia. Dr. Hao group addresses the observation
that the pro-inflammatory cytokines are an important shared mechanism underlying both neuropathic pain and
the development of opioid analgesic tolerance and withdrawal. The use of gene therapy strategies to enhance
expression of the anti-pro-inflammatory cytokines is summarized. Development of multiple gene therapy strategies
may have the benefit of targeting specific pathologies associated with distinct chronic pain conditions (by Guest
Editors, Drs. C. Fairbanks and S. Hao).
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Part 1. Introduction
(Carolyn A. Fairbanks, Lucy Vulchanova, and Caroline C.
Churchill, Corresponding author, Carolyn A. Fairbanks,
carfair@umn.edu)
Chronic pain is a widely experienced broad spectrum

of debilitating conditions that represent a significant global
public health concern. The problem of chronic pain and
the challenges of pain management have been comprehen-
sively addressed by the Institute of Medicine report on
Chronic Pain in the United States [1]. It is acknowledged
that the currently available options for the treatment and
management of chronic pain are limited due to significant
adverse side effects, particularly of our most effective and
most commonly used analgesics; NSAIDS and opioids [1].
It is noted that as the knowledge of mechanisms underlying
the diversity of chronic pain conditions continues to ex-
pand, opportunities for very selective treatments will con-
tinue to emerge. Included in the category of specialized
therapeutics to target specific pain conditions would be any
of a number of gene therapy strategies that have been
under development for at least twenty years and continue
to emerge as knowledge is gained on specific pain mecha-
nisms. Gene therapy approaches may be complementary to
pharmacotherapy for several advantages. First, gene expres-
sion may be targeted to specific central nervous system
(CNS) or peripheral nervous system (PNS) regions, derma-
tomes, cell populations, or even nuclei. Second, gene thera-
peutics may provide sustained long-term analgesia without
need for repeated dosing (again dependent on the gene
expression product). A common strategy to modify gene
expression in the CNS and PNS has been the use of viral
vectors. Several major categories of viral vectors have been
utilized for different advantages with respect to addressing
specific CNS or PNS dysfunction. The most commonly
used viral vectors in studies of treatment of pain are based
on recombinant adenovirus (AD), adeno-associated virus
(AAV), lentiviral (LV) vectors, and herpes simplex virus
(HSV)-based vectors [2,3], especially AAV and HSV. Two
major categories that are in development for chronic pain
treatments are featured by the authors in this combined
review article.

HSV-1
A non-replicating viral vector derived from the HSV-1 of-
fers the advantage of large packaging capacity as well as
natural mechanism of targeting of sensory neurons [4]
resulting in episomal gene expression in the corresponding
dorsal root ganglia and discrete dermatomal effects of ex-
pression of the gene product. This mechanism is of particu-
lar interest for potentially treating specific pain conditions.
The HSV-1 viral vector strategy carrying the gene for pro-
enkephalin has been widely shown pre-clinically to reverse
manifestations of chronic pain in models of inflammation
[5], pancreatitis [6], spinal nerve [7] and infraorbital [8]
nerve ligation, and bone cancer [9]. A recent phase I clin-
ical trial [10] has demonstrated safety and indicated effect-
iveness of increased expression of the pre-proenkephalin
gene to treat focal intractable cancer pain. The use of the
HSV-1 viral vector strategy has also been applied pre-
clinically for evaluation of the effectiveness of other poten-
tial gene therapeutics including, but not limited to overex-
pression of GABA [11], anti-inflammatory cytokines [12,13]
and antisense to NaV1.7 sodium channels [14]. It is antici-
pated that development of multiple gene-expression strategies
using the HSV-1 approach may greatly benefit long-term
management specifically of focal chronic pain [15].

AAV
The AAV vectors have comparatively lower packaging
capacity which is somewhat mitigated through the use of
self-complementary genome approaches. However, AAVs
have the advantage of very limited immune response, long-
term gene expression, and broad tropism for a variety
of cell types [4]. The AAV vectors have multiple serotypes
with distinct tropisms for distinct cell types. Through selec-
tion of the serotype used and/or tissue-specific promoters
it may be possible to selectively deliver therapeutic gene ex-
pression. Several AAV serotypes have been particularly use-
ful for gene transfer to a broad spectrum of brain regions
to correct loss-of-function enzyme deficiency disorders
[16]. The use of different AAV serotypes for CNS gene ther-
apy is also of interest to those developing novel treatments
for Alzheimer’s disease [17], Parkinson’s disease [18], Hun-
tington’s chorea [19], epilepsy [20] ALS [21] and chronic
pain [22] among others. However, in contrast to the enzym-
atic deficiency disorders, these neurological disorders would
likely benefit from more site-specific targeting of specific
regions or brain nuclei [20] to optimize their effects.
As with the HSV-1 vector there have been a number

of pre-clinical studies in chronic pain models using
the AAV approach. For example, intraspinal delivery of
rAAV2 carrying the gene for BDNF resulted in reversal
of neuropathic pain behaviors induced by chronic
constriction injury [23]. Intraganglionic injection of an
AAV5 serotype carrying a gene for shRNA targeting
NaV1.3 channels resulted in reduction in neuropathic pain
behaviors evoked by spared nerve injury [24]. Intrathecal
delivery in catheterized rats of self-complementary AAV8
serotype carrying the gene for the anti-inflammatory
cytokine IL-10 resulted in reduction of neuropathic pain
behaviors invoked by L5 spinal nerve ligation [25].

Therapeutic development considerations
Some barriers to clinical translation of AAV-mediated gene
therapy have been previously identified and discussed [26].
These include the presence of circulating anti-AAV anti-
bodies that may preclude the effectiveness of systemic AAV
therapy [27] as well as an apparent need for high systemic
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titers of AAV vectors in order to achieve therapeutic out-
comes. Direct delivery to the CNS through a spinal or
intracerebroventricular route presents an opportunity to
partially overcome these barriers as it has yielded higher
levels of expression with lower viral titers compared to
vascular routes of administration and it takes advantage of
the relatively immuno-privileged status of the CNS,
thereby reducing the risk of circulating anti-AAV neutral-
izing antibodies [27]. Translational development of direct
CNS delivery of AAV vectors for therapeutic management
of chronic pain requires consideration of the biodistribu-
tion of viral particles, which is partially determined by cel-
lular tropism. It has been observed that AAV serotypes
differ in their ability to transduce sensory neurons and in
some cases target preferentially subsets of sensory neu-
rons [28,29]. Importantly, there is also evidence for species
differences in the cellular tropism of AAV serotypes [30].
Additionally, supra-spinal gene expression has been observed
following intrathecal delivery of AAV5 [31], AAV6 [29] and
AAV9 [32] serotypes.

Biodistribution
The principle that pharmacotherapeutics originally devel-
oped for systemic administration must be re-evaluated
specifically for spinal delivery, has been long established
[33] . There are unique features to the spinal route of ad-
ministration that require independent safety assessment.
Compared to pharmacotherapeutics and other constitu-
ents of CNS formulations, very little is known regarding
the pharmacokinetics of spinally delivered AAV vectors. A
number of factors that can greatly influence distribution
of spinally delivered pharmacotherapeutics include, but
are not limited to, the formulation constituents, the bari-
city of the formulation, and the positioning and/or state of
consciousness of the subject [34]. It is likely to be the
same for viral particles, though the spinal distribution has
been less comprehensively evaluated compared to small
molecules. A recent study [30] of the biodistribution of
AAV8 vector genomes following intrathecal delivery in
dog confirms a rostral caudal distribution at all levels of
dorsal root ganglia and spinal cord, some detection in
brain and evidence of systemic redistribution by detection
of vector genomes in liver and spleen. The impact of dis-
tribution to the systemic circulation following intrathecal
delivery, and in particular gene transfer to the liver
[27,29-32] is not yet known.

Neuropathology
Having articulated the potential benefits of using a central
route of administration to delivery of gene therapeutics, it
is equally important to emphasize the need for assessment
of potential neurotoxicity in pre-clinical models [33,35]. It
has been previously observed for both AAV9 [36] and
AAV8 [30] that carrying a gene that is foreign to the host
(e.g. Green Fluorescent Protein) can elicit a significant
pathological neuroimmune response that may, in fact, re-
sult in immunoneutralization or reduced free concentra-
tions of the gene product, such as IL10 [30]. Given
the expected advantage of long-term expression of gene
therapeutics, evaluation in well-validated models of spinal
neurotoxity of tissue exposed to the viral particles and
consequent gene expression must be performed with con-
sideration to the function of the specific cell types trans-
duced (e.g. neurons, or glia, or choroid plexus cells, and/
or meningeal cells).
In summary, the complexity of chronic pain states and

the challenges of current pain management strategies call
for development of unique approaches complementary to
conventional pharmacotherapy. Development of multiple
gene therapy strategies may have the benefit of targeting
specific pathologies associated with distinct chronic pain
conditions. There is much opportunity for discovery in this
developing area; the present collection of articles features
three distinct gene therapy approaches targeting specific
mechanisms identified as important in the specific pain
conditions modeled.

Part 2. AAV mediated transfer of Kv1.2 sense RNA
to primary sensory neurons: a potential strategy
to treat peripheral neuropathic pain
(Shaogen Wu, Alex Bekker, Yuan-Xiang Tao, Correspond-
ing author: Dr. Yuan-Xiang Tao, yt211@njms.rutgers.edu)
Neuropathic pain, a common clinical problem, is often

refractory to treatment with available therapies in part
due to the incomplete understanding of the mechanisms
that underlie induction and maintenance of this disorder.
Nerve injury-induced abnormal spontaneous activity in
the neuroma and primary sensory neurons is thought to
contribute to neuropathic pain genesis. Voltage-gated po-
tassium (Kv) channels, which are critical for establishing
resting membrane potential and controlling neuronal ex-
citability, are potential targets for treating neuropathic
pain. This review focuses on current evidence on the role of
Kv1.2, one of the α subunits in the Kv channel family, in
neuropathic pain. We describe nerve injury-induced down-
regulation of Kv1.2 at the transcriptional and translational
levels in primary sensory neurons of dorsal root ganglion.
We also discuss how peripheral noxious stimulation in-
duces such downregulation under neuropathic pain condi-
tions. We finally present the evidence that rescuing Kv1.2
downregulation through adeno-associated virus mediated
transfer of Kv1.2 sense RNA into the dorsal root ganglion
may be a potential application in prevention and treat-
ment for neuropathic pain.

Keywords
Potassium channels, Kv1.2, dorsal root ganglion, adeno-
associated virus, gene transfer, neuropathic pain.
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P2.1.Introduction
Neuropathic pain is a public health problem that affects ap-
proximately 7-10% of the general population in the USA
and Europe [37-39]. It is a cause of grave physiological and
psychological distress in those affected, and it places signifi-
cant pressures on the health care system. Billions of US
dollars are spent on neuropathic pain related health care
expenses, and many patients experience a loss of productiv-
ity. Neuropathic pain is caused by tissue damage or a dis-
ease that affects the somatosensory system [40,41]. It is
characterized by ongoing or intermittent burning pain, an
exaggerated response to noxious stimuli (hyperalgesia), and
pain in response to normally innocuous stimuli (allodynia)
[40,41]. Despite recent advancements in our fundamental
understanding of neuropathic pain, there are still very few
treatment options. Most of the conventional painkillers
either do not relieve neuropathic pain or have serious side
effects. Current approaches to tackle this disorder (e.g., opi-
oids and other strong painkillers) temporarily reduce the
sensation of pain, but do not treat the underlying path-
ology. Thus, uncovering the mechanisms of neuropathic
pain may provide new strategies for the prevention and/or
treatment of this disorder.
One of the common primary causes of peripheral neuro-

pathic pain is abnormal spontaneous activity that arises in
neuromas at the sites of nerve injury and also in dorsal root
ganglion (DRG) neuronal bodies [40,41]. Abnormal excit-
ability of the injured DRG neurons may result from changes
in the expression and functional characteristics of receptors,
enzymes, and voltage-dependent ion channels in the DRG
[42-44]. Voltage-gated K+ (Kv) channels, which are critical
for establishing resting membrane potential and controlling
excitability of DRG neurons, are key players during these
changes [45-47]. Application of Kv antagonists to sensory
axons and to sites of ectopic afferent discharge facilitates ec-
topic firing [48-51]. Injection of these antagonists into
nerve-end neuromas provokes intense pain [52]. Further-
more, knockdown of DRG Kv channels leads to abnormal
mechanical pain [47,53]. Dramatic reductions in K+ currents
and the expression of Kv channel mRNA and protein (e.g.,
Kv1.2) are observed in the injured DRG following peripheral
nerve injury [45,46,54-59]. These findings indicate that a
nerve injury-induced reduction in DRG Kv channels may
contribute to neuropathic pain genesis.
In this article, we focus on current evidence on the

role of Kv1.2, one of the α subunits in the Kv channel
family, in neuropathic pain. We first review the nerve
injury-induced downregulation of Kv1.2 at the tran-
scriptional and translational levels in DRG. We then
discuss how peripheral noxious stimulation induces
such downregulation under neuropathic pain condi-
tions. We finally present the evidence that rescuing
DRG Kv1.2 downregulation through adeno-associated
virus (AAV) mediated transfer of Kv1.2 sense RNA may
be a potential application in prevention and treatment
of neuropathic pain.

P2.2. Expression and distribution of Kv1.2 in DRG after
peripheral nerve injury
The Kv1.2 subunit participates in the formation of Kv
channel tetramers in most DRG neurons. The mRNA
for Kv1.1 and Kv1.2 is highly abundant, whereas that of
Kv1.3, Kv1.4, Kv1.5, and Kv1.6 is present at lower levels
in the DRG [60]. A higher level of Kv1.2 protein is also
detected in DRG. Approximately 70% DRG neurons are
positive for Kv1.2 [45,46,54]. Although an earlier study
reported that Kv1.2 was expressed in small DRG neu-
rons [58], subsequent reports from different groups re-
vealed that Kv1.2 was distributed predominantly in
medium and large DRG neurons [45,46,54]. In neuron
profiles, approximately 72% of Kv1.2-positive neurons
are large, 19% are medium, and 9% are small [46]. This
observation was further confirmed by the use of the
double immunohistochemical labeling for Kv1.2 and
specific cytochemical markers. Most (80.3%) Kv1.2
co-localizes with NF-200, a marker for the myelinated
A-fibers and corresponding large and medium DRG
neurons. Some (11.1%) Kv1.2 co-localizes with P2X3, a
marker for small DRG non-peptidergic neurons and
some (10.7%) Kv1.2 co-localizes with CGRP, a marker
for small DRG peptidergic neurons [46]. Given that nerve
injury-induced increase in spontaneous ectopic activity is
found primarily in injured myelinated afferents [61-63],
the unique subpopulation distribution of Kv1.2 in DRG
large and medium neurons indicates possible role in
neuropathic pain genesis following Kv1.2 downregulation.
Accumulating evidence showed a time-dependent de-

crease in the expression of Kv1.2 mRNA and protein in the
injured (but not intact) DRG neurons following peripheral
nerve injury [45,46,54-59]. The ratio of ipsilateral to contra-
lateral Kv1.2 mRNA in L5 DRGs after unilateral L5 spinal
nerve ligation (SNL) was decreased by 57% on day 3, 86%
on day 7, and 82% on day 14 post-SNL compared to the
corresponding time points in sham groups [45]. The level
of Kv1.2 protein in the ipsilateral L5 DRG was reduced by
32% on day 3, 68% on day 7, and 78% on day 14 post-SNL
compared to the corresponding time points in sham groups
[45]. Consistently, the number of Kv1.2-positive neurons in
the ipsilateral L5 DRG was diminished by 25% on day 3,
85% on day 7, and 52% on day 14 post-SNL compared to
the number at the corresponding time points in the contra-
lateral DRGs of the sham groups [46]. These reductions oc-
curred predominantly in large and medium DRG neurons.
No dramatic changes in amounts of Kv1.2 mRNA and pro-
tein and in the number of Kv1.2-positive neurons were seen
in the contralateral L5 DRG, the ipsilateral L4 DRG, or
contralateral L4 DRG during the observation period. Nerve
injury-induced Kv1.2 downregulation in the injured DRG
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were also observed following sciatic nerve axotomy or
chronic constriction injury [45,46].

P2.3. Contribution of MZF1-triggered Kv1.2 antisense RNA
to nerve injury-induced DRG Kv1.2 downregulation
An endogenous Kv1.2 antisense (Kv1.2 AS) RNA, a long
noncoding RNA, was recently identified. It functions as a
biologically active regulator for Kv1.2 mRNA and protein
[45]. Overexpression of full-length Kv1.2 AS RNA in cul-
tured HEK293T cells or in primary cultured DRG neurons
significantly knocked down Kv1.2 mRNA and protein, but
not the mRNAs and proteins of Kv1.1, Kv1.4, and Nav1.8
[45]. In in vivo experiments, Kv1.2 AS RNA overexpres-
sion time-dependently reduced Kv1.2 mRNA in the DRG
[45]. No changes were observed in the expression of
Kv1.1, Kv1.4 or Nav1.8 at the levels of mRNA or protein
in the DRGs injected with AAV-Kcna2 AS RNA [45]. The
evidence indicates that Kv1.2 AS RNA specifically and se-
lectively targets Kv1.2 RNA and protein.
Kv1.2 AS RNA was upregulated in the injured DRG fol-

lowing peripheral nerve injury. The ratio of ipsilateral to
contralateral Kv1.2 AS RNA in L5 DRGs increased by 1.4-
fold on day 3, 3.3-fold on day 7, and 3.3-fold on day 14
post-SNL compared to the corresponding time points in
sham groups [45]. Consistently, the number of Kv1.2 AS
RNA-labeled neurons in the ipsilateral L5 DRGs increased
by 1.5-fold on day 3, 2.8-fold on day 7, and 3-fold on day
Normal ConditionA

Figure 1 Nerve injury-induced Kv1.2 downregulation triggered by myeloid z
in the injured dorsal root ganglion (DRG). (A) Under normal conditions, Kv1.2
protein, resulting in normal expression of Kv1.2 channel at DRG neuronal mem
promotes the expression of the transcription factor MZF1 in DRG. The increas
its expression. The latter specifically and selectively inhibits the expression of K
to a reduction in the membrane expression of Kv1.2 only, not other Kv subun
14 after SNL compared to the corresponding time points in
the contralateral L5 DRGs [45]. Moreover, the ratios of
Kv1.2 AS RNA to Kv1.2 mRNA increased, particularly in
individual medium and large DRG neurons after SNL as
demonstrated using single-cell real-time RT-PCR analysis
[45]. An increase in Kv1.2 AS RNA was also observed in
the injured DRG after sciatic nerve axotomy or chronic
constriction injury [45].
Myeloid zinc finger gene 1 (MZF1), a transcription factor,

triggers the activation of Kv1.2 AS RNA gene expression in
the injured DRG following peripheral nerve injury. Kv1.2 AS
RNA gene promoter contains a consensus MZF1-binding
motif (-161 to -154). Once bound to this motif, MZF1 pro-
mots transcription of target genes [64,65]. In DRG, MZF1
was reported to bind to this motif on the Kv1.2 AS gene
promoter [45]. SNL time-dependently increased MZF1
expression and its binding activity in the injured DRG [45].
Moreover, MZF1 directly promoted Kv1.2 AS gene tran-
scriptional activity and was co-expressed with Kv1.2 AS
RNA in DRG neurons [45]. It is very likely that nerve
injury-induced downregulation of DRG Kv1.2 mRNA is at-
tributed to MZF1-triggered upregulation of DRG Kv1.2 AS
RNA under neuropathic pain conditions (Figure 1). It is
worth noting that the nerve injury-induced decrease in
Kv1.2 mRNA and protein might be caused by other mecha-
nisms at transcriptional and translational levels. These
mechanisms will be addressed in future studies.
Neuropathic PainB

inc finger protein 1 (MZF1)-mediated Kv1.2 antisense (AS) RNA expression
mRNA that is transcribed from the genome is translated into Kv1.2
brane. (B) Under neuropathic pain conditions, peripheral nerve injury

ed MZF1 binds to the promoter region of Kv1.2 AS RNA gene and triggers
v1.2 mRNA via extensive overlap of their complementary regions, leading
its (e.g., Kv1.1), in the DRG neurons.
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P2.4. AAV mediated transfer of Kv1.2 sense RNA into the
injured DRG, a strategy for neuropathic pain treatment
Nerve injury-induced downregulation of DRG Kv1.2 may
contribute to neuropathic pain development and mainten-
ance. Mimicking nerve injury-induced DRG Kv1.2 down-
regulation reduced total Kv current, depolarized the resting
membrane potential, decreased the current threshold for
activation of action potentials, and increased the number of
action potentials in large and medium DRG neurons [45].
Rescuing the SNL-induced downregulation of DRG Kv1.2
by blocking SNL-induced upregulation of DRG Kv1.2 AS
RNA through microinjection of a AAV5 Kv1.2 sense RNA
fragment (-311 to +40) into the injured DRG attenuated
the induction and maintenance of SNL-induced mechanical
allodynia, cold hyperalgesia and thermal hyperalgesia [45].
Moreover, overexpressing DRG Kv1.2 in the injured DRG
through microinjection of AAV5 full length Kv1.2 sense
RNA rescued SNL-induced downregulation of DRG Kv1.2
mRNA and protein and mitigated SNL-induced mechanical
allodynia, thermal hyperalgesia, and cold hyperalgesia dur-
ing both the development and maintenance phases [46].
Overexpressing DRG Kv1.2 sense RNA in the injured DRG
also degraded the DRG Kv1.2 AS RNA induced by SNL
A Before AAV injection

Figure 2 Adeno-associated virus (AAV) mediated transfer of Kv1.2 sense RN
injection into the DRG of rats with peripheral nerve injury, a nerve injury-in
expression of Kv1.2 mRNA and protein, resulting in an increase in DRG neu
injection into the DRG of rats with peripheral nerve injury, AAV mediated t
DRG Kv1.2 downregulation at the DRG neuronal membrane through not o
of nerve injury-induced increase in Kv1.2 AS RNA expression via extensive o
SE RNA fragment (-311 to +40) also rescues nerve injury-induced DRG Kv1.2
in Kv1.2 AS RNA expression via partial overlap of their complementary regi
protein. Maintaining normal Kv1.2 expression at DRG neuronal membrane r
and consequently decreases spinal central sensitization, resulting in neurop
through the extensive overlap of their complementary re-
gions (Figure 2) [46]. The evidence suggests that DRG
Kv1.2 is a key player in neuropathic pain genesis. Given
that nerve injury-induced abnormal ectopic activity in the
injured myelinated afferents is considered to be a con-
tributor of neuropathic pain genesis [61-63], rescuing
Kv1.2 downregulation through AAV mediated transfer of
these two Kv1.2 sense RNAs may maintain normal resting
membrane potential and diminished ectopic activity in the
injured DRG neurons, resulting in reduction of primary
afferent transmitter release and attenuation of spinal
central sensitization formation and neuropathic pain
(Figure 2). Since AAV mediated transfer of neither Kv1.2
sense RNA fragment nor full length Kv1.2 sense RNA af-
fected basal nociceptive response, capsaicin-induced acute
pain, and locomotor function [45,46], the strategy of AAV
mediated transfer of Kv1.2 sense RNA may have clinical
implication in neuropathic pain treatment.

P2.5. Conclusion
The evidence described above suggests that Kv1.2 is a crit-
ical subunit in the Kv channel family of DRG neurons dur-
ing neuropathic pain development and maintenance.
AfterAAV injectionB

A for the reduction of DRG neuronal excitability. (A) Before AAV
duced increase in DRG Kv1.2 AS RNA triggered by MZF1 knocks down
ronal excitability under neuropathic pain conditions. (B) After AAV
ransfer of full length Kv1.2 sense (SE) RNA rescues nerve injury-induced
nly its direct translation into Kv1.2 protein but also its indirect blockage
verlap of their complementary regions. AAV mediated transfer of Kv1.2
downregulation through its blockage of nerve injury-induced increase

ons, although this RNA fragment cannot be translated into Kv1.2
educes nerve injury-induced neuronal hyperexcitability at DRG neurons
athic relief.
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Kv1.2 may be a new target for this disorder. Given that
specific and selective Kv1.2 activators are unavailable com-
mercially, AAV-mediated transfer of Kv1.2 sense RNA
fragment or full length into the DRGs offers the possibility
of long-term rescue of nerve injury-induced DRG Kv1.2
downregulation under neuropathic pain conditions, al-
though this transfer takes 3-4 weeks for Kv1.2 sense RNA
expression. Such gene transfer to the peripheral primary
sensory neurons may have a potential clinical application
for the prevention and treatment of neuropathic pain.

Part 3. Genetic therapy of chronic pain in a rat
model of post herpetic neuralgia induced by
varicella zoster virus employing herpes simplex
virus vectors expressing enkephalin and the TNFα
soluble receptor
(Jean-Marc G Guedon, Joseph C Glorioso, Paul R
Kinchington, William F Goins, Corresponding authors,
Paul R Kinchington, Ph.D.kinchingtonp@upmc.edu,
William F Goins, Ph.D. goins@pitt.edu)
Post herpetic neuralgia (PHN) is a debilitating, difficult-

to-treat and poorly understood pain state that may follow
herpes zoster, which is caused by the reactivation of vari-
cella zoster virus (VZV) from neuronal latency. To shed
light on the mechanisms underlying PHN and to test pre-
clinical treatments, a rat model has been developed in
which VZV inoculation at the footpad induces prolonged
nocifensive behaviors that mimic mechanical allodynia
and thermal hypersensitivity seen in human PHN patients.
Various analgesics have been evaluated in the model, in-
cluding agents currently used to treat PHN (gabapentin,
amitriptyline, morphine, etc) as well as novel therapeutic
candidates. One disadvantage of most of these therapies is
that the pain relief is often only temporary and may re-
quire frequent or continuous dosing, or employ unfavorable
routes of administration. To seek prolonged analgesia, we
employed replication-deficient herpes simplex virus (HSV)
based vectors expressing the natural opioid, preproenke-
phalin (vHPPE). Peripheral administration of vHPPE in-
duced a dose-dependent prolonged duration of relief of
VZV-induced hypersensitivity, provided extended relief
upon re-inoculation, and could prevent nocifensive behav-
iors from developing when administered prophylactically.
HSV-based vHPPE vectors displayed promise in a human
Phase-I trial for the treatment of bone cancer pain, sup-
porting their potential use in extended relief of human
PHN. A second treatment strategy was based on gene array
analyses of the dorsal root ganglia (DRG) from rats exhi-
biting VZV-induced nocifensive behaviors, which revealed
up-regulation of the TNF receptor associated death do-
main TRADD and TNFrsf21 the TNF receptor superfamily
member also known as death receptor 6 (DR6) that inter-
acts with TRADD via its death domain. This specific
change in expression suggested immune mediated
mechanisms contribute to VZV-induced pain in the rat
model. In agreement, administration of replication-
deficient HSV vector expressing the human soluble TNFα
receptor (sTNFR) was found to reduce VZV-induced hyper-
sensitivity in a prolonged manner. These data suggest a
role for TNFα in VZV-induced pain.

Keywords
Post Herpetic Neuralgia, Enkephalin, Tumor Necrosis
Factor, Rat Model of PHN, Varicella Zoster Virus

P3.1.VZV, Zoster and PHN
The human herpesvirus varicella zoster virus (VZV) causes
varicella (chickenpox) upon primary infection and then
establishes a latent state within neurons of sensory and auto-
nomic ganglia. Approximately one third of the VZV-infected
patient population will subsequently develop the reactivated
disease zoster (shingles), usually after age 60 or following im-
mune compromise from disease or iatrogenic cause. A host
of neurological problems are associated with zoster, including
numbness, itch, ischemia, vasculopathies, myelitis and oph-
thalmoplegia, but by far the most common complication is
pain [66-68]. Up to 90% of zoster patients are prescribed
pain relieving medication, particularly to mitigate zoster as-
sociated pain (ZAP) that occurs before, during or shortly
after the appearance of zoster skin lesions. Treatment for
ZAP is effective with antiviral and/or NSAID administration
[69,70], particularly when initiated early. However, 33% of
zoster patients develop a chronic, debilitating and difficult to
treat pain state known as post herpetic neuralgia (PHN), de-
fined as chronic pain lasting longer than 30 days. PHN pain
is described as stimulus-independent (spontaneous) pain,
stimulus-evoked pain (allodynia), and evoked/non-evoked
“stabbing” pain [67]. The pain of PHN may be so debilitating
as to lead to secondary consequences such as depression,
withdrawal from society, and a dramatic decrease in patient
quality of life [67,71,72]. While PHN patients have a variety
of available treatment options, there is no “silver bullet” that
alleviates pain in all patients. Indeed, a significant fraction of
PHN patients will not experience even partial relief from any
current treatment options, which include opiate based treat-
ments such as morphine; anti-convulsants such as amitrypti-
line, pregabalin, and gabapentin; topical treatments including
capsaicin and lidocaine patches; and more unconventional
treatments such as ganglionectomy and large-area skin re-
placement [73]. Many drug treatments induce unwanted off-
target whole-body side effects, and some lead to tolerance,
abuse and addiction [67,69].

P3.2. Inflammatory components of pain
Inflammatory components contributing to pain have
long been appreciated for their role in nociception.
There are three pro-inflammatory cytokines that have
been associated with neuropathic pain, namely tumor
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necrosis factor alpha (TNFα), interleukin-1 (IL-1), and
interleukin-6 (IL-6) [74-79]. As a consequence, use of
broad anti-inflammatory treatments such as NSAIDs are
popular first-line choices for the treatment of inflamma-
tory pain, including ZAP associated with herpes zoster.
NSAIDs reduce inflammation involved in pain initiation
or maintenance. However, NSAIDs and similar cyclooxy-
genase targeting anti-inflammatory drugs frequently
have little effect on pain associated with PHN, suggest-
ing PHN pain is more complicated than just an inflam-
matory process. Indeed, the efficacy of anti-cytokine
immune biologics to alter pain in PHN patients has
proven confusing. While antibodies that interfere with
TNFα such as Etanercept, Adalimumab and Infliximab
have been successfully employed to relive pain in pa-
tients with rheumatoid arthritis, inflammatory bowel dis-
ease and other immune complications, reports vary
widely for treatment of PHN pain with some showing effi-
cacy without complications in patients with herpes zoster
(HZ), ZAP or PHN, while others suggest that the severity
and risk of PHN are dramatically increased [80-82].
In an effort to gain a better understanding of the role of

inflammation in pain, rodent pain models have been exten-
sively employed to examine how inflammation initiates and/
or amplifies pain signaling. Various inflammatory pain
models exist where administration of inflammatory media-
tors, including TNFα, contribute to pain and blockade of
these mediators has provided substantial pain relief [83-86].
TNFα, as a major mediator of inflammation, is up-regulated
in many chronic pain models, including chronic constriction
injury (CCI), carrageenan- and zymosan-induced pain, and
spinal nerve transection [87-90]. Following injury, one can
readily detect increased levels of TNFα in both microglia
and astrocytes within the dorsal horn of the spinal cord
where afferents project from the location of the injury [91],
suggesting that release of the cytokine into the cord plays a
role in nociception. Moreover, activated mast cells, macro-
phages, and neutrophils also produce cytokines including
TNFα [92-94]. TNFα treatments can lead to peripheral
neuropathy [95] in cancer patients, and direct injection of
TNFα in normal naïve animals results in pain-like behav-
iors similar to those described in human patients with
rheumatoid arthritis (RA) and other inflammatory
diseases [81,96,97]. TNFα is thought to be one of the
major players involved in neuro-immune activation of
pain signaling within the dorsal horn of the spinal cord
[98,99], but its role in PHN has not been determined.
Below, we present preclinical data that implicates TNFα
and its downstream effectors are associated with VZV-
induced chronic hypersensitivity in rats.

P3.3. The rat model of VZV-induced chronic pain
A preclinical model of chronic VZV-induced pain in rats,
first described by Fleetwood-Walker et al [100], has been
the subject of recent reviews and will only be summarized
here [101,102]. The model is initiated with footpad inocu-
lation of cell-associated VZV, that consists of VZV-infected
cells rather than virus that has been purified away from the
infected cells, with uninfected cells used as the negative
control. Cell-associated VZV is used because cell-free VZV
cannot be prepared to the titers required to induce pain,
due to the highly cell-associated nature of VZV in culture.
Rats subsequently develop strong hypersensitivity within
one week to mechanical stimuli and to a lesser extent to
thermal (heat but not cold) stimuli, as well as develop anx-
iety behaviors in open field test paradigms [101,103-109].
The mechanical hypersensitivity observed in the rodent
model reflects the intense allodynia experienced by more
than 70% of all human zoster patients [110,111], while
thermal-induced pain is also seen in a smaller PHN patient
population [112]. In our hands, mechanical hypersensitivity
is more robust and longer lasting compared to thermal re-
sponses [104]. Hypersensitivity in animals correlate with
VZV presence in the corresponding DRG, and the expres-
sion of a limited subset of viral genes and proteins in both
large and small diameter neurons, defined by positive
staining for neurofilament 200 (NF200), neuropeptide-Y
(NPY) and peripherin. VZV infection also correlates with
ganglionic changes in expression of galanin, activating
transcription factor 3 (ATF-3), the α2∂1 calcium channel,
and voltage gated sodium channels Nav1.3 and 1.8, sug-
gesting a neuropathic basis for the VZV-induced pain
[103]. Animals infected with VZV still develop pain when
treated with the viral replication inhibitors acyclovir and
valacyclovir, suggesting pain develops without the need for
viral DNA replication [106,109]. This mirrors human PHN
patients, who largely see no effective pain relief from
acyclovir when taken after 72 hours from the beginning of
zoster [69,113]. However, viral infectivity and/or de novo
VZV transcription is necessary for the onset of nocifensive
behaviors in rats, as UV-inactivated VZV failed to induce
hypersensitivity to either mechanical or thermal stimuli
[104]. It is important to note that a major difference be-
tween the rat model and human PHN is the trigger of
chronic hypersensitivity occurs upon initial infection in the
rat, while in humans, pain is only associated with reactiva-
tion of VZV from latency within sensory neurons, and is
almost never associated with primary infection. As yet,
there is no reliable animal model of VZV reactivation, so
this issue remains to be resolved. In conclusion, the rat
PHN model is a reproducible and reliable model that re-
flects many of the clinical conditions seen in human PHN
patients, and thus provides the only platform to address
mechanisms underlying VZV-induced pain.
There has been extensive use of the model to test thera-

peutics, both those known to be efficacious in treating hu-
man PHN, as well as novel investigational agents and
compounds. Due to the nature of the host immune
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response involved in zoster and ZAP, early studies evaluated
the use of NSAIDs to reduce the host inflammatory re-
sponse, with conflicting reports. While systemically applied
ibuprofen reduced both mechanical allodynia (MA) and
hypersensitivity [105], another group failed to see any relief
using the anti-inflammatory NSAID diclofenac [103]. How-
ever, in general, drugs used in the rat model usually repli-
cate the efficacy for the agent in treating the human PHN
condition. Agents shown to have some effect include: (i)
morphine, (ii) gabapentin, (iii) the tricyclic antidepressant
amytriptiline, and (iv) sodium channel blockers mexiletine
and lamotrigine [103,105,108]. Novel agents that have been
evaluated and are also somewhat efficacious include: (i)
astrocyte toxin (L-α-aminoadipate), (ii) iNOS inhibitors
(L-N6-(1-iminoethyl)-lysine), (iii) nitric oxide scavengers
(2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide),
(iv) IL-1 receptor antagonist, (v) the cytokine inhibitor
(Pentoxifyline), (vi) the NMDA receptor antagonist ((2R)-
amino-5-phosphonovaleric acid; (2R)-amino-5-phospho-
nopentanoate and 3-((R)-2-Carboxypiperazin-4-yl)-pro-
pyl-1-phosphonic acid),(vii) and the non-competitive
NMDA receptor antagonist (Dizocilpine) [103,105,109].
The relief obtained by these treatments is frequently
short-lived, lasting only hours or for the duration of the
drug administration. Furthermore, many of the evaluated
treatments have administration routes that are prohibitive
in humans, and in many instances, do not provide pain re-
lief after multiple applications. This supports the need for
more effective and prolonged therapeutic strategies.

P3.4. Gene therapy using herpes simplex virus (HSV)
replication-deficient vectors to alleviate hypersensitivity
in the rat model of VZV-induced PHN
While the rat model of PHN has been employed for evalu-
ation of several drug therapies, it has only recently been
used to evaluate gene delivery and expression therapy ap-
proaches. HSV vectors are uniquely positioned for the
treatment of pain, as HSV vectors; (i) effectively target and
enter peripheral innervating neurons (ii) can be injected
easily into peripheral tissues and traffic to ganglia innerv-
ating the dermatome that was injected; (iii) are capable of
delivering and expressing large genes and even multiple
genes; (iv) can be easily manipulated and grown to high ti-
ters in vitro; and (v) have shown safety in humans for the
treatment of chronic pain without the generation of any
adverse events [10]. HSV vectors are rendered replication
defective by deletion of several genes critical to the control
of viral gene expression (including ICP4 and ICP27), and
are grown on cell lines that express such genes in trans.
While an extensive review of HSV vectors and pain is be-
yond the scope of this article (see [114]), it should be
pointed out that HSV based vector delivery and expres-
sion at the ganglia has been employed to treat a variety of
chronic pain conditions in preclinical models through the
expression of several pain relieving genes including: (i)
glial cell derived neurotrophic factor (GDNF), (ii) vascular
endothelial growth factor (VEGF), (iii) erythropoietin
(EPO), (iv) the glutamic acid decarboxylase 67kD isoform
(GAD67), (v) the alpha-1 subunit of the glycine receptor
(GlyRα1), and (vi) dominant negative form of protein kin-
ase C epsilon (dnPKCε); as well as antisense genes for (vii)
voltage gated sodium channel 1.7 (Nav1.7) or (viii) the α
subunit of the GABA receptor (GABA-B1αR), (ix) the
mu-opioid receptor (μ-OR), (x) the calcitonin gene related
peptide (CGRP), and (xi) enkephalin. These vectors have
been evaluated in pain models including: pain associated
with pancreatitis, formalin injection, spinal nerve ligation,
complete Freund’s adjuvant (CFA)-induced arthritis,
chronic constriction injury (CCI), bone cancer pain, per-
tussis toxin (PTx)-induced pain, and a bladder nociception
model. HSV based vectors have also been used to express
modulators of inflammatory processes, such as interleukin
4 (IL-4), interleukin 10 (IL-10), Iκβ or the soluble form of
the TNFα receptor (sTNFR) [12,13,115-122]. Many of
these vector-mediated immune therapies result in reduced
levels of pro-inflammatory cytokines such as TNFα, IL-1β,
IL-6, PGE2, spinal cord c-Fos and even phosphorylated
p38 MAPK, demonstrating that their decreased expres-
sion results in reduced nocifensive behaviors in pain
models. A Phase-I clinical trial to treat cancer pain with
HSV based vectors has established the clinical safety and
lack of problems associated with the use of these vectors
[10] as well as showing efficacy at the highest dose that
was transient lasting for 2-4 weeks.
While the rat PHN model has been used to evaluate ef-

fects of various drug therapies [103,105,108], gene therapy
approaches to modify VZV-induced pain had not been
evaluated until recently. We evaluated two different HSV-
1 gene therapy vectors in the rat PHN model. The first
was a vector expressing human preproenkephalin (hPPE)
in which expression was driven by the hCMV immediate
early promoter and transcriptionally terminated using a
bovine growth hormone polyadenylation signal (BGHpA).
The vector was shown to alleviate hypersensitivity in a
dose-dependent manner, with the highest dose of 108

plaque forming units of virus (pfu) resulting in complete
long-term alleviation of VZV-induced mechanical and
thermal hypersensitivity (Figure 3; [104]). While inocula-
tion with a lower dose (104 pfu) resulted in only 10 days
of relief, hypersensitivity was reduced following re-dosing
of those animals with 108 pfu of vHPPE. This suggests re-
application of vHPPE could reduce hypersensitivity in sit-
uations where analgesic relief of VZV-induced pain is
outlived by the long-term nature of pain in PHN patients,
which may last months to years. It further suggests that
first application of HSV vectors did not induce adaptive
host immune responses that could effectively block subse-
quent re-dosing and the resulting vector-mediated relief.



Figure 3 Herpes simplex vector-mediated enkephalin expression alleviates VZV-induced nocifensive behaviors in the rat PHN model. Animals (n = 5) were
injected with PBS vehicle, 108 or 104pfu of HSV vector 19 days after VZV or control cell inoculation. Animals received either control vector (vHG) or vector
expressing human preproenkephalin (vHPPE). Hypersensitivity was measured to (A) von Frey filament stimulation or (B) thermal sensitivity using a Hargreaves
apparatus. (C) Mechanical hypersensitivity following 104pfu (at day 0) of vehicle, vHG or vHPPE. (D) Prophylactic vector administration, with animals receiving
VZV at 7 days post vector inoculation. Data is presented as a ratio of ipsilateral to contralateral responses Mean+ SEM. All times listed refer to days post HSV
sTNFR-expression vector inoculation/transduction.One way ANOVA with Bonferroni post comparing all columns at each timepoint (*** = p< 0.001).
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We also established prophylactic treatment with 108 pfu
of vHPPE prior to VZV inoculation could prevent the de-
velopment nocifensive behaviors. This is highly significant
to clinical PHN as prodromal signs often precede zoster,
and vectors could in theory be applied to any patient at
the zoster lesion stage prior to the development of chronic
pain. The vHPPE effects on nociception were most likely
acting at the level of the ganglion, since peripherally ad-
ministered DAMGO, a μ-opioid receptor agonist, did not
alleviate VZV-induced mechanical hypersensitivity, nor
did peripherally administered Naloxone, a opioid receptor
antagonist, block vHPPE-mediated pain relief. These
results clearly suggest translational use of gene therapy ap-
proaches for long-lasting treatment of VZV-induced
hypersensitivity.
VZV infection in the rat PHN model clearly induces
changes at the DRG that correlate with the development of
the pain response. Previous work had shown up-regulation
of the pain-associated genes NPY and ATF-3 [103]. An
Affymetrix rat gene array analysis followed by RT-PCR val-
idation of up- and down-regulated mRNAs revealed the
up-regulation of expression of tumor necrosis factor super-
family associated death domains (TRADD and TNFsrf21)
at 10- days post infection (dpi) with the HSV vector ex-
pressing sTNFR. These genes are involved in the TNFα sig-
naling pathway, which has been shown to be up-regulated
in both the rat PHN model (unpublished observations) and
the in vivo SCIDhu VZV models [123]. Since TNFF061, IL-
1ß and IL-6 are the main pro-inflammatory cytokines se-
creted by various activated immune and glial cells in other
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models of inflammatory and neuropathic pain [83,85,86,98,
99,124], this suggested a potential role for TNFα signaling
in VZV-induced pain and provided us a new target for
intervention. To clarify the role of TNFα in VZV-induced
pain, we tested HSV vector-mediated expression of the hu-
man TNFα soluble receptor (sTNFR) for its effects on
VZV-induced hypersensitivity. Such vectors have been
shown to be effective in other pain models including the rat
L5 spinal nerve ligation (SNL) model [121], the T11-T12
laminectomy spinal cord injury (SCI) model [122], the resi-
niferatoxin (RTx)-induced model of bladder nociception
[118] as well as HIV gp120-induced neuropathic pain [125].
Animals inoculated with VZV (pOka strain) at day 0 rapidly
established robust indicators of hypersensitivity, and were
treated at day 21 with either control HSV vector (T0ZHG)
or HSV expressing sTNFR (T0TNFαsR) (Figure 4) at a dose
of 108 pfu. Animals inoculated with sTNFR showed a rapid
and sustained decrease in hypersensitivity within days
following T0TNFαsR administration, while control vector
inoculated animals did not. Mechanical paw withdrawal
Figure 4 Alleviation of VZV-induced hypersensitive nocifensive behaviors b
HSV vector. All animals (n = 4) were infected with VZV at day-0. At 21 days
with either sTNFR vector (TNFasR) or control vector (T0ZHG). Animals were
and (bottom panel) thermal sensitivity (ratio of ipsilateral/contralateral paw
time-point was compared by two-tailed T-test (* = p < 0.05). Mean area und
each animal and compared by two-tailed T-test (* = p < 0.05, ** = p < 0.01)
thresholds increased as early as 7 days after HSV sTNFR-
expressing vector inoculation and lasted until 23 days post
HSV vector inoculation (Figure 4) or 44 days post the intro-
duction of VZV-infected cells. However, after 35 days post
HSV vector treatment the mechanical hypersensitivity
began to spontaneously resolve in VZV-infected and un-
treated animals, as we and others have seen previously
[100,103-106,109]. Compared to the effects of vector-
mediated sTNFR on mechanical pain, thermal relief took
longer to respond to sTNFR HSV gene therapy but the re-
sponse lasted about the same length of time. With the ther-
mal pain response relief started at 23 days post HSV
sTNFR-expressing vector inoculation (44 days post the
introduction of VZV-infected cells) and lasted till 41-dpi
after HSV vector injection (Figure 4). Interestingly mean
area under the curve plots suggested that not all animals
responded to treatment. Taken together, it appears that
TNFα plays an important role in VZV-induced pain and
opens up a new target for analgesic relief of VZV-induced
pain. It suggests that PHN may be predicted to respond to
y administration of TNFα soluble receptor (sTNFR) expressed from an
post VZV infection (denoted by arrowheads), animals were inoculated
monitored for hypersensitivity to (top panel) mechanical (gram weight)
withdrawal latencies) and the data is plotted as Mean + SEM. Each
er the curve was calculated for the region represented by brackets for
with the Mean ± SEM plotted.
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biologics that target TNFα, a key inflammatory compo-
nent. However, some severe complications due to reacti-
vated VZV seen in RA, inflammatory bowel disease (IBD),
Crohn’s disease, ankylosing spondylitis, plaque psoriasis
and psoriatic arthritis patients receiving anti-TNF treat-
ments to reduce the host immune response suggests that
whole-body treatment by anti-TNF injectable biologics
may not be an optimal therapy for all PHN patients
[82,126-132].

P3.5. Concluding remark
Genetic delivery and expression of pain modulators is a
novel and durable treatment strategy for seeking analgesia
of VZV-induced pain that has potential for application to
PHN in patients. The strategy should be considered an
improvement over drug treatments, since the vector is tar-
geted to a specific area, has long-term effects after a single
dose, and can in theory be reapplied to give sustained an-
algesia, which would be needed for human PHN that
sometimes last for months to years. In addition to delivery
of the tonal modulator enkephalin, we now have estab-
lished a second strategy which relies on expression of the
anti-inflammatory sTNFR from vector-transduced ganglia.
Targeted expression of sTNFR from HSV vectors may
help circumvent issues with systemic administration of
anti-TNF drugs to treat PHN. Other gene delivery vectors
such as Adenovirus, Adeno-associated virus (AAV) and
lentivirus vectors have been used in other models to treat
chronic pain however, due to the natural biology of HSV it
displays several fold greater efficiencies in transducing PNS
neurons [50], the target tissue for pain gene therapies, and
is the only vector used in human pain gene therapy trials
[49]. Cytokines and their role in chronic neuropathic pain
have long been appreciated, especially TNFα, who’s admin-
istration results in pain states in rodents [79,83,124,133]
and has long been thought to be an important mediator of
neuropathic pain in humans. It remains to be determined
what the source of TNFα is and what cells are generating it
in response to VZV infection, but other groups have shown
that glia (microglia, astrocytes and even Schwann cells)
are responsible for TNFα expression during other chronic
pain conditions [133]. As such this may hold true for the
VZV-PHN rat model as suggested by Zhang and col-
leagues [109].

Part 4. Viral vector-mediated overexpression of
anti-inflammatory cytokines for chronic pain and
morphine tolerance/withdrawal
(Xuexing Zheng, Ching-Hang Liu, Shue Liu, Shuanglin
Hao, Corresponding address: Shuanglin Hao, shao@med.
miami.edu)
Chronic pain has been described as the result of dys-

functional activity of glia and neurons. Development of
tolerance and dependence is a major problem associated
with opioid treatment of chronic pain. Previous evidence
suggests similar cellular mechanisms in pain hypersensi-
tivity and morphine tolerance/withdrawal. Proinflamma-
tory cytokines are involved in the development and
maintenance of both neuropathic pain and chronic mor-
phine tolerance/withdrawal. In this article, we review
viral vector-mediated gene transfer of anti-inflammatory
cytokines in rodent models of neuropathic pain and
chronic morphine tolerance/withdrawal, which support
the use of the gene therapy approach in the clinic.

Keywords
Gene transfer, anti-inflammatory cytokines, chronic pain,
morphine tolerance/withdrawal

P4.1. Introduction
Chronic pain is a maladaptive, pathologic and persistent
condition that results in marked decrease in the quality
of life and secondary symptoms such as anxiety and de-
pression. One third of the adults in the United States
[134,135] and one fifth of the adults in Europe [136] are
affected by chronic pain. Many conventional agents uti-
lized as pharmacological therapy for chronic pain are
not very effective for providing satisfactory analgesia.
The drawback of most common systemic administration
of drugs is the difficulty in selectively targeting specific
pain-related pathways in the nervous system. Off-target
effects of drugs are particularly problematic in attempts
to treat diseases, because of the wide anatomic distribu-
tion of most drugs’ targets [2]. Opioids and opioid-
derivatives (especially morphine) are most widely used
drugs to treat moderate to severe chronic pain. However,
chronic opioid administration tends to induce tolerance,
hyperalgesia, and withdrawal, which hinder the efficacy
of opioid treatment [137-140].
Viral vector-mediated gene therapy is used to persist-

ently deliver short-lived bioactive molecules to restricted
anatomic locations. The local production of neurotrans-
mitter/neuropeptide achieved by viral vector mediated
gene transfer, may be used to achieve desired outcomes;
simultaneously, the site-restricted neurotransmitters may
avoid unwanted adverse side effects that would otherwise
result from activation of the same receptors by a systemic-
ally administered drug [141].
Recent studies demonstrate viral-vector mediated thera-

peutic approaches to focal CNS diseases such as Parkin-
son’s disease [142] and cancer pain [10] in clinical trials. A
wide range of viral vectors including adeno-associated virus
(AAV)-based vectors and lentiviral (LV) vectors have been
used to express neurotrophic factors or enzymes in specific
regions [2]. We and others have previously demonstrated
that recombinant herpes simplex virus (HSV)-based vectors
delivered by subcutaneous inoculation can be used to
express neurotransmitters in the DRG, and to produce a
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pain-relieving effect in different pain models in rodents
[143]. Here, in this review, we mainly focus on the
mechanisms related to neuroinflammation shared by
both chronic pain and morphine tolerance/withdrawal,
and treatments with anti-inflammatory cytokines intro-
duced by viral vectors.

P4.2. The neurochemical mechanisms of chronic pain and
morphine tolerance/withdrawal
P4.2.1. Chronic pain
While there are many mechanisms of neuropathic pain that
are involved in the central sensitization, three main aspects
have been identified: neurotransmitter/neuropeptide-medi-
ated hypersensitivity, loss of tonic inhibitory controls (disin-
hibition), and glial-neuronal interactions [144]. In the spinal
cord dorsal horn, primary afferent C/Aδ fibers release pep-
tides (e.g., substance P/calcitonin-gene related peptide
(CGRP), etc.) and excitatory amino acid (glutamate) prod-
ucts following tissue injury [145]. The N-methyl-d-aspartate
(NMDA) receptors are silent under normal conditions,
however, in the setting of nerve injury/tissue damage, in-
creased release of neurotransmitters from primary afferent
nociceptors sufficiently depolarizes postsynaptic neurons to
activate NMDA receptors in second-order neurons in the
spinal cord dorsal horn [145]. The consequential increase
in calcium influx can strengthen synaptic connections be-
tween nociceptors and spinal cord dorsal horn pain trans-
mission neurons, which, in turn exacerbate responses to
noxious stimuli [144]. The main type of inhibitory synaptic
transmission in the spinal cord dorsal horn is mediated by
γ-aminobutyric acid (GABA) and glycine receptors. Partial
nerve injury results in reduced presynaptic GABA release
and lower expression of GABA synthesizing enzyme glu-
tamic acid decarboxylase (GAD) [146], which contribute to
abnormal pain sensitivity and the phenotypic features of
the neuropathic pain syndrome [147,148]. This disinhib-
ition induces non-nociceptive Aβ afferents to engage the
pain transmission circuitry, such that normally innocuous
stimuli are now perceived as painful [144,149-153]. Periph-
eral tissue damage, nerve injury or inflammation promotes
release of neurotransmitters and neuropeptides from pri-
mary afferents. Microglial activation occurs within minutes,
but can have long-lasting effects [154]. Activations of at
least five major paths including fractalkine, interferon-γ,
monocyte chemoattractant protein-1, toll-like receptors,
and P2X on microglia, are involved in certain neuropathic
nociceptive states [155]. Through glia-glia and neuron-glia
crosstalk, the synapse creates a link between glial cell
activation and neuronal excitation that may contribute to
persistent pain [156]. Activated glia release a host of proin-
flammatory cytokines, such as tumor necrosis factor alpha
(TNFα), interleukin 1 beta (IL-1β), interleukin 6 (IL-6), and
other factors (e.g. chemokines), which through their recep-
tors expressed by neurons in the spinal cord dorsal horn,
promote the increased excitability, and enhance pain in re-
sponse to both noxious (hyperalgesia) and innocuous
stimulation (allodynia) [144,157-159].

P4.2.2. Morphine tolerance/withdrawal
Although many mechanisms have been postulated to
explain morphine tolerance, substantial evidence shows
that in response to chronic morphine, spinal cord glia
(mainly astrocytes and microglia) release pro-inflammatory
cytokines (e.g., TNFα, IL-1β, and IL-6) [160,161] and excita-
tory amino acids, nitric oxide, and prostaglandins [162].
These responses contribute to the development of mor-
phine tolerance and tolerance-associated pain sensitization.
Previous evidence suggests similar cellular mechanisms in
morphine tolerance and pain hypersensitivity [163,164].
Among pro-inflammatory cytokines, TNFα acts as a crucial
initiator of inflammatory reaction. TNFα activates tran-
scription factor AP-1 and/or NF-kB to express adhesion
molecules, to stimulate other immune cells, and most im-
portantly, and to produce pro-inflammatory cytokines, such
as, IL-1β and TNFα. Both IL-1β and TNFα can activate
and become activated by NF-kB, thus forming a positive
regulatory loop that amplifies and prolongs inflammatory
responses [121]. Neutralizing antibodies against TNF recep-
tors are shown to reduce thermal hyperalgesia and mechan-
ical allodynia [165]. Intrathecal administration of the
recombinant TNF soluble receptor (TNFSR) peptide (eta-
nercept) reduces mechanical allodynia and spinal nerve
ligation-induced p38 activation [166], and also preserves a
significant antinociceptive effect of morphine in morphine-
tolerant rats [160]. Chronic morphine infusion increases
TNFα, IL-1β, and IL-6 mRNA expression in the spinal cord
dorsal horn; inhibition of the proinflammatory cytokine at-
tenuates morphine tolerance; and TNFα inhibitor etaner-
cept reduces proinflammatory cytokines production and
microglial activation, thus preserving the antinociceptive ef-
fect of morphine [160].

P4.3. Anti-inflammatory cytokines mediated by gene
transfer for chronic pain
Opioid peptides (endorphin [167] and enkephalin [7]),
glutamate transporter (GLT-1) [168], inhibitory GABAner-
gic neuron-related proteins (glutamic acid decarboxylase,
GAD65 [169] or GAD67 [170]) and neurotrophic factors
(glial cell-line derived neurotrophic factor, GDNF [171])
have been successfully delivered through viral vectors to
the nervous system to reduce pain in various neuropathic
or inflammatory chronic pain models. Here, we focus on
anti-inflammatory cytokines mediated by a viral-vector
based gene transfer on chronic pain and morphine toler-
ance/withdrawal. Viral vectors utilized for gene transfer
studies mainly include recombinant adenovirus (AD), AAV,
LV, and HSV. Summary of characteristics of viral vectors is
shown in Table 1.



Table 1 Summary of characteristics of vital vectors used for pain analgesia and morphine tolerance/dependence

AD AAV LV HSV

Wild-type DS-DNA SS-DNA SS-RNA DS-DNA

Genome size 36 kb 4.7 kb 9.2 kb 152 kb

Capacity of gene insert ~7.5 kb ~4.5 kb ~8 kb ~40 kb

Persistence of gene expression days-weeks months-years months-years days-years

Inoculation IT IT IT, nerve SC paw, PAG, bladder wall

Gene product IL-10 IL-10 TNF shRNA, IL-10 IL-4, IL-10, TNFSR

Pain models NP IP NP NP, IP

M-T/M-W M-T M-T, M-W

DS-DNA, double strain DNA; SS-DNA, single strain DNA; SS-RNA, single strain RNA; IT, intrathecal; SC, subcutaneous injection; NP, neuropathic pain; IP,
inflammatory pain; M-T, morphine tolerance; M-W, morphine withdrawal.
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P4.3.1. Interleukin 4
HSV is an enveloped double-stranded 152 kb DNA virus
[172]. Immediately after entry of the viral DNA into the
nucleus, expression of five viral immediate-early (IE) genes
proceeding in the absence of de novo viral protein synthe-
sis commences [173,174]. Recombinant non-replicating
HSV-based vectors are created by deletion of one or more
essential IE genes. These recombinants retain the neur-
onal targeting properties of the wild type virus and can be
propagated to high titers on complementing cells but are
unable to replicate in animals in vivo [3,14,175,176]. Be-
cause of efficient transduction and naturally targeted neu-
rons, relatively low titers of HSV vectors are required for
therapeutic gene transfer. This strategy is analogous to
continuous local infusion [3,177,178]. We have demon-
strated the utility of these vectors in preclinical models of
pain [3,115].
Interleukin 4 (IL-4) is a prototypical anti-inflammatory

cytokine that modulates macrophage activity through glo-
bal suppression of proinflammatory cytokines [179]. IL-4
also has pleiotropic effects on the development of immune
cells and the immune response [180]. The HSV-mediated
IL-4 expression in a pain study was carried out in the
spinal nerve ligation (SNL) model [12]. Subcutaneous
inoculation of the HSV vectors expresses murine IL-4
(S4IL4) in the hind foot transduced lumbar DRG. Im-
munofluorescent staining showed IL-4 expression in large
and small neurons in the DRG 1 week after subcutaneous
inoculation of vector S4IL4. Rats inoculated subcutane-
ously in the foot 1 week after L5 SNL and sacrificed
2 weeks later had 23.7 pg murine IL-4 per DRG, com-
pared to no detectable IL-4 in SHZ-inoculated rats. The
HSV vectors do not alter thermal latency or tactile thresh-
old in normal animals, but inoculation of S4IL4 one week
after SNL reduced mechanical allodynia for 4-5 weeks and
reversed thermal hyperalgesia for 4 weeks [12]. S4IL4 re-
duced SNL-induced the upregulation of spinal IL-1β,
PGE2, and pp38 [12]. Interstitial cystitis/painful bladder
syndrome (IC/PBS) is characterized by increased bladder
pain and urinary frequency and associated with increased
IL-2, IL-6, IL-8, TNFα expression, and lowered levels of
IL-4 [120]. In the rat IC/PBS model, IL-4 in the bladder
and L6 DRG were evaluated using ELISA at 2 weeks after
viral vector injection into the rat bladder wall. In the blad-
der, a significant difference of IL4 expression was detected
between the SHZ and S4IL4 animal groups (0.01 ±
0.01 pg/mgTP vs 5.62 ± 1.64 pg/mgTP). In L6 DRG of
S4IL4-injected rats, there was 13.27 ± 3.76 pg/mgTP of
murine IL-4, whereas no murine IL-4 was detected in L6
DRG of SHZ-injected rats [120]. The increased IL-4 ex-
pression mediated by the HSV vector suppressed bladder
inflammatory responses, reduced expression of IL-1β and
IL-2, and lowered neutrophil activity in the bladder. Blad-
der overactivity and nociceptive behavior (freezing scores)
was significantly suppressed in the S4IL4 vector-injected
group by 47%, compared with the SHZ-treated group
(30.25 ± 4.71vs 57.14 ± 6.29) [120]. These two independent
studies show that HSV-mediated expression of IL-4 effect-
ively reduces pain-related behaviors.

P4.3.2. Interleukin 10
Interleukin 10 (IL-10) was first described as a cytokine
synthesis inhibitory factor inhibiting cytokine production
by Th1 cells, and reducing NF-kB and macrophage acti-
vation [181]. The therapeutic effects are proven by vari-
ous forms of IL-10 in different neuropathic pain models.
A single dose of human recombinant IL-10 directly into
the lesion site resulted in the reduction of thermal
hyperalgesia and numbers of recruited macrophages and
TNFα-positive cells [182]. Acute administration of intra-
thecal IL-10 protein itself briefly reversed sciatic chronic
constriction injury (CCI)-induced mechanical allodynia
and thermal hyperalgesia [116]. Repeated intrathecal in-
jections of plasmid DNA encoding interleukin-10, pro-
duced prolonged reversal of neuropathic pain [183,184].
AD vectors have a gene carrying capacity of ~7.5 kb

[185]. Milligan and colleagues used a replication-defective
AD vector containing the cDNA encoding for human-
IL10 [116]. Intrathecal AD-h-IL10 was given over the
lumbosacral spinal cord leading to elevated lumbosacral
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cerebrospinal fluid (CSF) levels of human IL-10 (around
11 ng/ml CSF). AD-h-IL10 attenuated both ipsilateral
thermal hyperalgesia and bilateral allodynia induced by
CCI between day 13 and 24 after CCI [116].
AAV is important for the application of AAV-based vec-

tors for gene therapy [3,186,187]. Recombinant AAV sup-
ports a genomic/gene carrying capacity of roughly 6 kb,
and the only viral elements remaining in the recombinant
virus are the inverted terminal repeats in the distal ends of
the genome, structures required for helper mediated repli-
cation and capsid packaging [188]. An adeno-associated
viral (serotype II; AAV2) vector was created that encodes
IL-10 gene. Intrathecal administration of an AAV2 vector
encoding beta-galactosidase revealed that AAV2 preferen-
tially infected meningeal cells surround the CSF space.
Upon intrathecal administration, this AAV2-IL-10 vector
was successful in transiently preventing and reversing
chronic sciatic inflammatory neuropathy-induced mech-
anical allodynia for about 10 days [189].
LV belongs to a subclass of retroviruses that integrate

into the host cell genome. Early LV vectors, based largely
on HIV-1, include components of the HIV genome, but
most of these elements have been removed in the newest
generations [188]. LV vector-mediated gene delivery is one
of promising methods for exploring pain pathophysiology
and for genetic treatment of chronic neuropathic pain.
Zou and colleague [190] reported that LV vectors deliver-
ing human IL-10 (LV/hIL-10) was administered intra-
thecally in rat CCI model of neuropathic pain. They found
that intrathecal LV/hIL-10 reversed the enhanced pain
states. GFP expression in spinal dorsal horn neurons 7 days
after transduction with intrathecal delivery of LV/hIL10
was found. The concentration of hIL10 increased signifi-
cantly after 3 days (1.68 ± 0.39 ng/mL) and 7 days (6.15 ±
2.66 ng/mL) of administration of LV/hIL10 but not after
administration of LV/control. Intrathecal injection of LV/
hIL10 significantly reversed CCI-induced mechanical allo-
dynia and thermal hyperalgesia. IL-10 inhibits activation
of the inflammatory HMGB1-RAGE pathway in the rat
CCI model.
We constructed a non-replicating HSV-based gene trans-

fer vector to express rat IL-10 for examining the effect of
IL-10 expression in activated microglial cells in vitro, as
well as in inflammatory pain in vivo [13]. Transfection of
dissociated primary DRG neurons in vitro with vector
QHIL10 resulted in robust expression and release of IL-10.
Subcutaneous inoculation in the plantar surface of the hind
paw of rats with 30 μl of QHIL10, resulted in expression of
IL-10 in lumbar L4-L5 DRG and transport of vector-
derived IL-10 protein to the central terminals of the pseu-
dounipolar DRG axon in the dorsal horn of the lumbar
spinal cord compared to the control vector that does not
induce expression of IL10. IL-10 mediated by the HSV vec-
tors reduced around 30% of the paw flinching (painful
behavior) numbers in the formalin test [13]. The effect of
IL-10 on nociceptive behavior correlated with a block in
phosphorylation of p38 and reduced expression of TNFα in
spinal microglia [13]. In a spinal cord injury (SCI)-induced
pain model, at 1 week after injury animals with SCI demon-
strated significant increases in pain-related behaviors in-
cluding: mechanical hyperalgesia (withdrawal threshold
90.0 ± 5.86 g for sham vs. 52.3 ± 7.51 g for injured), thermal
hyperalgesia (withdrawal latency 13.0 ± 1.42 sec for sham
vs. 7.6 ± 0.28 sec for injured) and mechanical allodynia
(threshold 11.7 ± 2.78 g in sham vs. 1.9 ± 0.28 g in injured)
[191]. Subcutaneous inoculation of HSV vectors expressing
IL10 one week after SCI reduced mechanical hyperalgesia
(withdrawal threshold from 61.1 ± 3.75 g to 92.2 ± 5.44 g);
thermal hyperalgesia (withdrawal latency from 7.58 ± 0.58 s
to 12.5 ± 2.39 s); and mechanical allodynia (paw withdrawal
threshold from 3.86 ± 0.71 g to 11.0 ± 3.85 g) by 2 weeks
after injury, indicting the antinociceptive effect of the vec-
tors expressing IL-10 [191].
Evidence shows that painful HIV sensory neuropathy is

influenced by neuroinflammatory events that include the
proinflammatory molecules, MAP Kinase, TNFα, stromal
cell-derived factor 1-α (SDF1α), and CXC chemokine recep-
tor type 4 (CXCR4) [192]. In the HIV glycoprotein gp120-
induced neuropathic pain model, the hindpaws of rats were
inoculated with the same vectors expressing IL-10 or the
control vectors. The vectors expressing IL-10 resulted in a
significant elevation of the mechanical threshold, and the
area under curves (AUC) in QHIL10 was almost three times
higher than that in the control vectors [193]. HSV vectors
expressing IL-10 reversed the upregulation of phosphory-
lated p38 mitogen-activated kinase, TNFα, SDF1α, and
CXCR4 expression at 14 and/or 28 days in the DRG and/or
the spinal cord dorsal horn [193]. Similarly, in neuropathic
pain induced by gp120 combined with 2′,3′-dideoxycytidine
(ddC, one of the nucleoside reverse transcriptase inhibitors
(NRTIs)), the hindpaws of rats were inoculated with the
same vectors expressing IL-10 [194]. HSV vectors expressing
IL-10 resulted in a significant elevation of mechanical
threshold, and AUC in QHIL10 was around two times
higher than that in the control vectors; the HSV vectors
expressing IL-10 also concomitantly reversed the upregu-
lation of p-p38, TNFα, SDF1α, and CXCR4 induced by
gp120 with ddC in the lumbar spinal cord dorsal horn
and/or the DRG [194].

P4.3.3. TNFSR
Glia activity and proinflammatory cytokine release (e.g.,
TNFα) are involved in spinal cord injury (SCI) [195].
TNFα plays an important role in the different neuropathic
pain states [133]. TNFSR can prevent TNFα from the
binding membrane TNF receptor, therefore, TNFSR re-
duces bioactivity of TNFα. In neuropathic pain induced by
partial SCI, one week after subcutaneous inoculation of
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HSV vectors expressing TNFSR (T0TNFSR) into the plan-
tar surface of the hind paws, TNFSR could be detected in
neurons of the L4-L6 DRG ipsilateral to the inoculation
site using immunocytochemistry and Western blot. The
ipsilateral dorsal horn of the spinal cord showed substan-
tial amounts of TNFSR in animals with HSV vectors ex-
pressing TNFSR, but not in animals with control vectors.
The expression of TNFSR by HSV-mediated gene transfer
reduced pain behavior and decreased number of ED1-
positive cells, p-p38, and TNFα in the spinal cord dorsal
horn [122]. Inoculation with either HSV TOTNFSR or
control vector subcutaneously in the hind feet of unin-
jured rats, resulted in no change in either the mechanical
or thermal threshold over the course of 3 weeks, indicat-
ing that expression of TNFSR does not alter basic sensory
function in normal rats. Subcutaneous inoculation of
T0TNFSR into the plantar surface of the hind foot ipsilat-
eral to the ligation 1 week after SNL, resulted in a signifi-
cant reduction in mechanical allodynia and thermal
hyperalgesia that was apparent 1 week after inoculation.
TNFSR achieved by the HSV vector-based gene transfer
to the DRG, resulted in a reduction of TNFα, IL-1β, and
phosphorylated p38 MAP kinase [121].
The application of HIV gp120 to the sciatic nerve in-

duces mechanical allodynia and upregulates TNFα,
CXCR4, and SDF1α in both the DRG and lumbar spinal
cord dorsal horn [125]. HSV vectors producing TNFSR
reversed mechanical allodynia, and suppressed the up-
regulation of TNFα, CXCR4, and SDF1α induced by
gp120 in the DRG and spinal cord dorsal horn [125]. In
painful diabetic neuropathy, proinflammatory cytokines
are involved in this process. HSV vectors expressing
TNFSR were inoculated subcutaneously into the foot-
pad; western blot analysis of the DRG showed increased
expression of TNFSR in rats with the T0TNFSR vectors
compared to that with the control vectors at 7 days and
4 weeks confirming in vivo transgene expression of
TNFSR by the vector [196]. The thermal pain thresholds
of animals inoculated with the HSV TNFSR group was
substantially improved (12.9 ± 1.2 s) compared to the
diabetic alone or diabetic animals with control vectors
(8.82 ± 0.4 s). T0TNFSR decreased TNFα and p-p38 in
the spinal cord dorsal horn and DRG [196].
In the HIV-associated sensory neuropathy, neuropathic

pain associated with the use of NRTIs in patients with
HIV/acquired immunodeficiency syndrome is clinically
common. We found that systemic ddC induced upregula-
tion of TNFα, SDF1α, and CXCR4 in both the lumbar
spinal cord and the L4/5 DRG [197]. Subcutaneous inocu-
lation with T0TNFSR resulted in a statistically significant
increase of the mechanical threshold that was apparent on
day 3 after inoculation compared with the control vectors.
The AUC in T0TNFSR was a 1.75-fold higher than that in
the control vectors. T0TNFSR significantly upregulated
the expression of TNFSR in the pooled L4/5 DRG and the
spinal dorsal horn. TNFSR mediated by HSV vector re-
versed upregulation of TNFα, SDF1α, and CXCR4 in-
duced by ddC in the lumbar spinal cord dorsal horn and
the DRG [197].

P4.3.4. TNF shRNA
DRG-targeted gene delivery is a promising therapeutic op-
tion for the treatment of neuropathic pain. Ogawa and
colleague [90] engineered a gene therapy strategy to re-
lieve neuropathic pain by silencing TNFα expression in
the dorsal root ganglion (DRG) using lentiviral vectors ex-
pressing TNF short hairpin RNA3 (LV-TNF-shRNA3) in
mice. A mouse neuropathic pain model was induced by
L5 spinal nerve transection (SNT). Immediately after tran-
section, 1 μl (1.8 × 105 IFU/μl) of lentiviral vector was
injected onto the proximal transected site of the left L5
spinal nerve. GFP mRNA expression in the L5 DRG was
induced by LV-shRNA3 on day 3, 7, 14 after SNT. LV-
TNF-RNA3 suppressed TNFα expression in ipsilateral L5
DRG after SNT. Injection of LV-TNF-shRNA3 onto the
proximal transected site significantly suppressed the
mRNA levels of ATF3, NPY and IL-6, and reduced mech-
anical allodynia and neuronal cell death of DRG neurons.
Taken together, these results from several different

groups of investigators provide proof-of-principle evidence
that viral vector-mediated delivery of anti-inflammatory cy-
tokines can provide an analgesic effect and set the stage for
a human trial to treat chronic pain.

P4.4. Anti-inflammatory cytokines mediated by viral
vectors for morphine tolerance/withdrawal
Opioids are the main drugs for the treatment of acute and
cancer pain, however, long-term administration of opioids
produces negative health consequences, such as analgesic
tolerance, dependence, and addiction [198]. The mecha-
nisms of the negative health consequences are compli-
cated. Chronic morphine exposure results in a strong
upregulation of the glial markers and proinflammatory
cytokines [115,138,140,199-201], and induces spinal p38
activation [202]. Intrathecal treatment with p38 inhibitor
or minocycline prevents the development of morphine tol-
erance [202]. Co-infusion of chronic morphine and amitrip-
tyline (a tricyclic antidepressant) can prevent morphine
tolerance; daily injections of anti-IL-10 antibody blocked
the anti-inflammatory effect of amitriptyline in the mor-
phine/amitriptyline co-infused rats, suggesting that the
anti-inflammatory effect of amitriptyline is through up-
regulation of IL-10 in morphine tolerance [203]. Repeated
infusion of morphine across the 5 days of the experiment
resulted in a reduction of analgesic efficacy of morphine, or
tolerance, in the control animals [200]. Lumbosacral intra-
thecal injections of replication-defective AD vector encod-
ing for human IL-10 (AD-IL10) site-specifically induces
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high levels of human IL-10 protein in lumbosacral CSF;
treatment with AD-IL10 reduced the development of toler-
ance to morphine during these days [200].
Subcutaneous inoculation of HSV vectors expressing

TNFSR into the plantar surface of the hindpaws for
1 week upregulated the expression of TNFSR in the
spinal dorsal horn. The vectors expressing TNFSR, en-
hanced the antinociceptive effect of acute morphine in
rats, delayed the development of chronic morphine tol-
erance in rats at day 5-7 after chronic morphine, and re-
duced spinal TNFα and IL-1β induced by repeated
morphine [115].
Transgene-mediated expression of IL-4 mediated by the
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The area under the curves in S4IL4 was 3.68 ± 0.32 that
was significantly higher than that in control vector SHZ
(2.04 ± 0.36) (Figure 5C). We also observed that HSV-
mediated IL-4 reversed the upregulation of TNFα, IL-1β,
and p-p38 in the spinal cord dorsal horn in rats treated
chronically with morphine (Figure 6). These results support
the concept that proinflammatory molecules may play an
important role in the pathogenesis of morphine tolerance
induced by chronic morphine. These studies indicate that
the ‘therapeutic’ use of non-replicative HSV-derived vectors
containing immunomodulatory molecules might prove a
novel approach to morphine tolerance.
Studies have implicated the midbrain periaqueductal

gray (PAG) in the pathogenesis of morphine withdrawal,
and recent evidence suggests that proinflammatory cyto-
kines in the PAG may play an important role in morphine
withdrawal [205]. We have reported that chronic mor-
phine withdrawal-induced upregulation of glial fibrillary
acidic protein (GFAP), TNFα and phosphorylation of
ERK1/2 (pERK1/2) in the PAG [206]. HSV vector encod-
ing TNFSR gene, ten days after a vector injection into the
PAG significantly induced the expression of TNFSR in the
PAG compared to non-expression of TNFSR by control
vectors. HSV-based vectors expressing TNFSR microin-
jected into the PAG significantly reduced the naloxone-
precipitated withdrawal behavioral response and downreg-
ulated the expression of GFAP and TNFα in astrocytes of
the PAG. Microinjection of the HSV vectors expressing
TNFSR into the PAG also reduced the phosphorylation of
both ERK1/2 and CREB, and reduced Fos immunoreactiv-
ity in the PAG neurons following naloxone-precipitated
withdrawal. These results support the concept that proin-
flammatory cytokines expressed in astrocytes in the PAG
may play an important role in the pathogenesis of mor-
phine withdrawal response [206].

P4.5. Conclusions
Proinflammatory cytokines (e.g. TNFα, IL-1β) play an im-
portant role in neuropathic pain and chronic morphine tol-
erance/withdrawal. Non-replicative viral vectors expressing
anti-inflammatory molecules (IL-4, IL-10 or TNF soluble
receptor) might prove to be a novel approach to reducing
neuropathic pain, morphine tolerance/withdrawal. Sum-
mary of characteristics of viral vectors expressing anti-
inflammatory molecules for pain analgesia and morphine
tolerance/dependence was shown in Table 1.
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