
OPERATING SYSTEM MECHANISMS FOR

PERFORMANCE ISOLATION BETWEEN

CO-LOCATED APPLICATIONS

by

Jiannan Ouyang

B.E. in Computer Science, University of Science and Technology of

China, 2010

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of Arts and Sciences,

Department of Computer Science in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2016

UNIVERSITY OF PITTSBURGH

KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES,

DEPARTMENT OF COMPUTER SCIENCE

This dissertation was presented

by

Jiannan Ouyang

It was defended on

June 22nd 2016

and approved by

Dr. John Lange, Department of Computer Science, University of Pittsburgh

Dr. Daniel Mosse, Department of Computer Science, University of Pittsburgh

Dr. Youtao Zhang, Department of Computer Science, University of Pittsburgh

Dr. Zhiqiang Lin, Department of Computer Science, University of Texas at Dallas

Dissertation Director: Dr. John Lange, Department of Computer Science, University of

Pittsburgh

ii

Copyright c© by Jiannan Ouyang

2016

iii

OPERATING SYSTEM MECHANISMS FOR PERFORMANCE ISOLATION

BETWEEN CO-LOCATED APPLICATIONS

Jiannan Ouyang, PhD

University of Pittsburgh, 2016

The efficient sharing of a single server node between multiple co-located applications is

increasingly important in modern large-scale datacenters and supercomputers. However, ex-

isting operating system (OS) architectures fall short in ensuring the performance isolation

between co-located applications, which impedes the efficiency of large-scale computing in-

frastructures as well as the scalability of large-scale applications. The goal of this research is

to improve the performance isolation capability of existing OS kernels, as well as to develop

novel OS architectures aiming to provide isolated and optimized execution environments for

workloads with disparate runtime requirements.

We first studied the performance interference problem between time-shared virtual ma-

chines as seen in the cloud. We conducted comprehensive performance analyses to identify

the root causes of the kernel performance degradation problem in shared virtual environ-

ments. To address this problem, we designed and implemented two synchronization tech-

niques optimized for shared virtual environments: the preemptable ticket spinlock (pmtlock)

algorithm and the Shoot4U paravirtual TLB shootdown scheme. Our evaluation demon-

strates that both techniques significantly reduce the performance interference between co-

located virtual machines.

Besides improving existing OS kernels, we also looked at the design of operating systems

aiming to provide isolated and optimized execution environments for in-situ analysis applica-

tions as seen in modern high performance computing (HPC). We designed and implemented

the Pisces lightweight co-kernel architecture, which allows multiple independent lightweight

iv

co-kernels to be deployed side-by-side with Linux on isolated hardware partitions. Each co-

kernel can be optimized for the local HPC workload, while the performance isolation between

co-kernels is enforced at both the software and hardware level. Our evaluation shows better

application scalability on the co-kernel architecture compared with native Linux.

Finally, to support high performance I/O on lightweight co-kernels, we developed Hobbe-

sIO: an I/O delegation service on lightweight co-kernels that allows the application transpar-

ent I/O delegation from a co-kernel process to an I/O service processes deployed on arbitrary

native or virtual Linux enclaves. Our evaluation shows that HobbesIO achieves comparable

performance with native Linux.

v

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 Research Overview . 3

1.2 Contributions . 6

1.3 Outline . 7

2.0 LITERATURE REVIEW . 9

2.1 Kernel Synchronization Overhead in Virtual Environments 9

2.2 Operating System Design for Supercomputers 11

2.3 I/O Service Delegation . 13

3.0 SYNCHRONIZATION IN VIRTUAL MACHINES 16

3.1 Busy-Waiting Based Synchronization in Virtual Environments 17

3.1.1 The Lock Holder Preemption Problem 17

3.1.2 The Lock Waiter Preemption Problem 18

3.1.3 The TLB Shootdown Preemption Problem 19

3.2 Performance Analysis . 20

3.3 The Preemptable Ticket Spinlock Algorithm 24

3.3.1 Design . 26

3.3.2 Properties . 28

3.3.2.1 Preemption Adaptivity . 28

3.3.2.2 Fairness . 29

3.3.2.3 Host Independence . 31

3.3.3 Implementation . 31

3.3.3.1 Compact Locks . 35

vi

3.3.3.2 Static Timeout Threshold 36

3.3.4 Evaluation . 36

3.3.4.1 Parameter and Fairness Analysis 37

3.3.4.2 Lock Size . 43

3.3.4.3 Optimizations . 43

3.3.4.4 Scalability . 44

3.3.4.5 Summary . 45

3.4 Shoot4U: A Paravirtual TLB Shootdown Scheme 46

3.4.1 Design of Shoot4U . 48

3.4.2 Shoot4U Implementation . 49

3.4.3 Evaluation . 50

3.5 Summary . 53

4.0 THE PISCES LIGHTWEIGHT CO-KERNEL ARCHITECTURE . . . 55

4.1 Introduction . 56

4.1.1 High Level Approach . 58

4.1.2 Background . 60

4.2 Pisces Co-Kernel Architecture . 61

4.2.1 Cross Kernel Dependencies . 62

4.2.2 I/O and Device Drivers . 63

4.2.3 Cross Enclave Communication . 64

4.2.4 Isolated Virtual Machines . 65

4.3 Pisces Implementation . 66

4.3.1 Booting a Co-kernel . 67

4.3.2 Communicating with the co-kernel 68

4.3.3 Assigning hardware resources . 69

4.3.4 Integration with the Palacios VMM 72

4.4 Evaluation . 73

4.4.1 Noise analysis . 73

4.4.2 Single Node Co-Kernel Performance 76

4.4.3 Co-Kernel Scalability . 77

vii

4.4.4 Performance Isolation with Commodity Workloads 79

4.5 Summary . 80

5.0 HIGH PERFORMANCE I/O ON LIGHTWEIGHT CO-KERNELS . 83

5.1 Design Goals . 84

5.2 Potential Approaches . 85

5.3 HobbesIO: High Performance Co-Kernel I/O Delegation 86

5.3.1 Mirrored Address Spaces on Heterogeneous Kernels 87

5.3.2 The System Call Command Channel 89

5.3.3 Infiniband and RDMA Support . 91

5.4 Evaluation . 92

5.5 Summary . 94

6.0 CONCLUSIONS . 96

BIBLIOGRAPHY . 98

viii

LIST OF TABLES

1 Profiling of Lock Holder and Waiter Preemptions 23

2 Preemptable Ticket Spinlock Size and Kernel Size 43

3 TLB Shootdown Latency (usec) . 50

4 Execution Time of Sequential Reads from a Block Device 63

5 Pisces Operation Latency . 69

6 getpid() Latency on HobbesIO . 92

ix

LIST OF FIGURES

1 System Software Architecture for Application Co-Location 4

2 Performance Slowdown of CPU Overcommitment 21

3 CPU Usage Profiling . 22

4 CDF of TLB Shootdown Latency . 24

5 Illustration of Preemptable Ticket Spinlock Algorithm 27

6 CDF of Getting the Lock after Rescheduling 30

7 Fairness Index v.s. Unit Timeout Threshold (1VM) 37

8 Fairbench Performance v.s. Unit Timeout Threshold (1VM) 38

9 Fairness Index v.s. Unit Timeout Threshold (2VM) 39

10 Fairbench Performance v.s. Unit Timeout Threshold (2VM) 40

11 Hackbench Performance v.s. Unit Timeout Threshold (1VM) 41

12 Hackbench Performance v.s. Unit Timeout Threshold (2VM) 42

13 PARSEC Performance with Preemptable Ticket Spinlock Variants (1VM) . . 44

14 PARSEC Performance with Preemptable Ticket Spinlock Variants (2VM) . . 45

15 Hackbench Speedup v.s. Number of vCPUs (pmt-cpt-st over ticket, 2VM) . . 46

16 CDF of TLB Shootdown Latency with Shoot4U 51

17 PARSEC Performance with Optimizations (1VM) 52

18 PARSEC Performance with Optimizations (2VM) 53

19 Performance Slowdown of CPU Overcommitment with Optimizations 54

20 CPU Usage Profiling with Optimizations . 54

21 The Pisces Co-Kernel Architecture . 59

22 Example Hardware Configuration with one Pisces Co-Kernel 60

x

23 Cross Enclave Communication in Pisces . 65

24 Interrupt Routing Between Pisces Enclaves 71

25 Noise on Native Linux . 74

26 Noise on Native Kitten (Pisces Co-Kernel) 74

27 Noise on Kitten Guest (KVM) . 75

28 Noise on Kitten Guest (Palacios/Linux) . 76

29 Noise on Kitten Guest (Pisces Co-VMM) . 77

30 Kitten Co-Kernel Single Node Performance 78

31 HPCG Benchmark Performance (Up to 8 Nodes) 79

32 Mantevo Mini-Application CDFs with Hadoop (8 Nodes) 82

33 Network Throughput on HobbesIO . 93

34 Network Average and Tail Latency on HobbesIO 94

xi

LIST OF CODES

3.1 Lock and Unlock Operations . 32

3.2 isLocked and Trylock Operations . 34

3.3 The Shoot4U API . 49

xii

For my family, mentors and friends.

xiii

1.0 INTRODUCTION

Large-scale computing infrastructures, for instance warehouse scale datacenters and super-

computers, consisting of tens of thousands of networked servers, form the backbone of modern

computing industry. They serve as the material foundation of web services including search

engines and social networks, as well as scientific computations that allow scientists and re-

searchers to tackle cutting-edge problems. Advances in large-scale computing infrastructures

during the past decade enable novel computing paradigms such as cloud computing, big data

as well as large-scale machine learning, which lead to dramatic improvements in our social,

economy and everyday life. In turn, these improvements shed light on new problems and

opportunities that require even more computational resources. This demand poses tough

challenges to computer system researchers to continually offer more computational resources

with sustainable performance and reliability.

With the increasing amount of computational resources available on each compute node,

and the exploding amount of data generated by large-scale applications, it is increasingly

important to efficiently share a single server node among multiple applications or services in

modern large-scale datacenters and supercomputers. However, the performance interference

problem, where the performance of one application is impacted by the system software and

co-located applications sharing the same computational resources, impedes the effectiveness

and scalability of application co-location and resource sharing [Lo et al., 2015].

In particular, several studies have established that the average server utilization in most

modern datacenters is low, ranging from 10% to 50% [Lo et al., 2015; Barroso et al., 2013;

Kaplan et al., 2008; Gartner, 2012; Reiss et al., 2012; Ma et al., 2015], which significantly

hurts the cost and energy efficiency of large-scale datacenters. Specifically, Google’s typical

online-service datacenters exhibit only about 30% CPU utilization on average [Barroso et al.,

1

2013], while the industry wide average is even lower: only between 6% [Kaplan et al., 2008]

to 12% [Gartner, 2012]. The root cause of this problem is that to guarantee Quality-of-

Service (QoS) of latency critical applications, data center operators or developers tend to

avoid sharing by either dedicating computational resources to applications, or exaggerating

resource reservations for applications in shared environments [Lo et al., 2015; Reiss et al.,

2012]. To address this problem and improve the efficiency of sharing, better performance

isolation between applications must be ensured at all levels in the computing infrastructure.

On the other hand, the emerging trend of in-situ data processing [Ma et al., 2007; Zheng

et al., 2013] in modern high performance computing (HPC) requires the system software

to provide optimized and isolated execution environments, for co-located applications with

disparate requirements. In-situ data processing co-locates data generation (simulation) and

processing (analysis/visualization) workloads on the same compute node and processes the

generated data locally. This model greatly reduces the data volume transferred over in-

terconnects and therefore achieves better energy efficiency and scalability, compared with

traditional HPC models that use a dedicated cluster for each workload, and move data be-

tween clusters over interconnects [Kogge et al., 2008]. However, the in-situ model also poses

significant challenges on the performance isolation capability of the node level system soft-

ware. Because tightly-coupled high performance computing (HPC) applications are known to

be sensitive to performance variance [Petrini et al., 2003; Ferreira et al., 2008; Hoefler et al.,

2010]. For example, Petrini et al. showed that application performance could be improved

by a factor of 2 on 8192 processors by reducing interference of system daemons [Petrini

et al., 2003]. As a result, specialized operating systems are built for these applications to

provide isolated execution environments [Kaplan, 2007; Giampapa et al., 2010]. However,

these optimized operating systems often lack the OS functionalities or features required by

the data processing applications.

We observe that modern system software architecture is largely based on a shared ho-

mogeneous system software layer, which typically is an operating system or a hypervisor

deployed on the bare mental hardware. However, we argue that a shared homogeneous sys-

tem software architecture fall short in ensuring the performance isolation between co-located

applications, which impedes the efficiency of large-scale computing infrastructures as well as

2

the scalability of large-scale applications.

Because on one hand, homogeneous kernels do not suit for the heterogeneous computing

environments in modern computing infrastructures. In particular, we will show that OS

kernels designed for native environments can experience dramatic performance degradation

in shared virtual environments. Thus, kernels with virtualization specific optimizations

should be used in virtual environments. On the other hand, a homogeneous system software

layer cannot meet disparate application requirements. For example, in the in-situ data

processing model, the data generation workloads are typically tightly-coupled large-scale

applications, which require optimized HPC kernels to ensure consistent performance; while

the data processing workloads demand generic OS services, programming languages and

tools supported by Linux. It is very difficult for a homogeneous system software layer to

provide HPC optimized environments and Linux compatibility on a single node at the same

time. Finally, a shared system software layer cannot prevent the performance interference

resulting from contentions on shared data structures and code paths at the system software

level.

Therefore, in this dissertation, we advocate for isolated heterogeneous kernels on the

same node. We aim to provide sustainable and scalable performance isolation at the system

software layer through optimizing existing OS mechanisms, as well as rethink the OS designs

and explore novel OS architectures.

1.1 RESEARCH OVERVIEW

Figure 1 (a) illustrates the state-of-the-art system organization that shares a single node

among multiple co-located applications. A shared host operating system, or hypervisor

in case of full virtualization based approaches, is deployed on the bare mental hardware.

Applications can be directly deployed on the shared system software layer, or encapsulated

inside a virtual machine or a container [Soltesz et al., 2007]. A virtual machine based

approach requires a guest OS, typically Linux, to be deployed inside the VM. In case of

containers, applications are deployed on top of the native host operating system, who is

3

Hardware
OS / Hypervisor

App

Tim
e S

hared

Space-Shared

(Guest OS)
App

(Guest OS)

App
(Guest OS)

(a) Current Approach

Hardware
OS/Hypervisor

App

Tim
e S

hared

Space-Shared

App

App
(Optimized Guest)

Co-Kernel

(Optimized Guest)

(b) Proposed Approach

Figure 1: System Software Architecture for Application Co-Location

responsible for ensuring the isolation of namespaces and performance between containers.

However, all three approaches has a shared homogeneous system software layer: the operating

system or the hypervisor. Therefore, they share the drawbacks of shared homogeneous

system software as we discussed previously.

In this work, we advocate for a isolated heterogeneous kernels based approach as depicted

in Figure 1 (b). First of all, heterogeneous kernels should be used to adapt to heterogeneous

computing environments. In particular, we claim that operating systems designed for phys-

ical environments should be optimized specifically for virtual environments to sustain good

performance. Therefore, we looked at guest operating system optimizations to ensure the

performance isolation between time-shared virtual machines. Besides, we propose that het-

erogeneous system software stacks can be deployed on isolated hardware partitions on the

same node. Each software stack is optimized for certain class of applications, and indepen-

dently manages a dedicated set of hardware resources. No dependency between software

stacks is allowed, so that performance isolation between stacks is enforced at both the hard-

ware and software layer. This architecture, which we call the co-kernel architecture, allows

the creation of isolated execution environments optimized for certain workloads. In this work,

we apply the co-kernel architecture to in-situ analysis HPC workloads using lightweight ker-

4

nels [Lange et al., 2010].

Thesis Statement An isolated heterogeneous kernels based approach allows the deploy-

ment of heterogeneous kernels on the same node; each kernel can be optimized for certain

workloads or computing environments; the performance isolation between co-located appli-

cations can be enforced at both the hardware and the system software layer.

We first looked at a case where the operating system designed for physical computing en-

vironments experiences significant performance degradation in shared virtual environments

because of performance interference between time-shared virtual machines. Virtualization

breaks one fundamental assumption held by kernel developers: the (virtual) CPU is al-

ways progressing. However, a vCPU can be preempted and suspended by the VMM. These

effects are especially harmful for timing sensitive kernel synchronization operations, in par-

ticular those busy-waiting based synchronization operations. We conducted comprehensive

performance profiling and instrumentation to pin-point the kernel performance bottlenecks

in shared virtual environments. We identified busy-waiting based kernel synchronization

operations as the main source of performance overhead. Specifically, kernel spinlocks and

TLB shootdown operations. To address these problem, we proposed the preemptable ticket

spinlock algorithm and the Shoot4U paravirtual TLB shootdown scheme, which are special-

ized for virtual environments to tolerate vCPU preemptions. Our evaluation results show

that our proposed techniques greatly reduce the performance degradation caused by vCPU

preemptions.

The second part of this research rethinks the design of the node level system software

architecture for in-situ analysis workloads in modern HPC. In-situ analysis workloads require

a HPC optimized execution environment for the simulation workloads, a Linux environment

for the analytic and visualization workloads, while the performance isolation between the two

environments has to be enforced. These requirements can hardly be met by current shared

homogeneous kernel based approaches. Therefore, we proposed the co-kernel architecture,

in which a compute node is decomposed and viewed as a pool of computational resources,

including CPU cores, memory blocks, and I/O devices. Those resources are then dynamically

composed at runtime to form isolated hardware resource partitions. On each partition, an

independent kernel as well as a software stack on top of it is deployed. Each software stack

5

directly manages the hardware resources belonging to its partition without any external

dependencies. Compared with a shared homogeneous system software approach, our co-

kernel architecture allows each software stack to be optimized to certain class of applications.

Meanwhile, performance isolation is enforced between software stacks because sharing is

restricted at both the hardware and software level.

We implemented the proposed co-kernel architecture based on the Linux kernel and

the Kitten lightweight kernel [Lange et al., 2010]. We developed the Pisces kernel module

to extend unmodified Linux kernels to support co-located kernels. We also modified the

Kitten kernel to support a multi-instance environment. Our evaluation demonstrates that

the Kitten co-kernel shows significantly more consistent performance than Linux, especially

when competing co-located workload is deployed on the same node with dedicated hardware

resources. It also shows that the co-kernel architecture achieves better performance isolation

and scalability compared with the native Linux approach as we scale up the number of

computing nodes.

Finally, we revisited the I/O mechanism on lightweight co-kernels, because the previ-

ously used lightweight virtualization based I/O approach introduces OS noises and kernel

overheads from the guest Linux kernel. We investigated HobbesIO, an I/O delegation ser-

vice on lightweight co-kernels that allows the application transparent I/O delegation from a

co-kernel process to an I/O service processes deployed on arbitrary native or virtual Linux

enclaves. Our evaluation shows that HobbesIO achieves comparable performance with native

Linux.

1.2 CONTRIBUTIONS

The contributions of this research include,

• Investigated the performance problems caused by preempted virtual CPUs. Pin-pointed

the busy-waiting based synchronization as an important source of the performance degra-

dation problem in shared virtual environments.

• Identified the lock waiter preemption problem. Proposed the preemptable ticket spinlock

6

(pmtlock) algorithm to address this problem, and demonstrated significant performance

improvement over the state-of-the-art ticket spinlocks.

• Proposed the Shoot4U paravirtual TLB shootdown scheme to address the TLB shoot-

down preemption problem. Demonstrated superior performance over both the baseline

and a state-of-the-art optimization.

• Developed the Pisces co-kernel architecture that allows multiple optimized and isolated

heterogeneous kernels to be deployed on the same node.

• Demonstrated that lightweight co-kernels can achieve better performance isolation and

scalability for in-situ workloads compared with a shared Linux approach.

• Designed and studied the HobbesIO I/O delegation service for lightweight kernels that

enables transparently delegating I/O system calls to an arbitrary native or virtual Linux

instance.

As a result of this work, I also contributed to the following open source software,

PMTLOCK A Linux implementation of the preemptable ticket spinlock algorithm.

Shoot4U A Linux implementation of the Shoot4U paravirtual TLB shootdown scheme.

Pisces Designed and implemented the fundamental mechanisms of the Pisces kernel module

that enable the co-kernel support on Linux.

Kitten Augmented the Kitten lightweight kernel to support the co-kernel architecture.

Added SATA device support.

Palacios Augmented the PCI passthrough feature for the co-kernel architecture.

HobbesIO Designed and implemented a I/O delegation mechanism for lightweight co-

kernels.

1.3 OUTLINE

The rest of this dissertation is organized as follows:

7

In Chapter 2, I will review the literature on the topics of kernel synchronization over-

head in virtual environments, operating system design for HPC systems and I/O service

delegation.

In Chapter 3, I will look at the performance interference problem between time-shared

virtual machines caused by preempted virtual CPUs. I will show detailed profiling and

instrumentation results to demonstrate that busy-waiting based synchronization operations

are an important cause of the performance degradation problem. After that, I will describe

two optimized kernel synchronization schemes designed for shared virtual environments: the

preemptable ticket spinlock algorithm and the Shoot4U paravirtual TLB shootdown scheme.

Finally, I will show empirical results to demonstrate the efficiency of the proposed schemes.

Chapter 4 introduces the lightweight co-kernel architecture, our proposed system software

architecture for in-situ data processing workloads in modern HPC systems. Details about

our motivations, design goals, system architecture as well as the implementation will be

covered. Finally, a comprehensive evaluation of our system will be shown on both a single

node and a multi-node HPC cluster.

In Chapter 5, I will introduce HobbesIO, an application transparent I/O delegation

service on lightweight co-kernels. I will discuss the limitation our previous I/O solution

on co-kernels, and compare existing I/O approaches to motivate an I/O delegation based

solution. The design, implementation and evaluation of HobbesIO will be covered.

Finally, I will conclude in Chapter 6.

8

2.0 LITERATURE REVIEW

2.1 KERNEL SYNCHRONIZATION OVERHEAD IN VIRTUAL

ENVIRONMENTS

Numerous research works have looked at the problem of kernel synchronization overhead in

virtual environments. Most of them have focused on spinlocks and the lock holder preemption

problem, originally identified by V. Uhlig et al. in 2004 [Uhlig et al., 2004]. Lock holder

preemption happens when a virtual CPU (vCPU) holding a spinlock is preempted by the

VMM, which dramatically increases the waiting time of other vCPUs requesting the same

lock. Uhlig et al. [Uhlig et al., 2004] proposed a paravirtualization based approach in which

the guest OS provides scheduling hints to the underlying VMM. These hints demarcated

non-preemptable regions of guest execution that corresponded to critical sections in which a

spinlock was held. T. Friebel and S. Biemueller [Friebel, 2008] proposed a paravirtual spinlock

approach, which was later adopted by Xen and KVM [Raghavendra and Fitzhardinge, 2012].

In their scheme a vCPU notifies the VMM via a hypercall if it has been waiting longer than

a threshold. The VMM then blocks the spinning vCPU until the requested lock is released.

Besides the spinlock preemption problems, a few previous works have looked into the TLB

shootdown preemption problem. In particular, H. Kim et al. [Kim et al., 2013] studied the

performance degradation caused by both spinlock and TLB shootdown preemptions. They

proposed the use of TLB shootdown IPIs as a VMM scheduling heuristic in order to reduce

the delay introduced by a preempted vCPU. While their approach does help alleviate the

delays imposed by TLB shootdowns on preempted vCPUs, it does not address the underlying

problem directly. In contrast, our Shoot4U mechanism addresses the source of the problem

directly by eliminating the necessity for busy-waiting inside the VM. A paravirtual remote

9

flush TLB scheme (kvmtlb) has also been developed for KVM to address the TLB shootdown

preemption problem [Dadhania, 2012]. This scheme maintains the preemption state of all

vCPUs inside the VMM and shares this information with the guest. When initiating TLB

operations, if the remote vCPU is running, then the conventional shootdown approach is

used. Otherwise, if the remote vCPU is preempted, a should flush flag is set on that remote

vCPU and an IPI is not sent. When rescheduling a vCPU, the VMM checks the should flush

flag. If set, the VMM invalidates all TLB entries of that vCPU. The primary limitation of

this technique is that the preemption state of a vCPU can change after its state has been

checked by the invoking CPU but before the IPI is actually delivered. In this case, the

involving vCPU could result in busy-waiting a preempted vCPU again.

Other approaches to improving VM performance in the face of cross core synchronizations

include improving VMM scheduling policy. In particular, co-scheduling [Ousterhout, 1982]

requires all vCPUs from one VM to be scheduled at the same time. This approach as well as

its variants such as relaxed co-scheduling was adopted by the virtual machine scheduler in

VMware ESX [VMware, 2010]. Other co-scheduling variants include adaptive co-scheduling

schemes [Weng et al., 2011; Zhang et al., 2012] that allow the VMM scheduler to dynamically

alternate between co-scheduling and asynchronous scheduling for a particular VM, as well

as balanced scheduling [Sukwong and Kim, 2011] which associates a VM’s individual vCPUs

with dedicated physical CPUs and does not require that the vCPUs be co-scheduled. H. Kim

et al. [Kim et al., 2013] proposed the demand-based coordinated scheduling that controls

time-sharing in response to inter-processor interrupts (IPIs) between virtual CPUs. While

each of these approaches alleviate the problems caused by intra-VM synchronizations, they

do so by providing workarounds as opposed to addressing the underlying issues.

Hardware assisted approaches have also been developed for busy-waiting preemption

problem. The Pause-Loop Exiting [Intel, 2016] feature in Intel processors as well as the Pause

Filter feature [AMD, 2011] in AMD processors allow the hardware to detect spinning vCPUs

and trigger a VMexit event if a vCPU spins longer than a threshold. Major hypervisors have

added the support for these features. However, because of the semantic gap [Bauman et al.,

2015; Fu et al., 2014] between the guest and the VMM, it is still an open question how to

utilize and tune these features effectively.

10

Besides busy-waiting preemption problems, researchers have also found other perfor-

mance problems caused by CPU overcommitment. For example, Gleaner [Ding et al., 2014]

looked at the cost caused by the intervention from the VMM during synchronization-induced

idling in the application, guest OS, or supporting libraries, which was denoted as the blocked-

waiter wake up problem.

2.2 OPERATING SYSTEM DESIGN FOR SUPERCOMPUTERS

In the past decade, HPC systems have converged to use Linux as the preferred node operating

system. This has led Linux to emerge as the dominant environment for many modern HPC

systems [Yoshii et al., 2009; Kaplan, 2007] due to its support of extensive feature sets, ease

of programmability, familiarity to application developers, and general ubiquity. While Linux

environments provide tangible benefits to both usability and maintainability, they suffer

from fundamental limitations when it comes to providing predictable performance as well as

effective performance isolation that are required by tightly coupled HPC applications. This

is because commodity systems, such as Linux, are designed to maximize a set of design goals

that conflict with those required to provide predicable performance and complete isolation.

Specifically, commodity systems are almost always designed to maximize resource utilization,

ensure fairness, and most importantly, gracefully degrade in the face of increasing loads.

These goals often result in non-predictable performance and software level interference that

has a significant impact on HPC application performance at a large scale.

As a result, two separate philosophies have emerged over recent years concerning the

development of operating systems specialized for supercomputers. On the one hand, a series

of projects have investigated the ability to configure and adapt Linux for supercomputing

environments by selecting removing unused features to create a more lightweight kernel

(LWK). Alternatively, other work has investigated the development of lightweight operating

systems from scratch with a consistent focus on maintaining a high performance environment.

Perhaps the most prominent example of a Linux-based supercomputing OS is Compute

Node Linux (CNL) [Kaplan, 2007], part of the larger Cray Linux Environment. CNL has been

11

deployed on a variety of Cray supercomputers in recent years, including the multi-petaflop

Titan system at Oak Ridge National Laboratory. Additional examples of the Linux-based

approach can be seen in efforts to port Linux-like environments to the IBM BlueGene/L and

BlueGene/P systems [ZeptoOS, 2016; Appavoo et al., 2008]. Alternatively, examples using

non-Linux based OS deployment can be seen in IBM’s Compute Node Kernel (CNK) [Gi-

ampapa et al., 2010] and several projects being led by Sandia National Laboratories, in-

cluding the Kitten [Lange et al., 2010] project. While CNK and Kitten both incorporate

lightweight design philosophies that directly attempt to limit OS interference by limiting

many general-purpose features found in Linux environments, both CNK and Kitten address

one of the primary weaknesses of previous lightweight OSes by providing an environment

that is somewhat Linux-compatible and can execute a variety of applications built for Linux.

Deploying multiple operating systems on the same node has been explored previously

with SHIMOS [Shimosawa and Ishikawa, 2009], whereby multiple modified Linux kernels can

co-exist and manage partitioned hardware resources. However, this project was motivated

by considerations such as physical device sharing between co-kernels and thus required sig-

nificant effort in optimizing cross kernel communication with kernel-level message passing

and page sharing, as well as shared resources such as page allocators that required kernel-

level synchronization. Our approach is based more fundamentally on the concept of strict

isolation between lightweight co-kernels that manage all resources assigned to them without

cross dependencies.

Others have looked at deploying replicated kernels on the same node or limiting data shar-

ing in the kernel to improve OS scalability. Hurricane [Unrau et al., 1995] and Hive [Chapin

et al., 1995] organize an operating system as multiple independent kernels, which communi-

cates with each other for resource management to provide better reliability and scalability.

Barrelfish [Baumann et al., 2009] treats the machine as a network of independent cores as-

suming no inter-core sharing, and implements the OS services with distributed processes that

communicate via messages. The factored operating system [Wentzlaff and Agarwal, 2009]

uses space sharing instead time sharing to increase scalability and structures OS services as

collections of distributed servers. Corey [Boyd-Wickizer et al., 2008] exposes resource shar-

ing control abstractions and allows the application specify resource sharing requirements

12

explicitly. K42 [Krieger et al., 2006] and Tornado [Gamsa et al., 1999] uses clustered objects

to reduce contention and improve locality.

The most relevant efforts to our co-kernel approach are FusedOS from IBM [Park et al.,

2012], mOS from Intel [Wisniewski et al., 2014], and McKernel from the University of Tokyo

and RIKEN AICS [Tomita et al., 2014]. FusedOS partitions a compute node into separate

Linux and LWK-like partitions, where each partition runs on its own dedicated set of cores.

The LWK partition depends on the Linux partition for various services, with all system calls,

exceptions, and other OS requests being forwarded to Linux cores from the LWK partition.

Similar to FusedOS, McKernel deploys a LWK-like operating environment on heterogeneous

(co)processors, such as the Intel Xeon Phi, and delegates a variety of system calls to a Linux

service environment running on separate cores. Unlike FusedOS, the LWK environments

proposed by mOS and McKernel allow for the native execution of some system calls, such as

those related to memory management and thread creation, while more complicated system

calls are delegated to the Linux cores. These approaches emphasize compatibility and legacy

support with existing Linux based environments, to provide environments that are portable

from the standpoint of existing Linux applications. In contrast to these approaches, our co-

kernel architecture places a greater focus on performance isolation by deploying co-kernels

as fully isolated OS instances that provide standalone core OS services and resource man-

agement. In addition, our approach also supports dynamic enclave resource allocation and

revocation, with the ability to grow and shrink enclaves at runtime, as well as virtualization

capabilities through the use of the Palacios VMM.

2.3 I/O SERVICE DELEGATION

I/O service delegation based approaches have been proposed for driver compatibility and

fault isolation purposes [Xen, 2016; LeVasseur et al., 2004; Nikolaev and Back, 2013]. De-

pending on how the I/O stack is decomposed between the client and server domains, these ap-

proaches delegate I/O services at three different abstraction levels: virtual device level [LeV-

asseur et al., 2004; Xen, 2016], device file level [Amiri Sani et al., 2014], and system call

13

level [Nikolaev and Back, 2013].

The driver domain [Xen, 2016] approach is the most widely adopted I/O architecture

in modern cloud computing [Barham et al., 2003]. In this approach, the hypervisor creates

privileged VMs, or driver domains, that directly manage physical hardware. A virtual device

is decomposed into a frontend component that resides in the client VM, and a backend

component that resides in the driver domain. I/O requests sent to the frontend are forwarded

to the backend via event channels, and handled by the Linux device driver layer in the driver

domain. The primary advantage of this approach is that it reuses Linux device drivers.

However, delegating I/O requests at the device driver layer assumes the client VM has the

full I/O stack support above device driver, which is not the case for lightweight kernels.

Moreover, delegating I/O requests to a driver domain introduces performance interference

due to the shared driver domain. Though the creation of multiple driver domains can

mitigate I/O contentions, performance interference can still result from contentions on other

shared software components, such as the communication channels as well as the hypervisor.

Different from driver domains, Paradice [Amiri Sani et al., 2014] delegates I/O services

at device file level. This approach is designed for the virtualization of devices that are nor-

mally accessed directly through the device file interface (e.g. /dev/gpu), such as GPUs and

cameras. By delegating file operations on a device file to a remote server VM, I/O operations

sent to a virtual device can be processed by a remote Linux VM. The primary advantage

of this approach is its generality. Because driver domains require different implementations

for each class of devices (e.g. block devices and network devices), while Paradice supports

any device that is accessible through the device file interface. However, this approach is not

applicable if the devices are accessed through higher level I/O abstractions, e.g. TCP/IP

sockets.

VirtuOS [Nikolaev and Back, 2013] decomposes kernel services into several server VMs

and delegates I/O requests to remote VMs at the system call level. It adopts an exceptionless

system call [Soares and Stumm, 2010] approach to reduce the cost of cross-VM system calls.

However, to share data across VMs, it introduces an additional data copy on a shared buffer

between the user process the corresponding service domain. While this design sidesteps the

potential difficulties with designs that would provide a service domain with direct access to

14

a user processs memory, it potentially introduces considerable overhead on the data path,

especially for large volume data transfers.

Existing works that combine Linux and a lightweight kernel on the same node, including

FusedOS [Park et al., 2012], McKernel [Tomita et al., 2014] and mOS [Wisniewski et al.,

2014], all adopt a I/O delegation approach that delegates I/O requests from the lightweight

kernel to a remote Linux instance. Our work primarily focus on the performance and isolation

of the I/O delegation service.

15

3.0 SYNCHRONIZATION IN VIRTUAL MACHINES

Several studies have established that the average server utilization in most datacenters is

low, ranging from 10% to 50% [Barroso et al., 2013; Kaplan et al., 2008; Gartner, 2012;

Reiss et al., 2012; Lo et al., 2015]. In particular, Google’s typical online-service datacenters

exhibit only about 30% CPU utilization on average, as reported in 2013 [Barroso et al.,

2013]. The industry wide average utilization is even lower: between 6% [Kaplan et al., 2008]

to 12% [Gartner, 2012]. This low utilization problem result in significant computational

resource as well as capital waste.

A promising way to improve efficiency is to co-locate multiple virtual machines on the

same node in the cloud, such that the available computational resources can be allocated

and utilized by other co-located applications, and achieve higher overall system utilization.

However, virtual machine (VM) based approaches to workload consolidation, as seen in IaaS

cloud as well as datacenter platforms, have long had to contend with performance degradation

caused by synchronization primitives inside the guest environments. Among the challenges

that virtualization poses to OS designers is the fact that the underlying virtual hardware can

be arbitrarily scheduled by the underlying VMM. This has serious consequences for timing

sensitive operations in the guest OS, which can be affected by virtual CPU preemptions

by the host scheduler and introduce delays that are orders of magnitude longer than those

primitives were designed for.

In this chapter, we will focus on the performance problems of busy-waiting based syn-

chronization operations in the guest kernel, in particular spinlocks and TLB shootdown

operations. We will first demonstrate how busy-waiting based synchronization operations

impact guest performance, and pin-point the design defects of state-of-the-art mechanisms.

Then we will propose our optimized schemes for virtual environments, specifically the pre-

16

emptable ticket spinlock algorithm and the Shoot4U paravirtual TLB shootdown scheme.

Finally, we will empirically study the performance of the proposed schemes and demonstrate

their effectiveness in virtual environments.

3.1 BUSY-WAITING BASED SYNCHRONIZATION IN VIRTUAL

ENVIRONMENTS

In this work, we looked at three performance problems related to busy-waiting based syn-

chronization operations: the lock holder preemption problem, the lock waiter preemption

problem and the TLB shootdown preemption problem.

3.1.1 The Lock Holder Preemption Problem

Spinlocks are used in the kernel to protect code regions that require atomic execution or

exclusive access to the underlying hardware. These regions are generally protected by dis-

abling interrupts and acquiring a spinlock, based on the assumption that the operations will

be short in duration and so won’t result in long delays for other contending threads.

Spinlocks are heavily used in the kernel as the fundamental synchronization operation.

Therefore, they are carefully designed to be simple and fast. Busy-waiting based spinlocks

require kernel developers to carefully use spinlocks only in situations where the critical section

is short or blocking the current thread is not an option. However, a “short” critical section

is based on the assumption that the code is executed natively and the underlying CPU is

always making progress, which is not true in virtual environments where a virtual CPU can

be preempted and suspended arbitrarily for an undetermined length of time. As a result, the

lock holder preemption problem could happen.

Numerous research works have studied the lock holder preemption problem, originally

identified by V. Uhlig et al. in 2004 [Uhlig et al., 2004]. Lock holder preemption occurs

whenever a virtual machine’s (VM’s) virtual CPU (vCPU) is scheduled off of a physical

CPU while a lock is held inside the VM’s context. The result is that when the VM’s other

17

vCPUs are attempting to acquire the lock they must wait until the vCPU holding the lock

is scheduled back in by the VMM so it can release the lock. As kernel level synchronization

is most often accomplished using spinlocks, the time spent waiting on a lock is wasted in a

busy loop. This wait time is typically orders of magnitude longer than the designed wait

time, and could result in significant performance degradation.

3.1.2 The Lock Waiter Preemption Problem

While most of the previous works have focused on the lock holder preemption problem, in

this work, we identified the lock waiter preemption problem that is associated with a queue

based fair spinlock algorithm named ticket spinlocks.

Ticket spinlocks are a relatively recent modification to the global spinlock architecture

found in Linux. Introduced in kernel version 2.6.25, ticket spinlocks are designed to improve

lock fairness and prevent starvation. The lock is always granted to the next lock waiter in

the queue, thus guaranteeing that locks are dispatched in FIFO order and no thread will

ever experience starvation. In particular, when a thread attempts to acquire a ticket spinlock

that is currently held by another thread, it is granted a ticket which determines the order

among all outstanding lock requests. In this manner each thread must wait to acquire a lock

until after it has been held by every other thread that previously tried to acquire it. This

ensures that a given thread is never preempted by another thread while trying to acquire

the same lock, and thus guarantees that well behaved threads will all acquire the lock in a

timely manner.

While ticket spinlocks have been shown to provide advantages to performance and con-

sistency for native OS environments, they pose a new challenge for virtualized environments.

This is due to the fact that besides the lock holder preemption problem, a preempted waiter

in a FIFO queue can cause similar or even worse performance degradation. Restricting lock

acquisitions to a FIFO schedule expands the lock holder preemption problem by creating an

environment where anyone with an earlier position in a lock’s queue is effectively holding

the lock as far as threads later in the queue are concerned. Thus, when executing inside a

virtual machine environment, if a vCPU currently holding a ticket is preempted, all subse-

18

quent ticket holders must wait for the preempted vCPU to be rescheduled. This can result in

execution being blocked by lock contention even when the lock in question is available. For

example, if the previous lock holder released the lock, later waiters in queue would still have

to wait for the previous preempted waiter to be rescheduled and granted the lock, resulting

in a scenario where there is contention over an idle resource. In other words, any waiter in

queue is preempted the progress is whole queue would be blocked. We denote this situation

as the lock waiter preemption problem.

3.1.3 The TLB Shootdown Preemption Problem

Besides the spinlock preemption problems including the lock holder and waiter preemption

problems, in this work, we also looked the performance problem of another busy-waiting

based synchronization operation: the TLB shootdown operation.

Translation Look-aside Buffers (TLBs) are a critical hardware component for virtual

memory based systems, however they still require explicit management by the Operating

System (OS) in order to maintain cache coherence. This requires the OS itself to directly

manage the contents to the TLB caches on each CPU core in the system by ensuring that stale

entries are removed before they can be accessed by any hosted applications. This is especially

a problem for multi-threaded applications as they leverage shared page tables both as a space

saving optimization as well as a way to amortize address space management overheads. Cache

coherence is managed by the OS through the use of invalidation and flushing operations that

remove one or more entries from a local TLB cache. The operations are propagated to other

cores in the system via Inter-Processor Interrupt (IPI) based signalling that directly invoke a

given TLB operation on a remotely targeted CPU, a mechanism that is canonically referred

to as a TLB shootdown.

Modern operating systems consider TLB shootdown operations to be performance criti-

cal and so optimize them to exhibit very low latency. The implementation of these operations

is therefore architected to ensure that shootdowns can be completed with very low latencies

through the use of IPI based signalling. As such, TLB shootdowns can be implemented

using a busy wait based stall of the invoking CPU while the operation is handled on each of

19

the remote CPUs. Unfortunately, the low latency provided by IPI handlers is only ensured

when the target CPU is available to handle the resulting interrupt. While this is generally

a reasonable assumption in native environments, it does not carry over to virtualized envi-

ronments as the availability of a given vCPU to handle interrupts is entirely dependent on

the behavior of the underlying host scheduler.

The TLB shootdown preemption problem is the result of a vCPU invoking a TLB shoot-

down on a remote vCPU that is currently preempted by the host scheduler and therefore not

available to handle the resulting IPI interrupt. In this case the invoking vCPU will block

in a polling based loop until the target vCPU is rescheduled and returns to an active state.

The scheduling delays, or the time between the preemption and rescheduling of a vCPU,

are often orders of magnitude larger than the latency that TLB shootdown operations were

designed for. This is especially true when multiple vCPUs are sharing the same underlying

physical CPU. These unexpected delays can cause significant impacts on application perfor-

mance depending on the workload, with particularly dramatic effects seen on multi-threaded

workloads that require large amounts of address space modifications.

3.2 PERFORMANCE ANALYSIS

In order to better understand the effects that vCPU preemptions have on kernel synchroniza-

tion operations, we measured the performance degradation caused by CPU overcommitment

on the PARSEC [Bienia, 2011] benchmark suite. We choose the PARSEC benchmark suite

because it includes representative multi-threaded emerging workloads, including both desk-

top and server applications as can be seen in cloud computing platforms. Besides, the

PARSEC benchmark suite has also been used in several related works [Kim et al., 2013;

Ding et al., 2014].

We used the Linux perf [Perf, 2016] tool set to profile the percentage of CPU time

spent in various kernel functions in order to identify the performance bottlenecks. Then we

conducted detailed performance instrumentation on the major problematic kernel operations

we identified.

20

We first measured the PARSEC performance using a single KVM based guest without

overcommitting resources (1-VM), before adding a second KVM guest on the same machine

running a CPU bounded workload using sysbench [Sysbench, 2016] (2-VMs). Each VM

was configured to use the same number of vCPUs (12) evenly distributed on the underlying

physical CPUs, so that each physical core was shared by two vCPU cores from different

VMs. Equal time sharing between vCPUs was ensured using Linux cgroups [Cgroups, 2016]

and the Pause-Loop Exiting (PLE) [Riel, 2011] feature was disabled.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

blackscholes

bodytrack

canneal

dedup

ferret

freqmine

raytrace

streamcluster

swaptions

vips

x264

S
l
o
w
d
o
w
n

70.6

max ideal slowdown

Figure 2: Performance Slowdown of CPU Overcommitment

Figure 2 shows the benchmark results for the 1-VM and 2-VMs configurations. The ideal

slowdown would be 2x, due to the equal time sharing configuration of each physical CPU.

As the results show 6 out of the 11 benchmarks have performance slowdowns of over 4x; 3

exhibit more than 10x slowdown; and the dedup benchmark has a slowdown of 70.6x.

For each of the applications we separated out the overheads resulting from TLB shoot-

downs (k:tlb) as well as spinlocks (k:lock), being the two most common causes of preemption

based performance problems. The remaining overhead was split between other kernel level

functions (k:other) and time spent in userspace (u:*). Figure 3 shows these results: with

the exception of dedup, all benchmarks spent the majority of time in userspace for the

1-VM scenario, indicating that most PARSEC benchmarks are userspace intensive work-

21

loads. However, for the 2-VMs case a significant number of benchmarks exhibit noticeable

increases in kernel based overheads. In particular, dedup spent 64% of the CPU time on

TLB shootdown operations, while vips 75% of the CPU time on spinlocks. As the results

show, overheads resulting from spinlocks and TLB shootdowns account for the majority of

the added overhead.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

blackscholes

bodytrack

canneal

dedup

ferret

freqmine

raytrace

streamcluster

swaptions

vips

x264

blackscholes

bodytrack

canneal

dedup

ferret

freqmine

raytrace

streamcluster

swaptions

vips

x264

P
e
r
c
e
n
t
a
g
e

(
%
)

1VM 2VM

k:lock k:tlb k:other u:*

Figure 3: CPU Usage Profiling

For the spinlock performance problems in particular, we instrumented the Linux ticket

spinlock to profile the number of lock holder preemptions and lock waiter preemptions. Lock

preemption was identified by detecting inordinately long wait times for a given lock, where

“long wait times” were conservatively chosen to be 2048 iterations of the inner loop of a

busy waiting spinlock. On our machine, 2048 iterations corresponded to roughly 1µs, an

amount of time that exceeds the time a thread would spend holding a lock according to

statistics [Friebel, 2008]. Next we separated the lock waiter preemption scenarios from the

set of detected preemptions, by checking whether the stalled lock was in fact available. To

make this determination we modified the existing spinlock structure to include a holder_id

variable that served as an indicator of lock availability. The value of holder_id was set to

the thread id of a given lock holder on acquisition and cleared when the lock was released.

Table 1 shows the results of our analysis after running the hackbench [Hackbench, 2008]

22

N Nholder +Nwaiter Nwaiter
Nwaiter

Nholder+Nwaiter

1 VM 1.11E8 1,089 452 41.5%

2 VMs 9.65E7 44,342 39,221 88.5%

Table 1: Profiling of Lock Holder and Waiter Preemptions

benchmark with 1 and 2 VMs, in which N is the total number of spinlock acquisitions,

Nholder and Nwaiter are the total number of holder and waiter preemptions respectively.

Column 3 shows the number of preemptions in which lock acquisitions were delayed because

of either lock holder or lock waiter preemption. While these delays were infrequent when

compared to the total number of lock acquisitions in column 2, it should be noted that even

a limited degree of preemption can cause significant performance degradation [Friebel, 2008].

Furthermore, while the total number of lock acquisitions declined when additional VMs were

added, the number of preemptions resulting in stalled lock acquisitions actually increased.

More critically, the stalled lock operations were predominately due to a preempted lock waiter

and not a preempted lock holder. The degree of the issue is shown more clearly in column

4, which provides the percentage of stalled lock acquisitions resulting from a preempted lock

waiter. As can be seen, even when a physical machine is overcommitted by a factor of only

2, lock waiter preemption becomes the dominant source of synchronization overhead.

Next, we measured the latency of TLB shootdown operations when running the dedup

benchmark, by instrumenting the Linux kernel using ktap [Ktap, 2016]. Figure 4 shows

the cumulative distribution function (CDF) of TLB shootdown latencies using a logarithmic

x-axis. As the figure shows, the 2-VMs case exhibits a significant increase in the average

operation latency with the 90th percentile increasing by two orders of magnitude over the

1-VM configuration. It demonstrated the dramatic slowdown on TLB shootdown operations

caused by sharing the physical CPUs.

In summary, our performance analysis results indicates that: firstly, equally sharing the

physical CPUs between two VMs would not result in half of the performance in each VM;

23

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
u
m
u
l
a
t
i
v
e

P
e
r
c
e
n
t

Latency (us)

1VM
2VM

Figure 4: CDF of TLB Shootdown Latency

instead, up to 70.6 times slowdown was observed in the PARSEC benchmark suite. Secondly,

item The majority of the slowdown comes from kernel performance degradation, especially

the spinlock and TLB shootdown operations according to profiling. Thirdly, lock waiter

preemption is the dominant source of spinlock preemption overhead when multiple VMs are

deployed. Lastly, the 90th percentile latency of the TLB shootdown operation increased by

two orders of magnitude when a second VM is deployed.

The rest of this chapter will focus on how to address the two major performance problems

when over-subscribing CPUs, specifically the lock waiter preemption problem and the TLB

shootdown preemption problem.

3.3 THE PREEMPTABLE TICKET SPINLOCK ALGORITHM

With the use of FIFO order spinlocks, i.e. ticket spinlocks, virtual CPUs must also contend

with lock waiters being preempted before they are able to acquire the lock. This has the

24

effect of blocking access to a lock, even if the lock itself is available. This problem exists

whenever a VMM preempts a waiter that has not yet acquired the lock. In this case even if

the lock is released, no other thread is allowed to acquire it until the next waiter is allowed

to run, resulting in a scenario where there is contention over an idle resource. We denote this

situation as the lock waiter preemption problem. In order to solve this problem, we introduce

the preemptable ticket spinlock (pmtlock), a new locking primitive that is designed to enable

a VM to always make forward progress by relaxing the ordering guarantees offered by ticket

spinlocks.

Preemptable ticket spinlock improves the performance of traditional ticket spinlock by

allowing preemption of a waiter that has been detected to be unresponsive. Unresponsive-

ness is determined via a linearly increasing timeout that allows earlier waiters a window of

opportunity in which they can acquire a lock before the lock is offered to later waiters. It can

provides performance benefits when running without VMM support, while it can also utilize

VMM support via a specialized paravirtual interface to provide overall superior performance.

Preemptable ticket spinlocks are based on the observation that forward progress is prefer-

able to fairness in the face of contention. In the case where lock waiter preemption is pre-

venting a guest from acquiring a lock, then a thread waiting on the lock should be able

to preempt the next thread in line if that thread is incapable of acquiring the lock in a

reasonable amount of time. While preemptable ticket spinlocks do allow preemption, which

technically breaks the ordering guarantees of standard ticket spinlocks, it does so in a way

that minimizes the loss of fairness by always granting priority to earlier lock waiters. Pri-

ority is granted via a time based window which gradually increases the number of ticket

values capable of acquiring the lock. The choice of a time based window is based on the

observation that VMM level preemption typically results in large periods of unresponsive-

ness, while other causes of unresponsiveness typically result in periods orders of magnitude

smaller. This means that a timeout based detection approach can be implemented with high

accuracy and relatively low overhead. The use of timeouts also allows the implementation of

linearly expanding exclusivity windows, which ensure that if an earlier ticket holder is able

to acquire a lock it will do so before a later ticket holder is offered the chance. In this way

early ticket holders are only preempted if they are inactive for a long period of time, almost

25

always as the result of the vCPU being preempted by the VMM.

3.3.1 Design

Preemptable ticket spinlocks is a hybrid spinlock architecture that combines the features of

both ticket and generic spinlocks in order to preserve the fairness of ticket spinlocks while

avoiding the lock waiter preemption problem. The intuition behind it is that making forward

progress is more important than ensuring fairness. It leverages the advantages of both generic

spinlocks and ticket spinlocks in order to ensure fairness in the absence of preemption while

also supporting out of order lock acquisition when the waiters in the queue are preempted.

This is done via the use of a proportional timeout threshold that determines the ability of a

thread to acquire a lock based on that thread’s position among the set of threads currently

waiting on the lock. In preemptable ticket spinlocks, a thread can acquire a lock out-of-

order if it has been waiting longer than its timeout threshold. We denote such a thread as a

timed-out waiter. The timeout threshold is calculated from a unit timeout threshold that is

multiplied with the thread’s current lock queue position index n, as shown in the following

equation:

timeout threshold = n× τ (3.1)

in which τ denotes the unit timeout threshold parameter, which tunes the fairness and

performance of the preemptable ticket spinlock algorithm as we will discuss later.

To calculate the position index value n, two variables are maintained for each lock:

num_request indicates the total number of lock requests of a lock, and num_grant indicates

the total number of lock requests that have been granted. In addition, each thread has a local

variable named ticket, which represents the queue position of the request. num_request

and num_grant are maintained by each thread in a distributed fashion for each lock according

to the locking algorithm. When acquiring a lock, the current num_request value is stored

into the thread’s local ticket variable, and then atomically incremented by 1. Conversely,

when releasing a lock, num_grant is atomically incremented by 1. The position index n is

then calculated based on a thread’s ticket value as well as the current value of num_grant,

26

as shown below:

n = ticket− num grant (3.2)

It indicates the number of waiters for a given lock before the current thread. Because

ticket stores the number of outstanding lock requests at the request time, and num_grant

contains the number of lock requests that have been granted, we can determine the num-

ber of pending requests before current thread (and thus the thread’s queue position) as

(ticket - num_grant). Note that it is possible for a thread to have a negative position in

the queue (ticket < num_grant). This can result from whenever a lock has been preemp-

tively acquired and the preempted core is then rescheduled at a later point in time. In this

case a negative position indicates that later threads have violated the lock order, in which

case the preempted thread should attempt to acquire the lock immediately.

R P R R

0

(a) N1 is holding the lock and N2 is preempted

N4

(b) N1 releases the lock, and N2 is still preempted

(c) N3 times out and gets the lock

(d) N3 releases lock

N1 N2 N3

t 2t 3t

P R R

N4N2 N3

0 t 2t

P R R

N4N2 N3

t 2t

P R

N4N2

t

0

0

P - Preempted R – Running Acquisition Window

Figure 5: Illustration of Preemptable Ticket Spinlock Algorithm

Figure 5 provides an illustrative example of the functionality of preemptable spinlocks.

The timeout threshold is indicated by the number above each node, and is set proportionally

27

based on the node’s position in the queue. In the initial stage (a), four nodes are waiting

while N1 is holding the lock. At this point the vCPU hosting N2 is preempted by VMM. In

the following stage (b), N1 releases the lock, causing the timeout threshold to be updated

for each node. At this point the lock is available but no node can acquire it because the next

waiter in the queue N2 is currently preempted. This is the lock waiter preemption problem.

In stage (c) node N3 reaches the timeout threshold and acquires the lock out-of-order before

N2. Finally at stage (d), N3 releases the lock, causing N4 to update it’s timeout threshold.

At this point, N4 has still not reached the timeout threshold, so N2 is able to immediately

acquire the lock without contention.

3.3.2 Properties

3.3.2.1 Preemption Adaptivity Preemptable ticket spinlocks are a hybrid lock algo-

rithm that combines the benefits of generic spinlocks and ticket spinlocks by relaxing the

ordering guarantees provided by ticket spinlocks. The underlying feature of preemptable

ticket spinlocks is a timeout threshold that controls when a given waiter can acquire the lock

out of order. The timeout threshold is derived from a tunable constant named unit timeout

threshold denoted as τ , combined with a waiter’s queue position index n. The behavior of a

preemptable ticket spinlock can be tuned to match the behavior of either a generic spinlock,

a ticket spinlock, or a combination of the two depending on the value assigned to τ . The

following equation shows the behavior of preemptable ticket spinlocks for different values of

τ .

lock =

generic spinlock τ = 0

pmtlock ticket spinlock 0 < τ <∞

ticket spinlock τ =∞

(3.3)

A τ value of 0 results in an immediate timeout that mimics the behavior of a generic

spinlock, while setting τ =∞ will prevent a timeout from ever occurring and so generate the

strict ordering behavior of a standard ticket spinlock. Preemptable ticket spinlocks are thus

able to tune their behavior by trading off between aggressiveness and fairness depending on

the state of the system and the behavior of the underlying VMM scheduler.

28

A well chosen τ value can provide both good performance and fairness. Fairness is

ensured when τ is large enough that lock waiters will not time out prematurely. Performance

is ensured when τ is small enough that a lock waiter is able to promptly detect when an

earlier waiter is preempted. According to previous work [Friebel, 2008], the lock holding time

and preemption time in fact differ by orders of magnitude. Typically lock holding time is

less than 1µs, while the time between a vCPU’s preemption and rescheduling is typically in

the order of millisecond. A good practice it to choose a value of τ that is slightly larger than

typical lock holding time, e.g. around 2µs, so that it is large enough to preserve fairness

in the absence of preemption and small enough to quickly respond to preemptions. An

empirical study of this parameter will be provided in the evaluation section.

3.3.2.2 Fairness The standard technique for achieving fairness is to ensure that locks

are granted in the same order in which the requests were made, i.e. FIFO ordering. With

generic spinlocks, all waiters have an equal chance of acquiring a lock, regardless of when the

waiter first requested it. This makes generic spinlocks an “unfair” locking algorithm. Ticket

spinlocks implement strict ordering that enforced via the use of tickets assigned consecutively

to new lock requests. An earlier waiter with smaller ticket value always get the lock before

a waiter that requested the lock at a later point in time.

In contrast to these locking behaviors, preemptable ticket spinlocks ensure that,

• For all waiters yet to reach their timeout threshold, strict ordering is preserved

• Waiters that have reached their timeout threshold have priority over those who have not

• All waiters that have reached their timeout threshold have equal priority among them-

selves

The first point holds because the timeout threshold is proportional to a waiter’s queue

position. Earlier waiters have smaller thresholds, and thus they time out earlier than those

who are later in the queue. The second point holds because according to equation 3.2, the

position index n of a non-timed-out waiter is larger or equal than the number of timed out

waiters. Thus all non-timed-out waiters have timeout thresholds no less than x× τ , where x

is the number of timed-out waiters . With a proper value of τ the threshold is large enough

29

for every timed out waiter to complete their critical sections in the absence of preemption.

In other words, every thread that has reached its timeout threshold will have time to acquire

and release the lock before the next waiter times out. This ensures that priority is given to

a preempted waiter immediately after it is rescheduled, and furthermore all non-timed-out

waiters will wait until every thread that has timed out has acquired the lock. Thus while

ordering is violated, the violations are minimized to those vCPUs that have been preempted

by the VMM.

Based on the description above, it is straight forward to show that the number of ordering

violations experienced by a given lock is bounded by the number of vCPUs assigned to a VM.

Furthermore, the probability that a preempted waiter is unable to immediately acquire the

lock after rescheduling is given by P (x) = x/R, where x is the number of lock acquisitions

that have occurred since a lock waiter was preempted, and R is the number of outstanding

waiters that have been preempted.

0 0 ≤ R ≤ VM_CPUs

1

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 o

f
A

cq
u

ir
in

g
Lo

ck

Lock Transitions

Figure 6: CDF of Getting the Lock after Rescheduling

Thus for a simple case, where a set of waiters are preempted and rescheduled simul-

taneously, we can derive the cumulative density function shown in Figure 6. The x-axis

represents the number of lock acquisitions necessary before the preempted waiter is able to

acquire the lock. R is the number of preempted waiters currently contending for the lock.

VM CPUS is the number of vCPUs assigned to the VM.

30

From this figure we can see that the probability that a preempted waiter has acquired the

lock increases linearly based on the number of waiters that were simultaneously preempted

by the VMM. The number of ordering violations is limited by the number of lock waiters

preempted by the VMM at any given point at time, and in the worst case is bounded to

the number of active vCPUs assigned to the VM. While more dynamic scheduling cases will

alter the shape of the CDF, they will not change the worst case bounds.

It is important to note that the above discussion holds for a lock waiter preemption case

in which the time spent holding a lock is less than the unit timeout threshold τ . In the case

of lock holder preemption, all lock waiters will time out due to the fact that preemption

time is considerably larger than the timeout threshold. Lock holder preemption represents

the worst case in regards to fairness, in that every waiter in the queue will reach its timeout

threshold and compete equally for the lock. In this case our approach will degenerate to a

generic spinlock behavior. However the order violation will still be bounded by the number

of vCPUs.

3.3.2.3 Host Independence Unlike previous solutions [Friebel, 2008; Raghavendra and

Fitzhardinge, 2012; Riel, 2011; Sukwong and Kim, 2011; Uhlig et al., 2004; Wells et al., 2006;

Weng et al., 2011; Zhang et al., 2012], preemptable ticket spinlocks work in the absence of

any VMM side support, which makes it a solution where host side modifications such as

paravirtualization are not feasible. Preemptable ticket spinlocks can be implemented entirely

inside a guest OS and are capable of detecting lock waiter preemption adaptively based

on a single timeout directly measurable by the guest. However, while preemptable ticket

spinlocks are capable of operating independently without VMM support, it is possible to

further improve their performance by combining them with existing lock holder preemption

solutions.

3.3.3 Implementation

In order to evaluate the efficacy of preemptable ticket spinlocks, we have implemented them

inside version 4.0.0 of the Linux kernel. Our implementation acts as a drop in replacement

31

for the standard ticket spinlock implementation currently supported by the kernel. The im-

plementation consisted of only ∼60 lines of C and assembly code, and consists of a modified

spinlock data type as well as modifications to the lock, unlock, islocked and trylock oper-

ations. The implementation resides entirely in the guest kernel and does not require any

additional VMM side support in order to function correctly.

Code 3.1: Lock and Unlock Operations

1 #define TIMEOUT_SHIFT 14

2 void __ticket_spin_lock(arch_spinlock_t *lock)

3 {

4 register struct __raw_tickets inc ={. tail =1};

5 unsigned int timeout = 0;

6 __ticket_t current_head;

7
8 inc = xadd(&lock ->tickets ,inc);

9 if (likely(inc.head == inc.tail))

10 goto spin;

11
12 timeout = (__ticket_t)(inc.tail - inc.head)

13 << TIMEOUT_SHIFT;

14 do {

15 current_head =

16 ACCESS_ONCE(lock ->tickets.head);

17 if (inc.tail == current_head) {

18 goto spin;

19 } else if (inc.head != current_head

20 && ((s16)(inc.tail - current_head) > 0)) {

21 inc.head = current_head;

22 timeout = (__ticket_t)(inc.tail - inc.head)

23 << TIMEOUT_SHIFT;

24 }

25 cpu_relax ();

26 } while (timeout --);

27
28 spin:

29 for (;;) {

30 if (xchg(&lock ->acquired , 1) == 0)

31 goto out;

32 cpu_relax ();

33 }

34 out: barrier ();

35 }

36
37 void __ticket_spin_unlock(arch_spinlock_t *lock) {

38 __add (&lock ->tickets.head , 1, UNLOCK_LOCK_PREFIX);

39 xchg(&lock ->acquired , 0);

40 }

32

Code 3.1 shows the implementation of lock and unlock operations. As part of our modifi-

cations we added code to maintain the timeout threshold, while also changing the semantics

of some of the existing data fields. The existing kernel spinlock data structure contains vari-

ables to track the head and tail of a queue in order to implement the proper ticket semantics.

In order to detect a preempted lock waiter we have added another field named acquired

which indicates the availability of the lock.

In the lock function, we declare a local struct inc which acts as a local copy of the

head and tail values, timeout which is used as the timeout threshold, and current_head

which is another local copy of head used to detect changes to the value of head. At line

8 the code atomically updates inc in order to increase the value of head. At this point

inc.tail is regarded as the “ticket” of the current thread. Line 9-10 shows the fast path,

which handles the case of an uncontended lock acquisition. Lines 12-26 implement the core

of the proportional timeout functionality. The timeout threshold is initialized in line 12, and

updated in line 22 whenever head’s value changes. This ensures that the timeout threshold is

always proportional to the number of pending lock requests that arrived previously, according

to equation 3.2. A timed out thread will break out of the loop at line 26. A thread should

also break out of the loop when it’s ticket is equal to the current head, meaning that it is

due to acquire the lock based on the ticket ordering. Besides, a thread breaks out of the loop

if it’s ticket is equal to the current value of head. Finally, line 29–34 implement a generic

spinlock which is invoked by every thread that is allowed past the FIFO order queue.

It is important to note that when calculating the timeout threshold using (tail−head)×τ ,

we need to take care of the integer wrap-around problem as shown in line 12. Because tail

and head are unsigned integers, they could wrap-around when reaching the maximum value

given their size. Consider the case where head is approaching the maximum value of its

size and tail is wrapped-around, then tail is smaller than head; tail − head would result

in a negative value that is converted to a very large unsigned integer because the timeout

threshold is an unsigned integer with larger size. A very large timeout threshold would result

in starvation. To correctly handle this case, we have to cast tail − head to a signed value

with the same size of head and tail. The C99 standard guarantees the correctness of the

subtraction of unsigned values.

33

Another important note is that dynamic timeout threshold update is used in this imple-

mentation. A potential problem is that a preempted waiter’s ticket (tail) is possible to be

less than the current head, it could result in starvation if not handled correctly. For exam-

ple, if a waiter with ticket number tail is preempted, preemptable ticket spinlock allows later

waiters to timeout and acquire the lock out of order. Each lock release operation of these

waiters would increase the head value by 1. Eventually, the head would become greater than

tail. As a result, when dynamically updating the timeout threshold once the preempted

waiter is rescheduled, the result of tail− head is again a negative value that is converted to

a very large unsigned integer. Consequently, this waiter get a very large timeout threshold

and results in a starvation. To fix to this problem, we only update timeout threshold if the

ticket is larger than the current head as shown in line 20.

The unlock operation is relatively simple, and is implemented by combining the unlock

operations of both ticket and generic spinlocks. The operation atomically increments head

by 1 and clears the acquired flag.

Code 3.2: isLocked and Trylock Operations

1 int __ticket_spin_is_locked(arch_spinlock_t *lock) {

2 struct __raw_tickets tmp = ACCESS_ONCE(lock ->tickets);

3 return (tmp.tail != tmp.head)

4 || (ACCESS_ONCE(lock ->acquired)==1);

5 }

6
7 int __ticket_spin_trylock(

8 arch_spinlock_t *lock) {

9 arch_spinlock_t old , new;

10 *(u64 *)&old = ACCESS_ONCE (*(u64 *)lock);

11 if (old.tickets.head != old.tickets.tail)

12 return 0;

13 if (ACCESS_ONCE(lock ->acquired) == 1)

14 return 0;

15 new.head_tail = old.head_tail +

16 (1 << TICKET_SHIFT);

17 new.acquired = 1;

18 /* cmpxchg is a full barrier */

19 if (cmpxchg ((u64 *)lock , *(u64 *)&old ,

20 *(u64 *)&new) == *(u64 *)&old) {

21 return 1;

22 } else return 0;

23 }

34

While the lock and unlock operations provide the necessary functionality for basic locking,

the Linux kernel also requires additional locking semantics for certain cases. In particular

Linux makes consistent use of other spinlock primitives such as islocked and trylock. In

order to fully support preemptable ticket spinlocks through the kernel, we had to modify

these operations as well. Code 3.2 shows the implementation of these primitives. At line 3

our code modifications return true if it detects the presence of earlier waiters for the lock

or if the lock is currently not available. The trylock operation attempts to acquire a given

lock, but immediately returns 0 if the lock is not available. In order to support preemptable

ticket spinlocks we modified the implementation at lines 19-20, where we added an atomic

check to determine whether the lock is free and if there are no earlier waiters. Other than

these minimal changes, the existing implementations were left as originally written.

Next, we will discuss two optimizations that could be applied to reduce lock size, simplify

the implementation and improve performance.

3.3.3.1 Compact Locks The implementation described above increased the lock size

by introducing a lock availability field. It also introduces one more atomic operation in both

the lock and unlock operations to maintain the lock availability field. Considering the wide

usage of spinlocks in kernel data structures, as well as the importance of spinlocks to the

overall system performance, these overheads can cause measurable kernel size increase and

system level performance slowdown, especially when the system is under-committed and

preemptable ticket spinlock does not have a significant advantage over ticket spinlock.

The idea of the compact preemptable ticket spinlock optimization is to consolidate the

lock availability field with the tickets fields, by using the lowest significant bit (LSB) of the

tickets fields as the lock availability flag. Specifically, if we increase the ticket number by 2

instead of 1 when requesting a lock, we can reserve the lowest bit to represent availability of

the lock. In this way, we can consolidate the queuing info and lock availability info into the

same bytes without increasing the lock size. Meanwhile, this approach simplifies the unlock

operation to atomically add 1 to the lock, which clears the lowest bit and advances the tail

number with one atomic operation. This optimization should keep the size of preemptable

ticket spinlocks the same with ticket spinlock, and reduce the overhead of unlock.

35

3.3.3.2 Static Timeout Threshold Our next optimization tries to simplify the main-

tenance of timeout threshold by using a static timeout threshold, i.e. calculate the timeout

threshold once upon lock request, and do not update the threshold with the dynamic of the

FIFO queue. A static timeout threshold would respond to lock waiter preemptions slower

compared to dynamic thresholds, because the timeout thresholds are not updated with a

thread’s most recent position in queue, which would result in longer spinning. However, as

we have previously discussed, dynamic timeout threshold update makes it more difficult to

reason the correctness of the locking algorithm. Therefore, we propose to simply calculate

the timeout threshold once upon lock request. As we will show in the evaluation section, a

simplifed implementation can achieve the same level of fairness and performance compared

with the basic implementation.

3.3.4 Evaluation

We evaluated the preemptable ticket spinlock algorithm on a dual socket Dell R450 server

configured with Intel “Ivy-Bridge” Xeon processors (6 cores each) with hyperthreading en-

abled and 24 GB of RAM split across two NUMA domains. Each server was running CentOS

7 with Linux Kernel 3.16. We performed the evaluation using 2 separate VMs each with 12

vCPUs both mapped to the same socket. Each vCPU was pinned to a single hyperthreaded

CPU core, so that each core was shared by 2 vCPUs. The Linux cgroups [Cgroups, 2016]

interface was used to allocate an equal share of CPU time to each VM. We used CentOS 7

with Linux Kernel 3.16 as the guest OS in both VMs, and modified the guest kernel to imple-

ment our proposed algorithms. We deployed the benchmarks in one VM and measured their

performances, while ran a CPU bounded competing workload based on sysbench [Sysbench,

2016].

Previously, we discussed two optimizations on top of the basic preemptable ticket spinlock

algorithm, namely the compact preemptable ticket spinlock and the static timeout threshold.

The goal of the experiments in this section is to evaluate the basic implementation, as well

as the effectiveness of the two optimizations. In the following experiments, we denote the

basic preemptable ticket spinlock implementation as pmt-basic, the implementation with the

36

compact optimization as pmt-cpt, and the implementation with both the compact and the

static timeout threshold optimizations as pmt-cpt-st.

3.3.4.1 Parameter and Fairness Analysis In Section 3.3.2, we theoretically analyzed

how does the unit timeout threshold parameter affect the behavior, performance and fairness

of the preemptable ticket spinlock algorithm; the goal of our first experiment here is to

empirically evaluate the impact of the unit timeout threshold parameter on the performance

and fairness of the preemptable ticket spinlock and its variants.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12

F
a
i
r
n
e
s
s

I
n
d
e
x

Timeout Threshold (2
x
)

ticket
pmt

pmt-cpt
pmt-cpt-st

Figure 7: Fairness Index v.s. Unit Timeout Threshold (1VM)

Our metric of spinlock fairness is based on the assumption that for a strict fair lock, if N

threads request the same lock in parallel from N cores for a sufficient amount of times, the

number of iterations each thread gets the lock should be a uniform distribution. Therefore,

we can compare the fairness of spinlock algorithms by measuring uniformness of the lock

acquisition distribution. In this work, we use the Jain’s fairness index [Jain et al., 1984], i.e.

(
∑
xi)

2/(n
∑
x2i), to measure lock fairness. In the Jain’s fairnes index, the distribution of the

resource is more fair with the fairness index getting closer to 1. To measure the fairness index,

we developed a synthetic kernel spinlock fairness benchmark named fairbench, which creates

N kernel threads in parallel on N cores competing for the same spinlock for a total number

37

of M iterations, and reports the fairness index. Specifically, we set N = 12,M = N × 105 in

our experiment.

We use synthetic benchmark instead of instrumenting an application benchmark because

instrumentation introduces extra latency to kernel spinlocks. Therefore, we cannot instru-

ment and measure the lock acquisition distribution or fairness index without altering the

timing of spinlocks and the locking behavior of application threads. However, by using a

synthetic benchmark, we can measure lock acquisition distribution inside the benchmark

without instrumenting kernel spinlocks, which gives us more actuate fairness results.

Figure 7 shows the fairness index when one VM is deployed on the hardware (1VM). The

x-axis shows the unit timeout threshold in log scale, thus the actually unit timeout threshold

is 2x times of busy-loops. The y-axis shows the fairness index, higher is better. The ticket

spinlock algorithm is used as the baseline and denoted as ticket. As can be seen, preempt-

able ticket spinlock variants (pmt*) show comparable fairness with the fair ticket spinlock

algorithm under variance settings, which demonstrates that preemptable ticket spinlocks can

provide good fairness in the absence of preemptions.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 0 2 4 6 8 10 12

C
o
m
p
l
e
t
i
o
n

T
i
m
e

(
m
s
)

Timeout Threshold (2
x
)

ticket
pmt

pmt-cpt
pmt-cpt-st

Figure 8: Fairbench Performance v.s. Unit Timeout Threshold (1VM)

Figure 8 shows the completion time of the fairbench benchmark with various unit timeout

thresholds. The x-axis shows the unit timeout threshold in log scale, and the y-axis shows

38

the completion time of the benchmark in milliseconds. The ticket spinlock achieves the best

performance because preemptable ticket spinlocks introduce overheads to maintain the lock

availability information; and in the absence of preemptions, preemptable ticket spinlocks

do not have much room to improve system performance. Therefore, this experiment is a

“worst case” scenario for preemptable ticket spinlocks showing its overhead. However, note

that this is the performance of a synthetic benchmark consists of purely lock and unlock

operations, and the overhead for general applications should be much lower as we will show

in later experiments.

On the other hand, comparing the preemptable ticket spinlock variants, locks with the

compact optimization (pmt-cpt and pmt-cpt-st) show less overhead compared with pmt-

basic. The reason is that the compact optimization reduces the number of atomic operations

needed to maintain the lock availability flag. Besides, pmt-cpt-st shows comparable perfor-

mance with pmt-cpt, demonstrating that the static threshold update optimization sustains

the performance and fairness while simplifies the implementation.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12

F
a
i
r
n
e
s
s

I
n
d
e
x

Timeout Threshold (2
x
)

ticket
pmt

pmt-cpt
pmt-cpt-st

Figure 9: Fairness Index v.s. Unit Timeout Threshold (2VM)

Next, fairbench results in a 2VM case are shown, where two virtual machines with equal

CPU shares are deployed on the same set of physical CPUs. Virtual CPUs (vCPU) are

pinning on different physical CPUs, such that each physical CPU is shared by two vCPUs

39

from different VMs. Figure 9 reports the fairness index measured from one of the two VMs

running fairbench, while the other VM was running a CPU intensive workload using the

sysbench [Sysbench, 2016] benchmark.

The fairness properties enforced by various spinlock implementations are different as

revealed in Figure 9, especially under small unit timeout thresholds, where preemptable

ticket spinlock variants show less fairness. When the parameter becomes larger (e.g. ≥ 210),

preemptable ticket variants show comparable fairness with the ticket spinlock. The results

demonstrate that the fairness level ensured preemptable ticket spinlock variants is tunable

based on the unit timeout threshold parameter. Larger thresholds can provide more fairness,

as discussed previously in equation 3.3.

 0.1

 1

 10

 100

 0 2 4 6 8 10 12

C
o
m
p
l
e
t
i
o
n

T
i
m
e

(
s
e
c
s
)

Timeout Threshold (2
x
)

ticket
pmt

pmt-cpt
pmt-cpt-st

Figure 10: Fairbench Performance v.s. Unit Timeout Threshold (2VM)

While preemptable ticket spinlock and variants show good fairness with a sufficiently

large threshold value, we need to make sure that preemptable ticket spinlocks still achieve

good performance improvement under such a parameter. Figure 10 that shows the comple-

tion time of the fairbech benchmark in a 2VM setting. Note that the y-axis is the benchmark

completion time in log-scale, lower is better. As can be seen, the smaller the threshold pa-

rameter is, the higher performance improvement preemptable ticket spinlock can achieve.

And there is up to 300x difference between the performance improvement achieved by pre-

40

emptable ticket spinlock variants under different parameters. It is important to note that

this synthetic workload is a “best case” scenario for preemptable ticket spinlocks, where the

system is over-committed and there is a lot of preemptions. For generic workloads, the per-

formance difference is much smaller as we will show next. Also note that pmt-cpt-st achieves

the best performance under almost all parameters except the last, which demonstrates the

efficiency of our optimizations.

In the following, we will show the hackbench [Hackbench, 2008] micro-benchmark perfor-

mance under various parameters, in order to analyze the impact of the threshold parameter

on a userspace program. Hackbench is a kernel intensive benchmark that uses spinlocks a lot.

As we will see, the difference between performance improvements under various parameters

is dramatically smaller compared with fairbench (2x v.s. 300x).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2 4 6 8 10 12

C
o
m
p
l
e
t
i
o
n

T
i
m
e

(
s
e
c
s
)

Timeout Threshold (2
x
)

ticket
pmt

pmt-cpt
pmt-cpt-st

Figure 11: Hackbench Performance v.s. Unit Timeout Threshold (1VM)

Figure 11 shows the hackbench performance when one VM is deployed on the hardware

(1VM). The x-axis shows the unit timeout threshold in log scale, and the y-axis shows the

completion time of the benchmark in seconds. As can be seen, across all settings, these

algorithms show comparable performance: pmt-basic adds some overhead compared with

ticket spinlocks, while the two optimized implementations (pmt-cpt and pmt-cpt-st) slightly

improve the average performance. The results indicate that in the 1VM case, when vCPU

41

preemptions are not common, preemptable ticket spinlocks have comparable performance

with the ticket spinlock. The overhead of pmt-basic comes from maintaining the lock avail-

ability variable, since it requires two extra lock operations for each lock and unlock operations

compared with the ticket spinlock. Meanwhile, for the compact implementations (pmt-cpt

and pmt-cpt-st), only one extra atomic operations is required. Consequently, they show

overhead. Though adding some overhead, pmt-cpt and pmt-cpt-st outperform the baseline

by addressing the lock waiter preemption problem.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12

C
o
m
p
l
e
t
i
o
n

T
i
m
e

(
s
e
c
s
)

Timeout Threshold (2
x
)

ticket
pmt

pmt-cpt
pmt-cpt-st

Figure 12: Hackbench Performance v.s. Unit Timeout Threshold (2VM)

Figure 12 shows the hackbench performance when two VMs are deployed on the hard-

ware and competing for the same set of CPU resource (2VM). Performance of one VM

running hackbench is reported, while the other VM was running a CPU hog with the sys-

bench [Sysbench, 2016] benchmark. In the 2VM case, vCPU preemption happens much more

often, thus the likelihood of lock waiter preemption increases dramatically. Consequently,

preemptable ticket spinlock variants show significant advantages over the baseline. Under

most threshold values (e.g. ≤ 28), over 5 times speedup can be achieved, while the per-

formance variances are also much less. Meanwhile, all preemptable ticket spinlock variants

show comparable performances, because in 2VM case the lock waiter preemption problem is

the dominant factor. It is also worth noticing that when the threshold is set to greater or

42

equal than 210, preemptable ticket spinlock performances start to decrease. This is because

with larger thresholds, preemptable ticket spinlock behaves more like a ticket spinlock with

stricter fairness, which makes it more vulnerable to the lock waiter preemption problem.

According to these experimental results, we choose 210 as the default unit timeout thresh-

old in order to achieve good performance while preserving fairness.

3.3.4.2 Lock Size Next, we compared the kernel size to demonstrate the space effec-

tiveness of the compact preemptable ticket spinlock optimization.

Size (Bytes) ticket pmt-basic pmt-cpt pmt-cpt-st

Lock 16 32 16 16

Kernel 5,700,016 5,719,088 5,701,008 5,701,904

∆(Kernel Size) +19,372 +992 +1,888

Table 2: Preemptable Ticket Spinlock Size and Kernel Size

Table 2 shows the spinlock size and the Linux kernel size under different spinlock imple-

mentations. The last row shows the change of kernel size compared with the baseline. The

compact implementations (pmt-cpt and pmt-cpt-st) have half of the lock size compared with

pmt-basic, while they has the same lock size with the baseline. Also, it turns out that the

change of the spinlock size can result in an aggregated effect on the total kernel size, because

spinlocks widely exist in many kernel data structures. With the compact optimization, the

increase of the kernel size is an order of magnitude smaller than pmt-basic as shown in the

last row.

3.3.4.3 Optimizations We then evaluated the two proposed optimizations using the

PARSEC benchmark suite [Bienia, 2011], which includes a set of multi-threaded applications

with various characteristics. We choose this benchmark suite for its diversity, plus it is

previously used by several other related works [Kim et al., 2013; Ding et al., 2014].

Figure 13 shows the execution time of various benchmarks normalized against the ticket

spinlock with single VM deployed. In this case, vCPU preemption is not often. Therefore

43

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 1.1

b
l
a
c
k
s
c
h
o
l
e
s

b
o
d
y
t
r
a
c
k

c
a
n
n
e
a
l

d
e
d
u
p

f
e
r
r
e
t

f
r
e
q
m
i
n
e

r
a
y
t
r
a
c
e

s
t
r
e
a
m
c
l
u
s
t
e
r

s
w
a
p
t
i
o
n
s

v
i
p
s

x
2
6
4N

o
r
m
a
l
i
z
e
d

E
x
e
c
u
t
i
o
n

T
i
m
e

ticket

pmt

pmt-cpt

pmt-cpt-st

Figure 13: PARSEC Performance with Preemptable Ticket Spinlock Variants (1VM)

for most benchmarks except the last two, the difference between the baseline and the pro-

posed scheme is negligible. It indicates that in a under-committed virtual environment the

performance overhead of preemptable ticket spinlocks is acceptable for most applications.

Figure 14 shows the results when two competing VMs are deployed and sharing the

same set of CPUs. The preemptable ticket spinlock variants show significant performance

improvements over the baseline, indicating that the lock waiter preemption problem is effec-

tively addressed. Besides, the performance of the preemptable ticket spinlock variants are

comparable.

Considering that the compact optimization (cpt) reduces lock size, and the static timeout

threshold optimization optimization (st) simplifies implementation, while they all achieve

comparable performance and fairness, we choose pmt-cpt-st as our default preemptable ticket

spinlock implementation, and simply denote it as pmt.

3.3.4.4 Scalability We also compared the performance of preemptable ticket spinlock

and ticket spinlocks under different number of cores, in order to study the scalability of

44

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 1.1

b
l
a
c
k
s
c
h
o
l
e
s

b
o
d
y
t
r
a
c
k

c
a
n
n
e
a
l

d
e
d
u
p

f
e
r
r
e
t

f
r
e
q
m
i
n
e

r
a
y
t
r
a
c
e

s
t
r
e
a
m
c
l
u
s
t
e
r

s
w
a
p
t
i
o
n
s

v
i
p
s

x
2
6
4N

o
r
m
a
l
i
z
e
d

E
x
e
c
u
t
i
o
n

T
i
m
e

ticket

pmt

pmt-cpt

pmt-cpt-st

Figure 14: PARSEC Performance with Preemptable Ticket Spinlock Variants (2VM)

our proposed scheme. Figure 15 shows the speedup of preemptable ticket spinlock with

both optimizations over ticket spinlock on hackbench, in which x-axis shows the number of

vCPUs configured to the VM. A clear trend is that with more vCPUs, more performance

improvement can be gained from the preemptable ticket spinlock. Because the average queue

length of ticket spinlock increases with the number vCPUs competing for the lock, the longer

the queue length, the more likely lock waiters would be preempted. Therefore, increasing

vCPU numbers effectively raises the likelihood of lock waiter preemption. However, the

speedup does not scale above 10 vCPUs. We believe the reason is that with more vCPUs,

the lock contention on cache coherence and the atomic operations would become the perfor-

mance bottleneck [Boyd-Wickizer et al., 2012], which limits the speedup can be achieved by

preemptable ticket spinlocks.

3.3.4.5 Summary So far we have studied many aspects of preemptable ticket spinlocks,

our findings can be summarized as following: firstly, smaller unit timeout thresholds make

preemptable ticket spinlocks to have less fairness but higher performance, especially under

45

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8 9 10 11 12

S
p
e
e
d
u
p

Number of vCPUs

hackbench, x2

Figure 15: Hackbench Speedup v.s. Number of vCPUs (pmt-cpt-st over ticket, 2VM)

heavy preemptions; while larger thresholds enforce stronger fairness but are more vulnerable

to preemptions. We use 210 as the default unit timeout threshold according to our parameter

analysis results. secondly, the compact optimization (cpt) reduces the lock size as well

as the locking overhead without sacrificing fairness and performance. thirdly, the static

unit timeout threshold optimization (st) shows comparable performance and fairness with

other preemptable ticket spinlock variants. Besides, it simplifies implementation. lastly,

the implementation with both optimizations (pmt-cpt-st) achieves the best design trade-off,

therefore we use it as the default implementation and denote it as pmt in the rest of the

work.

3.4 SHOOT4U: A PARAVIRTUAL TLB SHOOTDOWN SCHEME

A large body of work has documented the detrimental effects virtual CPU preemption can

have on multicore virtual machine performance [Uhlig et al., 2004; Friebel, 2008; Ouyang and

46

Lange, 2013; Kim et al., 2013; Ousterhout, 1982; Weng et al., 2011; Sukwong and Kim, 2011;

Ding et al., 2014; Zhang et al., 2012]. The majority of this work has focused on the impact of

spinlock behaviors, due to the direct effects spinlock delays can have on performance critical

code paths. However, relatively little attention has been paid to other sources of local

delays caused by preemptions of remote CPU cores. In this section, we focus on the issue of

performance overhead caused by TLB operations in the presence of preempted virtual CPU

cores (vCPUs).

Cross core TLB operations act as a low level synchronization point in modern Operating

Systems in order to maintain consistent application memory mappings. The majority of

these operations consist of various cache flushing methods that must be invoked on every

CPU in the system. For each TLB flush operation the invoking CPU must wait until the

operation has been completed on all other cores before continuing, typically by polling a

memory region with kernel preemption disabled. This invocation is achieved by issuing

Interprocessor Interrupts (IPIs) to each target CPU, the handlers of which directly invoke

a local flush operation. In native environments, these operations have very low latency

since at most they only need to wait for a target CPU to exit an atomic region before

the IPI is handled. In virtual environments these assumptions no longer hold due to the

potential for a target vCPU to be preempted by the underlying host scheduler. This can

result in the latencies of TLB flush operations increasing by orders of magnitude depending

on the scheduling state of the target vCPUs. We refer to this issue as the TLB shootdown

preemption problem.

To address the TLB shootdown preemption problem we propose Shoot4U, a virtual

TLB management mechanism for paravirtualized multicore VMs. Shoot4U eliminates the

dependencies on vCPU scheduling states for TLB flush operations and is therefore able to

ensure that TLB operations exhibit consistently low latencies. Shoot4U accomplishes this

by intercepting cross vCPU TLB flush operations at the VMM layer, and performing the

invalidations directly in the VMM instead of requiring that they be handled inside a guest

environment. This optimization allows Shoot4U to avoid any delays caused by a preempted

vCPU, and to ensure consistent performance of TLB operations. The Shoot4U mechanism

provides a better match for the TLB operation semantics, since at the lowest level it shares

47

the same IPI based signalling behavior as the native versions. This not only allows lower

latencies in general, but also eliminates preemption based delays that cause a dramatic

increase in the latency variance.

3.4.1 Design of Shoot4U

Shoot4U uses a VMM-assist technique to optimize TLB shootdowns by performing the in-

validations inside the VMM itself without the need to invoke or signal the guest OS. It relies

on hardware instructions available as part of the virtualization extensions on modern x86

based CPU architectures. These instructions allow targeted invalidation of TLB entries that

belong to a specific VM environment.

Before explaining how Shoot4U works, it is necessary to understand how a conventional

TLB shootdown operation works in a virtual environment. To initiate a TLB shootdown

operation, the invoking vCPU sends an IPI with a specific vector number to a set of target

vCPUs. The invoker then enters a polling loop until all receiver vCPUs have processed and

acknowledged the requests by setting a flag located in shared memory. The transmission

of the IPI by the vCPU causes the hardware to trap into the underlying VMM where it

can be emulated, ultimately resulting in the VMM generating a new IPI that is actually

transmitted to the VMM on the physical CPUs hosting the targeted vCPUs. Typically an

IPI delivery by the hardware will indirectly cause any running VM to trap, so that the

underlying host system software can handle it. In this case the IPI is handed off to the

VMM, which completes the IPI emulation by delivering an IPI to the targeted vCPU via

the injection of a virtual interrupt. After the virtual interrupt has been injected, it will be

handled as soon as the target vCPU resumes execution.

Shoot4U is based on the observation that modern hardware allows the underlying VMM

to perform the invalidation operation internally, thus removing the need to inject a virtual

interrupt into the target vCPU. Current x86 processors from both Intel and AMD support the

use of Virtual Processor IDs or VPIDs (Intel) and Address Space IDs or ASIDs (AMD) to tag

TLB entries with a given ID assigned to a VM context. Our implementation targets the Intel

architecture (using KVM/Linux 3.16), but there is nothing preventing the same approach

48

from being used on an AMD based system. Along with the ability to tag TLB entries with

an associated VPID/ASID these CPUs support a new set of invalidation instructions (e.g.

invpid) that selectively flush TLB entries based on a given ID tag. These instructions can

be executed by the VMM itself, without any involvement of the VM’s guest OS. Therefore,

instead of relying on IPI injection as described above, Shoot4U enables the VMM to process

the TLB invalidation request immediately by invalidating guest TLB entries itself.

3.4.2 Shoot4U Implementation

Our implementation of Shoot4U introduces a paravirtual hypercall interface that replaces

the existing IPI based TLB shootdown mechanism. In Shoot4U, the invoking vCPU issues

a hypercall down to the underlying VMM with the target vCPUs and address range being

invalidated specified as parameters. Upon trapping into the hypercall handler, the VMM

determines the set of physical CPUs that are currently hosting the set of vCPUs, and issues

a physical IPI to each of them. These IPIs are handled by the VMM itself, which then

executes the appropriate set of invalidation operations internally without any interaction

with the VM context. While the VMM handles the invalidations for the target vCPUs, the

VMM on the invoking CPU polls for completion in a busy wait loop. Once the operations

complete the VMM then returns from the hypercall and the VM resumes operation. While

superficially it might appear that we have just moved the polling loop from the guest into

the VMM, it should be noted that operation completion is no longer dependent on host

scheduler behaviors since it does not have to wait for a vCPU to be running in order to

complete.

Code 3.3 shows the paravirtual hypercall interface provided by a KVM host with Shoot4U

support. To utilize this interface, the guest VM needs to specify the hypercall ID, a bitmap

of targeted vCPUs, and the address range being invalidated. Our current implementation

of Shoot4U supports up to 64 vCPUs due to the size of the bitmap. However, we can easily

support more vCPUs by mapping the bitmap into memory.

Code 3.3: The Shoot4U API

1 kvm_hypercall3(unsigned long KVM_HC_SHOOT4U ,

49

2 unsigned long vcpu_bitmap ,

3 unsigned long start ,

4 unsigned long end);

3.4.3 Evaluation

In this section, we will show the evaluation results of the Shoot4U TLB shootdown scheme.

The experiment environment and system configurations are the same as what we used in

Section 3.3.4. We used the Linux default TLB shootdown scheme with as the baseline,

and compared it with Shoot4U as well as the state-of-the-art TLB shootdown optimization

implemented for KVM, denoted kvmtlb [Dadhania, 2012].

baseline kvmtlb shoot4u

1VM
Mean 166 122 28

Max 24,428 9,953 453

2VM
Mean 9,048 5,401 22

Max 194,108 126,923 15,034

Table 3: TLB Shootdown Latency (usec)

The first experiment used ktap [Ktap, 2016] to measure the completion time of TLB

shootdown requests in the guest, running the dedup benchmark from PARSEC. The results

are shown in Table 3, including the average and maximum completion time both with and

without a 2nd VM sharing a physical CPU. It shows that both kvmtlb and Shoot4U signifi-

cantly improve TLB shootdown performance in both cases. However, Shoot4U outperforms

the other schemes: it is 4.3 and 245.5 times faster than kvmtlb on average for the 1-VM and

2-VMs cases respectively. Its worse case performance is also order of magnitude better than

others.

Figure 16 shows the cumulative distribution function (CDF) of TLB shootdown latencies

from the same experiment. Shoot4U not only provides better overall performance, but also

exhibits much less variance than other approaches. In a non-overcommitted configuration

50

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
u
m
u
l
a
t
i
v
e

P
e
r
c
e
n
t

Latency (us)

shoot4u-1VM
shoot4u-2VM
kvmtlb-1VM
kvmtlb-2VM

baseline-1VM
baseline-2VM

Figure 16: CDF of TLB Shootdown Latency with Shoot4U

Shoot4U provides superior performance by reducing the overheads of a TLB shootdown by

reducing the number of world switches needed for IPI propagation. Moreover, Shoot4U is

able to maintain consistent performance in an overcommitted configuration, while the other

solutions experience slowdowns due to vCPU preemptions, which Shoot4U is immune to.

Our next experiment evaluated the performance with both our spinlock and TLB shoot-

down schemes applied, using multi-threaded benchmarks from the PARSEC [Bienia, 2011]

benchmark suite. Each configuration was evaluated 3 times, and the average is reported.

This allowed us to compare the performance impact of spinlock based operations versus TLB

operations. We also studied the impact of Pause-Loop Exiting (PLE), a hardware assisted

spinning detection and optimization feature supported by KVM and recent Intel processors.

Figure 17 and 18 show the normalized execution time of each benchmark using a sweep

of various configurations. In the 1-VM case in Figure 17, performance of various schemes are

comparable as the preemption rate is low when the system is not over-committed. However,

our scheme still achieves about 20% performance improvement on dedup, which is the most

TLB shootdown intensive workload. It is also notable that enabling PLE introduces about

51

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 1.1

b
l
a
c
k
s
c
h
o
l
e
s

b
o
d
y
t
r
a
c
k

c
a
n
n
e
a
l

d
e
d
u
p

f
e
r
r
e
t

f
r
e
q
m
i
n
e

r
a
y
t
r
a
c
e

s
t
r
e
a
m
c
l
u
s
t
e
r

s
w
a
p
t
i
o
n
s

v
i
p
s

x
2
6
4N

o
r
m
a
l
i
z
e
d

E
x
e
c
u
t
i
o
n

T
i
m
e

baseline

ple

pmt

pmt+kvmtlb

pmt+shoot4u

ple+pmt+shoot4u

Figure 17: PARSEC Performance with Optimizations (1VM)

10% overhead on x264 in this case. In the 2-VMs case in Figure 18, Shoot4U outperforms

kvmtlb by more than 10% on 4 benchmarks, and in the best cases, it is 85% faster than

the baseline on dedup, and 44% faster than kvmtlb on ferret. It can also be observed that

PLE yields pretty good performance improvements on many benchmarks; moreover, further

improvements can be achieved when PLE is combined with preemptable ticket spinlock and

Shoot4U.

Finally we reran the profiling experiments in order to compare the reduction of syn-

chronization overheads possible using Shoot4U and preemptable ticket spinlocks. Figure 19

compares the slowdown of both the baseline and optimized configurations in the 2-VMs sce-

nario. Significant performance improvement is observed on 6 out of the 11 benchmarks. For

dedup and vips in particular, the slowdown decreases from 70.6 to 4.8 and from 10.1 to 2.9

respectively.

Figure 20 provides a profile of the sources of overheads for the two configurations. There

are significant reductions of kernel based overhead for all kernel intensive benchmarks, ex-

plaining the overall performance improvements for those benchmarks. Furthermore, for

52

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 1.1

b
l
a
c
k
s
c
h
o
l
e
s

b
o
d
y
t
r
a
c
k

c
a
n
n
e
a
l

d
e
d
u
p

f
e
r
r
e
t

f
r
e
q
m
i
n
e

r
a
y
t
r
a
c
e

s
t
r
e
a
m
c
l
u
s
t
e
r

s
w
a
p
t
i
o
n
s

v
i
p
s

x
2
6
4N

o
r
m
a
l
i
z
e
d

E
x
e
c
u
t
i
o
n

T
i
m
e

baseline

ple

pmt

pmt+kvmtlb

pmt+shoot4u

ple+pmt+shoot4u

Figure 18: PARSEC Performance with Optimizations (2VM)

nearly every benchmark the time spent in TLB related functions is almost eliminated, with

the exception of dedup which is still greatly reduced.

3.5 SUMMARY

In this chapter, we discussed the performance overhead of busy waiting based synchroniza-

tion operations in virtual environments. We conducted performance analysis that pin-points

spinlocks and TLB shootdown operations as the kernel performance bottleneck. To address

these problems, we presented the preemptable ticket spinlock, a VMM independent spinlock

algorithm that dynamically adjust lock fairness and performance, and Shoot4U an opti-

mization for TLB shootdown operations that internalizes the operation in the VMM and so

no longer requires the involvement of a guest’s vCPUs. Our evaluation demonstrates the

effectiveness of our approach, and illustrates how under certain workloads our approach is

dramatically better than current state of the art techniques.

53

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

blackscholes

bodytrack

canneal

dedup

ferret

freqmine

raytrace

streamcluster

swaptions

vips

x264

S
l
o
w
d
o
w
n

70.6

baseline ple+pmt+shoot4u

Figure 19: Performance Slowdown of CPU Overcommitment with Optimizations

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

blackscholes

bodytrack

canneal

dedup

ferret

freqmine

raytrace

streamcluster

swaptions

vips

x264

blackscholes

bodytrack

canneal

dedup

ferret

freqmine

raytrace

streamcluster

swaptions

vips

x264

P
e
r
c
e
n
t
a
g
e

(
%
)

baseline 2VM ple+pmt+shoot4u 2VM

k:lock k:tlb k:other u:*

Figure 20: CPU Usage Profiling with Optimizations

54

4.0 THE PISCES LIGHTWEIGHT CO-KERNEL ARCHITECTURE

Performance isolation is emerging as a requirement for High Performance Computing (HPC)

applications, particularly as HPC architectures turn to in situ data processing [Ma et al.,

2007; Zheng et al., 2013] and application composition techniques to increase system through-

put. These approaches require the co-location of disparate workloads on the same compute

node, each with different resource and runtime requirements.

We claim that these workloads cannot be effectively managed by a single Operating

System/Runtime (OS/R). This is because commodity systems, such as Linux, are designed

to maximize a set of design goals that conflict with those required to provide complete

isolation. Specifically, commodity systems are almost always designed to maximize resource

utilization, ensure fairness, and most importantly, gracefully degrade in the face of increasing

loads. These goals often result in software level interference that has a significant impact

on HPC application performance as these workloads are susceptible to system noise and

overheads [Petrini et al., 2003; Ferreira et al., 2008; Hoefler et al., 2010].

Therefore, we present Pisces, a system software architecture that enables the co-existence

of multiple independent and fully isolated OS/Rs, or enclaves, that can be customized to

address the disparate requirements of next generation HPC workloads. Each enclave consists

of a specialized lightweight OS co-kernel and runtime, which is capable of independently

managing partitions of dynamically assigned hardware resources. Contrary to other co-kernel

approaches, in this work we consider performance isolation to be a primary requirement and

present a novel co-kernel architecture to achieve this goal. We further present a set of

design requirements necessary to ensure performance isolation, including: (1) elimination

of cross OS dependencies, (2) internalized management of I/O, (3) limiting cross enclave

communication to explicit shared memory channels, and (4) using virtualization techniques

55

to provide missing OS features. The implementation of the Pisces co-kernel architecture is

based on the Kitten Lightweight Kernel and Palacios Virtual Machine Monitor, two system

software architectures designed specifically for HPC systems. Finally we will show that

lightweight isolated co-kernels can provide better performance for HPC applications, and

that isolated virtual machines are even capable of outperforming native environments in the

presence of competing workloads.

4.1 INTRODUCTION

Performance isolation has become a significant issue for both cloud and High Performance

Computing (HPC) environments [Dean and Barroso, 2013; Phull et al., 2012; Dorier et al.,

2014]. This is particularly true as modern applications increasingly turn to composition

and in situ data processing [Ma et al., 2007; Zheng et al., 2013] as substrates for reducing

data movement [Kogge et al., 2008] and utilizing the abundance of computational resources

available locally on each node. While these techniques have the potential to improve I/O per-

formance and increase scalability, composing disparate application workloads in this way can

negatively impact performance by introducing cross workload interference between each ap-

plication component that shares a compute node’s hardware and Operating System/Runtime

(OS/R) environment. These effects are especially problematic when combined with tradi-

tional Bulk Synchronous Parallel (BSP) HPC applications, which are particularly prone to

interference resulting from noise and other system-level overheads across the nodes of large

scale deployments [Petrini et al., 2003; Ferreira et al., 2008; Hoefler et al., 2010]. While

previous work has identified shared hardware resources as a source of interference, we claim

that workload interference can also result from shared resources residing inside a node’s

system software. Therefore, to fully prevent interference from affecting a given workload

on a system, it is necessary to provide isolation features both at the hardware and system

software layers.

In the last decade, HPC systems have converged to use Linux as the preferred node oper-

ating system. This has led Linux to emerge as the dominant environment for many modern

56

HPC systems [Yoshii et al., 2009; Kaplan, 2007] due to its support of extensive feature sets,

ease of programmability, familiarity to application developers, and general ubiquity. While

Linux environments provide tangible benefits to both usability and maintainability, they

contain fundamental limitations when it comes to providing effective performance isolation.

This is because commodity systems, such as Linux, are designed to maximize a set of design

goals that conflict with those required to provide complete isolation. Specifically, commodity

systems are almost always designed to maximize resource utilization, ensure fairness, and

most importantly, gracefully degrade in the face of increasing loads. These goals often result

in software level interference that has a significant impact on HPC application performance

as these workloads are susceptible to system noise and overheads.

To address these issues we present Pisces, an OS/R architecture designed primarily

to provide full system isolation for HPC environments through the use of lightweight co-

kernels. 1 In our architecture, multiple heterogeneous OS/R instances co-exist on a single

HPC compute node and directly manage independent sets of hardware resources. Each co-

kernel executes as a fully independent OS/R environment that does not rely on any other

instance for system level services, thus avoiding cross workload contention on system software

resources and ensuring that a single OS/R cannot impact the performance of the entire node.

Each co-kernel is capable of providing fully isolated OS/Rs, or enclaves, to local workloads.

This approach allows a user to dynamically compose independent enclaves from arbitrary

sets of local hardware resources at runtime based on a coupled applications’ resource and

isolation requirements.

While others have explored the concept of lightweight co-kernels coupled with Linux [Park

et al., 2012; Wisniewski et al., 2014; Tomita et al., 2014], our approach is novel in that we

consider performance isolation to be the primary design goal. In contrast to other systems,

where some or all system services are delegated to remote OS/Rs to achieve application

compatibility, we explicitly eliminate cross OS dependencies for external services. Instead,

each co-kernel must provide a self contained set of system services that are implemented

internally. Second, we require that each co-kernel implement its own I/O layers and device

drivers that internalize the management of hardware and I/O devices. Third, we restrict

1http://www.prognosticlab.org/pisces

57

cross enclave communication to user space via explicit shared memory channels [Kocoloski

and Lange, 2015], and do not provide any user space access to in-kernel message passing

interfaces. Finally, we support applications that require unavailable features through the

use of fully isolated virtual machines hosted by the lightweight co-kernel. Taken together,

these design requirements ensure that our system architecture can provide full isolation at

both the hardware and software levels for existing and future HPC applications.

As a foundation for this work, we have leveraged our experience with the Kitten Light-

weight Kernel (LWK) and the Palacios Virtual Machine Monitor (VMM) [Lange et al., 2010].

Previous work has shown the benefits of using both Palacios and Kitten to provide scalable

and flexible lightweight system software to large scale supercomputing environments [Lange

et al., 2011], as well as the potential of properly configured virtualized environments to

outperform native environments for certain workloads [Kocoloski and Lange, 2012]. In this

work we present a novel approach to achieving workload isolation by leveraging both Kitten

and Palacios, deployed using the Pisces co-kernel framework, to provide lightweight isolation

environments on systems running full featured OS/Rs.

We claim that our approach is novel in the following ways:

• Pisces emphasizes isolation as the primary design goal and so provides fully isolated OS

instances, each of which has direct control over its assigned hardware resources (includ-

ing I/O devices) and furthermore contains no dependencies on an external OS for core

functionality.

• With Pisces, hardware resources are dynamically partitioned and assigned to specialized

OS/Rs running on the same physical machine. In turn, enclaves can be created and

destroyed at runtime based on application requirements.

• We leverage the Palacios VMM coupled with a Kitten co-kernel to provide fully isolated

environments to arbitrary OS/Rs.

4.1.1 High Level Approach

At the heart of our approach is the ability to dynamically decompose a node’s hardware

resources into multiple partitions, each capable of supporting a fully independent and iso-

58

Linux

Hardware

Isolated Virtual
Machine

Applications
+

Virtual
MachinesPalacios VMM

Kitten Co-kernel
(1)

Kitten Co-kernel
(2)

Isolated
Application

Pisces Pisces

Figure 21: The Pisces Co-Kernel Architecture

lated OS environment. Each OS instance is referred to as an enclave, which is dynamically

constructed based on the runtime requirements of an application. A high level overview of

the Pisces system architecture is shown in Figure 21. In this environment a single Linux

environment has dynamically created two separate enclaves to host a composed application,

consisting of a traditional HPC simulation running natively on a co-kernel, and a coupled

data visualization/analytic application running inside an isolated VM. Each enclave OS/R

directly manages the hardware resources assigned to it, while also allowing dynamic resource

assignment based on changing performance needs.

The ability to dynamically compose collections of hardware resources provides significant

flexibility for system management. This also enables lightweight enclaves to be brought up

quickly and cheaply since they can be initialized with a very limited set of resources, for

example a single core and 128 MB of memory, and then dynamically expanded based on the

needs of a given application. Furthermore, to fully ensure performance isolation for a given

application, each enclave has direct control of the I/O devices that it has been assigned. This

is in contrast to many existing OS/hypervisor architectures that incorporate the concept of

a driver domain or I/O service domain to mediate access to shared I/O resources. Instead,

we provide hosted workloads with direct access to the underlying hardware devices, relying

on the hardware’s ability to partition and isolate them from the different enclaves in the

system.

Figure 22 shows an example configuration of a co-kernel running on a subset of hardware

resources. In this example case, a Linux environment is managing the majority of system

59

1	

Cores	

2	

3	 4	

Socket	 1	

Memory	
Region	 A	

5	

Cores	

6	

7	 8	

Memory	
Region	 B	

Socket	 2	

PCI	

Ki9en	 	
Co-‐Kernel	

Memory	
Region	 C	

Linux	

NIC	 2	 NIC	 1	

Figure 22: Example Hardware Configuration with one Pisces Co-Kernel

resources with the exception of 2 CPU cores and half the memory in the 2nd NUMA do-

main, which are assigned to the co-kernel. In addition, the co-kernel has direct control over

one of the network interfaces connected through the PCI bus. It is important to note that

partitioning the hardware resources in the manner presented here is possible only if the hard-

ware itself supports isolated operation both in terms of performance as well as management.

Therefore, the degree to which we can partition a local set of resources is largely system and

architecture dependent, and relies on the capabilities of the underlying hardware.

4.1.2 Background

Kitten Lightweight Kernel The Kitten Lightweight Kernel [Lange et al., 2010] is a special-

purpose OS kernel designed to provide an efficient environment for executing highly-scalable

HPC applications at full-system scales (10’s of thousands of compute nodes). 2 Kitten

is similar in design to previous LWKs, such as SUNMOS [Maccabe et al., 1994], Puma/-

Cougar [Wheat et al., 1994], and Catamount [Kelly and Brightwell, 2005], that have been

deployed on Department of Energy supercomputers. Some of Kitten’s unique characteristics

are its modern code base that is partially derived from the Linux kernel, its improved Linux

2https://software.sandia.gov/trac/kitten

60

API and ABI compatibility that allows it to fit in better with standard HPC toolchains, and

its use of virtualization to provide full-featured OS support when needed.

The basic design philosophy underlying Kitten is to constrain OS functionality to the bare

essentials needed to support highly scalable HPC applications and to cover the rest through

virtualization. Kitten therefore augments the traditional LWK design with a hypervisor

capability, allowing full-featured OS instances to be launched on-demand in virtual machines

running on top of Kitten. This allows the core Kitten kernel to remain small and focused,

and to use the most appropriate resource management policies for the target workload rather

than one-size-fits-all policies.

Palacios Virtual Machine Monitor Palacios [Lange et al., 2010, 2011] is a publicly avail-

able, open source, OS-independent VMM that targets the x86 and x86 64 architectures

(hosts and guests) with either AMD SVM or Intel VT extensions. It is designed to be em-

beddable into diverse host OSes, and is currently fully supported in both Linux and Kitten

based environments. When embedded into Kitten, the combination acts as a lightweight

hypervisor supporting full system virtualization. Palacios can run on generic PC hardware,

in addition to specialized hardware such as Cray supercomputer systems. In combination

with Kitten, Palacios has been shown to provide near native performance when deploying

tightly coupled HPC applications at large scale (4096 nodes on a Cray XT3).

4.2 PISCES CO-KERNEL ARCHITECTURE

The core design goal of Pisces is to provide isolated heterogeneous runtime environments

on the same node in order to fulfill the requirements of complex applications with disparate

OS/R requirements. Co-kernel instances provide isolated enclaves with specialized system

software for tightly coupled HPC applications sensitive to performance interference, while a

traditional Linux based environment is available for applications with larger feature require-

ments such as data analytics, visualization, and management workloads. Our work assumes

that hardware level isolation is achieved explicitly through well established allocation tech-

niques (memory/CPU pinning, large pages, NUMA binding, etc.), and instead we focus our

61

work on extending isolation to the software layers as well.

The architecture of our system is specifically designed to provide as much isolation as

possible so as to avoid interference from the system software. In order to ensure that isolation

is maintained we made several explicit decisions while designing and implementing the Pisces

architecture:

• Each enclave must implement its own complete set of supported system calls. System

call forwarding is not supported in order to avoid contention inside another OS instance.

• Each enclave must provide its own I/O device drivers and manage its hardware resources

directly. Driver domains are not actively supported, as they can be a source of contention

and overhead with I/O heavy workloads.

• Cross enclave communication is not a kernel provided feature. All cross enclave com-

munication is explicitly initialized and managed by userspace applications using shared

memory.

• For applications with larger feature requirements than provided by the native co-kernel,

we use a co-kernel based virtual machine monitor to provide isolated VM instances.

4.2.1 Cross Kernel Dependencies

A key claim we make in this work is that cross workload interference is the result of both

hardware resource contention and system software behavior. It should be noted that software

level interference is not necessarily the result of contention on shared software resources,

but rather fundamental behaviors of the underlying OS/R. This means that even with the

considerable amount of work that has gone into increasing the scalability of Linux [Boyd-

Wickizer et al., 2010] there still remain a set of fundamental issues that introduce interference

as the utilization of the system increases.

A common source of system software level interference are the system calls invoked by

an application. Many of the control paths taken by common system calls contain edge cases

in which considerably longer execution paths can be invoked under certain conditions.

Our approach is in direct contrast to other co-kernel approaches that have been pro-

posed [Park et al., 2012; Tomita et al., 2014], and which make extensive use of system call

62

forwarding and other inter-kernel communication. Our approach avoids not only the over-

head associated with cross enclave messaging, but also ensures that interference cannot be

caused by additional workloads in a separate OS/R instance.

4.2.2 I/O and Device Drivers

In addition to system call handling, device I/O represents another potential source of inter-

ference between workloads. The same issues discussed with system calls apply to the I/O

paths as well, in which higher levels of utilization can trigger longer execution paths inside

the I/O handling layers. Therefore, in order to further avoid software level interference, we

require that each enclave independently manage its own hardware resources, including I/O

devices. This requires that each independent OS/R contain its own set of device drivers to

allow hosted applications access to the devices that have been explicitly assigned to that

enclave. This prevents interference caused by other application behaviors, as well as elimi-

nates contention on I/O resources that could be caused by sharing I/O devices or by routing

I/O requests to a single driver domain. This approach does require that I/O devices either

support partitioning in some way (e.g., SRIOV [Dong et al., 2008]) or that they be allocated

entirely to one enclave. While this would appear to be inefficient, it matches our space shar-

ing philosophy and furthermore it represents the same requirements placed on passthrough

I/O devices in virtualized systems.

solitary w/ other

workload (ms) workloads (ms)

Linux 231.69 312.66

co-kernel 212.75 212.38

Table 4: Execution Time of Sequential Reads from a Block Device

Table 4 shows the benefits of isolated I/O in the case of a SATA disk. In this case we

measured the performance differences between a local device driver implementation both

on Linux and inside a co-kernel. For this experiment we evaluated the performance of

63

sequential reads from a secondary SATA disk exported as a raw block device bypassing any

file system layers. As with the first experiment additional workloads took the form of parallel

kernel compilations occurring on the primary SATA disk hosting the main Linux file system.

Accessing the SATA disk from Kitten required a custom SATA driver and block device

layer which we implemented from scratch to provide zero-copy block access for our Kitten

applications while also sharing a single SATA controller with other enclave OS/Rs. The

results show that the optimized Kitten driver is able to outperform the Linux storage layer

in each case, however more importantly the co-kernel is able to maintain isolation without

meaningful performance degradation even in the face of competing workloads contending on

the same SATA controller. Linux, on the other hand, demonstrates significant performance

degradation when a competing workload is introduced even though it is accessing separate

hardware resources.

4.2.3 Cross Enclave Communication

While full isolation is the primary design goal of our system, it is still necessary to provide

communication mechanisms in order to support in situ and composite application architec-

tures. Cross enclave interactions are also necessary to support system administration and

management tasks. To support these requirements while also enforcing the isolation prop-

erties we have so far discussed, we chose to restrict communication between processes on

separate enclaves to explicitly created shared memory regions mapped into a process’ ad-

dress space by using the XEMEM shared memory system [Kocoloski and Lange, 2015]. While

this arrangement does force user space applications to implement their own communication

operations on top of raw shared memory, it should be noted that this is not a new problem

for many HPC applications. Moreover this decision allows our architecture to remove cross

enclave IPC services from the OS/R entirely, thus further ensuring performance isolation at

the system software layer.

Due to the fact that communication is only allowed between user space applications,

management operations must therefore be accomplished via user space. Each enclave is re-

quired to bootstrap a local control process that is responsible for the internal management

64

Hardware	 Par))on	 Hardware	 Par))on	

User	
Context	

Kernel	
Context	 Linux	

Cross-‐Kernel	
Messages	

Control	
Process	

Control	
Process	

Shared	 Mem	
	 Ctrl	 Channel	

Linux	
Compa)ble	
Workloads	

Isolated	
Processes	 	

+	
Virtual	

Machines	

Shared	 Mem	
Communica6on	 Channels	

Ki@en	
Co-‐Kernel	

Figure 23: Cross Enclave Communication in Pisces

of the enclave. Administrative operations are assumed to originate from a single manage-

ment enclave running a full featured OS/R (in our case Linux), which is responsible for

coordinating resource and workload assignments between itself and each locally hosted co-

kernel. Administrative operations are therefore accomplished through control messages that

are sent and received across a shared memory channel between the enclave control process

and a global administrative service in the management enclave.

Figure 23 illustrates the model for communication between enclaves managed by a Linux

environment and a Kitten co-kernel. While the purpose of our approach is to avoid unpre-

dictable noise in the form of inter-core interrupts (IPIs) and processing delays that would

necessarily accompany a kernel-level message-oriented approach, it is nevertheless necessary

to allow some level of inter-kernel communication in some situations, specifically in the

bootstrap phase and when dealing with legacy I/O devices. For these purposes we have

implemented a small inter-kernel message passing interface that permits a limited set of

operations. However this communication is limited to only the kernel systems where it is

necessary, and is not accessible to any user space process.

4.2.4 Isolated Virtual Machines

The main limitation of lightweight kernels is the fact that the features they remove in order to

ensure performance consistency are often necessary to support general purpose applications

and runtimes. This is acceptable when the application set is tightly constrained, but for more

65

general HPC environments and applications a larger OS/R feature set is required. For these

applications we claim that we can still provide the isolation benefits of our co-kernel approach

as well as their required feature set through the use of isolated virtual machine instances.

For these applications our co-kernel architecture is capable of providing a full featured OS/R

inside a lightweight virtual environment hosted on the Palacios VMM coupled with a Kitten

co-kernel, which we denote as a co-VMM. While past work has shown that Palacios is capable

of virtualizing large scale HPC systems with little to no overhead, the isolation properties of

Palacios (deployed as a co-VMM) actually provide performance benefits to applications. As

we will show, a full featured Linux VM deployed on a co-VMM is capable of outperforming

a native Linux environment when other workloads are concurrently executing on the same

node.

4.3 PISCES IMPLEMENTATION

The Pisces architecture extends the Kitten Lightweight Kernel to allow multiple instances

of it to run concurrently with a Linux environment. Each Kitten co-kernel instance is given

direct control over a subset of the local hardware resources, and is able to manage its resources

directly without any coordination with other kernel instances running on the same machine.

Pisces includes the following components:

1. A Linux kernel module that allows the initialization and management of co-kernel in-

stances.

2. Modifications to the Kitten architecture to support dynamic resource assignment as well

as sparse (non-contiguous) sets of hardware resources.

3. Modifications to the Palacios VMM to support dynamic resource assignment and remote

loading of VM images from the Linux environment.

As part of the implementation we made a significant effort to avoid any code changes to

Linux itself, in order to ensure wide compatibility across multiple environments. As a result

our co-kernel architecture is compatible with a wide range of unmodified Linux kernels (2.6.3x

66

- 3.x.y). The Linux side components consist of the Pisces kernel module that provides boot

loader services and a set of user-level management tools implemented as Linux command

line utilities.

The co-kernel used in this work is a highly modified version of the Kitten lightweight

kernel as previously described. The majority of the modifications to Kitten centered around

removing assumptions that it had full control over the entire set of system resources. Instead

we modified its operation to only manage resources that it was explicitly granted access to,

either at initialization or dynamically during runtime. Specifically, we removed the default

resource discovery mechanisms and replaced them with explicit assignment interfaces called

by a user-space management process. Other modifications included a small inter-kernel

message passing interface and augmented support for I/O device assignment. In total our

modifications required ∼9,000 lines of code. The modifications to Palacios consisted of a

command forwarding interface from the Linux management enclave to the VMM running in

a Kitten instance, as well as changes to allow dynamic resource assignments forwarded from

Kitten. Together these changes consisted of ∼5,000 lines of code.

In order to avoid modifications to the host Linux environment, our approach relies on

the ability to offline resources in modern Linux kernels. The offline functionality allows a

system administrator to remove a given resource from Linux’s allocators and subsystems

while still leaving the resource physically accessible. In this way we are able to dynamically

remove resources such as CPU cores, memory blocks and PCI devices from a running Linux

kernel. Once a resource has been offlined, a running co-kernel is allowed to assume direct

control over it. In this way, even though both Linux and a co-kernel have full access to the

complete set of hardware resources they are able to only assume control of a discontiguous

set of resources assigned to them.

4.3.1 Booting a Co-kernel

Initializing a Kitten co-kernel is done by invoking a set of Pisces commands from the Linux

management enclave. First a single CPU core and memory block (typically 128 MB) is

taken offline, and removed from Linux’s control. The Pisces boot loader then loads a Kitten

67

kernel image and init task into memory and then initializes the boot environment. The boot

environment is then instantiated at the start of the offlined memory block, and contains

information needed to initialize the co-kernel and a set of special memory regions used for

cross enclave communication and console I/O. The Kitten kernel image and init task are

then copied into the memory block below the boot parameters. Pisces then replaces the

host kernel’s trampoline (CPU initialization) code with a modified version that initializes

the CPU into long (64 bit) mode and then jumps to a specified address at the start of the

boot parameters, which contains a set of assembly instructions that jump immediately into

the Kitten kernel itself. Once the trampoline is configured, the Pisces boot loader issues a

special INIT IPI (Inter-Processor Interrupt) to the offlined CPU to force it to reinitialize

using the modified trampoline.

Once the target CPU for the co-kernel has been initialized, execution will vector into the

Kitten co-kernel and begin the kernel initialization process. Kitten will proceed to initialize

the local CPU core as well as the local APIC and eventually launch the loaded init task. The

main difference is that instead of scanning for I/O devices and other external resources, the

co-kernel instead queries a resource map provided inside the boot parameters. This resource

map specifies the hardware that the co-kernel is allowed to access (offlined inside the Linux

environment). Finally, the co-kernel activates a flag notifying the Pisces boot loader that

initialization is complete, at which point Pisces reverts the trampoline back to the original

Linux version. This reversion is necessary to support the CPU online operation in Linux,

which is used to return the CPU to Linux after the co-kernel enclave has been destroyed.

4.3.2 Communicating with the co-kernel

To allow control of a Pisces co-kernel, the init task that is launched after boot contains a

small control process that is able to communicate back to the Linux environment. This allows

a Pisces management process running inside Linux to issue a set of commands to control

the operation of the co-kernel enclave. These commands allow the dynamic assignment

and revocation of additional hardware resources, as well as loading and launching VMs

and processes inside the co-kernel. The communication mechanism is built on top of a

68

Operation Latency (ms)

Booting a Co-kernel 265.98

Adding a single CPU core 33.74

Adding a 128MB memory block 82.66

Adding an Ethernet NIC 118.98

Table 5: Pisces Operation Latency

shared memory region included in the initial memory block assigned at boot time. This

shared memory region implements a simple message passing protocol, and is used entirely

for communication with the control process in the co-kernel. Table 5 reports the latency for

booting and dynamically assigning various hardware resources to a co-kernel.

In addition to the enclave control channel, an additional communication channel exists to

allow the co-kernel to issue requests back to the Linux environment. The use of this channel

is minimized to only routines that are strictly necessary and cannot be avoided, including

the loading of VMs and applications from the Linux file system, configuration of the global

IOMMU, and IRQ forwarding for legacy devices. Based on our design goals, we tried to limit

the uses of this channel as much as possible to prevent the co-kernel from relying on Linux

features. In particular, we did not want to rely on this channel as a means of doing system

call forwarding, as that would break the isolation properties we were trying to achieve. For

this reason, the channel is only accessible from inside kernel context and is hidden behind

a set of constrained and limited APIs. It should be noted that this restriction limits the

allowed functionality of the applications hosted by Kitten, but as we will demonstrate later,

more full featured applications can still benefit from the isolation of a co-kernel through the

use of virtualization.

4.3.3 Assigning hardware resources

The initial co-kernel environment consists of a single CPU and a single memory block.

In order to support large scale applications, Pisces provides mechanisms for dynamically

69

expanding an enclave after it has booted. As before, we rely on the ability to dynamically

offline hardware resources in Linux. We have also implemented dynamic resource assignment

in the Kitten kernel itself to handle hardware changes at runtime. Currently Pisces supports

dynamic assignment of CPUs, memory, and PCI devices.

Adding a CPU core to a Kitten co-kernel is achieved in essentially the same way as the

boot process. A CPU core is offlined in Linux and the trampoline is again replaced with a

modified version. At this point Pisces issues a command to the control process running in the

co-kernel, informing it that a new CPU is being assigned to the enclave. The control process

receives the command (which includes the CPU and APIC identifiers for the new CPU) and

then issues a system call into the Kitten kernel. Kitten then allocates the necessary data

structures and issues a request back the Linux boot loader for an INIT IPI to be delivered

to the target core. The CPU is then initialized and activated inside the Kitten environment.

Reclaiming a CPU is done in a similar manner, with the complication that local tasks need

to be migrated to other active CPUs before reclaiming a CPU.

Adding memory to Kitten is handled in much the same way as CPUs. A set of memory

blocks are offlined and removed from Linux, and a command containing their physical address

ranges is issued to the co-kernel. The control process receives the command and forwards

it via a system call to the Kitten kernel. Kitten then steps through the new regions and

adds each one to its internal memory map, and ensures that identity mapped page tables

are created to allow kernel level access to the new memory regions. Once the memory has

been mapped in, it is added to the kernel allocator and is available to be assigned to any

running processes. Removing memory simply requires inverting the previous steps, with the

complication that if the memory region is currently allocated then it cannot be removed.

While this allows the co-kernel to potentially prevent reclamation, memory can always be

forcefully reclaimed by destroying the enclave and returning all resources back to Linux.

Due to the goal of full isolation between enclaves, we expect that I/O is handled on a

per enclave basis. Our approach is based on the mechanisms currently used to provide direct

passthrough access to I/O devices for virtual machines. To add a PCI device to a co-kernel

it is first detached from the assigned Linux device driver and then offlined from the system.

The IOMMU (if available) is then configured by Pisces without involvement from the co-

70

Legacy
Device

IO-APIC

Management
Kernel Co-Kernel

IRQ
Forwarder

IRQ
Handler

MSI/MSI-X
Device

Management
Kernel Co-Kernel

IRQ
Forwarder

IRQ
Handler

MSI/MSI-X
Device

MSI MSI INTx

IPI

Legacy Interrupt Forwarding Direct Device Assignment (w/ MSI)

Figure 24: Interrupt Routing Between Pisces Enclaves

kernel itself. This is possible because Pisces tracks the memory regions assigned to each

enclave, and so can update the IOMMU with identity mappings for only those regions that

have been assigned. This requires dynamically updating the IOMMU as memory is assigned

and removed from an enclave, which is accomplished by notifying the module whenever a

resource allocation has been changed. Once an IOMMU mapping has been created, the co-

kernel is notified that a new device has been added, at which point the co-kernel initializes

its own internal device driver.

Unfortunately, interrupt processing poses a potential challenge for assigning I/O devices

to an enclave. PCI based devices are all required to support a legacy interrupt mode that

delivers all device interrupts to an IO-APIC, that in turn forwards the interrupt as a specified

vector to a specified processor. Furthermore, since legacy interrupts are potentially shared

among multiple devices a single vector cannot be directly associated with a single device. In

this case, it is not possible for Pisces to simply request the delivery of all device interrupts to

a single co-kernel since it is possible that it is not the only recipient. To address this issue,

Pisces implements an IRQ forwarding service in Linux. When a device is assigned to an

enclave any legacy interrupts originating from that device (or any other device sharing that

IRQ line) are sent directly to Linux, which then forwards the interrupt via IPI to any enclave

which has been assigned a device associated with that IRQ. This approach is shown in the

left half of Figure 24. Fortunately, most modern devices support more advanced interrupt

routing mechanisms via MSI/MSI-X, wherein each device can be independently configured

to generate an IRQ that can be delivered to any CPU. For these devices Pisces is able to

71

simply configure the device to deliver interrupts directly to a CPU assigned to the co-kernel,

as shown in the right half of Figure 24.

4.3.4 Integration with the Palacios VMM

While our co-kernel architecture is designed to support native applications, the portability

of our approach is limited due to the restricted feature set resident in Kitten’s lightweight

design. This prevents some applications from gaining the isolation and performance benefits

provided by Pisces. While other work has addressed this problem by offloading unsupported

features to Linux [Park et al., 2012], we have taken a different approach in order to avoid

dependencies (and associated interference sources) on Linux. Instead we have leveraged our

work with the Palacios VMM to allow unmodified applications to execute inside an isolated

Linux guest environment running as a VM on top of a co-VMM. This approach allows

Pisces to provide the full set of features available to the native Linux environment while also

providing isolation from other co-located workloads. As we will show later, Pisces actually

allows a virtualized Linux image to outperform a native Linux environment in the face of

competing workloads.

While Palacios had already been integrated with the Kitten LWK, in this work we im-

plemented a set of changes to allow it to effectively operate in the Pisces environment. Pri-

marily, we added support for the dynamic resource assignment operations of the underlying

co-kernel. These modifications entailed ensuring that the proper virtualization features were

enabled and disabled appropriately as resources were dynamically assigned and removed. We

also added checks to ensure Palacios never accessed stale resources or resources that were

not assigned to the enclave. In addition we integrated support for loading, controlling, and

interacting with co-kernel hosted VMs from the external Linux environment. This entailed

forwarding VM commands and setting up additional shared memory channels between the

Linux and co-kernel enclaves. Finally, we extended Kitten to fully support passthrough I/O

for devices assigned and allocated for a VM. This device support was built on top of the

PCI assignment mechanisms discussed earlier, but also included the ability to dynamically

update the IOMMU mappings in Linux based on the memory map assigned to the VM

72

guest. Finally, we implemented a simple file access protocol to allow Palacios to load a large

(multi-gigabyte) VM disk image from the Linux file system.

4.4 EVALUATION

We evaluated Pisces on an experimental 8 node research cluster at the University of Pitts-

burgh. Each cluster node consists of a Dell R450 server connected via QDR Infiniband. Each

server was configured with two six-core Intel “Ivy-Bridge” Xeon processors (12 cores total)

and 24 GB of RAM split across two NUMA domains. Each server was running CentOS 7

(Linux Kernel version 3.16). Performance isolation at the hardware level was achieved by

pinning each workload to a dedicated NUMA domain. Our experiments used several different

software configurations. The standard “CentOS” configuration consisted of running a single

Linux environment across the entire machine and using the Linux resource binding APIs

to enforce hardware level resource isolation. The KVM configuration consisted of assigning

control of one NUMA domain to Linux, while the other was controlled by a KVM VM. Simi-

larly, the “co-kernel” configuration consisted of one Linux managed NUMA domain while the

other was managed by a Kitten co-kernel. Finally the “co-VMM” configuration consisted of

a Linux guest environment running as a VM on Palacios integrated with a Kitten co-kernel.

4.4.1 Noise analysis

Using the Selfish Detour benchmark [Beckman et al., 2008] from Argonne National Lab, our

first experiments measured the impact that co-located workloads had on the noise profile of

a given environment, Selfish is designed to detect interruptions in an application’s execution

by repeatedly sampling the CPU’s cycle count in a tight loop. For each experiment we

ran the benchmark for a period of 5 seconds, first with no competing workloads and then

in combination with a parallelized Linux kernel compilation running on Linux. For each

configuration the Selfish benchmark was pinned to the second NUMA domain while the

kernel compilation was pinned to the first domain. Therefore changes to the noise profile are

73

almost certainly the result of software level interference events, and not simply contention

on hardware resources.

 0

 5

 10

 15

 20

 0 1 2 3 4 5

La
te

n
cy

 (
u
s)

Time (seconds)

(a) without competing workloads

 0 1 2 3 4 5

Time (seconds)

(b) with competing workloads

Figure 25: Noise on Native Linux

 0

 5

 10

 15

 20

 0 1 2 3 4 5

La
te

n
cy

 (
u
s)

Time (seconds)

(a) without competing workloads

 0 1 2 3 4 5

Time (seconds)

(b) with competing workloads

Figure 26: Noise on Native Kitten (Pisces Co-Kernel)

The results of these experiments are shown in Figures 25 and 26. Each interruption

(above a threshold) is plotted, and the length of the interruption is reported as the latency.

As can be seen, the co-kernel predictably provides a dramatically lower noise profile, while

the native Linux environment also exhibits a fairly low level of noise when no competing

workloads are present. However, the native Linux configuration exhibits a significant increase

in the number and duration of detour events once the competing workload is introduced.

Next we used the same benchmark to evaluate the isolation capabilities of various vir-

tualization architectures. The goal of these experiments were to demonstrate the isolation

capabilities of our co-VMM architecture. For these experiments the Selfish benchmark was

executed inside a VM running the Kitten LWK. The same VM image was used on 3 sepa-

rate VMM architectures: KVM on Linux, Palacios integrated with Linux (Palacios/Linux),

74

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5

La
te

n
cy

 (
u
s)

Time (seconds)

(a) without competing workloads

 0 1 2 3 4 5

Time (seconds)

(b) with competing workloads

Figure 27: Noise on Kitten Guest (KVM)

and Palacios integrated with a Kitten co-kernel (Palacios/Kitten). The results are shown

in Figure 27, 28 and 29 respectively. While each of these configurations result in different

noise profiles without competing workloads, in general the co-VMM environment shows con-

siderably less noise events than either of the Linux based configurations. However when a

second workload is added to the system KVM shows a marked increase in noise events, while

Palacios/Linux shows a slight but noticeable increase in the amount of noise. Conversely,

the Palacios/Kitten co-VMM environment shows no noticeable change to the noise profile

as additional workloads are added to the system.

We note that the Palacios based environments do experience some longer latency noise

events around the 23 microsecond mark (Figures 28 and 29), which are caused by Kitten’s

10 Hz guest timer interrupts. The longer latency is a result of the fact that Palacios does

not try to overly optimize common code paths, but instead is designed to prioritize consis-

tency. For common events such as timer interrupts, this leads to slightly higher overhead

and lower average case performance than demonstrated by KVM. However, as these figures

demonstrate, the Palacios configurations provide more consistent performance, particularly

as competing workloads are added to the system.

Taken together, these results demonstrate the effectiveness of a lightweight co-kernels

in eliminating sources of interference caused by the presence of other co-located workloads

running on the same local node. These results are important in analyzing the potential

scalability of these OS/R configurations due to the noise sensitivity exhibited by many of our

target applications [Petrini et al., 2003; Ferreira et al., 2008; Hoefler et al., 2010]. Thus the

75

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5

La
te

n
cy

 (
u
s)

Time (seconds)

(a) without competing workloads

 0 1 2 3 4 5

Time (seconds)

(b) with competing workloads

Figure 28: Noise on Kitten Guest (Palacios/Linux)

ability of the Pisces architecture to reduce the noise effects caused by competing workloads

indicates that it will provide better scalability than less isolatable OS/R environments.

4.4.2 Single Node Co-Kernel Performance

Figure 30 shows the results from a collection of single node performance experiments from the

Mantevo HPC Benchmark Suite [Mantevo, 2016]. In order to evaluate the local performance

characteristics of Pisces we conducted a set of experiments using both micro and macro

benchmarks. Each benchmark was executed 10 times using 6 OpenMP threads across 6

cores on a single NUMA node. The competing workload we selected was again a parallel

compilation of the Linux kernel, this time executing with 6 ranks on the other NUMA node

to avoid overcommitting hardware cores. To eliminate hardware-level interference as much

as possible, the CPUs and memory used by the benchmark application and background

workload were constrained to separate NUMA domains. The NUMA configuration was

selected based on the capabilities of the OS/R being evaluated: process control policies on

Linux and assigned resources for the co-kernel. For these experiments we evaluated two

different OS/R configurations: a single shared Linux environment, a Kitten environment

running in a KVM guest, and a Kitten co-kernel environment.

The top row of Figure 30 demonstrates the performance of several Mantevo benchmarks.

In all cases, the Kitten co-kernel exhibits better overall performance. In addition the co-

kernel environment also exhibits much less variance than the other system configurations.

This can be seen especially with the CoMD benchmark, that has a large degree of variance

76

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5

La
te

n
cy

 (
u
s)

Time (seconds)

(a) without competing workloads

 0 1 2 3 4 5

Time (seconds)

(b) with competing workloads

Figure 29: Noise on Kitten Guest (Pisces Co-VMM)

when running on a native Linux environment. Collectively, these results suggest that Pisces

is likely to exhibit better scaling behavior to larger node counts than either alternate system

configuration.

The bottom row of Figure 30 demonstrates memory micro-benchmark performance with

and without competing workloads in the different system configurations. The Stream results

demonstrate that a Kitten co-kernel provides consistently better memory performance than

either of the other system configurations, averaging 3% performance improvement over the

other configurations, with noticeably less variance. Furthermore, the addition of a competing

workload has a negligible effect on performance, whereas both of the other configurations

show measurable degradation.

4.4.3 Co-Kernel Scalability

Next we evaluated whether the single node performance improvements would translate to

a multi-node environment. For this experiment we deployed the HPCG [Dongarra and

Heroux, 2013] benchmark from Sandia National Labs across the 8 nodes of our experimental

cluster. Because Kitten does not currently support Infiniband hardware, these experiments

use a Linux environment running natively or as a VM hosted on either the Pisces co-VMM

architecture or KVM. As in the previous sections, the workload configurations consist of an

isolated configuration running only the HPCG benchmark, as well as a configuration with

competing workloads consisting of parallel kernel compilations configured to run on all 6

cores of a single NUMA socket. We run each experiment for 10 times and report the average

77

0

1

CentOS Kitten/KVM co-Kernel

78

79

80

81

C
o
m

p
le

ti
o
n
 T

im
e
 (

S
e
c
o
n
d
s
)

without bg
with bg

(a) miniFE

0

1

CentOS Kitten/KVM co-Kernel

82

83

84

85

C
o
m

p
le

ti
o
n
 T

im
e
 (

S
e
c
o
n
d
s
)

without bg
with bg

(b) CoMD

0

5

CentOS Kitten/KVM co-Kernel

160

165

170

175

180

C
o
m

p
le

ti
o
n
 T

im
e
 (

S
e
c
o
n
d
s
)

without bg
with bg

(c) RandomAccess

0

250

CentOS Kitten/KVM co-Kernel

20250

20500

20750

21000

21250

T
h

ro
u

g
h

p
u

t
(G

U
P

S
)

without bg
with bg

(d) Stream

Figure 30: Kitten Co-Kernel Single Node Performance

completion time and standard deviation in Figure 31.

We can see that without competing workloads, the co-VMM configuration achieves near

native performance, while KVM consistently performs worse than both of the other config-

urations. This demonstrates the benefit of lightweight virtualization, compared with virtu-

alization based on commodity software. The performance gain is due to the lower overhead

of lightweight virtualization, as well as the consist performance ensured by a lightweight

VMM. Consist performance is especially important when the workload is tightly-coupled

and running at a large scale.

When a background workload is introduced, all of the configurations perform slightly

worse. However, as the node count increases, the co-VMM configuration begins to actu-

ally outperform both the KVM instance as well as the native environment. These results

demonstrate the benefits of performance isolation to an HPC class application, while also

showing how cross workload interference can manifest itself inside system software and not

just at the hardware level. Specifically, even though lightweight virtualization introduces

some performance overhead on a single node compared with native environments, because

78

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8

T
h
r
o
u
g
h
p
u
t

(
G
F
L
O
P
/
s
)

Number of Nodes

co-VMM
native

KVM
co-VMM bg
native bg

KVM bg

Figure 31: HPCG Benchmark Performance (Up to 8 Nodes)

of the performance isolation ensured by our co-kernel architecture, a co-VMM configuration

actually tend to outperform native environment as we scale up the number of server nodes.

Given the sensitivity of tightly-coupled HPC applications to performance variances [Petrini

et al., 2003; Ferreira et al., 2008; Hoefler et al., 2010], we believe that more performance

improvement can be observed at a larger scale.

4.4.4 Performance Isolation with Commodity Workloads

While Pisces is designed to target HPC environments running coupled application work-

loads, performance isolation has also become a key issue in large scale commodity cloud

infrastructures [Dean and Barroso, 2013]. The final set of experiments evaluate the perfor-

mance isolation provided by the Pisces framework for an example cloud environment with

traditional HPC applications co-located with more common cloud workloads on the same

local resources. In this experiment, the experimental cluster was setup to co-locate cloud

workloads with traditional HPC-class applications in separate Pisces enclaves.

The cloud workload used for these tests was the Mahout machine learning benchmark

from the CloudSuite [Ferdman et al., 2012] benchmark suite. The HPC benchmarks were

79

taken from the Mantevo benchmark suite, and consisted of HPCCG, CloverLeaf, and miniFE.

For these experiments we were focused on detecting performance outliers at small scale (8

nodes), as these would be indicative of scalability issues, given the tendency for small scale in-

consistencies to result in lower average case performance as the node count increases [Petrini

et al., 2003; Ferreira et al., 2008; Hoefler et al., 2010]. Therefore, each benchmark was

executed for a period of multiple hours, allowing the collection of a large number of to-

tal runtimes. The selected configurations consisted of both workloads running natively on

Linux, the workloads running in separate KVM VMs, and the workloads running in separate

co-VMM environments, where one VM was hosted by a Kitten co-kernel, while the other

was hosted by the native Linux OS.

The results are presented using cumulative distribution functions (CDFs) of the bench-

mark completion times in Figure 32. We chose to present CDFs in order to demonstrate the

tail behaviors of each configuration. Based on the results the co-VMM environment is again

able to outperform both native and KVM based environments for each of the three bench-

marks. In addition the number of outliers (represented by the length of the tails) is generally

much smaller for the co-VMM configuration. While the tails only appear above the 95th

percentile, it is important to note that as the number of nodes scales up significantly (to the

order of thousands), the likelihood of encountering an outlier among any of the application’s

nodes will increase. Thus, given the tightly synchronized nature of these applications, these

outliers are likely to lead be much poorer scalability for both native Linux and KVM.

4.5 SUMMARY

In this chapter we presented the Pisces lightweight co-kernel architecture as a means of

providing full performance isolation on HPC systems. Pisces enables a modified Kitten

Lightweight Kernel to run as a co-kernel alongside a Linux based environment on the same

local node. Each co-kernel provides a fully isolated enclave consisting of an independent

OS/R environment capable of supporting a wide range of unmodified applications. Fur-

thermore, we have shown that Pisces is capable of achieving better isolation than other

80

approaches through a set of explicit design goals meant to ensure that isolation properties

are maintained in the face of locally competing workloads. By providing superior isolation

to applications, we have shown that applications can achieve superior performance as well

as significant decrease in performance variability as their scale increases. Finally by uti-

lizing the capabilities of the Palacios Virtual Machine Monitor we have demonstrated that

virtual machines can actually outperform native environments in the face of competing or

background workloads.

81

 0

 20

 40

 60

 80

 100

 44 45 46 47 48 49 50 51

C
D

F
 (

%
)

Runtime (seconds)

Co-VMM Native KVM

(a) HPCCG

 0

 20

 40

 60

 80

 100

 71 72 73 74 75 76

C
D

F
 (

%
)

Runtime (seconds)

Co-VMM Native KVM

(b) CloverLeaf

 0

 20

 40

 60

 80

 100

 79 80 81 82 83 84 85 86 87 88 89

C
D

F
 (

%
)

Runtime (seconds)

Co-VMM Native KVM

(c) miniFE

Figure 32: Mantevo Mini-Application CDFs with Hadoop (8 Nodes)

82

5.0 HIGH PERFORMANCE I/O ON LIGHTWEIGHT CO-KERNELS

Previously in our multi-node evaluation of Pisces co-kernels, we used lightweight virtualiza-

tion to deploy a Linux VM on top of the Kitten lightweight co-kernel, because Kitten lacks

the support for I/O services, such as device drivers and I/O stacks including the block I/O

layer, file systems and the TCP/IP stack. Nevertheless, virtualization allows us to run the

full Linux I/O stack on top of a lightweight Kitten co-kernel. Through directly passing-

through I/O devices to the Linux VM, we can enable I/O services on an isolated Kitten

enclave at the overhead of lightweight virtualization.

We have shown that lightweight virtualization can be used to leverage Linux I/O services

on a Kitten enclave, however, the drawback of this approach is that it requires the entire

HPC application to be deployed in a Linux VM. While the main advantage of lightweight

kernels is consistent performance and low OS noises, introducing the virtualization layer

and the Linux software stack enables I/O services at the cost of sacrificing the performance

consistency and low OS noise properties of lightweight kernels. Since in this approach, both

the computation and I/O components are deployed inside an Linux VM, and both of these

components would be impacted by the OS noises and kernel overheads come with Linux and

virtualization.

In this chapter, we will rethink the design trade-offs of high performance I/O services on

lightweight co-kernels, and try to come up with an approach that can leverage the generality

and compatibility of the Linux kernel while preserving the consistent performance and low

OS noise properties of the Kitten lightweight kernel. Our core idea is to decouple the compu-

tation and I/O components of an application, and run computations natively on lightweight

co-kernels while serving I/O requests on an isolated I/O domain. Such that applications can

get I/O supports and benefit from lightweight kernels to the largest extend.

83

5.1 DESIGN GOALS

In our co-kernel architecture, performance isolation is achieved through partitioning at both

software and hardware level. Regarding the I/O subsystem, each enclave is assigned with

dedicated I/O devices, which are directly managed by local OS/Rs deployed on each enclave.

No cross enclave dependency is allowed in order to eliminate cross stack performance inter-

ference. Our I/O subsystem on lightweight co-kernels should also align with these principles,

which means I/O requests should be handled locally inside an enclave to avoid cross enclave

dependencies. As a result, each co-kernel software stack has to provide local I/O supports,

including device drivers as well as I/O abstractions such as the block I/O layer, file systems

or TCP/IP stacks. Therefore, our main challenge is to ensure performance isolation and

avoid cross enclave dependencies while delegating I/O requests to a Linux instance. Given

these constraints, we summarize the design goals of the I/O subsystem on co-kernels as the

following,

• Native lightweight kernel execution. Our first design goal is to execute applications

natively on lightweight co-kernels, in order to achieve consistent performance in a low

noise environment. Because ensuring performance consistency to achieve scalability is

the first order design goal of our co-kernel architecture.

• Isolated I/O services. This design goal inherits the performance isolation property of the

co-kernel architecture. The I/O subsystems on co-kernels should ensure consistent I/O

performance without introducing cross enclave dependencies.

• High performance I/O services. To achieve high performance, two key mechanisms need

to be carefully designed: one is to avoid copying on the data path, the other is an

efficiently cross enclave notification mechanism.

• Application transparent I/O Services. An application transparent I/O delegation service

allows a executable binary to be directly deployed on a co-kernel without the need to

recompile or relink the application. It ensures the usability and compatibility of our I/O

service.

84

5.2 POTENTIAL APPROACHES

Given the design goals discussed above, in this section, we will examine four existing I/O

architectures that can be used to enable I/O services on co-kernels and discuss their limita-

tions. Specifically, full virtualization, kernel space I/O stack, userspace I/O stack and I/O

service delegation.

Lightweight Virtualization allows unmodified Linux guest VMs to run on top of a co-

kernel [Ouyang et al., 2015]. This approach is used in our multi-node evaluation for Pisces

co-kernels in chapter 4. Augmented with device passthrough techniques, a Linux VM can

directly manage physical I/O devices with little performance overhead. The Linux VM

provides POSIX and device compatibilities with no additional engineering cost. Meanwhile,

it ensures performance isolation by handling I/O requests locally inside a VM. However, the

drawback is that it requires applications to be deployed in a full-fledged Linux guest VM,

while it is known that tightly coupled HPC workloads favor lightweight kernels [Lange et al.,

2010].

An alternative approach is to implement native kernel space drivers and I/O stacks

inside the co-kernels, i.e. kernel space I/O stacks. Most modern monolithic kernels adopt

this architecture for good I/O performance, including Linux and Windows. However, adding

native device driver support requires huge engineering efforts. Moreover, adding full I/O

stacks into a lightweight co-kernel is contradictory to the design goal of lightweight kernels,

which could result in higher kernel overheads.

Another approach is to use userspace drivers and I/O stacks. Example userspace I/O

stacks include userspace file systems [Fuse, 2016], userspace TCP/IP stacks [Jeong et al.,

2014], as well as userspace device drivers [DPDK, 2016]. Userspace I/O stacks are more flex-

ible than kernel space I/O stacks, and allow the co-design of applications, I/O abstractions

and device drivers. For instance, the IX kernel [Belay et al., 2014] combines zero-copy I/O,

polling based interrupts and batched system call techniques to enable a high performance

and low latency data plane operating system. However, a limitation of this approach is that

porting userspace device drivers to lightweight co-kernels is non-trivial. Because userspace

device drivers are generally developed for Linux, and typically depend on OS features that

85

is not currently supported by lightweight kernels. Therefore, to support userspace device

drivers, the lightweight kernels have to be augmented first to provide kernel level support.

Besides, it is difficult to share I/O services between processes using userspace I/O stacks,

since the device is owned by a process and Inter-Process Communication (IPC) mechanisms

have to be used to share the device among processes.

Finally, I/O delegation based approaches can be used. Depending on how the I/O stack

is decomposed between the client and server domains, I/O services can be delegated at three

different abstraction levels: virtual device level [LeVasseur et al., 2004; Xen, 2016], device

file level [Amiri Sani et al., 2014], and system call level [Nikolaev and Back, 2013]. The

Xen driver domain [Xen, 2016] delegates I/O requests at the virtual device level. However,

lightweight kernels do not have the native device driver or I/O stack support to use vir-

tual devices. Paradice [Amiri Sani et al., 2014] delegates I/O services at device file level,

but it does not support other POSIX I/O interfaces we need, for example Linux sockets.

VirtuOS [Nikolaev and Back, 2013] decomposes kernel services into several server VMs and

delegates I/O requests to remote VMs at the system call level. However, it introduces an

additional data copy on the data path, which is very expensive for data transfer.

In this work, we decided to delegate I/O requests at the system call level, while focusing

on the performance and isolation of the our I/O services. System call level I/O delegation

preserves the I/O interface and allows application transparent I/O delegation. Besides, it

reuses the Linux I/O stack to the largest extent, and requires few modifications to the

lightweight co-kernel.

5.3 HOBBESIO: HIGH PERFORMANCE CO-KERNEL I/O DELEGATION

In this section, we present HobbesIO, a high performance application transparent I/O del-

egation services on co-kernels. HobbesIO allows the native execution of HPC applications

on the lightweight co-kernel, while delegating I/O requests to a Linux instance, denoted as

the I/O domain, deployed either natively as an enclave or as a virtual machine. HobbesIO

allows the native execution of computational tasks and only introduces overheads on I/O

86

operations, so that the consistent performance and low OS noise properties of the lightweight

co-kernel can be preserved. HobbesIO delegates I/O requests at the system call level, and

aims to ensure high I/O performance by avoiding data copying on the data path.

In HobbesIO, a stub process is created on a Linux instance (the I/O domain) for each

native Kitten process that needs I/O services. Identical memory mappings are setup between

the two processes. Besides, a cross enclave command channel is setup between the co-kernel

and the Linux I/O domain. I/O system calls from Kitten processes are intercepted and

inserted into the command channel. The caller process is then blocked in the Kitten kernel,

until its previous system call is handled by the corresponding stub process on Linux and the

return value is passed back through the command channel. Busy-waiting based notification

is used in HobbesIO. The stub process directly polls the command channel on the Linux side.

A dispatching process is also created on Kitten side, which retrieves system call returns and

wake up the caller process through ioctl calls. The application process and stub process are

paired and identified by a shared stub ID. A stub process only consumes system call requests

that match its stub ID, while the dispatching process on Kitten also use the stub ID to wake

up the corresponding caller.

In the following, we will provide more details about the design and implementation of

the two core building blocks used in HobbesIO: mirrored address spaces on heterogeneous

kernels and the system call command channel.

5.3.1 Mirrored Address Spaces on Heterogeneous Kernels

The fundamental technique we used to enable application transparent system call delegation

is mirroring the address spaces between an application process on the co-kernel and a stub

process on the Linux I/O domain. Because an I/O system call often uses an userspace buffer

for data input and output, where the buffer is specified by a pointer pointing to its base

address. To allow the stub process to directly issue the system calls on be half of the co-kernel

process, the two processes must have identical address spaces, such that the same buffer

address in two processes can be mapped to the same copy of physical data. A key advantage

of setting up mirrored address spaces is that no extra data copying is introduced on the

87

data path of I/O delegation. System calls can also be directly executed by the stub process

without pre-processing. The I/O delegation mechanism is thus completely transparent to

applications with no overhead on the data path. Therefore, the main overhead of HobbesIO

would come from transferring system call requests and returns over the command channel,

and the overhead of waking up a caller process via ioctls.

Given an executable file of a target application, to setup identical memory mapping

between the application process and the stub I/O process, the launcher has to parse the

executable file at runtime and setup the memory mappings for the stub process. For a

Executable and Linkable Format (ELF) binary file, the linker generates sections like .text,

.data, .rodata, etc. Those sections are then merged into multiple segments in the binary

file by the (static) loader. Normally, the text and data segments are loaded into the RAM

when executing a executable file. Therefore, we modified our job launcher to parse the base

virtual address and size of the text and data segments specified in the ELF file. The job

launcher then allocates physical memory for these segments, as well as a stack region and

a heap region for the process. The executable file is then loaded to the allocated memory

regions. Meanwhile, those memory regions are also exported via XEMEM.

After allocating and exporting the memory regions, information including physical and

virtual addresses as well as the size of these memory regions are passed to the stub process

via command line parameters. The stub process then attaches to those exported memory

regions and map them to the correct virtual addresses using XEMEM. In this way, the stub

process can map the physical memory regions at the same virtual addresses with the original

application process. Note that the stub process is compiled with the -fPIC flag, so that the

stub process is position independent, and its text and data segments are allocated at the

higher virtual addresses and will not conflict with the virtual addresses of the application

process.

Mirroring address spaces under virtualization is more complicated, where we need to

not only consider the guest virtual to guest physical memory mappings, but also the guest

physical to host physical memory mappings. Such that an guest virtual address in the stub

process would be mapped to a host physical address that is mapped to the same virtual

address in the co-kernel native process. In other words, both the guest kernel page tables

88

as well as the VMM page tables need to be carefully managed to setup identical address

spaces for a stub process inside a Linux VM. Fortunately, our XEMEM library [Kocoloski

and Lange, 2015] handles both native and virtualized cases and hides the difference between

native and virtual environments. Consequently, using XEMEM to setup identical address

spaces works across native and virtual Linux instances. This feature allows the flexible

deployment of the stub process on either a native Linux enclave or a Linux VM on Palacios.

5.3.2 The System Call Command Channel

To enable cross-domain communication so that I/O system calls can be issued to and returned

from the I/O domain efficiently, we built a system call command channel based on a shared

ring buffer between the co-kernel and the I/O domain. We first setup a shared memory region

between the co-kernel and the Linux I/O domain using our XEMEM library [Kocoloski and

Lange, 2015]. This shared memory region is then used as a command ring buffer between

the two domains for the issuing and returning of system calls. We then intercept interested

co-kernel I/O system calls by registering customized system call handlers to delegate system

calls over the command channel. The caller is then put into a wait queue, until the return

is received. The corresponding stub process inside the I/O domain then issues the system

call on behalf of the application process. The return value is then return through the ring

buffer in a reverse direction.

Besides transferring system calls and returns, a signalling mechanism is needed to notify

the receiving of requests and returns. Two approaches can be used for the cross enclave

signalling. The first approach is to use an Inter-Processor Interrupt (IPI) based notification.

However, this approach may introduce considerable context switch overhead, because every

IPI sent to and from the I/O domain involves multiple context switches due to interrupt

handling. Another approach is use a polling based approach by creating threads that busy

waiting on the ring buffer. This busy-waiting based approach eliminates the context switch-

ing overhead at the cost of burning out CPU time. A hybrid approach can also be used, i.e.

using interrupt based notification for one direction, while using busy-waiting based notifica-

tion for the other direction. Which configuration should be used depends on the available

89

hardware resources, as well as the performance requirement of applications. Our current

implementation uses the busy-waiting based approach, aiming for lower latency and higher

throughput.

In our implementation, a HobbesIO proxy process is created on the Kitten kernel, which

allocates a one page size memory region that is used as a shared ring buffer. This memory

region is also exported as a memory segment named “hio-engine-seg” via XEMEM. The

buffer address is also passed into the Kitten kernel, so that system calls can be directly

inserted into the ring buffer inside the Kitten kernel. We register HobbesIO customized

system call handlers for network system calls including socket(), bind(), accept(), listen(),

send(), recv(). In HobbesIO system call handlers, the stub ID, system call ID and parameters

are encapsulated and inserted into the ring buffer. The caller process is then blocked on a

wait queue in Kitten kernel that is identified by its stub ID. The stub process on the Linux

side also attaches to “hio-engine-seg”, and polls on it for system call requests. Upon receiving

a system request, a stub process with the specified stub ID will consume the request and

directly issue the system call along with the original parameters on behalf of the application

process. Because identical memory mappings are set up between the two processes, the

Linux kernel can operate on the same physical data specified by the application. Once the

system call returns, the stub process inserts the return value into the ring buffer and then

resumes polling for pending system calls. The HobbesIO proxy process on Kitten also polls

on the ring buffer for pending return values. Upon receiving a system call return, the proxy

process wakes up the corresponding caller through an ioctl call.

For instance, let’s look how does the write() system call work in HobbesIO. The write()

system call in Linux uses an application buffer and a kernel buffer. Upon a write() system

call, the system call handler first copies application data from the application buffer to the

kernel buffer, and then write the data from the kernel buffer to a file or a socket. In case of

HobbesIO, the write() system call on Kitten is intercepted by our HobbesIO kernel module,

and inserted into the command channel. The Linux I/O domain would then retrieve the

system call request from the command channel, and wake up the corresponding stub process

on Linux. The stub process decodes the system call request and issues the system call on

behalf of the Kitten client process, with the original system call number and parameters

90

without any pre-processing. The Linux kernel then copies the data from the application

buffer to its internal kernel buffer, and write them to the target file descriptor. Note that

because mirrored address spaces are used, the buffer address that Linux reads from is mapped

to the same physical address where the original Kitten application data resides. In order

words, the Kitten application process and the Linux stub process are manipulating the same

copy of the physical data. Upon completion of the Linux system call, the return value is

transferred back to the Kitten side through the command channel. In summary, mirrored

address spaces plus the command channel enable our application transparent I/O delegation

service on lightweight co-kernels.

5.3.3 Infiniband and RDMA Support

System call delegation enables the POSIX interface that is used by many commodity appli-

cations. However, many modern HPC applications use an advanced I/O feature presented

in modern supercomputers. In particular, Remote Direct Memory Access (RDMA), which

allows the direct memory access between applications reside on different node. RDMA com-

pletely bypasses the OS kernel during on the data path after a connection has been setup.

Therefore, system call delegation alone is not enough to support RDMA, since data transfers

in RDMA do not use system calls.

Different from the POSIX I/O interface, where every data transfer operation traps into

the kernel, RDMA separates the data plane from the control plane. The kernel is only

responsible for setting up the I/O resources, while the actually data transfer does not involve

the kernel. For instance, in case of RDMA with Infiniband [Mellanox, 2003], the TX and

RX queues are mapped into the address space of an application, so that the application

can directly access device registers without involving the OS kernel. Because network queue

operations are device specific, applications typically rely on a vendor provided user-level

library that provides device independent programming interfaces, e.g. the verbs RDMA

interface.

The key to support RDMA in HobbesIO is to allow the Kitten application to directly

access the device memory that is setup by Linux. Therefore, besides the mirrored address

91

space for RAM we discussed above, we also need to setup identical memory mappings for

the Infiniband device memory. The XEMEM library can be used to map the device memory

to identical virtual addresses for processes on heterogeneous kernels.

5.4 EVALUATION

We evaluated HobbesIO on a research cluster. Each cluster node consists of a Dell R450

server connected via 1Gbps Ethernet. Each server was configured with two six-core Intel

“Ivy-Bridge” Xeon processors (12 cores total) and 24 GB of RAM split across two NUMA

domains. Each server was running CentOS 7 (Linux Kernel version 3.16). CPU cores and

memory on NUMA node 1 were entirely offlined from Linux and assigned to a Kitten enclave.

Network I/O performance was evaluated on the Kitten enclave over HobbesIO, and compared

against native Linux performance.

getpid()/µs Kitten Native Linux Native HobbesIO

Mean 0.0534 0.1040 3.9231

Stdev 0.0000 0.0004 0.0023

Table 6: getpid() Latency on HobbesIO

We first measured the latency of our system call delegation service using the getpid()

system call. As getpid() simply reads a variable from the kernel, so the majority of the

system call time is spent on system call overhead, including context switch overhead and

system call forwarding latency in case of HobbesIO.

Table 6 reports the getpid() average latency and standard deviation on under various

configurations. HobbesIO shows considerable higher latency compared with native Kitten

and Linux, due to the latency of delegating system calls over the command channel and an

extra ioctl system call to wake up the caller process. However, it is important to point out

that the overhead of system delegation in HobbesIO is acceptable, because our design goal is

92

 0

 20

 40

 60

 80

 100

 120

8 16 32 64 128 256 512 1024

T
h
r
o
u
g
h
p
u
t

(
M
B
/
s
)

Message Size (Bytes)

HobbesIO
Linux Native

Figure 33: Network Throughput on HobbesIO

to use system call delegation for the control plane and bypass the kernel for the data plane

using RDMA. Therefore, system call delegation is not on the critical path, and is mainly

used for configuration and resource provision. On the other hand, the absolute latency of

system delegation is still low: in the order of microsecond, which is relatively small compared

with the round-trip latency of TCP packet transfer. Therefore, the latency of system call

delegation could be hidden by the other layers of the software stack, i.e. TCP/IP stack, as

we will show next.

Next, we measured the network throughput using the TTCP [TTCP, 2016] benchmark,

which transfers certain amount of data over TCP and reports the throughput. We transferred

1GB size of data using different message size between two nodes connected 1Gbps Ethernet.

We measured the throughput three times and reported the average throughput in Figure 33.

It can be seen that under different message sizes, HobbesIO shows comparable performance

compared with native Linux, indicating that the overhead of the system call delegation

service is negligible.

We also measured the average and tail latency of the network performance using a simple

network server we developed that receives data from multiple clients. Each of our client keeps

93

 0

 100

 200

 300

 400

 500

 600

8 16 32 64 128 256 512 1024 2048 4096

L
a
t
e
n
c
y

(
u
s
)

Message Size (Bytes)

HobbesIO-Mean
HobbesIO-99th

Linux-Mean
Linux-99th

Figure 34: Network Average and Tail Latency on HobbesIO

sending messages over the network for a certain amount of time. In our experiment, we use a

6 threads client sending messages for 10 seconds, and report the average and 99th percentile

latency. Figure 34 shows the average and tail latency of HobbesIO and native Linux. It

is interesting to see that with smaller message sizes, Linux shows slight lower latencies

compared with HobbesIO. However, with message size greater than 1024 bytes, HobbesIO

starts to outperform native Linux. We believe this is due to that the amortized overhead of

system delegation on large messages is smaller than smaller messages, so that Kitten shows

its advantage of consistent performance and low kernel overhead with larger messages.

5.5 SUMMARY

In this chapter, we discussed the design trade-offs of the I/O subsystem on lightweight co-

kernels. We presented HobbesIO, a system call delegation service that enables application

transparent I/O delegation service on lightweight co-kernels. We built HobbesIO on top of

two core techniques, mirrored address spaces on heterogeneous kernels and a shared memory

94

based command channel. We demonstrated that HobbesIO has comparable network I/O

performances compared against native Linux. Our future work includes evaluating RDMA

performance and demonstrating the performance isolation capability of HobbesIO.

95

6.0 CONCLUSIONS

In this dissertation, we looked at the performance isolation problem between co-located

applications on the same node. We claim that current shared homogeneous kernels based

operating system (OS) architectures fall short in ensuring the performance isolation between

co-located applications, which impedes the efficiency of large-scale computing infrastructures

as well as the scalability of large-scale applications. Therefore, we propose to use an isolated

heterogeneous kernels based approach to improve the performance isolation between co-

located applications on a single server node.

We first studied the performance interference problem between time-shared virtual ma-

chines in a environments as seen in the cloud. We identified that busy-waiting based kernel

synchronization operations are the root cause of the dramatic performance degradation in

shared virtual environments. To address this problem, we designed and implemented two syn-

chronization techniques optimized for virtual environments, the preemptable ticket spinlock

(pmtlock) algorithm and the Shoot4U paravirtual TLB shootdown scheme. Our evaluation

demonstrates that both of these techniques significantly reduce the performance interference

between co-located virtual machines.

Then we looked at the performance isolation problem between in-situ analysis appli-

cations in high performance computing (HPC) environments. To ensure the performance

isolation between co-located in-situ analysis workloads while providing Linux compatibility,

we designed and implemented the Pisces lightweight co-kernel architecture, which allows

multiple independent lightweight co-kernels to be deployed side-by-side with Linux on iso-

lated hardware partitions. Each co-kernel can be optimized for the local workload, while the

performance isolation between them is enforced by isolating workloads at both the software

and hardware level. Our evaluation shows the co-kernel architecture can provide more con-

96

sistent performance, and achieve better application scalability on multiple nodes compared

with native Linux.

Finally, to support high performance I/O on lightweight co-kernels, we investigated

HobbesIO, a flexible yet high performance I/O delegation service on lightweight co-kernels.

It allows the application transparent I/O delegation from a co-kernel process to an I/O ser-

vice processes deployed on arbitrary native or virtual Linux enclaves. Our evaluation shows

that HobbesIO can achieve comparable performance with native Linux.

In this work, we developed kernel optimizations and a novel operating system architec-

ture in order to improve node level performance isolation between co-located applications.

We demonstrated that our optimizations of kernel synchronization operations significantly

improve performance isolation between time-shared virtual machines. Our proposed co-

kernel architecture can provide an execution environment optimized for HPC workloads and

a general Linux environment on the same node, while maintaining performance isolation

between them. Therefore, we conclude that isolated heterogeneous kernels can enable more

sustainable and scalable performance isolation towards shared environments in modern and

emerging computing platforms.

97

BIBLIOGRAPHY

AMD (2011). AMD64 Architecture Programmer’s Manual.

Amiri Sani, A., Boos, K., Qin, S., and Zhong, L. (2014). I/O Paravirtualization at the
Device File Boundary. In Proc. International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

Appavoo, J., Uhlig, V., and Waterland, A. (2008). Project Kittyhawk: Building a Global-
Scale Computer. ACM SIGOPS Operating System Review.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,
I., and Warfield, A. (2003). Xen and the Art of Virtualization. In Proc. ACM symposium
on Operating Systems Principles (SOSP).

Barroso, L. A., Clidaras, J., and Hölzle, U. (2013). The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Synthesis Lectures on Computer
Architecture.

Bauman, E., Ayoade, G., and Lin, Z. (2015). A survey on hypervisor based monitoring:
Approaches, applications, and evolutions. ACM Computing Surveys.

Baumann, A., Barham, P., Dagand, P.-E., Harris, T., Isaacs, R., Peter, S., Roscoe, T.,
Schüpbach, A., and Singhania, A. (2009). The Multikernel: A New OS Architecture for
Scalable Multicore Systems. In Proc. 22nd Symposium on Operating Systems Principles
(SOSP).

Beckman, P., Iskra, K., Yoshii, K., Coghlan, S., and Nataraj, A. (2008). Benchmarking
the Effects of Operating System Interference on Extreme-scale Parallel Machines. Cluster
Computing.

Belay, A., Prekas, G., Klimovic, A., Grossman, S., Kozyrakis, C., and Bugnion, E. (2014). IX:
A Protected Dataplane Operating System for High Throughput and Low Latency. In Proc.
11th USENIX Symposium on Operating Systems Design and Implementation (OSDI).

Bienia, C. (2011). Benchmarking Modern Multiprocessors. PhD thesis, Princeton University.

Boyd-Wickizer, S., Chen, H., Chen, R., Mao, Y., Kaashoek, F., Morris, R., Pesterev, A.,
Stein, L., Wu, M., Dai, Y., Zhang, Y., and Zhang, Z. (2008). Corey: An Operating

98

System for Many Cores. In Proc. 8th USENIX conference on Operating Systems Design
and Implementation (OSDI).

Boyd-Wickizer, S., Clements, A. T., Mao, Y., Pesterev, A., Kaashoek, M. F., Morris, R.,
and Zeldovich, N. (2010). An Analysis of Linux Scalability to Many Cores. In Proc. 9th
Symposium on Operating Systems Design and Implementation (OSDI).

Boyd-Wickizer, S., Kaashoek, M. F., Morris, R., and Zeldovich, N. (2012). Non-Scalable
Locks are Dangerous. In Proceedings of the Linux Symposium, pages 119–130.

Cgroups (2016). Linux Control Groups (cgroups). https://www.kernel.org/doc/

Documentation/cgroups/cgroups.txt.

Chapin, J., Rosenblum, M., Devine, S., Lahiri, T., Teodosiu, D., and Gupta, A. (1995). Hive:
Fault Containment for Shared-Memory Multiprocessors. In Proc. 15th ACM Symposium
on Operating Systems Principles (SOSP).

Dadhania, N. A. (2012). KVM Paravirt Remote Flush TLB. https://lwn.net/Articles/
500188/.

Dean, J. and Barroso, L. A. (2013). The Tail at Scale. Communications of the ACM, 56(2).

Ding, X., Gibbons, P. B., Kozuch, M. A., and Shan, J. (2014). Gleaner: Mitigating the
Blocked-Waiter Wakeup Problem for Virtualized Multicore Applications. In Proc. 2014
USENIX Conference on USENIX Annual Technical Conference (USENIX ATC), Philadel-
phia, PA. USENIX Association.

Dong, Y., Yu, Z., and Rose, G. (2008). SR-IOV Networking in Xen: Architecture, Design
and Implementation. In 1st Workshop on IO Virtualization (WIOV).

Dongarra, J. and Heroux, M. A. (2013). Toward a New Metric for Ranking High Performance
Computing Systems. Sandia Report, SAND2013-4744, 312.

Dorier, M., Antoniu, G., Ross, R., Kimpe, D., and Ibrahim, S. (2014). CALCioM: Mitigating
I/O Interference in HPC Systems Through Cross-Application Coordination. In Proc. 28th
IEEE International Parallel and Distributed Processing Symposium (IPDPS).

DPDK (2016). DPDK: Data Plane Development Kit. http://dpdk.org/.

Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Alisafaee, M., Jevdjic, D., Kaynak, C.,
Popescu, A. D., Ailamaki, A., and Falsafi, B. (2012). Clearing the Clouds: a Study of
Emerging Scale-out Workloads on Modern Hardware. In Proc. 17th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems (ASP-
LOS).

Ferreira, K. B., Bridges, P., and Brightwell, R. (2008). Characterizing Application Sensi-
tivity to OS Interference Using Kernel-level Noise Injection. In Proc. 21st International
Conference for High Performance Computing, Networking, Storage and Analysis (SC).

99

https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://lwn.net/Articles/500188/
https://lwn.net/Articles/500188/
http://dpdk.org/

Friebel, T. (2008). How to Deal with Lock-Holder Preemption. Presented at the Xen Summit
North America.

Fu, Y., Zeng, J., and Lin, Z. (2014). Hypershell: A practical hypervisor layer guest os shell
for automated in-vm management. In Proceedings of the 2014 USENIX Annual Technical
Conference, Philadephia, PA.

Fuse (2016). The FUSE Project. http://fuse.sourceforge.net/.

Gamsa, B., Krieger, O., Appavoo, J., and Stumm, M. (1999). Tornado: Maximizing Lo-
cality and Concurrency in a Shared Memory Multiprocessor Operating System. In Proc.
Symposium on Operating Systems Design and Implementation (OSDI).

Gartner (2012). Gartner Says Efficient Data Center Design Can Lead to 300 Percent Capacity
Growth in 60 Percent Less Space. http://www.gartner.com/newsroom/id/1472714.

Giampapa, M., Gooding, T., Inglett, T., and Wisniewski, R. (2010). Experiences with
a Lightweight Supercomputer Kernel: Lessons Learned from Blue Gene’s CNK. In Proc.
2010 ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis (SC).

Hackbench (2008). Hackbench. http://people.redhat.com/mingo/cfs-scheduler/

tools/hackbench.c/.

Hoefler, T., Schneider, T., and Lumsdaine, A. (2010). Characterizing the Influence of System
Noise on Large-Scale Applications by Simulation. In Proc. 23rd International Conference
for High Performance Computing, Networking, Storage and Analysis (SC).

Intel (2016). Intel 64 and IA-32 Architectures Software Developer Manuals. Inel Corporation.

Jain, R., Chiu, D.-M., and Hawe, W. (1984). A Quantitative Measure of Fairness and
Discrimination for Resource Allocation in Shared Computer Systems. Technical Report
TR-301, DEC Research.

Jeong, E., Woo, S., Jamshed, M., Jeong, H., Ihm, S., Han, D., and Park, K. (2014). mTCP: a
Highly Scalable User-level TCP Stack for Multicore Systems. In Proc. USENIX Symposium
on Networked Systems Design and Implementation (NSDI).

Kaplan, J., Forrest, W., and Kindler, N. (2008). Revolutionizing Data Center Energy Effi-
ciency. Technical report, McKinsey & Company.

Kaplan, L. (2007). Cray CNL. In FastOS PI Meeting and Workshop.

Kelly, S. and Brightwell, R. (2005). Software Architecture of the Lightweight Kernel, Cata-
mount. In 2005 Cray Users’ Group Annual Technical Conference. Cray Users’ Group.

100

http://fuse.sourceforge.net/
http://www.gartner.com/newsroom/id/1472714
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c/
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c/

Kim, H., Kim, S., Jeong, J., Lee, J., and Maeng, S. (2013). Demand-based Coordinated
Scheduling for SMP VMs. In Proc. International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

Kocoloski, B. and Lange, J. (2012). Better Than Native: Using Virtualization to Improve
Compute Node Performance. In Proc. 2nd International Workshop on Runtime and Op-
erating Systems for Supercomputers (ROSS).

Kocoloski, B. and Lange, J. (2015). XEMEM: Efficient Shared Memory for Composed
Applications on Multi-OS/R Exascale Systems. In Proc. 24th International Symposium
on High-Performance Parallel and Distributed Computing (HPDC).

Kogge, P. M. et al. (2008). ExaScale Computing Study: Technology Challenges in Achiev-
ing Exascale Systems . Technical Report TR-2008-13, University of Notre Dame CSE
Department.

Krieger, O., Auslander, M., Rosenburg, B., Wisniewski, R. W., Xenidis, J., Da Silva, D.,
Ostrowski, M., Appavoo, J., Butrico, M., Mergen, M., Waterland, A., and Uhlig, V. (2006).
K42: Building a Complete Operating System. SIGOPS Operating System Review.

Ktap (2016). ktap: A lightweight script-based dynamic tracing tool for Linux. http:

//www.ktap.org/.

Lange, J., Pedretti, K., Hudson, T., Dinda, P., Cui, Z., Xia, L., Bridges, P., Gocke, A.,
Jaconette, S., Levenhagen, M., and Brightwell, R. (2010). Palacios and Kitten: New High
Performance Operating Systems For Scalable Virtualized and Native Supercomputing. In
Proc. 24th IEEE International Parallel and Distributed Processing Symposium (IPDPS).

Lange, J. R., Pedretti, K., Dinda, P., Bridges, P. G., Bae, C., Soltero, P., and Merritt, A.
(2011). Minimal-overhead Virtualization of a Large Scale Supercomputer. In Proc. 7th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE).

LeVasseur, J., Uhlig, V., Stoess, J., and Götz, S. (2004). Unmodified Device Driver Reuse
and Improved System Dependability via Virtual Machines. In Proc. 6th Symposium on
Operating Systems Design and Implementation (OSDI).

Lo, D., Cheng, L., Govindaraju, R., Ranganathan, P., and Kozyrakis, C. (2015). Hera-
cles: Improving Resource Efficiency at Scale. In Proc. of the 42nd Annual International
Symposium on Computer Architecture (ISCA), ISCA ’15.

Ma, J., Sui, X., Sun, N., Li, Y., Yu, Z., Huang, B., Xu, T., Yao, Z., Chen, Y., Wang, H.,
Zhang, L., and Bao, Y. (2015). Supporting Differentiated Services in Computers via Pro-
grammable Architecture for Resourcing-on-Demand (PARD). In Proc. 20th International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS).

101

http://www.ktap.org/
http://www.ktap.org/

Ma, K.-L., Wang, C., Yu, H., and Tikhonova, A. (2007). In-Situ Processing and Visualization
for Ultrascale Simulations. In Journal of Physics: Proceedings of DOE SciDAC 2007
Conference.

Maccabe, A. B., McCurley, K. S., Riesen, R., and Wheat, S. R. (1994). SUNMOS for the
Intel Paragon - A Brief User’s Guide. In Proceedings of the Intel Supercomputer Users’
Group.

Mantevo (2016). Mantevo Project. https://software.sandia.gov/mantevo.

Mellanox (2003). Introduction to InfiniBand. Technical report, Mellanox Technologies Inc.

Nikolaev, R. and Back, G. (2013). VirtuOS: An Operating System with Kernel Virtualiza-
tion. In Proc. 24th Symposium on Operating Systems Principles (SOSP).

Ousterhout, J. (1982). Scheduling Techniques for Concurrent Systems. In Proc. 3rd Inter-
national Conference on Distributed Computing Systems.

Ouyang, J., Kocoloski, B., Lange, J., and Pedretti, K. (2015). Achieving Performance
Isolation with Lightweight Co-Kernels. In Proc. 24th ACM International Symposium on
High-Performance Parallel and Distributed Computing (HPDC).

Ouyang, J. and Lange, J. R. (2013). Preemptable Ticket Spinlocks: Improving Consoli-
dated Performance in the Cloud. In Proc. 9th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE).

Park, Y., Van Hensbergen, E., Hillenbrand, M., Inglett, T., Rosenburg, B., Ryu, K. D., and
Wisniewski, R. (2012). FusedOS: Fusing LWK Performance with FWK Functionality in a
Heterogeneous Environment. In Proc. 24th IEEE International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD).

Perf (2016). perf: Linux Profiling with Performance Counters. https://perf.wiki.kernel.
org/.

Petrini, F., Kerbyson, D. J., and Pakin, S. (2003). The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance on the 8,192 Processors of ASCI Q. In Proc.
16th International Conference for High Performance Computing, Networking, Storage and
Analysis (SC).

Phull, R., Li, C.-H., Rao, K., Cadambi, H., and Chakradhar, S. (2012). Interference-driven
Resource Management for GPU-based Heterogeneous Clusters. In Proc. 21st International
Symposium on High-Performance Parallel and Distributed Computing (HPDC).

Raghavendra, K. and Fitzhardinge, J. (2012). Paravirtualized ticket spinlocks.

Reiss, C., Tumanov, A., Ganger, G. R., Katz, R. H., and Kozuch, M. A. (2012). Hetero-
geneity and Dynamicity of Clouds at Scale: Google Trace Analysis. In Proc. 3rd ACM
Symposium on Cloud Computing (SoCC).

102

https://software.sandia.gov/mantevo
https://perf.wiki.kernel.org/
https://perf.wiki.kernel.org/

Riel, R. v. (2011). Directed yield for pause loop exiting.

Shimosawa, T. and Ishikawa, Y. (2009). Inter-kernel Communication between Multiple
Kernels on Multicore Machines. IPSJ Transactions on Advanced Computing Systems.

Soares, L. and Stumm, M. (2010). FlexSC: Flexible System Call Scheduling with Exception-
less System Calls. In Proc. 9th USENIX conference on Operating Systems Design and
Implementation (OSDI).

Soltesz, S., Pötzl, H., Fiuczynski, M. E., Bavier, A., and Peterson, L. (2007). Container-based
Operating System Virtualization: a Scalable, High-Performance Alternative to Hypervi-
sors. In Proc. 2nd ACM SIGOPS European Conference on Computer Systems (EuroSys).

Sukwong, O. and Kim, H. S. (2011). Is Co-scheduling Too Expensive for SMP VMs? In
Proc. 6th European Conference on Computer Systems (EuroSys).

Sysbench (2016). Sysbench. https://github.com/akopytov/sysbench.

Tomita, H., Sato, M., and Ishikawa, Y. (2014). Japan Overview Talk. In Proc. 2nd Interna-
tional Workshop on Big Data and Extreme-scale Computing (BDEC).

TTCP (2016). The TTCP Benchmark. ftp://ftp.sgi.com/sgi/src/ttcp/ttcp.c.

Uhlig, V., LeVasseur, J., Skoglund, E., and Dannowski, U. (2004). Towards Scalable Mul-
tiprocessor Virtual Machines. In Proc. 3rd conference on Virtual Machine Research And
Technology Symposium.

Unrau, R., Krieger, O., Gamsa, B., and Stumm, M. (1995). Hierarchical clustering: A struc-
ture for scalable multiprocessor operating system design. The Journal of Supercomputing.

VMware (2010). Vmware(r) vsphere(tm): The cpu scheduler in vmware esx(r) 4.1. Technical
report.

Wells, P. M., Chakraborty, K., and Sohi, G. S. (2006). Hardware Support for Spin Man-
agement in Overcommitted Virtual Machines. In Proc. 15th International Conference on
Parallel Architectures and Compilation Techniques (PACT).

Weng, C., Liu, Q., Yu, L., and Li, M. (2011). Dynamic Adaptive Scheduling for Virtual
Machines. In Proc. 20th International Symposium on High Performance Parallel and Dis-
tributed Computing (HPDC).

Wentzlaff, D. and Agarwal, A. (2009). Factored Operating Systems (fos): The Case for a
Scalable Operating System for Multicores. Operating System Review.

Wheat, S. R., Maccabe, A. B., Riesen, R., van Dresser, D. W., and Stallcup, T. M. (1994).
PUMA : An Operating System for Massively Parallel Systems. Scientific Programming.

103

https://github.com/akopytov/sysbench
ftp://ftp.sgi.com/sgi/src/ttcp/ttcp.c

Wisniewski, R., Inglett, T., Keppel, P., Murty, R., and Riesen, R. (2014). mOS: An Ar-
chitecture for Extreme-Scale Operating Systems. In Proc. 4th International Workshop on
Runtime and Operating Systems for Supercomputers (ROSS).

Xen (2016). Xen Driver Domain. http://wiki.xen.org/wiki/Driver_Domain/.

Yoshii, K., Iskra, K., Broekema, P., Naik, H., and Beckman, P. (2009). Characterizing the
Performance of Big Memory on Blue Gene Linux. In Proc. International Conference on
Parallel Processing Workshops (ICPPW).

ZeptoOS (2016). ZeptoOS: The Small Linux for Big Computers. http://www.mcs.anl.

gov/research/projects/zeptoos/projects/.

Zhang, L., Chen, Y., Dong, Y., and Liu, C. (2012). Lock-Visor: An Efficient Transitory Co-
scheduling for MP Guest. In Proc. 41st International Conference on Parallel Processing
(ICPP).

Zheng, F., Yu, H., Hantas, C., Wolf, M., Eisenhauer, G., Schwan, K., Abbasi, H., and
Klasky, S. (2013). GoldRush: Resource Efficient In Situ Scientific Data Analytics Using
Fine-Grained Interference Aware Execution. In Proc. 26th International Conference for
High Performance Computing, Networking, Storage and Analysis (SC).

104

http://wiki.xen.org/wiki/Driver_Domain/
http://www.mcs.anl.gov/research/projects/zeptoos/projects/
http://www.mcs.anl.gov/research/projects/zeptoos/projects/

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Profiling of Lock Holder and Waiter Preemptions
	2. Preemptable Ticket Spinlock Size and Kernel Size
	3. TLB Shootdown Latency (usec)
	4. Execution Time of Sequential Reads from a Block Device
	5. Pisces Operation Latency
	6. getpid() Latency on HobbesIO

	LIST OF FIGURES
	1. System Software Architecture for Application Co-Location
	2. Performance Slowdown of CPU Overcommitment
	3. CPU Usage Profiling
	4. CDF of TLB Shootdown Latency
	5. Illustration of Preemptable Ticket Spinlock Algorithm
	6. CDF of Getting the Lock after Rescheduling
	7. Fairness Index v.s. Unit Timeout Threshold (1VM)
	8. Fairbench Performance v.s. Unit Timeout Threshold (1VM)
	9. Fairness Index v.s. Unit Timeout Threshold (2VM)
	10. Fairbench Performance v.s. Unit Timeout Threshold (2VM)
	11. Hackbench Performance v.s. Unit Timeout Threshold (1VM)
	12. Hackbench Performance v.s. Unit Timeout Threshold (2VM)
	13. PARSEC Performance with Preemptable Ticket Spinlock Variants (1VM)
	14. PARSEC Performance with Preemptable Ticket Spinlock Variants (2VM)
	15. Hackbench Speedup v.s. Number of vCPUs (pmt-cpt-st over ticket, 2VM)
	16. CDF of TLB Shootdown Latency with Shoot4U
	17. PARSEC Performance with Optimizations (1VM)
	18. PARSEC Performance with Optimizations (2VM)
	19. Performance Slowdown of CPU Overcommitment with Optimizations
	20. CPU Usage Profiling with Optimizations
	21. The Pisces Co-Kernel Architecture
	22. Example Hardware Configuration with one Pisces Co-Kernel
	23. Cross Enclave Communication in Pisces
	24. Interrupt Routing Between Pisces Enclaves
	25. Noise on Native Linux
	26. Noise on Native Kitten (Pisces Co-Kernel)
	27. Noise on Kitten Guest (KVM)
	28. Noise on Kitten Guest (Palacios/Linux)
	29. Noise on Kitten Guest (Pisces Co-VMM)
	30. Kitten Co-Kernel Single Node Performance
	31. HPCG Benchmark Performance (Up to 8 Nodes)
	32. Mantevo Mini-Application CDFs with Hadoop (8 Nodes)
	33. Network Throughput on HobbesIO
	34. Network Average and Tail Latency on HobbesIO

	LIST OF CODES
	3.1. Lock and Unlock Operations
	3.2. isLocked and Trylock Operations
	3.3. The Shoot4U API

	1.0 INTRODUCTION
	1.1 Research Overview
	1.2 Contributions
	1.3 Outline

	2.0 LITERATURE REVIEW
	2.1 Kernel Synchronization Overhead in Virtual Environments
	2.2 Operating System Design for Supercomputers
	2.3 I/O Service Delegation

	3.0 SYNCHRONIZATION IN VIRTUAL MACHINES
	3.1 Busy-Waiting Based Synchronization in Virtual Environments
	3.1.1 The Lock Holder Preemption Problem
	3.1.2 The Lock Waiter Preemption Problem
	3.1.3 The TLB Shootdown Preemption Problem

	3.2 Performance Analysis
	3.3 The Preemptable Ticket Spinlock Algorithm
	3.3.1 Design
	3.3.2 Properties
	3.3.2.1 Preemption Adaptivity
	3.3.2.2 Fairness
	3.3.2.3 Host Independence

	3.3.3 Implementation
	3.3.3.1 Compact Locks
	3.3.3.2 Static Timeout Threshold

	3.3.4 Evaluation
	3.3.4.1 Parameter and Fairness Analysis
	3.3.4.2 Lock Size
	3.3.4.3 Optimizations
	3.3.4.4 Scalability
	3.3.4.5 Summary

	3.4 Shoot4U: A Paravirtual TLB Shootdown Scheme
	3.4.1 Design of Shoot4U
	3.4.2 Shoot4U Implementation
	3.4.3 Evaluation

	3.5 Summary

	4.0 THE PISCES LIGHTWEIGHT CO-KERNEL ARCHITECTURE
	4.1 Introduction
	4.1.1 High Level Approach
	4.1.2 Background

	4.2 Pisces Co-Kernel Architecture
	4.2.1 Cross Kernel Dependencies
	4.2.2 I/O and Device Drivers
	4.2.3 Cross Enclave Communication
	4.2.4 Isolated Virtual Machines

	4.3 Pisces Implementation
	4.3.1 Booting a Co-kernel
	4.3.2 Communicating with the co-kernel
	4.3.3 Assigning hardware resources
	4.3.4 Integration with the Palacios VMM

	4.4 Evaluation
	4.4.1 Noise analysis
	4.4.2 Single Node Co-Kernel Performance
	4.4.3 Co-Kernel Scalability
	4.4.4 Performance Isolation with Commodity Workloads

	4.5 Summary

	5.0 HIGH PERFORMANCE I/O ON LIGHTWEIGHT CO-KERNELS
	5.1 Design Goals
	5.2 Potential Approaches
	5.3 HobbesIO: High Performance Co-Kernel I/O Delegation
	5.3.1 Mirrored Address Spaces on Heterogeneous Kernels
	5.3.2 The System Call Command Channel
	5.3.3 Infiniband and RDMA Support

	5.4 Evaluation
	5.5 Summary

	6.0 CONCLUSIONS
	BIBLIOGRAPHY

