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Building of an accurate predictive model of clinical time series for a patient is critical for

understanding of the patient condition, its dynamics, and optimal patient management. Un-

fortunately, this process is challenging because of: (1) multivariate behaviors : the real-world

dynamics is multivariate and it is better described by multivariate time series (MTS); (2) ir-

regular samples : sequential observations are collected at different times, and the time elapsed

between two consecutive observations may vary; and (3) patient variability : clinical MTS

vary from patient to patient and an individual patient may exhibit short-term variability

reflecting the different events affecting the care and patient state.

In this dissertation, we investigate the different ways of developing and refining forecast-

ing models from the irregularly sampled clinical MTS data collection. First, we focus on the

refinements of a popular model for MTS analysis: the linear dynamical system (LDS) (a.k.a

Kalman filter) and its application to MTS forecasting. We propose (1) a regularized LDS

learning framework which automatically shuts down LDSs’ spurious and unnecessary dimen-

sions, and consequently, prevents the overfitting problem given a small amount of data; and

(2) a generalized LDS learning framework via matrix factorization, which allows various con-

straints can be easily incorporated to guide the learning process. Second, we study ways of

modeling irregularly sampled univariate clinical time series. We develop a new two-layer hi-

erarchical dynamical system model for irregularly sampled clinical time series prediction. We

demonstrate that our new system adapts better to irregular samples and it supports more

accurate predictions. Finally, we propose, develop and experiment with two personalized
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forecasting frameworks for modeling and predicting clinical MTS of an individual patient.

The first approach relies on model adaptation techniques. It calibrates the population based

model’s predictions with patient specific residual models, which are learned from the differ-

ence between the patient observations and the population based model’s predictions. The

second framework relies on adaptive model selection strategies to combine advantages of

the population based, patient specific and short-term individualized predictive models. We

demonstrate the benefits and advantages of the aforementioned frameworks on synthetic

data sets, public time series data sets and clinical data extracted from EHRs.

iv



TABLE OF CONTENTS

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 TIME SERIES RELATED TASKS . . . . . . . . . . . . . . . . . . . . . . 2

1.3 CHALLENGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Multivariate Behaviors . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Irregular Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Patient Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 OUTLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.0 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 TIME SERIES MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Linear Dynamical System . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1.2 Learning Linear Dynamical Systems . . . . . . . . . . . . . 15

2.2.1.3 Irregularly Sampled Data Discretization . . . . . . . . . . 17

2.2.2 Gaussian Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2.2 Learning Gaussian Process Models . . . . . . . . . . . . . 24

2.2.3 Multi-task Gaussian Process . . . . . . . . . . . . . . . . . . . . . 25

2.3 INSTANCE-SPECIFIC MODELING . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Subpopulation Models . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



2.3.2 Model Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3 Adaptive Model Selection . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.3.1 Ensemble Methods . . . . . . . . . . . . . . . . . . . . . . 31

2.3.3.2 Online Algorithms . . . . . . . . . . . . . . . . . . . . . . 31

3.0 LEARNING LINEAR DYNAMICAL SYSTEMS FROM REGULARLY

SAMPLED MULTIVARIATE TIME SERIES . . . . . . . . . . . . . . . . 33

3.1 REGULARIZED LINEAR DYNAMICAL SYSTEMS . . . . . . . . . . . 33

3.1.1 The Regularized Framework . . . . . . . . . . . . . . . . . . . . . 34

3.1.2 EM Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.2.1 Optimization of A . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.2.2 Optimization of Ω\A . . . . . . . . . . . . . . . . . . . . . 41

3.1.2.3 Model Learning Summary . . . . . . . . . . . . . . . . . . 41

3.1.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.3.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . 42

3.1.3.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 CONSTRAINED LINEAR DYNAMICAL SYSTEMS . . . . . . . . . . . 47

3.2.1 A Generalized LDS Framework . . . . . . . . . . . . . . . . . . . . 48

3.2.2 Learning via Matrix Factorization . . . . . . . . . . . . . . . . . . 49

3.2.2.1 Optimization of A, C, and Z . . . . . . . . . . . . . . . . . 50

3.2.2.2 Optimization of R, Q, ξ and Ψ . . . . . . . . . . . . . . . 50

3.2.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.3 Relationship to Existing Models . . . . . . . . . . . . . . . . . . . 51

3.2.3.1 Learning Regularized LDS (gLDS-low-rank) . . . . . . . . 51

3.2.3.2 Learning Stable LDS (gLDS-stable) . . . . . . . . . . . . . 52

3.2.4 The Ridge Model (gLDS-ridge) . . . . . . . . . . . . . . . . . . . . 53

3.2.5 The Smooth Model (gLDS-smooth) . . . . . . . . . . . . . . . . . 54

3.2.5.1 Temporal Smoothing Regularization . . . . . . . . . . . . . 54

3.2.5.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vi



3.2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.6.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.0 LEARNING HIERARCHICAL DYNAMICAL SYSTEMS FROM IR-

REGULARLY SAMPLED UNIVARIATE TIME SERIES . . . . . . . . 63

4.1 THE HIERARCHICAL DYNAMICAL FRAMEWORK . . . . . . . . . . 64

4.1.1 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1.1 Estimation of The Covariance Function . . . . . . . . . . . 66

4.1.1.2 Estimation of The LDS Parameters . . . . . . . . . . . . . 67

4.1.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 EXPERIMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.4.1 Overall Prediction Performance . . . . . . . . . . . . . . . 72

4.2.4.2 Short-term Prediction Performance . . . . . . . . . . . . . 72

4.2.4.3 Clinical Expert Evaluation . . . . . . . . . . . . . . . . . . 73

4.3 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.0 LEARNING PERSONALIZED PREDICTIVE MODELS FROM IR-

REGULARLY SAMPLED MULTIVARIATE TIME SERIES . . . . . . 76

5.1 PERSONALIZED PREDICTION VIA MODEL ADAPTATION . . . . . 77

5.1.1 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.1.1 Stage 1: Learning A Population Model . . . . . . . . . . . 78

5.1.1.2 Stage 2: Learning Multivariate Interaction Models . . . . . 79

5.1.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.3 Model Learning and Prediction Summary . . . . . . . . . . . . . . 81

5.1.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.4.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

vii



5.1.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 PERSONALIZED PREDICTION VIA ADAPTIVE MODEL SELECTION 84

5.2.1 Time Series Models . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1.1 Population based and Patient Specific LDS . . . . . . . . . 86

5.2.1.2 Population based and Patient Specific GP and MTGP . . 87

5.2.2 Online Model Switching . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.3.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.0 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 OPEN QUESTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

APPENDIX A. KALMAN FILTER ALGORITHM FOR LDS . . . . . . . . 103

APPENDIX B. E-STEP BACKWARD ALGORITHM FOR LDS . . . . . . 104

APPENDIX C. PROOF OF THEOREM 1 . . . . . . . . . . . . . . . . . . . . 105

APPENDIX D. PROOF OF THEOREM 2 . . . . . . . . . . . . . . . . . . . . 106

APPENDIX E. PROOF OF THEOREM 4 . . . . . . . . . . . . . . . . . . . . 107

APPENDIX F. PROOF OF THEOREM 5 . . . . . . . . . . . . . . . . . . . . 108

APPENDIX G. ADDITIONAL RESULTS ON QUALITATIVE PREDIC-

TIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

APPENDIX H. ADDITIONAL RESULTS ON STABILITY EFFECTS . . 111

APPENDIX I. ADDITIONAL RESULTS ON SPARSIFICATION EFFECTS113

APPENDIX J. OVERALL PREDICTION PERFORMANCE . . . . . . . . 114

APPENDIX K. SHORT-TERM PREDICTION PERFORMANCE . . . . . 116

APPENDIX L. CLINICAL EXPERT EVALUATION . . . . . . . . . . . . . 118

APPENDIX M. AVERAGE-MAPE RESULTS OF MODEL ADAPTATION

APPROACHES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

APPENDIX N. COMPARISON OF RESULTS FOR POPULATION BASED

AND PATIENT SPECIFIC MODELS . . . . . . . . . . . . . . . . . . . . 123

viii



APPENDIX O. COMPARISON OF RESULTS FOR ENSEMBLE METH-

ODS, ONLINE LEARNING, SUBPOPULATION AND MODEL ADAP-

TATION APPROACHES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

ix



LIST OF TABLES

1 Relationship between Gaussian distribution, multivariate Gaussian distribu-

tion and Gaussian process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Prior choices for rLDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Data statistics of a real-world clinical dataset. . . . . . . . . . . . . . . . . . . 43

4 Average-MAPE results on the clinical data with different training sizes. . . . 47

5 Average-MAPE results on flourprice dataset. . . . . . . . . . . . . . . . . . . 59

6 Average-MAPE results on evap dataset. . . . . . . . . . . . . . . . . . . . . . 59

7 Average-MAPE results on h2o evap dataset. . . . . . . . . . . . . . . . . . . 59

8 Average-MAPE results on clinical dataset. . . . . . . . . . . . . . . . . . . . 60

9 Ten lab tests from the CBC panel. . . . . . . . . . . . . . . . . . . . . . . . . 70

10 Clinical acceptance categories. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

11 MAE on CBC test samples for overall prediction tasks. . . . . . . . . . . . . 114

12 MAE on CBC test samples for short-term prediction tasks. . . . . . . . . . . 116

13 Clinical evaluation for overall prediction. . . . . . . . . . . . . . . . . . . . . 120

14 Clinical evaluation for short-term prediction. . . . . . . . . . . . . . . . . . . 120

15 Average-MAPE results (means and standard errors) for the different initial

observation sequence lengths. reGP and reMTGP are short for rLDS+reGP

and rLDS+reMTGP. The best performing method is shown in bold. Also in

bold are the methods that are not statistically significantly different from the

best method at 0.05 significance level. . . . . . . . . . . . . . . . . . . . . . . 121

x



16 Average-MAPE results (means and standard errors) of all models in the pool

and two wFTL methods for the different initial observation sequence lengths.

The best performing method is shown in bold. Also in bold are the methods

that are not statistically significantly different from the best method at 0.05

significance level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

17 Average-MAPE results (means and standard errors) of the proposed wFTL

approaches compared to the ensemble and online methods for the different

initial observation sequence lengths. The best performing method is shown

in bold. Also in bold are the methods that are not statistically significantly

different from the best method at 0.05 significance level. . . . . . . . . . . . . 125

18 Average-MAPE results (means and standard errors) of the proposed wFTL

approaches compared to the subpopulation methods for the different initial

observation sequence lengths. The best performing method is shown in bold.

Also in bold are the methods that are not statistically significantly different

from the best method at 0.05 significance level. . . . . . . . . . . . . . . . . . 127

19 Average-MAPE results (means and standard errors) of the proposed wFTL

approaches compared to the model adaptation based methods for the different

initial observation sequence lengths. reGP and reMTGP are the abbreviations

for rLDS+reGP and rLDS+reMTGP. The best performing method is shown

in bold. Also in bold are the methods that are not statistically significantly

different from the best method at 0.05 significance level. . . . . . . . . . . . . 128

xi



LIST OF FIGURES

1 A regularly sampled ECG time series fragment. . . . . . . . . . . . . . . . . . 5

2 An irregularly sampled MCHC lab test time series. . . . . . . . . . . . . . . . 6

3 The four categories of clinical time series forecasting problems. . . . . . . . . 8

4 The graphical representation of the LDS. . . . . . . . . . . . . . . . . . . . . 14

5 Irregularly sampled time series discretization by using DVI. . . . . . . . . . . 18

6 Irregularly sampled time series discretization by using WbS. . . . . . . . . . . 19

7 The graphical illustration of WbS with overlaps. . . . . . . . . . . . . . . . . 20

8 The graphical illustration of GP prior and posterior. . . . . . . . . . . . . . . 22

9 The prediction problem on a GP model on irregularly sampled time series data. 23

10 The graphical illustration of our rLDS model. . . . . . . . . . . . . . . . . . . 35

11 State space recovery on a synthetic dataset. . . . . . . . . . . . . . . . . . . . 44

12 LDS overfitting phenomena. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

13 State space recovery on the clinical data. . . . . . . . . . . . . . . . . . . . . 46

14 Predictions for flour price series in Buffalo by using gLDS-smooth. . . . . . . 58

15 Simulated sequences from gLDS-stable model in evap data. . . . . . . . . . . 60

16 Intrinsic dimensionality recovery in flourprice data. . . . . . . . . . . . . . . . 61

17 The graphical illustration of the hierarchical dynamical model. . . . . . . . . 65

18 Time series for ten tests from the CBC panel for one of the patients. . . . . . 71

19 MAE on MCV and RBC test samples for random prediction tasks. . . . . . . 73

20 Clinical evaluations of HDSGL on MCV and RBC. . . . . . . . . . . . . . . . 74

21 Average-MAPE results with different initial observation lengths. . . . . . . . 83

xii



22 Average-MAPE results of all models in the pool and two wFTL methods for

the different initial observation lengths. . . . . . . . . . . . . . . . . . . . . . 92

23 Average-MAPE results of the proposed wFTL approaches compared to the

ensemble and online methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

24 Average-MAPE results of the proposed wFTL approaches compared to the

subpopulation methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

25 Average-MAPE results of the proposed wFTL approaches compared to the

model adaptation based methods. . . . . . . . . . . . . . . . . . . . . . . . . 96

26 Predictions for flour price series in Minneapolis by using gLDS-smooth. . . . 109

27 Predictions for flour price series in Kansas City by using gLDS-smooth. . . . 110

28 Simulated sequences from gLDS-stable model in fourprice data. . . . . . . . . 111

29 Simulated sequences from gLDS-stable model in h2o evap data. . . . . . . . . 112

30 Simulated sequences from gLDS-stable model in clinical data for one patient. 112

31 Intrinsic dimensionality recovery in evap data. . . . . . . . . . . . . . . . . . 113

32 MAE on ten CBC lab tests for overall predictions. . . . . . . . . . . . . . . . 115

33 MAE on ten CBC lab tests for short-term predictions. . . . . . . . . . . . . . 117

34 Clinical evaluations of HDSGL on ten laboratory test time series. . . . . . . . 119

xiii



LIST OF ALGORITHMS

1 Proximal descent algorithm for solving eq.(3.3). . . . . . . . . . . . . . . . . . 38

2 Incremental proximal descent algorithm for solving eq.(3.9). . . . . . . . . . . 40

3 Parameter estimation in rLDS . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Learn the LDS model in gLDS. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Learning and Prediction Procedures . . . . . . . . . . . . . . . . . . . . . . . 81

6 Kalman filter algorithm for LDS . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 EM: E-step backward algorithm for LDS . . . . . . . . . . . . . . . . . . . . 104

xiv



PREFACE

I spent six fabulous years in Pittsburgh. I would like to thank the people who accompanied

me and made my journey of pursing Ph.D. possible and pleasurable.

First of all, I want to sincerely thank my research advisor Dr. Milos Hauskrecht. This

dissertation would be impossible to complete without the help from Milos. He not only

taught me the advanced machine learning and data mining techniques but guided me through

the scientific research process. His high professional standards and rigorous attentions to

details helped me solve real-world clinical problems, publish top conference and journal

papers, obtain the Andrew Mellon Predoctoral Fellowship for the school year 2015-2016 and

gradually shape my logical thinking and problem solving skills. Thank you, Milos!

I would also like to thank my Ph.D. committee members, Dr. Rebecca Hwa, Dr. Jingtao

Wang and Dr. Christos Faloutsos for their valuable suggestions and insightful discussions

during my proposal and dissertation defenses. I want to thank our post-doc Lei Wu, with

whom I worked during my first year of Ph.D. research and also other members of Milos’

machine learning group: Shuguang Wang, Quang Nguyen, Dave Krebs, Eric Heim, Charmgil

Hong, Salim Malakouti, Siqi Liu and Zhipeng Luo.

I was privileged to work as an intern in Google Inc., eBay Research Lab, Yahoo! Labs

and Alibaba Group with amazing colleagues and mentors: Laura Werner from Google Inc;

Nish Parikh, Gyanit Singh, and Neel Sundaresan from eBay Research Lab; Chris Yan Yan,

Jimmy Jian Yang, Pengyuan Wang, Wei Sun, James Li, and Zheng Wen from Yahoo! Labs;

Jian Xue, Shenghuo Zhu, Sen Yang, Jian Tan and Rong Jin from Alibaba Group. The

internship experience taught me both the research & development paradigm in the industry.

I learned how to quickly adapt in new environments and how to openly communicate with

others.

I am very grateful to have so many wonderful friends throughout my educational odyssey.

I need to mention Xiangmin Fan, Rui Wu, Lingjia Deng, Jiannan Ouyang, Ka Wai Yung,

Wencan Luo, Lanfei Shi, Mengmeng Li, Huichao Xue, Wenting Xiong, Yingze Wang, Yao

Sun and Yu Du for marvelous times we spent together in Pittsburgh. I made great friends

at both Pitt and CMU, with whom I would like to keep in touch including Lailuyun Xu,

xv



Rongqian Ma, Shou Li, Shicheng Lv, Yangzhan Yang, Haifeng Xu, Xuelian Long, Bo Luan,

Yingjun Su, Yun Wang, Rui Liu, Guimin Lin, Guangyu Xia, Xi Chen and others.

I would also like to thank colleagues and friends who I met during academic conferences

and internships. We often exchanged research ideas interdisciplinarily, which broadened my

sight and encouraged me to move forward. In particular, I would like to thank Huan Liu,

Jieping Ye, Hanghang Tong, Fei Wang, Jiliang Tang, Xia Hu, Bing Hu, Chen-Yu Lee, Zixuan

Wang and Shumo Chu.

Lastly, it is most important to thank my parents Tiejun and Lihua, whose unlimited

patience, love, encouragement and support helped assure that I would complete this most

difficult journey.

Thank you all!

xvi



1.0 INTRODUCTION

1.1 MOTIVATION

Recent advances in data collection, data storage and information technologies have resulted

in enormous collections of time series data in various aspects of our everyday life, such as

sequences of weather temperature measurements reflecting the changes of the climate, clinical

observations showing the health conditions of patients, or stock price series indicating the

dependences and variations of the capital market. The emergence and availability of time

series data provide us with a unique opportunity to gain novel insights into the processes

generating the data and let us build models we can utilize for making future decisions.

For example, understanding how the supply and demand change over time provides better

strategies for supply chain and inventory management and planning [Aburto and Weber,

2007]. Time series analysis is the field of research that attempts to analyze these rich time

series data in order to extract their meaningful statistics and infer their future behaviors.

As one important type of time series data, clinical multivariate time series (MTS) record

the values of many clinical variables over time. In general these variables include various

laboratory tests, physiological measurements, or treatments and are highly related to patient

condition and outcomes. With the recent development of advanced data technology, large

temporal electronic health record repositories emerge and become highly available. They

reflect different responses and behaviors of individual patients whether this is in context of

chronic or acute clinical condition, or their combination. Clinical time series data provides

us with a unique opportunity to gain novel insights into the dynamics of the patient state,

dynamics of the disease, or efficacy of its treatments.
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1.2 TIME SERIES RELATED TASKS

With the emergence and availability of the huge amount of time series data, various of time

series analysis tasks are researched and studied largely in any domain of applied science and

engineering, which involves temporal measurements, such as econometrics [Zellner and Palm,

1974], signal processing [Cohen, 1995], mathematical finance [Taylor, 2007]. In the following,

we briefly list several major types of time series analysis tasks which are appropriate for

different purposes.

• Time series classification. Time series classification is to build a classification model

based on labeled time series and then use the model to predict the label of unlabeled

time series. There are many practical applications of time series classification, such as

classifying electroencephalography signals [Xu et al., 2004], personal motion trajectories

[Shotton et al., 2013], speech recognition [Rabiner, 1989] and more.

• Time series segmentation. In time series segmentation, the goal is to split time series

data into sequences of segments by identifying the segment boundary points, and to char-

acterize the dynamical properties associated with each segment. A typical application of

time series segmentation is speaker diarization, in which an audio signal is partitioned

into several pieces according to who is speaking at what times [Tranter and Reynolds,

2006].

• Time series outlier detection. Time series outlier detection is similar to event de-

tection but focuses on finding the observation that appears to deviate markedly from

other observations in the time series. Outliers may occur due to various reasons, such as

machine malfunctioning, networking disturbances, or human inappropriate operations.

A practical application scenario of time series outlier detection is that in clinical deci-

sion support systems, temporal outlier detection algorithms can identify unusual clinical

management patterns in individual patients and raise alarms if wrong treatments are

detected [Hauskrecht et al., 2013].

• Temporal pattern abstraction. Temporal pattern abstractions aim to convert time

series variables into time-interval sequences of abstract states or temporal logic to rep-

resent temporal interactions among multiple states and define and construct temporal
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patterns from these abstract representations. Temporal patterns provide appealing ab-

stractions of the original time series and improve the performance for other time series

tasks like time series classification [Batal et al., 2011], event detection [Batal et al., 2012].

• Temporal dependence/causal discovery. Uncovering the temporal dependent or

causal relationship among MTS data is a major task in data mining, which easily finds

applications in many domains. For example, in the climatology, the causal relationships

between climate time series variables help identify the factors that impact the climate

patterns of certain regions. In social networks, the temporal dependence improves the

pattern identification of influence among users and how topics activate or suppress each

other [Bahadori and Liu, 2013,Cheng et al., 2014].

• Time series forecasting. Time series forecasting is the use of a model to predict future

values based on previously observed values, which has extensive applications in many do-

mains. For example, in the clinical domain, accurate predicting the patients’ lab tests

values from previous measurements observed by physicians will help detect an adverse

event or a disease in its early stages, thus allowing clinicians to identify the most effective

treatment [Osorio et al., 1998,Richman and Moorman, 2000,Liu and Hauskrecht, 2015a].

In this dissertation, we mainly focus on the task of time series forecasting, especially the

forecasting problems in clinical domain. With a wide adoption and availability of elec-

tronic health records (EHRs), the development of forecasting models of clinical MTS and

tools for their analysis is becoming increasingly important for meaningful applications

of EHRs in computer-based patient monitoring, adverse event detection, and improved

patient management [Bellazzi et al., 2000,Clifton et al., 2013,Lasko et al., 2013,Liu and

Hauskrecht, 2013, Liu et al., 2013, Schulam et al., 2015, Ghassemi et al., 2015, Durichen

et al., 2015].

1.3 CHALLENGES

A large spectrum of temporal models have been developed and successfully applied in time

series analysis [Du Preez and Witt, 2003, Ljung and Glad, 1994] and many of them have
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been applied recently to support predictions or inferences on clinical and biomedical data.

Example applications include detection and early warning of patient deteriorations [Clifton

et al., 2013], discovery of phenotypes and endotypes [Lasko et al., 2013,Schulam et al., 2015],

assessment of severity of patient’s illness [Ghassemi et al., 2015], models for active motion

compensation to precisely radiate tumors in the liver or lung [Durichen et al., 2015]. How-

ever, none of the aforementioned methods can be directly applied into forecasting problems

in real-world clinical MTS data. Building forecasting models from EHRs encounters numer-

ous challenges due to three practical characteristics of real-world clinical time series data:

multivariate behaviors, irregular samples and patient variability, which make conventional

methods inadequate to handle them.

1.3.1 Multivariate Behaviors

A univariate time series is a sequence of measurements of the same variable collected over

time while a multivariate time series (MTS) consists of sequences of measurements of multi-

ple variables over time and exhibits complex temporal behaviors. MTS data appear in a wide

variety of fields, such as health care [Sacchi et al., 2007, Hauskrecht et al., 2010a, Ho et al.,

2003], economics [Kling and Bessler, 1985], motion capture [Li et al., 2009], astronomy [Scar-

gle, 1982], weather forecasting [Gneiting and Raftery, 2005], earthquake prediction [Scholz

et al., 1973] and many more. MTS not only show the temporal dependent behaviors within

each time series but exhibit interactions and co-movements among different time series. For

example, in economics, forecasting consumer price index usually depends on money supply,

index of industrial production and treasury bill rates collectively [Kling and Bessler, 1985].

In clinical domain, a large number of clinical variables might be measured for a single patient

(e.g., white blood cell counts, creatinine values, cholesterol levels, etc.) [Batal et al., 2012].

A large number of hidden variable models are proposed in past decades to model such

complex dependent MTS, such as hidden Markov models (HMM) [MacDonald and Zuc-

chini, 1997], factorial HMM [Ghahramani and Jordan, 1997], hierarchical Bayesian mod-

els [Berliner, 1996], Markov switching models [McCulloch and Tsay, 1994,Kim, 1994]. Hid-

den variables empower the models to capture more variabilities in the MTS and let human
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knowledge easily be incorporated in the modeling process. However, since the observational

sequences in MTS data may exhibit strong interactions and co-movements, given the MTS

sequences, it is difficult to seek the intrinsic dimensionality of the hidden variables. Open

questions arise such as how many hidden variables are needed to sufficiently represent the

MTS well?, what is the compact representations of the observation sequences? Furthermore,

after introducing the hidden variables, it becomes challenging to incorporate constraints in

the model learning process to achieve desired properties, such as smoothness, stability, etc.

Questions emerge such as Can we easily guide the learning process by adding constraints?

1.3.2 Irregular Samples

We say that the time series is regularly sampled if the time elapsed between consecutive

observations is uniform (the same for all pairs of consecutive observations), while the irregu-

larly sampled time series means sequential observations are collected at different times, and

the time elapsed between two consecutive observations may vary [Adorf, 1995].

Usually we obtain regularly sampled time series through sensor devices which regularly

collect observations at some fixed sampling frequency. For example, due to the advances of

health care sensor technologies, we can easily record the regularly sampled electrocardiogram

(ECG) and electroencephalogram (EEG) signals (depicted in Figure 1). In the climatology,

weather stations set climate sensors to collect the outside temperature, wind speed, humidity

at regularly sampled time stamps.
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Figure 1: A regularly sampled ECG time series fragment.
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However, in many situations we observe irregularly sampled time series, which is very dif-

ferent from typical regularly sampled time series domains. For example, in clinical domain,

the observations are obtained whenever a patient visits a healthcare facility and the time

intervals between consecutive visits tend to vary greatly. Even during a patient’s hospital-

ization, there is no guarantee that the physician can order lab tests regularly. An irregularly

sampled mean corpuscular hemoglobin concentration (MCHC) lab test time series from a

patient is shown in Figure 2.
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An irregularly sampled MCHC time series from a patient

Figure 2: An irregularly sampled MCHC lab test time series.

This irregularly sampled data preclude the applications of a large class of time series

modeling techniques that require regularly sampled observations. Modeling irregular sam-

pled questions gives rise to numerous important questions like Can we still use existing

discrete time models to model the irregularly sampled time series?, Is it possible to model the

irregular sampled data directly?

1.3.3 Patient Variability

Clinical MTS exhibits large patient variability. First, the number of observations in each

patient sequence is limited and the duration they span may vary a lot from patient to pa-

tient. As we discussed in Section 1.3.2, nowadays we can easily obtain a long-span time

series via sensor devices by either increasing the sampling frequency or keeping it recording

for a longer period of time. However, compared to the long-span time series data, patients

are usually hospitalized for short periods of time (often less than two weeks), which produces
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relatively short-span clinical sequences (often less than 50) [Liu et al., 2013]. Second, within

each patient specific clinical MTS sequence, values of various laboratory tests, physiological

measurements, or treatments are all recorded. They reflect different responses and behaviors

of individual patients and contain lots of short-term variability due to different causes [Schu-

lam et al., 2015]. For example, the blood tests may be affected by events like infection,

bleeding, transfusion, or a particular medication treatment.

All such patient variability poses two hard modeling problems of supporting accurate

predictions for each patient. First, given a complex length-varying MTS collection, how can

we learn a population based forecasting model without overfitting to such short-span temporal

data? Second, patient-to-patient variability is typically large and population based models

derived or learned from many different patients are unable to capture short-term variability

in each individual patient. Given a patient specific prediction task, how can we adapt the

population based model to provide accurate personalized predictions?

1.4 CONTRIBUTIONS

In this dissertation we focus on the time series forecasting of clinical data with large patient

variability (Section 1.3.3). To better understand the forecasting challenges and have a clearer

overview of completed work discussed in this dissertation, we introduce four categories of

forecasting problems formed by the intersection of two of the three characteristics discussed

previously (depicted in Figure 3). Categories are defined by whether they consider univariate

or multivariate time series and whether they consider regularly or irregularly sampled data.

Below we explain the corresponding problem in each category and highlight our contribution

in those categories.

Forecasting regularly sampled univariate time series is the simplest case depicted in the

top left in Figure 3. Observations within each time series are obtained at a fixed sampling

frequency and forecasting is conducted individually. Many existing forecasting methods can

be applied to such time series data, such as ARIMA [Box and Pierce, 1970,Makridakis and

Hibon, 1997], exponential smoothing [Gardner, 1985], polynomial regression [Theil, 1992].
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Figure 3: The four categories of clinical time series forecasting problems.

Furthermore, methods from other categories generally can be applied to model regularly

sampled univariate time series with few or no modifications. Therefore, in this dissertation,

we will focus more on forecasting problems in other categories in Figure 3.

In Chapter 3, we develop two frameworks to learn temporal models from regularly sam-

pled multivariate time series data. Our work focuses on the refinements of a popular model

for MTS analysis: the linear dynamical system (LDS) (described in Section 2.2.1). More

specifically, the first framework, regularized linear dynamical system, aims to automatically

identify the intrinsic dimensionality of the hidden state space of LDS given a limited number

of MTS data and consequently, prevents the overfitting problem and performs more accurate

forecasting. We develop a maximum a posteriori learning framework to learn the regular-

ized LDS models from a small amount of complex MTS data. In our learning framework,

we choose parameter priors to bias the model towards a low-rank solution. We propose

three strategies for choosing the parameter priors that lead to three instances of our regu-

larized LDS. The second framework is developed for learning LDS models from a collection
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of MTS data based on matrix factorization, which is different from traditional EM learning

and spectral learning algorithms. In our generalized LDS learning framework, each MTS

sequence is factorized as a product of a shared emission matrix and a sequence-specific (hid-

den) state dynamics, where an individual hidden state sequence is represented with the help

of a shared transition matrix. One advantage of our generalized framework is that various

types of constraints can be easily incorporated into the learning process. Furthermore, we

propose a novel temporal smoothing regularization approach for learning the LDS model,

which stabilizes the model, its learning algorithm and predictions it makes. We demonstrate

the benefits of our methods on a number of time series data sets.

In Chapter 4, we focus on challenges in forecasting from irregularly sampled data. Since

observations that form clinical time series are usually are made initiated (ordered) by a

clinician, no fixed sampling frequency can be guaranteed. In this chapter, we propose and

develop a novel hierarchical dynamical system framework for modeling clinical time series

that combines advantages of the two temporal modeling approaches: the linear dynamical

system and the Gaussian process(GP). We model the irregularly sampled clinical time series

by using multiple GP sequences in the lower level of our hierarchical framework and capture

the transitions between GPs by utilizing the LDS. The experiments are conducted on the

complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their

hospitalization. We show that our model outperforms multiple existing models in terms of

the mean absolute prediction error and the absolute percentage error. Our method achieved

a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was

compared against the best performing baseline. A 5.25% average accuracy improvement was

observed when only short-term predictions were considered.

In Chapter 5, we develop and study personalization strategies for building improved

forecasting models that better mimic patient specific behaviors from irregularly sampled

multivariate clinical data. This problem is rather challenging due to the characteristics of

clinical MTS and the computational and modeling trade-offs arising from them. Briefly,

when the time series of past observations for the patient are short, it may be hard to learn

a patient specific model, and the population based model may be a better option. On the

other hand, when the observed data for the target patient are sufficiently long, a patient
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specific time series model may better reflect the future behavior. In this dissertation, we

develop two approaches to address the above issues. Our first approach builds upon model

adaptation. It first learns a population based model from all the available patients and then

re-calibrates the population based model into personalized models through patient specific

residual models. The patient specific residual models are learned from multivariate residual

time series, which is the difference between the patient observations and the population based

model’s predictions. The second approach relies on adaptive model selection strategies to

combine advantages of the population based, patient specific and short-term individualized

predictive models. We build a pool of high quality forecasting models for clinical MTS and

their variety assures the coverage of many different modes and behaviors. Our approach is

designed to pick the most appropriate predictive model for each patient at every time stamp.

Both proposed approaches are evaluated on a real-world clinical time series data set. The

results demonstrate that our approaches are superior on the prediction tasks for irregularly

sampled multivariate clinical time series, and they outperform pure population based and

patient specific models, as well as, other patient specific model adaptation strategies in terms

of prediction accuracy.

1.5 OUTLINE

The rest of this dissertation is organized as follows: Chapter 2 introduces the notation to

be used in subsequent chapters and provides a review of the basics of time series models

and the personalized predictive methods to guide the precision medicine. Chapters 3, 4 and

5 present the main contributions of this dissertation. Finally, Chapter 6 summarizes the

contributions of this dissertation and discusses avenues of future work.

Finally, I would like to note that parts of this dissertation have been previously published

in the following conferences and journal: SDM 2013 [Liu et al., 2013], AIME 2013 [Liu and

Hauskrecht, 2013], AAAI 2015 [Liu and Hauskrecht, 2015b], AAAI 2016 [Liu and Hauskrecht,

2016a], SDM 2016 [Liu and Hauskrecht, 2016b] and the Artificial Intelligence in Medicine [Liu

and Hauskrecht, 2015a].
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2.0 BACKGROUND

In this section, we first define notation used in this dissertation. Then, we review the basics of

the time series models, in particular, (1) the linear dynamical system, which is a discrete time

model used commonly to represent regularly sampled time series data (Section 2.2.1); (2) the

Gaussian process model that works with continuous real-valued quantities and lets us model

functions of continuous time (Section 2.2.2); and (3) the multi-task Gaussian process model

that extends the standard Gaussian process to model the multivariate dependence within

multivariate time series (Section 2.2.3). After that, we review various techniques used in

biomedical and clinical domains to build predictive patient specific models. These techniques

are proposed to entail the delivery of individually tailored clinical decision supports that

leverage information about each person’s unique characteristics, which can be summarized

into three categories: subpopulation models (Section 2.3.1), model adaptation (Section 2.3.2)

and adaptive model selection (Section 2.3.3).

2.1 NOTATION

In the following, we introduce the notation that be used in the subsequent.

• We denote time series data D as a collection of N multivariate time series sequences

D = {Y1,Y2, · · · ,YN}. Each Yl consists of a sequence of Tl past observation-time

pairs (yli, t
l
i), i.e., Yl = {(yli, tli)Tli=1}, such that Tl is the number of past observations for

sequence l, 0 < ti < ti+1, and yli is a n-dimensional observation vector made at time (ti).

n is the number of clinical variables in the MTS.

11



• Let N (m,Σ) be a multivariate normal distribution with the mean vector m and covari-

ance matrix Σ. Let Ez[f(·)] denote the expected value of f(·) with respect to z.

• Special norms used throughout this work include: ‖ · ‖F , ‖ · ‖∗, ‖ · ‖2 and ‖ · ‖1 which

is the matrix Frobenius norm, the matrix nuclear norm, the vector Euclidean norm and

the vector/matrix `1 norm.

• For both vectors and matrices, the superscript > denotes the transpose. vec(·) denotes

the vector form of a matrix; and ⊗ represents the Kronecker product. Tr is the trace

operator and Id is the d× d identity matrix.

For the sake of notational brevity, we omit the explicit sample index (“l”) and describe

our methods by using a MTS sample for the rest of this section. However, it is worth to note

that methods we developed can be applied to data of multiple time series samples with few

or no modifications.

2.2 TIME SERIES MODELS

A large spectrum of models have been developed and successfully applied in time series mod-

eling and forecasting [Hamilton, 1994], such as ARIMA [Box and Pierce, 1970, Makridakis

and Hibon, 1997], exponential smoothing [Gardner, 1985], etc. However, the majority of

existing models are focused on regularly sampled univariate time series. In the following, we

first review the basics of the linear dynamical system, which is used commonly to represent

multivariate time series data (Section 2.2.1). Then, we review the basics of the Gaussian

process model that works with continuous real-valued quantities and lets us model functions

of continuous time (Section 2.2.2). After that, we introduce the multi-task Gaussian process

model, which is an extension of Gaussian process model for multivariate time series (Section

2.2.3).
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2.2.1 Linear Dynamical System

The linear dynamical system (LDS) is a classical and widely used model for real-valued

sequence analysis [Kalman, 1963], that is applicable to many real-world domains, such as

engineering, astronautics, bioinformatics, economics [Lunze, 1994,Liu and Hauskrecht, 2013].

This is due to its relative simplicity, mathematically predictable behavior, and the fact that

exact inference and predictions for the model can be done efficiently [Martens, 2010].

The LDS is an MTS model that represents observation sequences indirectly with the help

of hidden states. Similarly yi and Y we introduced in Section 2.1, let zi be a d × 1 vector

representing the values of d dimensional hidden states at time stamp ti corresponding to yi

and denote Z as a d × T matrix representing the entire values of hidden states along the

time span T . The LDS model is a discrete time model which assumes all the time stamps

within a sequence are evenly spaced, i.e., ti+1− ti = Φ and Φ is the constant representing the

fixed length of time interval. The LDS models the dynamics of these sequences in terms of

the state transition probability p(zi|zi−1), and state-observation probability p(yi|zi). These

probabilities are modeled using the following equations:

zi = Azi−1 + εi (2.1)

yi = Czi + ζi (2.2)

where the transitions among the current and previous hidden states are linear and captured

in terms of a d × d transition matrix A. The stochastic component of the transition, εi, is

modeled by a zero-mean Gaussian noise εi ∼ N (0, Q) with a d × 1 zero mean vector and

a d × d covariance matrix Q. The observations sequence is derived from the hidden states

sequence. The dependencies in between the two are linear and modeled using an n × d

emission matrix C. A zero mean Gaussian noise ζi ∼ N (0, R) models the stochastic relation

in between the states and observations. In addition to A,C,Q,R, the LDS is defined by the

initial state distribution for z1 with mean ξ and covariance matrix Ψ, i.e., z1 ∼ N (ξ,Ψ). The

complete set of the LDS parameters is Λ = {A,C,Q,R, ξ,Ψ}. The graphical representation

of the LDS is shown in Figure 4.
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Figure 4: The graphical representation of the LDS. Shaded nodes yt and yt−1 denote ob-

servation made at current and previous time steps. Unshaded nodes zt and zt−1 denote the

corresponding hidden states. The links represent dependences among the observations and

hidden states. The plate represents a collection of N sequences.

2.2.1.1 Applications The LDS model is a powerful tool in the analysis of the evolution

of a dynamical model in time and is commonly used time series model for real-world en-

gineering and financial applications [Isard and Blake, 1998, Kazemi et al., 2008, Victor and

Alberto, 2011,Rogers et al., 2013]. In the following, we describe two important applications

of the LDS models, Visual Tracking and Biomedical Signal Processing.

Visual Tracking The LDS models show numerous successful applications in visual

tracking (a.k.a, object tracking), which is the problem of estimating the positions (coordi-

nates) and other relevant information of moving objects from a collection of noisy observa-

tions [Lee et al., 1995, Isard and Blake, 1998, Funk, 2003, Li et al., 2004, Weng et al., 2006].

In visual tracking, the LDS is robust to the noise caused by rotation, illumination changes,

occlusions, etc. and the time update step and measure update step in the Kalman filtering

algorithm (see Appendix A) is able to filter out the noise from the signal measurements while

retain the true trajectories (state sequences).

Biomedical Signal Processing The LDS models are widely used in tasks of analyzing

biomedical signals, such as electroencephalogram (EEG), electrocardiogram (ECG) [Geor-

giadis et al., 2005,Georgiadis et al., 2007,Khan and Dutt, 2007,Kazemi et al., 2008,Sayadi

and Shamsollahi, 2008]. Examples like Kazemi et al. [Kazemi et al., 2008] utilize Kalman

filtering algorithm to remove the periodic noises (such as electricity grid induced noises)
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from ECG signals. Georgiadis et al. [Georgiadis et al., 2005,Georgiadis et al., 2007] propose

a Kalman filter based approach to dynamically estimate the event related potentials, which

are the voltage changes of brain electric activity due to stimulation. Sayadi et al. [Sayadi

and Shamsollahi, 2008] build a modified extended Kalman filter structure to conduct the

ECG signals denoising and compression. Khan et al. [Khan and Dutt, 2007] use the hidden

state estimates of LDS models to detect event-related desynchronization and synchroniza-

tion, which are used to describe the decrease and increase in activity in an EEG signal.

2.2.1.2 Learning Linear Dynamical Systems While in some LDS applications the

model parameters are known a priori, in the majority of real-world applications the model pa-

rameters are unknown, and we need to learn them from MTS data. This can be done using

standard LDS learning approaches such as the Expectation-Maximization (EM) [Ghahra-

mani and Hinton, 1996] or spectral learning algorithms [Katayama, 2005,Van Overschee and

De Moor, 1996,Doretto et al., 2003].

Expectation-Maximization The EM algorithm is an iterative procedure for finding

model parameters that maximizes the likelihood of observations in the presence of hidden

variables. In practice, instead of maximizing the data likelihood directly, EM algorithm

usually maximizes a Q function, which is the expectation of the joint probability of both

observed and hidden variables with respect to the distribution of hidden variables. The Q
function is a lower bound of the true data likelihood and maximizing it will improve the data

likelihood. Under the setting of learning standard LDS defined by eq.(2.1) and eq.(2.2), the

Q function is defined as follows:

Q = EZ

[
log p(Z,Y)

]
= EZ

[
log p(z1)

]
+EZ

[ T∑
i=1

log p(yi|zi)
]

+EZ

[ T∑
i=2

log p(zi|zi−1)
]

(2.3)

The EM algorithm alternates between maximizing the Q function with respect to the

parameters Λ and with respect to the distribution of hidden states, holding the other quan-

tity fixed. The E-step depends on E[zi|Y], E[ziz
>
i |Y] and E[ziz

>
i−1|Y], which are sufficient

statistics to compute eq.(2.3). Detailed algorithms for computing the sufficient statistics are

provided in Appendices A and B. The M-step re-estimate each of the parameter in Λ by
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taking the corresponding partial derivative of the expected log likelihood, setting to zero

and solving.

Spectral Learning Spectral learning methods provide a non-iterative, asymptotically

unbiased LDS estimation solution in closed form. They estimate the parameters of an

LDS by using singular value decomposition (SVD) to find Kalman filter estimates of the

underlying state sequence [Katayama, 2005, Van Overschee and De Moor, 1996, Doretto

et al., 2003]. Spectral learning methods approximate the observation matrix Y or its variants

(hankel matrix) [Boots et al., 2007] into UΣV ′ by SVD, where U ∈ Rn×d and V ∈ RT×d

have orthonormal columns {ui} and {vi} and Σ = diag{δ1, · · · , δd} contains the singular

values. The emission matrix and state sequence are estimated as Ĉ = U and Ẑ = ΣV ′

and the transition matrix is obtained by solving the least square of ‖AZ1:T−1 − Z2:T‖2F
where Za:b represents a subsequence of Z inclusively from the time ta to time tb, i.e., Za:b =

[za, za+1, · · · , zb−1, zb].

Due to iterative re-estimation the EM is slower than spectral methods that do not iter-

ate. However, the maximum likelihood solution found by EM might provide more accurate

parameter estimation than spectral learning methods, especially when the amount of train-

ing data is small, but is subject to local optima. In practice, the estimates from spectral

learning are used as the initialization of the EM algorithm [Boots et al., 2007].

However, even though the standard EM and spectral methods are maturely developed,

learning LDS from short-span low-sample clinical MTS data set encounters a number of

questions. First, both EM and spectral methods require to know the intrinsic dimensionality

of an LDS’s hidden state space in advance, which in general is difficult. The dimensionality

plays an important role in the performance of LDS models due to the fact that a small

number of hidden states may not be able to model the complexities of a MTS, while a

large number of hidden states can lead to overfitting. In Section 3.1 of this dissertation, we

address the above issue by presenting a regularized LDS framework to recover the intrinsic

dimensionality of MTS and consequently prevent model overfitting given short MTS data

sets. Second, neither the EM algorithm nor spectral methods are able to constrain the LDS

learning process in the sense of leading the learned models to achieve desired properties,

such as stability. In Section 3.2 of this dissertation, we propose and develop a generalized
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LDS learning framework in which various constraints are easily incorporated and parameter

optimizations are efficiently conducted.

2.2.1.3 Irregularly Sampled Data Discretization In general, there are two ways to

handle irregularly sampled time series data and convert them to observation sequences one

can model and analyze using the discrete time models: (1) direct value interpolation (DVI)

approach and (2) window-based segmentation (WbS) approach. In the following we briefly

summarize these two approaches.

Direct Value Interpolation The DVI approach assumes that all observations are col-

lected regularly with a pre-specified sampling frequency r. However, instead of actual read-

ings the values at these time points are estimated from readings at time points closest to them

using various interpolation techniques [Adorf, 1995, Dezhbakhsh and Levy, 1994, Åström,

1969]. The interpolated (regular) time series, i.e., Ỹ = {(ỹi, t̃i)T̃i=1}, is then used to train a

discrete time model such as LDS. The approach is illustrated in Figure 5. We put a tilde sign

(̃·) over Y and yi to indicate the discretized observations. t̃i is time stamps of discretized

observations and T̃ is the length of discretized sequence. In terms of predictions of future

values, one has to first use trained discrete time model to predict the values at time points

closest to the target time, and after that, apply the interpolation approach to estimate the

target value.

The DVI approach converts the time series with irregular observations to discrete time

observation sequences. The quality of the conversion depends on the number of observations

actually seen and the sampling frequency parameter r. One straightforward way to set r

is to use internal cross-validation approach. Briefly, we divide the time series data used for

training the models into folds and use them to built multiple internal training and testing

datasets. The models built with different sampling frequencies r are tested on the internal

test sets, and the best r that leads to the best prediction accuracy on the internal test data

(averaged over different folds) is selected.

Window-based Segmentation The WbS approach is slightly different. Instead of

values at pre-specified regularly sampled time points, the approach first segments time series

to fixed-sized windows. The behavior in the window is summarized in terms of its statistics
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Figure 5: Transformation of an irregularly sampled time series Y = {(yi, ti)Ti=1} to a discrete

time series Ỹ = {(ỹi, t̃i)T̃i=1} by using DVI. The empty circles denote the interpolated values

with no readings. The right panel illustrates the linear interpolation process.

γ, such as, the mean, or the last value observed within that time interval [Chu, 1995, Das

et al., 1998, Yi and Faloutsos, 2000, Keogh and Pazzani, 2000, Keogh et al., 2001, Smyth

and Keogh, 1997]. The values generated by the different windows define sequences of γ

statistics. The discrete time model is then used to represent how the summary statistics

γ in two consecutive windows change, that is, a sequence of statistics calculated over these

intervals are considered to be observations of the discrete time model. Predictions at future

times for the window-based approach are made using the discrete time model by identifying

the time interval the target time point falls into.

We would like to note that in order to learn the parameters of the window-based discrete

time model from irregularly sampled data one has to either assure that every time interval

has at least one reading that is sufficient to calculate the summary statistics; or impute

the statistics for the window with missing values from its neighbors using, for example,

interpolation methods. Figure 6 illustrates the process of filling statistics in intervals with

missing values by using interpolations. Briefly, after segmentation of time series to windows

of a fixed size (step 1), the summary statistics γi for each window i are calculated (step 2),

and for windows with no readings, the statistics are interpolated from windows next to it

(step 3). Once the missing statistics are imputed, the discrete time models, such as LDS,
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can be learned from complete sequences γ1, γ2, · · · , γm of summary statistics derived from

time series data.
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Figure 6: Transformation of irregularly sampled time series Y = {(yi, ti)Ti=1} to a discrete

time series γ ≡ {γi} by WbS. The shaded nodes denote summary statistics calculated from

the corresponding windows, such as γi in step 2. The regular (unshaded) nodes denote empty

summary statistics corresponding to windows with no readings, such as γ2. h in the right

panel denotes the summary statistics estimation function.

The discrete time models (once they are learned) can be used for prediction by taking

an initial sequence of observations for a new instance and predicting values at an arbitrary

future time t∗. This is accomplished by first applying the WbS to observed data for the new

instance and by calculating or imputing the statistics γ for each window. The value at some

future time t∗ is predicted by using the time series model (like LDS) to predict the statistics

γ∗ for the window the future time falls into and after that infer the value for target time t∗

from γ∗. We note the simplest implementation of step 3 is to predict the value directly with

the summary statistic. Briefly, if the summary statistic reflects the value of observations in

the respective time window, we may directly use this value to predict the value for any time

that falls within the corresponding window.

The above window-based approach can be further refined by overlapping two consecutive

windows that generate the statistic γ in time. This means some of the observations can be
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shared by two windows and may influence the statistics in two consecutive steps. Overlapping

the two windows helps to smooth the transitions in statistics. In addition, it helps to generate

longer sequences one can use to train better models. The idea of window overlap is illustrated

in Figure 7. Considering windows and their overlaps, the segmentation of the time series is

induced by two parameters: the window sizeW and the overlap size O. These are additional

parameters of the WbS approach, and if needed, they can be optimized using the internal

cross-validation approach.
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Figure 7: The graphical illustration of WbS with overlaps on the irregularly sampled time

series data.

2.2.2 Gaussian Process

The Gaussian process (GP) is a popular nonparametric nonlinear Bayesian model in sta-

tistical machine learning [Rasmussen and Williams, 2006]. A GP is a collection of random

variables, any finite number of which have a joint Gaussian distribution. The GP is best

viewed as an extension of the multivariate Gaussian to infinite-sized collections of real-valued

variables defining the distribution over random functions. Table 1 summarizes the relation-

ship between Gaussian distribution, multivariate Gaussian distribution and the GP.
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Table 1: Relationship between Gaussian distribution, multivariate Gaussian distribution and

Gaussian process.

Mean type (Co)variance type

Gaussian distribution Scalar Scalar

Multivariate Gaussian distribution Vector Matrix

Gaussian process Function Function

A GP is represented by the mean function m(x) = E[f(x)] and the covariance function

KG(x,x′) = E[(f(x) −m(x))(f(x′) −m(x′))], where f(x) is a real-valued process and x is

the input vector. The mean function m(x) indicates the central tendency of the process,

and the covariance function controls the variation in terms of the similarity or distance of

the two input vectors x and x′.

The GP can be used to calculate the distribution p(f(X∗)) of f values for an arbitrary

set of inputs X∗. The distribution p(f(X∗)) is a multivariate Gaussian defined as follows.

f(X∗) ∼ N (m(X∗), KG(X∗,X∗)) (2.4)

Eq.(2.4) defines the prior distribution of f(X∗). In addition, the GP can be used to

calculate the posterior distribution p(f(X∗)|(X,Y)) of f values for inputs X∗, given a set of

observed values Y for X, where Y = f(X) + ε, assuming additive independent identically

distributed Gaussian noise ε with variance σ2, ε ∼ N (0, σ2). The posterior is again a

multivariate Gaussian p(f(X∗)|(X,Y)) defined as follows.

f(X∗)|(X,Y) ∼ N (m(X∗|(X,Y)), Cov(X∗|(X,Y))) (2.5)

where the mean and covariance expressions are:
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m(X∗|(X,Y)) = m(X∗) +KG(X∗,X)
[
KG(X,X) + σ2I

]−1
(Y −m(X)) (2.6)

Cov(X∗|(X,Y)) = KG(X∗,X∗)−KG(X∗,X)
[
KG(X,X) + σ2I

]−1
KG(X,X∗). (2.7)

Figure 8 illustrates the examples of functions drawn from the GP prior and posterior in

a 1-D space; Figure 8(a) shows functions drawn from the prior distribution function values

at X∗. Figure 8(b) shows functions drawn from the posterior distributions given that some

data points (X,Y) are observed.
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(a) Three functions drawn at random from the
zero-mean GP prior.
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(b) Three random functions drawn from the GP
posterior given three observations.

Figure 8: The graphical illustration of GP prior and posterior. In this example, we create

X∗ as a linearly spaced vector from -3 to 3 with step size 0.01. We set the mean function

m(·) = 0 and covariance function KG(x, x′) = exp(−(x− x′)2/2).

2.2.2.1 Applications Due to the function view of GP methodology and its correspond-

ing flexible nature, GP has a variety of applications in solving temporal modeling problems.

In the following, we describe two major applications of GP in time series domain.

GP as A Function of Time As we discuss in Section 2.2.2, GP can be viewed as

an extension of the multivariate Gaussian distribution in the function space (infinite space)

which can be directly applied to time series modeling problems by representing observations
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as a function of time [Roberts et al., 2013,Girard et al., 2003,Brahim-Belhouari and Bermak,

2004]. As a result, there is no restriction on when the observations are made and whether

they are regularly or irregularly spaced in time and it can be easily applied to make future

time prediction. Given any time index t∗ we can calculate its posterior mean with eq.(2.6),

and use it to predict the values at that time. Figure 9 illustrates this step.
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Figure 9: The graphical illustration of the prediction problem on a GP model on irregularly

sampled time series data. The solid line denotes the GP we learned from the data and the

dotted line indicates the GP’s predictions of future values for future time t∗. The posterior

distribution of f(t∗) at time t∗ is shown and the empty circle is the mean of that distribution,

which is the value predicted by the GP.

GP as A Non-linear Transformation Instead of using GP as a function of time,

we can choose to use GP as a non-linear transformation operator and substitute GP for

the linear transformations in traditional temporal models. For example, in the LDS model

defined by eq.(2.1) and eq.(2.2), we can replace the transition matrix A and emission matrix

C, which are linear transformation operators, with two GPs r(·) and u(·). This leads to the

following discrete-time Gaussian process dynamical system [Turner et al., 2010].

zi = r(zi−1) + εi (2.8)

yi = u(zi) + ζi (2.9)

The transition function r(·) and the observation function u(·) represent stochastic tran-

sitions and observations, and are represented with the help of Gaussian processes. εi and
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ζi are the same as in eq.(2.1) and eq.(2.2). Briefly, the LDS assumes linear dependencies

among latent states and observations, while the GP based model replaces the linear depen-

dencies with more general nonlinear functions r(·) and u(·). Please note that if zi states

are observed then the model collapses to an autoregressive model which is represented by

a single GP. [Turner et al., 2010] introduced the GPIL algorithm for inference and learning

in the above discrete-time Gaussian process dynamical system based on the EM framework.

Similar ideas appear in [Wang et al., 2005,Wang et al., 2008,Deisenroth et al., 2009,Ko and

Fox, 2011] for building nonlinear dynamic systems by utilizing GP.

2.2.2.2 Learning Gaussian Process Models The parameters of the GP are formed by

parameters defining the mean and covariance functions. The mean function is the function

of time and the covariance function measures the similarity of two function values based on

corresponding input time stamps.

The prior mean function is considered as the expectation function, prior to any obser-

vation. Usually, we are equally unsure whether the time series trend is up and down and

this symmetry of ignorance leads to constant-offset mean functions [Roberts et al., 2013].

While in some cases, we do have a prior domain knowledge of the long-term trend of the time

series, we can easily incorporate the specific function form into the Gaussian process models

and the mean function’s parameters can be optimized by using gradient based approaches.

In the clinical setting, where the focus of this thesis lies, we want to learn a function that

fits many patients and their clinical time series. Since the patients may be encountered at

different age and under different circumstances, there is no good way to align their time

origins. Hence the only way to feasibly align them is to set their mean functions equal to

a constant m(t) = M , which makes the mean function of a GP time invariant. To obtain

M, we can average all the observations from all the patients and use that averaged value as

the constant M for the mean function. This gives us a constant mean which reflects many

patients and their clinical time series.

To learn the parameters of the covariance function, we seek Θ that can maximize the

marginal likelihood p(Y|X) [Rasmussen and Williams, 2006]. The log marginal likelihood
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for GP is shown in eq.(2.10).

log p(Y|X) = −1

2
Y>K−1Y Y − 1

2
log |KY| −

T

2
log 2π (2.10)

where Y denotes all the training observations. KY = KG + σ2I is the covariance matrix

for the noisy observations Y and KG is the covariance matrix for noisy-free function values

from function f , Y = f(X) + ε, ε ∼ N (0, σ). n is the number of observations.

The partial derivatives of the marginal likelihood with respect to each parameter θi in Θ

is shown in eq.(2.11).

∂

∂θi
log p(Y|X,Θ) = −1

2
Tr

[
K−1Y

∂KY

∂θi

]
+

1

2
Y>K−1Y

∂KY

∂θi
K−1Y Y (2.11)

where Θ represents the entire set of parameters in covariance function, Θ = {θi}.
Once we have the partial derivatives with respect to each parameter, any well developed

gradient based methods can be directly applied to maximize p(Y|X).

In summary, the advantage of the GP model is that it lets us represent functions of time

and their distributions, which has no restriction on when the observations are made and

whether they are regularly or irregularly spaced in time. However, this approach also comes

with limitations; the most serious one is that the mean function of the GP is a function

of time and in order to make the GP independent of the time origin we need to set it

to a constant value. However, this significantly limits our ability to represent changes or

different modes in time series dynamics. In Chapter 4 of this dissertation, we propose a new

hierarchical dynamical system for modeling irregularly sample univariate time series, which

combines the advantages of the LDS and GP models. A combination of the two appears as

the best solution to offset their limitations.

2.2.3 Multi-task Gaussian Process

One limitation of applying GP to clinical MTS is that each clinical time series is modeled

independently within a patient and the interactions between multiple clinical variables are

neglected. To address this issue and capture the multivariate behaviors within the clinical

MTS, the multi-task Gaussian process (MTGP) is proposed [Bonilla et al., 2007]. The MTGP
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is an extension of GP to model multiple tasks (e.g., multivariate time series) simultaneously

by utilizing the learned covariance between related tasks. MTGP uses KC to model the

similarities between tasks and uses KG to capture the temporal dependence with respect to

time stamps. The covariance function of MTGP is shown as follows:

KM = KC ⊗KG +D ⊗ IT (2.12)

where KC is a positive semi-definite matrix and KC
j,k measures the similarity between time

series j and time series k. D is an n× n diagonal matrix in which Dj,j is the noise variance

δ2j for the jth time series. ⊗ is the Kronecker product. Usually the MTGP model has the

computation limitation that it has O(n3T 3) compared with n × O(T 3) for standard GP

models. However, this limitation is not as relevant in our application setting, given that the

number of clinical observations is very limited and clinical time series are usually short span.

The parameters of the GP based models are formed by parameters defining the mean

and covariance functions. Typically, the covariance function makes sure the function values

for two nearby times tend to have high covariance, while values from inputs that are far

apart in time tend to have a low covariance. The parameters can be learned from data that

consist of one or many examples of time series. The predictions of values at future times

correspond to calculation of posterior distribution for these times.

The advantages of GP based models is that (1) with the reasonable choice of the co-

variance function, GP based models are capable of capturing the short-term rapid changes

in clinical time series [Clifton et al., 2013,Ghassemi et al., 2015]; and (2) GP based models

can be applied to time series modeling problem by representing observations as a function

of time. As a result, there is no restriction on when the observations are made and whether

they are regularly or irregularly spaced in time.

2.3 INSTANCE-SPECIFIC MODELING

Building predictive models from available data is a fundamental task in machine learning.

Typically, a single model is learned from a collection of training instances. After that, the
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learned model is applied to all future instances. In this dissertation, we call such a model a

population based model, which is optimized to have good predictive performance on average

on all the future instances.

In spite of the huge successful applications of population based models, recent research

has demonstrated that learning specific models to particular instances can improve the per-

formance [Visweswaran and Cooper, 2004, Gottrup et al., 2005, Visweswaran et al., 2015].

Different from the population based model learned from the entire training data, such spe-

cific models are either trained on a particular instance or a group of specific instances or

adjusted from the population based model according to the specific instance. In this disser-

tation, such a model is referred to as an instance-specific model. Recently, building and using

instance-specific models have been shown great success in genetics, pharmacology, and other

important aspects of healthcare such as personal preferences, nutrition, lifestyle, and disease,

recapturing the importance of personalized health [Jørgensen, 2009, Swan, 2009, Schleidgen

et al., 2013,Karkar et al., 2015,Wiley et al., 2016].

In general an instance-specific model can be achieved by:

• building instance-specific models for each instance. The instance-specific model is learned

from a selected collection of similar examples out of the entire population. We refer these

models to as Subpopulation Models (Section 2.3.1).

• adjusting the population based model to fit better the specific instance. This usually

includes two steps: first learn a population based model from all available data and then

calibrate the population based model according on the unique characteristics of each

instance. We refer this approach to as Model Adaptation (Section 2.3.2).

• instance-dependently combining a pool of predictive models which are built either from

the entire population or a subpopulation of instances. We refer this technique to as

Adaptive Model Selection (Section 2.3.3).

Please note that models from the above three categories are complementary and they

can be combined in the prediction process. For example, the model adaptation techniques

can be applied to both population based models and subpopulation models. Moreover,

both subpopulation models and adaptive models can be candidate models in the pool of the
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adaptive model selection approaches. In the following, we briefly review the three approaches

to build the personalized model.

2.3.1 Subpopulation Models

The data available for model building (learning) purposes may cover a wide variety of past

patients and their conditions. However, using all of them may bias the model towards the

population mean. The most common way to alleviate the problem and build a patient specific

model is to identify a subpopulation of patients most similar to the target patient and learn a

model using only examples from this subset. The subpopulation approaches usually rely on

some pre-defined similarity measures to evaluate similarity between the target example (the

patient that needs to be predicted) and all training examples (all available past patients),

that is, a past patient is used to build a model for the target patient only if it is highly

similar to the target patient.

The main challenge when adopting the subpopulation approach is to define proper sim-

ilarity among patients and their respective time series. The majority of approaches in the

literature assume the the similarity among patients relies on some atemporal patient spe-

cific information (such as demographics of the patient) to guide the personalized strategies.

Deriving the similarity of two time series or mixed atemporal and temporal information is

more complex. To measure the similarity of time series sequences of equal length, Euclidean

distance, Pearson correlation, cosine distance and their variants are typically used. These

types of similarities were used, for example, for classifying high-grade gliomas with gene

expression profiles [Nutt et al., 2003], detection of seizure onsets [Qu and Gotman, 1997]

and anomalous patient traces [Huang et al., 2014]. For symbol based time series, which have

discrete values at each time stamp, edit distance based similarity has been be successful

in several clinical applications, such as predicting length of stay for clinical treatment pro-

cess [Huang et al., 2013], finding similar patient traces for clinical pathway analysis [Huang

et al., 2014], etc. For real-valued time series of different lengths, the similarity can be com-

puted either explicitly by using dynamic time warping [Berndt and Clifford, 1994, Müller,

2007] or implicitly by using the likelihood of generative probabilistic models defining the time
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series [Liao, 2005]. Dynamic time warping explicitly computes distance between sequences

by aligning the two series so that their difference is minimized. On the other hand, implicit

approaches consider that each time series is generated by some kind of model and time series

are considered similar when the models characterize individual series. For example, [Huang

et al., 2015] models and clusters medical inpatient journeys and the similarity between two

inpatient journeys are computed based on the sequences’ log likelihood of their respective

hidden Markov models.

One limitation of subpopulation based approaches is that a subpopulation from which

we start and learn a subpopulation model from may still be very large and exhibit a lots

of patient specific variations. So it may be necessary to further explore methods that can

adapt the prediction model closer to the current patient.

2.3.2 Model Adaptation

Model adaptation methods try to bridge a possible gap in between population (or sub-

population models) and the target patient by adjusting the population model to fit better

the specific patient. Broadly speaking, there are two types of mechanisms and strategies

to modify the population based model to reflect the instance-specific characteristics, model

parameter adaptation and instance-specific residual modeling.

Model parameter adaptation approaches achieve the personalized prediction results by

modifying the model parameters of population based models based on instance-specific fea-

tures. For example, [Berzuini et al., 1991,Berzuini et al., 1992] proposed a general Bayesian

network model for individualized therapeutic monitoring. More specifically, each reading in

patient specific white blood cell counts time series is modeled by a Gaussian distribution.

The mean of the Gaussian changes with time and is modeled by the piece-wise linear func-

tion whose parameters (slope and bias) have a population based prior. The population based

prior is estimated from all related past patients. The forecasting is made by adapting this

population based prior to patient specific posteriors by using patient specific covariates (i.e.,

patient’s age, gender, etc.) and patient specific recent observations.

Different from model parameter adaptation approaches, instance-specific residual based
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techniques add additional models to support the personalized predictive outcomes. In such

approaches, residuals are defined as the difference between the true outcomes of the specific

instance and the predictive results of the population based models. Adding extra individ-

ualized models based on residuals tries to capture the specific deviations and offset the

insufficient ability of the population based models. For example, Hou et al. [Hou and Zhang,

2007] present a spectral residual model for visual saliency detection where the spectral resid-

ual is represented as the difference from the log spectrum of an image and its corresponding

approximation from a local average filter.

In spite of the successful applications of the model adaptation techniques, they have some

limitations. For model parameter adaptation approaches, designing and deriving adaptation

is very difficult and varies from model to model. Even under Bayesian adaption framework

with simplified distribution assumptions, approximations are need for such tasks. Further-

more, for model parameter adaptation approaches, they usually require larger instance-

specific features or observations. However, time series observed for one patient are often too

short to support inadequate adaptation.

To utilize the advantages and flexibility of model adaptation based approaches and to

overcome the limitations, in Section 5.1 of this dissertation, we explicitly model the gaps

(residuals) between population based models and each specific patient and develop a two-

stage adaptive forecasting model. Our model benefits from the population trend extracted

from past data collection and at the same time adapt to patient specific data, thus allowing

one to make more accurate MTS predictions.

2.3.3 Adaptive Model Selection

The adaptive model selection approaches the personalized prediction problems by assuming

a pool of candidate predictive models that may contribute to the prediction. In adaptive

model selection, a different model or combination of models may support the predictions at

the different time. Briefly, each of the candidate models is associated with weight that reflects

how much it contributes to the final solution. Two different strategies: ensemble (Section

2.3.3.1) and online (Section 2.3.3.2) methods are commonly be used to choose (optimize) the
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weights in the machine learning literature.

2.3.3.1 Ensemble Methods Ensemble methods are general techniques in machine learn-

ing for combining several models to create a more accurate prediction [Caruana et al.,

2004]. Related research work focuses on either creating more candidate models, such as

bagging [Breiman, 1996], boosting [Freund and Schapire, 1997] or by wisely optimizing their

combination weights, such as exponential weighting, stacking [Smyth and Wolpert, 1999],

etc. In medical and clinical practice, the ensemble methods can often significantly boost

the performance of individual models. [Moon et al., 2007] distinguishes disease subtypes on

lymphoma patients and lung cancer patients by using a robust classification algorithm that

is developed for high-dimensional data based on ensembles of classifiers. [Jiang et al., 2012]

develops a data-driven approach to utilize individualized confidence intervals to select the

most “appropriate” model from a pool of candidates to predict patient’s specific clinical

condition. [Visweswaran and Cooper, 2004] performs a selective Bayesian model averaging

for each individual patient where the prediction is made by first searching for models having

the greatest impact on the target prediction and then averaging the predictions from selected

models.

2.3.3.2 Online Algorithms Online prediction problems have been studied extensively

in the theoretical machine learning literature [Littlestone and Warmuth, 1994,Blum, 1998].

In online prediction problems, various techniques, such as the weighted majority algorithm

[Littlestone and Warmuth, 1994], hedge algorithm [Freund and Schapire, 1997] are proposed

to select the best model from the candidate pool based on the knowledge of the past. The

models with poorer performance receive larger penalties and become less likely to be picked

in the future. There have been many papers that aim to apply online learning to solving real-

world problems, for example, classifying handwritten digits [Crammer et al., 2006], detects

malicious Web sites [Ma et al., 2009], but as far as we know few or none work has been

applied to time series forecasting in clinical settings.

Although many ensemble and online methods have been proposed, the majority of them

require error feedback over longer periods of time to optimize the combination weights.
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However, clinical time series are usually too short to obtain effective weights for those algo-

rithms. Furthermore, weight updating rules are often based on the overall performance of

each model on all previously observed data and hence the recent errors are smoothed out by

the errors made in the early stage of the process. Since clinical MTS may contain short-term

variability standard weight updating rules are not able to respond to these changes quickly

enough. To address the above problems, in Section 5.2 of this dissertation, we develop a new

online model switching strategy to put more penalties on recent errors. Our approach helps

predictive models that perform well recently but do not perform well initially to be selected

as soon as possible.
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3.0 LEARNING LINEAR DYNAMICAL SYSTEMS FROM REGULARLY

SAMPLED MULTIVARIATE TIME SERIES

In Chapter 3, we develop two frameworks to learn temporal models from regularly sampled

multivariate time series data with complex dependence. Our work focuses on the refinements

of a popular model for MTS analysis: the linear dynamical system (described in Section

2.2.1). The first framework focuses on learning regularized LDS models from short-span

and low-sample MTS collections to avoid the overfitting problems (Section 3.1). The second

work provides a generalized framework to learn LDS from a collection of MTS sequences

via matrix factorization. By using our approach, constraints can be easily incorporated

into the LDS learning process, which drives the dynamics to meet the modeling expectations

(Section 3.2). We note that the material of the regularized LDS learning framework presented

in Section 3.1 was originally published as [Liu and Hauskrecht, 2015b] and the material of

the generalized framework for learning LDS with constraints presented in Section 3.2 was

originally published as [Liu and Hauskrecht, 2016b].

3.1 REGULARIZED LINEAR DYNAMICAL SYSTEMS

Though the LDS is a classical and widely used model for real-valued sequence analysis,

learning an LDS model from short-span MTS may encounter the following challenges:

1. The observational sequences in MTS data may exhibit strong interactions. This raises

a question on how many hidden states are needed to represent the system dynamics well

given a MTS sequences? ;

33



2. The number of parameters representing transitions among hidden state components

(a.k.a transition matrix) is quadratic in the dimensionality of the hidden space, which

raises a question on how we can prevent the overfit of the model parameters when the

training size is small?

In this section, we present work we have completed that identifies these challenges by

studying learning methods that impose regularization penalties on the transition matrix of

the LDS model and propose a regularized LDS learning framework (rLDS) which aims to (1)

automatically shut down LDSs’ spurious and unnecessary dimensions, and consequently, ad-

dress the problem of choosing the optimal number of hidden states; (2) prevent the overfitting

problem given a small amount of MTS data; and (3) support accurate MTS forecasting.

3.1.1 The Regularized Framework

In our rLDS framework, the LDS has a large implicit state space but a low-rank transition

matrix. The rLDS recovers the intrinsic dimensionality of MTS by using the rank of transi-

tion matrix rather than the state space size. In order to achieve the low-rank property, we

introduce a prior, i.e., p(A) (The choice of p(A) is discussed in the Section 3.1.2.1) for the

hidden state transition matrix A. The graphical illustration of our rLDS is shown in Figure

10 and the log joint probability distribution for our rLDS is:

log
(
p({Zl}, {Yl}, A)

)
=

N∑
l=1

log p(zl1) +
N∑
l=1

Tl∑
i=1

p(yli|zli) +
N∑
l=1

Tl∑
t=2

log p(zli|zli−1, A) + log p(A).

3.1.2 EM Learning

We develop an Expectation-Maximization (EM) algorithm for the maximum a posteriori

(MAP) estimation of the rLDS which aims at maximizing the Q = EZ[log p({Zl}, {Yl}, A)]

function:
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A

Figure 10: The graphical illustration of our rLDS model. Shaded nodes yi denote observa-

tions and unshaded nodes zi correspond to hidden states. The plate represents a collection

of N sequences.

Q =
N∑
l=1

EZl

[
log p(zl1)

]
+

N∑
l=1

Tl∑
i=1

EZl

[
log p(yli|zli)

]
+

N∑
l=1

Tl∑
t=2

EZl

[
log p(zli|zli−1)

]
+ log p(A).

(3.1)

The EM algorithm alternatively iterates the E-step and M-step until the it converges. In

E-step, since the hidden state Markov chain defined by the LDS is unobserved, we cannot

learn our rLDS directly. Instead, we infer the hidden state expectations. The E-step infers

a posterior distribution of latent states (Zl) given the observation sequences (Yl). The E-

step requires computing the value of Q functions (eq.(3.1)), which depends on three sufficient

statistics E[zli|Yl], E[zli(z
l
i)
>|Yl] and E[zli(z

l
i−1)

>|Yl]. Here we follow the backward algorithm

in [Ghahramani and Hinton, 1996] to compute them. The backward algorithm is presented

in the Appendix B.

In M-step, we try to find the set of LDS parameters Ω = {A,C,Q,R, π,Ψ} that maxi-

mizes the likelihood lower bound Q (eq.(3.1)). As we can see, Q function’s differentiability

with respect to A depends on the choice of A’s prior, i.e., p(A), while it is differentiable
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with respect to (C,R,Q, ξ,Ψ ). Therefore, we separate the optimization into two parts, i.e.,

optimization of A (Section 3.1.2.1) and optimization of Ω\A (Section 3.1.2.2).

3.1.2.1 Optimization of A In each iteration in the M-step, we need to maximize

N∑
l=1

Tl∑
i=2

EZl

[
log p(zli|zli−1)

]
+ log p(A)

with respect to A, which is equivalent to

min
A
g(A)− log p(A)

,

where

g(A) =
1

2

N∑
l=1

Tl∑
i=2

EZl

[
(zli − Azli−1)

>Q−1(zli − Azli−1)
]
.

In order to recover the intrinsic dimensionality from MTS datasets through the rank of

transition matrix A rather than the state space size d, we need to choose specific priors which

can induce the desired low-rank property. Here we have three choices of inducing a low-rank

A: (1) a nuclear norm prior; (2) both univariate and multivariate Laplacian priors; and (3)

only a multivariate Laplacian prior as shown in Table 2. Ai represents each row (or column)

1 of A. The prior choices lead to three instances of our rLDS framework, rLDSR, rLDSS and

rLDSG.

Table 2: Prior choices for rLDS.

Prior Name Model Prior Form Regularization

Nuclear norm rLDSR ∝ exp(−λN‖A‖∗) λN‖A‖∗
Uni/multi-Lap. rLDSS ∝ exp(−λU‖A‖1 −

∑d
i=1 λM‖Ai‖2) λU‖A‖1 + λM

∑d
i=1 ‖Ai‖2

Multi-variate Lap. rLDSG ∝ exp(−λM
∑d

i=1 ‖Ai‖2) λM
∑d

i=1 ‖Ai‖2

rLDSR: a nuclear norm prior. In rLDSR, we assume A has a nuclear norm density. In

order to avoid overfitting, we add a multivariate Gaussian prior to each Ai, which leads to

1Without loss of generality, we will use Ai to represent the row in the following text.
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the ridge regularization. Therefore, we combine the nuclear norm prior and Gaussian prior

to get a new prior for transition matrix A, which leads to the following log probability:

log p(A|λN , λG) = −λN‖A‖∗ −
λG
2
‖A‖2F + const, (3.2)

and the objective function we want to optimize becomes:

min
A
h(A) + λN‖A‖∗ where h(A) = g(A) +

λG
2
‖A‖2F (3.3)

Since h(A) is convex and differentiable with respect to A, we can adopt the proximal

gradient descent algorithm to minimize eq.(3.3). The update rule is

A(k+1) = proxρk

(
A(k) − ρk 5 h(A(k))

)
(3.4)

where ρk is the step size at the kth iteration. 5h(A) is the gradient of h(A), which is

5h(A) = Q−1
(
A(

N∑
l=1

Tl∑
i=2

EZl [zli(z
l
i)
>|Yl])− (

N∑
l=1

Tl∑
i=2

EZl [zli(z
l
i−1)

>|Yl])
)

+ λGA (3.5)

The proximal function proxρk(A) is defined as the singular value soft-thresholding oper-

ator,

proxλNρk(A) = U · diag((σi − λNρk)+) · V > (3.6)

where A = Udiag(σ1, · · · , σd)V > is the singular value decomposition (SVD) of A.

An important open question here is how to set the step size of the proximal gradient

method to assure it is well behaved. Theorem 1 gives us a simple way to select the step size

while also assures its fast convergence rate.

Theorem 1. Proximal gradient descent with a fixed step size

ρ ≤ 1/(||Q−1||F · ||
N∑
l=1

Tl−1∑
i=1

EZl [zli(z
l
i)
>|Yl]||F + λG) (3.7)

for minimizing eq.(3.3) has convergence rate O(1/k), where k is the number of iterations.

Proof. The proof appears in the Appendix C.
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Algorithm 1 Proximal descent algorithm for solving eq.(3.3).
INPUT:
• Expectations from E-step, EZl [zli(z

l
i)
>|Yl] and EZl [zli(z

l
i−1)

>|Yl].
• Hyper-parameters, λN and λG.
• rLDS parameters from last iteration, Q.

PROCEDURE:

1: Initialize A by solving 5h(A) = 0 with λG = 0.
2: Compute step size ρ by eq.(3.7).
3: repeat
4: Compute the gradient 5h(A) by eq.(3.5).
5: Update A, A = proxλNρ(A− ρ5 h(A)) by eq.(3.4).
6: until Convergence

OUTPUT: A.

The optimization procedure for eq.(3.3) is summarized by Algorithm 1.

rLDSS: univariate and multivariate Laplacian priors. In rLDSS , we apply both

univariate and multivariate Laplacian priors to achieve the within and between row sparsity

on the transition matrix. More specifically, we introduce a multivariate Laplacian prior to

each row of A, Ai which turns out to be an `1`2 regularizer on every row of the transition

matrix to enforce a row-level sparsity. Furthermore, we utilize the univariate Laplacian

prior and apply it on every element of the trainsition matrix to obtain a within-row sparsity

which is equal to imposing an `1 regularizer on every element of the transition matrix.

Similar to rLDSR, we add a multivariate Gaussian prior to each Ai, which leads to the ridge

regularization to avoid overfitting and enhance numerical stability. In this case, our objective

function is

min
A
g(A) + λU‖A‖1 + λM

d∑
i=1

‖Ai‖2 +
λG
2
‖A‖2F (3.8)

Recently there have been many approaches proposed to solve the joint regularization of

`1 and `1`2 norm optimization problem [Bach et al., 2011,Liu et al., 2009,Liu and Ye, 2010].

Along the existing optimization solutions, we introduce an algorithm to solve eq.(3.8). Its

foundation is the following theorem:
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Theorem 2. Maximizing eq.(3.8) is equivalent to minimizing the following problem:

min
a

1

2
a>Ha− b>a+ λU‖a‖1 + λM

d∑
i=1

‖aGi
‖2 (3.9)

where a = vec(A>), Q−1 = LL>, s = (W−1)>b, and {Gi}di=1 is the row membership indicator.

H and b are defined as follows:

H = (Q−1 ⊗
N∑
l=1

Tl∑
i=2

EZl [zli−1(z
l
i−1)

>] + λGId2) (3.10)

b = (L⊗
N∑
l=1

Tl∑
i=2

EZl [zli(z
l
i−1)

>]>) vec(L). (3.11)

Proof. The proof of this theorem appears in the Appendix D.

As we can see, eq.(3.9) is a decomposable function such that it can be broken down into

a convex and differentiable function q(a) and a penalty function r(a) of two non-smooth

norms.

min
a

1

2
a>Ha− b>a︸ ︷︷ ︸

q(a)

+λU‖a‖1 + λM

d∑
i=1

‖aGi
‖2︸ ︷︷ ︸

r(a)

(3.12)

The penalty function r(a) is known as the sparse group Lasso penalty, which allows

simultaneous within and between group level sparsification in a. We decide to solve the op-

timization problem (eq.(3.9)) by using the incremental proximal descent methods [Richard

et al., 2012, Zhou et al., 2012], which have attracted extensive attentions in machine learn-

ing and data mining communities due to its optimal convergence rate among all first order

optimization methods and its ability of dealing with non-smooth penalties. The key ingredi-

ent of proximal minimization methods lies in the proximal operator and the corresponding

proximal operator of eq.(3.9) is defined as follow:

P`1,`1`2(v) = arg min
a

1

2
‖a− v‖22 + λU‖a‖1 + λM

d∑
i

‖aGi
‖2 (3.13)
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In eq.(3.13), the minimization is coupled with ‖a‖1 and ‖aGi
‖2, which makes it difficult to

solve. However, we know that the for each individual non-smooth norm, i.e., ‖a‖1 (eq.(3.14))

and ‖aGi
‖2 (eq.(3.15)), the following proximal operators can be solved analytically [Liu et al.,

2009,Liu and Ye, 2009,Liu and Ye, 2010].

P`1(v) = arg min
a

1

2
‖a− v‖22 + λU‖a‖1 (3.14)

P`1`2(v) = arg min
a

1

2
‖a− v‖22 + λM

d∑
i

‖aGi
‖2 (3.15)

Hence, we adopt a two-stage incremental proximal descent algorithm to efficiently com-

pute eq.(3.13) by utilizing the proximal operator decomposition property, which leads to

Theorem 3.

Theorem 3. The unique solution, â, to eq.(3.13) is P`1`2(P`1(a)), i.e.,

P`1,`1`2(a) = P`1`2(P`1(a))

Proof. Similar proof can be found in [Zhou et al., 2012].

The optimization procedure for eq.(3.9) is summarized by Algorithm 2.

Algorithm 2 Incremental proximal descent algorithm for solving eq.(3.9).
INPUT:
• Expectations from E-step, EZl [zli(z

l
i)
>|Yl] and EZl [zli(z

l
i−1)

>|Yl].
• Hyper-parameters, λU , λM and λG.
• rLDS parameters from last iteration, Q.

PROCEDURE:

1: Compute L from decomposition of Q−1, where Q−1 = LL>.
2: Compute H and b based on eq.(3.10) and eq.(3.11).
3: Initialize A by solving 5h(A) = 0 with λG = 0.
4: Reshape a = vec(A).
5: Solve eq.(3.14), â = P`1(a). See [Liu and Ye, 2009].
6: Solve eq.(3.15), â = P`1`2(â). See [Liu et al., 2009,Liu and Ye, 2010].

OUTPUT: â.

rLDSG: multivariate Laplacian priors. In rLDSG, we drop the univariate Laplacian

prior assumption from rLDSS , which only induce the row level sparsity on the transition

matrix A. The optimization problem is similar to the problem in rLDSS by setting λU = 0

in eq.(3.9) and we can still use Algorithm 2 to compute the solution efficiently.
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3.1.2.2 Optimization of Ω\A Each of these parameters is estimated similarly to [Ghahra-

mani and Hinton, 1996] by taking the corresponding derivative of the eq.(3.1), setting it to

zero, and by solving it analytically. Update rules for Ω\A = {C,R,Q, ξ,Ψ} are as follows:

C(k+1) =
( N∑
l=1

Tl∑
i=1

yli(EZl [zli|Yl])>
)( N∑

l=1

Tl∑
i=1

EZl [zli(z
l
i)
>|Yl]

)−1
(3.16)

R(k+1) =
1∑N
l=1 Tl

( N∑
l=1

Tl∑
i=1

yli(y
l
i)
> − C(k+1)

N∑
l=1

Tl∑
i=1

EZl [zli|Yl](yli)
>) (3.17)

Q(k+1) =
1∑N

l=1 Tl −N
( N∑
l=1

Tl∑
i=2

EZl [zli(z
l
i)
>|Yl]− A(k+1)

N∑
l=1

Tl∑
i=2

EZl [zli−1(z
l
i)
>|Yl]

)
(3.18)

ξ(k+1) =
N∑
l=1

EZl [zl1|Yl] (3.19)

Ψ(k+1) =
N∑
l=1

EZl [zl1(z
l
1)
>|Yl]−

N∑
l=1

EZl [zl1|Yl](EZl [zl1|Yl])> (3.20)

3.1.2.3 Model Learning Summary The entire parameter estimation procedure for

rLDS is summarized by Algorithm 3.

Algorithm 3 Parameter estimation in rLDS
INPUT:
• Initialization Ω(0) = {A(0), C(0), Q(0), R(0), ξ(0),Ψ(0)}.
• Hyper-parameters, λN , λU , λM and λG.

PROCEDURE:

1: repeat
2: E-step: estimate E[zli|Yl], E[zli(z

l
i)
>|Yl] and E[zli(z

l
i−1)

>|Yl].
3: M-step:
4: if rLDSR then
5: estimate A by Algorithm 1.
6: end if
7: if rLDSS then
8: estimate A by Algorithm 2.
9: end if

10: if rLDSG then
11: estimate A by Algorithm 2 with λU = 0.
12: end if
13: M-step: estimate C,R,Q, ξ,Ψ by eqs.(3.16 - 3.20)
14: until Convergence

OUTPUT: Learned rLDS parameters: Ω̂ = {Â, Ĉ, Q̂, R̂, ξ̂, Ψ̂}.
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3.1.3 Experiment

In this section, we will (1) verify that our regularized LDS approach indeed results in a

low-rank solution and (2) show that our rLDS models are able to alleviate model overfitting

by starting the learning process from a large initial hidden state space and by working with

small amounts of training data. Experiments are conducted on both synthetic and real-world

datasets. We would also like to note that the hyper parameters (λN , λU , λM and λG) used

in our methods are selected (in all experiments) by the internal cross validation approach

while optimizing models’ predictive performances.

3.1.3.1 Baselines We compare the three instances of our rLDS framework, i.e., rLDSR,

rLDSS and rLDSG to the following LDS learning baselines:

• LDS learned using the standard EM learning algorithm (EM) [Ghahramani and Hinton,

1996] that iteratively finds the maximum likelihood solution.

• Subspace identification algorithm (SubspaceID) [Van Overschee and De Moor, 1996].

SubspaceID computes an asymptotically unbiased solution in closed form by using oblique

projection and SVD.

• Stable linear dynamical system (StableLDS) [Boots et al., 2007]. StableLDS constrains

the largest singular value of the transition matrix to ensure the stability of LDS models.

3.1.3.2 Evaluation Metrics We evaluate and compare the performance of the different

methods by calculating the average Mean Absolute Percentage Error (Average-MAPE) of

models’ predictions. The Average-MAPE is defined as follows:

Average-MAPE =

∑N
l=1

∑n
j=1

∑Tl
i=1 |1− ŷlji/ylji|

n
∑N

l=1 Tl
× 100% (3.21)

where ylji and ŷlji are the ith true value and prediction of time series j of MTS sequence l.

3.1.3.3 Data

Synthetic Data To get a good understanding of our approach, we first test it on syn-

thetic data. We generate our synthetic MTS dataset of length T = 200 using a 20-state LDS
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with zero-mean, 0.01 variance Gaussian innovations. A uniform random emission matrix C

is used to generate 20 measurements at each time stamp t with i.i.d. zero mean variance

0.01 measurement noise. We uniformly and randomly generate a 20 × 20 matrix, normalize

its SVD decomposition by its largest singular value to ensure its stability and truncate its

10 smallest singular values to obtain an exact 10-rank matrix A.

Clinical Data We also test our rLDS on a MTS clinical data obtained from elec-

tronic health records of post-surgical cardiac patients in PCP database [Hauskrecht et al.,

2010b, Valko and Hauskrecht, 2010, Hauskrecht et al., 2013]. We take 500 patients from

the database who had their Complete Blood Count (CBC) tests 2 done during their hospi-

talization. The MTS data consists of 6 individual CBC lab time series: mean corpuscular

hemoglobin concentration (MCHC), mean corpuscular hemoglobin (MCH), mean corpus-

cular volume (MCV), mean platelet volume (MPV), red blood cell (RBC) and red cell

distribution width (RDW). The average length of patient sequence is 17.19 and the data

statistics are shown in Table 3. In order to have a comprehensive and fair comparisons of

our algorithm against the baseline methods, we conduct two experiments on the clinical data

with different training data sizes (50 and 400) and the learned model are test on the same

dataset with size 100.

Table 3: Data statistics of a real-world clinical dataset.

Clinical MTS Unit Mean Max Min Std

MCHC g/dL 33.88 37.00 30.50 0.74

MCH pg/cell 30.46 36.30 22.00 1.45

MCV fL 89.90 102.70 69.30 3.64

MPV fL 8.67 15.90 6.00 1.01

RBC 1012/L 3.36 6.38 1.62 0.56

RDW % 15.51 29.30 11.30 1.78

2CBC panel is used as a broad screening test to check for such disorders as anemia, infection, and other
diseases.
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3.1.3.4 Results

Intrinsic Dimensionality Recovery We train the three instances (rLDSR, rLDSS

and rLDSG) of our rLDS framework on the synthetic data whose real hidden state space size

10. We start our rLDS learning with different initial state space sizes, i.e., d = 15, 20 and

30. The results of rLDSR, rLDSS and rLDSG for recovering MTS intrinsic dimensionality

are shown in Figure 11. The figure shows three different graphs corresponding to three

different experiments for 15, 20 and 30 initial state space sizes respectively. We normalized

all the singular values by their maximum values to make sure they are in the same scale

and between 0 and 1. We can see that the low-rank inducing priors listed in Table 2 lead us

to a low-rank transition matrix and that our rLDS framework is able to recover the correct

hidden dimension (which is 10) even if the dimensionality of the initial state space is large.

Furthermore, we can see our rLDS framework is robust to different initial state space size

and it is consistently recovering the intrinsic true dimensinality of the LDSs.
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Figure 11: State space recovery on a synthetic dataset.

LDS Overfitting Phenomena We first train the standard EM learning algorithm on

the clinical data by considering many initial hidden state space sizes. We vary the hidden

state size from 1 to 30. For each trained LDS, we measure its predictive performance on

the corresponding test set by Average MAPE (eq.(3.21)). Due to the fact that the ground

truth of the exact intrinsic is unknown, we define the “optimal” number of hidden states

based on the LDS’s predictive performance under this setting and the results are shown in

Figure 12. As we can see, the prediction performance varies a lot with the different number

of hidden states we use in the model and it difficult to choose the optimal number without
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the extensive number of experiments. The results show the model performances vary a lot

with different number of hidden states. Finding the optimal number of hidden states by

validation checking each candidate state size is time consuming.
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Figure 12: LDS overfitting phenomena with standard EM learning algorithm for the LDS

with the different number of hidden states.

Sparsification Effects To have a comprehensive evaluation of the rLDS’s ability of

shutting down unnecessary dimension, we run the three instances of our rLDS framework

on a real-world clinical data with the different number of initial states (10, 20 and 30). The

normalized singular values of transition matrices in different experimental settings are shown

in Figure 13. As we can see from Figure 13, our approaches are able to consistently seek the

intrinsic dimensions and capture the dynamics using a lower-dimensional hidden state space

representation. Among the three instances of rLDS, both rLDSR and rLDSS prefer lower

dimensions compared to rLDSG.

Prediction Performance Prediction performance is an important evaluation metric in

time series modeling. In order to gain a more comprehensive insight into rLDS’s prediction

abilities, we test our rLDS with many initial state space sizes on the clinical data. The

results of these experiments are summarized in Table 4. The results show that our rLDS

methods are able to outperform all the baselines in terms of their prediction performance
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Figure 13: State space recovery on the clinical data.

in nearly all settings. Specifically, we find the following results: (1) when comparing rLDS

methods to other baselines, we can see that they do improve the prediction performance by

shutting down unnecessary dimensions, especially when the initial state space size goes up.

Our rLDS methods are robust and demonstrate a reasonably good prediction quality for

various initial state space sizes; (2) comparing SubspaceID and StableLDS, we can see that

they tend to have similar prediction errors in majority cases. This is because in the learning

step, StableLDS differs from SubspaceID by one extra step: it enforces the transition matrix

to stay in the stable space. If the transition matrix from SubspaceID is already stable, there

is no difference between them; and (3) comparing the three instances (rLDSR, rLDSS and

rLDSG) of our framework, we find that rLDSR and rLDSG have better performance compared

to rLDSS . This is because the hyper parameter tuning process in rLDSS is more complex

compared to rLDSR and rLDSG. In rLDSS there are two hyper parameters (λU , λM) needed

to be selected based on the corresponding prediction performance on validation set while in

rLDSR and rLDSG, only one hyper parameter needs to be set. In rLDSS , the sparsification
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Table 4: Average-MAPE results on the clinical data with different training sizes.

Training Size: 50 Training Size: 400

# of states 10 20 30 10 20 30

EM 6.28 17.24 23.98 4.43 5.91 5.72

SubspaceID 6.55 6.99 7.44 6.10 6.16 6.27

StableLDS 6.54 6.99 7.40 6.10 6.16 6.27

rLDSR 4.65 4.95 5.01 4.65 4.46 4.67

rLDSS 5.34 5.48 5.67 5.36 5.63 5.70

rLDSG 4.98 4.97 4.86 4.51 4.25 4.35

ability is jointly controlled by λU and λM , which makes it more sensitive to their values. On

the other hand, rLDSR and rLDSG are more stable and insensitive to the hyper parameter

selections.

3.2 CONSTRAINED LINEAR DYNAMICAL SYSTEMS

Instead of learning ordinary LDS models from time series data collection, we may expect to

obtain enhanced LDS models which have desired properties, such as smoothness, stability,

etc. This is done by adding constraints into the LDS models. In this dissertation, we refer

the enhanced LDS models as to constrained LDS.

Various researchers have proposed to incorporate different constraints into either the in-

ference process (estimating hidden states from data given known parameters) or the learning

process (estimating parameters from data) to improve LDS performance and its quality. In

terms of the LDS inference process, most of the existing refinements try to enforce different

types of sparsity constraints on the estimates of the hidden state. For example, in [An-

gelosante et al., 2009,Carmi et al., 2010,Charles et al., 2011] the hidden states are sparsified
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during the Kalman filter inference step. All these approaches assume that all parameters of

the LDS are known a priori. Hence they are not directly applicable to the problem of learn-

ing LDS models from MTS data. In terms of the LDS learning process, they are typically

incorporated to achieve special model properties, such as low-rankness [Liu and Hauskrecht,

2015b], stability [Boots et al., 2007], and others. For example, an algorithm for learning

stable LDS is proposed by [Boots et al., 2007]. An LDS with dynamic matrix A is stable

if all of A’s eigenvalues have magnitude at most 1. The stability is crucial when simulating

long sequences from LDS models in order to generate representative data or infer stretches

of missing values.

In this work, we propose a new generalized LDS framework, gLDS, for learning LDS

models from a collection of MTS data with various constraints. Our learning framework is

based on matrix factorization approach, where each MTS sequence is factorized as a product

of a shared emission matrix and a sequence-specific hidden dynamics. In contrast to tradi-

tional matrix factorization, the hidden factors in gLDS may evolve in time and individual

dynamics is modeled with the help of a shared transition matrix. We use alternating min-

imization to learn the constrained LDS model from data. In such a case, each parameter

can be optimized efficiently and the procedure is flexible enough to incorporate various con-

straints. Furthermore, we propose a temporal smoothing regularization, which penalizes the

difference of predictive results from the learned model during the learning phase, to achieve

smooth forecasts from the learned LDS models.

3.2.1 A Generalized LDS Framework

Let Yl ∈ Rn×Tl represent the MTS for the lth patient and Zl ∈ Rd×Tl is the corresponding

hidden state sequence. Zl
+ = [zl2, z

l
3, · · · , zlTl ] and Zl

− = [zl1, z
l
2, · · · , zlTl−1]. We use Y, Z, Z+,

and Z− to denote the horizontal concatenations of {Yl}, {Zl}, {Zl
+}, and {Zl

−}. Here Y

is an n × T matrix and Z is a d × T matrix. Z+ and Z− are d × (T − N) matrices where

T =
∑N

l=1 Tl.

Based on the linear assumption in LDS that sequential observation vector is generated

by the linear emission transformation C from hidden states at each time stamp (eq.(2.2)), we
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can formulate the LDS learning problem by using the matrix factorization approach [Koren

et al., 2009,Lee and Seung, 1999] that assumes the collection of MTS sequences are generated

by a shared emission matrix and their specific hidden factors.

min
C,Z
‖Y − CZ‖2F (3.22)

However, different from traditional matrix factorization models where the hidden factors

are in general time independent, in LDS models, hidden factors evolve in time and are

specified by eq.(2.1). Hence, similar to [Boots et al., 2007,Doretto et al., 2003], we estimate

the transition matrix A by solving another least square problem as follows:

min
A,Z
‖Z+ − AZ−‖2F (3.23)

In this work, in order to learn the LDS parameters from the data, we jointly optimize both

eq.(3.22) and eq.(3.23). Furthermore, in order to incorporate constraints into the learned

LDS models and avoid the overfitting problem, we add regularizations for C, A and Z into

the objective function, shown as follows:

min
A,C,Z

‖Y − CZ‖2F + λ‖Z+ − AZ−‖2F + αRC(C) + βRZ(Z) + γRA(A) (3.24)

Intuitively, this formulation of the problem aims to find an LDS model that is able to fit

as accurately as possible the time series in the training data by using a simple (less complex)

model.

3.2.2 Learning via Matrix Factorization

As we can see from eq.(3.24), the coupling between A, C and Z makes this problem difficult

to solve for A, C and Z simultaneously, so in this work, we adopt the alternating optimization

scheme to find the solution iteratively.
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3.2.2.1 Optimization of A, C, and Z We apply the alternating minimization tech-

niques to eq.(3.24), which leads to the following three optimization problems:

min
A
‖Z+ − AZ−‖2F + γ/λRA(A) (3.25)

min
C
‖Y − CZ‖2F + αRC(C) (3.26)

min
Z
‖Y − CZ‖2F + λ‖Z+ − AZ−‖2F + βRZ(Z) (3.27)

Since optimization of a hidden state sequence Zl is independent of other sequences,

we can further decompose the optimization target Z into {Z1, · · · ,Zl · · ·ZN}. Due to the

asymmetric positions of different zlis in Zl, we decompose the optimization into three parts:

zl1, zli and zlTl (i = 2, · · · , Tl−1). The optimization problems for each hidden states sequence

Zl are defined as follows:

min
zl1

‖yl1 − Czl1‖22 + λ‖zl2 − Azl1‖22 + βRZ(zl1) (3.28)

min
zli

‖yli − Czli‖22 + λ‖zli − Azli−1‖22 + λ‖zli+1 − Azli‖22 + βRZ(zli) (3.29)

min
zlTl

‖ylTl − CzlTl‖
2
2 + λ‖zlTl − AzlTl−1‖

2
2 + βRZ(zlTl) (3.30)

3.2.2.2 Optimization of R, Q, ξ and Ψ Once we obtain A, C and Z, the rest of LDS’s

parameters, R, Q, ξ and Ψ, can be analytically estimated as follows:

Q̂ =
1

T −N (Ẑ+ − ÂẐ−)(Ẑ+ − ÂẐ−)> (3.31)

R̂ =
1

T
(Y − ĈẐ)(Y − ĈẐ)> (3.32)

ξ̂ =
1

N

N∑
l=1

ẑl1 (3.33)

Ψ̂ =
1

N

N∑
l=1

ẑl1(ẑ
l
1)
> (3.34)
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Algorithm 4 Learn the LDS model in gLDS.
INPUT:
• Initialization A(0), C(0),Z(0).
• Hyper-parameters, γ, λ, β and α.
• A collection of MTS sequences D = {Y1, · · · ,YN }.

PROCEDURE:

1: // Optimize A, C and Z
2: repeat
3: Update A by solving eq.(3.25).
4: Update C by solving eq.(3.26).
5: for l: 1 → N do
6: Update zl1 by solving eq.(3.28).
7: for i: 2 → Tl − 1 do
8: Update zli by solving eq.(3.29).
9: end for

10: Update zlTl by solving eq.(3.30).
11: end for
12: until Convergence
13: // Optimize Q̂, R̂, ξ̂, Ψ̂
14: Compute Q̂, R̂, ξ̂, Ψ̂ using eqs.(3.31 - 3.34).

OUTPUT:
• Learned LDS parameters: Ω̂ = {Â, Ĉ, Q̂, R̂, ξ̂, Ψ̂}.

3.2.2.3 Summary The entire LDS parameter estimation procedure in our gLDS frame-

work is summarized by Algorithm 4.

3.2.3 Relationship to Existing Models

In this section, we describe and show how to formulate both existing stable LDS and regu-

larized LDS as special instances in our gLDS framework.

3.2.3.1 Learning Regularized LDS (gLDS-low-rank) In order to obtain a low-rank

transition matrix of the LDS model, as introduced in Section 3.1, an MAP learning framework

is developed and both multivariate Laplacian prior and nuclear norm prior are applied on

the A to implicitly shut down spurious and unnecessary dimensions and prevent overfitting

problem [Liu and Hauskrecht, 2015b]. In gLDS framework, a low-rank transition matrix A

can be easily obtained by setting RA(A) = ‖A‖2F + λ
γ
γA‖A‖∗ in eq.(3.25), which leads to the

following objective function (eq.(3.35)). All the other updates for C, Q, R, ξ, and Ψ remain
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the same.

min
A
g(A) + γA‖A‖∗ (3.35)

where

g(A) = ‖Z+ − AZ−‖2F + γ/λ‖A‖2F

Since g(A) is convex and differentiable with respect to A, we can adopt the generalized

gradient descent algorithm to minimize eq.(3.35). The update rule is

A(k+1) = proxρk

(
A(k) − ρk 5 g(A(k))

)
(3.36)

where ρk is the step size at kth iteration. The proximal function proxρk(A) is defined as the

singular value soft-thresholding operator,

proxγAρk(A) = U · diag((σi − γAρk)+) · V > (3.37)

where A = Udiag(σ1, · · · , σd)V > is the SVD of A.

Similar to the optimization problem (eq.(3.3)) in Section 3.1.2.1, it is crucial to set the

appropriate step size of the generalized gradient method to assure it is well behaved. Theorem

4 gives us a simple way to select the step size while also assuring its fast convergence rate.

Theorem 4. Generalized gradient descent with a fixed step size ρ ≤ 1/2(‖Z−Z>−‖F + γ/λ)

for minimizing eq.(3.35) has convergence rate O(1/k), where k is the number of iterations.

Proof. The proof of this theorem appears in Appendix E.

3.2.3.2 Learning Stable LDS (gLDS-stable) Stability is a desired property for dy-

namic and it plays important roles in tasks such as predictions, long term sequence simula-

tion, etc. Boots et al. propose a novel method for learning stable LDS models by formulating

the problem as a quadratic program [Boots et al., 2007]. The program starts with a relaxed

solution and incrementally add constraints to improve stability. In gLDS framework, by

setting RA(A) = ∅, we can easily transform our optimization to the same objective function
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in [Boots et al., 2007]. Furthermore, we can apply the following theorem to change eq.(3.25)

into the standard quadratic program formulation.

Theorem 5. Minimizing A from eq.(3.25) with RA(A) = ∅ is equivalent to minimizing the

following problem:

min
a
a>Ba− 2q>a

where a = vec(A>), B = Id ⊗ (Z−Z>−), q = (Id ⊗ Z−Z>+) vec(Id).

Proof. The proof of this theorem appears in Appendix F.

After the quadratic program transformation, we can apply the same constraints gen-

eration techniques described in [Boots et al., 2007] to optimize the transition matrix and

guarantee its stability. Details can be found in [Boots et al., 2007].

3.2.4 The Ridge Model (gLDS-ridge)

Ridge regularization, a.k.a, Tikhonov regularization or `2 regularization [Hoerl, 1962], is

widely used to prevent overfitting since it encourages the sum of the squares of the fitted

parameters to be small. Furthermore, it alleviates the ill-posed problems in numerical meth-

ods. In our gLDS framework, we achieve the ridge model (gLDS-ridge) by setting RC(C),

RA(A), and RZ(Z) to the square of Frobenius norm, i.e., ‖ · ‖2F .

Due to the differentiability of ridge regularization, we can take the partial derivatives of

eqs.(3.25 - 3.30), set them to zero and solve. The results are shown as follows:

Â = (Z+Z>−)(Z−Z>− + γ/λId)
−1

Ĉ = (YZ>)(ZZ> + αId)
−1

ẑl1 = (G+ λA>A)−1(C>yl1 + λA>zl2)

ẑli = (G+ λA>A+ λId)
−1(F l

i + λA>zli+1)

ẑlTl = (G+ λId)
−1F l

Tl

where G = C>C + βId and F l
i = C>yli + λAzli−1.
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3.2.5 The Smooth Model (gLDS-smooth)

In this section, we propose a novel temporal smoothing regularization (Section 3.2.5.1), which

penalizes the difference of predictive results from the learned model during the learning

phase, to achieve smooth forecasts from the learned LDS models. In Section 3.2.5.2, we

show how to incorporate the temporal smoothing regularization into gLDS and describe the

corresponding learning procedure.

3.2.5.1 Temporal Smoothing Regularization To incorporate temporal smoothness

property in LDS models for MTS modeling and forecasting, we propose a temporal smoothing

regularization term Rl
T for each MTS sequence l, which penalizes the difference of two

consecutive predictive values:

Rl
T =

Tl∑
i=2

wli−1,i‖ŷli − ŷli−1‖22 (3.38)

where ŷli is the model forecast at time stamp i and wli−1,i is the smoothing coefficient bal-

ancing the difference between predictions ŷli−1 and ŷli.

Briefly, the regularization term penalizes the predictions at each temporally consecutive

time stamps if they disagree with other prediction made within the same MTS sequence.

The amount of penalty is controlled by a smoothing coefficient wli−1,i. Furthermore, we can

express eq.(3.38) into a more general form as follows:

Rl
T =

Tl−1∑
p=1

Tl∑
q=p+1

wlp,q‖ŷlp − ŷlq‖22 (3.39)

where

wlp,q =

1 if |p− q| = 1,

0 otherwise

Furthermore, after some algebraic manipulations, the regularization term eq.(3.39) can

be rewritten as,
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Rl
T =

Tl−1∑
p=1

Tl∑
q=p+1

wlp,q‖ŷlp − ŷlq‖22 (3.40)

=
1

2

Tl∑
p=1

Tl∑
q=1

wlp,q‖ŷlp − ŷlq‖22

=

Tl∑
p=1

Tl∑
q=1

n∑
j=1

wlp,q(ŷ
l
j,p)

2 − wlp,qŷlj,pŷlj,q

=
n∑
j=1

Ŷl(j, :)(Dl −W l)Ŷl(j, :)>

=Tr[CZlLl(Zl)>C>]

where Ŷl(j, :) represents the j th row of matrix Ŷl. Ll is the Tl×Tl Laplacian matrix for the

lth MTS sequence, Ll = Dl −W l. Dl is a diagonal matrix with the pth diagonal element

Dl
p,p =

∑Tl
q=1w

l
p,q. W l is the smoothing coefficient matrix among Tl observations and wlp,q

represents the (p, q)th element in W l.

We apply the temporal smooth regularization to each MTS sequence in the training data,

which leads to the following compact form of regularization:

RT =
N∑
l=1

Rl
T = Tr[CZPZ>C>] (3.41)

where P is the T × T block diagonal matrix with N blocks and the lth block component is

the Laplacian matrix Ll for lth MTS sequence.
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3.2.5.2 Learning We incorporate the temporal smoothing regularization (eq.(3.41)) into

the objective function (eq.(3.24)). Here similarly to gLDS-ridge approach, we set RC(C),

RA(A), and RZ(Z) to the ridge regularizations (square of Frobenius norm), which leads to

the following new learning objective function:

min
A,C,Z
‖Y − CZ‖2F + λ‖Z+ − AZ−‖2F + α‖C‖2F + β‖Z‖2F + γ‖A‖2F + δTr[CZPZ>C>] (3.42)

We follow the gLDS model learning algorithm (Algorithm 4) and we optimize eq.(3.42)

in a coordinate descent fashion. Since the temporal smoothing regularization only involves

C and Z, the update rules for A, R, Q, ξ and Ψ remain the same. The update rules for C

and Z are shown as follows:

Ĉ = (YZ>)(ZZ> + δZPZ> + αId)
−1 (3.43)

ẑl1 =
(

Γl1 + λA>A
)−1(

Φl
1 + λA>zl2

)
(3.44)

ẑli =
(

Γli + λA>A+ λId

)−1(
Φl
i + λA>zli+1 + λAzli−1

)
(3.45)

ẑlTl =
(

ΓlTl + λId

)−1(
Φl
Tl

+ λAzlTl−1

)
(3.46)

where

Γli = (1 + δLi,i − δWi,i)C
>C + βId (3.47)

Φl
i = C>yli + δC>C

∑
j 6=i

Wi,jz
l
j (3.48)
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3.2.6 Experiments

In this experiments, we (1) qualitatively illustrate the prediction results for gLDS-smooth

model; (2) quantitatively show superior predictive performance of our models (gLDS-ridge

and gLDS-smooth) compared with traditional LDS learning algorithms (EM and spectral

algorithms); (3) stability and sparsification effects achieved by our models. Experiments

are conducted on four real-world data sets across different domains. The hyper parameters

(α, β, λ and γ) used in our methods are selected (in all experiments) by the internal cross

validation approach while optimizing models’ predictive performances.

3.2.6.1 Data

Flour price data (flourprice). It is a monthly flour price indices data from [Reinsel,

2003], which contains the flour price series in Buffalo, Minneapolis and Kansas City, from

August 1972 to November 1980.

Evap data (evap). The evaporation data contains the daily amounts of water evapo-

rated, temperature, and barometric pressure from 10/11/1692 to 09/11/1693 [Halley, 1694].

H2O evap data (h2o evap). It contains six MTS variables: the amount of evaporation,

total global radiation, estimated net radiation, saturation deficit at max temperature, mean

daily wind speed and saturation deficit at mean temperature [Krishnan and Kushwaha,

1973].

Clinical data (clinical). The same data as used in Section 3.1.

In order to get comprehensive evaluations of the proposed methods, we vary both the

training sizes and the number of hidden states. For flourprice, evap and h2o evap datasets,

we conduct the experiments on both 80% and 90% data for training and use both 5 and 10

as the hidden state size. For clinical data, we have randomly selected 100 patients out of

500 as a test set and used the remaining 400 patients for training the models and vary the

hidden states from 10 to 30 with a step increase of 5.

3.2.6.2 Results

Qualitative Prediction Analysis We qualitatively show the prediction effectiveness

57



of our gLDS-smooth model. Figure 14 shows the predictions results for the flour price series

in Buffalo. 80% of the MTS is used for training and 20% is used for testing. As we can see

from Figure 14, the gLDS-smooth is able to well capture the ups and downs of the time series

and make the accurate predictions. Prediction results for Minneapolis and Kansas City are

listed in Appendix G.
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Figure 14: Predictions for flour price series in Buffalo by using gLDS-smooth.

Quantitative Prediction Analysis We quantitatively compute and compare the pre-

diction accuracy of the proposed methods (gLDS-ridge and gLDS-smooth) with the standard

LDS learning approaches: EM and spectral algorithms on four real-world data sets. The

results are shown in Tables 5 - 8. As we can see, the gLDS-ridge and gLDS-smooth methods

perform significantly better than all the other methods. Furthermore, due to the smooth

effect of the temporal smooth regularization, gLDS-smooth supports better predictions than

gLDS-ridge, which translates to the best predictive performance.

Stability Effects of gLDS-stable Similarly to [Boots et al., 2007], we show the stability

effects of the gLDS-stable model learned using our framework by generating the simulated

sequences in the future. The long sequence simulation results of evap are shown in Figure 15.

We can see in Figure 15 that the LDS models learned from EM and spectral algorithms fail

to guarantee the system stability and the generated values of simulated long-term sequences

may diverge. In contrast to this, the sequences generated by our gLDS framework with
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Table 5: Average-MAPE results on flourprice dataset.

Training: 80% Training: 90%

# of states 5 10 5 10

Spectral 6.25 5.86 6.61 5.93

EM 3.62 4.15 3.63 3.94

gLDS-ridge 3.37 3.14 3.29 2.82

gLDS-smooth 3.24 2.71 2.86 2.50

Table 6: Average-MAPE results on evap dataset.

Training: 80% Training: 90%

# of states 5 10 5 10

Spectral 24.62 24.85 25.08 26.28

EM 17.68 14.45 16.32 17.35

gLDS-ridge 10.58 10.35 13.60 14.05

gLDS-smooth 10.35 10.27 13.39 13.68

Table 7: Average-MAPE results on h2o evap dataset.

Training: 80% Training: 90%

# of states 5 10 5 10

Spectral 36.26 32.20 13.73 15.88

EM 39.53 68.68 17.33 17.46

gLDS-ridge 27.97 28.53 16.12 14.42

gLDS-smooth 26.38 26.46 14.01 14.08
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Table 8: Average-MAPE results on clinical dataset.

# of states 10 15 20 25 30

Spectral 6.29 6.24 6.32 6.04 6.00

EM 3.97 3.54 3.54 3.53 3.53

gLDS-ridge 3.22 3.21 3.21 3.21 3.21

gLDS-smooth 3.21 3.20 3.20 3.19 3.19

incorporated stability constraints are stabilized. Stability effects of gLDS-stable model for

fourprice, h2o evap and clinical data sets are shown in Appendix H.
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Figure 15: Training data and simulated sequences from gLDS-stable model in evap data.

“Hist.” represents the historical observations and “Future” represents the sequence generated

by LDS.

Sparsification Effects of gLDS-low-rank Figure 16 shows the sparsification effects

of the gLDS-low-rank model learned using our framework. As we can see, similar to the ex-

perimental results in Section 3.1.3.4, gLDS-low-rank model is able to shut down unnecessary

dimensionality and find the intrinsic dimension of the hidden state space. Additional results

60



on the low-rank model are shown in Appendix I.
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Figure 16: Intrinsic dimensionality recovery in flourprice data.

3.3 SUMMARY

In this chapter, we built forecasting models from regularly sampled multivariate time series

data. Our work focused on the refinements of LDS, which is a popular model for real-valued

MTS analysis. We did this in two ways. First, we introduced a novel regularized LDS

learning framework for short-span MTS modeling, which automatically seeks the intrinsic

state dimensionality and is robust in preventing model overfitting even for a small amount

of MTS data. To learn the regularized LDS from data we incorporated proximal gradient

descent methods into the MAP framework and used EM to obtain a low-rank transition

matrix of the LDS model. We proposed three priors for modeling the matrix which lead to

three instances of our rLDS. Experimentally, we demonstrated that rLDS is able to find the

intrinsic dimensionality on a synthetic data set and prefers lower hidden state space on a

real-world clinical time series data set even with a large initial state space. We showed that

rLDS outperforms other state-of-the-art LDS learning approaches in terms of MAPE.

To further achieve expected properties of dynamic models when learning the models from

an MTS collection, we presented a generalized LDS learning framework based on matrix fac-
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torization, which is different from traditional EM learning and spectral learning algorithms.

In gLDS, each MTS sequence is factorized as a product of a shared emission matrix and a

sequence-specific state dynamics, where an individual hidden state sequence is represented

with the help of a shared transition matrix. Compared to the traditional LDS learning al-

gorithms, the advantages of our gLDS framework are: (1) the LDS models can be learned

efficiently from multiple MTS sequences; (2) constraints on both the hidden states and the

parameters can be easily incorporated into the learning process; (3) it is able to support

accurate MTS prediction. Furthermore, we proposed a novel temporal smoothing regular-

ization for learning the LDS models to stabilize the model learning and its predictions. In

our experimental evaluation on four real-world data sets, we showed that (1) gLDS is able

to achieve better time series predictive performance when compared to other LDS learning

algorithms; (2) the proposed temporal smoothing regularization encourages more stable and

accurate predictions; and (3) constraints can be directly integrated in the learning process

and special designed system properties such as stability, low-rankness can be easily achieved.
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4.0 LEARNING HIERARCHICAL DYNAMICAL SYSTEMS FROM

IRREGULARLY SAMPLED UNIVARIATE TIME SERIES

In this chapter, we tackle the problem of modeling irregularly sampled univariate time series.

While LDS and GP models we reviewed in Chapter 2 can be adapted to model irregularly

sampled clinical time series data, they come with drawbacks that may limit their perfor-

mance. More specifically, discrete time models are not able to represent well sequences of

values in real time because values need to be re-estimated from quantities with a discrete

time step. On the other hand, a continuous time GP model with a constant mean function

is too restrictive and cannot model the different modes of dynamics or different subpop-

ulations of patients well. On the positive side, discrete time models, especially LDS, are

good at modeling changes in both the dynamics and different modes in time series behavior,

while GP models are good at modeling time series in real time. Considering the respective

advantages and limitations of the two frameworks, a combination of the two appears as the

best solution to offset their limitations. To follow the above intuition, we propose a new

hierarchical dynamical system model that splits the process into a sequence of dependent

local GPs that are combined with LDS to better capture higher-level changes in the time

series dynamics. The local GPs’ dependencies naturally account for the transitions of mean

functions and irregular samples are handled by the local GPs themselves. We note that

the material presented in this chapter was originally published as [Liu et al., 2013, Liu and

Hauskrecht, 2013,Liu and Hauskrecht, 2015b].
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4.1 THE HIERARCHICAL DYNAMICAL FRAMEWORK

In this section, we develop a two-layer hierarchical dynamical model that lets us represent

the irregularly sampled time series information in a more flexible manner. The key structure

of the model is shown in Figure 17. Briefly, the model consists of two hierarchically related

processes: the GP and the LDS. The GP is restricted to a time window of a finite duration

and it is used to represent time series and its changes for shorter time spans. Longer-term

process changes are modeled and controlled by the LDS. As we can see from Figure 17, in the

lower layer, which is shown in a dashed line box, we transform the entire irregular time series

data into M windows using a predefined window size and a predefined overlap size. Each

window s in Figure 17 relates observations Y(s) = {y1(s), y2(s), . . . , yNs(s)} using the same

window-specific GP and Ns is the number of observations in the sth window, s = 1, · · · ,M .

Y(s) represents all the observations fall in the sth window and yi(s) is the ith observation in

the sth window. Hence, instead of using a single GP, we capture a time series by using many

different window-specific local GPs and model global changes in dynamics using the upper

level LDS that controls the means of the window specific GPs. That is, the LDS represents

the dynamics and changes of summary statistics {γs}M1 defining individual {GPs}M1 . The

upper level LDS is defined as:

zs = Azs−1 + εs (4.1)

γs = Czs + ζs (4.2)

where summary statistics γs acts like observations yi in eq.(2.2) and A,C,Q,R, zs, εs, ζs are

similarly to regular LDS introduced in Section 2.2.1.

As mentioned in Section 2.2.2, the covariance function measures the similarity of two

function values f(t) and f(t′) based on their input time t and t′. In general, the covariance

function should reflect the properties of the modeled time series, such as its smoothness or

periodicity which leads to the important question: how do we pick the covariance functions

that work well with clinical time series data? In order to model covariances of clinical time

series for numerical labs we can make the following assumption: the readings made at times
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Figure 17: The graphical illustration of the hierarchical dynamical model combining the GP

and the LDS. The shaded nodes denote irregular observations. The γ node is the window

representative we extract from the corresponding window and the z node is the hidden state

we introduce in LDS to model the change of γs. The Θ node represents the shared covariance

function parameters for all the GPs.
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t and t′ which are close are likely to have similar reading values f(t) and f(t′). Examples

of covariance functions that represent this assumption are the Gaussian kernel eq.(4.3) and

the mean reverting kernel eq.(4.4):

K(t, t′) = σ1 exp
(
β1(t− t′)2

)
(4.3)

K(t, t′) = σ2 exp
(
β2|t− t′|

)
(4.4)

The Gaussian kernel is the most frequently used kernel in literature [Brahim-Belhouari

and Bermak, 2004, Girard et al., 2003, Wang et al., 2005] that promotes smoothness and

pushes two different readings closer when they are close in time. The second kernel represents

the mean reverting process and while it forces the two readings close in time to be similar, it

also permits more abrupt changes in their observed values [Rasmussen and Williams, 2006,

Chapter 4]. To approximate the clinical time series in this work we use a linear combination

of eq.(4.3) and eq.(4.4) together with the observational noise component ε ∼ N (0, σ2) (see

Section 2.2.2) as our covariance function:

K(t, t′) = σ1 exp
(
β1(t− t′)2

)
+ σ2 exp

(
β2|t− t′|

)
+ σ2δt,t′ (4.5)

In this model, Θ = {σ1, β1, σ2, β2, σ} are parameters of the covariance function that can be

learned directly from data. δt,t′ is a Kronecker delta which is one iff t = t′ and zero otherwise.

4.1.1 Learning

We learn the parameters of our hierarchical dynamical model by devising solutions to two

estimation/learning problems: (1) learning of the parameters Θ of the covariance function

defining the lower level GPs, and (2) learning of the parameters of the upper level LDS.

4.1.1.1 Estimation of The Covariance Function Since all window-specific {GPs}M1
share the same covariance function, we set Θ by maximizing the likelihood using the partial

derivative of the likelihood with respect to each parameter θi in Θ as defined in eq.(2.11).
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4.1.1.2 Estimation of The LDS Parameters The LDS controls the means of indi-

vidual window-specific GPs. We learn its parameters as follows:

Step 1. Use window-based segmentation (WbS) (Section 2.2.1.3) approach to estimate

each summary statistics γs from observations in windows s respectively. The γs represents

the mean of window-specific GPs. In general, there are many different ways to estimate γs.

Let h denote a function used for estimating the mean of the GP from observations Y(s)

in the sth window. Examples of h can be max,mean or last functions that return the

maximum, the mean, or last observed value in the window. In this work, we use the mean

function as the estimator of window-specific GP means.

Step 2. Use sequences of {γs}M1 statistics as observations of the upper level LDS in

our hierarchical dynamical system. To learn the parameters of the LDS, we use the EM

learning algorithm to iteratively re-estimate the parameters Λ = {A,C,Q,R, ξ,Ψ} defining

the LDS [Ghahramani and Hinton, 1996], similarly to standard LDS learning.

4.1.2 Prediction

Once the hierarchical dynamical system is learned from the training data we would like to

use it to support predictions on future time series. Given the initial observations Yo and an

arbitrary future time t∗, the value yt∗ is predicted as follows:

Step 1. Split Yo into windows and continue splitting time after Yo into windows until

one contains t∗. The index of the window containing t∗ is λ and the index of the window

containing the last observation in Yo is τ .

Step 2. Estimate summary statistics γss for all windows up to window τ using Yo using

the WbS approach. After that use these statistics to predict γλ with the upper level LDS

system.

Step 3. Compute the value ŷt∗ at future time t∗ using the posterior mean of the GP

with the mean function γλ, covariance parameters Θ and past observations Yo.
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4.2 EXPERIMENT

4.2.1 Baselines

We compare our two-layer hierarchical dynamical system approach with LDS and GP layers

(HDSGL) to six baseline methods:

1. First-order autoregressive (AR) process [Box and Pierce, 1970, Makridakis and Hibon,

1997] trained on the entire time series using DVI approach. We applied linear interpola-

tion directly to fill the missing values.

2. Linear dynamical system (LDS) trained on the entire time series using DVI approach.

We applied linear interpolation directly to fill the missing values.

3. Standard Gaussian process regression (GP) with constant mean function. The choice of

covariance function is the linear combination of eq.(4.3) and eq.(4.4).

4. Window-based AR (WAR). Irregular sampled time series is handled by WbS, as described

in Section 2.2.1.3. It splits the time series first into windows and, after that, it trains an

AR over the windows’ summary statistics.

5. Window-based LDS (WLDS). Irregularly sampled time series is handled by WbS, as

described in Section 2.2.1.3. It splits the time series first into windows and, after that,

it trains an LDS over the windows’ summary statistics.

6. Hierarchical dynamical system combined with GP and AR process (HDSGA). HDSGA

is similar to HDSGL, but we change the upper layer LDS to the first order AR process.

We set the summary statistics estimation function h that is used to calculate the sum-

mary statistics γs for each window s for all WbS approaches (WAR, WLDS, HDSGA and

HDSGL) to the mean of the values observed in that window. Also, we use the combination

of the Gaussian and the mean reverting kernels as the covariance function for all GP related

methods (GP, HDSGA, HDSGL).
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4.2.2 Evaluation Metrics

Our objective is to test the predictive performance of our approach by its ability to predict the

future value of an observation for a patient for some future time given a sequence of patient’s

past observations. We judged the quality of the prediction using the Mean Absolute Error

(MAE) on multiple test data predictions. Instead of Root Mean Square Error (RMSE),

which gives a relatively high weight to large errors (the errors are squared before they are

averaged), MAE is the average over the absolute values of the differences between predictions

and the corresponding observations. The MAE is a linear score which means that all the

individual differences are weighted equally in the average. More specifically, the MAE is

defined as follows:

MAE =

[
N−1

N∑
i=1

|yi − ŷi|
]

(4.6)

where N is the total number of predictions. yi and ŷi are the true and predicted values.

4.2.3 Data

We have tested our new approach on time series data obtained from electronic health records

of 4,486 post-surgical cardiac patients stored in PCP database [Hauskrecht et al., 2010a,Valko

and Hauskrecht, 2010,Nguyen et al., 2014]. We used ten tests from the CBC panel to learn

ten different time series models, and evaluated them on the time series prediction task. The

ten tests, their means and standard deviations, are listed in Table 9. These time series data

are noisy; their signals fluctuate in time, and the time periods between observations vary.

Figure 18 illustrates such a time series for one of the patients. The X -axis is the time index

aligned by hour and the Y -axis are normalized values/observations for each test.

To test the performance of our prediction model, we have randomly selected 1000 patients

that had at least 10 CBC tests ordered during their hospitalization. Among the 1000 patients

selection, we randomly divided patients and their time series into the training and testing

sets, such that data for 200 patients form the test data and time series data for 800 patients

were used for training.
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Table 9: Ten lab tests from the CBC panel.

Lab Test Name Unit Mean Std Average Length

White blood cell (WBC) 109/L 11.98 6.08 24.28
Hematocrit (HCT) % 28.67 4.73 54.45
Hemoglobin (HGB) g/dL 9.59 1.67 37.71
Mean corpuscular HGB concentration (MCHC) g/dL 33.86 0.81 24.17
Mean corpuscular hemoglobin (MCH) pg/cell 30.54 1.76 24.17
Mean corpuscular volume (MCV) fL 90.17 4.55 24.18
Mean platelet volume (MPV) fL 8.73 1.18 23.25
Platelet (PLT) 109/L 202.07 126.73 27.05
Red blood cell (RBC) 1012/L 3.21 0.56 24.25
Red cell distribution width (RDW) % 16.77 2.64 24.01

4.2.4 Results

In this section, we choose two lab prediction results (MCV and RBC) from Table 9 to

highlight the main findings from the experimental evaluation in that work. The complete

results are shown in Appendices J - L. To conduct the evaluation, we use the test dataset

to generate various prediction tasks as follows. For each patient l and complete time series

for that patient, we calculate the number of observations Tl in that time series. We use Tl

to generate all different pairs of indices (ψ, φ) for that patient, such that 1 ≤ ψ < φ ≤ Tl,

where ψ is the index of the last observation assumed to be seen, and φ is the index of the

observation we would like to predict. By adding time stamp reading to each index, the two

indices help us define all possible prediction tasks, we can formulate on that time series. Let

Γl be the total number of different indices pairs (or Γl different prediction tasks) for patient l

and
∑200

l=1 Γl is total number of prediction tasks in our test data. For each method, we use the

MAE on these tasks to judge the quality of test predictions and run the pairwise t-test on

the
∑200

l=1 Γl prediction tasks’ results from our method and all the other baselines to check the

statistical differences between them. In addition, we use the bootstrap approach [Felsenstein,

1985] to compute the 95% the confidence interval on MAE for each method. We would also

like to note that the hyper parameters (window size W and overlap size O) used in our
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Figure 18: Time series for ten tests from the CBC panel for one of the patients.
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methods are selected (in all experiments) by the internal cross validation approach while

optimizing models’ predictive performances.

4.2.4.1 Overall Prediction Performance In the overall prediction experiment, we

follow the procedure described above to generate and randomly select different prediction

tasks. These contains both short-term and long-term predictions depending on the difference

in between the time at which we predict the value and the time of the last observation seen.

Figure 19 shows the results of the prediction experiments on MCV and RBC for all methods.

The results of our experiments (dark green bars in Figure 19) show that our hierarchical

dynamical system (HDSGL) outperforms all other methods in terms of prediction error on

the CBC test data. The results are statistically significantly different at 0.05 level for all

labs. We determined the significance by running the pairwise t-test comparing the HDSGL

to all other methods on all corresponding prediction tasks. We believe the main reason for

the hierarchical approach outperforming all other methods is that it directly models and

works with real time series (via lower level GP) and that it minimizes the effect of noisy

observations by using window-based summary statistics. The hidden states of the upper layer

LDS are able to capture the change of those summary statistics. The lower layer GP can

adjust the prediction values based on the mean of the upper layer and the few observations

we have, which gives us the lowest MAE.

4.2.4.2 Short-term Prediction Performance We expect that short-term predictions

that are close to the last value observed should be better. To verify this expectation, we

conduct a new experiment where observation indices for the prediction tasks involve (ψ, φ)

pairs that satisfy φ = ψ + 1, that is, we always try to predict the next lab reading. Figure

19 compares our method and the baselines in terms of their corresponding overall and short

term prediction performances. As we can see from Figure 19, short-term predictions are

much better than overall predictions (that include both short and long term prediction),

which supports our intuition that the further we predict, the worse predictions we make. In

addition, we see our method remains the best in all the lab tests for the short term prediction

tasks.
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(a) MAE on MCV test samples.
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Figure 19: MAE on MCV and RBC test samples for random prediction tasks.

4.2.4.3 Clinical Expert Evaluation In this experiment, we examine whether the pre-

dictions made by our model (HDSGL) are clinically acceptable or not. In order to assess

the clinical relevance of predictions, we consulted a clinical expert, and adopted his sug-

gestion to judge the importance of prediction error by using Absolute Percentage Error

(APE), which measures the prediction deviation relative to its true value and is defined as

APE = |yi− ŷi|/yi× 100%. After calculating the APE for each prediction, we categorize its

result into four qualitative categories suggested by the expert (shown in Table 10). These

four categories tell us how well the model is able to predict the lab values in terms of their

clinical acceptance. We use these four categories to calculate the distribution of predictions

for each lab test in terms of both overall and short-term predictions. Figure 20 summarizes

the distributions of these qualitative prediction categories for both MCV and RBC lab tests.

In terms of clinical acceptance, we see that the results differ widely for the different labs. In

particular, very good short and long term predictions are achieved for CBC lab components

that are less sensitive to blood loss and drip infusions that are rather frequent during the

management of post-surgical cardiac patients, such as MCV. On the other hand, some labs

are volume based counts and hence are sensitive to the above events, such as RBC. Con-

sequently the prediction quality of these models goes down. Overall, the results for these

labs suggest the predictions based only on previous sequences of lab values alone may not be

sufficient, and additional variables representing the different future events and/or possible
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patient management steps should be included in the model to improve its prediction quality.

Table 10: Clinical acceptance categories.

Category Excellent Good Acceptable Bad

APE Range ≤ 5% 5% - 10% 10% - 20% ≥ 20%
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(a) Clinical evaluations on MCV.
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Figure 20: Clinical evaluations of HDSGL on MCV and RBC for both overall prediction and

short-term prediction quality distributions.

4.3 SUMMARY

In this chapter, we proposed and developed a novel hierarchical framework for modeling

clinical time series data of varied length and with irregularly sampled observations. Our

hierarchical dynamical system framework for modeling clinical time series combines advan-

tages of the two temporal modeling approaches: the LDS and the GP. We modeled the

irregularly sampled clinical time series by using multiple GP sequences in the lower level of

our hierarchical framework and captured the transitions between GP by utilizing the LDS.

Compared to traditional LDSs and modern GP regression, the new system adapts better to

irregular sampling and it is more accurate when making predictions for different future times.
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Experimentally, we tested our framework on a complete blood count (CBC) panel data of

1000 post-surgical cardiac patients during their hospitalization. We first learned the time

series model from data for the patients in the training set, and then used it to predict future

time series values for the patients in the test set. We showed that our model outperforms

multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13%

average prediction accuracy improvement on ten CBC lab time series when it was compared

against the best performing baseline. A 5.25% average accuracy improvement was observed

when only short-term predictions were considered. Thus, our new hierarchical dynamical

system framework is able to let us model irregularly sampled time series data and it is a

promising new direction for modeling clinical time series and for improving their predictive

performance.
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5.0 LEARNING PERSONALIZED PREDICTIVE MODELS FROM

IRREGULARLY SAMPLED MULTIVARIATE TIME SERIES

Building of an accurate predictive model of clinical time series for a patient is rather challeng-

ing due to the characteristics of clinical MTS and the computational and modeling trade-offs

arising from them. Briefly, when the time series of past observations for the patient are short,

it may be hard to learn a patient specific model from the patient’s own data, and the pop-

ulation based model may be a better option. On the other hand, when the observed data

for the target patient are sufficiently long, a patient specific time series model learned from

patient’s own data may better reflect the future behavior. Moreover, short-term variability

and deviations from typical behaviors may prefer models that can adapt quickly to just a few

recent observations. Overall, the prediction model should provide flexible and customized

predictions for each new patient given his or her current health condition, and should benefit

from what is known about other patients when the patient specific model is not available.

The majority of existing approaches proposed for clinical MTS prediction in the literature

are not able to cover all necessary model behaviors. They either build a population based

model or a patient specific model ignoring what is known about the population.

In this chapter, we study and develop methods to address the above problems by building

personalized clinical time series prediction models that better mimic patient specific temporal

behaviors and variations. More specifically we develop two frameworks that can predict

future values of real-valued MTS for a patient given his or her past observations, as well as,

time series data for any past patient. This breaks down this chapter into two main sections.

In Section 5.1, we build a personalized prediction model via model adaptation in which we

first learn the population trend from clinical MTS sequences from many different patients

and then we model patient specific residuals (or differences in between predictions made by
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the population model and actually observed values) individually. In Section 5.2, we develop

an adaptive forecasting framework via adaptive model selection approach. At any point in

time, it selects the most promising time series model out of the pool of many possible models,

and consequently, combines advantages of the population, patient specific and short-term

individualized predictive models. Both proposed forecasting models are evaluated on a real-

world clinical time series data set. The results demonstrate that our approaches are superior

on the prediction tasks for multivariate, irregularly sampled clinical time series, and they

are able to outperform predictions based on pure population and patient specific models,

as well as, other patient specific model adaptation strategies. We note that the material

of our model adaptation based personalized prediction model presented in Section 5.1 was

originally published as [Liu and Hauskrecht, 2016a].

5.1 PERSONALIZED PREDICTION VIA MODEL ADAPTATION

We develop a new approach to support adaptive prediction for clinical time series by using

model adaptation methods. Model adaptation methods try to bridge a possible gap in

between population based models and the target patient by adjusting the population based

model to fit better the specific patient. In general, model adaptation methods can be realized

in different ways, as reviewed in Section 2.3.2.

In this work, we conduct the model adaptation on clinical MTS data by building a

two-stage adaptive forecasting model. Our approach involves two stages: it first learns

a population based model from collection of time series data of varying lengths and then

builds patient specific models from the patient specific residuals. Residuals are the difference

between the patient observations and the predictions from the population based model.

In such a way, our method benefits from the population trend extracted from past data

collection and at the same time adapt to patient specific data, thus allowing one to make

more accurate MTS predictions.
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5.1.1 Learning

In this section, we describe the learning procedure for our two-stage adaptive forecasting

model that (1) is learned from a collection of time series data of varying lengths; (2) captures

the patient specific short-term multivariate interactions.

5.1.1.1 Stage 1: Learning A Population Model In the first stage, we would like

to learn a population model from all available data sequences to represent the trend of

the entire population. We choose the regularized LDS model (Section 3.1) to model the

population trend, which is able to choose the optimal number of hidden states and prevent

the overfitting problem and support accurate MTS forecasting.

In spite of the advantages of LDS based models, they are restricted to discrete time

domain where observations are regularly sampled. In order to apply the discrete time LDS

model over our irregularly sampled clinical data, we follow [Adorf, 1995, Dezhbakhsh and

Levy, 1994, Åström, 1969,Bellazzi et al., 1995,Kreindler and Lumsden, 2006,Rehfeld et al.,

2011,Liu and Hauskrecht, 2015a] and apply the DVI technique (Section 2.2.1.3) to discretize

each irregularly sampled clinical sequence and that replaces it with a regularly sampled time

series data.

The DVI approach assumes that all observations are collected regularly with a pre-

specified sampling frequency r. However, instead of actual readings, the values at these

time points are estimated from readings at time points closest to them using various inter-

polation techniques. The interpolated (regular) time series, i.e., ỹli, is then used to train a

discrete-time LDS model. We put a tilde sign (̃·) over Yl and yli to indicate the discretized

observations. T̃l is the length of discretized sequence for patient l.

A possible limitation of the DVI data transformation is possible information loss: as we

can see from Figure 5, some observations in individual time series are discarded during this

discretization process. However, given that LDS is building a coarse level population model

over the entire collection of data (many patients), this loss is less important. We also note

that patient specific observations are not discarded in the second stage of our approach that

captures fine grained patient specific multivariate interactions by MTGP.
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Once we obtain the entire discretized clinical sequences {Ŷl}Nl=1, we apply the standard

LDS EM learning algorithm to learn the unified population based model.

5.1.1.2 Stage 2: Learning Multivariate Interaction Models A population model

built from a collection of clinical data for multiple patients is crucial since each individual

sequence is usually very short. The learned model from the entire population is more robust

and stable. However, the prediction task is performed patient by patient and the forecasting

model should also reflect and take into account the variations specific to the current patient.

To address this problem, we model the patient specific multivariate interactions by using an

MTGP (Section 2.2.3). More specifically, instead of simply modeling the clinical time series

trends (the mean function of MTGP) by using constants or simple known parametric forms

(e.g., linear functions) [Ghassemi et al., 2015, Durichen et al., 2015], we use the population

model (learned in Stage 1) to reflect the time series tendency and build an MTGP on a

residual signal that reflects the deviations of patients’ true observations and the predictions

made by the population LDS model. We define the multivariate residual time series as

follows:

Definition 1. (Multivariate Residual Time Series) For each patient l, given time

series Yl and its corresponding predictions Ŷl from model Ω, a multivariate residual time

series Rl represents the deviations from Yl to Ŷl, i.e., Rl = Yl − Ŷl.

Notice that each residual time series Rl is computed by using the true observations Yl

(not the discretized sequence Ỹl), there is no information loss for each patient under the

prediction task and Rl is irregularly sampled.

The multivariate residual time series reflect each patient’s unique variations from the

general population and they are distinguished patient by patient. Furthermore, clinical

events usually only affect a handful of measurements within a small time window. Hence,

for each patient l, we model these transient deviations nonparametrically using an MTGP.

The MTGP has mean 0 and a squared exponential covariance function, which is the most

frequently-used example in literature [Rasmussen and Williams, 2006]. In eq.(2.12), KG is

defined as follows:
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KG(t, t′) = α exp
(
− (t− t′)2

2β2

)
The complete parameter set Λ in the MTGP model is Λ = {α, β, δi, KC} where i =

1, · · · , n. In this work, we adopt the Cholesky decomposition and the “free-form” parame-

terization techniques (KC = LL>) to learn the parameter set Λ by minimizing the negative

log marginal likelihood via gradient descent [Rasmussen and Williams, 2006,Ghassemi et al.,

2015].

Usually the MTGP model has the computation limitation that it has O(n3T 3) compared

with n×O(T 3) for standard GP models (T is the length of the time series). However, this

limitation is not as relevant in our application setting, given that the number of clinical

observations is very limited and clinical time series are usually short span.

5.1.2 Prediction

In the real clinical setting, a successful forecasting model needs to be adaptive, that is, when

newly observed values are obtained, the model should efficiently adapt to the new change

and utilize new values to make better predictions. In this work, we develop a new adaptive

prediction algorithm based on the Kalman filtering algorithm [Kalman, 1960] that utilizes

our two-stage forecasting model.

Let u denote the current patient we consider in our prediction task. Yu is an n × Tu

matrix which denotes the current observed values for patient u. Given an arbitrary future

time stamp t∗ (t∗ > Tu), the value ŷut∗ is predicted as follows:

Step 1. Compute the discretized observations Ỹu by using DVI on Yu.

Step 2. Infer patient specific hidden dynamics by using population based model Ω and Ỹu.

This step adaptively computes the patient specific hidden state Zu using patient’s latest

observations. Details are provided in Appendix A.

Step 3. Make predictions by using the population model Ω and Zu. Note that we need

to predict the value at time points closest to the target time t∗, and after that, apply

the interpolation approach to estimate the target value. The prediction made by the

population model is ŷut∗(Ω)
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Step 4. Use the population model to predict patient u’s known observations (Yu) adap-

tively, denoting as Ŷu. Compute the residual time series for patient u, i.e., Ru = Yu−Ŷu.

Step 5. Learn the MTGP model Λu from Ru to capture the patient specific short-term

variability.

Step 6. Predict patient specific short-term variability ŷut∗(Λ
u) by using Λu at the target time

t∗.
Step 7. Compute the final prediction ŷut∗ by combining ŷut∗(Ω) and ŷut∗(Λ

u), i.e., ŷut∗ =

ŷut∗(Ω) + ŷut∗(Λ
u).

5.1.3 Model Learning and Prediction Summary

Algorithm 5 summarizes our two-stage adaptive forecasting model and its learning and pre-

diction parts.

Algorithm 5 Learning and Prediction Procedures
INPUT:
• Train data collection D = {< Yl,xl >}, where l = 1, · · · , N .
• DVI sampling frequency r.
• Number of hidden states in LDS d.
• Current observations Yu for patient u who is being predicted.
• An arbitrary future time stamp t∗ (t∗ > Tu).

PROCEDURE:

1: // Stage1: Learning the population model.
2: {Ỹl} = DV I({Yl}, {xl}, r).
3: Ω = LearnRegularizedLDS({Ỹl}).
4: // Stage2: Learning the multivariate interaction model.
5: Compute residual time series Ru.
6: Λu = LearnMTGP (Ru).
7: // Adaptive Prediction: Predicting ŷut∗ by Ω and Λu.
8: Trend prediction: ŷut∗(Ω) = PredictLDS(Ω, t∗).
9: Variability prediction: ŷut∗(Λ

u) = PredictMTGP (Λu, t∗).
10: ŷut∗ = ŷut∗(Ω) + ŷut∗(Λ

u).

OUTPUT: Prediction at time stamp t∗: ŷut∗.

5.1.4 Experiment

In this section we evaluate our approach on a real-world clinical data set obtained from

EHRs of post-surgical cardiac patients in PCP database [Hauskrecht et al., 2010b,Hauskrecht
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et al., 2013]. We demonstrate the benefits our adaptive approach both (1) qualitatively by

visualizing time series predictions made for one of the patients, and (2) quantitatively by

comparing the prediction accuracy of our two-stage adaptive forecasting model to alterna-

tive approaches. We would also like to note that the hyper parameters (e.g., DVI sampling

frequency r, number of hidden states in LDS d) used in our methods are selected (in all

experiments) by the internal cross validation approach while optimizing models’ predictive

performance. We evaluate and compare the performance of the different methods by calcu-

lating the average Mean Absolute Percentage Error (Average-MAPE) of models’ predictions

(eq.(3.21)). In the following experiments, we have randomly selected 100 patients out of 500

as a test set and used the remaining 400 patients for training the models.

5.1.4.1 Baselines We compare our proposed approach (rLDS+reMTGP) to the follow-

ing methods. Some of these are widely used in both clinical pharmacology and machine

learning communities:

1. Mean of the entire population (P Mean).

2. Mean of each individual patient (I Mean).

3. GP model learned from the entire population with a squared exponential covariance

function (eq.(5.1.1.2)) (P GP). [Rasmussen and Williams, 2006].

4. GP model learned from each individual time series with a squared exponential covariance

function (I GP).

5. Multi-task GP model learned from the entire MTS population with a squared exponential

covariance function (eq.(2.12)) (P MTGP). [Ghassemi et al., 2015,Durichen et al., 2015]

6. Multi-task GP model learned from each individual MTS sequence with a squared expo-

nential covariance function (I MTGP).

7. Regularized LDS based population model (rLDS).

8. Regularized LDS based population model combined with the Gaussian process regression

model for each individual residual time series (rLDS+reGP). It is a special (simpler)

version of our model.
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Figure 21: Average-MAPE results with different initial observation lengths.

5.1.4.2 Results Figure 21 compares our new method rLDS+reMTGP in terms of Average-

MAPE to various state-of-the-art approaches listed in Baselines subsection. Figure 21 shows

the Average-MAPE performance of all methods when they start to predict with a fixed de-

lay corresponding to the different number of initial observations (initial observation sequence

length). For example, when the initial observation sequence length is set to 4 the Average-

MAPE reflects the errors of all one-step-ahead predictions the method makes when starting

from four initial observations for the target patient (that is, when all predictions the model

can make for sequences of 0, 1, 2, 3 initial observations are ignored). To evaluate the statis-

tical significance of performance difference, we apply paired t-tests at 0.05 significance level.

The best methods are shown in bold in Table 15 in Appendix M. Due to the poor perfor-

mance of the P Mean and I Mean methods, we don’t visualize them in Figure 21; however,

all numerical results and the corresponding standard errors are included and listed in Table

15.

The results show that the population based LDS model (P rLDS) is the best performer
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when very little is known about the target patient and when patient’s observation sequences

are short. In general, patients who have longer hospitalizations tend to deviate more from

the population and the corresponding dynamics are not well described by the population

based models. As we can see from Figure 21, the Average-MAPE of all population based

models (P GP, P MTGP and P rLDS) gradually increase when the initial observation length

gets longer. Since our two-stage approach has to fit the parameters of the GP or MTGP

models of the residual time series it may experience some initial period in which it is not

stable and may lead to suboptimal predictions. However, rLDS+reGP and rLDS+reMTGP

methods outperform the P rLDS and other population based models rather quickly and

become superior when more than ten initial observations for the target patient become

available and are considered. Our residual based models utilize the GP based models to

capture the patient specific deviations from the population rLDS model and can quickly

adapt to sudden changes short-term variability appeared in each individual patient. On

the other hand, pure patient specific models (I GP, I MTGP and I rLDS) that ignore any

population data adapt very slowly and do not reach the performance of LDS or our methods

even for the initial observation sequence of length 60. Finally, a simple population based

method (P Mean) and a simple patient specific method (I Mean) lag behind (see Appendix

M for the results) and perform much worse than more advanced time series prediction models.

5.2 PERSONALIZED PREDICTION VIA ADAPTIVE MODEL

SELECTION

In this section we propose and develop an adaptive clinical time series prediction framework

that is different from the approach in Section 5.1 and that reflects the fact that predictions

at different times may be driven by the different types of prediction models. In general, this

type of problem is tackled in the machine learning literature by adaptive model selection

methods. Briefly, these methods assume a pool of candidate prediction models and each of

them is associated with an optimized weight that reflects how much they contribute to the

prediction solution. The adaptive model selection framework we propose and develop uses
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the online switching approach [Littlestone and Warmuth, 1994, Freund and Schapire, 1997]

that uses a mix of population based and patient specific prediction models. The switching

is driven by the weighted sum of prediction errors (or deviations) of each model on past

patient’s data. The weights are set so that more recent errors are more important. The

method which makes fewer errors recently is more likely to be selected. We test the different

error criteria on laboratory time series data and show that due to the short-term variability

a model switching strategy penalizing more recent prediction errors is the best online model

selection strategy in such clinical environment.

The quality of the adaptive model switching framework ultimately depends on the quality

of prediction models included in the pool of time series models and their variety assuring

the coverage of many different modes and behaviors. In general one can choose and put

any arbitrary model into the pool. However, in this work we narrow our focus to study the

trade-offs related to population based and patient specific models. This is reflected by the

choices of our models. Briefly in addition to simple population and patient specific baselines

we also include and consider more advanced population based LDS, patient specific LDS, as

well as, population and patient specific versions of two GP models: one that relies on a set

of independent univariate GP models (a time series of each clinical variable is modeled by

a GP) [Rasmussen and Williams, 2006] and an MTGP where entire MTS and interactions

among variables are modeled together [Bonilla et al., 2007].

5.2.1 Time Series Models

Our framework works by combining multiple different time series models and their strength

to improve the prediction. Various time series models with the different assumptions may be

considered [Hamilton, 1994]. In this work we power our model switching framework with two

widely used time series models - LDS and GP models (Section 2.2.1 and Section 2.2.2), and

develop robust population based and patient specific versions of these models and algorithms

for learning them from data. The robustness assures the models can applied to cases when

the number of time series examples is small or the length of the individual time series is

short-span.
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5.2.1.1 Population based and Patient Specific LDS In general, the LDS model can

be learned either from a collection of MTS sequences or from an individual sequence, which

leads to either population based models or patient specific models.

For the LDS based population models, they are learned from all available data sequences

of patients and aim to summarize the dynamics of all patients in the population. As we can

see from eq.(3.1), due to the probabilistic interpretation of the LDS based models and the

i.i.d assumption between each patient sequence, each patient contributes its own part to the

objective function and the population model is optimized to fit the entire MTS collection to

its most extent. On the other hand, we can also solely use currently available observations

from the target patient and train the patient specific LDS models to capture the changes of

individual patients.

The population based models in general are more robust and insensitive to outliers

compared to individual specific models since they try to seek a unified model which fits all

data sequences. The effects of abnormal observations will be minimized and corrected by

the majority of normal observations. Furthermore, a population model is especially useful

in the early stage of clinical predictions because at the beginning, observations of clinical

variables for individual patient are often short and insufficient to learn a high quality model

solely based on patient’s own data.

However, population models usually fail to capture patient’s variability due to the fact

that population models are trained to have good forecasting performance on average on all

the patients’ sequences. Since the prediction task is performed patient by patient, an ideal

forecasting model should reflect and take into account the variations specific to the current

patient. Furthermore, a patient may exhibit short-term variability reflecting the different

events affecting the care and patient state [Schulam et al., 2015]. Since the individual specific

model is trained on each sequence, the model is better at capturing the short-term variability

and providing customized predictions than population models.

We note that LDS based models belong to discrete time models which require that

the time intervals between any two consecutive observations are same. When dealing with

irregularly sampled time series, time series discretization techniques can be used as a data

preprocessing step before learning the models. In this work, similar to Section 5.1, we
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discretize the irregularly sampled MTS by using DVI approach.

5.2.1.2 Population based and Patient Specific GP and MTGP Similarly to learn-

ing the LDS based models, GP based models can be also learned from the population se-

quence collection or each patient specific sequence. Learning GP based patient specific model

from each sequence is straightforward. For each target patient, patient specific models are

learned solely from the patient’s past q observation-time pairs (yi, ti)
q
i=1. More specifically,

we treat each clinical time series in (yi, ti)
q
i=1 independently and learn a patient specific GP

model for each clinical variable. Also we take into account of the correlation and interac-

tion between clinical variables and learn a patient specific MTGP model from (yi, ti)
q
i=1.

Both the GP and MTGP models has zero mean and a squared exponential covariance func-

tion (eq.(5.1.1.2)), which is the most frequently-used example in literature [Rasmussen and

Williams, 2006].

Similar to Section 5.1.1.2, we adopt the Cholesky decomposition and the “free-form”

parameterization techniques (KC = LL>) to learn the parameter set Λ by minimizing the

negative log marginal likelihood via gradient descent [Rasmussen and Williams, 2006,Ghas-

semi et al., 2015].

To learn the GP based models from a collection of MTS sequences, we learn the GP based

models from each sequence in the training collection and use the average of all the learned

parameters as our estimates of the population based models. While it is always possible to

concatenate multiple MTS sequences into one large sequence, this brute-force concatenation

process will let the covariance function learn the similarities between observations across

different patients, which leads to inaccurate estimations.

Both GP and MTGP are used in clinical time series domain to capture the short-term

and long-term variability [Marlin et al., 2012, Clifton et al., 2013, Lasko et al., 2013, Liu

and Hauskrecht, 2015a,Schulam et al., 2015,Ghassemi et al., 2015,Durichen et al., 2015]. In

[Marlin et al., 2012,Clifton et al., 2013,Lasko et al., 2013,Liu and Hauskrecht, 2015a,Schulam

et al., 2015], each clinical time series is modeled by a single GP separately which does

not allow one to represent dependences among the different time series. [Ghassemi et al.,

2015, Durichen et al., 2015] try to capture MTS and dependences among its time series by
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applying MTGP to clinical MTS modeling and forecasting. Since all above applications focus

on individual-specific sequence, they tend to support more accurate and personalized time

series predictions for each patient compared to population based models. However, those

models usually require long enough sequences to optimize the models’ parameters. This

becomes unrealistic and inapplicable when a new patient comes in and very few observations

are known for that patient.

5.2.2 Online Model Switching

Due to the rapid changes in the clinical time series, it is difficult to develop a single model

that consistently performs well over the time for each individual. Therefore, in this work, we

make the prediction for patient p at time t∗ from a pool of candidate models, which contains

both the population model (LDS based and GP based) and patient specific models (LDS

based and GP based). Our objective is to develop a framework that is able to pick the best

model from the pool to timely support accurate and personalized clinical predictions for each

patient at every time stamp.

Although numerous ensemble and online methods exist, the majority of the methods

require error feedback over longer periods of time to achieve any statistical guarantee of

total errors made by the algorithms. However, in the real-world clinical setting, patients’

time series are usually too short to obtain effective weights for both the ensemble and online

algorithms. Furthermore, weight updating rules are often based on the overall performance

of each model on all previously observed data and hence the recent errors are smoothed out

by the errors made in the early stage of the process. Since clinical MTS may contain short-

term variability (caused, for example, by acute infections, bleeding, surgeries, etc) standard

weight updating rules are not able to respond to these changes quickly enough.

In this work, we propose and develop a novel online model switching strategy, i.e.,

“weighted Follow-the-Leader” (wFTL), to address the above problem. Different from tradi-

tional online learning algorithms that treat each past errors equally, we put more penalties

on recent errors. The intuition is in that the predictive models that do not perform well

initially can catch up in their performance rapidly and they may need be selected. More
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precisely, for each modelMm, all its past errors can be computed (up to current time stamp

tq ) as em = [em1 , · · · emi , · · · , emq ]. The model being picked at time t∗ is

M∗ = arg min
m

q∑
i=1

wi ∗ emi (5.1)

where wi is the error weight at time ti.

In order to capture the recency effect, we compute the error weight by using the kernel

functions that take time stamps as inputs. The idea is that the errors made far away should

be less penalized compared to the most recent errors. We experiment with two standard

kernel functions: the square exponential kernel (eq.(5.2)) and the mean reverting kernel

(eq.(5.3)) to penalize the errors with respect to time elapsed.

Kse(ti, t
∗) = exp

(
− (ti − t∗)2

γ

)
(5.2)

Kmr(ti, t
∗) = exp

(
− |ti − t

∗|
γ

)
(5.3)

where t∗ is the time stamp of the target prediction. ti is the all the past time stamps,

i = 1, 2, · · · q and γ is the bandwidth parameter.

As we can see from eq.(5.1), the proposed approach downgrades to the “Follow-the-

Leader” (FTL) strategy when all the weights (wis) become 1. [Shalev-Shwartz, 2011]. The

FTL strategy simply selects the best prediction model by integrating the loss across past

t steps and neglects the recency effect. While wFTL always selects the prediction model

with the minimum weighed loss over time. As a result, it is more sensitive to the recent

observations that reflect the most current trend and change of the state of the target patient.

By evaluating the candidate models’ predictions and focusing on the recent performance,

the proposed strategy is able to discover sudden changes and quickly switch to the best

model. Compared with eq.(5.2) and eq.(5.3), the square exponential kernel squares the time

difference which vanishes the past errors much quicker than mean reverting kernel. The

hyper parameter γ controls the magnitude of the recency effect. wFTL with either eq.(5.2)

or eq.(5.3) becomes FTL when γ goes to infinity.
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5.2.3 Experiment

In this section, we evaluate our approach on the same clinical MTS data set we used in Sec-

tion 5.1. We conduct a series of experiments to explore and demonstrate the benefits of our

adaptive model switching framework. First, we study the quality of population based versus

patient specific models for observations histories of the different length. Second, we focus

on the MTS forecasting and the evaluation of the proposed model switching approach to

other models. We evaluate and compare the performance of the different methods by calcu-

lating the average Mean Absolute Percentage Error (Average-MAPE) of models’ predictions

(eq.(3.21)).

During our evaluations we consider a variety of time series prediction models used com-

monly in both clinical pharmacology and machine learning and their population based and

patient specific versions. All these can be put into the pool of candidate models our frame-

work uses. For the population based models, we choose (1) P Mean: mean of the entire

population; (2) P rLDS: a regularized LDS learned from other patient data D; (3) P GP: a

population GP model learned from D; and (4) P MTGP: a population MTGP model learned

from D. For patient specific models, we choose (1) I Mean: Mean value for the individual

patient up to the current time stamp; (2) I rLDS: learning a rLDS model from the MTS

sequence of the target patient; (3) I GP: Gaussian process regression model for each individ-

ual time series of the target patient; and (4) I MTGP: multi-task Gaussian process model

for the MTS sequence of the target patient.

5.2.3.1 Baselines In the following experiments, we denote the wFTL with the square

exponential kernel (eq.(5.2)) as wFTL se and denote the wFTL with the mean reverting

kernel (eq.(5.3)) as wFTL mr. We compare our wFTL se and wFTL mr model switching

strategies to other approaches one can use for personalized predictive modeling.

• Sub: represents a subpopulation approach. For each patient at each time stamp, top k

similar patients are selected and are used to train the rLDS model. The similarity is

defined by the Euclidean distance between the sample means of clinical variables of the

target patients and the sample means of available training patients. In this experiments,
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we vary k to 50, 100, 200 and ALL where ALL means all the training examples.

• rLDS+reGP : is a model adaptation approach. In rLDS+reGP, a population rLDS model

is trained first and the time series of past observations for the target patient is expressed

in terms of residuals (or differences in between predictions made by the population based

model and actually observed values). Then each of the residual time series is modeled

by a GP. Details are described in Section 5.1.

• rLDS+reMTGP : is another model adaptation method that is similar to rLDS+reGP but

the all residual time series are modeled by an MTGP. Details are described in Section

5.1.

• En Avg : is a simple averaging method in which the prediction is made by uniformly

averaging the results from all the models in the pool.

• En Err : is the inverse-error weighted average method. Assuming M be the number of

models in the pool. Let em be the sum of prediction errors of the model m over the

past t time steps (rounds) and wm be the mixture weight corresponding to model m. In

En Err, wm is computed as wm = 1
emS

where S =
∑M

m=1
1
em

.

• OL FTL: Follow-the-Leader method that selects the best model based on the loss inte-

grated over past t time stamps.

• OL MW : Multiplicative weights algorithm [Cesa-Bianchi et al., 2007] that at each round

t, makes the selection is based on the probability distribution p = {w1/Φ, · · · , wM/Φ},
where Φ =

∑M
m=1wm. wm is updated by penalizing the costly predictions, i.e., w+

m =

wm(1− ηem) where η, η ≤ 0.5 is the discounting factor.

• OL Hedge: Hedge algorithm [Freund and Schapire, 1997] that is similar to OL MW but

uses an exponential factor instead of a linear cost (1 − ηem). The weight update is

w+
m = wm exp(−ηem).

5.2.3.2 Results

Population based versus Patient specific Models We first explore the prediction

performance of each model in the prediction model pool individually. Instead of averaging

all the prediction results, we compute the Average-MAPE results of population based, pa-

tient specific methods and our proposed wFTL model switching approaches (wFTL se and
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wFTL mr) when they start to predict with a delay corresponding to the different number

of initial observations (initial observation sequence length). For example, when the initial

observation sequence length is set to 4 the Average-MAPE reflects the errors of all one-step-

ahead predictions the method makes when starting from four or more initial observations for

the target patient (that is, the model starts to make predictions from the 5th time stamp).

The Average-MAPE results with different initial observation lengths are shown in Figure 22.

To evaluate the statistical significance of performance difference, we apply paired t-tests at

0.05 significance level. The best methods are shown in bold in Table 16 in Appendix N. Due

to the poor performance of the P Mean and I Mean methods, we don’t visualize them in

Figure 22; however, all numerical results and the corresponding standard errors are included

and listed in Table 16.
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Figure 22: Average-MAPE results of all models in the pool and two wFTL methods for the

different initial observation lengths.

First, Figure 22 shows the trade-off between the population based (P rLDS, P GP and
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P MTGP) and the patient specific (I rLDS, I GP and I MTGP) models. Briefly, the perfor-

mance of patient specific models built from patient’s own past observations tends to gradually

improve and eventually outperforms the population based models that are the best initially

when little is known about the target patient. More specifically we observe that, P rLDS

model built on the population of past patients starts strong but deteriorates when more

values are observed. We explain this deterioration by the fact that longer the patients stay

in the hospital the more likely they deviate from the population based models. This is also

reflected by the deterioration of the population based GP models (P GP and P MTGP) for

longer observation sequences. On the other hand, we observe that patient specific models

can adapt to the specifics of the patient but they also take a longer time (number of ob-

servations) to learn, especially when the model is more complex. While I GP is relatively

fast to adapt to the specifics and short-variability of the target patient, I MTGP is slower

because of increased model complexity and more parameters it needs to learn. In addition,

from Figure 22, we can see that different models have various prediction performance when

the number of observations change, which confirms the motivation of dynamically switching

to the most appropriate model during the prediction. By using the different kernel functions

(eq.(5.2) and eq.(5.3)), our wFTL strategies penalize the most recent errors made by each

candidate model. As shown in Figure 22, the proposed wFTL approaches are slightly worse

compared to P rLDS initially. But they catch up the performance of P rLDS rapidly (when

initial observation length reaches 10 shown in Table 16) and consistently have the best per-

formance among all the population based and patient specific models when enough initial

observations are obtained.

Prediction Accuracy In this experiment, we compute and compare one-step-ahead

prediction accuracy of wFTL to various state-of-the-art personalization approaches. We

present the prediction results against baselines in different categories separately to make

the differences clear. The results are shown in Figures 23 - 25. To evaluate the statistical

significance of performance difference, we apply paired t-tests at 0.05 significance level. All

numerical results, the corresponding standard errors and significant test results are listed in

Tables 17 - 19 in Appendix O.

As we can see from Figure 23, when initial observation sequence length is short (less
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Figure 23: Average-MAPE results of the proposed wFTL approaches compared to the en-

semble and online methods.

than 9), our wFTL strategies perform slightly worse than the inverse-error weighted average

method (En Err). But in the long run, our wFTL strategies have the best performance

among all the other adaptive model selection based baselines. Clinical time series contain

lots of short-term variability due to different causes [Schulam et al., 2015]. For example, the

blood tests may be affected by events like infection, bleeding, transfusion, or a particular

medication treatment. Patient specific models can adapt better to this variability while

population based models tend to average the variability out (treat them as a noise) so they

likely do not perform well when these “exceptions” occur. Since wFTL strategies not only

consider the past errors but also focus on the most recent performance of each predictor,

they are able to quickly adapt to the short-term variability and rapid changes. On the

contrary, the standard adaptive model selection approaches (ensemble methods and online

algorithms) are all based on weighting schemas extracted from the entire history. These

historical observations are too long and may prevent us from adapting to these short-term
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Figure 24: Average-MAPE results of the proposed wFTL approaches compared to the sub-

population methods.

variability (shown in Figure 23). Furthermore, in order to change the prediction behavior

of these methods, the weights must be changed. Since there are many different weights it

may take a long time for them to be adapted. This is also reflected by the improvement of

the online learning approaches (OL MW and OL Hedge) for longer observation sequences.

As we can see from the statistical significance test results in Table 17, both OL MW and

OL Hedge have the comparable performance to our wFTL strategies only when the initial

observation length is large than 49.

Figure 24 compares the prediction performance of our wFTL strategies and subpopula-

tion methods. Similarly to the prediction results in Figure 23, the subpopulation methods

achieve better performance when initial observation sequence length is less than 12. This is

because patients start to differentiate and exhibit their unique symptoms as their hospital-

izations go by. For subpopulation methods, it is difficult to accurately find and represent the

target patient’s short-term changes by solely using the static examples from the training set.
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Figure 25: Average-MAPE results of the proposed wFTL approaches compared to the model

adaptation based methods.

The top k similar subset might not be able to reflect the most recent temporal behavior of the

target patient. Moreover, from Figure 24 and the statistical significance test results in Table

18, we can see that the performance of subpopulation methods vary with different values of

k. Choosing the optimal value of k is an challenging issue. In subpopulation methods, the

top k subset is specific to each patient and it is re-constructed when every new observation

is obtained for that specific patient, repeatedly searching for the best subset. As a result,

the training of the subpopulation model becomes very time consuming. It is not practical

to apply such methods in a large scale EHR data set.

We also compare our online model switching strategies (wFTL mr and wFTL se) with

the residual based model adaptation techniques (rLDS+reGP and rLDS+reMTGP) and

the results are shown in Figure 25. As we can see, our wFTL mr and wFTL se switching

strategies have comparable performance to model adaptation techniques although they are

slightly worse numerically than rLDS+reGP and rLDS+reMTGP. We run the pairwise t-test
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for each possible pair from these two categories of methods and none of them are statistically

significantly different at 0.05 level (shown in Table 19). Please note that even though the

two approaches have similar performance, they are different by nature: the wFTL strategies

keep selecting the best predictor from a pool of candidate models based on the weighted

average of past errors while the residual based model adaptation techniques rely on learning

from patient specific residuals to capture the short-term variability in patient dynamics.

Both rLDS+reGP and rLDS+reMTGP models have worse performance at the beginning is

because they require enough residuals to fit the parameters of the GP or MTGP models.

We also note that models from the subpopulation methods and model adaptation ap-

proaches are complementary and they can be combined in the prediction process. For exam-

ple, the model adaptation techniques can be applied to both population based models and

subpopulation models. Moreover, both subpopulation models and adaptive models can be

candidate models in the pool, which can be used by our online model switching strategies.

5.3 SUMMARY

In this chapter, we focused on the task of building an accurate predictive model of irregu-

larly sampled clinical MTS for a patient, which is critical for understanding of the patient

condition, its dynamics, and optimal patient management. We proposed and developed two

forecasting frameworks to address the following two problems simultaneously: (1) patient

specific variations are typically large and population models derived or learned from many

different patients are often unable to support accurate predictions for each individual pa-

tient; and (2) time series observed for one patient at any point in time may be too short and

insufficient to learn a high-quality patient specific model just from the patient’s own data.

First, we built a personalized predictive model via model adaptation. We proposed and

developed an adaptive two-stage forecasting approach which (1) learns the population trend

from a collection of time series for past patients; (2) captures individual-specific short-term

multivariate variability; and (3) adapts by automatically adjusting its predictions based

on new observations. In contrast to the traditional time series forecasting models, our
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model learns from both the population data (time series for other patients) and the target

patient data (time series of past observations for the target patient). Our experimental

results demonstrated that our model can outperform after a short adaptation period other

prediction models and approaches.

Second, we tackled the above challenges by using adaptive model selection. We proposed,

developed and experimented with a new adaptive forecasting framework for building multi-

variate clinical time series models for a patient and for supporting patient specific predictions.

The framework relies on the adaptive model switching approach that at any point in time

selects the most promising time series model out of the pool of many possible models, and

consequently, combines advantages of the population, patient specific and short-term individ-

ualized predictive models. We demonstrated that the adaptive model switching framework

is very promising approach to support personalized time series prediction, and that it is able

to outperform predictions based on pure population and patient specific models, as well as,

other patient specific model adaptation strategies.
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6.0 CONCLUSION

The focus of this dissertation was on the development of multivariate clinical time series

models that are able to support accurate time series predictions. We identified three impor-

tant characteristics of clinical MTS not fully researched in the existing time series literature

and developed new solutions and models to fill these gaps. The main contributions of this

dissertation are summarized in Section 6.1 and some related open questions and research

opportunities are outlined in Section 6.2.

6.1 CONTRIBUTIONS

• We presented a probabilistic framework for learning regularized LDS models from a

limited number of regularly sampled MTS sequences. The framework builds upon the

probabilistic formulation of the LDS model, and casts the optimization of its parameters

as an MAP problem, where the choice of parameter priors biases the model towards

a low-rank solution. We showed the regularized LDS models are able to recover the

intrinsic dimensionality of the MTS data and consequently prevent overfitting problems

of ordinary LDS models. We also showed that regularized LDS models can greatly

improve the forecasting performance on a real-world clinical MTS data.

• We developed a new generalized LDS framework, gLDS, for learning constrained LDS

models from a collection of MTS data. The framework treats both LDS parameters and

the hidden states as unknown variables and applies alternating minimization to learn

them from data. We evaluated our gLDS framework experimentally on four real-world

MTS data sets. We showed that (1) ordinary LDS models learned from gLDS are able

99



to achieve better time series predictive performance than other LDS learning algorithms;

(2) constraints can be flexibly integrated into the learning process to achieve desired

properties of the dynamical models such as stability, low-rankness; and (3) the proposed

temporal smoothing regularization encourages more stable and accurate predictions.

• We built a new hierarchical dynamical system to address the forecasting problem for

irregularly sampled univariate time series. Our model is built by combining the advan-

tages of the LDS and the GP models. Experimentally, we demonstrated that our model

outperforms multiple existing models in terms of its predictive accuracy. Our method

achieved a 3.13% average prediction accuracy improvement on ten CBC laboratory time

series when it was compared against the best performing baseline. A 5.25% average

accuracy improvement was observed when only short-term predictions were considered.

• We presented a two-stage adaptive forecasting model to provide patient specific predic-

tions, which is learned from irregularly sampled multivariate clinical data. First, we

learned a population based LDS model from many different patients. Then, we used a

multi-task Gaussian process to model the patient specific residuals, which are the differ-

ences in between predictions made by the population based model and actually patient

specific observations. We demonstrated the benefits of our approach on the prediction

tasks for irregularly sampled multivariate clinical data, and showed that it can out-

perform both the population based and patient specific predictive models in terms of

prediction accuracy.

• We studied a framework to build the personalized predictive models via adaptive model

selection. Our framework addressed the problems of building accurate forecasting models

from irregularly sampled multivariate clinical data and at the same time providing the

patient specific predictions. Our framework selects the best model for each patient at

every time stamp based on the weighted sum of prediction errors (or deviations) of each

model on past patient specific data. The weights are set so that more recent errors are

more important. The method which makes fewer errors recently is more likely to be

selected. We tested the different error criteria on laboratory time series data and showed

that due to the short-term variability a model switching strategy penalizing more recent

prediction errors is the best online model selection strategy in such clinical environment.
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6.2 OPEN QUESTIONS

We have proposed frameworks to learn better forecasting models for irregularly sampled

multivariate clinical data while supporting patient specific predictions. Our approaches

show superior performance compared to existing approaches. However, there are still many

challenges and open questions that prompt to further investigations.

• Incorporating effect of future events and actions into models. Clinical time

series contain lots of short-term variability. Many of them are caused by clinical events

such as transfusion, taking a medication treatment, etc. These clinical events have

direct influence on the values of clinical MTS and hence, cause the short-term variability.

Explicitly incorporating or modeling the effects of external clinical events and actions on

future laboratory values may potentially boost the performance of the existing work. An

important research problem is to extend our method to event-specific models, which are

specialized for patient specific short-term variability. More specifically, a series of clinical

events can be viewed as a series of time dependent exogenous inputs and events transit

from one to the others based on the patients’ current status and the observed values

of laboratory tests. Basically, we can either use a different transition matrix for each

clinical action/event or supply a value of an external factor into the transition matrix

of the hidden states (A). Also, partially observable Markov decision process (POMDP)

could potentially be used to model the real-world sequential clinical decision making

processes.

• Regularized MTGP learning. As observed before (in Figure 22), instance-specific

MTGP models exhibit good performance when enough observations are obtained and

perform poorly initially. This is due to the fact that the MTGP models are more com-

plex and have more parameters they need to learn. More specifically, the number of

parameters in KC in eq.(2.12) (a matrix measuring the similarities between time series)

are quadratic in the number of time series. Given the very limited number of available

data at the beginning, the MTGP models may run into the overfitting problem which

yield to low accuracy. Therefore, it is worthwhile to investigate how we can learn the

MTGP models from a small amount of data and prevent the overfitting problems. A
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further direction would be reducing the complexity of KC by enforcing or constraining

the structure of it and consequently, guarantee the stable learning process and avoid the

overfitting problems.

• Similarity of length-varying irregularly sampled MTS. Personalized predictive

methods discussed in Section 2.3 from different categories can be combined to support

more accurate predictions. Therefore, we can apply our model selection based adaptive

prediction framework (Section 5.2) to a pool of candidate models that include models

learned from subpopulation. This opens a new research question of identifying the best

possible time series subpopulation. Besides identifying similar MTS sequences by first

picking an appropriate probabilistic model and then using the likelihood as an abstraction

to represent the sequence, like the work by Huang et al. [Huang et al., 2014], can we

direct compute the similarity between two length-varying irregularly sampled MTS? One

potential solution is to discretize the irregularly sampled sequence first and then use

dynamic time warping to compute the similarities between each sequence.

• Exploration of non-linear dynamical models. Non-linearity increases the time series

models’ expressive ability. Therefore, we can explore the opportunities of incorporating

advanced variants of both LDS and GP models into the currently developed framework.

Possible directions like replacing LDS models with unscented Kalman filter [Wan and

Van Der Merwe, 2000], or using GP models as the non-linear transformation operators,

such as in the state-space model with transition. The complexity of non-linear models

may give rise to overfitting and computation issues. Another possible direction would be

starting with linear models when the observations are few and switching to non-linear

models when sufficient number of observations is collected.
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APPENDIX A

KALMAN FILTER ALGORITHM FOR LDS

For the sake of notational brevity, we omit the explicit sample index (“l”). Let denote

ẑi|T ≡ E[zi|Y], Mi|T ≡ E[ziz
>
i |Y], Mi,i−1|T ≡ E[ziz

>
i−1|Y], Pi|T = VAR[zi|Y], and Pi,i−1|T =

VAR[ziz
>
i−1|Y]. Let ẑi|i−1 be the priori estimation of E[zi|Y1:i−1], ẑi−1|i−1 be the posteriori

estimation of E[zi−1|Y1:i−1], Pi|i−1 be the priori estimate error covariance of E[(zi−ẑi|i−1)(zi−
ẑi|i−1)

>] and Pi−1|i−1 be the posteriori estimate error covariance of E[(zi−1− ẑi−1|i−1)(zi−1−
ẑi−1|i−1)

>].

Algorithm 6 Kalman filter algorithm for LDS
INPUT:
• MTS data Y.
• Current step LDS parameters: Ω = {A,C,Q,R, ξ,Ψ}.

PROCEDURE:

1: // Initialize the recrusion
2: ẑ1|1 = ξ and P1|1 = Ψ.
3: // Start the recrusion
4: for i = 2 → T do
5: // Time Update:
6: ẑi|i−1 = Aẑi−1|i−1
7: Pi|i−1 = APi−1|i−1A

> +Q
8: // Measure Update:
9: Ki = Pi|i−1C

>(CPi|i−1C
> +R)−1

10: ẑi|i = ẑi|i−1 +Ki(yi − Cẑi|i−1)
11: Pi|i = Pi|i−1 −KiCPi|i−1
12: end for

OUTPUT: {ẑi|i−1}Ti=2, {ẑi|i}Ti=1, {Pi|i}Ti=1, {Pi|i−1}Ti=2 and {Ki}Ti=1.

103



APPENDIX B

E-STEP BACKWARD ALGORITHM FOR LDS

Algorithm 7 EM: E-step backward algorithm for LDS
INPUT:
• Output from Kalman filter algorithm: {ẑi|i−1}Ti=2, {ẑi|i}Ti=1, {Pi|i}Ti=1, {Pi|i−1}Ti=2 and {Ki}Ti=1.

Kalman filter algorithm is presented in Algorithm 6 in Appendix A.
• Current step LDS parameters: Ω = {A,C,Q,R, ξ,Ψ}.

PROCEDURE:

1: // Initialize the recrusion
2: MT |T = PT |T + ẑT |T ẑ

>
T |T

3: JT−1 = PT−1|T−1A
>(PT |T−1)

−1

4: PT−1|T = PT−1|T−1 + JT−1(PT |T − PT |T−1)J>T−1
5: ẑT−1|T = ẑT−1|T−1 + JT−1(ẑT |T −AẑT−1|T−1)
6: PT,T−1|T = (I −KTC)APT−1|T−1
7: MT,T−1|T = PT,T−1|T + ẑT |T ẑ

>
T−1|T

8: // Start the recrusion
9: for i = T-1 → 1 do

10: Mi|T = Pi|T + ẑi|T ẑ
>
i|T

11: Ji−1 = Pi−1|i−1A
>(Pi|i−1)

−1

12: Pi,i−1|T = Pi|iJ
>
i−1 + Ji(Pi+1,t|T −APi|i)J>i−1

13: Mi,i−1|T = Pi,i−1|T + ẑi|T ẑ
>
i−1|T

14: ẑi−1|T = ẑi−1|i−1 + Ji−1(ẑi|T −Aẑi−1|i−1)
15: Pi−1|T = Pi−1|i−1 + Ji−1(Pi|T − Pi|i−1)J>i−1
16: end for

OUTPUT: {ẑi−1|T }Ti=1, {Mi|T }Ti=1 and {Mi,i−1|T }Ti=1.
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APPENDIX C

PROOF OF THEOREM 1

Proof. Let denote ∆ ≡ ∑N
l=1

∑Tl−1
i=1 EZl [zli(z

l
i)
>|Yl]. Given the gradient of h(A) (eq.(3.5)),

we have

‖ 5 h(X)−5h(Y )‖F
=‖Q−1(X − Y )∆ + λG(X − Y )‖F
≤‖Q−1‖F · ‖∆‖F · ‖X − Y ‖F + λG · ‖X − Y ‖F
=(‖Q−1‖F · ‖∆‖F + λG) · ‖X − Y ‖F

Since we have ‖ 5 h(X)−5h(Y )‖F ≤ L · ‖X − Y ‖F , where L = ‖Q−1‖F · ‖∆‖F + λG.

5h(A) has Lipschitz continuous with constant L. According to [Shor, 1968, Fornasier and

Rauhut, 2008], we have

∥∥∥h(A(k)) + λN‖A(k)‖∗ − h(A(∗))− λN‖A(∗)‖∗
∥∥∥ ≤ ∥∥∥A(0) − A∗

∥∥∥2
F
/2tk

where A(0) is the initial value and A∗ is the optimal value for A; k is the number of iterations.
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APPENDIX D

PROOF OF THEOREM 2

Proof. From eq.(3.8), we can have the following equation transformation,

argmin
A
g(A) +

λG
2
‖A‖2F ⇔ argmin

A

1

2

N∑
l=1

Tl∑
i=2

EZl

[
(zli − Azli−1)

>Q−1(zli − Azli−1)

]
+
λG
2
‖A‖2F

⇔argmin
A

1

2

N∑
l=1

Tl∑
i=2

Tr

[
AEZl [zli−1(z

l
i−1)

>]A>Q−1 − 2EZl [zli(z
l
i−1)

>]A>Q−1 + λGA
>A

]

⇔argmin
A

1

2
Tr

[
L>A

N∑
l=1

Tl∑
i=2

EZl [zli−1(z
l
i−1)

>]A>L− 2L>
N∑
l=1

Tl∑
i=2

EZl [zli(z
l
i−1)

>]A>L+ λGA
>A

]

⇔argmin
A

0.5 vec(A>L)>(Id ⊗
N∑
l=1

Tl∑
i=2

EZl [zli−1(z
l
i−1)

>]) vec(A>L)

− vec(L)>(Id ⊗
N∑
l=1

Tl∑
i=2

EZl [zli(z
l
i−1)

>]) vec(A>L) + 0.5λG vec(A>)> vec(A>)

⇔argmin
A

0.5 vec(A>)>(Q−1 ⊗
N∑
l=1

Tl∑
i=2

EZl [zli−1(z
l
i−1)

>] + λGId2) vec(A>)

− vec(L)>(L> ⊗
N∑
l=1

Tl∑
i=2

EZl [zli(z
l
i−1)

>]) vec(A>)

⇔argmin
a

1

2
a>Ha− b>a

where Q−1 = LL>, H and b are defined in eq.(3.10) and eq.(3.11).
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APPENDIX E

PROOF OF THEOREM 4

Proof. g(A) is differentiable with respect to A, and its gradient is

5g(A) = 2(AZ−Z>− − Z+Z>− + γ/λA)

Using simple algebraic manipulation we arrive at

|| 5 g(X)−5g(Y )||F
=2||(X − Y )(Z−Z>−) + γ/λ(X − Y )||F
≤2‖Z−Z>−‖F · ||X − Y ||F + 2γ/λ · ||X − Y ||F
=2(‖Z−Z>−‖F + γ/λ) · ||X − Y ||F

The inequality holds because of the sub-multiplicative property of Frobenius norm. Since

we know for eq.(3.35), minA g(A)+γA‖A‖∗, and g(A) has Lipschitz continuous gradient with

constant 2(‖Z−Z>−‖F + γ/λ), according to [Fornasier and Rauhut, 2008,Shor, 1968] we have

∥∥∥g(A(k)) + γA‖A(k)‖∗ − g(A(∗))− γA‖A(∗)‖∗
∥∥∥

≤
∥∥∥A(0) − A∗

∥∥∥2
F
/2tk

where A(0) is the initial value and A∗ is the optimal value for A; k is the number of iterations.
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APPENDIX F

PROOF OF THEOREM 5

Proof. We will use the following equation to show the equivalence.

tr(Ak×lBl×mCm×n) = vec(A>)>(Ik ⊗B) vec(C)

min
A
‖Z+ − AZ−‖2F

⇔min
A
Tr[(Z>+ − Z>−A

>)(Z+ − AZ−)]

⇔min
A
Tr[AZ−Z>−A

> − 2IdZ+Z>−A
>]

⇔min
A

vec(A>)>(Id ⊗ Z−Z>−) vec(A>)− 2 vec(Id)
>(Id ⊗ Z+Z>−) vec(A>)

⇔min
a
a>(Id ⊗ Z−Z>−)a− 2 vec(Id)

>(Id ⊗ Z+Z>−)a

⇔min
a
a>(Id ⊗ Z−Z>−)a− 2

(
(Id ⊗ Z−Z>+) vec(Id)

)>
a

⇔min
a
a>Ba− 2q>a

where a = vec(A>), B = Id ⊗ Z−Z>− and q = (Id ⊗ Z−Z>+) vec(Id).
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APPENDIX G

ADDITIONAL RESULTS ON QUALITATIVE PREDICTIONS
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Figure 26: Predictions for flour price series in Minneapolis by using gLDS-smooth.
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Figure 27: Predictions for flour price series in Kansas City by using gLDS-smooth.
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APPENDIX H

ADDITIONAL RESULTS ON STABILITY EFFECTS

Time indices
0 50 100 150 200 250 300 350 400

V
al

ue
s

100

150

200

250
gLDS-stable

Buffalo
Minneapolis
Kansas City

Future

History

Figure 28: Training data and simulated sequences from gLDS-stable model in fourprice data.

111



Time indices
0 100 200 300 400 500 600

V
al

ue
s

0

100

200

300

400

500

600

700
gLDS-stable

Evaporation
Total Global Radiation
Net Radiation
Saturation Deficit at Max Temp.
Mean Wind Speed
Saturation Deficit at Mean Temp.

Hist.

Future

Figure 29: Training data and simulated sequences from gLDS-stable model in h2o evap data.
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Figure 30: Training data and simulated sequences from gLDS-stable model in clinical data

for one patient.
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APPENDIX I

ADDITIONAL RESULTS ON SPARSIFICATION EFFECTS
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Figure 31: Intrinsic dimensionality recovery in evap data.
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APPENDIX J

OVERALL PREDICTION PERFORMANCE

The experimental results of overall prediction performance on all ten lab tests are shown in

Figure 32. Detailed numerical results are shown in Table 11.

Table 11: MAE on CBC test samples for overall prediction tasks.

Method AR LDS GP WAR HDSGA WLDS HDSGL

WBC 4.7941 ± 0.0027 4.6805 ± 0.0026 5.0235 ± 0.0025 4.6400 ± 0.0026 4.5390 ± 0.0026 4.5720 ± 0.0027 4.4710 ± 0.0027

HCT 3.6893 ± 0.0007 3.3925 ± 0.0007 3.4253 ± 0.0007 3.5431 ± 0.0007 3.5315 ± 0.0007 3.3271 ± 0.0007 3.2177 ± 0.0007

HGB 1.3218 ± 0.0004 1.1755 ± 0.0004 1.1208 ± 0.0004 1.3198 ± 0.0004 1.3171 ± 0.0004 1.1577 ± 0.0004 1.1348 ± 0.0004

MCHC 0.6012 ± 0.0004 0.5959 ± 0.0004 0.6724 ± 0.0004 0.5963 ± 0.0004 0.5458 ± 0.0004 0.5701 ± 0.0004 0.5297 ± 0.0004

MCH 0.9941 ± 0.0006 0.9091 ± 0.0007 1.1154 ± 0.0007 0.8480 ± 0.0006 0.7975 ± 0.0006 0.8033 ± 0.0007 0.7831 ± 0.0007

MCV 2.5619 ± 0.0012 2.3410 ± 0.0014 2.8034 ± 0.0018 2.0814 ± 0.0012 1.9804 ± 0.0012 2.0294 ± 0.0013 1.9284 ± 0.0013

MPV 0.9412 ± 0.0005 0.9029 ± 0.0005 1.1392 ± 0.0005 0.9059 ± 0.0005 0.8554 ± 0.0005 0.8406 ± 0.0005 0.7901 ± 0.0005

PLT 102.5242 ± 0.0587 92.2360 ± 0.0561 120.4928 ± 0.0665 103.6683 ± 0.0587 100.6288 ± 0.0587 88.9408 ± 0.0555 85.8991 ± 0.0555

RBC 0.4242 ± 0.0002 0.3812 ± 0.0002 0.4453 ± 0.0002 0.4168 ± 0.0002 0.3663 ± 0.0002 0.3362 ± 0.0002 0.3059 ± 0.0002

RDW 1.4216 ± 0.0010 1.3860 ± 0.0010 1.8794 ± 0.0010 1.3427 ± 0.0010 1.2417 ± 0.0010 1.3185 ± 0.0010 1.2174 ± 0.0010
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Figure 32: MAE on ten CBC lab tests for overall predictions.
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APPENDIX K

SHORT-TERM PREDICTION PERFORMANCE

The experimental results of short-term prediction performance on all ten lab tests are shown

in Figure 33. Detailed numerical results are shown in Table 12.

Table 12: MAE on CBC test samples for short-term prediction tasks.

Method AR LDS GP WAR HDSGA WLDS HDSGL

WBC 3.5072 ± 0.0103 3.3998 ± 0.0103 3.9007 ± 0.0111 3.4993 ± 0.0108 3.2973 ± 0.0108 3.4756 ± 0.0116 3.2170 ± 0.0116

HCT 3.4376 ± 0.0096 2.9078 ± 0.0093 3.6121 ± 0.0110 2.9608 ± 0.0087 2.7588 ± 0.0087 3.0218 ± 0.0097 2.8859 ± 0.0100

HGB 0.9972 ± 0.0021 0.9528 ± 0.0023 1.2865 ± 0.0042 0.9627 ± 0.0026 0.8617 ± 0.0026 0.8810 ± 0.0033 0.9227 ± 0.0033

MCHC 0.4098 ± 0.0010 0.4019 ± 0.0011 0.5384 ± 0.0015 0.4091 ± 0.0011 0.3687 ± 0.0011 0.3739 ± 0.0014 0.3129 ± 0.0014

MCH 0.5439 ± 0.0021 0.4911 ± 0.0021 0.6975 ± 0.0045 0.4998 ± 0.0021 0.4594 ± 0.0021 0.5148 ± 0.0042 0.4522 ± 0.0042

MCV 1.3327 ± 0.0057 1.2458 ± 0.0058 1.9629 ± 0.0125 1.2734 ± 0.0059 1.2330 ± 0.0059 1.2288 ± 0.0115 1.1729 ± 0.0115

MPV 0.4628 ± 0.0014 0.4122 ± 0.0014 0.6472 ± 0.0019 0.4213 ± 0.0014 0.3708 ± 0.0014 0.4066 ± 0.0019 0.3055 ± 0.0019

PLT 49.6031 ± 0.1156 43.4901 ± 0.1191 71.5818 ± 0.1603 45.0584 ± 0.1208 45.0584 ± 0.1208 40.8308 ± 0.1669 40.2046 ± 0.1669

RBC 0.3862 ± 0.0011 0.3685 ± 0.0011 0.4120 ± 0.0015 0.3670 ± 0.0013 0.3670 ± 0.0013 0.3346 ± 0.0013 0.2820 ± 0.0013

RDW 0.5036 ± 0.0010 0.4019 ± 0.0012 1.2055 ± 0.0043 0.4476 ± 0.0012 0.3971 ± 0.0012 0.4136 ± 0.0044 0.3751 ± 0.0044
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Figure 33: MAE on ten CBC lab tests for short-term predictions.
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APPENDIX L

CLINICAL EXPERT EVALUATION

The clinical expert evaluation results of both overall and short-term prediction performance

on all ten lab tests are shown in Figure 34. Detailed numerical results are shown in Table

13 and Table 14.
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Figure 34: Clinical evaluations of HDSGL for both overall prediction and short-term predic-

tion quality distributions.
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Table 13: Clinical evaluation for overall prediction.

Excellent Good Acceptable Bad

WBC 0.0844 0.0842 0.1557 0.6757

HCT 0.2696 0.2228 0.2911 0.2165

HGB 0.2222 0.2083 0.2938 0.2757

MCHC 0.9205 0.0770 0.0024 0.0000

MCH 0.8343 0.1082 0.0539 0.0036

MCV 0.8815 0.0919 0.0263 0.0004

MPV 0.3411 0.2545 0.2638 0.1405

PLT 0.0866 0.0827 0.1514 0.6793

RBC 0.2919 0.2348 0.2932 0.1800

RDW 0.4754 0.2630 0.1968 0.0648

Table 14: Clinical evaluation for short-term prediction.

Excellent Good Acceptable Bad

WBC 0.1964 0.1798 0.2538 0.3699

HCT 0.3044 0.2469 0.2868 0.1619

HGB 0.2924 0.2320 0.2882 0.1873

MCHC 0.9903 0.0095 0.0002 0.0000

MCH 0.9683 0.0243 0.0063 0.0011

MCV 0.9749 0.0184 0.0057 0.0011

MPV 0.6497 0.2567 0.0839 0.0096

PLT 0.2164 0.1839 0.2611 0.3386

RBC 0.4355 0.2788 0.2068 0.0790

RDW 0.8400 0.1075 0.0389 0.0136

120



APPENDIX M

AVERAGE-MAPE RESULTS OF MODEL ADAPTATION APPROACHES

Table 15: Average-MAPE results (means and standard errors) for the different initial obser-

vation sequence lengths. reGP and reMTGP are short for rLDS+reGP and rLDS+reMTGP.

The best performing method is shown in bold. Also in bold are the methods that are not

statistically significantly different from the best method at 0.05 significance level.

Method 1 2 3 4 5 6 7 8 9

P Mean 6.80±0.07 6.76±0.08 6.72±0.08 6.68±0.08 6.66±0.08 6.67±0.09 6.67±0.09 6.70±0.10 6.77±0.10

P GP 3.05±0.04 3.04±0.04 3.02±0.05 3.00±0.05 3.01±0.05 2.99±0.05 2.97±0.05 2.94±0.05 2.93±0.05

P MTGP 3.33±0.05 3.32±0.05 3.30±0.05 3.27±0.05 3.26±0.05 3.25±0.06 3.22±0.06 3.21±0.06 3.19±0.06

P rLDS 2.96±0.04 2.94±0.04 2.92±0.04 2.88±0.04 2.88±0.05 2.87±0.05 2.84±0.05 2.83±0.05 2.81±0.05

I Mean 4.28±0.06 4.32±0.06 4.37±0.07 4.38±0.07 4.42±0.07 4.46±0.07 4.47±0.08 4.51±0.08 4.55±0.08

I GP 3.33±0.05 3.32±0.05 3.29±0.05 3.24±0.05 3.23±0.05 3.21±0.06 3.16±0.05 3.15±0.06 3.13±0.06

I MTGP 3.72±0.06 3.72±0.06 3.73±0.06 3.70±0.06 3.70±0.06 3.68±0.07 3.63±0.07 3.61±0.07 3.57±0.07

I rLDS 4.94±0.23 5.02±0.24 5.08±0.26 5.05±0.27 5.03±0.29 4.51±0.11 4.28±0.09 4.16±0.09 4.04±0.10

reGP 3.64±0.06 3.33±0.05 3.22±0.05 3.13±0.05 3.08±0.06 3.03±0.06 2.96±0.06 2.89±0.06 2.84±0.06

reMTGP 3.60±0.06 3.29±0.05 3.19±0.05 3.10±0.05 3.05±0.05 3.00±0.06 2.94±0.06 2.88±0.06 2.84±0.06

Method 10 11 12 13 14 15 16 17 18

P Mean 6.82±0.11 6.91±0.12 6.97±0.13 7.11±0.14 7.23±0.15 7.39±0.16 7.50±0.16 7.58±0.17 7.70±0.18

P GP 2.92±0.05 2.90±0.06 2.90±0.06 2.90±0.07 2.91±0.07 2.91±0.08 2.88±0.08 2.83±0.08 2.82±0.08

P MTGP 3.17±0.06 3.16±0.07 3.14±0.07 3.13±0.08 3.12±0.08 3.13±0.09 3.09±0.08 3.06±0.08 3.08±0.09

P rLDS 2.81±0.05 2.79±0.06 2.78±0.06 2.80±0.06 2.81±0.07 2.82±0.07 2.82±0.07 2.77±0.07 2.77±0.08

I Mean 4.57±0.08 4.58±0.09 4.58±0.09 4.63±0.10 4.70±0.10 4.76±0.11 4.79±0.12 4.80±0.12 4.81±0.13

I GP 3.09±0.06 3.05±0.06 3.02±0.06 3.02±0.06 3.04±0.07 3.01±0.07 3.00±0.07 2.98±0.08 2.95±0.08

I MTGP 3.51±0.07 3.44±0.07 3.38±0.07 3.36±0.07 3.37±0.08 3.35±0.09 3.31±0.09 3.29±0.09 3.23±0.10

I rLDS 3.87±0.09 3.70±0.08 3.60±0.08 3.55±0.09 3.48±0.09 3.40±0.09 3.33±0.09 3.26±0.09 3.21±0.10

reGP 2.81±0.06 2.76±0.06 2.73±0.06 2.71±0.06 2.70±0.07 2.67±0.07 2.65±0.07 2.60±0.08 2.58±0.08

reMTGP 2.81±0.06 2.76±0.06 2.74±0.06 2.72±0.06 2.72±0.07 2.70±0.07 2.67±0.07 2.63±0.07 2.62±0.08

Method 19 20 21 22 23 24 25 26 27

P Mean 7.74±0.19 7.78±0.20 7.88±0.21 8.01±0.22 8.13±0.23 8.17±0.23 8.28±0.25 8.49±0.26 8.66±0.27

P GP 2.84±0.09 2.80±0.09 2.78±0.09 2.82±0.10 2.82±0.10 2.80±0.10 2.76±0.10 2.78±0.11 2.82±0.11

P MTGP 3.11±0.09 3.10±0.10 3.08±0.10 3.13±0.11 3.18±0.12 3.15±0.11 3.13±0.12 3.14±0.12 3.15±0.13

P rLDS 2.79±0.08 2.79±0.08 2.80±0.09 2.84±0.09 2.87±0.10 2.86±0.10 2.85±0.10 2.89±0.10 2.96±0.10

I Mean 4.80±0.13 4.79±0.14 4.80±0.14 4.85±0.15 4.90±0.15 4.89±0.15 4.93±0.16 5.03±0.16 5.12±0.17

I GP 2.93±0.08 2.92±0.08 2.91±0.09 2.95±0.10 2.92±0.10 2.89±0.09 2.88±0.10 2.90±0.10 2.92±0.11

I MTGP 3.20±0.10 3.18±0.10 3.19±0.11 3.23±0.11 3.24±0.12 3.24±0.12 3.23±0.13 3.28±0.13 3.31±0.14

I rLDS 3.18±0.10 3.16±0.10 3.16±0.11 3.15±0.11 3.13±0.11 3.12±0.11 3.10±0.11 3.05±0.10 3.08±0.11

reGP 2.60±0.08 2.57±0.09 2.53±0.09 2.53±0.09 2.53±0.10 2.51±0.09 2.44±0.09 2.46±0.09 2.48±0.10

reMTGP 2.63±0.08 2.60±0.08 2.59±0.09 2.61±0.09 2.60±0.10 2.58±0.10 2.53±0.10 2.54±0.10 2.58±0.11
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Method 28 29 30 31 32 33 34 35 36

P Mean 8.79±0.28 8.92±0.29 9.00±0.30 9.11±0.31 9.16±0.33 9.22±0.34 9.22±0.36 9.23±0.37 9.21±0.38

P GP 2.80±0.11 2.85±0.12 2.87±0.13 2.89±0.13 2.96±0.14 3.02±0.15 3.08±0.15 3.08±0.16 3.10±0.16

P MTGP 3.11±0.13 3.18±0.14 3.22±0.14 3.26±0.15 3.26±0.16 3.28±0.17 3.35±0.17 3.35±0.18 3.38±0.19

P rLDS 2.96±0.11 3.00±0.11 3.04±0.12 3.04±0.12 3.07±0.13 3.12±0.14 3.18±0.14 3.18±0.15 3.18±0.15

I Mean 5.14±0.17 5.17±0.18 5.16±0.18 5.17±0.18 5.14±0.19 5.15±0.20 5.16±0.20 5.14±0.21 5.09±0.21

I GP 2.91±0.11 2.93±0.11 2.93±0.12 2.95±0.12 2.96±0.13 3.02±0.13 3.06±0.14 3.05±0.14 3.07±0.14

I MTGP 3.30±0.15 3.34±0.15 3.37±0.15 3.42±0.16 3.46±0.17 3.47±0.18 3.54±0.19 3.55±0.20 3.57±0.20

I rLDS 3.07±0.11 3.07±0.12 3.07±0.12 3.08±0.12 3.07±0.13 3.07±0.13 3.10±0.14 3.06±0.14 3.07±0.14

reGP 2.46±0.10 2.49±0.11 2.52±0.11 2.51±0.12 2.54±0.12 2.59±0.13 2.64±0.14 2.62±0.14 2.63±0.14

reMTGP 2.57±0.11 2.59±0.12 2.61±0.12 2.60±0.13 2.62±0.13 2.66±0.14 2.71±0.15 2.70±0.15 2.71±0.16

Method 37 38 39 40 41 42 43 44 45

P Mean 9.26±0.39 9.23±0.39 9.26±0.40 9.29±0.40 9.27±0.40 9.32±0.40 9.38±0.41 9.42±0.42 9.48±0.42

P GP 3.13±0.17 3.14±0.17 3.18±0.18 3.21±0.18 3.23±0.19 3.29±0.20 3.33±0.20 3.35±0.20 3.37±0.20

P MTGP 3.41±0.19 3.44±0.20 3.51±0.20 3.55±0.21 3.52±0.21 3.58±0.22 3.63±0.23 3.65±0.23 3.68±0.24

P rLDS 3.21±0.15 3.23±0.15 3.27±0.16 3.30±0.16 3.30±0.17 3.35±0.17 3.40±0.17 3.43±0.18 3.46±0.18

I Mean 5.07±0.21 5.02±0.22 5.04±0.21 5.05±0.21 5.00±0.21 5.03±0.21 5.06±0.21 5.06±0.22 5.07±0.22

I GP 3.06±0.14 3.08±0.14 3.10±0.15 3.12±0.15 3.11±0.15 3.12±0.16 3.16±0.16 3.19±0.17 3.20±0.16

I MTGP 3.54±0.21 3.57±0.21 3.63±0.22 3.64±0.23 3.63±0.23 3.65±0.24 3.67±0.24 3.66±0.25 3.63±0.25

I rLDS 3.04±0.14 3.06±0.14 3.12±0.15 3.17±0.15 3.20±0.16 3.24±0.16 3.30±0.16 3.32±0.17 3.33±0.17

reGP 2.64±0.14 2.67±0.15 2.68±0.15 2.71±0.16 2.72±0.16 2.77±0.17 2.81±0.17 2.84±0.17 2.88±0.18

reMTGP 2.73±0.16 2.75±0.17 2.79±0.17 2.82±0.18 2.83±0.18 2.89±0.19 2.93±0.19 2.97±0.20 3.01±0.20

Method 46 47 48 49 50 51 52 53 54

P Mean 9.58±0.42 9.67±0.43 9.72±0.44 9.75±0.45 9.72±0.46 9.76±0.47 9.80±0.48 9.98±0.48 10.00±0.47

P GP 3.33±0.21 3.37±0.21 3.43±0.22 3.48±0.22 3.48±0.23 3.42±0.22 3.46±0.23 3.44±0.24 3.37±0.23

P MTGP 3.67±0.25 3.70±0.25 3.73±0.26 3.76±0.27 3.72±0.27 3.54±0.25 3.56±0.25 3.58±0.26 3.56±0.26

P rLDS 3.45±0.19 3.42±0.19 3.42±0.19 3.43±0.20 3.41±0.21 3.34±0.20 3.29±0.20 3.33±0.21 3.31±0.21

I Mean 5.12±0.22 5.12±0.23 5.10±0.24 5.05±0.25 4.97±0.25 4.94±0.26 4.90±0.26 4.91±0.26 4.83±0.25

I GP 3.18±0.17 3.17±0.17 3.18±0.18 3.20±0.18 3.20±0.19 3.11±0.18 3.09±0.19 3.08±0.20 3.02±0.19

I MTGP 3.61±0.26 3.63±0.27 3.59±0.28 3.57±0.28 3.49±0.28 3.41±0.28 3.48±0.28 3.46±0.29 3.31±0.25

I rLDS 3.32±0.18 3.31±0.17 3.33±0.17 3.33±0.18 3.33±0.19 3.29±0.19 3.26±0.19 3.28±0.20 3.25±0.20

reGP 2.86±0.18 2.87±0.19 2.91±0.19 2.94±0.20 2.97±0.21 2.91±0.20 2.92±0.20 2.89±0.20 2.83±0.21

reMTGP 2.99±0.21 2.96±0.20 2.96±0.21 2.97±0.22 2.98±0.23 2.94±0.22 2.96±0.23 2.93±0.23 2.79±0.20

Method 55 56 57 58 59 60

P Mean 9.99±0.46 9.99±0.44 10.18±0.44 10.24±0.45 10.28±0.46 10.26±0.48

P GP 3.35±0.23 3.45±0.23 3.35±0.20 3.35±0.21 3.31±0.21 3.29±0.22

P MTGP 3.49±0.26 3.56±0.27 3.54±0.28 3.55±0.29 3.60±0.29 3.59±0.30

P rLDS 3.22±0.20 3.26±0.19 3.19±0.17 3.16±0.17 3.18±0.18 3.17±0.18

I Mean 4.75±0.24 4.66±0.22 4.67±0.23 4.68±0.24 4.71±0.24 4.71±0.25

I GP 2.96±0.19 2.97±0.19 2.91±0.18 2.92±0.18 2.96±0.18 2.98±0.19

I MTGP 3.21±0.24 3.09±0.19 3.02±0.18 3.05±0.18 3.10±0.18 3.04±0.18

I rLDS 3.10±0.18 3.06±0.19 2.98±0.19 2.96±0.19 2.98±0.19 2.97±0.20

reGP 2.77±0.20 2.83±0.21 2.71±0.16 2.70±0.17 2.72±0.17 2.75±0.18

reMTGP 2.76±0.21 2.81±0.22 2.68±0.17 2.65±0.18 2.67±0.18 2.72±0.18
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APPENDIX N

COMPARISON OF RESULTS FOR POPULATION BASED AND PATIENT

SPECIFIC MODELS

Table 16: Average-MAPE results (means and standard errors) of all models in the pool

and two wFTL methods for the different initial observation sequence lengths. The best

performing method is shown in bold. Also in bold are the methods that are not statistically

significantly different from the best method at 0.05 significance level.

Method 1 2 3 4 5 6 7 8 9

P Mean 6.80±0.07 6.76±0.08 6.72±0.08 6.68±0.08 6.66±0.08 6.67±0.09 6.67±0.09 6.70±0.10 6.77±0.10

P GP 3.05±0.04 3.04±0.04 3.02±0.05 3.00±0.05 3.01±0.05 2.99±0.05 2.97±0.05 2.94±0.05 2.93±0.05

P MTGP 3.33±0.05 3.32±0.05 3.30±0.05 3.27±0.05 3.26±0.05 3.25±0.06 3.22±0.06 3.21±0.06 3.19±0.06

P rLDS 2.96±0.04 2.94±0.04 2.92±0.04 2.88±0.04 2.88±0.05 2.87±0.05 2.84±0.05 2.83±0.05 2.81±0.05

I Mean 4.28±0.06 4.32±0.06 4.37±0.07 4.38±0.07 4.42±0.07 4.46±0.07 4.47±0.08 4.51±0.08 4.55±0.08

I GP 3.33±0.05 3.32±0.05 3.29±0.05 3.24±0.05 3.23±0.05 3.21±0.06 3.16±0.05 3.15±0.06 3.13±0.06

I MTGP 3.72±0.06 3.72±0.06 3.73±0.06 3.70±0.06 3.70±0.06 3.68±0.07 3.63±0.07 3.61±0.07 3.57±0.07

I rLDS 4.94±0.23 5.02±0.24 5.08±0.26 5.05±0.27 5.03±0.29 4.51±0.11 4.28±0.09 4.16±0.09 4.04±0.10

wFTL se 3.24±0.05 3.22±0.05 3.20±0.05 3.15±0.06 3.14±0.06 3.09±0.06 3.04±0.05 2.99±0.06 2.94±0.05

wFTL mr 3.24±0.05 3.22±0.05 3.20±0.05 3.16±0.06 3.14±0.06 3.09±0.05 3.04±0.05 2.99±0.05 2.94±0.05

Method 10 11 12 13 14 15 16 17 18

P Mean 6.82±0.11 6.91±0.12 6.97±0.13 7.11±0.14 7.23±0.15 7.39±0.16 7.50±0.16 7.58±0.17 7.70±0.18

P GP 2.92±0.05 2.90±0.06 2.90±0.06 2.90±0.07 2.91±0.07 2.91±0.08 2.88±0.08 2.83±0.08 2.82±0.08

P MTGP 3.17±0.06 3.16±0.07 3.14±0.07 3.13±0.08 3.12±0.08 3.13±0.09 3.09±0.08 3.06±0.08 3.08±0.09

P rLDS 2.81±0.05 2.79±0.06 2.78±0.06 2.80±0.06 2.81±0.07 2.82±0.07 2.82±0.07 2.77±0.07 2.77±0.08

I Mean 4.57±0.08 4.58±0.09 4.58±0.09 4.63±0.10 4.70±0.10 4.76±0.11 4.79±0.12 4.80±0.12 4.81±0.13

I GP 3.09±0.06 3.05±0.06 3.02±0.06 3.02±0.06 3.04±0.07 3.01±0.07 3.00±0.07 2.98±0.08 2.95±0.08

I MTGP 3.51±0.07 3.44±0.07 3.38±0.07 3.36±0.07 3.37±0.08 3.35±0.09 3.31±0.09 3.29±0.09 3.23±0.10

I rLDS 3.87±0.09 3.70±0.08 3.60±0.08 3.55±0.09 3.48±0.09 3.40±0.09 3.33±0.09 3.26±0.09 3.21±0.10

wFTL se 2.92±0.06 2.88±0.06 2.83±0.06 2.82±0.06 2.83±0.07 2.82±0.07 2.80±0.07 2.75±0.08 2.74±0.08

wFTL mr 2.90±0.05 2.85±0.05 2.82±0.06 2.82±0.06 2.83±0.06 2.82±0.07 2.82±0.07 2.78±0.07 2.75±0.08
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Method 19 20 21 22 23 24 25 26 27

P Mean 7.74±0.19 7.78±0.20 7.88±0.21 8.01±0.22 8.13±0.23 8.17±0.23 8.28±0.25 8.49±0.26 8.66±0.27

P GP 2.84±0.09 2.80±0.09 2.78±0.09 2.82±0.10 2.82±0.10 2.80±0.10 2.76±0.10 2.78±0.11 2.82±0.11

P MTGP 3.11±0.09 3.10±0.10 3.08±0.10 3.13±0.11 3.18±0.12 3.15±0.11 3.13±0.12 3.14±0.12 3.15±0.13

P rLDS 2.79±0.08 2.79±0.08 2.80±0.09 2.84±0.09 2.87±0.10 2.86±0.10 2.85±0.10 2.89±0.10 2.96±0.10

I Mean 4.80±0.13 4.79±0.14 4.80±0.14 4.85±0.15 4.90±0.15 4.89±0.15 4.93±0.16 5.03±0.16 5.12±0.17

I GP 2.93±0.08 2.92±0.08 2.91±0.09 2.95±0.10 2.92±0.10 2.89±0.09 2.88±0.10 2.90±0.10 2.92±0.11

I MTGP 3.20±0.10 3.18±0.10 3.19±0.11 3.23±0.11 3.24±0.12 3.24±0.12 3.23±0.13 3.28±0.13 3.31±0.14

I rLDS 3.18±0.10 3.16±0.10 3.16±0.11 3.15±0.11 3.13±0.11 3.12±0.11 3.10±0.11 3.05±0.10 3.08±0.11

wFTL se 2.73±0.08 2.71±0.09 2.71±0.09 2.74±0.10 2.73±0.10 2.70±0.10 2.66±0.09 2.65±0.10 2.66±0.10

wFTL mr 2.74±0.08 2.73±0.08 2.72±0.09 2.75±0.09 2.74±0.09 2.73±0.09 2.69±0.09 2.69±0.10 2.70±0.10

Method 28 29 30 31 32 33 34 35 36

P Mean 8.79±0.28 8.92±0.29 9.00±0.30 9.11±0.31 9.16±0.33 9.22±0.34 9.22±0.36 9.23±0.37 9.21±0.38

P GP 2.80±0.11 2.85±0.12 2.87±0.13 2.89±0.13 2.96±0.14 3.02±0.15 3.08±0.15 3.08±0.16 3.10±0.16

P MTGP 3.11±0.13 3.18±0.14 3.22±0.14 3.26±0.15 3.26±0.16 3.28±0.17 3.35±0.17 3.35±0.18 3.38±0.19

P rLDS 2.96±0.11 3.00±0.11 3.04±0.12 3.04±0.12 3.07±0.13 3.12±0.14 3.18±0.14 3.18±0.15 3.18±0.15

I Mean 5.14±0.17 5.17±0.18 5.16±0.18 5.17±0.18 5.14±0.19 5.15±0.20 5.16±0.20 5.14±0.21 5.09±0.21

I GP 2.91±0.11 2.93±0.11 2.93±0.12 2.95±0.12 2.96±0.13 3.02±0.13 3.06±0.14 3.05±0.14 3.07±0.14

I MTGP 3.30±0.15 3.34±0.15 3.37±0.15 3.42±0.16 3.46±0.17 3.47±0.18 3.54±0.19 3.55±0.20 3.57±0.20

I rLDS 3.07±0.11 3.07±0.12 3.07±0.12 3.08±0.12 3.07±0.13 3.07±0.13 3.10±0.14 3.06±0.14 3.07±0.14

wFTL se 2.62±0.11 2.64±0.11 2.66±0.12 2.67±0.12 2.70±0.13 2.74±0.14 2.79±0.14 2.79±0.15 2.81±0.15

wFTL mr 2.65±0.10 2.68±0.11 2.71±0.12 2.73±0.12 2.76±0.13 2.81±0.14 2.86±0.14 2.85±0.15 2.87±0.15

Method 37 38 39 40 41 42 43 44 45

P Mean 9.26±0.39 9.23±0.39 9.26±0.40 9.29±0.40 9.27±0.40 9.32±0.40 9.38±0.41 9.42±0.42 9.48±0.42

P GP 3.13±0.17 3.14±0.17 3.18±0.18 3.21±0.18 3.23±0.19 3.29±0.20 3.33±0.20 3.35±0.20 3.37±0.20

P MTGP 3.41±0.19 3.44±0.20 3.51±0.20 3.55±0.21 3.52±0.21 3.58±0.22 3.63±0.23 3.65±0.23 3.68±0.24

P rLDS 3.21±0.15 3.23±0.15 3.27±0.16 3.30±0.16 3.30±0.17 3.35±0.17 3.40±0.17 3.43±0.18 3.46±0.18

I Mean 5.07±0.21 5.02±0.22 5.04±0.21 5.05±0.21 5.00±0.21 5.03±0.21 5.06±0.21 5.06±0.22 5.07±0.22

I GP 3.06±0.14 3.08±0.14 3.10±0.15 3.12±0.15 3.11±0.15 3.12±0.16 3.16±0.16 3.19±0.17 3.20±0.16

I MTGP 3.54±0.21 3.57±0.21 3.63±0.22 3.64±0.23 3.63±0.23 3.65±0.24 3.67±0.24 3.66±0.25 3.63±0.25

I rLDS 3.04±0.14 3.06±0.14 3.12±0.15 3.17±0.15 3.20±0.16 3.24±0.16 3.30±0.16 3.32±0.17 3.33±0.17

wFTL se 2.83±0.15 2.86±0.16 2.90±0.16 2.93±0.17 2.92±0.17 2.94±0.18 3.01±0.18 3.03±0.19 3.03±0.19

wFTL mr 2.88±0.15 2.91±0.16 2.94±0.16 2.96±0.17 2.95±0.17 2.98±0.18 3.04±0.18 3.07±0.19 3.09±0.19

Method 46 47 48 49 50 51 52 53 54

P Mean 9.58±0.42 9.67±0.43 9.72±0.44 9.75±0.45 9.72±0.46 9.76±0.47 9.80±0.48 9.98±0.48 10.00±0.47

P GP 3.33±0.21 3.37±0.21 3.43±0.22 3.48±0.22 3.48±0.23 3.42±0.22 3.46±0.23 3.44±0.24 3.37±0.23

P MTGP 3.67±0.25 3.70±0.25 3.73±0.26 3.76±0.27 3.72±0.27 3.54±0.25 3.56±0.25 3.58±0.26 3.56±0.26

P rLDS 3.45±0.19 3.42±0.19 3.42±0.19 3.43±0.20 3.41±0.21 3.34±0.20 3.29±0.20 3.33±0.21 3.31±0.21

I Mean 5.12±0.22 5.12±0.23 5.10±0.24 5.05±0.25 4.97±0.25 4.94±0.26 4.90±0.26 4.91±0.26 4.83±0.25

I GP 3.18±0.17 3.17±0.17 3.18±0.18 3.20±0.18 3.20±0.19 3.11±0.18 3.09±0.19 3.08±0.20 3.02±0.19

I MTGP 3.61±0.26 3.63±0.27 3.59±0.28 3.57±0.28 3.49±0.28 3.41±0.28 3.48±0.28 3.46±0.29 3.31±0.25

I rLDS 3.32±0.18 3.31±0.17 3.33±0.17 3.33±0.18 3.33±0.19 3.29±0.19 3.26±0.19 3.28±0.20 3.25±0.20

wFTL se 2.98±0.19 2.98±0.19 3.04±0.20 3.08±0.20 3.08±0.21 2.99±0.19 3.01±0.20 3.00±0.21 2.98±0.21

wFTL mr 3.05±0.20 3.09±0.20 3.15±0.20 3.19±0.21 3.17±0.21 3.07±0.20 3.08±0.21 3.06±0.21 3.05±0.22

Method 55 56 57 58 59 60

P Mean 9.99±0.46 9.99±0.44 10.18±0.44 10.24±0.45 10.28±0.46 10.26±0.48

P GP 3.35±0.23 3.45±0.23 3.35±0.20 3.35±0.21 3.31±0.21 3.29±0.22

P MTGP 3.49±0.26 3.56±0.27 3.54±0.28 3.55±0.29 3.60±0.29 3.59±0.30

P rLDS 3.22±0.20 3.26±0.19 3.19±0.17 3.16±0.17 3.18±0.18 3.17±0.18

I Mean 4.75±0.24 4.66±0.22 4.67±0.23 4.68±0.24 4.71±0.24 4.71±0.25

I GP 2.96±0.19 2.97±0.19 2.91±0.18 2.92±0.18 2.96±0.18 2.98±0.19

I MTGP 3.21±0.24 3.09±0.19 3.02±0.18 3.05±0.18 3.10±0.18 3.04±0.18

I rLDS 3.10±0.18 3.06±0.19 2.98±0.19 2.96±0.19 2.98±0.19 2.97±0.20

wFTL se 2.87±0.19 2.86±0.18 2.76±0.16 2.75±0.16 2.78±0.17 2.81±0.17

wFTL mr 2.97±0.21 2.96±0.20 2.83±0.16 2.80±0.16 2.84±0.16 2.86±0.16
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APPENDIX O

COMPARISON OF RESULTS FOR ENSEMBLE METHODS, ONLINE

LEARNING, SUBPOPULATION AND MODEL ADAPTATION

APPROACHES

Table 17: Average-MAPE results (means and standard errors) of the proposed wFTL ap-

proaches compared to the ensemble and online methods for the different initial observation

sequence lengths. The best performing method is shown in bold. Also in bold are the meth-

ods that are not statistically significantly different from the best method at 0.05 significance

level.

Method 1 2 3 4 5 6 7 8 9

OL FTL 3.28±0.05 3.26±0.05 3.25±0.06 3.20±0.06 3.19±0.06 3.14±0.06 3.10±0.06 3.05±0.06 3.00±0.06

OL MW 3.36±0.06 3.36±0.06 3.35±0.06 3.31±0.06 3.29±0.06 3.24±0.05 3.19±0.05 3.18±0.06 3.15±0.05

OL Hedge 3.43±0.06 3.43±0.07 3.42±0.07 3.37±0.07 3.38±0.08 3.28±0.05 3.23±0.05 3.20±0.05 3.20±0.05

En Avg 3.29±0.05 3.29±0.05 3.28±0.05 3.25±0.05 3.25±0.06 3.21±0.05 3.17±0.05 3.17±0.05 3.17±0.05

En Err 3.16±0.05 3.13±0.05 3.12±0.05 3.08±0.06 3.08±0.06 3.03±0.05 2.98±0.05 2.97±0.05 2.96±0.05

wFTL se 3.24±0.05 3.22±0.05 3.20±0.05 3.15±0.06 3.14±0.06 3.09±0.06 3.04±0.05 2.99±0.06 2.94±0.05

wFTL mr 3.24±0.05 3.22±0.05 3.20±0.05 3.16±0.06 3.14±0.06 3.09±0.05 3.04±0.05 2.99±0.05 2.94±0.05

Method 10 11 12 13 14 15 16 17 18

OL FTL 2.96±0.05 2.90±0.06 2.86±0.06 2.86±0.06 2.88±0.07 2.87±0.07 2.86±0.07 2.84±0.08 2.82±0.08

OL MW 3.10±0.05 3.09±0.06 3.06±0.06 3.08±0.06 3.09±0.07 3.08±0.07 3.06±0.07 3.04±0.07 3.04±0.08

OL Hedge 3.18±0.06 3.15±0.06 3.13±0.06 3.14±0.07 3.18±0.07 3.18±0.08 3.17±0.08 3.14±0.08 3.12±0.08

En Avg 3.16±0.05 3.15±0.06 3.13±0.06 3.16±0.06 3.20±0.07 3.22±0.07 3.22±0.08 3.21±0.08 3.22±0.08

En Err 2.94±0.05 2.91±0.05 2.89±0.06 2.91±0.06 2.93±0.06 2.94±0.07 2.93±0.07 2.90±0.07 2.90±0.08

wFTL se 2.92±0.06 2.88±0.06 2.83±0.06 2.82±0.06 2.83±0.07 2.82±0.07 2.80±0.07 2.75±0.08 2.74±0.08

wFTL mr 2.90±0.05 2.85±0.05 2.82±0.06 2.82±0.06 2.83±0.06 2.82±0.07 2.82±0.07 2.78±0.07 2.75±0.08

Method 19 20 21 22 23 24 25 26 27

OL FTL 2.83±0.09 2.84±0.09 2.84±0.09 2.86±0.10 2.84±0.10 2.83±0.10 2.79±0.10 2.80±0.11 2.84±0.11

OL MW 3.04±0.08 3.03±0.09 3.00±0.09 3.04±0.10 3.05±0.10 3.01±0.09 2.99±0.10 3.04±0.10 3.07±0.10

OL Hedge 3.10±0.09 3.08±0.09 3.07±0.10 3.13±0.10 3.14±0.11 3.11±0.11 3.09±0.11 3.08±0.11 3.11±0.12

En Avg 3.22±0.09 3.21±0.09 3.22±0.09 3.27±0.10 3.30±0.10 3.29±0.10 3.30±0.10 3.36±0.11 3.41±0.11

En Err 2.90±0.08 2.90±0.08 2.90±0.09 2.95±0.09 2.97±0.10 2.96±0.10 2.96±0.10 3.00±0.10 3.05±0.11

wFTL se 2.73±0.08 2.71±0.09 2.71±0.09 2.74±0.10 2.73±0.10 2.70±0.10 2.66±0.09 2.65±0.10 2.66±0.10

wFTL mr 2.74±0.08 2.73±0.08 2.72±0.09 2.75±0.09 2.74±0.09 2.73±0.09 2.69±0.09 2.69±0.10 2.70±0.10
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Method 28 29 30 31 32 33 34 35 36

OL FTL 2.82±0.12 2.85±0.12 2.87±0.13 2.91±0.14 2.90±0.14 2.98±0.14 3.04±0.15 3.03±0.15 3.03±0.16

OL MW 3.07±0.11 3.10±0.11 3.11±0.12 3.12±0.12 3.13±0.13 3.15±0.14 3.17±0.14 3.16±0.15 3.17±0.15

OL Hedge 3.10±0.12 3.15±0.12 3.16±0.13 3.15±0.13 3.16±0.14 3.18±0.14 3.23±0.15 3.19±0.15 3.18±0.15

En Avg 3.42±0.12 3.48±0.12 3.50±0.13 3.54±0.13 3.55±0.14 3.58±0.15 3.62±0.16 3.63±0.16 3.61±0.16

En Err 3.05±0.11 3.10±0.11 3.12±0.12 3.15±0.12 3.16±0.13 3.20±0.14 3.25±0.14 3.25±0.14 3.24±0.15

wFTL se 2.62±0.11 2.64±0.11 2.66±0.12 2.67±0.12 2.70±0.13 2.74±0.14 2.79±0.14 2.79±0.15 2.81±0.15

wFTL mr 2.65±0.10 2.68±0.11 2.71±0.12 2.73±0.12 2.76±0.13 2.81±0.14 2.86±0.14 2.85±0.15 2.87±0.15

Method 37 38 39 40 41 42 43 44 45

OL FTL 3.05±0.17 3.07±0.17 3.10±0.18 3.12±0.18 3.09±0.19 3.14±0.19 3.17±0.19 3.19±0.20 3.20±0.20

OL MW 3.17±0.15 3.18±0.16 3.23±0.16 3.25±0.16 3.23±0.17 3.27±0.17 3.30±0.18 3.32±0.18 3.32±0.18

OL Hedge 3.17±0.16 3.17±0.16 3.23±0.16 3.26±0.16 3.25±0.17 3.28±0.17 3.33±0.18 3.35±0.18 3.35±0.18

En Avg 3.63±0.16 3.63±0.17 3.68±0.17 3.71±0.18 3.68±0.18 3.73±0.18 3.77±0.18 3.78±0.19 3.78±0.19

En Err 3.26±0.15 3.26±0.15 3.31±0.16 3.34±0.16 3.31±0.16 3.36±0.16 3.40±0.17 3.40±0.17 3.41±0.17

wFTL se 2.83±0.15 2.86±0.16 2.90±0.16 2.93±0.17 2.92±0.17 2.94±0.18 3.01±0.18 3.03±0.19 3.03±0.19

wFTL mr 2.88±0.15 2.91±0.16 2.94±0.16 2.96±0.17 2.95±0.17 2.98±0.18 3.04±0.18 3.07±0.19 3.09±0.19

Method 46 47 48 49 50 51 52 53 54

OL FTL 3.18±0.21 3.23±0.21 3.28±0.21 3.33±0.22 3.33±0.23 3.26±0.22 3.30±0.23 3.29±0.24 3.20±0.21

OL MW 3.31±0.19 3.33±0.19 3.33±0.20 3.33±0.21 3.30±0.21 3.21±0.20 3.23±0.21 3.23±0.22 3.12±0.19

OL Hedge 3.33±0.19 3.34±0.20 3.32±0.20 3.31±0.21 3.30±0.21 3.20±0.21 3.19±0.21 3.19±0.22 3.09±0.20

En Avg 3.78±0.19 3.78±0.20 3.78±0.21 3.77±0.21 3.72±0.22 3.64±0.22 3.66±0.23 3.69±0.23 3.61±0.21

En Err 3.40±0.18 3.40±0.18 3.40±0.19 3.39±0.20 3.34±0.20 3.26±0.19 3.28±0.20 3.29±0.21 3.22±0.19

wFTL se 2.98±0.19 2.98±0.19 3.04±0.20 3.08±0.20 3.08±0.21 2.99±0.19 3.01±0.20 3.00±0.21 2.98±0.21

wFTL mr 3.05±0.20 3.09±0.20 3.15±0.20 3.19±0.21 3.17±0.21 3.07±0.20 3.08±0.21 3.06±0.21 3.05±0.22

Method 55 56 57 58 59 60

OL FTL 3.19±0.21 3.28±0.21 3.19±0.20 3.20±0.20 3.20±0.21 3.20±0.21

OL MW 3.04±0.18 3.08±0.17 3.02±0.17 3.05±0.17 3.11±0.17 3.09±0.17

OL Hedge 3.00±0.19 3.01±0.20 2.90±0.17 2.92±0.18 2.95±0.18 2.90±0.18

En Avg 3.51±0.20 3.49±0.18 3.47±0.19 3.51±0.19 3.54±0.19 3.51±0.20

En Err 3.13±0.18 3.13±0.17 3.07±0.16 3.10±0.16 3.13±0.17 3.11±0.17

wFTL se 2.87±0.19 2.86±0.18 2.76±0.16 2.75±0.16 2.78±0.17 2.81±0.17

wFTL mr 2.97±0.21 2.96±0.20 2.83±0.16 2.80±0.16 2.84±0.16 2.86±0.16
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Table 18: Average-MAPE results (means and standard errors) of the proposed wFTL ap-

proaches compared to the subpopulation methods for the different initial observation se-

quence lengths. The best performing method is shown in bold. Also in bold are the meth-

ods that are not statistically significantly different from the best method at 0.05 significance

level.

Method 1 2 3 4 5 6 7 8 9

Sub-50 3.04±0.04 3.02±0.05 2.98±0.05 2.94±0.05 2.94±0.05 2.93±0.05 2.91±0.05 2.89±0.05 2.88±0.05

Sub-100 3.00±0.04 2.98±0.04 2.95±0.05 2.91±0.05 2.90±0.05 2.90±0.05 2.87±0.05 2.85±0.05 2.84±0.05

Sub-200 3.00±0.04 2.99±0.04 2.95±0.05 2.91±0.05 2.91±0.05 2.90±0.05 2.88±0.05 2.86±0.05 2.84±0.05

Sub-ALL 2.96±0.04 2.95±0.04 2.92±0.04 2.88±0.04 2.88±0.05 2.88±0.05 2.85±0.05 2.84±0.05 2.82±0.05

wFTL se 3.24±0.05 3.22±0.05 3.20±0.05 3.15±0.06 3.14±0.06 3.09±0.06 3.04±0.05 2.99±0.06 2.94±0.05

wFTL mr 3.24±0.05 3.22±0.05 3.20±0.05 3.16±0.06 3.14±0.06 3.09±0.05 3.04±0.05 2.99±0.05 2.94±0.05

Method 10 11 12 13 14 15 16 17 18

Sub-50 2.89±0.05 2.86±0.06 2.86±0.06 2.87±0.06 2.90±0.07 2.90±0.07 2.90±0.07 2.86±0.07 2.86±0.08

Sub-100 2.83±0.05 2.81±0.06 2.80±0.06 2.82±0.06 2.83±0.07 2.82±0.07 2.82±0.07 2.77±0.07 2.76±0.08

Sub-200 2.84±0.05 2.82±0.06 2.82±0.06 2.83±0.06 2.85±0.07 2.85±0.07 2.84±0.07 2.79±0.07 2.79±0.08

Sub-ALL 2.83±0.05 2.81±0.06 2.80±0.06 2.81±0.06 2.83±0.07 2.83±0.07 2.83±0.07 2.79±0.07 2.78±0.08

wFTL se 2.92±0.06 2.88±0.06 2.83±0.06 2.82±0.06 2.83±0.07 2.82±0.07 2.80±0.07 2.75±0.08 2.74±0.08

wFTL mr 2.90±0.05 2.85±0.05 2.82±0.06 2.82±0.06 2.83±0.06 2.82±0.07 2.82±0.07 2.78±0.07 2.75±0.08

Method 19 20 21 22 23 24 25 26 27

Sub-50 2.89±0.08 2.88±0.08 2.90±0.09 2.94±0.09 2.97±0.10 2.97±0.10 2.96±0.10 3.00±0.10 3.06±0.10

Sub-100 2.79±0.08 2.78±0.08 2.79±0.09 2.83±0.09 2.84±0.10 2.84±0.10 2.82±0.09 2.86±0.10 2.92±0.10

Sub-200 2.82±0.08 2.82±0.08 2.83±0.09 2.87±0.09 2.89±0.10 2.89±0.10 2.88±0.10 2.93±0.10 2.99±0.10

Sub-ALL 2.81±0.08 2.81±0.08 2.82±0.09 2.86±0.09 2.89±0.10 2.88±0.10 2.87±0.10 2.92±0.10 2.98±0.10

wFTL se 2.73±0.08 2.71±0.09 2.71±0.09 2.74±0.10 2.73±0.10 2.70±0.10 2.66±0.09 2.65±0.10 2.66±0.10

wFTL mr 2.74±0.08 2.73±0.08 2.72±0.09 2.75±0.09 2.74±0.09 2.73±0.09 2.69±0.09 2.69±0.10 2.70±0.10

Method 28 29 30 31 32 33 34 35 36

Sub-50 3.06±0.11 3.09±0.11 3.12±0.11 3.10±0.12 3.15±0.12 3.20±0.13 3.25±0.13 3.26±0.14 3.27±0.14

Sub-100 2.91±0.11 2.94±0.11 2.97±0.11 2.95±0.12 2.98±0.12 3.04±0.13 3.08±0.14 3.08±0.14 3.08±0.14

Sub-200 2.99±0.11 3.02±0.11 3.06±0.12 3.06±0.12 3.08±0.13 3.14±0.13 3.20±0.14 3.19±0.14 3.18±0.14

Sub-ALL 2.98±0.11 3.02±0.11 3.07±0.12 3.06±0.12 3.09±0.13 3.15±0.14 3.21±0.14 3.21±0.15 3.20±0.15

wFTL se 2.62±0.11 2.64±0.11 2.66±0.12 2.67±0.12 2.70±0.13 2.74±0.14 2.79±0.14 2.79±0.15 2.81±0.15

wFTL mr 2.65±0.10 2.68±0.11 2.71±0.12 2.73±0.12 2.76±0.13 2.81±0.14 2.86±0.14 2.85±0.15 2.87±0.15

Method 37 38 39 40 41 42 43 44 45

Sub-50 3.29±0.14 3.31±0.15 3.35±0.15 3.39±0.15 3.39±0.16 3.43±0.16 3.47±0.17 3.50±0.17 3.53±0.17

Sub-100 3.10±0.14 3.11±0.15 3.15±0.15 3.19±0.15 3.18±0.16 3.23±0.16 3.27±0.17 3.29±0.17 3.32±0.18

Sub-200 3.21±0.15 3.23±0.15 3.26±0.16 3.29±0.16 3.29±0.17 3.34±0.17 3.38±0.17 3.40±0.18 3.44±0.18

Sub-ALL 3.24±0.15 3.26±0.15 3.30±0.16 3.33±0.16 3.33±0.17 3.39±0.17 3.43±0.17 3.45±0.18 3.48±0.18

wFTL se 2.83±0.15 2.86±0.16 2.90±0.16 2.93±0.17 2.92±0.17 2.94±0.18 3.01±0.18 3.03±0.19 3.03±0.19

wFTL mr 2.88±0.15 2.91±0.16 2.94±0.16 2.96±0.17 2.95±0.17 2.98±0.18 3.04±0.18 3.07±0.19 3.09±0.19

Method 46 47 48 49 50 51 52 53 54

Sub-50 3.52±0.18 3.51±0.18 3.54±0.18 3.55±0.19 3.52±0.20 3.44±0.19 3.40±0.20 3.42±0.20 3.38±0.21

Sub-100 3.31±0.18 3.30±0.18 3.31±0.19 3.32±0.20 3.30±0.20 3.22±0.20 3.18±0.20 3.19±0.21 3.16±0.21

Sub-200 3.43±0.18 3.41±0.18 3.42±0.19 3.41±0.20 3.39±0.20 3.32±0.20 3.28±0.20 3.31±0.21 3.28±0.21

Sub-ALL 3.47±0.18 3.45±0.18 3.46±0.19 3.47±0.20 3.44±0.20 3.37±0.20 3.33±0.20 3.36±0.21 3.33±0.21

wFTL se 2.98±0.19 2.98±0.19 3.04±0.20 3.08±0.20 3.08±0.21 2.99±0.19 3.01±0.20 3.00±0.21 2.98±0.21

wFTL mr 3.05±0.20 3.09±0.20 3.15±0.20 3.19±0.21 3.17±0.21 3.07±0.20 3.08±0.21 3.06±0.21 3.05±0.22

Method 55 56 57 58 59 60

Sub-50 3.27±0.19 3.31±0.18 3.24±0.16 3.21±0.17 3.23±0.17 3.25±0.17

Sub-100 3.07±0.19 3.11±0.19 3.03±0.16 3.00±0.16 3.02±0.17 3.02±0.17

Sub-200 3.19±0.19 3.23±0.18 3.17±0.17 3.15±0.17 3.16±0.17 3.17±0.18

Sub-ALL 3.24±0.19 3.29±0.18 3.23±0.17 3.21±0.17 3.22±0.18 3.22±0.18

wFTL se 2.87±0.19 2.86±0.18 2.76±0.16 2.75±0.16 2.78±0.17 2.81±0.17

wFTL mr 2.97±0.21 2.96±0.20 2.83±0.16 2.80±0.16 2.84±0.16 2.86±0.16
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Table 19: Average-MAPE results (means and standard errors) of the proposed wFTL ap-

proaches compared to the model adaptation based methods for the different initial obser-

vation sequence lengths. reGP and reMTGP are the abbreviations for rLDS+reGP and

rLDS+reMTGP. The best performing method is shown in bold. Also in bold are the meth-

ods that are not statistically significantly different from the best method at 0.05 significance

level.

Method 1 2 3 4 5 6 7 8 9

reGP 3.64±0.06 3.33±0.05 3.22±0.05 3.13±0.05 3.08±0.06 3.03±0.06 2.96±0.06 2.89±0.06 2.84±0.06

reMTGP 3.60±0.06 3.29±0.05 3.19±0.05 3.10±0.05 3.05±0.05 3.00±0.06 2.94±0.06 2.88±0.06 2.84±0.06

wFTL se 3.24±0.05 3.22±0.05 3.20±0.05 3.15±0.06 3.14±0.06 3.09±0.06 3.04±0.05 2.99±0.06 2.94±0.05

wFTL mr 3.24±0.05 3.22±0.05 3.20±0.05 3.16±0.06 3.14±0.06 3.09±0.05 3.04±0.05 2.99±0.05 2.94±0.05

Method 10 11 12 13 14 15 16 17 18

reGP 2.81±0.06 2.76±0.06 2.73±0.06 2.71±0.06 2.70±0.07 2.67±0.07 2.65±0.07 2.60±0.08 2.58±0.08

reMTGP 2.81±0.06 2.76±0.06 2.74±0.06 2.72±0.06 2.72±0.07 2.70±0.07 2.67±0.07 2.63±0.07 2.62±0.08

wFTL se 2.92±0.06 2.88±0.06 2.83±0.06 2.82±0.06 2.83±0.07 2.82±0.07 2.80±0.07 2.75±0.08 2.74±0.08

wFTL mr 2.90±0.05 2.85±0.05 2.82±0.06 2.82±0.06 2.83±0.06 2.82±0.07 2.82±0.07 2.78±0.07 2.75±0.08

Method 19 20 21 22 23 24 25 26 27

reGP 2.60±0.08 2.57±0.09 2.53±0.09 2.53±0.09 2.53±0.10 2.51±0.09 2.44±0.09 2.46±0.09 2.48±0.10

reMTGP 2.63±0.08 2.60±0.08 2.59±0.09 2.61±0.09 2.60±0.10 2.58±0.10 2.53±0.10 2.54±0.10 2.58±0.11

wFTL se 2.73±0.08 2.71±0.09 2.71±0.09 2.74±0.10 2.73±0.10 2.70±0.10 2.66±0.09 2.65±0.10 2.66±0.10

wFTL mr 2.74±0.08 2.73±0.08 2.72±0.09 2.75±0.09 2.74±0.09 2.73±0.09 2.69±0.09 2.69±0.10 2.70±0.10

Method 28 29 30 31 32 33 34 35 36

reGP 2.46±0.10 2.49±0.11 2.52±0.11 2.51±0.12 2.54±0.12 2.59±0.13 2.64±0.14 2.62±0.14 2.63±0.14

reMTGP 2.57±0.11 2.59±0.12 2.61±0.12 2.60±0.13 2.62±0.13 2.66±0.14 2.71±0.15 2.70±0.15 2.71±0.16

wFTL se 2.62±0.11 2.64±0.11 2.66±0.12 2.67±0.12 2.70±0.13 2.74±0.14 2.79±0.14 2.79±0.15 2.81±0.15

wFTL mr 2.65±0.10 2.68±0.11 2.71±0.12 2.73±0.12 2.76±0.13 2.81±0.14 2.86±0.14 2.85±0.15 2.87±0.15

Method 37 38 39 40 41 42 43 44 45

reGP 2.64±0.14 2.67±0.15 2.68±0.15 2.71±0.16 2.72±0.16 2.77±0.17 2.81±0.17 2.84±0.17 2.88±0.18

reMTGP 2.73±0.16 2.75±0.17 2.79±0.17 2.82±0.18 2.83±0.18 2.89±0.19 2.93±0.19 2.97±0.20 3.01±0.20

wFTL se 2.83±0.15 2.86±0.16 2.90±0.16 2.93±0.17 2.92±0.17 2.94±0.18 3.01±0.18 3.03±0.19 3.03±0.19

wFTL mr 2.88±0.15 2.91±0.16 2.94±0.16 2.96±0.17 2.95±0.17 2.98±0.18 3.04±0.18 3.07±0.19 3.09±0.19

Method 46 47 48 49 50 51 52 53 54

reGP 2.86±0.18 2.87±0.19 2.91±0.19 2.94±0.20 2.97±0.21 2.91±0.20 2.92±0.20 2.89±0.20 2.83±0.21

reMTGP 2.99±0.21 2.96±0.20 2.96±0.21 2.97±0.22 2.98±0.23 2.94±0.22 2.96±0.23 2.93±0.23 2.79±0.20

wFTL se 2.98±0.19 2.98±0.19 3.04±0.20 3.08±0.20 3.08±0.21 2.99±0.19 3.01±0.20 3.00±0.21 2.98±0.21

wFTL mr 3.05±0.20 3.09±0.20 3.15±0.20 3.19±0.21 3.17±0.21 3.07±0.20 3.08±0.21 3.06±0.21 3.05±0.22

Method 55 56 57 58 59 60

reGP 2.77±0.20 2.83±0.21 2.71±0.16 2.70±0.17 2.72±0.17 2.75±0.18

reMTGP 2.76±0.21 2.81±0.22 2.68±0.17 2.65±0.18 2.67±0.18 2.72±0.18

wFTL se 2.87±0.19 2.86±0.18 2.76±0.16 2.75±0.16 2.78±0.17 2.81±0.17

wFTL mr 2.97±0.21 2.96±0.20 2.83±0.16 2.80±0.16 2.84±0.16 2.86±0.16

128



BIBLIOGRAPHY

[Aburto and Weber, 2007] Aburto, L. and Weber, R. (2007). Improved supply chain man-
agement based on hybrid demand forecasts. Applied Soft Computing, 7(1):136–144.

[Adorf, 1995] Adorf, H.-M. (1995). Interpolation of irregularly sampled data series – a survey.
In Astronomical Data Analysis Software and Systems IV, volume 77, pages 460–463.

[Angelosante et al., 2009] Angelosante, D., Roumeliotis, S., and Giannakis, G. (2009). Lasso-
Kalman smoother for tracking sparse signals. In Asilomar Conference on Signals, Systems
and Computers, pages 181–185, Pacific Grove, CA, USA.
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