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Water is the most important liquid on the earth, yet the physics behind many properties of water 

is still poorly understood. Particular interesting are the condensed phases of water: ice and liquid 

water, that both possess anomalous properties. In this thesis, I focus on using different methods, 

including force fields as well as DFT calculations, to predict several key properties of proton-

disordered ice Ih and liquid water.	

The focus of my study of ice Ih is on its comparable dielectric constant !" 		 with liquid 

water, which directly results from its proton-disorder nature. Predictions of the dielectric 

constant of ice Ih from pairwise additive force fields fall appreciably below than the 

experimental values, with significant improvement being achieved by polarizable force fields. I 

examined the performance of different force fields, and confirmed that the polarizable 

AMOEBA models with three polarizable sites per molecule1 outperform polarizable models such 

as DC97 with a single polarizable site2. 

Since it is difficult to resolve the subtle energetic difference of different proton ordering 

arrangements in ice Ih with force fields, I studied the energetics of ice Ih, from DFT calculations 

using the BLYP functional as well as several dispersion-corrected BLYP functionals. As shown 

in my study, the dispersion-corrected functionals not only give better energy predictions but also 

get better lattice parameters and equilibrium volumes for the optimized ice Ih unit cells.  
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Xun Wang, PhD 

University of Pittsburgh, 2016
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I also predicted the structural as well as dynamical properties of liquid water from ab 

initio molecular dynamics simulations with several dispersion-corrected BLYP functionals. The 

results of calculations all confirmed that including dispersion corrections in functionals is 

essential to get faster water rotational dynamics and a “softer” structure of liquid water.  

Finally I parametrized a two-channel dispersion-corrected atom-centered pseudopotential 

(DCACP2) based on the BLYP functional to correct for the long-range dispersion force for three 

rare gas elements: helium, neon and argon. By fitting the interaction energy of three 

homonuclear dimers against CCSD(T) calculations, the resulting DCACP2-BLYP method 

performs significantly better than the one-channel DCACP approach for the two-body binding 

energies of the dimers. I also explore the factor responsible for the success of DCACP2 method. 
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1.0  INTRODUCTION 

1.1 PROTON ORDERING IN DIFFERENT PHASES OF ICE 

Water is one of the most special and widely studied substances in nature. While its properties 

have been widely investigated, its fundamental structure is still poorly understood theoretically. 

At low temperatures, water freezes into different forms of ice, with the polymorphism of which 

revealed by its rich phase diagram in Figure 1.13. 

Figure 1.1 The phase diagram of liquid water and ice3. 

 

Some of the phases of ice are proton-ordered, with the infinite hydrogen-bonded crystal structure 

just being the replication of a single unit cell, which only involves one certain pattern of 

hydrogen bonds, such ice XI, ice IX or ice VIII. The positions of hydrogen atoms in the other 

phases of ice, however, can adopt different positions, as long as the "Bernal-Fowler" ice rules4 
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are satisfied, leading to an orientation disordered structure overall. Figure 1.2 displays the 

possible orientations of a water molecule in a tetrahedral ice lattice.  

Figure 1.2 The six possible orientation of water molecule in a tetrahedral ice lattice. 

	

Since each single molecule can take one of six orientations, and according to Pauling5, there is 

25% chance that the adjacent molecules will permit this orientation, hence there are ("#)
% 		 ways of 

arranging N molecules. Therefore, the molar entropy S of proton-disordered ice at 0 K is given 

by, 

! = #$%& = '#$% (
)																																												Equation	1.1	

where R is the molar gas constant and W is the number of ways of arranging the molecules. 

Pauling  

assumed these configurations would all be degenerate at low temperatures, and that all 

configurations contribute equally to the entropy. However, different proton orderings in fact 

differ in energy, making some configurations more favorable than others. Since the energy 

differences between proton ordered structures with the same underlying oxygen lattice can be 

small on an absolute scale, but large with respect to kBT, their resolution requires the application 

of accurate modeling techniques. To date, there is a considerable body of computational work on 
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proton ordering in the bulk hexagonal ice Ih, as well as the other important phases of ice. I will 

elaborate more on the energetic study of phases of ice in chapter 3.  

1.2 WHY STUDY ICE IH? 

Among the fifteen different phases of ice, the most important and common one is the ordinary 

ice, or ice Ih, with h denoting the symmetry of its unit cell. The crystal structure of ice Ih is 

displayed in Figure 1.3. Each oxygen atom forms two covalent bonds and with two hydrogen 

atoms, and also form two hydrogen bonds with two hydrogens from neighboring water 

molecules.  

Figure 1.3 The crystal structure of ice Ih3b. 

	
There are three main motivations for my study of proton-disordered ice Ih: 

1) Ice Ih possesses several abnormal structural and thermal properties, such as the high 

dielectric constant at all temperatures compared to its proton-ordered counterparts6. 
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The proton disorder of ice is responsible for its distinctive properties, and many of them such as 

the high dielectric constant !" 		, the anomalous volume isotope effects (VIE) are still not 

understood well from the theoretical viewpoint. The predictions of !" 		 of ice Ih using different 

non-polarizable water models in previous studies (Table 2.1) are about 50% below experimental 

values.  

2) The difficulty to model the proton hopping at low temperature (below 72K) for the 

disorder-order transition from Ih to XI calls for special techniques to sample ergodic 

phase space. 

A glass transition occurs at around 100-110 K, diminishing the proton mobility and locking 

protons in their disordered positions, before they re-orient to form the proton-ordered ice XI 

structure. Doping ice Ih with KOH can overcome this issue, due to the formation of two types of 

proton defects, which are in very low concentrations in real ice. Protons rearrange in ice through 

mechanisms involving low-concentration orientational defects (the Bjerrum D and L defects7) 

and ionic defects. System sizes that are amenable to computer simulations generally do not 

include such defects. Also, the time scale for proton reorientation is much longer than what is 

possible in standard molecular dynamic simulations. At temperatures under 100K, the proton 

reorientation takes place on the millisecond time scale. Special techniques have been introduced 

to deal with this issue. The most common strategy is to use a Monte-Carlo technique that first 

identifies a hydrogen-bonded loop and then collectively shifts the hydrogens along the loop. The 

other approach is the electrostatic switching molecular dynamics (MD) procedure developed by 

Lindberg and Wang8, which is adopted in our work.  

3) Previous theoretical studies led to a large dispersion of relative energies and structural 

properties of the different proton order patterns. 
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A large literature is devoted to the study of the proton disorder and ordering in hexagonal ice, 

discussing the following two issues: i) the ordering nature in the low temperature phase, i.e. 

whether the ferroelectric or anti-ferroelectric ordered phase is more stable; ii) the theoretical 

prediction of the phase transition temperature from ice Ih to ice XI. Commonly used two-body 

force field models such as the TIP4P9 variants and SPC/E10 were shown to be unable for 

predicting the correct energetics ordering of proton ordering in ice, while a modified polarizable 

force field KW-pol model was successful in favoring ferroelectric ordering over disordered 

structure, which implies the importance of incorporating polarizability into the empirical force 

field for capturing the subtle energy difference between different proton configurations. 
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2.0   DIELECTRIC CONSTANT OF PROTON-DISORDERED ICE IH FROM 

MOLECULAR DYANMICS SIMULATIONS 

	

2.1 INTRODUCTION 

2.1.1 Overview of proton disorder and !" 		 of ice Ih 

The proton disorder of ice Ih is responsible for its distinctive dielectric constant !" 		, that is 

associated with the fluctuations of the dipole moment in the system. Surprisingly, !" 		 of liquid 

water at T = 278 K (86) is close to that of ice Ih at the melting point T = 273 K is 9611. The 

experimental !" 		 vs. T curve of !" 		 of ice Ih is nearly a continuation of that of liquid water, as 

displayed in Figure 2.1.  
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Figure 2.1 The experimental curve of εs of proton-disordered ice Ih and liquid water.  

	

	
	
Debye explained the high dielectric constant of ice Ih in terms of monomer electric dipoles, that 

at equilibrium reorient under thermal movement12. Due to the existence of two types of defects in 

ice as shown in Figure 2.2, dipole reorientations in ice Ih are possible.  

Figure 2.2 Two types of defects in ice Ih structure: a) orientational defects; b) ionic defects. 

a)              b)        
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These dipole turns either 1) do not change the total system dipole, by turning all hydrogen bonds 

in a “closed loop” made of six water molecules (as displayed in Figure 2.3(a)) along the same 

direction; or 2) make a net change to the total dipole in the system by turning all hydrogen bonds 

crossing the periodic boundary in a simulation cell for computer simulations, which is 

represented as a “percolating loop” (as displayed in Figure 2.3(b)). However, the extreme low 

concentration of such defects make these proton reorientations hard to observe in simulation 

cells with sizes permitted by computer simulations. Also, the time scale for proton reorientation 

is much longer than that for standard molecular dynamic simulations. At temperatures under 

100K, the proton reorientation takes place on the millisecond time scale13. Therefore, several 

techniques have been introduced to deal with this issue in computational studies, including the 

symmetry-based graph invariant algorithm sampling14, the electrostatic switching MD procedure 

of Wang and coworkers8, as well as several Monte-Carlo algorithms that incorporate the 

cooperative hydrogen bond moves15. 

Figure 2.3 A 2D-picture  of ice-Ih structure with an intra-layer closed loop and percolating loop. 
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2.1.2 Calculation of !" 		 

	
To determine dielectric constant !" 		 from computer simulations, the following well-known 

fluctuation relation is used: 

!"-!$ = &'
()*+,

-. - - ∙ - ≈ &'
()*+,

- ∙ - 																					Equation 2.1	

where !" 		 is the high-frequency dielectric constant usually taken to be 1, !" 		 is the Boltzmann 

constant, !		 is temperature in Kelvin, !		 is the volume for the simulation system, and !		 is the 

polarization vector of the system defined as ! = #$%
$&' 		, and the angular brackets denote an 

ensemble average over independent configurations. By defining a polarization factor 

! = ( $%&
%'( )*
+ 		, where !" 		 is the unit vector along the direction of the dipole moment of each 

molecule in ice Ih, can be reduced to: 
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!"-!$ = &'
()*+,

(|/0|- |/| )2 + |/| 24 																				Equation	2.2                                         	

Based on the equations above, there are two factors that affect the result of calculated !" 		: 

1) The G factor, that describes the relative orientations of dipole moments in the simulation 

system, which arises from the sampled equilibrated structures of proton-disordered ice Ih. 

2) The magnitude of the molecular dipole moment |"#|		, as predicted by the computational 

method.  

2.1.3 Motivation of this work 

The initial motivation for this study was that the theoretical predictions of !" 		 of ice Ih from 

pairwise additive non-polarizable force fields fall appreciably lower than the experimental curve, 

with improved results obtained with polarizable force fields. However, the failure of non-

polarizable force fields were not found in the prediction of !" 		 of liquid water8 and of clathrate 

hydrates16. By including polarization explicitly in the force field as in polarizable force fields, the 

prediction of !" 		 of ice Ih were much better in reproducing the experimental curve over 

temperatures. Therefore, we were motivated to examine the polarizable force fields in the 

prediction of  !" 		 of ice Ih.  

The results of previous calculations of !" 		 of ice Ih are summarized in Table 2.1. As 

demonstrated from the representative work using SPC/E10 and TIP4P9 models by Vega16-17, 

Wang8, and Rick15a, 18, these models underestimate the !" 		 of ice Ih by ~50% compared with the 

experimental values. Increasing the number of charged sites in a water model even worsens the 

results, as shown in the study from TIP5P model by Rick18. Noticeable are the values achieved 

by Laury and coworkers using the reparametrized AMOEBA model in 20141 (denoted as 
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AMOEBA14 model throughout this study). Skinner and coworkers used their E3B three-body 

potential and predicted the !" 		 of ice Ih19 in good reproduction of the experimental curve. Their 

calculation was based on the fitting the dipole of water in ice Ih to the experimental curve of !" 		 

of ice Ih.  Recently, Liu and coworkers employed an ab initio dipole-moment-surface (DMS) 

from the Bowman group20 together with the E3B potential,  and obtained a good reproduction of 

the !" 		 of ice Ih compared with experimental values over a range of temperature. The prediction 

of !" 		 of ice Ih serves as a good test of a force field.  

The dielectric constant of ice Ih has also been calculated by DFT methods. In 2012, 

Wang and coworkers calculated !" 		 of ice Ih used projector-augmented-wave based PBE 

functional and sampled the ice Ih structures from the modified electrostatic switching 

procedure21. However, their study underestimated the !" 		 of ice Ih and liquid water by about 

35%21. They obtained the dipole moment for ice Ih of 2.5 Debye/monomer, compared with the 

value of 3.09 Debye from the self-consistent induction model22. In 2014, VandeVondele and 

coworkers calculated the dielectric anisotropy of ice Ih using several hybrid and semilocal 

density functionals and a Monte-Carlo sampling scheme23. Their study over-estimated the !" 		 of 

ice Ih by 20 % - 40 % over temperatures.  

Recently, the effect of nuclear quantum fluctuations to !" 		 of ice Ih has been studied by 

Moreira and Koning24 using DFT-based path integral25 simulations, with the conclusion that both 

the hydrogen bond network in ice Ih, which is characterized by the G factor in Equation 2.2 and 

the molecular dipole moment |"#|		, are sensitive to protonic quantum fluctuations, and  the 

average molecular dipole moment was increased by 5%, probably due to the elongation of the O-

H bond in the quantum simulations. 
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Table 2.1 Representative results of static dielectric constant of ice Ih in as obtained from different models. 

Model Author T(K) !" 	 

TIP4P15a Rick, Haymet (2003) 240 48(1) 

TIP4P19 Vega, MacDowell (2010) 240 47(1) 

TIP4P8 F. Wang, Lindberg (2008) 240 51(1) 

TIP4P/200516 Vega, MacDowell (2010) 240 53 

TIP4P/2005 Vega, Aragones (2011) 243 53(2) 

TIP4P/Ice16 Vega, MacDowell (2010) 240 57 

TIP5P18 Rick (2005) 240 30(3) 

TIP5P17 Vega, Aragones (2011) 243 31 

DC9720 F. Wang, Lindberg (2008) 240 78 

SPC/E16 Vega, MacDowell (2010) 200 49 

SPC/E15a Rick, Haymet (2003) 240 50 

E3B19 Skinner (2014) 240 106 

E3B19 Skinner (2014) 200 130 

TIP4P-FQ15a Rick, Haymet (2003) 240 100(5) 

AMOEBA0326 Ren, Ponder et al. (2003) 250 121 

i-AMOEBA27 L.P. Wang et al. (2013) 240 107(5) 

AMOEBA141 Laury, Ponder et al. (2015) 250 98 

Experiment11 Whalley (1981) 240 107 

Experiment11 Whalley (1981) 200 130 

PAW-PBE21 F. Wang, Rusnak (2012) 253 67(7) 

PBE-D223 Slater, VandeVondele (2014) 150 366 
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PBE0-D223 Slater, VandeVondele (2014) 150 266 

PIMD 24 Moreira, Koning (2015) 100 308 

 

In this study, we investigated the dielectric property of ice Ih from classical molecular 

dynamics simulations using both non-polarizable force fields and different polarizable force 

fields, to better understand the importance of polarizability for the correct prediction of !" 		 of ice 

Ih from force fields. We also studied the different proton disorder patterns in ice Ih and correlate 

the different configurational potential energies with the dipole moment of different simulation 

boxes. Finally, we did an initial study of the effect of NQE on the molecular geometry from a 

path-integral molecular dynamics simulation. 

2.2 COMPUTATIONAL METHODS 

The rigid non-polarizable TIP4P9 water model as well as its reparametrized variants TIP4P/Ice28, 

TIP4P/Ewald29, the polarizable Dang-Chang (DC97) model2, the revised AMOEBA force field1 

(AMOEBA14) as well as the AMOEBA model that employs the Gaussian electrostatic model 

distributed multipoles (GEM-DM)30 are considered in our calculations. 

Classical MD simulations for all the non-polarizable force fields and the polarizable 

DC97 model were carried out using a modified version of the DL_POLY program31 obtained 

from the Wang group8. A time step of 1.0 fs and a cutoff radius of 9.0 Å for van der Waals 

interactions were used. Long-range electrostatic interactions were treated with the Ewald 

summation method32. The parameters in the sampling procedure with the electrostatic switching 
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algorithm were kept the same as the original paper8. The scheme representing the sampling 

procedure is depicted in Figure 2.4.  

Figure 2.4 The scheme for electrostatic switching procedure for sampling of proton-disordered ice Ih. 

 

All the simulations were carried out NVT ensemble. Unless otherwise stated, for each set 

of calculations the ensemble generated consisted of 200 configurations, at temperatures of T =50, 

100, 150, 200 and 240 K, for ice Ih. The dimension {Lx, Ly, Lz} of the unit cells for ice Ih used in 

the simulations are listed in Table 2.2, and the lattice vectors {a, b, c} of the fundamental cells 

crystallographically determined.  

Table 2.2 Dimensions of simulation cells used in this study. a, b, c are the cell vectors of the primitive cell to be 

replicated for each simulation cell; Lx, Ly, Lz are the box dimensions of the final simulation cell; Nx, Ny, Nz are the 

replication factors in each dimension; N is the number of water molecules in the final simulation cell; Symm. is the 

symmetry of the final simulation cell. 

a (Å		) b (Å		) c (Å		) Lx (Å		) Ly (Å		) Lz (Å		) Nx Ny Nz N Symm. 

4.492 4.492 7.336 17.969 17.969 14.672 4 4 2 128 hexagonal 

4.492 4.492 7.336 22.461 22.461 22.007 5 5 3 300 hexagonal 

4.507 7.806 7.360 27.042 23.419 22.080 6 3 3 432 Orthorhombic 

 

For the calculation of the dielectric constant of ice Ih using the polarizable AMOEBA 

models (AMOEBA14 and GEM-DM), the TINKER package version 7.1.233 was used, and 

simulation settings were kept the same as the sampling procedure above. An orthorhombic 

simulation cell with 432 water molecules was used for these simulations. For comparison, Table 
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3.3 tabulates the parameters of the different force fields used in this study, along with the 

respective values of molecular dipole moment for water. 

For the path-integral MD simulations, AMBER package version 1234 was used. We used 

the normal mode path-integral MD (NMPIMD) implementation in AMBER, and Nosé-Hoover 

chains were coupled to each bead in the system to accomplish thermostatting. The number of 

beads was chosen to be 24, which was shown to be large enough for the convergence of ice 

simulations at the same temperature24. The simulations were carried out at T = 100 K, which is 

close to the phase transition temperature of ice Ih to XI at 72 K, and converged PIMD results can 

be obtained under this temperature by using a moderate number of replicas24. The simple charge, 

flexible water force field q-spc/fw35 specifically designed to investigate nuclear quantum effects 

in water was used in the PIMD simulation.  

2.3 RESULTS AND DISCUSSION 

2.3.1 Structural properties of proton-disordered ice Ih 

We first considered the structural properties of different proton-disordered structures are 

compared.  The radial distribution functions (RDF) that describe the local structures of hydrogen 

bond network in ice Ih are compared.  As shown for the oxygen-oxygen (gOO(r)), oxygen-

hydrogen (gOH(r)), and hydrogen-hydrogen (gHH(r)) radial distribution functions (RDFs) in 

Figure 2.5 for the TIP4P model, the RDFs are nearly identical for ten randomly selected proton-

disordered configurations, sampled at T = 200 K. The height and shapes of the peaks are 

consistent with the previous study using the same sampling algorithm8. Based on the RDFs, all 
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the oxygen atoms in sampled ice Ih lattice are covalently bonded to two adjacent hydrogen atoms, 

and form hydrogen bonds with two other adjacent hydrogen atoms, satisfying the ice rules.  

Figure 2.5 The oxygen-oxygen, oxygen-hydrogen and hydrogen-hydrogen radial distribution functions of 10 

randomly chosen ice Ih configurations from TIP4P model at T = 200 K. 
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Figure 2.6 Vibrational density of states of 10 randomly chosen ice configurations from TIP4P model at T = 200 K, 

in the region of 0-1600 cm-1, with two regions due to a) translational and b) librational motions, respectively. 

 

 

 

 

 

 

 

 

 

a) Translational	motions	

b) Librational	motions	
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I also plotted the vibrational density of states (VDOS) of ten randomly chosen ice Ih 

structures sampled using the TIP4P model, calculated from the velocity auto-correlation function 

during an equilibrium MD simulation at T = 200 K. As shown in Figure 2.6, each VDOS in the 

region of 1-1000 cm-1 is separated into two parts: a) the lower frequency region due to 

translational motions, b) the higher frequency part due to librational motions. The ten DOSs were 

also shown to have peaks at the same frequencies for both regions that represent intermolecular 

hydrogen bonds, with only small variations of intensities.  

Figure 2.7 Distribution of configurational energy of ice Ih sampled from TIP4P model, at different temperatures. 

 

To confirm that the structures sampled are indeed equilibrium structures that satisfy the 

Boltzmann distribution, the configurational energy distributions were also plotted, as displayed 

in Figure 2.7. For T = 100, 150, 200 and 240K, the distribution range reproduces Wang’s 

Figure8. At T = 50 K, there were observed “shoulders” for the energy distribution. This 
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difference was also shown in the dipole moment distributions of ice Ih at different temperatures 

in Figure 2.8.  

Figure 2.8 Distributions of the box dipole moment along c-axis (Mc) of hexagonal ice Ih cells sampled from TIP4P 

model with 300 water molecules, at different temperatures. 

 

At T = 50 K, A continuous distribution of dipole moment was displayed in the dipole 

moment distributions, while higher-temperature results show clear dipole spacing as multiples of 

“percolating loops” in Figure 2.3(B). (We refer to Figure 2.9 and ref18 for an interpretation of 

this spacing). The unphysical results of the simulations at T = 50 K are believed to be due to the 

simulation time not being long enough for the protons to overcome local minima and form to 

equilibrated structures during the second sampling step, when the switching function for 

electrostatic interaction is slowly being turned on.  

Then, I calculated the average potential energy per water molecule in these boxes. The 

results shown as a function of the component along c-axis of the total dipole moment Mc, as 
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presented in Figure 2.9. For all the simulation cells, the potential energy varies by about 0.1 

kcal/mol per water molecule with slight variances over cell sizes.  

Figure 2.9 Configuration energy versus dipole along c-axis of ice Ih cell with 128, 300 and 432 waters. 
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Figure 2.10 Interpretation of the dipole spacing in ice Ih: the two different proton disordered configurations a and b 

shown below differ in multiples of the orientation of one hydrogen bonds, which is seen as a flip of one O-H bond 

(O2-H1 in a) change the position from oblique to along the c-axis, to form configuration b. When the periodic 

boundary is being crossed, this single flip leads to the change of dipole moment along c-axis 

Δµc=2*µ*cos(109.47°/2), where µ is the molecular dipole moment. Depending on the size of simulation boxes, the 

spacing magnitudes are different. 

 
 

Besides the RDFs, VDOS and energy and dipole distributions, the microscopic structural 

properties of hydrogen-bonded proton-disordered ice Ih can be obtained and quantified from the 

relative projection of two adjacent water monomers with respect to the c-axis  in the lattice can 

be either parallel or oblique7. Researchers have come up with several nomenclature schemes for 

these four types of hydrogen bonds, and here we adopt the one used by Bjerrum7, namely oblique 

mirror (OM), oblique center (OC), inverse mirror (IM) and inverse center (IC). These parameters 

are based on the dihedral angle between the bisectors of the H-O-H angles of two adjacent water 

monomers. These torsional angles are distributed around four angles: 0°, 60°, 120° and 180°, 

with distribution widths of about ± 20° (varying with temperatures). Based on these angles, the 

hydrogen bond in ice Ih can be defined as inverse center (0°), oblique mirror (60°), oblique 

center (120°) and inverse mirror (180°). The orientations of oblique-mirror and inverse-mirror 
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type H-bonds are parallel to c-axis, and the oblique-center and inverse-center H-bonds are 

oblique to the c-axis of ice Ih, as shown in Figure 2.11.  

Figure 2.11 Possible hydrogen-bonded water dimer arrangement in ice Ih. 

 

I then plotted the distribution of these dihedral angles under different temperatures in 

Figure 2.12, for sampled structures using TIP4P model. For the four hydrogen bonds per water 

molecule, one of them is along the c-axis, and three others oblique to c-axis, therefore the sum of 

percentage of IM (XIM) and of OM (XOM) for each water molecule is 1, and the sum of XIC and 

XOC is 3. For all the five temperatures considered, the OC type angles are mostly observed, with 

the relative height of XOC comparing with other angles decrease. As calculated by Bjerrum in 

1952 using a simple electrostatic model, the lattice energy difference between mirror symmetric 

(IM plus OM) and center symmetric (IC plus OC) at low temperatures is 0.42 kcal/mol with the 

latter being more stable, and the difference decreases as T increases7. Therefore, it would be very 

interesting to get the energetic difference of these proton ordering patterns in the future. 
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Figure 2.12 Distributions of the dihedral angle between the bisectors of two adjacent water molecules in ice Ih at T = 

200 K, calculated from hexagonal simulations cells with 300 water molecules, sampled with TIP4P model. 
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2.3.2 Dielectric constant calculation for ice Ih 

The static dielectric constant can be determined from the dipole fluctuations of the system 

!" - ! ∙ ! 		 using Equation 2.1. In this study, by averaging over the results from 200 

configurations, with the non-polarizable TIP4P, TIP4P/Ice and TIP4P/Ewald models at T = 100, 

150, 200 and 240 K, the polarizable DC97 model at T = 240 K, the AMOEBA14 model at T = 

100, 150, 240 K, and the GEM-DM model at 100 and 240 K, values of dielectric constant were 

obtained as plotted in Figure 2.13, for comparison with experimental values. For each force field 

considered, the calculated dielectric constant varies as 1/T. 

Figure 2.13 Calculated static dielectric constant of ice Ih from different force fields, compared with experimental 

values over temperatures. 

 

At T = 100, 150 and 200 K, the TIP4P/Ice model gives the best results among all the 

TIP4P variants. This force field is a re-parametrization designed to better describe the bulk 
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properties of ice. TIP4P/Ewald model is a re-parametrization of the TIP4P model for better 

reproduction of bulk properties of liquid water, and it performs better than the original TIP4P 

model at T =100, 150 and 200 K.  

The three polarizable models used in this study (DC972, AMOEBA14 and GEM-DM) 

overall give higher predictions of !" 		 compared with the TIP4P models for each temperature. The 

three models all account for polarization using point induced dipoles !"#$ 		36: 

                                                           !"#$ = &(() + (+)		                                         Equation	2.3	

where !"		 is the field due to the permanent atomic charges and !" 		 is the field due to the other 

induced dipoles. The total field is calculated via a self-consistent way to minimize the 

polarization energy, or using the extended Lagrangian method37. The molecular dipole !" 		 for 

water molecule i thus is the sum of the permanent dipole !"#$% 		 and the induced dipole !"#$ 		, and 

is evaluated individually for each molecule in the simulation cell: 

!" = !$%&' + !")* 		                                      Equation	2.4	

The polarization energy part in the intermolecular interaction energy is expressed as the 

following summation over polarizable centers: 

!"#$ = - '( )* ∙ !* 		                                     Equation	2.5	

For a comparison of the total interaction energies among the AMOEBA force fields, we 

calculated the cohesive energy of four water hexamer isomers (prism, cage, book, ring) after 

being fully optimized using different polarizable water models, compared with the CCSD(T) 

reference values taken from ref38. As seen in Figure 2.14, among the three versions of 

AMOEBA force fields and the TTM3-F force field39, only the TTM3-F model reproduced well 

both the relative stability as well as the values of energies comparing with the CCSD(T) 

reference values. The reparametrized AMOEBA14 model actually performs more poorly than 
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the original AMOEBA model. The inexpensive i-AMOEBA model that omits the expensive 

iterative evaluation of the mutual polarization is much too repulsive. 

Figure 2.14 Binding energy of four isomers of water hexamer (prism, cage, book and ring) with four polarizable 

force fields: AMOEBA14, AMOEBA03, i-AMOEBA and TTM3-F, compared with the CCSD(T) reference values. 

 

These polarizable force fields differ in the number of polarizable centers per molecule. 

DC97 and AMOEBAs have one and three polarizable centers per molecule, respectively. While 

all of the polarizable force fields give better predictions of !" 		 of ice Ih than do the TIP4P variants, 

the two AMOEBA models perform better than the DC97 model overall.  While the i-AMOBEA 

model was aimed at using the inexpensive way to achieve good thermodynamic bulk properties 

for water, its neglect of the mutual polarization results in lower average molecular dipole 

moment comparing with the AMOEBA model that include mutual polarization.  GEM-DM 

replaces the distributed atomic multipoles in the AMOEBA model with the ones derived from 
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the Gaussian electrostatic model (GEM), and it keeps the other parameters as in the original 

AMOEBA model. However, this led to the over fluctuation of the system.  

Table 2.3 Parameters and the molecular dipole moment µ of the force fields used in this study. 

Model qH (e-) rOM (Å		) !"#"(°)	 rOH (Å		)  !		 (kcal/mol) !		 (Å		)   !		 (D) 

TIP4P9 0.520 0.150 104.52 0.9572 0.1550 3.1536 2.177b 

TIP4P/Ice28 0.5897 0.1577 104.52 0.9572 0.2108 3.1668 2.426b 

TIP4P/Ew29 0.5242 0.125 104.52 0.9572 0.1628 3.1634 2.321b 

DC972 0.5190 0.215 104.52 0.9572 0.1825 3.2340 1.850c 

AMOEBA0326 0.25983 -- 108.5 0.9572 0.11/0.0135a 3.405/2.655a 1.771c 

i-AMOEBA27 0.29701 -- 106.48 0.9584 0.1968/0a 3.645/0a 1.86c 

AMOEBA141 0.21308 -- 107.9 0.9565 0.151/0.0105a 3.579/2.117a 1.808c 

GEM-DM30 0.471 -- 108.5 0.9572 0.11/0.0135a 3.405/2.655a 1.808 

Exp.40 0.471 -- 108.5 -- --  1.855c 

aparameter for O atom/parameter for H atom; 
bliquid phase value; cgas phase value. 

 

Table 2.4 Dielectric constant and Polarization Factor G for ice Ih for the TIP4P/Ice, TIP4P/Ewald, TIP4P, 

AMOEBA14, and GEM-DM Models. 

Model T(K) !" 	 G 

AMOEBA14 100 199.9 6.568 

AMOEBA14 150 131.8 8.458 

AMOEBA14 240 104.6 7.120 

GEM-DM 100 285.8 8.860 

GEM-DM 240 129.4 9.836 
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TIP4P/Ice 100 134.1 2.470 

TIP4P/Ice 150 101.0 2.796 

TIP4P/Ice 200 79.4 2.937 

TIP4P/Ewald 100 109.9 2.194 

TIP4P/Ewald 150 90.4 2.708 

TIP4P/Ewald 200 66.8 2.662 

TIP4P 100 101.7 2.322 

TIP4P 150 76.8 2.645 

TIP4P 200 56.6 2.600 

TIP4P 240 58.1 3.203 

 

From Equation 2.2, we know that the value of !" 		 is also affected by the polarization 

factor G, and I then calculated the G factor from each force field, as tabulated together with the 

results of !" 		 in Table 2.4. For all water models, the value of G increases slowly with temperature, 

and this trend was observed from an early model of water41. The two polarizable models 

AMOEBA14 and GEM-DM give the G values 2-3 times larger than three non-polarizable TIP4P 

models, and this ratio is nearly correlated with the ratio of predicted !" 		. The GEM-DM model 

that predicts the highest !" 		 also have highest values of G. The second component in the equation 

of !" 		: the molecular dipole moment |"|		, is also reflected in the comparison of Table 2.3 and 

Table 2.4. For the non-polarizable models, the order of |"|		 is TIP4P/Ice > TIP4P/Ewald > TIP4P, 

and same order is observed in the values of	"# 		.  
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2.3.3 Nuclear quantum fluctuations from PIMD 

In a recent study, nuclear quantum effects (NQE) were shown to be significantly impacting the 

hydrogen bond topology in ice Ih, as well as the geometry of the water monomer, which affect 

the average value of molecular dipole moment24. To further study the effect of NQE, I did an 

initial PIMD simulation at the same temperature (T = 100 K) for ice Ih using a force field 

specifically parametrized for quantum simulations: q-spcfw35. I was wondering about the 

magnitude of quantum effect in the dipole moment distribution and the molecular geometry. 

I first performed the equilibrium simulation under NPT ensemble for 200 ps with the 

timestep of 0.1 fs, and then examined the fluctuations of the system temperature in each 

simulation step during a second equilibrium NVT run with the Nose-Hover chain thermostat. 

PIMD gave wider distributions (100±		10 K) of temperature, comparing with the classical MD 

profile (100±1.5		 K), as shown in Figure 2.15. The O-H bond length (rOH), from PIMD 

calculations give wider distribution than of rOH (MD), as shown in Figure 2.16.  As tabulated in 

Table 2.5, the magnitude of the average rOH is shifted towards longer bond lengths in quantum 

distributions. This is because when quantum effect is taken into account, the anharmonicity of 

the O-H stretch in the potential energy surface is included. The zero-point energy allows the 

proton involved in the hydrogen bond to extend in the direction of the acceptor oxygen to form 

stronger hydrogen bond, and therefore makes the O-H bond longer42.  
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Table 2.5 Mean values of the molecular angle H-O-H (degree), the bond length r(O-H) (Å), the molecular dipole 

moment !		 (debye) and the dipole fluctuation of ice Ih from classical MD simulation and PIMD  with 24 replicas at 

T = 100 K. The unit cell of ice Ih contains 288 water molecules. 

Method rOH (Å		) 

PIMD 1.143 

Classical MD 0.887 

PIMD in ref24 1.030±0.003 

Classical MD in ref24 1.0072±0.0002 

 

 

Figure 2.15 Distribution of the temperature during classical MD and PIMD simulations using q-spcfw model for ice 

Ih at T = 100 K. 
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Figure 2.16 Distribution of the bond length rOH (Å) during classical MD and PIMD simulations using q-spcfw 

model for ice Ih at T = 100 K. 

 

At the current stage, I only performed PIMD simulations on a single configuration of ice 

Ih. It would be interesting to perform PIMD simulations of different ice Ih configurations that are 

sampled with electrostatic switching or MC-based methods, to obtain the quantum effect in the 

dielectric constant. I would expect that due to the elongation of O-H bond length, the mean value 

of the molecular dipole moment from multiple PIMD simulations would increase as well. In 

terms of dielectric constant, assuming the polarization factor G is not affected by quantum 

effects, then the higher average molecular dipole moment in quantum simulations would 

probably lead to a higher dielectric constant than that in classical simulations. 
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2.4 CONCLUSIONS 

To summarize, different proton-disordered ice Ih structures were generated, using a molecular 

dynamics procedure introduced by Lindberg and Wang. I employed both non-polarizable force 

fields TIP4Ps and several polarizable force fields with point inducible dipoles. I first examined 

the structural properties of sampled ice Ih configurations, including RDFs, VDOS and 

distribution of their configurational energies. Then, I determined the static dielectric constant !" 	 

of ice Ih from these force fields. The results showed that:1) all polarizable models give better 

predictions of dielectric constant of ice Ih comparing with non-polarizable models; 2) Polarizable 

models with three polarizable sites per molecule gave better results than the Dang Chang model 

with a single polarizable site per molecule. This will guide the development of polarizable force 

fields in the future for achieving better reproduction of condensed phase water properties in MD 

simulations. 3) The polarization factor G values in each force field are almost linearly related 

with the value of their predicted !" 	 of ice Ih. 4) our initial PIMD calculations of ice Ih at 100 K 

showed the elongated O-H bond length in quantum simulations, and further investigation of the 

nuclear quantum effect on the !" 	 of ice Ih is under way.  The better prediction of !" 	 for ice Ih 

using AMEOBA models is due to two reasons corresponding to the two factors in Equation 2.2: 

1) calculations of the molecular dipole moment from AMOEBA models give better accuracy by

taking into account the mutual polarization from the neighboring water molecules; 2) The 

polarization factor G from these models is higher than the value predicted by the TIP4P models, 

which means the relative orientations of water molecules in ice Ih are more accurate in 

AMOEBA models. 
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2.5 OPEN QUESTIONS 

Based on the graph invariant enumeration technique proposed by Kuo and coworkers in 200114, 

the full set of ice-rule-allowed ice Ih structures can be reduced to a much smaller set, as tabulated 

in Table 2.6. Each of the symmetry distinct cells represents a deep local minimum, with the 

physical properties such as energy and dipole being “invariants”, shared by all the ice-rule-

allowed configurations that are symmetry-related by this cell.  The canonical partition function Q 

for a specific type of cell is calculated as43: 

! = #$%-'()*+,-*.,*)1
$23 																																									Equation	2.6	

where !" 		 is the number of symmetry-related configurations that are represented by one symmetry 

distinct configuration, ! = #
$%&

		, !" 		 is the potential energy of the isomer, M is the number of 

symmetry distinct structures, !"#$,# 		 is the vibrational energy of the isomer.  

Table 2.6 Enumeration of ice Ih configurations based on the graph invariant technique. N represents the number of 

water molecules in each cell; Symm. represents the symmetry of each cell (hex is short for hexagonal and orth is 

short for orthorhombic); Nsymm-distinct represents the number of symmetry distinct structures enumerated from graph 

invariant; Nice-rule-allowed represents the number of ice-rule-allowed cells corresponding to each cell. 

N Symm. Nsymm-distinct Nice-rule-allowed 

4 hex 2 18 

8 orth 16 114 

12 hex 14 552 

16 hex 139 2970 

24 orth 2275 98466 

48 hex 8360361 2404144962 
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Since the graph invariants in small unit cells are a subset of the graph invariants of larger 

unit cells, the energies of the substantial amount of hydrogen bond patterns in larger supercells 

can be parametrized from the high level calculation of energies and dipoles in small unit cells 

with 50-60 water molecules.  Therefore, in the future, it would be interesting to obtain ab initio 

energies and dipoles of the symmetry distinct supercells of ice Ih from periodic calculations with 

sufficient k-point sampling, and to extrapolate to larger supercells to calculate the dielectric 

constant of ice Ih. 
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3.0  ENERGETIC STUDY OF ICE IH AND VIII FROM DISPERSION CORRECTED 

DFT METHODS 

3.1 INTRODUCTION 

3.1.1 Overview of previous energetics studies of ice phases 

There are 15 known phases of ice, which are identified by the Roman numerals I through XV, 

with each phase being stable over a limited range of temperature and pressure3b. Phase I ice with 

hexagonal symmetry, denoted as ice Ih, is the most common phase of ice, and is the most widely 

studied. On the ice Ih lattice, the hydrogen atoms can adopt different positions, as long as the 

“Bernal-Fowler” ice rules4 are satisfied, to form the hydrogen bond (H-bond) network. This 

leads to the proton-disordered nature of ice Ih at T > 72 K. However, at temperatures below 72 K, 

a phase transition from ice Ih to ferroelectric ice XI is observed, provided dopants (for example, 

KOH) are present to allow for the formation of defects on the ice Ih lattice. Unlike ice Ih, the 

structure of ice XI is proton-ordered, with symmetry Cmc21. The hydrogen bonds along the c-

axis of ferroelectric ice XI lattice align in the same direction, leading to a large magnitude of the 

dipole moment in the bulk phase with the “percolating loops” spanning the hydrogen bonds 

crossing the unit cell, as illustrated in Figure 3.1(b). 
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Ice Ih can also be connected to a proton-ordered anti-ferroelectric ice with symmetry Pna21 and 

designated ice VIII. In contrast to the high-dipole ferroelectric ice XI, the hydrogen bonds along 

the c-axis of anti-ferroelectric ice result in a near-zero dipole moment along this direction, and a 

closed loop is formed as shown in Figure 3.1(a). On the lattice of the proton-disordered ice Ih, 

both of these Cmc21 and Pna21 “sub-” structures can be found. Ice VIII is stable at low 

temperatures over the pressure range of 2 to 60 GPa44. 

Figure 3.1 Proton arrangements in the crystal of ice Ih for the a) ferroelectric Cmc21 and b) anti-ferroelectric Pna21 

structures. 

a) Ferroelectric Cmc21, with the eight atoms forming a percolating loop labeled; 

 

b) Anti-ferroelectric Pna21, with the twelve atoms forming a closed loop labeled; 
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There has been controversy over the relative stabilities of the different orientations of 

hydrogen bonds of ice, given the subtle energetic differences between different hydrogen-bonded 

pairs. Of the four possible H-bonded dimer configurations shown in Figure 3.3, that with trans-

H-bonded adjacent water molecules, which minimize the repulsions from vdW interaction and 

electrostatic interactions, is favored. Of the previous studies of ice Ih from the molecular 

mechanics approach, only a modified polarizable KW-pol model45 by Buch and coworkers in 

1998 and a study by Nada and coworkers in 2003 using their rigid six-site NvdW model46 proved 

to be able to predict the ferroelectric-ordered ice to be most stable46.  

Figure 3.2 The four possible H-bonded dimer configurations in ice Ih: a) h-cis, b) h-trans, c) c-cis and d) c-trans. 

 
a) h-cis; 

 
b) h-trans; 

 
c) c-cis; 
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d)  c-trans; 

 
 

 
Density-functional theory (DFT) has been widely used to study water and ice38, especially 

with generalized gradient approximations (GGA) functionals. The reliability of different semi-

local GGA exchange-correlation functionals for ice remains a subject of debate, due to two 

problems: 1) the self-interaction error that leads to extra delocalization of protons in the H-bond; 

2) their neglect of non-local correlations that are responsible for van der Waals (vdW) dispersion 

interactions. The first problem can be alleviated by including exact exchange via a hybrid 

functional, and to solve the second problem, dispersion corrections are needed in the functional 

to describe the vdW interactions in condensed phase systems. 

Previous studies have used different dispersion correction schemes to calculate cohesive 

energy, and relative stabilities of different phases of ice, including both ambient pressure phases 

and high-pressure phases47. There are also studies discussing the equilibrium volumes of 

different structures and the role of zero-point energy for the cohesive energies and equilibrium 

volumes48. Among the previous DFT studies, there remains controversy over the relative 
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cohesive energies and densities of the different ice phases, as well as the role of nuclear quantum 

effects on the structural properties of ice38. In Ref. 9,  it was shown that the nonlocal van der 

Waals functional vdW-DF2 used with PBE substantially overestimates the strength of hydrogen 

bonding in ice VIII, while underestimating it at low pressure for ice XI and Ih49.  

3.1.2 Motivation of this study 

Motivation: Recently, our group reported two-channel dispersion-corrected atom-centered 

potentials (DCACP2) for use with semilocal GGA BLYP and PBE functionals50. For the water 

dimer and hexamer isomers, it was shown that the DCACP2-BLYP functional gives interaction 

energies that more closely reproduced the high-level CCSD(T) binding energy curves of these 

water clusters, than did the single-channel DCACP-corrected BLYP potential or Grimme’s D3 

corrected BLYP functional. Therefore, I wanted to analyze the performance of uncorrected and 

dispersion-corrected semilocal GGA BLYP functional at predicting the lattice parameters of 

fully optimized ice Ih cells, the cohesive energies, equilibrium volumes, and bulk modulus. I also 

compared the role of dispersion interactions and strength of hydrogen bonds between the 

ambient pressure phase ice Ih and the high-pressure proton-ordered ice VIII. 

3.2 COMPUTATIONAL METHODS 

3.2.1 Structures of ice used in this study 

1. Proton-disordered ice Ih:  
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The proton-disordered hexagonal ice Ih unit cell used in this study contains 12 water molecules 

and was proposed by Hamann51 with the initial lattice parameters equal to the experimental 

values: a = b = 7.78 Å, c = 7.33Å, α = β = 90º,γ = 60º. This cell is replicated from the primitive 

4-water hexagonal cell by 3*1*1. The oxygen atoms lie on the hexagonal lattice, while the 

hydrogen atoms are disordered such that each oxygen atom is hydrogen-bonded to two hydrogen 

atoms, and is covalently-bonded to two hydrogen atoms, and the net dipole moment of the 

system is near-zero, as presented in Figure 3.3. 

Figure 3.3 12-water hexagonal ice Ih cell, with |a|=|b|, α = β = 90º, γ = 60º. 

 

2. Proton-ordered ice VIII: 

To model the anti-ferroelectric ordered phase ice VIII, a tetragonal unit cell with eight water 

molecules was obtained from experiment52, and the tetragonal supercell with 64 water molecules 

used in the calculations replicated by 2x2x2 from the 8-water cell is shown in Figure 3.4. The 

lattice parameters are a = b = 9.32 Å, c = 13.42 Å. 
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Figure 3.4 64-water tetragonal ice VIII cell with |a|=|b|, α = β = γ = 90º. 

z

x

y

 

3.2.2 Calculation procedure 

In this study, we have calculated the optimized structure, cohesive energy, equilibrium volumes, 

and bulk modulus of ice Ih and VIII. The CP2K code53 was used to perform cell optimization 

and energy calculations with the generalized gradient approximation (GGA) BLYP54 functional, 

as well as with the BLYP functional with different dispersion corrections: Grimmes’ D3-

correction scheme (BLYP-D3)55, Grimmes’ D3 correction with three-body interactions (BLYP-

D3(3b))55, dispersion-corrected-atom-centered potential (DCACP-BLYP)56, and the two-channel 

version (DCACP2-BLYP)50. The calculations were performed using the Gaussian triple-V 

TZV3P basis sets57 with three sets of polarization functions and a plane-wave energy cutoff of 

1200 Ry for the electronic density. Norm-conserving Goedecker-Teter-Hutter ( GTH ) 

pseudopotentials58 were used for both hydrogen and oxygen. 

Full geometry optimization including relaxation of the atomic coordinates and the cell lattice 

parameters was performed under periodic boundary conditions at zero external pressure using an 
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analytical stress tensor, with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimizer for 

optimizing the cell parameters and the conjugate gradient (CG) method for optimizing the wave 

function. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Lattice structures after cell optimization 

The cell dimensions of ice Ih after optimization with different DFT methods are summarized in 

Table 3.1.  

Table 3.1 Optimized cell dimensions (Å), Mean nearest-neighbor oxygen distance ROO (Å), Mean of the 

intramolecular O-H bond lengths rOH (Å) and HOH angles θHOH (degree) of the hexagonal ice-Ih cell with 12 water 

molecules with various DFT methods (|a|=|b|, α = β = 90º, γ = 60º). 

Method |a| |c| c/a ROO rOH θHOH 

BLYP 7.81 7.59 0.97 2.79 0.995 107.03 

BLYP-D3(2b) 7.68 7.49 0.97 2.75 0.997 107.31 

BLYP-D3(2b+3b) 7.69 7.49 0.97 2.75 0.997 107.29 

BLYP-DCACP1 7.58 7.50 0.99 2.72 0.999 107.16 

BLYP-DCACP2 7.68 7.47 0.97 2.75 0.998 107.20 

Exp.3b 7.78 7.33 0.94 2.76 0.985 106.6±1.5 

All functionals give greater values of the c/a ratio than the experimental value of 0.94216. 

Comparing the H-O-H angles after optimization, the performance ordering from the best to worst 
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is BLYP-D3(2b)≈		BLYP-D3(2b+3b)> DCACP2-BLYP > DCACP-BLYP > BLYP, and the same 

ordering is observed in the prediction of the nearest neighboring oxygen-oxygen distance ROO. 

Therefore, the inclusion of dispersion corrections in the BLYP exchange-correlation functional is 

essential for obtaining the correct water molecule geometry in ice Ih. Incorporating the three-

body energy term in Grimmes’ D3 scheme does not further improve the calculated geometry. 

The lattice dimension, however, was found to be less affected by the dispersion correction 

compared with the molecular geometry. 

3.3.2 Cohesive energy 

The cohesive energy Ecoh is defined as the energy per molecule in forming a crystal from the 

vacuum. After removing the zero-point energy (ZPE), Ecoh is given by: 

!"#$ = &'()-+,-.)(/.)0*&,-2-,)3

+,-.)(/.)0
																																								Equation	3.1	

where in DFT calculations, Eice and Emonomer are Kohn-Sham energies of ice and of one water 

molecule. To take the zero-point vibrational energy into account, !"#$%&'&%() 		 , defined under 

quasi-harmonic approximation (QHA)59 as 	 ℏ#$
%& 		, needs to be subtracted, where !" 		 are the 

phonon frequencies of mode i. 
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Table 3.2 The cohesive energies (kcal/mol per water), equilibrium volume V (Å3/water) and their relative errors as 

comparing with experimental values, and density ρ (g/ml) from the 12-water hexagonal ice Ih cell using different 

DFT methods. 

Method Ecohesive Error% 

of Ecohesive 

V0 Error% 

of V0 

!	 

BLYP -12.47 11.35 34.72 8.32 1.08 

BLYP-D3(2b) -15.39 -9.42 32.71 2.05 1.01 

   BLYP-D3(2b+3b) -15.25 -8.38 32.53 1.49 1.01 

BLYP-DCACP1 -15.89 -12.96 31.54 -1.60 0.98 

BLYP-DCACP2 -15.44 9.73 31.80 -0.78 0.98 

Exp.60 -14.07 --- 32.05 --- 0.99 

 

Table 3.2 tabulates the cohesive energies of ice Ih, obtained from different methods, with 

ZPE removed. Among the original and modified BLYP functionals, the Grimme’s D3 correction 

with the three-body contributions to the interaction energy gave the best agreement with the 

experimental value of -14.067 kcal/mol per molecule, while the D3-correction that only involves 

the two-body interaction slightly overbinds by about 0.085 kcal/mol per water molecule. In 

Table 3.2, the relative errors in the calculated values of the cohesive energy are also reported. 

The magnitude of the relative errors of cohesive energy compared with the experimental value 

falls in the range of 9.0% to 13.4%. All the dispersion corrected BLYP functionals overestimate 

the cohesive energies of ice Ih.  
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Table 3.3 The cohesive energies (kcal/mol per water), equilibrium volume V (Å3/water) and their relative errors as 

comparing with experimental values, and density ρ (g/ml) from the 64-water tetragonal ice VIII cell using different 

DFT methods. 

Method Ecohesive Error% 

of Ecohesive 

V0 Error% 

of V0 

!	 

BLYP -8.55 35.73        22.34 14.84 1.34 

BLYP-D3(2b) -15.60 -20.18 18.48 -4.99 1.62 

BLYP-D3(2b+3b) -15.68 -17.87 19.28 -0.87 1.55 

Exp.60 13.30 --- 19.45 --- 1.66 

 

For the high-density ice phase, as displayed in Table 3.3, the original BLYP functional correctly 

predicts that ice VIII is less stable than ice Ih, while BLYP-D3 gives the incorrect ordering. 

Furthermore, the percent of error in Ecoh for ice VIII was increased by 2 times for each method 

compared with the percent of error in Ecoh for ice Ih. This trend was observed in a previous study 

by Galli using PBE and vdW-DF on these two phases49. To clarify the change of vdW 

interactions upon compression of ice, and to enable quantifying the nature of intermolecular 

interactions of water molecules in different phases of ice with different densities, it would be 

interesting to calculate the percent of contribution from vdW interactions in the two phases of ice 

in the future. 

3.3.3 Equilibrium volumes 

The equilibrium volume V0, which is a measure of the density of the phases, is another important 

property of ice to evaluate the performance of different theoretical methods. Table 3.2 shows the 
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values of calculated V0 in ice Ih using different DFT methods compared with experimental value. 

The results for high-density phase ice VIII from BLYP, BLYP-D3 and BLYP-D3(3b) are 

tabulated in Table 3.3. For the BLYP and BLYP-D3 methods, the error of the calculated values 

of V0 of ice VIII was by about 2 times greater than that for ice Ih. However, adding three-body 

interaction energy contributions into BLYP-D3 reduced the error from 1.5% in ice Ih to 0.8% in 

ice VIII.  In addition, both the BLYP-D3 and BLYP-D3(3b) functionals reverse the sign of error 

of V0 and Ecoh in ice VIII, which means the hydrogen bond environment in ice VIII is more 

sensitive to the dispersion force than in ice Ih.  

3.3.4 Bulk modulus 

Having observed the difference between the behaviors of these DFT methods for ice Ih and VIII, 

we further evaluate the performance of these functionals, by calculating their isothermal bulk 

modulus !"		, which is a measure of the dependence (or “resistance”) of the system volume on the 

external pressure. In a second-order Taylor series around V0, the energy can be expressed using 

the Birch-Murnaghan equation of state as48: 

!" V = !" %" + '(
)*(
(%-%"))																																							Equation	3.2	

where B0 is the bulk modulus, omitting the vibrational correction, and the energy E0 was 

obtained for each optimized structure by keeping the volume V fixed. It was shown by Pamuk 

and coworkers that this equation provides a good description of the E vs. V  behavior of Ice Ih48. 

Figure 3.5 plots the zero-pressure molecular volumes that minimize the Kohn-Sham cohesive 

energy Ecoh in each method. These results were fit using Equation 3.2 to obtain B0, and the fitted 

quadratic curves are plotted together in Figure 3.5, with the expressions as well as calculated 
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values of B0 listed in Table 3.4. For ice Ih, the original BLYP functional gives a value B0 in 

close agreement with the experiment value of 13.8 GPa, and the role of dispersion correction is 

not clear in the prediction of the compressibility of ice Ih.  

Figure 3.5 Cohesive energy per water molecule as a function of the molecular volume for ice Ih evaluated with 

different density functionals. (a) BLYP, (b) BLYP-D3, c) BLY-D3 (3b); (d) BLYP-DCACP1, (e) BLYP-DCACP2. 
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Table 3.4 The fitted curves using the second-order the Birch-Murnaghan equation of state and the calculated bulk 

modulus B0 (in GPa) of the 12-water hexagonal ice Ih cell (in kcal/mol per molecule), the error bar of B0 is 

displayed in the parenthesis (calculated from the error of the fitted curve). 

Ice Method Fitted curve B0 

	Ih BLYP 0.0286V"-1.9857V + 21.99		 13.8 (0.55) 

Ih BLYP-D3(2b) 0.0212%&-1.3868% + 7.2875	 9.6 (0.32) 

 Ih BLYP-D3(2b+3b) 0.024%&-1.5614% + 10.15	 10.8 (0.32) 

Ih BLYP-DCACP1 0.0215&'-1.3561& + 5.4938	 9.4 (0.72) 

Ih BLYP-DCACP2 0.0275&'-1.8281& + 14.713	 12.2 (0.71) 

Ih Exp.60 --- 13.861 

 



	 51	

3.4 CONCLUSION 

A detailed study of ice Ih and the high-density proton-ordered phase ice VIII was performed 

using the BLYP functional as well as several dispersion-corrected BLYP functionals. The 

properties considered include the monomer geometry, lattice structures, cohesive energies, 

equilibrium volumes, and bulk modulus. We have made the following conclusions: 

1. The obtained optimized cell parameters of ice Ih and XI using different DFT functionals 

showed that dispersion-corrected BLYP functionals all gave greater values of  HOH angles 

and shorter nearest O-O distance, resulting in stronger hydrogen bonds; 

2. For the cohesive energy and equilibrium volumes, the overall performance of these 

functionals are: BLYP-D3 (2b+3b) > BLYP-D3(2b) ≈		 DCACP2-BYLP > DCACP-BLYP > 

BLYP. 

3. The original BLYP functional was able to accurately predict the bulk modulus of ice Ih, and 

adding dispersion corrections worsened agreement with experiment. It was not clear why 

this was the case.  
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4.0  ROLE OF DISPERSION ON THE PROPERTIES OF LIQUID WATER FROM 

AB INITIO MOLECULAR DYNAMICS SIMULATIONS  

4.1 INTRODUCTION 

 Water is unquestionably the most common yet most unique liquid in the world. The directional 

hydrogen bonds in liquid water results in many anomalous properties of liquid water. Atomic 

simulations of liquid water have been performed with molecular mechanics (MM) force fields, or 

with DFT, in so-called ab initio molecular dynamics (AIMD). The MM force fields are 

parametrized by fitting to experimental or ab initio data, and they cannot capture the quantum 

nature of dispersion force, but simply include them in Lennard Jones pair potentials and 

electrostatic/Coulomb interactions in general. Also, force fields fail to describe processes where 

electronic degrees of freedom are important. AIMD simulations are an improvement over MM 

methods, and they can be performed by Born-Oppenheimer MD (BOMD)62 approximation using 

density functional theory, in which the Kohn-Sham orbitals are optimized to the ground state 

self-consistently at every simulation time step; or by Car-Parinello MD (CPMD)25 that includes 

the electrons as active degrees of freedom, via (fictitious) dynamical variables38.  

Over the years, researchers have carried out AIMD simulations of liquid water and ice 

using different statistical-mechanical ensembles and different system sizes to resolve the 

discrepancies in calculated thermodynamic properties compared with experimental data, such as 
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the radial distribution functions, self-diffusion coefficients, and vibrational properties. While 

MM simulations that can be carried out for 100 ps or longer, AIMD are limited to a timescale of 

2-10 ps. A system size of 50-64 molecules is large enough to eliminate finite-system effects in 

the prediction of these structural properties such as RDFs in the simulation63.  

Pure GGA functionals give over-structured liquid water and makes water diffuse more 

slowly than experiment by one order of magnitude. Hybrid functionals with exact exchange only 

improve the predictions slightly64. This is probably due to the neglect of zero-point energy that 

“activate” the motion. Value of CPMD simulations with dispersion-corrected GGA functionals 

using different approaches such as Grimme’s scheme or effective dispersion-corrected atom-

centered potentials (DCACP) are more promising, especially the corrections to the BLYP 

functional65. Recently, our group has reported two-channel DCACP pseudopotentials: DCACP2 

for correcting BLYP and PBE density functionals for long-range dispersion, and our cluster 

studies showed that binding energies of water dimer and hexamers were significantly improved 

compared to the one-channel DCACP approach50. As described in Chapter 4, the energetics and 

equilibrium volumes of ice Ih and VIII were also improved by the DCACP2 approach. 

Therefore, I was wondering if the success of DCACP2 can be transferred from cluster 

and ice energetics to the thermodynamic properties of water, and we wanted to see if equivalent 

results can be achieved from BOMD simulations. I performed BOMD simulations of liquid 

water under ambient conditions, and treat the vdW interactions in BLYP functional by including 

either DCACPs or Grimmes’ D3 correction scheme. Besides structural properties, i.e., radial and 

angular distribution functions and coordination number, and dynamical properties, e.g., mean-

squared displacement, self-diffusion coefficients, orientational-autocorrelation functions of 

liquid water. I also calculated the dipole moment distributions of liquid water.  
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4.2 COMPUTATIONAL METHODS 

The simulations in this study were carried out using the CP2K program utilizing Born-

Oppenheimer MD with periodic boundary conditions with electronic ground state iteratively 

found in each step, and with the nuclei treated classically. The QUICKSTEP module in CP2K 

employs a Gaussian basis set for the orbitals while the auxiliary plane wave basis used for the 

electron density66. To represent core electrons, the norm-conserving Goedecker-Teter-Hutter 

pseudopotentials are used58. The plane wave cutoff was chosen to be 400 Ry, determined to be 

give converged results from AIMD of liquid water67. As noted in a previous AIMD study of 

liquid water, the basis set TZV2P ( the Gaussian basis set with a triple-zeta valence basis set 

augmented with double (two sets) of d-type or p-type polarization functions) should be suitable 

for calculating the diffusivity of liquid water67. Therefore, we employed this basis set throughout 

this study. The convergence on the wave functions was 10-7 hartree. Calculations were 

performed with the generalized gradient approximation (GGA) functional BLYP54, as well as the 

modified BLYP functional with different dispersion corrections: Grimmes’ D3-correction 

scheme (BLYP-D3)55, Dispersion-corrected-atom-centered potential (DCACP-BLYP)56, and the 

two-channel version (DCACP2-BLYP)50. We refer to ref 56 and ref 50 for the parameters of 

DCACP and DCACP2, respectively.  

I started with a cubic simulation box with 64 water molecules, with the cell dimension of 

12.423	Å		, formed using the Packmol68 package.  This keeps the density of the liquid water at 1.0 

g/cm3 during the canonical (NVT) ensemble simulations. It has been proven that 64 water 

molecules are sufficient to eliminate finite-size effects in simulations69. During the BOMD 

simulations, the nuclear equations of motion have been integrated using a standard velocity 

Verlet algorithm32 with a 0.5 fs time step. For the calculations of dynamical properties (radial 
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distribution functions, dipole, and mean square displacements), the trajectories were stored every 

step. The temperature was adjusted by generalized Langevin equation (GLE) thermostats70, 

which was shown to accelerate the convergence or properties. For all methods used in this study, 

the system was equilibrated under NVT ensemble for 10 ps, and then the production run for data 

collection was carried out for another 10 ps.  

The self-diffusion coefficient Ds is calculated from the slope of the mean-square displacement 

(MSD) versus time using the Einstein diffusion equation32:  

2"#$ = &
' ∆)("), = &

' ) " -)(0) , 																														Equation	4.1	

where t is time, n is the dimensionality chosen to be 3, r(t) is the position of a water molecule at 

time t, and ∆"($)		 is the displacement of a water molecule after time lag t. Least-squares fitting 

can be applied to estimate the slope.  

The orientational relaxation time of liquid water used the definition proposed by Yeh and Mou71 

to describe how fast water molecules are changing their directions: 

!" # = %&[((*+) ∙ ((*+ + #)] 																																		Equation	4.2	

where !" = (%&'-))
" 		 is the second-order Legendre polynomial, and !		 is the unit vector along 

HH,OH or dipole vector of a water molecule. 

The dipole moment of system at time t !(#)		 is defined as the sum of molecular dipole moment of 

water ! " = !$(")' 		, each calculated every step from the maximally-localized Wannier 

Function Center72 as displayed in Figure 4.1.  

For extracting information from trajectories, we used the TRAVIS analyzer73.  
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Figure 4.1 Graphical representation of the Wannier Function Center (WFC) used for calculating the dipole moment 

of each water molecule, with the gray balls representing the positions of four Wannier centers and red-white stick 

representing two O-H covalent bonds in a water molecule. 

 

4.3 RESULTS AND DISCUSSION 

4.3.1 Radial distribution functions 

The radial distribution functions serve as a fingerprint of local structure in condensed phase of 

water. The oxygen-oxygen (gOO), oxygen-hydrogen (gOH), and hydrogen-hydrogen (gHH) radial 

distribution functions obtained from the BLYP-based simulations are plotted in Figure 4.2.  We 

are most interested in gOO, since it is least sensitive to nuclear quantum effects, and some of 

characteristics from these RDFs are tabulated in Table 4.1.  
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Figure 4.2 Oxygen-Oxygen(gOO), oxygen-hydrogen(gOH), and hydrogen-hydrogen(gHH) RDF of liquid water 

obtained from AIMD simulations with a 64-water box using BLYP, BLYP-D3, BLYP-DCACP1, BLYP-DCACP2 

functionals. 
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Table 4.1 Positions r (Å) and heights (gOO) of the first peak and minimum of the  Oxygen-oxygen radial distribution 

functions and the calculated coordination number nOO (r) of liquid water from four BLYP-based methods from 

AIMD simulations of 10 ps at T=300 K,  compared with the neutron scattering experimental data at T = 298 K.  

Method rmax !""#$% 	 rmin !""#$% 	 !""($)	 

BLYP 2.75 3.29 3.31 0.46 4.12 

BLYP-D3 2.81 2.93 3.39 0.66 4.54 

BLYP-DCACP1 2.79 3.11 3.40 0.65 4.56 

BLYP-DCACP2 2.77 3.23 3.21 0.55 4.02 

Exp.74 2.74 2.76 3.39 0.79 4.675 

 
 

The vdW-corrected BLYP functionals including BLYP-D3 and BLYP-DCACP methods predict 

less structured liquid water than BLYP, with the positions of the first peak at around 2.8	Å		 

shifting toward longer distance and with a lowering of the peak. DCACP2 gives almost no 

change for the first peak compared with the original BLYP curve, and it gets the higher first 

minimum compared with the BLYP curve, but not as much. From the first peak of BLYP-D3 and 

BYLP-DCACP, a longer oxygen-oxygen distance rOO between the center molecule with the 

nearest neighbor molecule is observed. The looser structure from the vdW-corrected BLYP-D3 

and DCACP2-BLYP simulations are also manifested in the increase of the local minimum of gOO 

at around 3.3 Å		. The second peak at around 4.5 Å		, shows the rOO between the center molecule 

and its second-coordinate shell water molecules. The DCACPs and D3-corrected BLYP 

functional gives the position of the second peak slightly further than the radius of pure BLYP 

water, indicating that the second shell is pushed outward from the vdW corrections. Overall, 

uncorrected BLYP water has a stronger first peak, and deeper first minimum with respect to the 
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neutron scattering data, and the dispersion corrected functionals give softer structures, and better 

reproduction of the experimental peaks of gOO. The two-channel DCACP2 does not give better 

local structure of liquid water as seen from the oxygen-oxygen RDFs data.  

For the oxygen-hydrogen RDF gOH, as shown in Figure 4.2 (b), the difference of the gOH 

resulting from dispersion corrections are not as significant as shown in gOO, but the first peak at 

around 1.87 Å		 which represents the hydrogen bonds are modified by dispersion correction. Both 

the D3 and the DCACP corrections shift the position of the first peak towards longer distance, as 

also observed in their first peak in gOO. Their height of gOH is also lower compared with the 

BLYP value. This indicates the formation of weaker hydrogen bonds in liquid water as described 

by the dispersion-corrected functionals.  

4.3.2 Coordination numbers and H-bond analysis 

To further characterize the local structure in liquid water, we calculated the coordination number 

nij(r), obtained by integrating gOO up to the first minimum rmin of gOO: 

!"# $ = 4'( $)*"# $ +$,-./
0 																																				Equation	4.3	

As tabulated in Table 4.1, the BLYP-D3 and DCACP-BLYP methods give higher values of the 

average coordination number, in good agreement with the experimental !"" # 		= 4.6 up to rmin 

=3.4 	Å		, and  !"" # 		= 4.3 up to rmin =3.3	Å		 by Skinner and coworkers75. Adding one more 

channel to the DCACP, however, worsens the results. The coordination number of 4.02 from 

DCACP2 method resemble an ice-like structure, where each water molecule is tetra-coordination: 

each oxygen atom is covalently bonded with two hydrogen atoms, and form hydrogen bonds 

with two other hydrogen atoms.  
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Figure 4.3 Snapshots of penta-coordinated water molecules taken from the trajectory of AIMD simulations using the 

BLYP-D3 functional. The fifth water molecule in the first coordination shell stays non-hydrogen-bonded. 

 
In Figure 4.3, we show snapshots of such penta-coordinated water molecules from the 

BLYP-D3 simulations. Besides the two-covalently bonded and two hydrogen-bonded water 

molecules, the fifth coordinated water molecule is non-hydrogen-bonded to the center water 

molecule. The occurrence of the fifth molecule at 3.0	Å		 < ROO <4.0 Å		, does not show up in ice Ih, 

since there are no neighbors for tetra-coordinated water throughout this region. The higher 

coordination number of water is related with the phenomenon of cross-shell penetration (CSP)76, 

an effect that occurs by collapse of the second shell into the region of the first shell, especially 

when external pressure is raised, without significant breaking of H-bonds. This give rise to the 

higher coordination numbers of molecules liquid water, as compared with the tetra-coordinated 

water in ice Ih. A higher coordination number explains the higher density of liquid water 

compared with that of ice Ih. Therefore, the prediction of values of !"" # 		 from the BLYP-D3 

and DCACP-BLYP are consistent with the high-density of liquid water. CSP is also crucial in 

liquid water’s diffusion behavior38, which requires molecules to cross the region 3.0 < ROO < 

4.0	Å		. The correlation between CSP and diffusion will be expanded in the next future sections. 
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4.3.3 Orientational self-correlation 

The rotational dynamics of liquid water can be characterized by the orientational auto-correlation 

function given by Equation 4.2. The direction of a water molecule is chosen to be that of its 

dipole vector. In Table 4.2, we show the values for the time constants together with the 

experimental times77 at T = 300 K. The predicted value of the second order relaxation time !"#$		 

from the BLYP method is slower by about 56% compared with experimental relaxation time of 

1.92 ps. I expect that the trend of the time constants be consistent with the radial distribution 

functions: pure BLYP functional gives “harder” structures from RDFs, and it also gives higher 

values of time constant for water reorientation, leading to slower rotation dynamics. On contrary, 

vdW-corrected BLYP functionals give rise to faster water rotations.  

Table 4.2 Time constants τ (ps) of liquid water from orientational autocorrelation function predicted by AIMD 

simulations using different functionals at T = 300 K. 

Method !"#$	 

BLYP 3.00 

BLYP-DCACP1a 1.71 

Exp.77 1.92 

aValue taken from reference65; 
 

4.3.4 Self-diffusion coefficient 

Whereas the RDFs are characteristics of time-averaged local structures, the self-diffusion 

coefficient Ds is an important dynamical property to describe the diffusion mobility of water 

molecules. In computer simulations, either the Green-Kubo method or the Einstein method can 
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be used to obtain Ds. In the Green-Kubo method, Ds is calculated from the integral of velocity 

auto-correlation function to infinite time. In the Einstein method, Ds is the 1/6 of the slope of 

mean-square displacement (MSD) versus time curve. The two methods should give consistent 

results, and we employ the Einstein method in our calculations, following computational 

methods stated in section 7.2. In Figure 4.4, we plot the MSD versus time curves from the four 

methods at T = 300 K. MSD from pure BLYP functional is considerably smaller whereas BLYP-

D3 and BLYP-DCACPs gives about 2-fold to 2.5 fold improvement, although still smaller than 

the experimental curve. The corresponding Ds values are tabulated in Table 4.3, with all 

calculated values being smaller than the experimental value of 0.23 Å"/$%		.  Based on the 

relaxation time scale of hydrogen bonds (as fast as ~1.0 ps) in liquid water as calculated in 

section 4.3.3, the diffusion of water involves frequent cross-shell penetration, or the reorientation 

of hydrogen bonds. 
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Figure 4.4 MSDs as obtained for AIMD simulations with the BLYP-D3, PBE-D3, BLYP-DCACP1, BLYP-

DCACP2 functionals at T = 300 K indicated by solid, dotted, dashed, and long dashed lines, respectively. 

 
Table 4.3 Calculated self-diffusion coefficients Ds of liquid water, in Å2/ps from an AIMD simulation of 10 ps at T 

= 300 K. 

Method Ds 

BLYPa 0.0186 

BLYP-D3a 0.05 

BLYP-DCACP1a 0.054 

BLYP-DCACP1b 0.15 

BLYP-DCACP2a 0.056 

Exp.c  0.23 

aSimulations carried out at T = 300K. 
bValue taken from reference65, and simulations of the liquid water  were carried out under NVE ensemble with 
hydrogen replaced by deuterium of mass=2.0 amu, the average temperature during the simulation was 308 K. 

eExperimental measurement carried out at T =298 K. 
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As noted by Gillan and coworkers that the value of Ds correlates with the height of gOO(r) 

at the first minimum: !""#$% 		38. This is also observed in my study. The experimental gOO(r) 

minimum !""#$% 		 at ambient condition (at Roo = 3.4 Å		) is 0.79, and this gives the Ds of 0.23 Å"/$%		. 

The pure BLYP functional give the smallest value of !""#$% 		: 0.46, and it also predict the smallest 

value of Ds. When dispersion corrections are added, the !""#$% 		 is increased, and liquid water is 

more diffusive as predicted from the dispersion-corrected methods, compared with the BLYP 

results. In our study,  the improvement afforded by DCACP-BLYP is not as much as the a 

previous calculation of Ds using BLYP-DCACP65. Therefore, besides the conclusion that 

dispersion corrections give better description of the dynamical properties of liquid water at 

ambient conditions, it is also possible that protonic quantum effects play a significant role under 

this temperature. This may explain the difference between our results using DCACP-BLYP and a 

higher value obtained by Lin and coworkers that use deuterated hydrogen for the DCACP-BLYP 

method65. 

4.3.5 Distribution of molecular dipole moment 

The value of dipole moment of a water molecule in the liquid phase has long been controversial, 

since there is no method to measure it directly. Accurate theoretical predictions are therefore 

quite helpful, and previously reported values from calculations ranged from 2.6 to 3.0 D78, either 

using QM or MM methods. Based on an x-ray measurement of the structure factor for water, 

Badyal and coworkers suggested the dipole moment of a liquid-phase water molecule to be 

2.9±		0.6 D79. In Figure 7.10, we presented the distributions of the total dipole moment of the 

water molecules in the liquid phase from the four BLYP-based methods. Pure BLYP water gives 

a distribution centered at 3.23 D, spanning from 1.44 to 5.52 Debye. After correcting for 
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dispersion forces, both BLYP-D3 and DCACP-BLYP methods give smaller average value of 

3.04 D. However, BLYP-D3 gives a wider distribution of 4.07 D, comparing with the range of 

3.62 D from DCACP-BLYP method, owing to the larger monomer geometry fluctuation. 

DCACP2-BLYP method gives a sharper distribution with mean value of 3.11 D, therefore only 

slightly improving the value of average molecular dipole moment of liquid water. 

Table 4.4 Statistics of molecular dipole moment µ (in Debye) of liquid water from AIMD simulations at T = 300 K, 

using BLYP, BLYP-D3, BLYP-DCACP1 and BLYP-DCACP2 functionals, comparing with an experimental value 

at T = 300 K from X-ray diffraction measurement79. 

Method Mean Stdev Min Max 

BLYP 3.23 0.334 1.44 5.52 

BLYP-D3 3.04 0.337 1.35 5.42 

BLYP-DCACP1 3.04 0.309 1.62 5.24 

BLYP-DCACP2 3.11 0.270 2.04 4.44 

Exp.79 2.9 0.6   

 

Figure 4.5 Distribution of molecular dipole moment of liquid water obtained from AIMD simulations using a 64-

water cubic box with density of 1.0 g/cm3, with the BLYP-D3, BLYP-DCACP1 and BLYP-DCACP2 functionals. 
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As the DCACPs do not affect the electronic structure, including multipoles of the 

monomers56, the improvement of molecular dipole moment comes from the influence on the 

liquid water structure from the DCACPs.  All the values are greater than the experimental value, 

consistent with the overestimation of polarizability by semi-local density functionals, which is 

not eliminated by dispersion corrections. Indeed, in a previous study of ice Ih, the molecular 

dipole of water molecules from D3-corrected and original GGA functionals were in qualitative 

agreement69. Furthermore, comparing with predictions of 2.67 D  from a recent SCS-MP2/aug-

cc-pvDZ BOMD simulation80, the experimental value 2.9 D seems overestimated.  

4.4 CONCLUSION 

To summarize, I have carried out BOMD simulations of liquid water at ambient conditions under 

canonical ensemble, using density functional theory with the GGA BLYP functional. The 

empirical DCACPs approach, and Grimmes’ vdW corrections based on pairwise-potential are 

employed to correct for the BLYP functional that fails to describe the dispersion force. 

The radial distribution functions of liquid are improved by including vdW corrections. 

The predicted value of the height of the first minimum in gOO(r) are correlated with the 

calculated self-diffusion coefficient. This is consistent with previous observations. VdW-

corrected functionals also give higher average  coordination number !"" # 		, that are related with 

the higher density of liquid water compared with that of tetra-coordinated ice Ih. The over-

polarization of GGA functional which leads to higher molecular dipole moment of water in the 

liquid, is only slightly improved by including vdW corrections.  
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Future studies calculating the role of nuclear quantum effects (NQE) and tunneling in 

hydrogen bond of liquid water and ice Ih, from AIMD simulations using these dispersion-

corrected functionals would be quite helpful. It is desirable to assess these functionals on their 

accuracy for describing both liquid water and small clusters.  
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5.0  CORRECTING FOR DISPERSION WITH PSEUDOPOTENTIALS FOR INERT 

GAS DIMERS 

5.1 INTRODUCTION 

5.1.1 Dispersion corrections in DFT 

The London dispersion force arises from long-range correlated charge fluctuations between 

electrons. It plays a critical role in intermolecular interactions, such as the adsorption of 

molecules on surfaces (physisorption), the cohesion of solids and liquids, and in establishing the 

tertiary and quaternary structures of biomolecules81. Kohn-Sham density functional theory (DFT) 

serves as a popular method to study the electronic structure of many-electron systems since it 

provides a good balance between the accuracy and computational cost. However, the C6R-6 

asymptotic behavior of long-range dispersion energies is not described by local and semi-local 

approximations in DFT. Many strategies have been suggested to overcome this shortcoming55, 82. 

Roughly, these methods can be classified into three categories: 

1) vdW-DF methods. 

These methods incorporate the long-range correlation interactions !"#$#-&$'(& 			via a non-local 

correlation kernel Φ ", "' 		 and integrate over the electron densities at two points (r and r’)  as 

shown in Equation 5.182m, 83: 
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!"#$#-&$'(& = * + Φ +, +' * +' /+/+'																										Equation	5.1	

The vdW-DF non-local functionals represent the exchange-correlation energy (Exc) functional as  

!"# $ = !"&&' + !#)*' + !+,-,-/-#0/ 																														Equation	5.2	

where !"##$ 		 represents the exchange energy from a GGA functional, !"#$% 		 represents the short-

range correlation energy from an LDA functional. The non-local correlation kernel Φ ", "' 		 is a 

functional of the density and its gradient (vdW-DF2). The downside of vdW-DF functionals is 

that they are computationally expensive. 

2) DFT+D methods. 

These methods add atom-atom !"#$%#$-"		 (and possibly also !"#$%#$-"		) corrections to the DFT energy. 

The most recognized such procedure is the DFT-D scheme being that of Grimme55, 82e, 82h, 84.  In 

DFT+D methods, the total KS energy from an exchange-correlation functional is augmented 

with a simple dispersion correction in the form of  

!"#$% = -() (+)#,-#,-))/"(-#,)0
,1#23

0-3
#13 																										Equation	5.3	

where N is the number of atoms, !"# 		 is the distance between atom i and atom j, !"#$ 		 are pairwise 

dispersion coefficients, !" 		 is a damping function to avoid the divergence of dispersion energy at 

short range, and !"		 is a global scaling factor depending on the density functional used. Besides 

this, Tkatchenko and coworkers’ vdW-TS scheme employs the environment dependent !"#$ 		 terms 

evaluated from reference atomic polarizabilities and reference atomic !"		 coefficients82j: 

!"#$ = &'())'(**
+*,
+),
'())-

+),
+*,

'(**
																																													Equation	5.4	

The free-atom reference values of !"#		 and !"## 		 are taken from a self-interaction corrected time-

dependent DFT (TDDFT) calculations of Chu and coworkers85. Their recent fully self-consistent 

implementation was shown to affect molecular multipoles for polarizable fragments86.  
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3) Atom-centered potential-based methods (DCACP). 

These methods correct the long-range electron density by use of atom-centered pseudopotentials. 

This approach was initiated by Rothlisberger and co-workers56, 87, using atom-centered potentials 

calibrated against MP2 binding energies to describe effects of dispersion in DFT calculations 

using GGA functionals. The original implementation of the DCACP method employed a single 

angular momentum channel (generally the l = 3 channel) and was implemented for the PBE88, 

BLYP54 and Becke-Perdew89 functionals. Although the approach has proven to be quite 

successful at predicting equilibrium geometries and binding energies for a wide range of weakly 

bound complexes, the energy correction due to the inclusion of DCACPs falls off much faster 

than R-6 at large distances56, 87a. 

5.1.2 Multi-channel DCACP 

The DCACP approach was extended to use more than one angular momentum channel by 

Tarvernelli and coworkers in 200990. Their results showed for the case of (H2)2 that the large R 

behavior of DCACP calculations can be vastly improved by employing three angular momentum 

channels (p, d and f) rather than one. More recently, our group introduced for both BLYP and 

PBE functionals two channel (d and f) DCACPs for C, N and O atoms, as well as for H50. These 

were referred to as DCACP2 potentials and were demonstrated to give significantly improved 

interaction potentials for the S22x5 set91 of dimers compared to the results of one-channel 

DCACP calculations, therefore motivating the study in this paper.  

The DCACP2 potential are implemented via the non-local part of the Goedecker-Teter-

Hutter (GTH) pseudopotentials58 as is the case for the original DCACP potential: 
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!" #" $, $' = !"( $ )"(+; -.)-0)"(+'; -.)!"(* ($')2"
(3-" 																Equation	5.5	

In Equation 6.3, Ylm denotes a spherical harmonic, and pl is a normalized projector onto the space 

of each angular moment l defined as 

                                              	"#(%; '() ∝ %#+
- -

.
./..		                                        Equation	5.6	

The parameter !"		 scales the amplitude of the pseudopotential, and !"		 controls the location of the 

projector’s maximum from the atomic center. 

In this paper, the DCACP2 method when used with the BLYP functional is parameterized 

to describe the two-body interaction energies of He, Ne and Ar. The charge density distortions of 

the rare-gas dimers induced by the DCACP2 potential were examined at long separations. We 

also calculated the atomic dipole moment induced by DCACP2, and it compared it with the 

dispersion dipole moment of two interacting Drude oscillators parametrized to Ar recently 

studied in our group92. Finally, for investigating the origin of the success of the DCACP2 method, 

analysis of the interaction energy of Ar2 was performed. 

5.2 COMPUTATIONAL METHODS 

5.2.1 Setup for CP2K calculations 

The DFT calculations used in the fitting and testing of the DCACP2 method were carried out 

using the CP2K 2.6/QUICKSTEP program66, 82l. The hybrid Gaussian and plane-wave (GPW) 

approach implemented in CP2K was employed for all calculations in this study. In this approach, 

the Kohn-Sham orbitals were expanded in Gaussian-type functions, and an augmented plane-
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wave-type approach was used to represent the electronic density93. Corrections for basis set 

superposition error (BSSE) were applied using the Boys and Bernardi counterpoise procedure94 

to the two-body interaction energies. The DFT calculations used the GTH pseudopotentials 

reported in ref 58. The calculations used the Gaussian quadruple-!		 valence QZV3P basis sets57 

generated for use with the GTH pseudopotential, augmented by three polarization functions 

taken from the all-electron correlation-consistent cc-pVQZ basis set of Dunning95. The 

supplemenetal polarization functions were chosen as the lowest angular momentum not occupied 

by the atom (p-channel for helium and d-channel for neon and argon). Then, a set of diffuse 

functions taken from aug-cc-pVQZ basis set were added. The diffuse functions of s, p, and d 

channels were chosen for helium and argon, and of d channel was chosen for neon, as used in the 

original Dunning basis set95.   

The calculations on the helium and neon dimers were carried out in a box of 10*10*15 

Å3, and for the argon dimer the box was 10*10*25 Å3 with the two atoms locating symmetrically 

with respect to the center of the box along the z-axis. The threshold for the SCF convergence was 

chosen to be 10-9 Hartree. The plane wave cutoff Ecut was chosen to be 2000 Rydberg to 

guarantee convergence of the energy. The convergence of the interaction energies with respect to 

box sizes and cutoffs was confirmed. The dimer systems were computed under non-periodic 

conditions, and the reciprocal space-based method by Martyna and Tuckerman96 was used for 

solving the Poisson equation when treating the long-range forces in the molecules. 
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5.2.2 DFT-SAPT calculations 

The symmetry-adapted intermolecular perturbation theory interaction energy using density 

functional theory orbitals (DFT-SAPT)97 interaction energy is decomposed into separate terms 

defined by various physical effects: 

     !"#$%&'( = !*+,(.) + !1234(.) + !"#5
(6) + !12347"#5

(6) + !5"8*
(6) + !123475"8*

(6) + 9(:;)		   Equation	5.7	

where !"#$(&) 		 and !"#$%(') 		 are the first-order electrostatic and exchange energies, !"#$
(&) 		 and !"#$%

(') 		 are 

the second-order induction and dispersion energies, !"#$%&'()
(+) 		 and !"#$%&'()*

(,) 		 are their exchange 

counterparts98. Higher order induction interactions are described by !(#$)		. The second-order 

DFT-SAPT calculations were carried out using the MOLPRO99 program version 2012.1. The 

calculations use the aug-cc-pVQZ basis set. Density-fitting (DF) using Weigend’s cc-pVQZ JK-

fitting basis set100 was employed for the first-order terms, the induction as well as the exchange-

induction contributions. For the dispersion and exchange-dispersion contributions, Weigend and 

co-worker’s aug-cc-pVTZ MP2-fitting basis set101 was used.  

5.2.3 Parametrization of DCACP2-BLYP 

In determining the parameters in the DCACP2-BLYP potentials, the potential energy curves of 

the homonuclear dimers were fit to interaction energies at several bond lengths from CCSD(T)102 

calculations. For the parametrization, the genetic algorithm (GA)103 was implemented. GA is a 

heuristic solution-search technique, that evolves a best set of parameters by mimicking the 

process of natural selection103b. We chose to use GA because the optimization of the parameter 

set involving four parameters ({!" # = 2 , !' # = 2 , !" # = 3 , !'(# = 3)		} implies multiple 



	 74	

possible local minima, and the genetic operations (mutations and crossover) in GA sometimes 

led to a different local minima, therefore helping search a wider range of space on the 4-

dimensional grid. When converged result is achieved, the following fitness function along the 

one-dimensional potential-energy surface (PES) is minimized: 

fitness= "#$%&'&()*+,-(-"#$
&&/%(1)

"#$
&&/%(1)

3
456 		                              Equation	5.8	

where Nj is the number of data points associated with each interaction energy in the fitting set, 

and M is the number of entries in the fitting set. A flowchart describing the sequence of steps 

employed in this work for optimization of parameters in DCACP2-BLYP functional is depicted 

in Figure 5.1. For the optimization of DCACP2-BLYP parameters of these dimers, it took 

around 20 generations to achieve converged results. 

The reference CCSD(T) calculations were carried out with the aug-cc-pV5Z basis set95, 

104 using the MOLPRO program99. The optimization of the DCACP2-BLYP parameters was 

carried out in the CP2K 2.6/Quickstep program105. All optimizations were performed using a set 

of Python scripts that handle job submissions and data processing.  
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Figure 5.1 Flowchart describing the sequence of steps employed in this work for optimization of DCACP2-BLYP 

parameters. 

Evaluate !" for each 
parameter set (i=1, 2, 3…26).

Rank parameter set in ascending order 
of !" and select 45% sets with lowest 

values of !".

Perform genetic 
operations (mutation, 

crossover) on the 45%
best parameter sets.

Return 26 best 
parameter sets 

with lowest 
values of !".

!" converged?
��

���

Generate reference Data: 
CCSD(T) binding energies 

Create a random population of
26 possible parameter sets.

Optimized parameter set.

 

5.3 RESULTS AND DISCUSSIONS 

5.3.1 Optimized DCACP2-BLYP parameters 

For He2 and Ar2, the DCACP2 potentials were fit to CCSD(T) interaction energies at distances 

from 0.8*equilibrium distances (Req) to 2.0*Req in steps of 0.2 Å. In the case of Ne2, difficulty 

was encountered in converging the optimization using the genetic algorithm, and the parameters 

in the DCACP2 were determined from a 4-dimensional grid of the four parameters. In this case, 

the fitting was to CCSD(T) interaction energies at 1.0*Req, 1.5*Req and 2.0*Req. The parameters 
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generated for helium, neon and argon for use with the GGA functional BLYP are listed in Table 

5.1, and the corresponding parameters for the original single-channel DCACP are given in Table 

5.2, for comparison. 

Table 5.1 DCACP2-BLYP parameters in atomic units. 

Channels σ1 [10-4] σ2 

Hel=2 -0.487 7.726 

Hel=3 -3.975 2.368 

Nel=2 -6.600 2.728 

Nel=3 -2.400 3.400 

Arl=2 -3.776 4.820 

Arl=3 -13.084 2.590 

	
Table 5.2 DCACP-BLYP parameters in atomic units56. 

 

σ1 [10-4] σ2 

He -3.916 2.395 

Ne -6.412 2.481 

Ar -12.960 2.775 

 

The radial terms in the DCACPs are plotted in the form of - "#
$
%&'())		 in Figure 5.2. 

Compared with the single-channel DCACP (l = 3) parameters, the addition of the l=2 channel in 

DCACP2 causes the potential to decay more slowly as R increases.  
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Figure 5.2 Plot of the radial terms- "#
$
%&' ( 		 of the DCACP-BLYP and DCACP2-BLYP methods for the argon 

dimer. 

	

 

5.3.2 Binding energy curves for dimers 

The improvements afforded by the DCACP2-BLYP method for the three homonuclear dimers 

used in the fitting of pseudopotentials is illustrated in Figures 5.3, 5.3 and 5.4. As a comparison, 

the equilibrium bond lengths Req and binding energies at the equilibrium distances Emin from 

different methods are also tabulated in Table 5.3. 
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Figure 5.3 Interaction energy of the argon dimer as function of the interatomic distance 
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Figure 5.4 Interaction energy of the helium dimer as function of the interatomic distance. 
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Figure 5.5 Interaction energy of the neon dimer as function of the interatomic distance. 
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Table 5.3 Bond-lengths Req (in Å) and binding energies Emin (in kcal/mol) of rare gas dimers. 

Method He2 Ne2 Ar2 HeNe HeAr NeAr 

 Emin Req Emin  Req Emin Req Emin Req Emin Req Emin  Req 

Reference 0.020 3.00 0.082 3.20 0.249 3.80 0.041 3.03 0.057 3.48 0.134 3.49 

PBE 0.073 2.75 0.111 3.11 0.127 4.00 0.095 2.94 0.085 3.44 0.125 3.55 

BLYP -- -- -- -- -- -- -- -- -- -- -- -- 

DCACP-BLYP 0.017 3.08 0.076 3.10 0.237 3.85 0.040 3.05 0.072 3.45 0.123 3.48 

DCACP-PBE 0.019 3.05 0.070 3.18 0.239 3.83 0.039 3.10 0.080 3.45 0.137 3.50 

DCACP2-BLYP 0.020 3.00 0.082 3.15 0.248 3.80 0.034 3.10 0.060 3.50 0.170 3.48 

 

The potential energy curves calculated using the DCACP2-BLYP method more closely 

reproduce those from the CCSD(T) calculation than do those obtained using the original DCACP 

approach. Particularly noticeable is the improvement at distances between ~ Req and 1.5*Req. 

In order to assess the transferability of the DCACP2-BLYP potential to mixed inert gas 

dimers, we calculated the binding energy curves for the three heteronuclear dimers, displaying 

the results in Figures 5.6, 5.6 and 5.7. As in the homonuclear dimers, the DCACP2-BLYP 

method more closely reproduces the CCSD(T) curves of the helium-neon, helium-argon and 

neon-argon at longer distances than does the DCACP-BLYP method.  
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Figure 5.6 Interaction energy of the helium-neon dimer as function of the interatomic distance. 
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Figure 5.7 Interaction energy of the helium-argon dimer as function of the interatomic distance. 
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Figure 5.8 Interaction energy of the neon-argon dimer as function of the interatomic distance. 
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5.3.3 Reproducing the long range R-2n behavior 

Because the dispersion force is relatively weak, we can describe it using perturbation theory. The 

long-range dispersion energy Edisp(R) between two neutral atoms or molecules A and B in their 

ground states can be expressed as the function of their inter-atomic distance R: 

!"#$% & = 	 - *+,+ -
*-
,- -

*./
,./ -⋯																																		Equation	5.9	

where C6, C8 and C10 are the leading-order molecular dispersion coefficients, describing dipole-

dipole interactions, dipole-quadrupole interactions, dipole-octupole and quadrupole-quadrupole 

interactions, respectively. The !"#"		 term dominates for sufficiently large R. The Cn coefficients for 

helium, neon and argon, taken from the literature106, are tabulated in Table 5.4.  

 

Table 5.4 The experimentally determined C6, C8 and C10 coefficients for helium, neon and argon (in atomic units 

units)106. 

Element C6 C8 C10 

He 1.4610 14.118 183.69 

Ne 6.4470 96.500 1520.0 

Ar 63.500 1510.0 48,000 

To further examine if the behavior of DCACP2-BLYP accurately reproduces the correct !"#"		 

behavior at distances longer than Req, the interaction energies are compared with the 

experimentally determined dispersion contribution from the C6, C8 and C10 terms, as displayed in 

Figures 5.9, 5.10 and 5.11.  
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Figure 5.9 Correction to BLYP interaction energy by the DCACP methods compared to experimental C6R-6, C6R-

6+C8R-8, C6R-6+C8R-8+C10R-10 terms, as well as dispersion energy from DFT-SAPT calculations for argon dimer. 
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Figure 5.10 Correction to BLYP interaction energy by the DCACP methods compared to experimental C6R-6, C6R-

6+C8R-8, C6R-6+C8R-8+C10R-10terms, as well as dispersion energy from DFT-SAPT calculations for neon dimer. 
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Figure 5.11 Correction to BLYP interaction energy by the DCACP methods compared to experimental C6R-6, C6R-

6+C8R-8, C6R-6+C8R-8+C10R-10  terms for helium dimer. 
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Take argon as an example, as shown in Figure 5.9, the interaction energy contribution of 

argon dimer is shown for both the DCACP and DCACP2-corrected BLYP functional, as well as 

the !"#"		 and plus the higher-order terms calculated using the experimentally determined Cn (n=6, 8, 

10) coefficients in Table 5.4 and the dispersion energies obtained from the  DF-DFT-SAPT 
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calculations. It is observed that for distances of the two atoms less than equilibrium distance at 

3.8 Å, the DCACP and DCACP2 methods yield similar interaction energy contributions, while 

starting from about 4.0 Å, the interaction energy curves of the two methods start to differ. In the 

case of DCACP, an exponential decrease of the argon-argon interaction energy is observed, 

while the DCACP2 interaction energy curve decays approximately as !"#		 for distances between 

4.0 and 6.0 Å		, and reproduces the dispersion energy contribution from the DF-DFT-SAPT 

energies. Then I checked the binding energy curve of DCACP2-BLYP at distances greater than 

6.0	Å		 for argon dimer, and compared it with the !"#"		 curve.  

As shown in the magnified plot in Figure 5.12, the binding energy curve of DCACP2-

BLYP potential in the range of 6.0-10.0 Å		 falls more rapidly than !"#"		. Therefore, the DCACP2-

BLYP potential for argon can only accurately reproduce the !"#"		 dispersion energy for interatomic 

separation up to 6.0 Å		, and falls off more rapidly at longer distances. 
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Figure 5.12 Binding energy curve of DCACP2-correced BLYP potential for argon dimer, its exponential fitted curve 

as well as the 
!"
#"		  curve as a function of the interatomic distance R in the region of 6.0-10.0Å.	

Ar-Ar distance (Angstrom)
5 6 7 8 9 10

E
in

t (k
ca

l/m
ol

)

-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

DCACP2-BLYP
C6/R6

	



	 91	

5.3.4 Electron density distortions 

To evaluate the electron density distortion due to the inclusion of the DCACP2 terms, we 

considered electron density differences for a dimer separated along the z-axis as a function of the 

interatomic distance z by integrating over the corresponding orthogonal x-y planes, i.e.: 

∆"#$%$&'()*+& , = 	 /0/1["#$%$&' 3 -")*+&(3)]																		Equation	5.10 

In Figure 6.11, we computed this integrated electron density difference of argon dimer 

with the atoms separated by 17.0 Bohr, a distance long enough that the dispersion energy 

dominates the interaction energy. The locations of the two argon atoms are represented by the 

blue vertical lines. When the DCACP2-BLYP potential to atom A only (located at z = 15.0 Bohr) 

as shown in Figure 5.13 (a), the electron density on atom B with uncorrected BLYP potential 

(located at z = 32.0 Bohr) is distorted compared with that of the original dimer without the 

DCACP2 correction, with the accumulation of charge pointing toward atom A. In Figure 5.13 

(b), both of the argon atoms have the DCACP2 terms, and this gives rise to the redistribution of 

!(#)		 on each atom caused by the DCACP2 potential centered the other one. Two accumulative 

peaks are developed in the region between the two atoms due to the inclusion of DCACP2 

potential. This accumulation of charges(!-)		 reflects a dipole moment on each atom is formed, 

with the negative end pointing toward the other atom. Therefore, there is an attraction between 

each displaced nuclei (!+)		 and its own distorted density(!-)		, as depicted in Figure 5.14.  
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Figure 5.13 Integrated electron density differences ∆" # = %&%'[)*+,+-./012 # -	)567-(#)]			 in atomic units 

(a.u.) along the z-axis for the argon dimer with the atoms separated by 17.0 Bohr. The vertical blue lines show the 

positions of the argon atoms, locating at z = 15.0 bohr and z = 32.0 bohr, respectively.  a) the DCACP2-BLYP 

potential only exerts on argon atom A. b) both argon atoms have been added the DCACP2-BLYP potential. 
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In Feynman’s famous 1939 paper107, he predicted that the long-range dispersion 

interaction between two atoms leads to a permanent dipole moment on each atom, with the 

negative end of the dipole pointing toward each other; and that it is the attraction between the 

displaced nuclei with its own distorted electron density that give rise to net attraction of 

dispersion. This Feynman picture is depicted in Figure 5.14. 

Figure 5.14 Depiction of Feynman’s observation for the attraction between the nuclei and its own distorted electron 

density that give rise to the dispersion between two atoms at long separation R. 

	
	

		"+											"	-		 "	-								"	+		

R>>atomic	radii	

 

Feynman also observed that the permanent dipole acquired by each atom due to 

dispersion display an R-7 dependence on the internuclear distance R. Therefore, we calculated the 

dispersion-induced dipole from DCACP2 for argon, and compared it with the expression of the 

dispersion dipole for coupled Drude oscillators from a recent study of our group92. The 

expression of dispersion-induced dipole moment of atom B induced by atom A is calculated to be 

(retaining terms through R-7): 

                                                            !" = - %
&"''''( )*

+, 		                                         Equation	5.11	

where !" 		 is the static dipole polarizability of atom A, and !""""# 		 is the zzzz component of the 

static dipole-dipole-quadrupole hyperpolarizability of B, and the value of !"		 is calculated to be 

1.036 a.u. as from !		 and the dispersion coefficients C6 with the equation !" = $
% &

%'(.		 Plugging 

the value ! = 11.07	(. ).		 and !"""" = −167.5	+. ,.		 for argon108, an !-#		 curve of the dipole 
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beyond the overlap region of argon dimer can be obtained, and it matches quite well with the 

dispersion-induced dipole on atom B calculated from DCACP2, depicted in Figure 6.13. The 

induced dipole dind on atom B results from the DCACP2 potential on atom A.  

Figure 5.15 Dispersion-induced permanent atomic dipole moment on a single argon atom of argon dimer by the 

inclusion of the DCACP2-BLYP potential, as function of atomic separation. 

 

5.3.5 Analysis of argon dimer interactions 

Given the change in the charge distribution, one can calculate the dispersion energy by use of the 

electrostatic Hellmann-Feynman theorem107. However, DFT calculations do not involve this step, 

leading one to ask why the electron density distortion induced by the atom-centered empirical 

potential gives an energy correction that closely mimics the dispersion energy. We explored two 

possibilities:1) That this gives a change in the atom-atom interactions that goes approximately as 

1/R6; 2) That it is the result of the lowering of the energy of one atom due to the additional long-

range attraction from the other atom. Our calculations show that the electrostatic interactions 

resulting from the coupling of the atomic multipoles is orders of magnitudes smaller than the 
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energy changes due to dispersion correction, and we only display the multipoles in Table 5.5 and 

Table 5.6. Therefore, we have ruled out the first possibility and we are now going to test the 

second possibility that the extra binding afforded by DCACP2 comes mainly from the fact that 

the terms in the DCACPs exert an attractive potential on remote atoms.  

Table 5.5 The permanent distributed multipole moments (in atomic units) for argon dimer at different separations, 

from GDMA2 program using MP2 densities calculated with Gaussian09 program. 

R (Å) q !"#	 !"#	 

5.0 0.0E-05 -0.03517 -0.33084 

6.0 0.0E-05 -0.01802 -0.20343 

7.0 0.0E-05 -0.00929 -0.12266 

8.0 1.0E-05 -0.00491 -0.07436 

9.0 1.0E-05 -0.00269 -0.04588 

10.0 0.0E-05 -0.00154 -0.02906 

Note: The spherical tensor representation of the quadrupole is employed. For conversion into Cartesian 

representation: !"# = %&		, !"# = Θ&&		. 

Table 5.6 The induced atomic dipole (dind), induced quadrupole moment from induced dipoles (Qd-d), and the net 

induced quadrupoles (Qind) of dimers with and without DCACP2-corrected BLYP functionals in atomic units. 

R(Å		) dind Qd-d Qind 

5 2.7045E-04 0.01022 -0.003237 

6 9.4898E-05 0.0043 -0.001357 

7 3.9349E-05 0.0021 -6.4349E-04 

8 1.3173E-05 0.0008 -2.4741E-04 

9 3.1280E-06 2.1280E-04 -6.7028E-05 

10 5.1543E-07 3.8961E-05 -1.2027E-05 
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To check this, we calculated the interaction energies of the BLYP and DCACP2-BLYP 

argon dimers separated at long ranges 5.0, 6.0, 7.0, 8.0, 9.0 and 10.0 Å, region where electron 

overlap between the two argon atoms is negligible. As tabulated in Table 5.7, DCACP2-BLYP 

value of the binding energy of Ar2 decay slower at these distances, compared with the single-

channel DCACP-corrected binding energies. Both the original BLYP functional and single-

channel BLYP-DCACP method give repulsive values in this region, and our two-channel 

DCACP2 method corrects the binding energies much better in this region. This leads to a 

lowering of the binding energy of argon dimer due to the additional long-range attraction from 

the DCACP2-BLYP method. 

Table 5.7 The binding energy of argon dimer with and without DCACP2 correction, in kcal/mol. 

R(Å		) EBLYP EDCACP2-BLYP EDCACP-BLYP 

5 0.06463 -0.05710 -0.02447 

6 0.01443 -0.02196 0.00565 

7 0.00188 -0.00941 0.00188 

8 0.00000 -0.00251 0.00000 

9 0.00000 -0.00063 0.00000 

10 0.00000 0.00000 0.00000 

5.4 CONCLUSIONS 

We have parametrized two-channel dispersion-corrected atom-centered potentials for He, Ne and 

Ar, expanding the DCACP2 library from our previous work. The implementation has been made 

for the BLYP density functional through the addition of terms to the Goedecker-Teter-Hutter 

type pseudopotentials. The DCACP2 approach performs much better than does the single-
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channel DCACP method for describing the interaction energies of the inert gas dimers, at 

distances appreciably greater than Req. We also examined the atomic density distortion caused by 

the DCACP2-BLYP potential, and charge accumulation in the region between the two atoms is 

observed. Work is in progress to i) test the DCACP2 in combination with exchange correlation 

functionals other than BLYP, ii) to explicitly include in the Hamiltonian three-body interaction 

energies in the penalty functional, and iii) to establish a comprehensive library of DCACP2 

potentials for wider range of elements.  
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6.0  CONCLUSIONS AND FUTURE WORK 

6.1 MAIN CONCLUSIONS OF THIS WORK 

In this thesis, to better understand the structural, energetic, and dynamics properties of condensed 

phases of water including the proton-disordered ice phase ice Ih and liquid water, I have 

employed classical molecular dynamics as well as periodic DFT calculations in the calculations 

of several key properties of ice Ih and liquid water.  

The main conclusions of this work are: 

1) The role of polarizability is important for determining of dielectric constant of ice Ih. In 

addition, polarizable water force fields that employs three polarizable sites per molecule 

perform better than those with a single polarizable site; An initial PIMD simulation 

showed that nuclear quantum effects at T = 100 K cause an average elongation of the O-

H bond length in ice Ih by 29 %, and thus should not be neglected. 

2) I found that several dispersion-corrected BLYP functionals give better descriptions than 

the original BLYP functional of monomer geometry, lattice dimensions, cohesive 

energies, equilibrium volumes as well as of the bulk modulus of the ice Ih unit cell.  

3) I found that AIMD simulations using several dispersion-corrected BLYP functionals give 

structural properties and rotational dynamics of liquid water in better agreement with 

experiment than do simulation with the BLYP functional.  
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4) By parametrizing against high-level CCSD(T) calculations, two-channel dispersion-

corrected atom-centered potentials for correcting long-range dispersion corrections for 

three rare gas dimers: He2, Ne2 and Ar2 are optimized. The DCACP2 approach 

significantly improves of long-range binding energy of these dimers compared to the 

results obtained with one-channel potentials. I also analyzed the success of DCACP2.   

6.2 POSSIBLE FUTURE DIRECTIONS 

As reviewed in section 2.1.3, simulation of ice Ih using DFT methods greatly overestimate 

the value of the dielectric constant. Because the graph invariant enumeration technique14 

gives a complete set of ice Ih configurations, obtaining ab initio energies and dipole 

moments of symmetry distinct ice Ih configurations would probably give rise to better 

prediction of the !" 		 of ice Ih. Also, it would enable the extrapolation of results to larger cells. 

Based on our knowledge, no prior work of predicting !" 		 of ice Ih using this approach has 

been carried out before. 

    To describe the binding energy of systems where many-body interactions are important, 

developing a new version of the DCACP2 method based on fitting three-body energies 

would help more correctly describe the binding energies of such chemical systems.  

    Also, considering the contributions of the zero-point energy (ZPE) to both the cohesive 

energy of ice and the rotational dynamics of liquid water are non-negligible, future work 

taking the ZPE into account in the calculation of condensed phases of water would possibly 

get more accurate predictions of their energetics and dynamics, especially under low 

temperatures.  
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