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CLUSTER ANALYSIS AND NETWORK COMMUNITY DETECTION

WITH APPLICATION TO NEUROSCIENCE

Yun Zhang, PhD

University of Pittsburgh, 2016

Sustained efforts have been devoted to understanding schizophrenia and related disorders.

This dissertation is inspired from two conceptually important problems in schizophrenia

research and we overcome statistical challenges inherent in solving these problems.

Basic neurobiological studies have unveiled distinct subtypes of schizophrenia. More-

over, genetic evidence shows certain core features are shared between schizophrenia and

other disorders. It is of scientific interest to examine similarities in the profiles of subtypes

in different disorders, which may help to develop novel therapeutic approaches. To address

this challenge, we develop a statistical framework to assess whether or not clusters identi-

fied from independent populations exhibit commonalities. As an initial step, we formulate

our hypotheses by borrowing the concept of bioequivalence under a finite normal mixture

framework. We then propose testing procedures for univariate data based on the idea of

two one-sided test (TOST). In an attempt to boost power, we propose to use a methodology

based on bootstrap confidence intervals.

Neurocognitive research studies functional brain networks aiming to improve the under-

standing of the cognitive deficits in subjects with schizophrenia. One important problem

in the inference for brain connectivity networks concerns brain segmentation problem which

can be viewed as a community detection problem in network analysis. The stochastic block

model (SBM) and its variants are popular models used in community detection for network

data. In this research, we propose a feature adjusted stochastic block model (FASBM) to

capture the impact of node features on the network links as well as to detect the residual
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community structure beyond that explained by the node features. The proposed model can

accommodate multiple node features and estimate the form of feature impacts from the data.

Moreover, unlike many existing algorithms that are limited to binary-valued interactions, the

proposed FASBM model and inference approaches are easily applied to relational data that

generates from any exponential family distribution. We illustrate the methods on simulated

networks and on three real world networks: a brain network, an US air-transportation net-

work and a friendship network.

Keywords: Bioequivalence Testing, GABA Neuron-Related Biomarker Study, Stochastic

Block Model, Community Detection, Node Features, Air-transportation Network,

Brain Functional Connectivity Study.
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1.0 INTRODUCTION

1.1 MOTIVATION OVERVIEW

Considerable research has been devoted to the understanding of the neurobiology of

schizophrenia and related disorders. The Conte Center for Translational Mental Health

Research (CTMHR) at the University of Pittsburgh has been focusing on the mechanisms

that link the pathology, pathophysiology and clinical features of schizophrenia and related

disorders. In this dissertation, both parts of our research are inspired from conceptually

important problems within predominant strands of CTMHR schizophrenia research and well

generalizable to other contexts.

Basic neurobiological research concerning mental disorders focuses on studying neurobi-

ological alterations in subjects with a mental disorder. Researchers measure neurobiological

characteristics such as gene expression levels and protein levels from post-mortem brain tis-

sue samples. For example, Volk et al. (Volk et al., 2012) identified a subset of schizophrenia

subjects that consistently showed deficits in certain GABA neuron-related mRNAs through

cluster analysis based on post-mortem brain tissue studies. On the other hand, recent ad-

vances in psychiatric genomics have given insight into the potential mechanisms underlying

the overlap between schizophrenia and bipolar disorder. It has been found that schizophre-

nia and bipolar disorder shared deep genetic similarities (Craddock et al., 2005; Moskvina

et al., 2009; Doherty & Owen, 2014), in support of the long-standing clinical observation

of overlap in the symptoms. Making use of the data from multiple disorders in the Center

studies may provide an opportunity to obtain new insights into the understanding of the

potential mechanisms underlying the overlap between mental disorders. It is of scientific

interest to examine similarities in the profiles of subtypes in different disorders, which may

1



help to develope novel therapeutic approaches (Doherty & Owen, 2014). In Chapter 2, we

develop methodology to test whether or not clusters identified from independent populations

exhibit commonalities.

In parallel, another strand of research is focused on studying the cognitive deficits in

subjects with schizophrenia. Schizophrenia has often been conceived as a disorder of con-

nectivity between components of brain networks (Lynall et al., 2010). In related studies for

brain tissues of living subjects in schizophrenia, researchers are interested in understanding

how schizophrenia affects brain networks. The advent of modern neuroimaging techniques

such as fMRI makes it feasible to quantify different aspects of brains functional interactions.

The study of functional brain networks may advance the understanding of how key func-

tional networks are altered in schizophrenia, thus improving the understanding of cognitive

difference in schizophrenia as revealed by fMRI. One important problem in the inference for

brain connectivity networks concerns partitioning of functionally distinct brain regions, that

is, brain segmentation. The brain segmentation problem is conceptually a community detec-

tion problem in network analysis. We propose a new framework for community detection in

Chapter 3 that takes into account the topological structure of the network and the additional

information on nodes. Although our work is motivated by inference for brain connectivity

networks, the proposed models and algorithms pertain to a general setting and can be used

in a variety of networks.

1.2 DISSERTATION OVERVIEW

The dissertation is organized as follows. In Chapter 2, we develop a new methodology

to identify common clusters in independent populations. We start reviewing some existing

literature on the topic of cluster validation in Section 2.1, particularly, the review focuses

mainly on the work of Tibshirani et al. (2007) that addresses a related yet different problem.

The hypotheses are formulated in Section 2.2. We propose two one-sided test (TOST) based

approach for univariate data and multivariate data in Section 2.3.1. Because the testing pro-

cedures are overly conservative for multivariate data, we then propose a confidence interval

2



approach in Section 2.3.2 using various bootstrap methods: non-Studentized pivotal method,

percentile method, bias-corrected percentile method and Normal method. A discussion of

the asymptotic properties of the proposed testing procedures are presented in Section 2.4.

We evaluate the performance of our proposed testing procedures in univariate data (Section

2.5.1) and bivariate data (Section 2.5.2) under a variety of scenarios using simulation. We

then apply our methodology to a GABA neuron-related biomarker study (Section 2.6.1) We

close the chapter with conclusions in Section 2.7.1 and discussions on some possible work for

future research in Section 2.7.2.

In Chapter 3, we propose a new model to capture the impact of node features on the

network links as well as to detect the residual community structure beyond that explained

by the node features. Chapter 3 begins with a literature review of the community detection

methods in the network analysis. This is followed by a more detailed introduction of the

relevant background: single-index model (Section 3.2.1) and stochastic block model (Section

3.2.2) along with a brief review of commonly used algorithms for inference of block models

(Section 3.2.3). We propose the feature adjusted stochastic block model (FASBM) in Section

3.3 and introduce the fitting algorithms for the proposed model in Section 3.4. The perfor-

mance of the proposed method is demonstrated on a range of simulated networks in Section

3.5 and in Section 3.6 is applied to a functional brain network, an US air-transportation net-

work and a friendship network. The chapter is concluded with a short discussion on future

directions in Section 3.7.

We conclude the dissertation with some remarks in Chapter 4.
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2.0 ARE THERE COMMON CLUSTERS IN INDEPENDENT

POPULATIONS?

2.1 INTRODUCTION

Cluster analysis is a powerful technique that helps identify subtypes from heterogeneous

data. Identification of subtypes may be important for research on mechanisms of disease with

subjects in one cluster having similar characteristics. For example, using cluster analysis,

Volk et al. (Volk et al., 2012) identified a subset of schizophrenia subjects that consistently

showed deficits in certain GABA neuron-related mRNAs. Moreover, recent advances in

psychiatric genomics have given more insight into the potential mechanisms underlying the

overlap between schizophrenia and bipolar disorder. It has been found that schizophrenia

and bipolar disorder share deep genetic similarities (Craddock et al., 2005; Moskvina et al.,

2009), which supports the long-standing clinical observation of overlap in the symptoms. In

addition, deficits in some GABA neuron-related mRNAs have been reported from subjects

with schizophrenia disorder and bipolar disorder (Guidotti et al., 2000; Woo et al., 2008;

Sibille et al., 2011). Taken together, these findings suggest that the subtype characterized

by deficits in certain GABA neuron-related mRNA levels may identify a subset of subjects

from each of these diagnostic groups. To test this hypothesis, researchers at the Conte Center

for Translational Mental Health Research (CTMHR) measured in post-mortem tissue mRNA

levels for four GABA neuron-related markers in the prefrontal cortex from subjects with a

diagnosis of schizophrenia or bipolar disorder. Their goal is want to determine the extent

to which a similar subtype may exist in subjects with these disorders. Motivated by this

problem, our goal is to provide a statistical framework to examine similarities in the profiles

of subtypes of different disorders, which may help to develop novel therapeutic approaches
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(Doherty & Owen, 2014). This work has direct relevance to investigators pursuing new lines

of research in light of the National Institute of Mental Health’s (NIMH) Research Domain

Criteria (RDoC) project.

If one is interested in identifying clusters in a single population, hierarchical algorithms

using “bottom up” strategy inherently involves assessing similarities between clusters. The

basic “bottom up” algorithm is very simple. Start with each point in a cluster of its own;

then construct a hierarchy of clusters by examining a suitable notion of distance between

two clusters using methods, such as Ward’s method, Single-link Clustering or Complete-Link

Clustering, and repeatedly merge the two most similar clusters together until there is only

one remaining cluster.

However, there is relatively little literature concerning whether or not clusters identified

from independent populations share commonalities. There is a seemingly related literature

concerning cluster validation for multiple micro array studies (Chen et al., 2002; Datta &

Datta, 2003; Kerr & Churchill, 2001; Yeung et al., 2001; Dudoit & Fridlyand, 2002; Dudoit

et al., 2002; Tibshirani & Walther, 2005; Tibshirani et al., 2007).

Cluster validation aims to “assess the validity of classifications that have been obtained

from the application of a clustering procedure” (Gordon, 1999). Clustering validation in one

data set is concerned with evaluating the goodness of clustering results, aiding in determining

which clustering analysis approach to use as well as the optimal cluster number (Liu et al.,

2010). Cluster validation can be used in a slightly different way when in some studies, the

goal of analyzing a new independent dataset (validating data set) is to identify the same

clusters in the validation data that were defined in the previous data set (defining data set).

If the cluster is present in the validating data set, then this cluster is validated because it

is reproducible. With this goal in mind, in general, cluster validation procedures first define

a cluster quality measure and then obtain p-values by computing how likely given values of

that measure are to occur under an appropriate null model of no structure (Tibshirani et al.,

2007).

It is suggested that, when the validating data set and the defining data set have the

same variables, an appropriate approach for cluster validation analyses is to use a classifier

made from the defining data (Dudoit & Fridlyand, 2002; Dudoit et al., 2002; Tibshirani &
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Walther, 2005). For instance, Tibshirani et al. (2007) adopted the nearest centroid classifier,

where the centroids represent the averages of all variables over subjects within each cluster

in the defining data set. For every subject in the validating data set, the Pearson correlation

coefficient between the subject and each centroid of the defining data is computed. If the

correlations are all smaller than a cut-off value, then the subject is classified to a “below-

cutof” group; otherwise, the subject is classified into the cluster whose correlation is the

largest. In order to obtain a p-value for testing H0: there is no cluster structure; vs Ha:

the previously defined cluster is valid, it is important to compare a test statistic based

on the cluster quality measure with the null distribution of the cluster quality measure.

Tibshirani et al. (2007) proposed a new cluster quality measure called In-Group Proportion

(IGP) defined as “the proportion of (new) observations classified to a cluster whose nearest

neighbor is also classified to the same cluster”, so that a high-quality cluster will have IGP

close to 1 when the subject and its nearest neighbor are classified into the same cluster.

Further, they proposed four difficult ways to generate a null distribution of IGPs and all

of which are based on repeatedly generating new centroids that correspond to clusters that

are placed randomly in the data, so that the p-value is defined as the proportion of null

distribution IGPs that are greater than the actual IGP.

One shortcoming of Kapp and Tibshirani’s approach is that, the number of clustering

variables needs to be fairly large to generate a good null distribution. This is not an issue for

microarrays studies, as the number of mRNA’s being studied is usually quite large. However,

in other setting, this may not hold. Additionally, despite the fact that their parameter-free

hypothesis formulation is appealing, the precise definition of a null model is difficult to

formalize, as one can argue that the opposite of reproducibility of a cluster in the data is

not equivalent to no structure in the data, or vice versa.

To this end, we develop an approach with greater clarity for testing whether or not clus-

ters identified from independent populations exhibit commonalities. The basic idea is to

recast the formulation of the hypothesis tests in such a way that we can utilize some ideas

from the analysis of pharmaceutical bioequivalence trials. Our method is tailored specifically

for mixture model-based clustering and thus inherits the merits of this paradigm. Benefits

of mixture model-based clustering in comparison to hierarchical clustering are discussed by
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Raftery & Dean (2006). Due to the importance and broad applicability of finite normal mix-

ture models, we consider the case where the mixture components have normal distributions.

2.2 HYPOTHESIS OF INTEREST

In this section, we formulate our approach for assessing whether or not there are common

clusters in two independent populations. In the finite normal mixture framework, every

cluster can be mathematically represented by a normal distribution. To simplify further

the presentation, we suppose that there are only two populations under consideration and

each population is distributed as a mixture of two p-variate normal distributions. The

extension of our formulation to more than two populations and two mixtures is conceptually

straightforward, but can be computationally intensive.

Suppose that we observe a random sample of p-dimensional variables x1, · · · ,xn1 from

population 1, which is a mixture of normals:

f(xi) = π1φ(xi;µ1,Σ1) + (1− π1)φ(xi;µ2,Σ2), (2.1)

where φ(·;µ,Σ) is a normal density with mean µ and covariance Σ, i = 1, · · · , n1. Let

y1, · · · ,yn2 denote a random sample of size n2 of p-dimensional vectors from population 2

distributed as

g(yj) = π2φ(yj;µ3,Σ3) + (1− π2)φ(yj;µ4,Σ4) (2.2)

for j = 1, · · · , n2, where both random samples are independent of each other.

In order to avoid the identifiability problem and unbounded likelihood as well as to assure

that desirable asymptotic properties of maximum likelihood estimates hold (McLachlan &

Peel, 2004), the following conditions are imposed:

0 < π1, π2 < 1

µq1 > µq2, q = min{j : µj1 6= µj2, j = 1, · · · , p}

µq
′

3 > µq
′

4 , q′ = min{j : µj3 6= µj4, j = 1, · · · , p} (2.3)

Σ1 = Σ2 = Σ3 = Σ4 ≡ Σ.
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Under these conditions, the similarity of any two clusters from each population can be

assessed in terms of a comparison of the means of two normal distributions.

In the context of our setting where we want to show a found cluster is common to

both populations, we need to assess that two p-dimensional mean vectors are the same or

different. The usual hypothesis testing paradigm is designed to protect Type I error, an

error of incorrect rejection of a true null hypothesis. Consequently, lack of evidence to reject

the null hypothesis does not imply sufficient evidence to support it. In light of that, the

hypothesis one desires to prove should be stated as the alternative hypothesis. The formal

hypothesis testing formulation in our clustering problem essentially becomes H0: two mean

vectors are unequal. vs HA: two mean vectors are the same, or as we show in the following,

a slight variation of the above formulation.

It turns out this type of hypothesis testing problem has been extensively studied in the

context of demonstrating bioequivalence (BE) in the biopharmaceutical industry (Chow &

Liu, 2000). Regulatory agencies require that a proposed generic drug be biosimilar to the

approved and listed drug, i.e., the reference drug. Current US Food and Drug Administration

(FDA) guidelines (FDA Guidance, 2001) declare the test and reference drug as average

bioequivalent if a suitable measure of absorption differs by less than a (clinically) meaningful

limit. In the same spirit, two clusters may be considered in common if characteristics of the

two clusters differ by less than a scientifically meaningful and suitable cluster equivalence

margin which we denote by ∆. In the other words, if a suitably measured univariate difference

between any two clusters is less than ∆, the two clusters would be viewed equivalent or the

same. The quantity ∆ is the maximum allowable difference between any two clusters that

from the scientific view can be ignored. The null hypotheses of no common cluster between

two populations can be formulated as follows:

H0 = H01 ∩ H02 ∩ H03 ∩ H04 (2.4)

where

H01 : d(µ1 ,µ3 ) ≥ ∆ H02 : d(µ1 ,µ4 ) ≥ ∆

H03 : d(µ2 ,µ3 ) ≥ ∆ H04 : d(µ2 ,µ4 ) ≥ ∆
(2.5)
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where d(x,y) is an appropriate measure of distance, d(x,y) = d(y,x) ≥ 0. Let Rr be the

αr = α/4 level rejection region for testing H0r, r = 1, · · · , 4; then an overall α level rejection

region would be R =
⋃4
r=1Rr by the Bonferroni multiplicity adjustment. The rejection

of H0 would lead to the conclusion that at least one common cluster is shared in the two

independent populations. Precise descriptions of the testing procedures are given in the

following section.

2.3 TESTING PROCEDURES

An appeal of fomulations (2.4) and (2.5) are that they are flexible enough to cover both

the univariate case and the multivariate case by using different distance measures. The

focus is to select an appropriate distance measure and find a way of constructing rejection

regions for H0r, r = 1, · · · , 4. We first propose testing procedures for univariate data based

on the idea of two one-sided tests. The two one-sided tests can be immediately extended to

multivariate data by the intersection-union method. Although such an extension is straight-

forward, as we show later in Section 2.5.2, it suffers from low power even for bivariate data.

We therefore further propose a more powerful testing approach for multivariate data using

a methodology based on bootstrap confidence intervals.

2.3.1 Two one-sided test (TOST) based approach

2.3.1.1 Preliminaries

The two one-sided test (TOST) was first introduced by Schuirmann (1981, 1987) for

assessing average bioequivalence and thereafter has been adopted by FDA (FDA Guidance,

1992) as its process for approving a new generic drug. In the context of the TOST setting, let

θ denote a bioequivalence measure of interest, for example, the population mean difference of

the AUC (areas under the blood serum curve) on the log scale between the reference drug and

the test drug. The hypothesis of TOST is formulated as H0 : |θ| ≥ ∆ versus HA : |θ| < ∆,

where ∆ is a pre-defined clinically meaningful limit. LetD be an estimate of θ that is assumed
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to follow a normal distribution with mean θ and variance σ2
D. The α level TOST rejects H0

if |D| ≤ ∆− zασD, where zα is the upper α quantile of the standard normal distribution. It

also has been noted that TOST is operationally identical to the classic confidence interval

approach: reject H0 at level α if the 100(1 − 2α)% confidence interval for θ is contained in

(−∆,∆) (Berger et al., 1996). TOST has been shown to be a test of significance level α, and

generally its actual size is smaller than the nominal significance level (Chow & Liu, 2000).

A great deal of work has been devoted to improve the power of TOST. Brown et al. (1997),

Munk et al. (2000) and Berger et al. (1996) proposed tests involving making adjustments to

the TOST rejection region to improve power and keep the Type I error from exceeding the

stated α level. Despite these tests are theoretically more powerful, the real advantage is too

negligible for any practical use (Chow & Liu, 2000). Thus, from a practical point of view,

TOST stands out for its simplicity and intuitive appeal.

The Expectation Maximization (EM) algorithm is widely used for maximum likelihood

estimation in finite mixture models. Its main characteristics have been well studied (McLach-

lan & Krishnan, 2007). The major drawbacks of the EM algorithm are its slow convergence

and the strong dependence of the estimates on the starting point. Many algorithms have

been developed to speed up the convergence (Liu & Sun, 1997) and comparisons of different

methods to choose sensible starting points for obtaining the highest likelihood are studied in

(Karlis & Xekalaki, 2003; Biernacki et al., 2003). Our methodology does not use any of these

updated aspects of the EM algorithm, but uses the most standard EM algorithm without

any acceleration scheme. But clearly these other algorithms could be easily applied in our

setting.

2.3.1.2 Univariate case

For motivation, we first consider p = 1, d(x, y) = |x − y| and n1 = n2 = n. Our testing

procedures are presented as follows:

Step 1: Apply the EM algorithm to the joint distribution of x1, · · · , xn and y1, · · · , yn
to obtain maximum likelihood estimates µ̂l, l = 1, · · · , 4, π̂1, π̂2, σ̂ subject to conditions (2.3).

Parameters estimated at the gth iteration are marked by a superscript g.

(a) Initializing Step: Apply k-means with pre-specified number of clusters for x1, · · · , xn and
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y1, · · · , yn respectively to obtain initial values, set g = 1.

1. Initialize µ̂
(1)
l by computing the average of the observations classified to cluster l, l =

1, · · · , 4 and let µ̂
(1)
1 > µ̂

(1)
2 , µ̂

(1)
3 > µ̂

(1)
4 for identifiability.

2. Initialize σ̂2(1) by taking the average of sample variance σ̂
2(1)
l computed from the

observations classified to cluster l.

3. Initialize π̂
(1)
1 , π̂

(1)
2 by the proportion of data assigned to the corresponding clusters.

(b) E-step: Compute the posterior probabilities of cluster labels l for each point xi and yj,

i, j = 1, · · · , n,

pi,(l=1) =
π̂
(g)
1 φ(xi|µ̂(g)

1 , σ̂2(g))

π̂
(g)
1 φ(xi|µ̂(g)

1 , σ̂2(g)) + (1− π̂(g)
1 )φ(xi|µ̂(g)

2 , σ̂2(g))
pi,(l=2) = 1− pi,(l=1)

pj,(l=3) =
π̂
(g)
2 φ(yj|µ̂(g)

3 , σ̂2(g))

π̂
(g)
2 φ(yj|µ̂(g)

3 , σ̂2(g)) + (1− π̂(g)
2 )φ(yj|µ̂(g)

4 , σ̂2(g))
pj,(l=4) = 1− pj,(l=3).

(c) M-step:

π̂
(g+1)
1 =

∑n
i=1 pi,(l=1)

n
π̂
(g+1)
2 =

∑n
j=1 pj,(l=3)

n

µ̂
(g+1)
l =

∑n
i=1 pi,lxi∑n
i=1 pi,l

, l = 1, 2 µ̂
(g+1)
l =

∑n
j=1 pj,lyj∑n
j=1 pj,l

, l = 3, 4

σ̂
(g+1)
l =

∑2
l=1

∑n
i=1 pi,l(xi − µ̂

(g+1)
l )2 +

∑4
l=3

∑n
j=1 pj,l(yj − µ̂

(g+1)
l )2

2n
.

(d) Repeat E-step and M-step until there is suitable convergence.

Running k-means first to obtain initial values in mixture models is common used (McLach-

lan & Peel, 2004). Biernacki et al. (2003) also recommends a three step search-run-select

strategy as follows: start with several different initial values in the initializing step, and

follow step (b)-(d) with a relatively liberal convergence criteria in (d), then select the solu-

tion that leads to the largest value of loglikelihood and keep repeating (b)-(c) until a strict

convergence criteria is met.

Step 2: Use either parametric or nonparametric bootstrap methods to obtain standard

errors of the estimates. Draw bootstrap samples x
∗(b)
1 , · · · , x∗(b)n , y

∗(b)
1 , · · · , y∗(b)n from the

fitted mixture distributions if one uses the parametric bootstrap or from the observed data

with replacement if one uses the nonparametric bootstrap, where superscript ∗(b) denotes
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the bth bootstrap sample. Apply the EM algorithm to each bootstrap sample and obtain

µ̂
∗(b)
l , σ̂∗(b). Consequently, we approximate cov(µ̂l, µ̂l′) by ĉov(µ̂∗l , µ̂

∗
l′), where ĉov denotes the

sample covariance matrix and µ̂∗l = [µ̂
∗(1)
l , · · · , µ̂∗(B)

l ]T .

Step 3: Apply the Bonferroni procedure for control of the familywise error rate at level

α. The rejection region for H0 is R = ∪4rRr, where Rr is the rejection region for H0r that

can be construsted by TOST at a significance level α/4 using the asymptotic normality

properties of the parameter estimates (McLachlan & Peel, 2004). For example, R1 is given

as:

R1 : |µ̂1 − µ̂3| ≤ ∆− zα/4σ̂µ̂1−µ̂3 . (2.6)

2.3.1.3 Multivariate case

The above testing procedures can be easily adapted to the multivariate case by consid-

ering two clusters as common if the population mean values for each of the p variables used

in the cluster analysis differ by less than a meaningful limit denoted by ∆j, j = 1, · · · , p. To

simplify the notation, we assume that ∆j = ∆, j = 1, · · · , p. Thus, the null hypotheses of

no common cluster between two populations in p-variate case can be formulated as

H0 = H01 ∩ H02 ∩ H03 ∩ H04 (2.7)

where

H01 :

p⋃
j=1

|µ1j − µ3j | ≥ ∆ H02 :

p⋃
j=1

|µ1j − µ4j | ≥ ∆

H03 :

p⋃
j=1

|µ2j − µ3j | ≥ ∆ H04 :

p⋃
j=1

|µ2j − µ4j | ≥ ∆.

(2.8)

The overall rejection region is still R =
⋃4
r Rr, whereas Rr is constructed by

⋂p
j=1Rrj

using the intersection-union method with Rrj obtained by TOST. Despite its simplicity, we

found that the intersection-union method can be very conservative. The drawback of this test

is that it fails to account for correlations among the variables for the cluster analysis, so that

the degree of conservativeness of the test depends on the correlations among the variables

(Quan et al., 2001). However, for example, in our motivating data, it’s likely that the
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measured mRNA genes from post-mortem brain tissue are correlated to some extent. Thus,

it seems that it would be best to consider a test that assesses all the variables simultaneously.

2.3.2 Confidence interval approach

As discussed in the preceding Section, the intersection-union method suffers from low

power by examining commonality for each variable independently across clusters. In fact,

as shown in the Table 2.6 , the power is very low even when only considering two variables

in the cluster analysis. Considering that our goal is to demonstrate the overall similarity

of two clusters, it seems unnecessarily strong to require similarity in every variable simulta-

neously. We instead propose to use the L2 norm as the distance measure for multivariate

data, i.e., d(x,y) = ||x − y||2 =
√

(x− y)T (x− y), where || · ||2 denotes the L2 norm. L2

norm is a scientifically meaningful measure of distance. The key step in our testing proce-

dures is to construct confidence intervals for the L2 norm of the difference of the normal

means. However, identifying its exact confidence interval is complicated. In this situation,

we use bootstrapping to obtain approximate confidence intervals. Note that bootstrapping

implicitly takes into account of the correlation between variables.

Bootstrap methods for producing good approximate confidence intervals in complicated

situations have been demonstrated and are well established, for example, Efron (1987),

DiCiccio & Efron (1996), Hall (2013). There are a variety of ways to construct bootstrap

confidence intervals. Some are computationally expensive, while some are computationally

less demanding but with a lower degree of coverage accuracy. Here the less computationally

intensive approaches are used in our work. However, confidence interval methods with higher

degrees of coverage accuracy may be preferred when computation time is not at issue.

We provide an illustration of the use of four selected bootstrap methods in the context

of our testing problem. They are (i) non-studentized pivotal method, (ii) percentile method,

(iii) a variant of the percentile method and iv) normal method. For the sake of simplicity,

we consider the bivariate case, and show, for example, how to construct the 100(1 − α)%

bootstrap confidence interval for ||d13||2, where d13 = µ1−µ3. Following the flow described

in Section 2.3.1, we obtain the estimate ||d̂13||2 in Step 1, and have drawn B samples and
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computed ||d̂∗13||
(b)
2 in Step 2 for each bootstrap sample successively, b = 1, · · · , B. If ∆ is

not contained in the 100(1 − α)% bootstrap confidence interval of ||d13||2 , then the null

hypothesis H01 will be rejected in the formulation (2.5). For the simplicity of notation, we

suppress the subscripts for the remainder of Section 2.3.2.

2.3.2.1 Non-Studentized pivotal method

The non-studentized pivotal method, sometimes referred to as the basic bootstrap inter-

val method, is arguably a natural way of constructing bootstrap confidence intervals. It’s

based on the assumed pivotality of ||d̂|| − ||d||. Define pivot T = ||d̂|| − ||d||. Let H(t)

denote the cumulative distribution function(CDF) of T , i.e., H(t) = P (T ≤ t), and define

c = ||d̂|| −H−1(r + α− 1) with r = H(||d̂||). Thus, the 100(1− α)% confidence interval for

||d|| would be (0, c) as

P (0 ≤ ||d|| ≤ c) = P (−c ≤ −||d|| ≤ 0)

= P (||d̂|| − c ≤ ||d̂|| − ||d|| ≤ ||d̂||)

= H(||d̂||)−H(||d̂|| − c)

= 1− α.

The problem is that, in practice, the distributionH is not known. Nevertheless, the bootstrap

principle allows us to learn about the relationship between the true parameter value ||d|| and

the estimator ||d̂|| by looking at the relationship between ||d̂|| and ||d̂∗||, where d̂∗ denotes

the estimate based on the bootstrapping. Thus,the CDF of T can be approximated by the

CDF of T ∗ = ||d̂∗|| − ||d̂||. Further, the CDF of T ∗, H∗(t) = P (T ∗ ≤ t) can be estimated by
1

B

∑B
b=1 I(Tb ≤ t), where Tb = ||d̂∗||(b)−||d̂||. Hence, the 100(1−α)% confidence interval for

||d|| would be (0, ĉ) with ĉ = ||d̂|| − Ĥ−1(r + α− 1) = 2||d̂|| − ||d̂∗||α+r−1, where ||d̂∗||α+r−1
is the α + r − 1 sample quantile of (||d̂∗||(1), · · · , ||d̂∗||(B)).

Note that there are two distinct sources of error in this procedure. The first error arises

from the use of empirical CDF of T ∗ instead of its true CDF H∗. This error is usually

negligible as long as B is sufficiently large. The second error, resulting from the assumption

that the distribution of the statistic T is similar to the distribution of T ∗, is much more

critical. The coverage accuracy of the bootstrap confidence interval may be poor when the
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two distributions differ substantially (Carpenter & Bithell, 2000). The coverage error of the

non-studentized pivotal method has been shown to be of order O( 1√
n
) (Hall, 2013), where n

is sample size.

2.3.2.2 Percentile method

Another commonly used bootstrap method is the percentile method introduced by Efron

(1981). The rationale behind this approach is as follows. Suppose there exists a monotone

transformation g(·) such that η̂∗ − η̂ ∼ η̂ − η ∼ N(0, σ2), where η̂∗ = g(||d̂∗||), η̂ = g(||d̂||)

and η = g(||d||). Then, the one sided 1− α interval for ||d|| is

(0, g−1(η̂ − σzα)) = (0, g−1(F−1η̂∗ (1− α)))

where Fη̂∗ denotes the CDF of the random variable η̂∗. Since a monotone transformation pre-

serves quantiles, g−1(F−1η̂∗ (1−α)) = g−1(g(F−1
||d̂∗||

(1−α))). Therefore, the one-sided percentile

interval is (0, ||d̂∗||1−α)), where ||d̂∗||1−α is the 1− α quantile of ||d̂∗||(1), · · · , ||d̂∗||(B).

The validity of this method rests on the existence of g(·). However, for many problems

an exact normalizing transformation will rarely exist. It has been shown that the coverage

error can be substantial if the distribution of the estimate is not nearly symmetric (Efron &

Tibshirani, 1994).

2.3.2.3 Bias corrected percentile method

The noted disadvantage of the percentile method led to the development of bias corrected

(BC) method proposed by Efron (1987). Consider a monotone transformation g(·), such that

η̂∗ − η̂ ∼ η̂ − η ∼ N(−tσ, σ2) for some constant t. The BC interval is (0, F−1
||d̂∗||

(Φ(2t− zα))),

where t is estimated by Φ−1(P̂ (||d̂∗|| ≤ ||d̂||)) and Φ is the CDF of the standard normal

distribution. The BC interval is still given by percentiles of the bootstrap samples, but the

percentiles used are corrected for skewness and hence, provide improvement over the basic

percentile approach in practice. In theory, the coverage errors of both the basic percentile

interval and the BC interval are of order O( 1√
n
) (Hall, 2013).
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2.3.2.4 Normal method

The simplest way of constructing bootstrap confidence intervals is by assuming the un-

derlying distribution of ||d̂|| is normal. This yields the normal interval (0, ||d̂|| + z1−α
2
ŝ),

where ŝ is the bootstrap estimate of the standard error. In view of the fact that there is

no compelling evidence to assume normality for the L2 norm or for some transformation of

the L2 norm, for example, the logarithm of the L2 norm, the normal method may perform

poorly in our context as later shown in Section 2.5.2 .

2.4 ASYMPTOTIC PROPERTIES

Obviously, the time efficiency, as well as the coverage accuracy of our proposed proce-

dures, depends largely on the convergence of EM algorithm for normal mixtures and the

construction of bootstrapping confidence intervals. For coverage accuracy, all the afore-

mentioned bootstrap confidence interval methods we adopted are relatively computationally

inexpensive and enjoy first-order accuracy (Hall, 1988).

It is well known that generally the EM algorithm can be trapped at local maxima, which

are local maximum solutions of the likelihood function (Redner & Walker, 1984). The choice

of initial values for the EM algorithm is of importance as to whether we will actually reach

the global maxima. Practice has shown that it is preferable to start from several different

initial values and then choose the solution that has the highest converged likelihood. Ma

& Fu (2005) further studied the problem of correct convergence of the EM algorithm for

normal mixtures, and found in both theory and practice that the EM algorithm can converge

consistently to the true parameters when the starting point is suitably close to the true value.

Moreover, the radius of this correct convergence starting point neighborhood becomes larger

as the overlap of densities in a mixture becomes smaller. Therefore in practice, when overlap

of the normal densities in the mixture is small enough and the sample size is large enough,

the EM algorithm has a good chance to converge correctly. This, in turn implies that, our

testing procedures should have satisfying performance in these cases. In the next section, we

use simulations to demonstrate the empirical performance of our proposed procedures under
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different degrees of overlap between the normal distributions in the mixture.

2.5 SIMULATIONS

In this section, we evaluate the performances of our testing procedure in both univariate

and bivariate situations. The behaviors of our algorithms for cases ranging from easy-to-

detect to hard-to-detect under different degrees of overlap between the normal distributions

in the mixtures are illustrated.

2.5.1 Univariate simulation

Cluster analysis based on one variable is usually uninteresting in practice. The main

purpose of doing simulations in the univariate case is to examine the testing characteristics

of our procedures. We restrict our investigation to the case of two independent populations

distributed as a mixture of two univariate normal distributions in Section 2.5.1. Hypotheses

are expressible as hypotheses about shifts between four pairs of means as below with a

pre-specified positive cluster equivalence margin ∆.

H01 : |µ1 − µ3 | ≥ ∆ H02 : |µ1 − µ4 | ≥ ∆

H03 : |µ2 − µ3 | ≥ ∆ H04 : |µ2 − µ4 | ≥ ∆

If a single test rejects the null hypothesis, then the true pairwise mean difference must

be smaller than ∆. The chance of incorrectly declaring equivalence decreases as the true

distances between the means increase. In the other words, the type I error rate for a single test

decreases as the difference in means increases, so that the type I error is maximized when the

true means are exactly ∆ apart (Schuirmann, 1987) for a single comparison. Therefore, the

scenario maximizing the Boneronni inequality bound on the family wise error rate (FWER)

would be all the four pairs of means being exactly ∆ apart.

However, it can be easily shown as follows that the scenario with four pairs of means

being ∆ apart is not attainable. Suppose there are four pairs of means being ∆ apart in

addition to the condition (2.3) which requires µ1 > µ2 and µ3 > µ4, then |µ1 − µ4| = ∆ and
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|µ1−µ3| = ∆ along with |µ2−µ4| = ∆ would lead to µ3 = µ1 +∆, µ4 = µ1−∆, µ2 = µ4−∆,

resulting in µ3 − µ2 = 3∆ in contradiction of |µ3 − µ2| = ∆. It can also be shown that

the scenario with three pairs of means being ∆ apart may not be reasonable. Suppose that

there are three pairs of means being ∆ apart, for example, H01 ,H02 and H03 hold. By

Triangle inequality, 2∆ = |µ1 − µ3|+ |µ1 − µ4| ≥ |µ3 − µ4| and 2∆ = |µ1 − µ3|+ |µ2 − µ3| ≥

|µ1 − µ2|, i.e., the means of the two normal components within each population are at most

2∆ apart. However if the difference between the means of two clusters is less than ∆, the

two clusters would be considered by our standard to be equivalent. Thus, we would want

the distance between means of two clusters in the same population to be considerably larger

than ∆ for a reasonably separated mixture of normal distributions. With this in mind, an

appropriate practical ∆ should be chosen by the investigator in recognition of anticipated

separation between the two normal components in the mixtures of normal distributions. In

our motivating data, we are interested in examining similarities in the profiles of subtypes in

populations with different mental disorders. By the formulation, two subtypes, regardless of

which population they are identified from, would be considered equivalent if the difference

between them is less than the cluster equivalence margin ∆. Therefore, we would want

scientists to take account of the anticipated difference between subtypes identified in the

same mental disorders in determining an appropriate cluster equivalence margin ∆.

Hence, in our simulations, we consider a “worst” case scenario as the configuration of

two pairs of means being ∆ apart. We study the FWER in the scenarios corresponding to

µ3−µ1 = δ, µ4−µ2 = δ setting δ equal to the cluster equivalence margin ∆. Suppose µ1 = 1,

σ = 1, π1 = 0.4, π2 = 0.3 and n1 = n2 = 500. The separations of the normal components can

be assessed by h = |µ1−µ2|/(σ1+σ2) if the two components have means µ1, µ2 and variances

σ2
1, σ

2
2 respectively (McLachlan & Peel, 2004). Schilling et al. (2002) gives the values of h

that separate unimodal and bimodal mixtures of normal distribution for specific values of

the mixture proportion π1 and σ1/σ2. In our setting, if µ2 < −1.44 then the mixture is

bimodal. Three different true parameter values for µ2 are chosen representing cases of well-

separated (Well-sep), medium-separated(Med-sep), and poorly-separated (Poor-sep) mixture

of normals: µ2 = −3,−1.8,−1.44 respectively. Under the null hypothesis, let µ3 = µ1 + δ,

µ4 = µ2 + δ and δ = ∆ with varying ∆ taking values in 0.4, 0.5, 0.6. It can be checked that
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the distance between means of two clusters in the same population is at least 3 times greater

than the cluster equivalence margin in our simulation settings. It has been suggested that,

for 90%− 95% confidence intervals, the number of bootstrap samples B should be between

1000 and 2000 (Davison & Hinkley, 1997; Efron & Tibshirani, 1994; Carpenter & Bithell,

2000). In the simulation study, the bootstrap standard errors of the estimates are obtained

based on 1000 bootstrap samples.

Simulation results displayed in Table 2.1 and Table 2.2 are based on 500 datasets gener-

ated for each parameter configuration. The simulation results presented in Table 2.1 show

that the type I error rates are all controlled at the nominal level. The fact that type I

error rates are far below than 0.05 can be explained by the conservativeness of TOST and

the Bonferroni multiplicity adjustment. We also assess the performance of the maximum

likelihood estimates obtained via the EM algorithm and the empirical coverage probability

of the bootstrap confidence interval in Table 2.2. Bias and the mean square error of the

estimates of µ3−µ1 over 500 replications are computed given ∆ under each setting. It is not

surprising to find out that estimates from the EM algorithm have larger variance, therefore

larger MSE, as normal components become less separated. In general, the empirical coverage

rates are greater than the nominal level due to conservativeness of TOST.

Power under a set of alternative hypotheses based on 200 datasets are summarized in

Table 2.3. Under the alternative hypothesis, we considered µ3 = µ1 + δ, µ4 = µ2 + δ with

δ = 0, 0.1, 0.3 and µ2 = −1.8 in the scenario of medium-separated mixture of normals for

power evaluation. It can be seen from Table 2.3 that given the cluster equivalence margin

∆, higher power is attained for smaller δ for the reason that as the true distance between

two clusters defined in independent populations becomes smaller, it is more favorable to the

alternative hypothesis, thereby resulting in greater power. On the other hand, when the true

distance between clusters δ are fixed, larger ∆ leads to higher power because larger values of

the maximum allowable difference between any two clusters that would be viewed equivalent

makes detection of common clusters easier. In Section 2.A.1, we demonstrate that power

increases with ∆− δ.

Another important concern investigators and practitioners may raise is when common

clusters are detected, how likely are we to conclude wrong pairs of common clusters. It can be
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theoretically demonstrated that the probability is lower than 0.05 as Bonferroni multiplicity

adjustment controls family error rate (FWER) in the strong sense (Dmitrienko et al., 2009),

meaning that the chance of rejecting one or more correct null hypotheses is always less than α

regardless of which and how many of the null hypotheses are correct. Here we use simulations

to assess the empirical rejection rates of any subset of true null hypotheses conditional on

correctly rejecting the overall null hypothesis. The simulation settings we consider are as

follows: let µ1 = 1, σ = 1, µ1 − µ2 = 2∆, µ4 − µ2 = ∆ and µ3 − µ1 = δ with δ taking values

in 1
4
∆, 2

4
∆, 3

4
∆. Clearly |µ1 − µ4| and |µ2 − µ4| are on the boundary of the null hypotheses

H02 and H04 , while |µ1 − µ3| is in the alternative space of H01 . Note that in addition to

being the cluster equivalence margin, ∆ also determines the degree of separation between

the normal distributions in the mixtures. It is direct to show that the mixture for the first

population is bimodal if ∆ > 1.22 so that we let ∆ = 1.2, 1.3. Considering that the test has

lower power when δ is approaching to the cluster equivalence margin ∆, we didn’t consider

δ value larger than 3
4
∆.

The results are given in Table 2.4. It can be seen that out of 200 simulations, there

was no case of making wrong rejections. However, notice that when δ is approaching to 3
4
∆

and ∆ = 1.2, there are a handful of cases where the test statistic for testing |µ1 − µ4|, i.e.,

|µ̂1 − µ̂4| + zα/4σ̂µ̂1−µ̂4 are borderline yet not crossing ∆ yet. In order to get a better sense

of the likelihood of making wrong rejections, in Appendix 2.A.2, a exploratory analysis was

conducted by increasing the significance level α beyond 0.05 and looking for points at which

wrong rejections are made. Based on the results, we conclude that practitioners generally

do not need to worry about claiming wrong pairs of common clusters using the proposed

testing procedures.

Overall, the findings of the simulation studies suggest that our proposed test is able

to control Type I error at the nominal level regardless of varying levels of overlap between

normal components. The power of the test strongly depends on the size of ∆ relative to

other model parameters. In practice, however, the maximum allowable difference between

any two clusters that from the scientific view can be ignored should be chosen in consultation

with scientists familiar with the context of the data.
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Table 2.1: Simulated type I error rate in univariate case. 500 datasets are simulated for
each parameter configuration. True parameters used to generate the samples are set as:
f(xi) = 0.4φ(xi; 1, 1) + 0.6φ(xi;µ2, 1), i = 1, · · · , 500 with µ2 = −3,−1.8,−1.44 and f(yj) =
0.3φ(yj; 1 + δ, 1) + 0.7φ(yj;µ2 + δ, 1), j = 1, · · · , 500 with δ = ∆ = 0.4, 0.5, 0.6.

∆ = 0.4 ∆ = 0.5 ∆ = 0.6

Well-sep (µ2 = −3) 0.014 0.014 0.012

Med-sep (µ2 = −1.8) 0.006 0.006 0.008

Poor-sep (µ2 = −1.44) 0.006 0.0014 0.008

Table 2.2: Simulation results for the estimates of the µ3−µ1. 500 datasets are simulated for

each parameter configuration (see Table 2.1). |B̂ias| denotes absolute value of the estimated

bias. M̂SE is the estimated mean square error of the estimates. ̂Coverage is the empirical
coverage probability of the 97.5% bootstrap confidence interval.

∆ = δ = 0.4 ∆ = δ = 0.5 ∆ = δ = 0.6

Well-sep

|B̂ias| 0.006 0.004 0.010

M̂SE 0.0162 0.015 0.0162
̂Coverage 0.984 0.982 0.990

Med-sep

|B̂ias| 0.002 0.006 0.003

M̂SE 0.0249 0.0240 0.0285
̂Coverage 0.984 0.984 0.972

Poor-sep

|B̂ias| 0.005 0.009 0.001

M̂SE 0.0288 0.0378 0.0293
̂Coverage 0.988 0.970 0.982
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Table 2.3: Power evaluation. 200 datasets are simulated for each parameter configura-
tion. True parameters used to generate the samples are set as: f(xi) = 0.4φ(xi; 1, 1) +
0.6φ(xi;−1.8, 1), i = 1, · · · , 500 and f(yj) = 0.3φ(yj; 1 + δ, 1) + 0.7φ(yj;µ2 + δ, 1), j =
1, · · · , 500 with δ = 0, 0.1, 0.3.

∆ = 0.4 ∆ = 0.5 ∆ = 0.6

δ = 0 0.32 0.76 0.95

δ = 0.1 0.275 0.725 0.92

δ = 0.3 0.055 0.185 0.44

Table 2.4: Rejection rates evaluation: P1 =P (reject at least one H0i), P2 =P (reject at
least one H0i, i ∈ T |reject at least one H0i) where T denotes the index set of the true null
hypotheses. 200 datasets are simulated for each parameter configuration. True parameters
used to generate the samples are set as: f(xi) = 0.4φ(xi; 1, 1)+0.6φ(xi;µ2, 1), i = 1, · · · , 500
with µ2 = 1 − 2∆ and f(yj) = 0.3φ(yj; 1 + δ, 1) + 0.7φ(yj;µ2 + δ, 1), j = 1, · · · , 500 with
δ = 1

4
∆, 2

4
∆, 3

4
∆ and ∆ = 1.2, 1.3.

P1 P2

∆ = 1.2
δ = 1

4
∆ 0.795 0

δ = 1
2
∆ 0.575 0

δ = 3
4
∆ 0.200 0

∆ = 1.3
δ = 1

4
∆ 0.885 0

δ = 1
2
∆ 0.785 0

δ = 3
4
∆ 0.275 0
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2.5.2 Simulations in bivariate case

We evaluate and compare heuristic performances for bivariate data of the TOST-based

method and the selected bootstrap confidence intervals approaches: non-Studentized pivotal

method (pivotal), percentile method (percentile), bias-corrected(BC) percentile method, nor-

mal method assuming normality of L2 norm(Normal1), normal method assuming normality

of log(L2 norm) (Normal2) in bivariate case. All the previously chosen bootstrap confidence

interval methods are relatively computationally inexpensive and accessible to practitioners.

Theoretically, they all have the same first-order accuracy (Hall, 1988). Our goal in this

section is to evaluate their empirical performance using simulations and in order to try to

recommend the methods that work well in our applications.

In the simulation study, we set π1 = 0.5, π2 = 0.5 and n1 = n2 = 500,

µ1 =

 1

2.5

 ,µ2 =

 0

0

 ,µ3 =

 1 + δ

2.5

 ,µ4 =

 −δ
0

 ,Σ =

 1 ρ

ρ 1

 .

We consider the Kullback-Leibler divergence between two distributions as the measure of

separation between two bivariate normal distributions. The Kullback-Leibler divergence

between two p-multivariate normal distributions P (x) and Q(x) with means µ1 and µ2 and

covariance matrix Σ1 and Σ2 is defined as

KL(P,Q) =
1

2

{
log
|Σ2|
|Σ1|
− p+ Tr[Σ−12 Σ1] + (µ1 − µ2)

TΣ−12 (µ1 − µ2)

}
.

In our setting, KL(P,Q) =
1

2

{
7.25− 5ρ

1− ρ2
− 1

}
, which is monotonically decreasing in ρ if

ρ ≤ 0. Thus two different true parameter values for ρ are chosen to represent cases of

different degree of overlap in the mixture of two normals: ρ = −0.7, 0, respectively.

In a similar manner to the univariate case, we study the FWER in the scenarios cor-

responding to ||µ3 − µ1|| = δ = ∆, ||µ4 − µ2|| = δ = ∆. We note that there are other

points in the null space as extreme or more extreme than the point we chose. However, the

chosen point is reasonably extreme and appealing to one’s intuition. As shown in Table 2.5,

most empirical type I errors are below the nominal level except for the pivotal method. Two

normal methods and TOST-based method have empirical type I error rates equal to zero in

most of the cases, indicating the conservativeness of these methods.
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Powers are evaluated under the alternative hypothesis µ3 = µ1 and µ4 = µ2 for cases

ranging from easy-to-detect ∆ = 0.6 to hard-to-detect ∆ = 0.2 in Table 2.6. Similar to

the univariate case, larger ∆ leads to higher power. Generally, the pivotal method enjoys

the highest power, and then followed by the Bias-Corrected percentile method, and the

two normal methods. In almost all the cases, the TOST-based method and the percentile

method have the lowest power. All the selected bootstrap confidence intervals approaches

but the basic percentile method outperform the TOST-based method, indicating that the

idea of evaluating the overall similarity of two clusters generally boost power substantially

compared to examining commonality for each variable independently across clusters. Among

the selected bootstrap confidence intervals methods, the pivotal method and Bias-Corrected

percentile method perform well in terms of power. Taking into account the fact that the

pivotal method may fail to protect type I error rate, the Bias-corrected method may be more

robust and desirable and thereby recommended.

Table 2.5: Type I error rates evaluation in bivariate case. 500 datasets are simulated for
each parameter configuration and the six methods are applied to the same data sets.

Pivotal Percentile BC Normal1 Normal2 TOST

ρ = −0.7 δ = ∆ = 0.2 0.08 0 0.06 0 0.006 0

δ = ∆ = 0.4 0.006 0 0.02 0 0 0

δ = ∆ = 0.6 0.006 0 0.01 0 0 0

ρ = 0 δ = ∆ = 0.2 0.12 0 0.07 0 0.01 0

δ = ∆ = 0.4 0 0 0.02 0 0 0

δ = ∆ = 0.6 0 0.006 0 0 0 0.004
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Table 2.6: Power evaluation in bivariate case. 200 datasets are simulated for each parameter
configuration.

Pivotal Percentile BC Normal1 Normal2 TOST

ρ = −0.7 ∆ = 0.2 0.77 0 0.56 0 0.18 0

∆ = 0.4 1 0 0.92 0.1 0.58 0.085

∆ = 0.6 1 0.66 1 0.98 0.88 1

ρ = 0 ∆ = 0.2 0.54 0 0.39 0 0.12 0

∆ = 0.4 0.94 0 0.88 0.13 0.39 0.015

∆ = 0.6 1 0.4 1 0.95 0.77 0.96

2.6 APPLICATION

In this section, we illustrate the cluster identification methods described in Section 2.3.2

by applying them to one data example: an interesting GABA neuron-related biomarker

study that strongly motivated our research. We start with giving an overview of the studies

and descriptions of data. We then discuss the application of out methodology to the data.

2.6.1 GABA neuron-related biomarker study

2.6.1.1 Overview of the published studies

Previously Volk et al. (2012) identified a subset of schizophrenia subjects that consistently

showed deficits in certain GABA neuron-related mRNAs obtained from post-mortem brain

tissues: GABA synthesizing enzyme glutamate decarboxylase (GAD67), calcium-binding

protein parvalbumin (PV), neuropeptide somatostatin (SST) and Lhx6 which plays a critical

role in the specification, migration, and maturation of neurons that express PV or SST. This

subset of subjects was termed as the Low-GABA-Marker (LGM) molecular phenotype.

In a more recent study, Volk et al. (2016) quantified transcript levels for GAD67, PV,

SST, and Lhx6 in the prefrontal cortex area of 184 subjects with a diagnosis of schizophrenia
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(n = 39), schizoaffective disorder (n = 23), bipolar disorder (n = 35), or control subjects

(n = 87). Absence of any psychiatric diagnoses were confirmed in control subjects.

In this recent study, each subject with a psychiatric disorder was matched individually

to one control subject by gender and as closely as possible for age. Ten control subjects

were previously used as matching subjects in the published studies for bipolar disorder

(Sibille et al., 2011; Kimoto et al., 2015) and also studies for schizophrenia or schizoaffective

disorder (Volk et al., 2012, 2014) therefore the same pairing was retained. Samples from

subjects in a pair were prepared and processed together in a blinded fashion throughout all

stages of the study in order to control experimental variation. To account for significant

effects of covariates, SST mRNA levels were adjusted by age and brain pH; PV mRNA levels

were adjusted by brain pH; and GAD67 mRNA levels by brain pH. Further to account for

varying scales among the four mRNAs, standardized mRNA levels of pH-adjusted GAD67,

pH-adjusted PV, age and pH-adjusted SST were computed for all subjects by subtracting

the overall mean and then dividing by the overall standard deviation. More details can be

found in Volk et al. (2016).

In Volk et al. (2016), a cluster analysis was conducted using the standardized and ap-

propriately adjusted GAD67, PV, SST, and Lhx6 expression levels based on all 184 sub-

jects. The purpose of this analysis was to identify possible clusters among the subjects

with schizophrenia, schizoaffective, bipolar and control subjects. The goal was to see if

one cluster was connected to the subject with schizophrenia, schizoaffective disorder and

bipolar disorders and not apparent in controls. The Ward method (Ward Jr, 1963) was

used to do hierachical clustering on all 184 subjects. Two clusters were identified in their

paper as displayed in Figure 2.1. One cluster was composed of 140 subjects (57 subjects

with disorder and 83 control subjects who were generally intermixed), the other cluster of

44 subjects consisted mostly of subjects with a disorder (n = 41) and only 3 control sub-

jects. It was found that the cluster with 44 subjects expresses low levels of GABA markers:

mean adjusted transcript levels were lower for GAD67 (−30%; t182 = −14.5, p < .00001),

PV (−28%; t182 = −8.4, p < .00001), SST (−48%; t182 = −12.7, p < .00001), and Lhx6

(−23%; t182 = −10.2, p < .00001) relative to the other cluster, which is consistent with the

previous identification of LGM molecular phenotype identified by Volk et al. (2012) .
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As further noted by Volk et al. (2016), excluding the control subjects and repeating the

Ward cluster analysis on the 97 subjects with psychiatric disorder using the same adjusted

mRNA values confirmed the presence of two unique clusters (Figure 2.2) of psychiatric

disorder subjects with and without the LGM molecular phenotype: mean adjusted transcript

levels were lower for GAD67 (−32%; t95 = −13.0, p < .0001), PV(−24%; t95 = −6.2, p <

.0001), SST (−46%; t95 = −8.1, p < .0001), and Lhx6 (−27%; t95 = −9.6, p < .0001) in

the LGM phenotype relative to the non-LGM phenotype. There were 46.2% (18/39) of

schizophrenia subjects, 47.8% (11/23) of schizoaffective disorder subjects, and 28.6% (10/35)

of bipolar disorder subjects who were classified as having the LGM molecular phenotype, for

a total of 39 subjects with a disorder.

These findings suggest that the subtype characterized by LGM molecular and the subtype

characterized by non-LGM molecular could identify subsets of subjects from each of these

diagnostic groups.

Figure 2.1: Two clusters identified in (Volk et al., 2016) based on 184 subjects.
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Figure 2.2: Two clusters identified in (Volk et al., 2016) based on 97 subjects with psychiatric
disorder.

2.6.1.2 Using proposed testing procedures

As introduced in the proceeding section, the findings in Volk et al. (2016) suggest there

may exist common clusters in subjects with different disorders. A major advantage of our

approaches is that we provide a way to evaluate the strength of the statistical evidence in

favor of the findings of existence of common clusters in independent populations. In this

section, we apply our testing procedures using all four mRNAs of the 97 subjects with the

psychiatric disorders. To simplify our hypothesis formulations, we pool schizophrenia and

schizoaffective disorder subjects into one population. The presence of any subtype among

the different schizophrenia-related disorders can be further evaluated in future work. The

same adjusted mRNA values are used here to maintain the comparability of the results

obtained from the proposed method with those published in Volk et al. (2016). In addition,

standardization is again employed to account for varying scales among the four mRNAs.

In our testing frame, it is appropriate to assume that the observations of subjects with

bipolar disorder and the observations of subjects with schizophrenia or schizoaffective dis-
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order are sampled from two independent populations, population 1 and population 2. We

further assume based on the earlier results (Volk et al., 2012) that each population is dis-

tributed as a mixture of two normals. We fit a two-component normal mixture model with

common component-covariance matrices to each sample. The estimated mean of each compo-

nent and the pairwise Euclidean distance between means are displayed in Table 2.7. Similar

to what Volk et al. (2016) found, it is shown that the cluster with mean µ2 and the cluster

with mean µ4 are characterized by lower expression levels for each gene in comparison with

the other cluster identified from the same population of subjects. Based on the pairwise dif-

ference, we see that the cluster with mean µ1 identified in the subjects with bipolar disorder

seems to be close to the cluster with mean µ3 identified in the subjects with a schizophrenia

disorder, and the cluster with mean µ2 and the cluster with mean µ4 also look very similar.

Table 2.7: The estimated mean of each cluster and the pairwise differences.

µ1 µ2 µ3 µ4 Pairwise Euclidean distance of means
0.531

0.247

0.477

0.441




−1.086

−0.505

−0.976

−0.902




0.609

0.280

0.592

0.523




−0.914

−0.421

−0.890

−0.785




0 2.66 0.16 2.43

0 2.83 0.24

0 2.59

0



The next step is to apply the proposed testing procedures to four mRNAs. We are

faced with the different choices of bootstrap confidence interval approaches. As shown in

Section 2.5.2, the confidence interval approaches using the pivotal method (Pivotal), the

Bias-corrected method (BC), and the two normal methods(Normal1, Normal2) demonstrate

relatively better power as compared to the TOST-based method and percentile method in the

simulations. We illustrate their use in these data. In hypothesis testing, the p-value can be

conceptualized as the smallest α level that would lead to a rejection of no common clusters.

Therefore, for any given value of ∆ ∈ (0,∞), one can find the p-value by incrementally

increasing α level from 0 until rejection is achieved, that is, until ∆ is contained in the

100(1− α
4
)% bootstrap confidence interval of the L2 norm of the difference between one pair
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of means.

Figure 2.3 displays plots of p-values versus ∆ for the selected bootstrap methods. The

horizontal dotted line indicates where the p-values equal to 0.05. Then the smallest ∆ leading

to declaring common clusters at significance level 0.05 using each method is characterized by

the corresponding ∆ of the intersection point of each curve and the straight line p = 0.05.

The respective values are 0.176, 0.18, 0.62 and 1.2, from left to right, obtained from Pivotal,

Bias-corrected, normal method assuming normality of log(L2 norm) (Normal2), and normal

method assuming normality of L2 norm (Normal1) respectively.

Figure 2.3: Plots of p-value versus ∆ for PV, BC, Normal1 and Normal2 methods.

The smaller ∆ is, the more stringent is the definition of the common cluster. Hence,

rejecting the null hypothesis requires stronger evidence of the existence of common clusters.

The findings that pivotal method and Bias-corrected method would reject the null hypoth-

esis with relatively small ∆ are consistent with our simulation results that show these two
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methods have relatively higher power to detect common clusters. In the following discussion,

we focus on the results from Bias-corrected method, as we recommended in Section 2.5.2.

For our data, at significant level 0.05, provided that two clusters can be considered as

common clusters if the L2 norm (i.e., Euclidean distance) between their means differs by

less than 0.2, our approach concludes that we can identify at least one common cluster in

subjects with bipolar disorder and subjects with schizophrenia. We note that the choice

of ∆ should be determined a priori by the subject-matter experts. Nevertheless, we argue

that ∆ = 0.2 is a fairly stringent margin. With means of two clusters being 0.2 apart, the

difference between each gene is at most 0.2, which is only one fifth of the standard deviation.

Among the four pairs of comparisons in our hypothesis testing, rejection of any com-

parison can lead to the rejection of the overall hypothesis. A natural question would be

which pair(s) of clusters we deem common given that we conclude the existence of common

clusters. In answering that, we further examine which null hypotheses of H01, H02, H03, H04

are rejected at significance level 0.05 given some ∆ that is greater than 0.18. The results

are provided in Figure 2.4. When ∆ is between 0.18 and 0.69, the testing yields rejecting

H01, meaning that, the cluster with mean µ3 and the cluster with mean µ1 are recognized as

common, which is the correct identification of the non-LGM phenotype. When ∆ is between

0.69 and 4.9, the testing yields rejections of H01 and H04, meaning that, in addition to the

previous identified common cluster, the cluster with mean µ2 and the cluster with mean

µ4 are also deemed common, which would support the LGM phenotypes being common.

Further increasing ∆ would lead to more rejections, but we argue that these would not be

meaningful.
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Figure 2.4: Schematic of ∆ vs decision.

2.6.1.3 Summary of findings

In summary, we apply several bootstrap confidence interval approaches to the mRNAs mea-

sured in the GABA Neuron-Related biomarker study to assess if any subtype is shared in

subjects with bipolar disorder and subjects with schizophrenia. Using the pivotal method
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and Bias-corrected method one would reject the null hypothesis and declare existence of

common clusters with a small cluster equivalence margin ∆. We further examine the results

from the Bias-corrected method under different values of ∆. With a rather stringent choice

of ∆, say 0.2, we would conclude a subset (cluster) featuring non-LGM molecular phenotype

could identify a subset of subjects from each of the two diagnostic groups. With a slightly

relaxed choice of ∆, for example, 0.7, we would additionally conclude a subset (cluster) fea-

turing LGM molecular phenotype could identify a subset of subjects from each of the two

diagnostic groups. In such case, we have statistically significant evidence at α = 0.05, to

show that the subtype characterized by LGM molecular and the subtype characterized by

non-LGM molecular could identify subsets of subjects with bipolar disorder and subjects

with schizophrenia.
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2.7 CONCLUSIONS AND FUTURE WORK

2.7.1 Conclusions

In this chapter, we develop some methodologies to assess whether or not clusters identified

from independent populations exhibit commonalities. There appears to be little literature

that considers this problem. As an initial step in the research, we formulate our hypotheses

by using concepts from bioequivalence issues in biopharmaceutical research combined with

a finite normal mixture framework. Our layout of the formulations allows for univariate and

multivariate data.

We first propose a testing procedures for univariate data based on the idea of the two

one-sided test (TOST) that has been used in the analysis of pharmaceutical bioequivalence

trials. The proposed test is directly extendable to multivariate data by the intersection-

union method. The drawback of this multivariate approach is that it fails to account for

correlations among the variables used in the cluster analysis, so that the intersection-union

method can be very conservative. We show that it suffers from low power even for bivariate

data. To address this issue, we propose to use the L2 norm as the distance measure for

multivariate data to establish the overall similarity of two clusters. We realize identifying an

exact confidence interval for this measure is complex. We then propose to use a methodology

based on bootstrap confidence intervals. We provide an illustration of the use of four selected

bootstrap methods in the context of our testing problem. We show through multivariate

simulations that all but one of the selected bootstrap confidence intervals outperform TOST-

based method, indicating that the idea of evaluating the overall similarity between two

clusters based on L2 norm boosts power substantially.

Finally, we use our motivating data application to illustrate the use of the proposed tests

in a biomarker study setting. In the GABA neuron-related biomarker study, we successfully

confirm that the subtype characterized by LGM molecular and the subtype characterized by

non-LGM molecular found by Volk et al. (2016) identify subsets of subjects with bipolar dis-

order and subjects with schizophrenia with reasonably chosen meaningful cluster equivalence

margins.
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2.7.2 Future work

Although many methods for multiple hypothesis testing have been developed, direct

application to our context may not provide any tangible benefits or may require additional

constraints. We note that there are some recent efforts (Röhmel, 2011; Lauzon & Caffo,

2009; Caffo et al., 2013) in studying multiplicity control in equivalence testing with three or

more treatments. The scenario they considered is the clinical trial set up to show equivalence

between all pairs of equivalent treatments. As our testing procedures involve testing cluster

equivalence with clusters identified from different populations, we may be able to adapt their

work to the case where the number of populations is greater than two.

Additionally, as we introduced in the very beginning, the proposed method applies to the-

finite normal mixture framework. Although normal mixture models are widely used to model

the distributions of a variety of random phenomena, in practice, data showing deviations from

mixture of normals are inevitable. In the future, we would like to investigate the robustness

of the proposed tests more thoroughly. For example, we could simulate observations from

a mixture of Student t-distributions that are known to have fatter tails than the normal

distributions, and assess how sensitive the proposed tests are to the deviations from the

assumption of mixture of normals. We can also use simulations to assess the performance of

the tests when the number of clusters is mis-specified.

Another direction we can explore is to extend mixture of normals to mixture of other

exponential families distributions that may also have been extensively used in applications.

As the very first step, one needs to concern the identification problems. Lack of identifia-

bility happens when mixing two distributions from a parametric family just yields a third

distribution from the same family. For example, it was demonstrated in (McLachlan & Peel,

2004) that the mixture of binomials is always just another binomial. Once identifiability

is established, the EM algorithms can be used for maximum likelihood estimation in finite

mixture models. A similar analysis flow as described in Section 2.3.1 can be utilized. It

can be anticipated that the challenge lies in determining reasonable rejections regions, which

may require a tremendous amount of research.
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2.A APPENDIX

2.A.1 Examining relationship between power and ∆− δ

To simplify the presentation, below we derive the formula for computing power of testing

H01 : |µ1 − µ3| ≥ ∆ given that µ1 − µ3 = δ. It can be demonstrated that power increases

with the size of ∆− δ under some assumptions.

Assume µ̂3 − µ̂1 ∼ N(µ1 − µ3, σ
2
µ̂3−µ̂1), the power of TOST evaluated at |µ1 − µ3| = δ is

given by

P (|µ̂3 − µ̂1| ≤ ∆− zασµ̂3−µ̂1|µ1 − µ3 = δ) = Φ(
∆− δ
σµ̂3−µ̂1

− zα)− Φ(
−∆− δ
σµ̂3−µ̂1

+ zα).

When ∆, δ are relatively larger than σµ̂3−µ̂1 , Φ(
−∆− δ
σµ̂3−µ̂1

+ zα) ≈ 0, then the power is approx-

imately equal to Φ(
∆− δ
σµ̂3−µ̂1

− zα). Obviously, power of the TOST, so as the overall testing

procedure, increase with the size of ∆− δ.

2.A.2 Likelihood of claiming wrong pairs of common clusters

As described in Section 2.5.1, we further explored the likelihood of claiming wrong pairs

of common clusters for the simulation with δ = 3
4
∆ and ∆ = 1.2 by increasing the significance

level α beyond 0.05. For each α, 200 replicates of the test statistics for testing |µ1 − µ4|

are plotted against the test statistics for testing |µ1 − µ3| in Figure 2.A.1 with diagonal

line representing y = x superimposed on them. The vertical line representing x = ∆ and

horizontal line indicating y = ∆ divide the x− y plane into four quadrants. Points lying in

the upper-left quadrant correspond to the truth that H01 holds but H02 does not, whereas

the points falling in the lower-right or lower-left quadrants lead to the incorrect rejection of

H02. Table 2.A.1 provides the incorrect rejection rates for varying α. It is notable that, even

allowing the probability of making a type I error up to 0.4, the chance of declaring wrong

common clusters is only about 5% given that one rejects the overall null hypothesis.
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Table 2.A.1: Rejection rates evaluation under different significance levels: P1 =P (reject at
least one H0i), P2 =P (reject at least one H0i, i 6∈ T |reject at least one H0i). 200 datasets are
simulated for each parameter configuration. True parameters used to generate the samples
are set as: f(xi) = 0.4φ(xi; 1, 1) + 0.6φ(xi;µ2, 1), i = 1, · · · , 500 with µ2 = 1 − 2∆ and
f(yj) = 0.3φ(yj; 1 + δ, 1) + 0.7φ(yj;µ2 + δ, 1), j = 1, · · · , 500 with δ = 3

4
∆ and ∆ = 1.2.

α P1 P2

0.05 0.20 0

0.10 0.28 0.018

0.15 0.36 0.042

0.20 0.40 0.038

0.25 0.45 0.056

0.30 0.47 0.054

0.35 0.54 0.047

0.40 0.58 0.052
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Figure 2.A.1: Scatter plots of 200 replicates of |µ̂1− µ̂4|+zα/4σ̂µ̂1−µ̂4 vs |µ̂1− µ̂3|+zα/4σ̂µ̂1−µ̂3

for various α levels. The diagonal line is y = x. The vertical and horizontal dotted lines

represent x = ∆ and y = ∆ respectively.
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3.0 COMMUNITY DETECTION IN NETWORKS WITH NODE

FEATURES

3.1 INTRODUCTION

In recent years, there has been increasing interest in statistical methodologies designed

for network data. Network data takes the form of observed edges between nodes. Examples

include brain networks (in which the nodes are segregated brain regions and edges are char-

acterizations of white matter structural connectivity or brain’s functional interactions) and

social networks (in which the nodes are people and the edges may represent social interaction

such as friendship or collaboration). The nodes and edges together define a network, often

represented by an adjacency matrix, indicating the pairwise connection between nodes.

Community detection is a popular problem in network analysis. It has been a useful

tool in identifying the important structures of many complex systems. Loosely speaking,

network community refers to a subset of nodes that have similar profiles of connection to

other nodes. Two classes of methods are commonly used for community detection.The first

class of methods seeks community structure by optimizing a criterion that represents the

quality of the partition of the network. These criteria come from a sense of what network

communities should look like, lacking the interpretation of the data process that gives rise

to the network.

The second class of methods involves fitting a probabilistic model that has well-defined

communities, where community detection is achieved by optimizing some statistical criterion

linked to the assumed model, for example, using the likelihood. One of the most popular

models is the stochastic block model (SBM) (Holland et al., 1983; Snijders & Nowicki, 1997;

Nowicki & Snijders, 2001). The important assumptions of the SBM model are that each
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node belongs to one of the multiple blocks and the probability that an edge appears between

any two nodes only depends on the memberships of the two nodes. Karrer & Newman

(2011) proposed the degree corrected stochastic block model (DCBM) that allows degree

inhomogeneity within blocks. Another popular model that shares the same goal of inferring

node cluster labels is proposed in Handcock et al. (2007), where they extend the original

latent space model proposed in Hoff et al. (2002) by combining a clustering model in the form

of a mixture of Gaussians in the latent space so that inference on cluster labels is attainable

along with the latent positions. For a survey of statistical models used in analysing network

data, see Goldenberg et al. (2010) and Kolaczyk (2009).

Despite the extensive literature on community detection, most of the proposed methods

only focus on the observed edges of the network without taking into account the additional

information of node features (or node attributes). In many networks, the similarities and

distinctions in the node features have considerable impact on the pattern of linking. The

nodes in different communities are commonly assumed to have distinct connectivity patterns

while the impact of node features is usually in a more continuous fashion. For example, in

the global airline network, there are more connections between large airports, and, in the

social network, individuals who are more similar to one another in age and education are

more likely to have interconnections (McPherson et al., 2001). It is generally expected that

integrating node features and network topology can help us understand the network structure

better than using the adjacency matrix alone or node features information alone.

The primary focus is to take node features into account in network analysis in order to

capture the impact of node features on the network links, as well as to detect the residual

community structure beyond that explained by the node features. For instance, in the brain

connectivity study, all the nodes are naturally embedded in a three-dimensional brain space.

Connectivity between adjacent nodes is sometimes over-represented due to technical reasons

(Stanley et al., 2013). One needs to account for the spurious connectivity in adjacent nodes

by removing the effect of spatial location so as to recover functionally distinct brain regions

(“communitie”).

There are some recent attempts in integrating node features and network topology. Vi-

ennet et al. (2012) proposed to couple attribute information through inclusion of a pre-
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determined similarity measure in the phase of constructing the k-nearest neighbour graph.

Yang et al. (2013) developed an overlapping community detection method in networks with

node features. Binkiewicz et al. (2014) introduced a covariate assisted spectral clustering

that leverages both node covariates and the graph in spectral techniques. Zhang et al. (2015)

proposed to include edge weights as a function of node features to an analogue of modu-

larity so that nodes having more similarity are more likely to be grouped into the same

community. Liu et al. (2014) extended Newman-Girvan modularity by defining a general

null model. This model specifies some function to represent the effect of the node features on

the network topology and, subsequently, take out the effect so as to reveal the hidden com-

munity structure. These efforts have provided great motivation for combining node features

with community detection. However, the methods developed in these manuscripts or papers

are mainly algorithmic approaches aiming at improving community detection, while we are

trying to build a generative stochastic model that best captures the network structure. The

non-generative models do not have a definite way to evaluate the performance of community

detection since there is no unique “true model” even in the simulations. Moreover, these

approaches are limited by their requirement for a pre-specified function form to describe the

effects of node features in encoding network information.

In this chapter, we propose a feature adjusted stochastic block model (FASBM), which

combines a block model component with community structures and a single-index function

to incorporate node features. As a generative model, the FASBM model assumes that the

connectivity probability between two nodes i and j is determined by their communities, and

also a smooth function of the node features. The heterogeneity within a block is explained by

the continuous effect of specific node features. The estimation of the FASBM model involves

discovering the optimal block partition as part of the model estimation while capturing the

impact of node features on the network links. The proposed model builds upon the stochastic

block model (SBM) and, thus, inherits the merits of block models. With a semi-parametric

single-index component, it is also adequately flexible to accommodate multiple node features

with no prior information about the contribution of the features. Moreover, unlike many

existing algorithms that are limited to binary-valued interactions, the proposed FASBM

model and estimation approaches are applicable to relational data that are generated from
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any exponential family distribution and are not restricted to being only Bernoulli.

3.2 BACKGROUND

3.2.1 Single-index model

Generalized linear model(GLM) is commonly used to explore the relationship between a

response variable Y that follows from the exponential family distribution and covariates z. A

parametric GLM models a transformation g(E(Y )) as linear where g is known link function,

i.e., g(E(Y |z)) = βTz. In practice, however, the linear assumption may not hold. Hence,

it’s natural to consider the single index model: g(E(Y |z)) = f(βTz), where f is unknown

and β is the single-index coefficient. Single-index models have been proven to be an efficient

way to avoid fitting multivariate nonparametric regression functions. Carroll et al. (1997)

augmented the single-index model with additional covariates x taken into account, yielding

a generalized partially linear single-index model: g(E(Y |x, z)) = αTx+ f(βTz).

3.2.2 Stochastic Block Model (SBM)

Notation: A network G is defined in terms of nodes and edges G = (V,E), where

V (G) = 1, · · · ,m is m number of nodes and E(G) is set of edges. We consider undirected

networks in our thesis. In an undirected network, all the edges are bi-directional. Most of

the networks that have been studied have been binary in nature, that is, the edges between

nodes indicate the presence or absence of an interaction. A network G can be represented

by its random m × m adjacency matrix Y = (Yij)1≤i,j≤m. We assume self-loops are not

allowed unless otherwise specified. Therefore, binary networks can be represented by a

binary adjacency where Yij = 1 if there is an edge between node i and a different node j,

and Yij = 0 otherwise.

The SBM has been developed in concordance with the notion of structural equivalence in

a graph. A stochastic block model is a generative model for networks. Let K be the number

of non-overlapping communities, m be the number of nodes and r be a vector of community
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labels with ri = k if node i, i = 1, · · · ,m, belongs to the community k , k = 1, · · · , K.

Throughout Chapter 3, we assume that the number of communities K is pre-fixed. For the

SBM, the adjacency matrix Y is generated by

Yij =


independent Bernoulli with probability µij if i < j

0 if i = j

Yji if i > j

(3.1)

A stochastic block model is parameterized by a pair of (r, B), where B is a K × K

symmetric matrix,

E(Yij) = µij = Brirj . (3.2)

Under SBM, each node belongs to one of the multiple blocks, and the probablity that

an edge appears between any two nodes only depends on the block memberships of the two

nodes. Fitting a block model to any binary network involves partitioning nodes into blocks

with each block representing a “community”. Popular community detection algorithms for

estimating the blocks in the SBM include likelihood-based algorithm, spectral clustering and

algorithms based on the modularity score.

3.2.3 Commonly used algorithms

In this section, we provide a brief review of commonly used algorithms for inference of

block models, including likelihood-based algorithms, spectral clustering and algorithms based

on the modularity score. Spectral clustering and algorithms based on the modularity do not

involve generative models. However, from a theoretical standpoint, it has been proved that

simple spectral clustering (Von Luxburg, 2007) is consistent under SBM (Rohe et al., 2011;

Lei et al., 2014). Bickel & Chen (2009) also proved that under some conditions, partitions

obtained from the Newman-Girvan Modularity (Newman & Girvan, 2004) are consistent

estimators of block partitions under the SBM.
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3.2.3.1 Likelihood inference

The primary interest of community detection is concerned with estimating r. It has been

proved in Bickel & Chen (2009) that blockmodels and the corresponding likelihood-based

algorithms are (asymptotically) unbiased and lead to the detection of the correct community

structure. Let L(Y ;B, r) denote the log-likelihood function

L(Y ;B, r) =
m∑
i=1

m∑
j=i+1

{Yij log(Brirj) + (1− Yij) log(1−Brirj)}.

Finding the global maximum involves maximizing the likelihood function over all possible

label assignments, which is computationally infeasible. Some types of greedy label-switching

algorithms for maximizing the likelihood function have been proposed and work well in

practice.

3.2.3.2 Spectral clustering

Spectral clustering includes all the techniques that partition the nodes into clusters by

using the eigenvectors of adjacency matrix. There are different variants of spectral clustering

in many applications (Jordan & Bach, 2004). Spectral clustering in our proposal refers to

the basic spectral clustering (Von Luxburg, 2007) used for community recovery as described

in the following. Define diagonal matrix D with Dii =
∑m

j=1 Yij, i = 1, · · · ,m and matrix

L = D−1/2Y D−1/2. With predetermined K, the first step is to find the eigenvectors corre-

sponding to the K largest absolute value of the eigenvalues of L, then choose the orthogonal

eigenvectors and stack them in columns to form a matrix A, finally, treat each row of A as

a point in Rk and partition them into K communities by k-means.

3.2.3.3 Newman-Girvan modularity

Modularity is a criterion for evaluating the quality of a partition of a network into

communities, see Newman & Girvan (2004); Newman (2006). The basic idea of modularity

is to compare the number of within-community edges in an observed network to the number

of expected edges under some equivalent randomized network called null model and maximize
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this difference over all possible community partitions. The general mathematical expression

of a modularity criterion is

Q(r) =
∑
ij

[Yij − Pij]I(ri = rj)

where Pij is the probability of an edge between node i and j under the null model. The

choice of the null model determines the exact form of modularity. A popular choice of the null

model proposed by Newman & Girvan (2004) is Pij = DiiDjj/2m. Searching over all possible

partitions for modularity optimization is usually intractable, hence, practical algorithms are

based on approximate optimization methods such as fast modularity optimization algorithm

(Newman, 2004).

3.3 FEATURE ADJUSTED STOCHASTIC BLOCKMODEL (FASBM)

As introduced in the proceding section, the stochastic blockmodel is one of the most

widely used models for community detection. In order to capture the impact of node fea-

tures on the network structure as well as to detect the residual community structure beyond

that explained by the node features, we aim to find a way to take feature information into

account in the stochastic block model. Additionally, we aim to account for following three

practical considerations:

1) There may be multiple node features influencing the connection probability.

2) In the general case, we may not have good knowledge of how node features impact con-

nections.

3) Many networks have relational data indicating differing strengths of interactions. For

example, in a brain network there may be stronger or weaker reactions between two regions

of interest, or in a collaborative research network there may be more or fewer co-authored

papers between two researchers. Dichotomizing the strength of interaction would clearly

destroy potentially valuable information.
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By embedding these ideas within the framework of the Stochastic BlockModel, we pro-

pose the Feature Adjusted Stochastic BlockModel (FASBM) that takes feature information

explicitly into account on the basis of SBM. The adjacency matrix Y is generated by

Yij =


independent exponential family with mean µij if i < j

0 if i = j

Yji if i > j

(3.3)

The distributions we consider here are mainly in one-parameter exponential family

(uniquely determined by µij). We allow for an unknown scaling parameter such as the

variance in normal distribution. Our algorithm does not estimate the nuisance scaling pa-

rameter. Further specification of the mean µij is as follows

E(Yij) = µij = g−1(θrirj + f(βTzij)), with ‖β‖ = 1. (3.4)

where g is a known link function, θ is a K ×K symmetric matrix that captures the block-

wise effect, f is an unknown smooth function that will be estimated nonparametrically,

zij is a p-dimensional vector of covariates and β is the p-dimensional linear coefficient.

Here zij is selected in a manner depending on the node features fi and fj and we assume

zij = zji. Suppose that in a brain network, we are interested in assessing the impact of

space on brain connectivity as well as recovering hidden communities, the physical distance

between two brain regions represented by node i and node j may be a sensible choice. In

such case, zij = d(fi,fj) where d is a distance measure and the feature is node position.

Our model encompasses many types of relational data generated from an exponential family

distribution. If Yij is binary, common link functions g include logit g(µ) = log( µ
1−µ), probit

and g(µ) = φ−1(µ) where φ is the standard normal distribution function; for count Yij that

follows a Poisson distribution, the common link function is g(µ) = log(µ). For Gaussian data

Yij, g is simply the identity link. Families that generate the well known class of generalized

linear models are all extendable in the same way to the FASBM. The component f(βTzij)

can be refered to as a single-index component (Carroll et al., 1997). The restriction ‖β‖ = 1

is required for identifiability and for easier interpretation, we set the first component of β
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to be positive. Single-index models have been proven to be an efficient way to avoid fitting

multivariate nonparametric regression functions.

The proposed FASBM can be viewed as a generalized semi-parametric single index model

(3.4), which consists of two parts: i) block model parameter θ that enters the model as a

parametric component, retaining the generality and tractability of the block model and ii) a

single-index component f(βTzij). The non-parametric function f is flexible to characterize

nonlinear covariate effects, while βTzij reduces the dimension of the covariates. When no

feature is concerned or covariates have no effect on node connections, FASBM becomes

a generalization of the stochastic block model to accommodate relational data drawn from

exponential families other than Bernoulli distribution. The classic SBM is obviously a special

case of FASBM.

3.4 LIKELIHOOD INFERENCE FOR FASBM

In this section, we introduce the fitting algorithms for our proposed model. Consider

m(m− 1) independent random variables Yij from exponential family distribution. The log-

likelihood function in the canonical form with a canonical link is given as

L(Y ;θ, r,β) =
m∑
i=1

m∑
j=i+1

{(Yijγij − b(γij))/φ+ a(yij, φ)} and

γij = θrirj + f(βTzij) (3.5)

for some known functions b(·), a(·, ·), and a nuisance parameter φ. Our goal is to maximize

the logarithm of the likelihood function with respect to the unknown model parameters

θ,β, f, along with the node label assignment vector r. Because an exact maximization of

the (3.5) is computationally intractable, we propose an approach that alternates between two

stages of maximization: first with respect to the parameters in the block model component,

r and θ, and then with respect to the parameters in the single-index model component, f

and β. We adapt the likelihood-based algorithms for the SBM to stage 1 and the estimation

procedures for fitting single-index models (Carroll et al., 1997) to stage 2. Note that we
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used the canonical link function to explicitly write equation (3.5). In fact, the algorithm

works for general link functions. Detailed descriptions of the algorithms are provided in the

Subsection 3.4.2, and the code is publicly available on authors webpage.

In light of the fact that it has been proved in Bickel & Chen (2009) that partitions with

likelihood-based algorithms for the SBM are consistent, we would expect a good chance of

recovering membership consistently, as long as we can consistently estimate the single-index

part f and β. On the other hand, given r, our model can be viewed as a generalized

semi-parametric single-index model and consistency of the estimates f,β and θ follows from

Carroll et al. (1997). Empirically we show satisfactory performance of the algorithm as

detailed in the Section 3.5.

3.4.1 Preliminaries

Local linear maximum likelihood estimation: We estimate f using local linear

maximum likelihood estimation. Imagine for a moment that node membership r, and θ, β

are fixed. We estimate the function f for each point x0 by maximizing the local kernel-

weighted log-likelihood

L(Y ;θ, r,β) =
m∑
i=1

m∑
j=i+1

{(Yijγij − b(γij))/φ+ a(yij, φ)}Kh(β
Tzij − x0) and

γij = θrirj +B0 +B1(β
Tzij − x0)). (3.6)

with respect to B = (B0, B1)
T and then f̂(x0) = B̂ and f̂ ′(x0) = B̂1. Here f(x) is locally

approximated by a linear function near x0:

f(x) ≈ f(x0) + f ′(x0)(x− x0) ≡ B0 +B1(x− x0),

and Kh(·) = K(·/h)/h is a rescaled kernel function K(·) with bandwidth h, which places

more weight on those observations closer to x0.

Fisher Scoring algorithm: Our estimation of θ and f(·), β all use the Fisher Scoring

algorithm for maximum likelihood estimation. Consider a random variable y with a distri-

bution in the exponential family. The log-likelihood for one observation can be expressed

as l(y, γ, φ) = [(yγ − b(γ))/φ + a(y, φ)] for known functions b(·), a(·, ·), and it is easy to
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show that E(y) = µ = b′(γ) and Var(y) = b′′(γ)φ = V (µ). When alternating between the

estimation of θ, f(·) and β, the proposed model µ = g−1(θ + f(βTz)) can be written as

g(µ) = η(B), with its respective form of η and unknown parameters B. By the chain rule

and properties of exponential family, the score function U(B) for N observations becomes

U(B) =
N∑
s=1

us =
N∑
s=1

∂ls(B)

∂B
=

N∑
s=1

∂ls
∂γs

∂γs
∂µs

∂µs
∂ηs

∂ηs
∂B

ws

=
N∑
s=1

ys − µs
φ

1

V (µs)
g−1′(ηs)

∂ηs
∂B

ws

=
∂η

∂B
W1W (y − µ)

with diagonal matrix [W1]ss =
g−1′(ηs)

φV (µs)
and diagonal weight matrix [W ]ss = ws. The

weight matrix W is simply an identity matrix when maximizing the global log-likelihood

for the estimation of θ and β. When considering the local kernel-weighted log-likelihood for

estimating f(x0), the local kernel-weight ws for each observation is specified in Section 3.4.1.

The Hessian matrix and Information become:

H(B) =
∂U(B)

∂B
=

N∑
s=1

(ys − µs)
∂

(
[W1]ssws

∂ηs
∂B

)
∂B

+ [W1]ssws
∂ηs
∂B

∂(ys − µs)
∂B

,

and

I(B) = −E(H(B)) =
N∑
s=1

[W1]ssws
∂ηs
∂B

∂µs
∂B

=
N∑
s=1

[W1]ssws
∂ηs
∂B

∂µs
∂ηs

∂ηs
∂B

=
N∑
s=1

[W1]ssws
∂ηs
∂B

g−1′(ηs)
∂ηs
∂B

=
∂η

∂B
W2W

(
∂η

∂B

)T

with diagonal matrix [W2]ss =
(g−1′(ηs))

2

φV (µs)
. Given B(l) at the previous step, by the Fisher

Scoring algorithm, the updated B̂(l+1) = B̂(l) + I−1(B̂(l))U(B̂(l)),

B̂(l+1) = B̂(l) +

(
∂η

∂B
W2W

(
∂η

∂B

)T)−1
∂η

∂B
W1W (y − µ)

∣∣∣∣
(l)

(3.7)
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The approach for updating f , θ and β all fall into the above framework with its respective

η and unknown parameters B, which will be specified in Section 3.4.2. The weight matrices

W are the kernel weights for local likelihood estimation, and only used in updating f . Given

η, the link function g, and the distribution of Y , matrices W1 and W2 can be computed

according to the forumla given above.

3.4.2 The Algorithm

Before we demonstrate the detailed algorithms, we convert the upper triangle (excluding

the diagonal) of Y into a vector Y ∗N×1 =
(
Y12, · · · , Y(m−1)m

)T
where N = m(m − 1)/2, and

accordingly let Z∗N×p =
(
z12, · · · , z(m−1)m

)T
. We use Y ∗s(ij) and z∗s(ij) for the correspondance

between s and the pair (i, j) when necessary.

(a) Initialization: Let f̂(·) = 0, each entry of β̂ =
√

1/p, assign initial labels r by k-means

on the rows of Y matrix.

(b) Updating θ and r: Given f̂ (o) and β̂(o), obtain θ̂(o+1) and r̂(o+1) by repeating steps of

updating θ and r iteratively until r is unchanged.

Suppressing the superscript (o), given the current f̂ and β̂, each iteration of updating θ

and r involves two steps:

(i) Given r̂(q−1), update θ̂(q) through (3.7) by reparameterizing the upper triangle

of θK×K into BP×1 = (θ11, · · · ,θ1K ,θ22, · · · ,θKK)T with P = K(K + 1)/2. Here

ηs(ij) = xTs(ij)B+f(βTz∗s(ij)) for s = 1, . . . , N , where xs(ij) has only one 1 indicating

the memberships (ri, rj), otherwise zero.

(ii) Given θ̂(q), the community label for ith node r
(q)
i is updated by minimizing the neg-

ative log-likelihood through the greedy label-switching algorithm (Stephens, 2000)

as follows:

r̂i
(q) = arg mink∈{1,··· ,K}

m∑
j=1

{−Yij log[g−1(θ̂
(q)

k,r
(q−1)
j

+ f̂(β̂Tzij))]−

(1− Yij) log[1− g−1(θ̂(q)
k,r

(q−1)
j

+ f̂(β̂Tzij))]}.
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(c) Updating β and f : Given θ̂(o+1) and r̂(o+1), obtain f̂ (o+1) and β̂(o+1) by iterating between

updating β and f until
‖f̂ (q)(t)− f̂ (q−1)(t)‖
‖f̂ (q−1)(t)‖

≤ ε for a suitably chosen small constant

ε, where ‖ · ‖ denotes L2 norm, t denotes a grid of points and q denotes the index of

iteration consisting of updating β and f .

Omitting the superscript (o), given the current θ̂ and r̂, each iteration of updating f

and β involves two steps:

(i) Given f̂ (q−1), β̂(q) is obtained through (3.7) by viewing B = β. Here ηs(ij) =

θrirj + f(BTz∗s(ij)). Note that β̂ need to be normalized to meet ‖β‖ = 1.

(ii) Given β̂(q), we fit f̂(·) at a fixed but fine grid of points and subsequently using

interpolation to get the other values. Take one of the grid points x0 for example,

f̂(x0) is updated through (3.7) using the local likelihood approach. Here, B =

(B0, B1), ηs(ij) = θrirj + B0 + B1(β
Tz∗s(ij) − x0)), [W ]ss = Kh(β̂z

∗
s − x0) and

f̂(x0) = B̂0.

(d) Iterate between steps (b) and (c) until
‖f̂ (o+1)(t)− f̂ (o)(t)‖

‖f̂ (o)(t)‖
≤ ε for a suitably chosen

small constant ε.

3.5 SIMULATION STUDIES

In this section, we evaluate performance of our algorithm (FASBML) for fitting FASBM

under different types and levels of node influence. We compared the community detection

results with the likelihood-based inference of SBM (SBML) and the simple spectral clustering

(SPEC). Although there are some papers that consider the incorporation of node features

in community detection, as we discussed in the introduction, these methods are not model

based and the influence of the node feature has to be in a known format. Therefore, we can

not directly compare with these methods.

We consider two measures to quantify the performance in terms of the agreement be-

tween the true r and r̂. The first measure is the average misclassification rates, quantifying

the overall proportion of mis-clustered nodes (Girvan & Newman, 2002). We also adopt
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the normalized mutual information criterion (NMI) (Kvalseth, 1987) to measure clustering

quality, where higher values indicate better matching.

In all the cases below, the network generation procedure takes the following steps: first,

generate labels for m nodes independently with P (ri = 1) = · · · = P (ri = K) = 1/K; sec-

ond, randomly position nodes within the interval (0, 1) and compute the distance dij between

node i and node j; finally, the edges between node i and node j are generated independently

as Yij ∼ Bernoulli
(
g−1(θrirj + f(dij)

)
, where g is the logit function. The values of θ for

K = 2 and K = 3 are as follows,

θ = logit

 0.5 0.2

0.2 0.2

 and θ = logit


0.5 0.2 0.2

0.2 0.3 0.2

0.2 0.2 0.1

.

In simulation I, we let f = a sin(−8dij), with a taking different values, 0, 1.4 or 1.8, so

as to investigate the robustness of different methods to varying influences of node features.

Table 3.1 and Table 3.2 show the results of 100 simulation runs, for K = 2 and K = 3, where

networks have varying community size, m = 100, 200, 400. In the situations where features

have no impact on the network topology, i.e., a = 0, FASBML and SBML perform equally

well followed by spectral clustering. All the methods perform better as m increases as, with

more links, there is effectively more data to use for fitting the model. The performance of

SBM deteriorates rapidly as the amount of node influence increases. On the other hand,

the partition found by FASBML still has very good agreement with the actual partition in

the presence of large feature influence, and the performance improves as m increases. The

inferiority of SBM relative to FASBM in these scenarios is understandable as FASBM always

uses both the network topology and the features, whereas SBM completely ignores feature

influence. In addition, the fact that FASBML and SBML have equally good performance

when a = 0 confirms the robustness of FASBML.

It is worth mentioning that all the three algorithms require the number of communities

to be known in advance, and we used the true K in the simulation. Determining the number

of communities is gaining increasing interest recently (Chen & Lei, 2014; Bickel & Sarkar,

2016). In Section 3.6, we used the network cross-validation (NCV) method proposed by
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(Chen & Lei, 2014) to determine the number of communities. Also for spectral clustering

method, we need to choose the dimension d of spectral embedding. In the simulation, we

tried different d values for spectral method and reported the one with the best performance.

Table 3.1: Results of simulation I, K = 2. The average misclassification rates Misp and

normalized mutual information (NMI) are shown together with their standard deviations

enclosed in parentheses for varying a in f = a sin(−8dij), and varying number of nodes m.

Numbers in bold indicate the best performance.

m = 100 m = 200 m = 400

FASBML SBML SPEC FASBML SBML SPEC FASBML SBML SPEC

a = 0

Misp 0.012 0.012 0.041 0.0004 0.0004 0.006 0 0 0.0003

(0.010) (0.010) (0.024) (0.0015) (0.0015) (0.006) (0) (0) (0.0009)

NMI 0.924 0.924 0.783 0.997 0.997 0.955 1 1 0.998

(0.06) (0.06) (0.100) (0.013) (0.013) (0.040 ) (0) (0) (0.008)

a = 1.4

Misp 0.157 0.443 0.128 0.012 0.469 0.079 0.0001 0.481 0.045

(0.200) (0.087) (0.041) (0.067) (0.024) (0.031) (0.0004) (0.014 ) (0.020)

NMI 0.592 0.038 0.470 0.962 0.005 0.625 0.999 0.002 0.75

(0.404) (0.147) (0.116) (0.141) (0.007) (0.104) (0.003) (0.002) (0.08)

a = 1.8

Misp 0.174 0.461 0.182 0.036 0.469 0.132 0.005 0.482 0.105

(0.192) (0.028) (0.057) (0.119) (0.023) (0.046) (0.049) (0.015 ) (0.030)

NMI 0.524 0.007 0.349 0.908 0.004 0.464 0.989 0.002 0.549

(0.375) (0.009) (0.115) (0.251) (0.007) (0.118) (0.100) (0.002 ) (0.090)

For simulation II, we use two more examples to illustrate the empirical performance of

the non-parametric estimation for the function f . We set K = 2 in both examples. In the

first example, f is an exponential function, f(dij) = 2 exp(−8dij)−2; in the second example,

f is a polynomial function, f(dij) = 10d4ij − 42d3ij + 50d2ij − 20dij. A fitted curve randomly

selected from 100 simulations is depicted in Figure 3.1 for each scenario. It is shown that,

when the network is of moderate size, the fitted curve is remarkably close to the true curve,

except some boundary effect near the endpoints. The proposed algorithm can also provide

satisfying partition results as presented in Table 3.3.
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Table 3.2: Results of simulation I: K = 3. The average misclassification rates Misp and

normalized mutual information (NMI) are shown together with their standard deviations

enclosed in parentheses for varying a in f = a sin(−8dij), and varying number of nodes m.

m = 100 m = 200 m = 400

FASBML SBML SPEC FASBML SBML SPEC FASBML SBML SPEC

a = 0

Misp 0.262 0.265 0.298 0.073 0.075 0.185 0.011 0.011 0.074

(0.133) (0.133) (0.067) (0.095) (0.096) (0.045) (0.005) (0.005) (0.021)

NMI 0.546 0.544 0.404 0.825 0.824 0.545 0.954 0.953 0.753

(0.110) (0.110) (0.077) (0.060) (0.063) (0.060) (0.020) (0.020) (0.045)

a = 1.4

Misp 0.380 0.535 0.407 0.167 0.524 0.352 0.038 0.534 0.335

(0.098) (0.052) (0.065) (0.149) (0.041) (0.057) (0.089) (0.037) (0.055)

NMI 0.332 0.099 0.272 0.682 0.117 0.331 0.910 0.117 0.351

(0.142) (0.071) (0.072) (0.176) (0.057) (0.056) (0.076) (0.056) (0.050)

a = 1.8

Misp 0.421 0.566 0.450 0.197 0.573 0.434 0.020 0.592 0.436

(0.094) (0.044) (0.059) (0.154) (0.040) (0.059) (0.008) (0.030) (0.053)

NMI 0.260 0.053 0.209 0.625 0.050 0.244 0.919 0.038 0.270

(0.125) (0.049) (0.068) (0.195) (0.037 (0.056) (0.025) (0.033) (0.038)

Table 3.3: Results of Simulation II. The average misclassification rates Misp and normalized

mutual information (NMI) are shown for FASBML together with their standard deviations

enclosed in parentheses for exponential f and polynomial f , with varying number of nodes

m.

m = 100 m = 200 m = 400

Exp f Poly f Exp f Poly f Exp f Poly f

Misp 0.098 0.172 0.021 0.046 0.002 0.006

(0.056) (0.090) (0.012) (0.040) (0.003) (0.004)

NMI 0.574 0.398 0.866 0.763 0.981 0.954

(0.136) (0.178) (0.067) (0.130) (0.021) (0.029)
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Figure 3.1: Estimates of f for a randomly selected simulated network with varying f

functions and varying number of nodes m. (a) f(x) = 2 exp(−8x) − 2 . (b) f(x) = 10x4 −

42x3 + 50x2 − 20x. (c) f(x) = 1.4sin(−8x). (d) f(x) = 1.8sin(−8x)

.
(a) (b)

(c) (d)
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3.6 DATA APPLICATIONS

In this section, we show applications of our method to three actual world networks: a

functional brain network, an US air-transportation network and Lazega lawyers friendship

network, which are representative examples of biological, social and infrastructure systems.

The proposed FASBM reveals interesting node feature effects, as well as interpretable com-

munities.

3.6.1 Functional brain network

We first consider an application to brain functional connectivity study using resting-

state functional magnetic resonance imaging (RS-fMRI) data. The data were collected by

University of Pittsburgh Medical Center and detailed descriptions can be found in Hwang

et al. (2012). Imaging data were preprocessed to reduce noise and artifacts using standard

fMRI data processing methods.

RS-fMRI measures the intrinsic, high-amplitude, low-frequency blood-oxygen-level de-

pendence signal (BOLD) fluctuations of the brain. The relationship between RS-fMRI signals

from different regions is thought to reflect functional connectivity independent of any par-

ticular brain state (Van Dijk et al., 2010). Functional connectivity between a pair of voxels

is usually estimated by calculating the Pearson correlation coefficient between their BOLD

time series, treating the observations as coming from a single bivariate distribution.

The brain network in this analysis contains 448 nodes (voxels) in the basal ganglia mask.

The data matrix Yij is the averaged Fisher’s z-transformed correlation values based upon all

subjects. The basal ganglia subserves a wide range of functions, including motor, cognitive,

motivational, and emotional processes and has been implicated in numerous neurological

and psychiatric disorders. There have been great interest in using RS-fMRI techniques to

study the functional connectivity in basal ganglia (Di Martino et al., 2008; Robinson et al.,

2009; Barnes et al., 2010).

Given the fact that connectivity between adjacent nodes is sometimes over-represented

due to inevitable technical reasons in fMRI data acquisition process and data processing
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(Stanley et al., 2013), we consider the Euclidean distance between two voxels as the covariate

zij in applying FASBM to discover the underlying block structure of the functional brain

network. Here the spatial location of each node is defined as the coordinates of the center

of the voxel in Montreal Neurological Institute (MNI) stereotactic space.

The estimated function f as shown in Figure 3.2d reflect the expected relationship be-

tween brain connectivity and spatial locations. Figure 3.2e reveals that the pairs of voxels

within the same block are not exactly connected in the same way as evidenced by the noise

patterns within blocks. Fitting of the simple stochastic block model to the brain network can

not characterize the heterogeneity within blocks, whereas the proposed FASBM with spatial

feature zij incorporated is a better approximation to the data by accounting for the spurious

connection between adjacent nodes. As shown in Figure 3.2f: the nonparametric function

f in our model captures the additive effect of the deviations from the block structure. It

can be seen that the heterogeneity within the blocks are well explained by the effect of local

correlations as modeled by the nonparametric function f .

As shown in the top panels of Figure 3.2, using FASBML yields functionally distinct

but spatially coherent parcellations of the brain region. Previous studies have parcellated

the basal ganglia based on its extrinsic functional connectivity with the cortex (Barnes

et al., 2010; Choi et al., 2012). It is unknown that whether or not the basal ganglia can

be successfully parcellated by only considering local, intrinsic functional information within

the basal ganglia. Using the proposed method, we have successfully identified basal ganglia

subdivisions by only considering functional connectivity pattern between basal ganglia voxels.

This parcellation closely resembled those reported using structural anatomical information

(Tziortzi et al., 2011). By visual examination: cluster 1(yellow) corresponds to the caudate

body, cluster 3(green) corresponds closely to the putamen, cluster 5(cyan) closely to the

pallidum , and cluster 2(red), 4(blue) partially correspond to the caudate head.
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Figure 3.2: (a) The functional brain network: each voxel was represented by a single node

at its spacial location with the color reflecting the inferred community membership by the

proposed FASBML. (b) Projection of (a) in the x-y plane of the MNI stereotactic space. (c)

Projection of (a) in the MNI y-z plane. (d) Estimated f function. (e) Connectivity matrix of

the brain network data with voxels ordered by inferred community membership. (f) Fitted

f evaluated on the distance matrix zij of the brain network data with voxels ordered by

inferred community membership.

(a) (b) (c)

(d) (e) (f)
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3.6.2 United States air-transportation network

For the second example, we analyze a US airline network. We extracted information of the

United States domestic airports and flights for the year 2012 from the OpenFlights/Airline

Route Mapper Route Database. The resulting air-transportation network comprises 300

nodes denoting airports in the United States and about 6000 flight routes within the United

States operated by the major airlines (United Airlines (UA), American Airlines(AA), Delta

Air Lines and Southwest Airlines). The edges in the network indicate presence or absence

of non-stop flights between two airports. The full data set can be downloaded from http:

//openflights.org/data.html.

The air-transportation network is a complex network with heterogeneous degrees: a

handful of nodes in the air transportation network are busy airports having a significant

number of connections to and from other airports. For example, Chicago O’hare Interna-

tional (Int’l) airport, Hartsfield Jackson Atlanta Int’l, Charlotte Douglas Int’l, and Denver

Int’l, each has more than 70 connections. Therefore, it is expected that community-detection

methods solely based on the adjacency matrix will tend to form communities characterized

by different degrees. For instance, SBML split the network into four groups by degree: high,

relatively high, medium and low, as shown in Figure 3.3.

In the following, we fit the proposed feature adjusted stochastic block model (FASBM) in

the hope to discover community structures that are not merely due to the degree distribution.

The node feature we consider is the number of airports each node has connections to, i.e.,

fi =
∑m

l=1 Yil, and let the covaraite zij = fi + fj. The use of FASBM requires a pre-specified

number of communities as input, whereas it is unclear how many communities are in the

airline network, 2-fold network cross-validation (NCV) was applied to determine the number

of communities. NCV approach is recently proposed by Chen & Lei (2014) to select number

of clusters through block-wise edge splitting. Using negative log-likelihood as loss functions,

NCV method consistently selects K = 4 communities.

The resulting communities do not entirely correspond to groups of high and low de-

gree, as shown in Figure 3.4. The community labeled in orange identifies almost all the

“home base” airports of Southwest airline: Las Vegas McCarran Int’l, Houston Hobby Int’l,
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Figure 3.3: The communities inferred by stochastic block model (SBM). Each vertex rep-
resents an airport, the size of which is proportional to the square root of its number of
connections and the color of which reflects inferred community membership. SBML split the
network into four groups by degree: high (green), relatively high (red), medium (orange)
and low (blue).

60



Chicago Midway Int’l, Baltimore-Washington Int’l, Lambert-St. Louis Int’l, Nashville Int’l

and Kansas City Int’l, Austin-Bergstrom Int’l and so on. The community labeled in red

mainly consists of airports served as hubs for UA, AA or Delta airlines, including Hartsfield

Jackson Atlanta Int’l and Detroit Metropolitan Airport as hubs for Delta, Chicago O’hare

Int’l, Newark Liberty Int’l and Washington Dulles Int’l as hubs for UA, Philadelphia Int’l,

Charlotte Douglas Int’l and Ronald Reagan Washington National Airport as hubs for AA.

The community labeled in green comprises airports characterized by varying node de-

grees, where the low degree airports have one of UA, AA or Delta airlines as the only carrier,

and busy airports serve as hubs for one of the UA, AA and Delta airlines. The community

labeled in blue corresponds to airports with low degree. Many members of this community

are regional airports that serve air traffic within a relatively local or lightly populated re-

gions. Additionally, we have shown in Figure 3.5 that, the shape of the estimated f function

reflects the general relationship between connectivity probability and the sum of degrees

for a pair of nodes - airports with high degrees tend to connect to other airports, and the

opposite holds true for low degrees airports.

Our results are in agreement with the fact that Southwest, as the fourth largest airlines

in the U.S., after the big three legacy carriers (UA, AA and Delta), was less assertive in big

travel markets and chose to avoid competing with the “big three” in their hub airports, and

instead focus on cities other than these big hubs. Southwest Airlines adopts a point-to-point

(PP) configuration wherein airports are connected by direct routes. On the contrary, the

“big thre” adopt the hub-and-spoke (HS) system (Aguirregabiria & Ho, 2010) , wherein most

of the operations are concentrated in the hubs and all other cities in the network (i.e., the

spokes) are connected to the hubs by non-stop flights. Although there is no “correct” way

to partition air transportation network, compared to the partition by SBM, FASBM allows

us to recover the hidden structural organization that is beyond the groups of degrees. The

node feature information incorporated in the block model helps to provide more insights into

the development and categorization of the air-transportation network.

61



Figure 3.4: The US Air-transportation Network. Airports were each replaced by a single
vertex, the size of which is proportional to the square root of its number of connections
and the color of which reflects inferred community membership by likelihood inference of
Feature adjusted likelihood stochastic block model (FASBML): green labels the community
comprising airports characterized by varying node degrees: low degree airports with one of
UA, AA or Delta airlines as the only carrier or busy airports served as hubs for one of the UA,
AA and Delta airlines; red labels the community of hubs for UA, AA or Delta; orange labels
the community corresponding to almost all the home base airports of Southwest airline; blue
labels the community of regional airports.
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Figure 3.5: Estimates curve against the total number of the connections of the two airports
for the US air-transportation network.
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3.6.3 Lazega lawyers friendship network

The last example is the friendship network collected by Lazega (Lazega, 2001) among

members of a New England law firm. The nodes of this network represent lawyers in the firm,

and the edges indicate friendship ties between the lawyers. Additionally, we have information

of age, gender, office location (Hartford, Providence, or Boston), the practice ( litigation or

corporate law), status (partner or associate) , law school attended (Harvard, Yale, University

of Connecticut, or other), years with the firm, and seniority (i.e., the number of years the

lawyers spent in the law firm) of each lawyer. The Providence office, which only includes

two isolated nodes and two non-isolated nodes, is excluded in the analysis. The resulting

friendship network contains 67 lawyers.

In this work, the attribute that is taken into account in the FASBM is the differences

in seniority between two lawyers (nodes). This is in agreement with the findings in Snijders

et al. (2006) that similarity effect of work locations and the effects associated with seniority

are the two most important covariates on network topology. It is of interest in a study like

this to assess the seniority similarity effect on friendship, and in the meanwhile, incorporate

the information into community detection process to improve results of the selectivity as

compared to the use of the network information alone.

Using the FASBML method, the lawyer are partitioned into two clusters: of the 31

lawyers partitioned into the first cluster, 30 of them work in the Boston office, whereas of

the lawyers partitioned in the other cluster, half of them work in the Boston office and the

other half are in the Hartford office as shown in Figure 3.6. The likelihood of friendship

establishment between lawyers is affected by the differences between lawyers in how long

they have served in the firm, as demonstrated in Figure 3.7, indicating that friendship is

more likely to be established between members with similar length of service with the firm.
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Figure 3.6: Partition by FASBM. Color reflects the inferred community membership.

Figure 3.7: Estimated curve against the seniority difference for the Lazega lawyers network
data.
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3.7 CONCLUSIONS AND FUTURE WORK

In this chapter, we have demonstrated how one can incorporate node feature information

on the basis of stochastic block models, focusing on the problem of community detection

beyond that explained by the node features as well as learning the influence of features on

the network topology. The empirical results show that the proposed method can estimate

f non-parametrically, requiring no prior knowledge of how and the extent to which the

network is affected by the features. The proposed feature adjusted stochastic block model

(FASBM) can be used as generative models for estimation and prediction in networks, making

probabilistic statements about the impact of features and so on. Useful extensions include

models for directed networks and overlapped communities, and we leave these for future

work. The proposed FASBM may be easily generalized to directed networks by relaxing the

assumption that θ in the model is symmetric, and then in the estimation steps we will use

all the data Yij instead of the upper triangular.

In the following, we discuss several computational issues. First, the estimation of f

using local likelihood smoothing can be computationally intensive. Fan & Chen (1999) and

Cai et al. (2000) proposed to replace the iterative local MLE with the one-step Newton

Ralphson estimator and proved in theory that the one-step local MLE does not deteriorate

performance as long as the initial estimator is reasonably accurate. The choice of bandwidth

in the estimation of f controls how smooth the fit is. Since we have m×(m−1)/2 data points

for the curve fitting, the design is very dense. Our practical experience suggests that use of

one-tenth of the total range as bandwidth usually results in a relatively smooth f function.

Other data-driven methods developed in kernel smoothing although time consuming can

also be used. Given that the design can be extremely dense and the curve is usually fairly

smooth, we implemented the option allowing one randomly sample a grid of points to fit

the curve. Alternative methods such as binned and updated method (Fan & Marron, 1994)

can also be considered. In addition to these accelerating methods, one can also adopt other

non-parametric smoothing methods to estimate f . Second, like the classic SBM and its

variants, the number of communities K in the FASBM has to be pre-specified. In the

paper we adapted the network cross-validation (NCV) method for stochastic block model
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proposed by Chen & Lei (2014) because the extension of NCV to FASBM is conceptually

straightforward. Recently, there are other methods of choosing K developed for SBM based

on likelihood approaches, which might also be useful for FASBM. Last but not least, we

used greedy-algorithm to avoid a full search of the possible partitions in the model fitting.

This algorithm works very well in practice but so far there is no theoretical guarantee of

the convergence to the global maximum. We believe that the development of approximation

theories for these greedy algorithms is of interest.
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4.0 REMARKS

Schizophrenia is a chronic, severe, debilitating mental illness that affects about 1% of

the population according to the introduction of the disease on the NIMH website. It is a

complex and heterogeneous disorder spanning a broad range of clinical symptoms. There is

an enormous amount of research to promote the understanding of this disease from broad

aspects.

For example, basic neurobiological studies have focused on identifying possible abnor-

malities in the neurobiological characteristics linking the pathology, pathophysiology and

clinical features of schizophrenia. Studies have unveiled distinct subtypes of schizophrenia.

Moreover, there is increasing genetic evidence showing certain core features are shared be-

tween schizophrenia and other disorders. These findings point to the scientific hypothesis of

shared disease mechanisms among different disorders and to the need for developing suitable

approaches to testing statistical hypotheses that are generated from the scientific hypothe-

ses of interest. In Chapter 2, we develop statistical methodologies to assess whether or not

subtypes identified from independent populations exhibit commonalities and have success-

fully applied the proposed methods to a GABA neuron-related biomarker study consisting

of subjects with bipolar disorder and subjects with schizophrenia. We provided statistical

evidence that two subtypes characterized by differential neurobiological characteristics could

identify subsets of subjects with bipolar disorder and subjects with schizophrenia.

In parallel, sustained efforts have been made on characterizing neurocognitive devel-

opment in schizophrenia. The advent of modern neuroimaging techniques such as fMRI

makes it feasible to quantify different aspects of brain functional interactions. The study of

functional brain networks advances the understanding of the course of schizophrenia. The

fundamental problem in the inference for brain connectivity networks concerns partitioning
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of functionally distinct brain regions. We identify the brain segmentation problem concep-

tually as a community detection problem in network analysis. In Chapter 3, we applied the

proposed community detection method in a brain functional connectivity study and have

successfully identified basal ganglia subdivisions by only considering functional connectiv-

ity pattern between basal ganglia voxels. The resulting parcellation closely resembled that

reported using structural anatomical information.

Both parts of research in this dissertation are inspired from conceptually important

problems in schizophrenia research, but are equally applicable to other mental disorders. We

are working on statistical challenges inherent in solving these problems in hoping to provide

new insights into understanding of the disease and ultimately propel the development of

early detection, new and more effective treatments and even prevention for schizophrenia.
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