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NOVEL INSIGHTS INTO THE GENETIC BASIS OF CHRONIC OBSTRUCTIVE 

PULMONARY DISEASE 

 

Chronic obstructive pulmonary disease (COPD), defined as irreversible airflow limitation, is 

caused by a complex interaction of environmental exposures, most commonly cigarette smoke, 

and genetic factors. Genetic studies of COPD have used tests of genome-wide linkage and 

association to identify loci that contribute to disease susceptibility. However, as seen in other 

chronic diseases, the best-replicated loci associated with COPD only account for a small portion 

of disease heritability. Identifying additional genetic determinants of chronic diseases offers the 

opportunity to better understand their biology as well as the promise of better disease prediction 

and patient stratification, first steps in the development of precision medicine.   

The genetic architecture underlying chronic disease is complex, and it is likely that there 

is still common variation contributing to COPD that has been masked from association studies by 

phenotypic and genotypic heterogeneity. Further, there is evidence that rare variation contributes 

to chronic disease susceptibility, and rare variants in SERPINA1 leading to alpha-1 antitrypsin 

deficiency support this in COPD. The trio of studies presented in this work aim to detect both of 

these types of variation. In the first, we employ an extreme-trait study design to detect rare variants 

in the first whole genome sequencing study of COPD. Using this approach, we identify a 

previously unreported non-synonymous variant associated with COPD, and two suggestively 

associated candidate genes, PTPRO and ZNF816. In the second and third studies, we integrate 

mouse and human genetic data to identify undetected common variants associated with human 

Josiah E. Radder, Ph.D. 

University of Pittsburgh, 2016 
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disease and mouse models of disease. The first study uses a mouse model of cigarette smoke-

induced emphysema and identifies the gene ABI3BP as a potential candidate gene. The second 

looks at early life determinants of chronic disease by measuring airspace size in mice at maturity, 

leading to identification of IL1R2, which plays a previously undescribed role in lung development. 

Finally, we demonstrate that by integrating the results of genetic studies, it is possible to gather 

additional information about the genetic architecture of chronic diseases like COPD.   
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1.0  INTRODUCTION 

Chronic obstructive pulmonary disease (COPD) is a major cause of worldwide morbidity and 

mortality (1-3). Defined as airflow limitation that is progressive and irreversible, the World Health 

Organization (WHO) estimates that the disease is the world’s third leading cause of mortality, 

responsible for over 5% of deaths (4). This number is predicted to rise in the next ten years largely 

due to increased cigarette smoking, the primary environmental determinant of the disease, in the 

developing world (1, 4). Treatment of COPD imposes a significant burden on the health care 

system with costs estimated at 50 billion dollars in 2010 (5-7).  

While exposure to cigarette smoke is the most common environmental factor contributing 

to COPD, less than half of heavy smokers ever develop disease, demonstrating the complex 

interaction of environment and genetic susceptibility in disease pathogenesis (3, 8).  Although a 

number of susceptibility loci have been identified in association studies, together they only account 

for a small portion of the heritability of COPD (9). This work employs modern genetic approaches 

to identify genomic loci and candidate genes contributing to susceptibility to COPD and offers 

support for their functional role in disease.  
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1.1 CHRONIC OBSTRUCTIVE PULMONARY DISEASE 

1.1.1 Pathophysiology 

According to the Global Initiative for Chronic Obstructive Lung Disease (GOLD), COPD “is 

characterized by persistent airflow limitation that is usually progressive and associated with an 

enhanced chronic inflammatory response in the airways and the lung to noxious particles or gases” 

(10). Cigarette smoking is the most common cause of exposure to noxious particles in the 

developed world, although biomass fuel smoke exposure has a significant impact in the developing 

world (11, 12). Three pathologic processes contribute to the airflow limitation characteristic of 

COPD: chronic bronchitis, emphysema and small airway disease and fibrosis (13). Chronic 

bronchitis describes hypersecretion of mucus, an abundance of inflammatory exudate, and 

ultimately remodeling in the upper airways, leading to both airway obstruction and a chronic 

productive cough that is a common symptom of COPD (14). Emphysema involves the destruction 

of the lung parenchyma leading to altered gas exchange and a loss of elastic recoil in the lung (14). 

The small conducting airways are also a major site of obstruction following fibrotic remodeling 

(14). Vascular changes resulting from long-term gas exchange abnormalities can result in 

pulmonary hypertension and right ventricular hypertrophy late in the disease process (15). Finally, 

systemic inflammation (see 1.1.2) contributes to numerous comorbidities including skeletal 

muscle wasting, cardiovascular disease, anemia, osteoporosis, depression, and lung cancer (16).   
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1.1.2 Pathogenesis 

The GOLD definition of COPD (section 1.1.1) describes a chronic dysregulated inflammatory 

response that is a hallmark of the disease process. The acute response to cigarette smoke largely 

involves induction of innate immune cells such as macrophages and neutrophils that release pro-

inflammatory chemokines, cytokines and growth factors (14). Macrophages are predominant in 

the process and contribute to the breakdown of elastin, a structural protein that is a primary 

contributor to the lung’s elasticity, via secretion of metalloproteinases (see below) (17). As the 

response to cigarette smoke exposure becomes chronic, the adaptive immune system is also 

recruited, particularly CD8+ T-cells (18). T-cells and B-cells organize in lymphoid follicles in the 

small airways that are unique to individuals with COPD (19). Macrophage polarity is altered to a 

pro-inflammatory M1 state following chronic cigarette smoke exposure, and combined with the 

adaptive response contributes to the dysregulated immune state that persists even after smoking 

cessation in many individuals (20). Lung epithelial cells also play a major role in the inflammatory 

response through production of inflammatory mediators and altered mucin production (21, 22).  

Inflammation in COPD contributes to the breakdown of essential structural proteins in the 

lung altering the local balance of proteases and anti-proteases. Our understanding of this 

mechanism was established through studies in individuals with a congenital deficiency of alpha-1 

antitrypsin (AAT), a potent inhibitor of serine proteases, who also develop early-onset and severe 

emphysema (see section 1.2.1 for more detail on the genetic inheritance of AAT deficiency) (13, 

23, 24). Animal studies show that instillation of elastolytic enzymes into the rat lung induce 

emphysema (25, 26). Further, gene targeted null mutant mice for major inflammatory elastases 
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such as MMP12, which encodes macrophage elastase, and ELANE, which encodes neutrophil 

elastase, are protected from cigarette smoke-induced emphysema (27, 28).   

Oxidative stress in COPD is related to both exogenous and endogenous sources of oxidants. 

Cigarette smoke generates more than 1015 oxidants per inhalation (29). Immune cells, particularly 

macrophages, produce reactive oxygen species (ROS) and reactive nitrogen species (RNS) in 

response to inflammatory stimuli via the NADPH oxidase system (30). Individuals with COPD 

have a lower level of antioxidants to combat this oxidative stress, and this can continue chronically 

after cigarette smoke exposure (31). An imbalance of oxidants and antioxidants results in oxidative 

damage to DNA and proteins, causing disruption of numerous downstream processes; particularly 

significant in COPD is the inactivation of metalloproteinases (32, 33). Oxidative species can also 

lead to recruitment of inflammatory cells, causing a cycle of inflammation and oxidative damage 

(31).  

Long-term inflammation and oxidative damage may result in apoptosis and senescence of 

both immune cells and the alveolar epithelial cells of the lung (34). Blocking vascular endothelial 

growth factor (VEGF) receptors induces apoptosis, or programmed cell death, of alveolar 

epithelial cells in mice, an animal model of emphysema that appears to be dependent on oxidative 

stress and independent of inflammation (35). In humans, the picture is more complicated - VEGF 

and VEGFR are lower in individuals with emphysema but CD8+ T-cells are also associated with 

markers of apoptosis (36, 37).  Markers of cellular senescence are increased in individuals with 

COPD and, in combination with apoptosis, may contribute to cellular loss in the alveolar 

epithelium (38). Although it remains unclear whether apoptosis occurs in response to loss of 

extracellular matrix, particularly since the VEGFR model of emphysema also results in elastin 

damage, or whether independent mechanisms triggering apoptosis also lead to disease, it seems 
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probable that environmental or genetic factors that increase apoptosis or senescence exacerbate 

disease severity and progression (34).  

Each of the pathogenetic mechanisms described to this point may also contribute to 

comorbidities of COPD, due to their systemic effects. Systemic inflammation occurring from 

chronic cigarette smoke exposure results in cardiovascular complications, metabolic 

dysregulation, osteoporosis and anemia (39). Systemic inflammation also increases endogenous 

oxidative stress throughout the body in addition to a ‘spill over’ of oxidative stress from the lung 

(30). Oxidative stress can contribute to systemic apoptosis – weight loss in COPD is correlated 

with apoptosis of skeletal muscle (40).  

Finally, while the majority of studies looking at the pathogenesis of COPD focus on the 

effects of environmental exposures in adult life, developmental factors also contribute to disease 

(8). Studies of the natural history of COPD show that a portion of the population have reduced 

lung growth in adulthood prior to FEV1 decline and that this predisposes to COPD later in life (41, 

42). Prenatal exposures (such as maternal smoking) as well as postnatal exposures (such as 

childhood respiratory infections) are associated with decreased lung function in adulthood (43, 

44). Further, birth weight not only correlates with FEV1 measured in adults but also with mortality 

from COPD, suggesting that early life factors directly contribute to disease outcomes (45). Thus, 

prenatal and early life factors negatively affect lung development or growth resulting in lower lung 

function in adulthood which increases disease susceptibility (46). 
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1.1.3 Clinical characteristics 

Symptoms of COPD reflect both the airflow limitation that defines the disease and the 

pathophysiology leading to this limitation (section 1.1.1). These include dyspnea made worse with 

physical exertion, chronic cough with mucus production, chest tightness and wheezing, fatigue, 

and susceptibility to respiratory infections (10). Exacerbations of COPD involve acute worsening 

of these symptoms, particularly dyspnea, sputum production, and cough (47).  Patients with similar 

spirometric presentations may have varying symptoms and predispositions to exacerbations, with 

“frequent exacerbators” suffering from increased morbidity and consuming much greater portions 

of healthcare resources (section 1.1.4) (48, 49). The systemic effects of COPD, described in section 

1.1.2, result in numerous comorbidities including musculoskeletal dysfunction, osteoporosis, 

diabetes mellitus, and lung cancer (50). 

Airflow limitation in COPD is measured using spirometry, the primary component of 

pulmonary function testing (PFT). Spirometry is recommended for screening of airflow 

obstruction in individuals with symptoms of COPD, but is not recommended for broader screening 

(10, 51). A spirometer measures inhalation and exhalation volumes as a function of time, allowing 

for the calculation of numerous metrics of lung function. Essential spirometry measurements in 

COPD include the forced expiratory volume in one second (FEV1), the volume of air that can be 

exhaled in one second of a forced expiratory maneuver after taking a full breath, and the forced 

vital capacity (FVC), the total volume of air that can be exhaled in a forced maneuver after taking 

a full breath. When measured following treatment with a bronchodilator to detect reversibility (see 

section 1.1.3), a ratio of FEV1/FVC less than 70% “confirms the presence of persistent airflow 

limitation and thus of COPD” (10).  Severity of COPD is described in terms of GOLD scores, a 
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metric that classifies individuals based on the extent of their obstruction as measured by FEV1 

(Table 1).  

 

Table 1. GOLD scoring of severity in individuals with COPD 

GOLD 1 Mild Percent Predicted FEV1 > 80% 

GOLD 2 Moderate 50% < Percent Predicted FEV1 < 80% 

GOLD 3 Severe 30% < Percent Predicted FEV1 < 50% 

GOLD 4 Very Severe Percent Predicted FEV1 < 30% 
Percent predicted FEV1 calculated following bronchodilator administration. Adapted from (10). 

 

A number of other clinical measures can be used to clarify the clinical phenotype of COPD. 

Body plethysmography measures lung volumes, including total lung capacity (TLC), inspiratory 

capacity (IC), functional residual capacity (FRC), and residual volume (RV) which can be used to 

determine whether a reduction in FVC is due to hyperinflation or air trapping. The diffusing 

capacity for carbon monoxide (DLCO) measures gas exchange abnormalities in COPD and can 

aid in assessing extent of lower airspace loss but is not highly sensitive (52). Computed 

tomography (CT) is more efficient for this purpose and may allow for early detection of 

emphysema, although the clinical implications of quantitative measures of lung densities using 

these approaches still require clarification in large clinical trials (53, 54). CT is used clinically to 

describe patterns of emphysema that represent known etiologies of disease (see AATD in section 

1.2.1) or to identify candidates for specific types of surgical interventions (see lung reduction 

surgery in section 1.1.5) and it is likely that CT and magnetic resonance imaging (MRI) can 

provide valuable information about the pathophysiology of an individual’s disease (55).  



 8 

 

1.1.4 Burden 

Given the complex clinical presentation of COPD described in section 1.1.3, it is not surprising 

that estimates of disease prevalence vary depending on how it is defined. In the United States, in 

the National Health Interview Survey conducted by the Centers for Disease Control and Prevention 

(CDC), approximately 12 million Americans were estimated to have COPD, representing a 

prevalence of approximately 3.8% (56). In the National Health and Nutrition Examination Survey 

(NHANES), the post-bronchodilator prevalence of COPD defined by the fixed ratio of FEV1/FVC 

was 14.0% (57). These findings are reflected on a global scale, where self-reported prevalence of 

COPD was 3.7% and prevalence of COPD as measured by spirometry was 10.1% in a large meta-

analysis (58). The worldwide prevalence of emphysema as measured by radiography was 3.2% in 

this study (59). The absence of major studies in much of the world, particularly Africa, makes 

comparison of prevalence between countries difficult but there is likely a significant rate of 

underdiagnosis of COPD worldwide (60).  

The cost of COPD to both society and patients is significant. In the United States in 2010, 

there were approximately 10.3 million physician office visits, 1.5 million emergency room visits, 

and 699,000 hospitalizations with COPD recorded as the primary diagnosis (56). This extensive 

utilization of the healthcare system cost approximately $30 billion dollars in direct health care 

costs and $20 billion dollars in indirect costs, primarily due to the COPD population’s reduced 

ability to work (7). Exacerbations are particularly expensive and are estimated to cost an average 

of $7,100 for each exacerbation-related hospital admission (61). Patient quality of life is also 

directly related to exacerbation frequency (62). Health-related quality of life progressively 
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decreases as severity of COPD increases (63). Thus, individuals suffering the greatest morbidity 

also have the largest healthcare utilization. 

In addition to the significant morbidity and economic cost of COPD, it is considered the 

third leading cause of death in the world by the WHO, with an estimated 3.1 million deaths 

attributed to the disease in 2012 (4). This represents a rate of approximately 44.2/100,000 

population, with the US rate of 42 deaths/100,000 population reported in 2002 relatively 

representative, although there are regions of the world with significantly higher mortality due to 

COPD (64). Mortality has been shown to significantly correlate with cigarette consumption and 

poverty (65). While the best-proven approach to improving survival in COPD is smoking 

cessation, in patients with severe disease, oxygen therapy and lung volume reduction therapy have 

been shown to reduce mortality (see section 1.1.5) (64).  

1.1.5 Treatments 

Although no treatment has been found to reverse COPD, smoking cessation has the greatest impact 

on survivability (see section 1.1.4). For the same reason, pharmacologic therapies are primarily 

designed to manage symptoms and transiently reduce airflow limitation. Bronchodilators are the 

most commonly used drug for managing airflow obstruction and act by modulating airway smooth 

muscle tone in order to improve flow through the upper airways. A number of drugs with different 

mechanisms including beta2-agonists, anticholinergics, methylxanthines, phosphodiesterase-4 

inhibitors and corticosteroids are used alone or in combination for their bronchodilatory effects 

(10). GOLD recommendations include combining spirometric classification of severity, number 
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of exacerbations and the extent of symptoms to determine which bronchodilator or combination 

of drugs should be used for therapy (10).  

A number of non-pharmacologic therapies can also be useful in COPD, particularly in 

severe disease. Pulmonary rehabilitation including exercise training for both the lower and upper 

extremities, nutrition counseling and education about the disease, has been shown to improve 

quality of life and decrease dyspnea (66). Oxygen therapy can reduce symptoms and improve 

exercise tolerability in individuals with hypoxemia, measured by the partial pressure of oxygen in 

arterial blood (PaO2) or oxygen saturation (67). Exacerbations require the use of oxygen therapy, 

bronchodilators, corticosteroids, and potentially antibiotics and noninvasive mechanical 

ventilation (10). 

In severe cases of emphysema resulting in significant amounts of air trapping and 

hyperinflation, patients may benefit from lung volume reduction surgery, although it carries 

significant risks (10). In order to reduce these risks a number of minimally invasive approaches 

have been developed. Recently, one of these approaches – the placement of endobronchial coils to 

induce volume reduction and restore lung recoil – has been shown to improve exercise capacity, 

although longer follow up studies will be necessary (68, 69). Finally, in very severe cases, lung 

transplantation may be used to improve lung function and quality of life (10).  

Clearly, current treatment paradigms for COPD take very little of the clinical variability 

described in section 1.1.3 into account, with the majority of pharmacologic and surgical therapies 

aiming to reduce airflow obstruction (70). GOLD recommendations for the treatment of COPD 

separate patients according to a combination of spirometric classification and frequency of 

exacerbations for increased symptomatic relief, but also mention that “comorbid conditions may 

influence mortality and hospitalizations, and should be looked for routinely and treated 
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appropriately” (10).  Thus, current approaches to treatment of COPD are generally untargeted and 

treat individual symptoms independently of one another, even though, as described in section 

1.1.2, underlying mechanisms may contribute to more than one aspect of disease expression (71).  

1.2 GENETICS OF COPD 

1.2.1 Mendelian inheritance  

The first known genetic determinant of COPD was described by Laurell and Eriksson in 1963 

when they observed the absence of the α-1 protein in serum protein electrophoreses from five 

individuals, three of whom also had early-onset emphysema (24). They described four variants in 

the protein α-1 antitrypsin (AAT) according to their movement in gel electrophoresis, F (fast), M 

(medium), S (slow), and Z (very slow) (72).  Population studies demonstrated that the M variant 

was wild type and the Z variant was significantly associated with disease and deficiency of AAT 

(73). Individuals with PiZZ phenotype are most susceptible to early onset disease and have 

approximately 10% normal levels of AAT. Individuals with other variant genotypes, most 

commonly PiMZ, also have moderately decreased levels of AAT, but the clinical implications of 

this decrease remain unclear (74). By studying the functional effects of the Z variant, AAT was 

found to be a serine protease inhibitor, leading to the naming of the gene: serine peptidase inhibitor 

A1 (SERPINA1) (75, 76). AAT is a particularly potent inhibitor of elastase and when it is deficient 

the protease is uninhibited in its destruction of elastin fibers in the lung, which are not regenerated 

in adulthood (77, 78).  The protein also appears to play a more nuanced role in immune regulation, 



 12 

 

which may contribute to a lung phenotype even in non-smokers with AATD (79). Augmentation 

of AAT may slow deterioration of lung function and correct systemic effects in AATD (80).  

Mutations in elastin (ELN) and other genes contributing to elastin fiber structure such as 

FBLN5 result in cutis laxa and some individuals with this condition develop early-onset 

emphysema (81). The observation that deleterious variants in telomerase reverse transcriptase 

(TERT) occur in approximately 1% of individuals with severe emphysema has suggested that this 

may be another monogenic cause of COPD, but these findings require replication in larger cohorts 

(82).  

1.2.2 Early genetic epidemiology 

In a foundational study of the natural history of COPD, Fletcher and Peto observed that only 30% 

of current or former smokers and half of heavy smokers (greater than 15 cigarettes/day) develop 

COPD (8). The authors suggested for the first time that this difference may be due to heritability 

outside of AATD : ‘Is susceptibility in any way analogous to α1-antitrypsin deficiency or due to 

quantitative differences in leucocyte proteolytic enzymes?’ (83)  Familial aggregation studies 

supported this hypothesis, indicating pulmonary function and chronic bronchitis occur more 

frequently in related individuals (84, 85). Twin studies showed that pulmonary function deficits 

are much more common in monozygotic than dizygotic twins even after accounting for 

environmental exposures and differences in body habitus that could contribute to FEV1 (86, 87). 

Finally, complex segregation analysis suggested that COPD was most likely due to multifactorial 

inheritance (88, 89).  
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1.2.3 Linkage analyses 

Genetic linkage analysis was one of the first tools used to map the location of trait-related loci on 

the human genome. The technique relies on the knowledge that the closer together two genetic 

markers are located, the more likely they are to remain together during meiosis (90). In early 

practice, the goal of linkage analyses was to identify the genomic location of disease-causing genes 

by testing for co-segregation of the disease with markers of known genomic location in families. 

One of the best-recognized examples of this type of study was the identification of a marker on 

chromosome 7 linked to cystic fibrosis, leading to the characterization of CFTR (91).  Eventually, 

it became possible to test for linkage across the genome by genotyping markers spaced at regular, 

known genetic distances and testing for the expected number of recombinations in affected 

families between each marker (92). The log of the odds (LOD) score is a ratio of the expected 

number of recombinations given the null hypothesis and the observed number of recombinations, 

and is the primary measure of linkage with a trait. The majority of these studies relied on short 

tandem repeat (STR) polymorphisms that were identified with polymerase chain reaction (PCR) 

and thus the number of genotypes that could be measured per individual was technologically 

limited.  

The first linkage analysis in COPD looked at 72 families of individuals with severe, early-

onset COPD in the Boston Early-Onset COPD Study (BEOCOPD). Using non-parametric linkage 

analysis, the authors identified suggestive linkage with moderate airflow obstruction (FEV1 < 60% 

predicted, FEV1/FVC < 90% predicted) at chromosomes 12 and 19, and with mild airflow 

obstruction (FEV1 < 80% predicted, FEV1/FVC < 90% predicted) at chromosomes 8 and 19 (93). 

Restricting their findings to members of the families who smoked supported evidence for linkage 
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at chromosome 12p (93).  A study looking at the same families but also including extended 

relatives, tested for linkage with spirometric traits of COPD and demonstrated evidence for linkage 

with FEV1/FVC on chromosomes 1, 2, and 17, with FVC on 1, and FEV1 at 12p (94). A final 

study of this cohort looked at additional spirometric traits and demonstrated linkage with FEF25-

75% and FEF25-75%/FVC on chromosomes 2q and 12p and confirmed linkage of FEV1 at 

chromosome 12p (95). The results of major linkage analyses of COPD and COPD-related traits 

can be seen in Table 2. 
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Table 2. Linkage studies of COPD 

Study Locus LOD Phenotype 

Joost et al, AJRCCM, 2002 (96) 6q terminus 2.4 FEV1 general 

 21p terminus 2.6 FVC general 

Silverman et al, Hum Mol 

Genet, 2002 (93) 

12p12 2.09 moderate airflow 

obstruction 

 12p12  mild airflow obstruction 

Silverman et al, AJHG, 2002 

(94) 

2q34 2.99 FEV1/FVC 

 17q21 2.68 FEV1/FVC 

 12p12 2.88 FEV1 in COPD 

 12p12 2.68 FEV1/FVC 

 1p36 2.05 FVC 

Wilk et al, AJRCCM, 2003 (97) 4p15 3.5 FEV1/FVC general 

 18p11 2.4 FEV1 general 

 18q21 2.9 FVC 

Palmer et al, Hum Mol Genet, 

2003 (98) 

8p23 3.3 pbFEV1 

 1p21 2.24 pbFEV2 

 8q24 2.01 pbFEV3 

 2q35 4.42 pbFEV1/FVC 

 1p31 2.52 pbFEV1/FVC 

 17q21 2.44 pbFEV1/FVC 

DeMeo et al, AJRCCM, 2004 

(95) 

2q35 5.03 FEF25-75, smokers 

 12p12 3.46 FEF25-75/FVC, smokers 

 

1.2.4 Candidate gene association studies 

While linkage analysis was successful at identifying loci for many monogenic traits, in diseases 

with multifactorial inheritance, results were not definitive and their resolution was relatively low. 

For example, only a few of the results in Table 2 reached genome-wide significance (LOD score 

> 3), and no candidate genes in any of these regions are supported by significant evidence (see 

section 1.2.6) (99-101).  In 1996, Risch and Merikangas compared linkage mapping to tests of 

association, in which measured allelic or genotypic frequencies are statistically compared between 
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two groups with different traits, and demonstrated that for loci with a moderate effect on a 

phenotype occurring frequently in the population, association is significantly more effective than 

linkage (102). At that time, however, the Human Genome Project was still in progress, the number 

of known polymorphisms in the genome was limited, and no technology existed to genotype 

polymorphisms on a large scale. Thus, many early association studies chose to test for association 

with markers in genes or groups of genes with known biological function (103).  

Numerous candidate gene association studies were conducted in COPD, although many 

failed to identify significant associations (100, 104-106). Two studies attempting to identify 

candidate genes for loci at 12p and 2q, identified in linkage studies of spirometric traits of COPD 

(see Table 2), suggested roles for the genes SOX5 and XXCR5 (100, 101). Associations with the 

‘Z’ allele in SERPINA1, previously identified in biochemical studies (see section 1.2.1), were 

observed and novel associations with IL1RN were identified in another study (107). In a meta-

analysis of COPD candidate gene association studies, variation in TGFB1, IL1RN, TNFA, and 

GSTP1 were significantly associated with COPD in several populations (108).  

1.2.5 Common variant association studies 

The first successful genome-wide association study (GWAS) was conducted in 2002, testing for 

association of approximately 92,000 common (minor allele frequency (MAF) > 5%) single 

nucleotide polymorphisms (SNPs) with occurrence of myocardial infarction (109). In 2014, the 

National Health and Genome Research Institute (NHGRI) published the first description of their 

GWAS Catalog containing the results of 1,751 studies looking at over 700 traits, indicating the 

rapid and massive growth of this technique in the ensuing years (110). The majority of GWAS to-
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date have looked at association of common variants with traits, and this type of study will be 

referred to as a common variant association study (CVAS) from this point.  

CVAS have been conducted to study the genetic contribution of numerous COPD related-

traits. The first CVAS in COPD used a case-control study design in a Norwegian population and 

identified a genome-wide significant association at 15q25 near the gene CHRNA3/5 and a genome-

wide suggestive association at 4q31 near HHIP that was replicated in an independent cohort (111). 

CHRNA3/5, encoding the α-nicotinic acetylcholine receptor, appeared to be an obvious smoking-

related gene and HHIP was concurrently shown to be associated with FEV1 in the general 

population, offering significant promise for the findings of future studies (112). In a joint study of 

Europeans and non-Hispanic white (NHW) Americans with COPD, Cho et al described an 

additional association with FAM13A (113). A larger GWAS looking at individuals from the 

Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) cohort 

and replicated in the Normative Aging Study and National Emphysema Treatment Trial 

(NAS/NETT), Bergen, Norway (GenKOLS) and COPDGene studies, identified a novel locus 

associated with COPD at 19q13 near the genes RAB4B, EGLN2, MIA, and CYP2A6 (114). Looking 

at the same cohorts in a meta-analysis, association with MMP12 and TGFB2 was observed (115).  

Poorly defined phenotypes significantly decrease power in association studies, with 

phenotypic heterogeneity of 50% increasing the sample size needed to detect an associated variant 

threefold (116). A recent study looking at individuals scored as GOLD 1, frequently used in genetic 

studies to define ‘mild obstruction’, indicated significant phenotypic heterogeneity of this trait, 

reflecting the diverse clinical presentation of COPD described in section 1.1.2 (117). In an attempt 

to overcome this problem, CVAS have been designed to test for association with more well-

defined phenotypes of COPD. The first GWAS of emphysema identified association with the gene 
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BICD1, a locus that had not previously been detected in studies testing for association with COPD 

in the same cohorts (118). Recently, a study testing for association with distinct patterns of 

emphysema by CT found that different loci reported in CVAS of COPD are associated with unique 

histological patterns of emphysema (119).  

CVAS have also been conducted looking at COPD-related traits. Association with 

pulmonary function in the general population has been studied in extremely large populations, 

successfully identifying numerous loci, some of which also associate with COPD (see Table 3) 

(112, 120-123). CVAS looking at the genetics of smoking habits, including traits such as cigarettes 

smoked per day, pack-years and exhaled carbon monoxide (CO), have repeatedly shown 

association with the locus near CHRNA3/5, supporting the hypothesis that this association with 

COPD is due to smoking behavior (124, 125). Other studies have shown unique loci contributing 

to other COPD-relevant phenotypes such as response to bronchodilators and body composition 

(126, 127).  
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Table 3. CVAS in COPD and COPD-related phenotypes 

Study Phenotype Ethnicity Significant 

genes/loci 

Suggestive 

genes/loci 

Wilk JB et al, BMC 

Med Genet, 2007 

(120) 

FEV1/FVC NHW  GSTO2, 

IL6R 

Pillai SG et al, PLoS 

Genet, 2009 (111) 
COPD European CHRNA 3/5 HHIP 

Wilk JB et al, PLoS 

Genet, 2009 (112) 
FEV1/FVC NHW 4q31  

Repapi E et al, Nat 

Genet, 2010 (128) 
FEV1/FVC European 4q31 (HHIP) 

2q35(TNS1) 

4q24(GSTCD) 

5q33(HTR4) 

6p21(AGER) 

15q23(THSD4) 

 

Cho MH et al, Nat 

Genet, 2010 (113) 
COPD NHW/European 4q22 (FAM13A) 

CHRNA3/5 

 

Pillai SG et al, 

AJRCCM, 2010 (129) 
Pack Years, 

visual 

emphysema 

score, 

obstruction 

NHW CHRNA3/5  

 FEV1 in 

smokers 

 IREB2  

 FEV1/FVC in 

smokers, fat-

free body mass, 

exacerbations 

 HHIP  

 FEV1, 

FEV1/FVC in 

smokers 

 FAM13A  

Hancock DB et al, 

Nat Genet, 2010 

(123) 

FEV1, 

FEV1/FVC 

European HHIP, GPR126, 

ADAM19, AGER-

PPT2, FAM13A, 

PTCH1, PID1, 

HTR4, INTS12-

GSTCD-NPNT 

 

Wan ES et al, 

AJRCCM, 2011 (126) 
fat-free mass 

index in COPD 

NHW/European FTO  

Siedlinski et al, 

Thorax, 2011 (124) 
cigarettes 

smoked per day 

in GOLD >2 

 CYP2A6  
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Table 3 continued 

Soler Artigas M et al, 

Nat Genet, 2011 

(121) 

FEV1, 

FEV1/FVC 

European MFAP2, TGFB2, 

HDAC4, RARB, 

MECOM (EVI1), 

SPATA9, 

ARMC2, NCR3, 

ZKSCAN3, 

CDC123, 

C10orf11, LRP1, 

CCDC38, 

MMP15, CFDP1, 

KCNE2 

 

Cho MH et al, Hum 

Mol Genet, 2012 

(114) 

COPD NHW/European CYP2A6  

Hardin M et al, 

AJRCCM, 2012 (130) 
severe to very 

severe COPD 

Polish  CHRNA3/5, 

IREB2, ADCY2 

 

Wilk JB et al, 

AJRCCM, 2012 (131) 
airflow 

obstruction  

European CHRNA3/5/IREB

2, HTR4 

 

Hancock DB et al, 

PLoS Genet, 2012 

(122) 

FEV1, 

FEV1/FVC 

multiple DNER, HLA-

DQB/HLA-

DQA2, 

KCNJ2/SOX9 

 

Hansel NN et al, 

Hum Genet, 2013 

(132) 

mild to 

moderate 

COPD 

European TMEM26, 

FOXA1, ANK3  

 

Yao TC et al, J 

Allergy Clin 

Immunol, 2014 (133) 

FEV1, FVC, 

FEV1/FVC 

Hutterites THSD4-UACA-

TLE3 

 

Manichaikul A et al, 

AJRCCM, 2014 (134) 
percent 

emphysema on 

CT 

multiple SNRPF, PPT2, 

MAN2B1, 

DHX15, 

MGAT5B, 

MAN1C1 

 

Tang W et al, PLoS 

One, 2014 (135) 
Rate of change 

of FEV1 

European IL16/STARD5/T

MC3 

 

Castaldi et al, 

AJRCCM, 2014 (119) 
local histogram 

emphysema 

patterns 

NHW MYO1D, VMA8, 

HHIP, 

IREB2/CHRNA3, 

CYP2A6, TGFB2, 

MMP12 

 

Bloom AJ et al, Ann 

Am Thorac Soc, 2014 

(125) 

Exhaled CO, 

cigarettes 

smoked per day 

NHW, AA CHRNA3/5/B4  
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Table 3 continued 

Lee JH et al, Respir 

Res, 2014 (136) 
total lung 

capacity in 

individuals with 

COPD 

NHW/European DNAH5  

McDonald ML et al, 

AJRCMB, 2014 (137) 
resting 

oxygenation in 

COPD 

AA, NHW  SPO2, KIF7 

Cho MH et al, Lancet 

Respir Med, 2014 

(115) 

moderate to 

severe COPD 

AA, NHW CHRNA3, HHIP, 

RIN3, MMP12, 

TGFB2 

 

Hansel NN et al, 

AJRCMB, 2015 (138) 
airway 

responsiveness 

in COPD 

NHW LINGO2  

Cho MH et al, 

AJRCCM, 2015 (139) 
airway 

quantitative 

imaging 

phenotypes, gas 

trapping 

NHW/European HHIP, 15q25, 

AGER, 

SERPINA10, 

DLC1 

 

Hardin M et al, 

Pharmacogenomics 

J, 2015 (127) 

response to 

bronchodilators 

AA, NHW  KCNK1, 

KCNJ2 

Lutz SM et al, BMC 

Genet, 2015 (140) 
post-

bronchodilator 

FEV1, 

FEV1/FVC in 

smokers 

AA, NHW 15q25, HHIP, 

TGFB2, DBH, 

CYP2A5, 

FAM13A, 

MMP12, RIN3 

 

Wain LV et al, 

Lancet Respir Med, 

2015 (141) 

extreme traits 

of FEV1 in 

smokers and 

never smokers 

British KANSL1, 

TSEN54, TET2, 

RBM19/TBX5, 

PNT, HLA-

DQB1/HLA-

DQA2 

 

 

1.2.6 Identification of causal variants and genes 

The purpose of identifying genomic loci that contribute to disease is two-fold. First, knowledge of 

susceptibility loci aids in prediction of future disease in an individual, simply through the 
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measurement of genotype. Second, these loci may tell us something about the biology of the 

disease process. Although the first purpose does not require identification of a functional effect of 

variation, the second does, and follow-up studies have been conducted to identify causal variants 

of linkage mapping and CVAS (142). In some diseases, these studies have been extremely 

successful. For example, IL-23 signaling was identified as a major pathway contributing to 

inflammatory bowel disease following a CVAS identifying associations between IL23R and 

Crohn’s disease (143, 144). However, for many loci identified by linkage analyses or CVAS, 

similar findings are lacking (142).  

In COPD, the results of follow-up studies to identify causal variants have been mixed. 

Using a fine-mapping approach, Hersh et al. tested for association of variants in two candidate 

genes at a locus in linkage with FEV1 at 8p using the BEOCOPD population but failed to offer 

convincing evidence for either gene (145).  The gene SERPINE2 located at the chromosome 2q 

locus in linkage with FEV1 was identified as a possible candidate gene and this finding was 

supported by a number of fine-mapping association studies (105, 106, 146).  However, there is 

support for the gene XCCR5 at the same locus, bringing into question the role of SERPINE2 or 

suggesting that more than one gene may contribute to disease at these loci (101).  

A number of follow-up studies have looked at the function of genes identified in CVAS of 

COPD. SNPs associated with pulmonary function in the general population alter regulatory motifs 

near the gene HTR4, and mice lacking this gene have altered baseline pulmonary function (147, 

148).  Similar effects on regulatory function have been shown for the gene HHIP and variants in 

LD with a commonly associated SNP have been shown to be in an enhancer region of the gene 

(149).   Hhip-/- mice die at birth from respiratory failure while mice that are haploinsufficient for 

the gene have increased susceptibility to cigarette smoke-induced emphysema (150). Further, 
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Hhip+/- mice are predisposed to age-related emphysema suggesting that this gene contributes to 

both development and disease (151).  

Despite some success at identifying the biological relevance of loci identified in genetic 

studies of COPD, the majority of our knowledge of the pathogenesis of the disease is due to 

biochemical and molecular studies (see section 1.1.2). Neither candidate gene nor genome-wide 

association studies have identified variation associated with COPD in most of these genes (see 

sections 1.2.4 and 1.2.5). A notable exception to this is MMP12, identified in murine studies (see 

section 1.1.2) nearly 20 years before a meta-analysis of CVASs identified nearby variants yielding 

genome-wide significant association with COPD (27, 115).  

1.2.7 Genetic architecture of complex traits 

In an attempt to clarify both the biological relevance of genomic loci contributing to disease 

pathogenesis (see section 1.2.6) and to better predict and model disease risk, linkage analyses 

(section 1.2.3) and CVAS (section 1.2.4) have aimed to identify susceptibility loci for chronic 

diseases. In COPD, these studies have successfully identified frequently replicated loci that clearly 

alter disease risk (Table 2 and Table 3). Yet, a recent study demonstrated that SNPs at the four 

best-supported loci in COPD, near the genes HHIP, CHRNA3/5/IREB2, CYP2A6, and FAM13A, 

account for only 8% of the heritability, or the variation in the trait due to genetic variation, of 

FEV1 and FEV1/FVC in individuals with COPD (9). This finding reflects what is seen in other 

chronic diseases – in one estimate, the median heritability explained by statistically significant 

CVAS results for ten traits including psychiatric, autoimmune and metabolic disorders, was 9.8% 

(152). Thus, despite the significant resources and effort that have gone into conducting CVAS 
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across thousands of complex traits, a ubiquitous ‘missing heritability’ problem suggests additional 

genetic variation remains to be found (153, 154). 

The surge of CVAS in chronic disease was based on the ‘common disease, common 

variant’ hypothesis, first introduced with knowledge that linkage analyses had been mostly 

unsuccessful at identifying disease-contributing loci for complex traits (102). This hypothesis 

posits that there are likely to be several contributing loci for a given complex trait, each with a 

small to moderate contribution to disease risk. Since each locus individually has a relatively small 

effect on organismal fitness, these variants would not experience significant evolutionary selection 

and would be common in the population (155). So, the ‘missing heritability problem’ in chronic 

diseases is not an inability of CVASs to detect true common variants associated with disease, as 

much as inflated expectations that they would identify the entire heritable spectrum of complex 

diseases based on an over-simplified model of their underlying genetic architecture (153, 156, 

157). 

One hypothesized model to account for ‘missing heritability’ in complex traits assumes 

that an extremely large number of common variants, each with a miniscule effect on genetic risk, 

act in concert to result in disease (153, 158). Under this model, only a portion of heritability can 

ever be detected by CVAS, as variants with an extremely small effect size would require sample 

sizes larger than the entire population to reach multiple testing correction thresholds for genome-

wide significance (158). This theory has been partially supported in the study of genetic 

contributions to height, which is highly heritable (159).  Nearly 400 loci have been identified 

contributing to height, but together they only account for a portion of its genetic variance (160). 

Calculating heritability using the contribution of all SNPs in a GWAS of height simultaneously, 

however, explained over 60% of the variance of the trait (160, 161).  Importantly, the authors of 



 25 

 

that study conclude that there are a finite number of variants contributing to genetic variance – an 

important argument that the majority of meaningful trait-related variants can be identified. While 

it is unknown to what extent this model applies to disease-related traits, accounting for variation 

that doesn’t reach genome-wide significance can also explain additional heritability in disease 

(158).  

Another explanation for the ‘missing heritability’ in complex disease is that rare variants 

contribute to disease susceptibility (162). Rare variant studies have recently become 

technologically possible due to the reduction in cost of next generation sequencing (NGS) 

technologies including targeted detection of all variants in coding regions of the genome, or whole 

exome sequencing (WES), and detection of all variants in the genome by whole genome 

sequencing (WGS). Using these techniques, recent studies have identified rare variants associated 

with common traits such as triglyceride levels and red blood cell characteristics (163, 164). Similar 

studies have observed rare variants associated with numerous chronic diseases including type 2 

diabetes and schizophrenia (165, 166). Rare variants may even be responsible for some signals 

detected in CVAS due to the generation of a ‘synthetic association’, unlikely according to 

statistical analyses, but as yet unproven experimentally (167-170).   

The massively parallel sequencing techniques used in NGS studies also allow for 

comparisons of read depth in order to detect large structural and copy number variants in the 

genome. Although few studies have investigated the role of these variants in chronic disease, they 

are likely to contribute to their genetic architecture (171, 172). Genetic studies of psychiatric 

disorders have been particularly successful at identifying copy number variants and large 

translocations that contribute to disease (173).  
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In addition to the contribution of variants that cannot be identified in classic CVAS, there 

are likely to be underlying genetic interactions that explain the ‘missing heritability’ problem. 

Statistical and experimental approaches show that a portion of the heritability of complex diseases 

can be attributed to epistasis, or gene-gene interactions (174, 175). Although the role of specific 

environmental exposures such as cigarette smoke in COPD may be well understood, the impact of 

other environmental factors remains unclear, and unrecognized gene-environment interactions 

likely contribute to disease risk (176, 177). Epigenetic factors also play a role in the heredity of 

complex diseases, but the extent of this contribution and their precise mechanisms of action require 

further exploration (178).  

Most likely, the genetic architecture underlying chronic diseases like COPD is exactly as 

described: complex. Numerous genes are likely to be affected by a combination of rare, common 

and structural variants, each potentially interacting with other genes or affected by environmental 

exposures. Moreover, the genetic architecture underlying each individual disease may be unique 

(179). These points are underlined in a recent review of psychiatric disorders – each of the nine 

genetic disorders reviewed has variable heritability, each receives contribution from multiple types 

of variants, and each appears to have a different underlying architecture (173).  Thus, investigation 

of the entire genetic spectrum of disease will be necessary to identify additional susceptibility 

variants in diseases like COPD, an approach that requires the use and integration of multiple 

techniques for identifying susceptibility loci. 
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1.2.8 Rare variant association studies 

Our improving understanding of the genetic architecture of complex diseases (see section 1.2.6) 

has supported recent studies attempting to identify rare variants contributing to COPD in addition 

to those in SERPINA1 (see section 1.2.1). The first WES study in a phenotype of COPD looked at 

100 individuals with significant smoking histories but without obstruction and identified a non-

synonymous variant in the gene CCDC38, suggested to be involved in ciliary function (180).  

Bruse et al also used WES in individuals that are protected from COPD but compared them to 

individuals with very severe disease using a case-control design. Combining several variant 

prioritization techniques with in vitro functional studies they suggested a role for two genes, 

TACC2 and MYO1E (181). Qiao et al used WES to look at predicted deleterious variants that 

segregated in families with early onset, severe COPD in the BEOCOPD cohort, and although they 

offered suggestive evidence for the genes DNAH8, ALCAM, RARS, and GBF1, they also noted that 

genetic heterogeneity significantly reduced their power (182).   

Exome arrays are an alternative, cost-effective approach to studying rare variation. These 

arrays allow simultaneous genotyping of more than 600,000 variants, with a standard 240,000 

coding variants specifically chosen to represent up to 97% of known non-synonymous variation in 

multiple human populations, the majority of it rare (141).  In the first exome array study of COPD, 

the authors failed to identify any novel regions associating with GOLD score > 2, but did offer 

suggestive evidence for the genes MOCS3, SERPINA12, and IFIT3 (183). A similar study using 

exome arrays on the BEOCOPD, COPDGene, International COPD Genetics Network (ICGN), 

and the Transcontinental COPD Genetics Study (TCGS) did not identify any rare variation 
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associated with COPD but did identify a genome-wide significant association with a common, 

non-synonymous variant in IL27, a gene known to play a role in other inflammatory diseases (184).  

1.3 PRECISION MEDICINE FOR COMPLEX DISEASE 

As the Human Genome Project approached its goal of sequencing the human genome at the 

beginning of the 21st century, there was significant speculation about the impact of this 

achievement (185). Some predicted that the results would be rapid, allowing medicine to quickly 

progress to the point where we would have “an intimate knowledge of the propensities of each 

individual for multifactorial disorders” (186). Others were more circumspect but also perceived 

that, given time, the genetic code would offer valuable clinical insight into a broad range of 

diseases (187).  

It was in this context that early adopters of the term “personalized medicine” began to think 

about a future in which individual genetic variability, newly measurable on an unprecedented 

scale, would affect the way that therapeutics could be designed and applied (188). Since then, the 

term has been used broadly to describe medicine that utilizes individual variation – from large 

“’omics” data to variation in common laboratory measurements – in order to provide better 

application and dosing of drugs, improved clinical stratification of patients, as well as to identify 

biomarkers that indicate susceptibility or severity of disease. A number of terms have been used 

to describe this approach including individualized medicine (189), network medicine (190), 

stratified medicine (191), P4 Medicine: personalized, predictive, preventive and participatory 

(192), and precision medicine (193). Recently, the National Research Council recommended the 
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use of the term precision medicine, as the word ‘personalized’ could be misinterpreted and so that 

term is used in this work (194).  

Some fields have been more successful than others in utilizing genomic and individual 

clinical information to advance not only research discovery but also clinical decision-making. In 

cancer therapeutics, the recognition that many cases of familial hereditary breast cancer can be 

attributed to mutations in the BRCA1 and 2 genes was a valuable confirmation that certain subtypes 

of cancers should be managed as unique clinical entities (195, 196). Since then, targeted therapies 

have been developed to treat other subsets of breast cancer (tamoxifen, trastuzumab) as well as 

other cancer types including chronic myelogenous leukemia (imatinib), gastrointestinal stromal 

tumors (imatinib), metastatic melanoma (vemurafenib), and non-small cell lung cancer (gefitinib) 

(197-201). Each of these therapies relies on molecular analysis to place patients in more 

individualized treatment groups. Recently, a study demonstrated that a significant number of 

thyroid tumors identified with a unique pathologic signature are low risk and that substituting a 

non-cancer diagnosis for these tumors can reduce medical overtreatment and the psychological 

burden of such a diagnosis, indicating the significant impact of correct disease classification (202). 

The field of pharmacogenomics has also successfully recognized that not every patient responds 

to drugs in the same way. There are currently over one hundred FDA-approved pharmaceuticals 

which contain pharmacogenomics recommendations in their labeling (203). A clinically utilized 

example is HLA typing to predict common adverse drug reactions (204).     

In contrast to the fields of pharmacogenomics and cancer therapeutics, relatively few 

precision-based therapies exist for chronic, complex diseases. This is despite WHO statistics that 

chronic cardiovascular, lung and metabolic disease are among the top ten killers in the world (4). 

Indeed, over 70% of care in the US today is for chronic disease, and this will increase as our 
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population ages (205).  Despite this, the majority of treatments for COPD are designed for 

symptomatic relief and patient classification into severity of disease state is largely based on PFTs 

(51).  As seen in sections 1.1.2 and 1.1.3, many chronic diseases are in reality heterogeneous 

syndromes that have a wide spectrum of clinical manifestations, with the pathogenesis of each 

presentation attributable to multiple interacting genetic and environmental factors. Further, as seen 

in section 1.2.7, the genetic architecture underlying each measurable trait is extremely complex. 

Improving our understanding of the genetic basis of COPD offers the potential for targeted 

therapies, improved risk stratification and reduction, and a better understanding of molecular 

mechanisms of disease. Based on recent findings supporting the complex underlying genetic 

architecture in these diseases (see section 1.2.7), it will be necessary to identify rare variants, 

structural variants, and common variants that have not been identified in current CVAS in order 

to achieve this goal.  
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2.0  EXTREME TRAIT WHOLE GENOME SEQUENCING OF EMPHYSEMA 

2.1 INTRODUCTION  

Although many susceptibility loci for COPD have been identified, they only account for a small 

portion of the heritability of disease (section 1.2.7). Rare variants are likely to contribute to the 

genetic architecture of COPD and rare variants in SERPINA1 leading to AATD support this role 

(see sections 1.2.1 and 1.2.8).  

Advances in next generation sequencing technologies have begun to make sequencing 

studies in order to identify rare variants contributing to disease both technologically and financially 

feasible, but studies on large populations are still extremely expensive (162, 206). Approaches to 

maximize power in smaller populations include studies limited to the extremes of a phenotype or 

within families (207, 208). Recent whole exome sequencing studies have taken one of these two 

approaches by looking at heavy smokers, severe emphysematous phenotypes or families of severe 

early-onset COPD, identifying candidate genes (section 1.2.8) (180-182). The extreme trait 

sequencing approach is based on evidence that individuals at the extreme of a phenotype are 

enriched for causal variants (209). This approach is particularly useful outside of the exome, where 

our understanding of the impact of non-coding variants on gene expression remains limited but is 

clearly important. However, the contribution of such loci has not been studied in a sequencing 

study. Here we report the findings from the first WGS study in COPD.   
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2.2 METHODS 

2.2.1 Study Design 

This study was approved by the Institutional Review Board for Human Subject Research at the 

University of Pittsburgh. To control for genetic differences between populations, only US non-

Hispanic whites (NHW) were included in this study. Subject recruitment and clinical evaluation 

of subjects in the Pittsburgh COPD Specialized Center of Clinically Oriented Research (SCCOR) 

has been described previously (210). Briefly, participants were current or former smokers ages 

40–79 with a minimum 10 pack-year cigarette smoking history. Each subject completed a chest 

CT scan, pre- and post-bronchodilator spirometry and plethysmographic lung volume 

measurement, diffusion capacity, and demographic and medical history questionnaires. 

Quantitative measurements of emphysema were analyzed using the percentage of low-attenuation 

units on density histogram analysis defined as the fraction of voxels less than −950 Hounsfield 

Units (HU)  (F-950) as a percent of total voxels (211).  

From this population, 102 subjects with severe emphysema as measured by CT scan 

(susceptible, F-950 > 0.05) and 86 subjects that did not develop emphysema (resistant, F-950 ≤ 

0.01) were identified. An algorithm written in Python was used to match these individuals by 

between cohorts based on sex, age and smoking history, identifying a maximum number of most-

similar individuals. To reach a total of 70 individuals in each cohort, several pairs that were not 

sex-matched were identified as being the most closely related in their other demographic values 

(Figure 1A). 
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Genotyping of candidate non-synonymous substitutions was performed in all NHW 

individuals in the Pittsburgh SCCOR cohort for whom DNA was available (Figure 1B).  
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Figure 1. Extreme-trait whole genome sequencing study design. (A) Patient selection and quality control and (B) 

association testing using three different group-wise tests comparing rare variants or rare non-synonymous variants in 

65 individuals resistant to emphysema and 64 individuals susceptible to emphysema. 
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2.2.2 Sequencing and genotyping 

Knome Biosciences (Boston, MA) sequenced 40 subjects (20 resistant, 20 susceptible) and Hudson 

Alpha Biotechnology (Birmingham, AL) sequenced an additional 100 (50 resistant, 50 

susceptible). All individuals were sequenced using Illumina HiSeq technology. Library 

preparation by both of these centers has previously been described (212, 213). Prior to sequencing, 

the ratio of DNA with ligated adapters was measured by fluoremetric means prior to sequencing, 

and preliminary reads on MiSeq technology were used to confirm equal sample distribution and 

to prevent contamination. 

Genomic DNA was isolated from blood using the QIAamp DNA isolation kit (QIAgen, 

Valencia, CA). A non-synonymous substitution in the gene PTPRO, rs61754411, was genotyped 

using the Taqman platform (214) with pre-designed primer and probes and 7900 DNA analyzer 

(ABI, Foster City, CA). 

2.2.3 Data analysis 

We followed the Broad Institute’s genome analysis toolkit (GATK) best practices workflow to 

align and call variants (215). Briefly, Burrows-Wheeler Alignment (bwa, Version 0.7.12-r1039) 

was used to align sequences to GRCh37 and Picard (Version 1.126) was used for de-duplication 

(216).  Recalibrated variant calls for each individual were generated, followed by joint genotyping 

and SNP and indel recalibration (217). Final sequencing metrics including depth of coverage, 

distribution of coverage and variant calling statistics were calculated following analysis of the 

entire sample set using GATK (Version 3.3-0) and SAMtools (Version 1.1) (218). While 
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performing quality control, three individuals were removed due to genetic sex not matching 

recorded sex at blood draw and two individuals were removed because of inadequate sequencing 

depth for reliable variant calling (Figure 2, whole genome depth < 20X). One susceptible 

individual with PiZZ genotype in SERPINA1 was also removed.  

 

   

Figure 2. Genome-wide sequencing depth. Depth of sequencing compared to the fraction of the genome covered at 

that depth for all individuals sequenced in this study. Each individual is represented as a single line.  

 

Population stratification was tested between the sub-cohorts by pruning all variants for 

which there was more than 10% missingness and that were not in Hardy-Weinberg equilibrium 

using PLINK (Version 1.90) (219). Principal components analysis (PCA) was used on this pruned 

set of SNPs and Tracy Widom statistics were calculated for each of the top principal components 
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using Eigenstrat software (Version 6.0.1) (Table 4) (220). Following pruning, three individuals 

were removed from the susceptible cohort and two from the resistant cohort due to significant 

variation along the most significant principal components, PC2 and PC6 (Table 4 and Figure 3).  

 

Table 4. Eigenvectors from principal components analysis of population stratification 

 

Eigenvector P-value* 

1 0.916943 

2 0.0923547 

3 0.785011 

4 0.385701 

5 0.463261 

6 0.0156966 

7 0.463955 

8 0.532515 

9 0.772406 

10 0.526688 

*As determined by Tracy Widom test 
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Figure 3. Population stratification of sub-cohorts along two significant principal components. Scatter plot of the 

two most significant principal components (PC2 and PC6) as determined by Tracy Widom statistics with 134 

individuals that passed sequencing quality control. Outliers are labeled and were removed from the final analysis.   

2.2.4 Rare variant filtering 

Variants were annotated using Annovar and filtered with bcftools. First, variants were removed if 

minor allele frequency (MAF) > 0.05 in European populations in 1000 Genomes or if MAF > 0.05 

in 6500 Exomes European populations. Then, variants were removed if they lacked AF in 

European populations but MAF in the entire 1000 Genomes populations > 0.05 and finally, 

remaining variants were filtered if the empiric MAF > 0.01.  
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2.2.5 Definition of regions and genes 

We separated the autosomes into 30,000 base pair (bp, 1000 bp = kbp) regions starting at the 

beginning of each chromosome. A new region was generated beginning exactly 30kbp from the 

last base pair using Python. We identified genes as all intronic, exonic and regulatory space (gene 

start +/- 1kbp) of protein coding genes. We downloaded the start and end locations of all protein 

coding genes mapped to GRCh37 from Ensembl’s Biomart and added 1kbp to start and end 

locations. Non-synonymous mutations (missense and nonsense) were annotated using EPACTS 

(version 3.2.6). EPACTS utilizes gencodeV14 for gene and variant annotation. 

2.2.6 Association testing and statistics 

We tested for association of single rare variants with emphysema using the efficient mixed-model 

association expedited (EMMAX) algorithm as implemented in EPACTS (221).  Unadjusted P-

values were also generated using Fisher’s Exact Test. Single variants were annotated with Annovar 

(Version 2014-11-12) from dbSNP144 and PolyPhen and Sift predictions were downloaded from 

Ensembl.  

We used the optimized sequence kernel association test (SKAT-O) as implemented in 

EPACTS to test for association of groups of rare SNPs with emphysema (222).  We first tested 

across standardized 30kbp windows (section 2.2.5). Then, we tested for all rare variation within 

genic regions. Finally, we tested for association of non-synonymous variants (missense and 

nonsense substitutions) with our phenotype across the exome. Annotations of non-synonymous 

variants were made with EPACTS.  
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All association tests were corrected for multiple comparisons using Bonferroni correction. 

All association tests except for EMMAX and Fisher’s Exact test were adjusted for the following 

covariates: age, sex, pack years, and eigenvalues from principal components 2 and 6 identified 

with Eigenstrat (Table 4). As EMMAX directly accounts for population structure, this test was 

only adjusted for age, sex, and pack years. Fisher’s Exact Test is reported unadjusted. Two sided 

t-tests were used to compare population demographic and clinical variables. Tracy Widom 

statistics were used to compare the principal components generated in Eigenstrat.  

2.3 RESULTS 

2.3.1 Cohort characteristics  

From a population of heavy smokers, we identified 102 non-Hispanic white (NHW) subjects with 

severe emphysema as measured by CT scan (susceptible, F-950 > 0.05) and 86 NHW subjects that 

did not develop emphysema (resistant, F-950 ≤ 0.01) despite similar smoking histories. We 

matched individuals in this population to identify 70 susceptible and 70 resistant individuals. Six 

individuals were removed following sequencing quality control and five were removed as 

population outliers, leaving a population of 64 resistant and 65 susceptible individuals in the 

following analysis. Resistant  and susceptible individuals shared similar characteristics in terms of 

sex (% female, susceptible: 43.8, resistant: 47.7), age (median years, susceptible: 61, resistant: 63), 

and smoking history (mean pack years, susceptible: 54.4, resistant: 48.5) but were significantly 
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different in spirometric (mean percent predicted FEV1, susceptible: 25.3, resistant: 98.0) and 

radiologic attributes (mean F-950, susceptible: 0.269, resistant: 0.004) (Figure 4, Table 5).  

 

Table 5. Clinical and demographic characteristics of sequenced individuals 

 Emphysema Susceptible 
Emphysema 

Resistant 
P-value* 

Number of Subjects 

Sequenced 
64 65  

Females (%) 43.8 47.7 0.67 

Median Age at PFT 

(Years) [IQR] 
61 [57-65] 63 [60-66] 0.01 

Mean Smoking History 

(Pack Years) [IQR] 
54.4 [35.6-61.5] 48.5 [30.0-60.0] 0.25 

Mean Percent Predicted 

FEV1 (%) [IQR] 
25.3 [19.8-30.0] 98.0 [89.0 - 104.0] 7.63E-29 

Mean F-950 [IQR] 0.269 [0.172 - 0.351] 0.004 [0.002 - 0.006] 2.00E-24 

* Two-tailed t-test 
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Figure 4. Extreme traits of emphysema in the Pittsburgh SCCOR cohort. Analyzed sub-cohorts are clinical 

extremes in terms of obstruction as measured by (A) percent predicted FEV1 and (B) F-950 despite having very similar 

(D) smoking histories (pack years) at a similar (C) age (years). Dotted lines represent sub-cohort means.  
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2.3.2 Sequencing Results 

The average depth of sequencing in all analyzed samples was 30.2X across the genome, with 

83.5% coverage of the genome at 20X depth of coverage (Table 6). We identified 13,352,302 

SNPs, 2,682,220 of which were novel (compared to dbSNP138) in 135 individuals that passed 

sequencing quality control.  

We used a stepwise approach to filter our variant calls for rare variation, which we defined 

as any variant with a MAF < 0.05 in background European populations or MAF < 0.01 empirically 

if no MAF existed in any of these populations (see section 2.2.4). This relatively inclusive 

definition of rare variation was chosen due to the small size of both the European background 

populations and the study cohorts. Using this approach, we identified 5,673,659 rare SNPs, with 

an average of 79,207 rare SNPs per subject (Table 6). We excluded allosomal SNPs from our final 

analysis and tested across 5,507,311 rare autosomal SNPs.   
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Table 6. Alignment and variant calling statistics  

Mean Aligned Read Depth 30.2X   

Mean Aligned at 8X 91.20%   

Mean Aligned at 20X 83.50%   

    

Raw Calls All Known Novel 

nSNPs 13352302 10670082 2682220 

TiTvRatio 2.17 2.21 2.05 

nSNPsPerSample 3257790 3227968 29822 

TiTvRatioPerSample 2.13 2.13 1.99 

    

Filtered Calls All  Known  Novel 

nSNPs 5673659 3242735 2430924 

TiTvRatio 2.18 2.3 2.04 

nSNPsPerSample 79207 58973 20234 

TiTvRatioPerSample 2.2 2.26 2.03 

 

2.3.3 Genome-wide single rare variant association tests 

In order to test for genotype-phenotype association, we dichotomized susceptible individuals as 

“controls” and resistant individuals as “cases,” a binary phenotype which we hereafter refer to as 

emphysema. We tested each rare autosomal SNP individually for its association with emphysema 

using the EMMAX algorithm. There were no significant associations following Bonferroni 

correction (5,507,311 tests, P≤ 8.8x10-9). The most significant association was with a set of four 

noncoding SNPs at 9p13 (rs117400947, rs80121798, rs77945177, rs75985055, P=7.1x10-5). The 

most significant non-synonymous substitution was rs75683534 (P=1.4x10-3), a C to A transversion 

resulting in a premature stop codon in the gene PIF1 that occurred in 9 susceptible individuals and 

0 resistant individuals (Appendix A, Table 19). A quantile-quantile (QQ) plot of the results of this 

test can be seen in Figure 5.  
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Figure 5. Quantile-quantile plot showing P-values from single variant association test. QQ plot of P-values 

resulting from tests for association of single variants with emphysema using EMMAX. This QQ plot shows minimal 

inflation, but deflation at higher expected P-values demonstrates a lack of power in this cohort at the single-variant 

level.  

2.3.4 Genome-wide region-based rare variant association tests 

We grouped rare autosomal SNPs in 30kbp windows across the genome and tested for association 

using SKAT-O (222).  The top association in this genome-wide scan was a locus at 19q13.41 

(Figure 6 and Table 7, chr19:53430000-53459999, P = 4.5x10-6). Although not significantly 

associated following Bonferroni multiple-testing correction (88,431 tests, P ≤ 5.4x10-7), this locus 

is suggestively associated (P ≤ 1.1x10-5).  Fifty-six percent of individuals in this study harbored at 

least one rare variant in a total of 79 different loci within this region (Appendix A, Table 20). Rare 
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variants were preferentially harbored by individuals with susceptibility to emphysema (Appendix 

A, Table 20). The 10 most significantly associated regions can be seen in Table 7, and a QQ plot 

can be seen in Figure 7.    

 

 

Figure 6. Manhattan plot showing results of 30kbp sliding window association test. Manhattan plot of 30kbp 

regions spanning the genome.  Each dot represents a single 30kbp region and the strength of its association with 

emphysema is plotted on the y-axis. The top association at 19q31 is labeled. Other top associations are reported in 

Table 7. The top threshold represents genome-wide significant association, and the bottom threshold represents 

genome-wide suggestive association following Bonferroni correction. 
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Table 7. Top associations with emphysema in 30kbp sliding window association test 

Chr Start End Fraction 

with 

Rare* 

Unique 

Rare# 

Unique 

Singletons

^ 

P-value Gene in 

Region 

19 53430000 53459999 0.55814 79 62 4.51E-06 ZNF816, 

ZNF321P 

12 96300000 96329999 0.37209 33 18 1.84E-05 CCDC38 

19 33810000 33839999 0.36434 43 34 1.97E-05 - 

8 42060000 42089999 0.45736 67 48 3.74E-05 PLAT 

8 19560000 19589999 0.62791 77 51 4.56E-05 CSGALNACT1 

11 104400000 10442999

9 

0.51938 66 47 7.26E-05 - 

4 136500000 13652999

9 

0.57364 62 44 7.88E-05 - 

7 45630000 45659999 0.51163 66 41 8.28E-05 ADCY1 

4 128040000 12806999

9 

0.44961 50 40 8.30E-05 - 

1 151350000 15137999

9 

0.3876 44 32 8.53E-05 PSMB4, 

POGZ 

* Fraction of entire population (129 individuals) that harbors at least one rare variant, # Number 

of unique variants that passed filtering in this region, ^Number of unique variants that only 

occurred once in either sub-cohort of this population 
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Figure 7. Quantile-quantile plot showing P-values from 30kbp region test. QQ plot of P-values resulting from 

tests for association of 30kbp regions using SKAT-O.  

2.3.5 Gene-based and non-synonymous rare variant association tests 

We tested for association of all rare variation with emphysema in coding and non-coding regions 

of genic regions (introns, exons, and 1kb flanking region in each direction) across the exome. The 

most significant association in this test was the gene ZNF816 (P= 7.2x10-6), located at 19q13 and 

partially covered by the top association in the region-based test (Figure 8, Appendix A, Table 20). 

The 129 individuals in the population harbored 120 different rare variants in this gene (Table 8). 

As in the region covered in the gene-based test, rare variation was more abundant in the susceptible 

population (Appendix A, Table 20). The majority of the rare variation located in this gene was 
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intronic, although there were six non-synonymous variants that also occurred preferentially in the 

susceptible population (Appendix A, Table 20).  A QQ plot for this test can be seen in Figure 9.  

Figure 8. Manhattan plot showing results of gene-based association test. Manhattan plot of gene-based test for 

association with emphysema including intronic, exonic and 1kbp flanking regions for all protein-coding genes using 

SKAT-O.  Each dot represents a single gene and the strength of its association with emphysema is plotted on the y-

axis. The top association with ZNF816 is labeled. Other top associations are reported in Table 8. The top threshold 

represents genome-wide significant association, and the bottom threshold represents genome-wide suggestive 

association following Bonferroni correction. 
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Table 8. Top associations with emphysema in gene-based association test 

Gene Chr Start End Fraction 

Rare* 

Unique 

Rare# 

Unique 

Singletons^ 

P-value 

ZNF816 19 53429414 53466404 0.60465 120 96 4.52E-06 

BCAT2 19 49298537 49314089 0.17829 20 15 0.000245 

TMPRSS2 21 42835502 42903906 0.84496 181 126 0.000263 

DAGLA 11 61447355 61515326 0.74419 124 83 0.00042 

COL5A3 19 10070204 10121507 0.71318 103 67 0.00045 

BBIP1 10 112661005 112680031 0.30233 25 16 0.000561 

ATP6V1B2 8 20054059 20084860 0.55039 63 36 0.000581 

KRTAP24 21 31652835 31655692 0.062016 5 3 0.000665 

CDC34 19 531546 543025 0.37209 39 20 0.000711 

C11orf53 11 111125842 111157151 0.72093 56 25 0.000759 

* Fraction of entire population (129 individuals) that harbors at least one rare variant, # Number 

of unique variants that passed filtering in this region, ^Number of unique variants that only 

occurred once in either sub-cohort of this population 

 

Figure 9. Quantile-quantile plot showing P-values resulting from gene-based association test. QQ plot of P-

values resulting from tests for association of gene-based regions using SKAT-O. Deflation in the test statistic can be 

observed for results with low P-values. 



 51 

 

Finally, we tested for association using a group-wise test for non-synonymous coding 

variants grouped by gene across the exome (223). The most significant association was with the 

gene PTPRO located on chromosome 12 (P = 4.0x10-5). We identified four separate rare, 

heterozygous, non-synonymous substitutions in the gene, with the alternate allele of each 

substitution occurring only in the susceptible population. One of these substitutions, rs61754411, 

occurred in 8 individuals in the susceptible group but not at all in the resistant group and was 

predicted to be deleterious by both PolyPhen and Sift (Table 9).  We genotyped this SNP in all 

686 NHW individuals in the Pittsburgh SCCOR cohort and found that it was significantly 

associated with F-950 (P = 0.035) and % Predicted FEV1 (P = 0.009) under a dominant model 

(Figure 10B and 10C, Table 9). Interestingly, we did not identify any individuals homozygous 

with the alternate allele, nor could we find any individual with this genotype in reported 

populations.  
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Figure 10. Manhattan plot showing results of association with non-synonymous variants grouped by gene and 

validation in Pittsburgh SCCOR cohort. Non-synonymous mutations in PTPRO are associated with emphysema. 

A) Manhattan plot of exome-wide test taking into consideration only non-synonymous variation. The top association 

is the gene PTPRO on chromosome 12. The top threshold represents genome-wide significant association, and the 

bottom threshold represents genome-wide suggestive association following Bonferroni correction. The most prevalent 

non-synonymous SNP in this gene was genotyped in the entire SCCOR cohort, where it was significantly associated 

with B) % Predicted FEV1 and C) F-950. 
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Table 9. Top associations with emphysema for non-synonymous variants grouped by gene 

 

Gene Chr Start End 

Fraction of 

Population 

with Rare* 

Unique 

Rare 

NS# 

Unique NS 

Singletons^ 
P-value 

PTPRO 12 15654574 15656846 0.085271 4 2 1.57E-05 

IL6ST 5 55237014 55272085 0.054264 4 3 5.26E-04 

ALOX15B 17 7942928 7950394 0.062016 6 3 5.75E-04 

TMEM143 19 48845944 48866796 0.062016 4 1 6.65E-04 

ADAD2 16 84227605 84230332 0.069767 6 4 7.17E-04 

CARD6 5 40841579 40860097 0.14729 7 2 7.32E-04 

TFPI 2 188331704 188348943 0.085271 2 0 7.47E-04 

EPB49 8 21917015 21929924 0.069767 5 2 9.18E-04 

FLRT3 20 14306868 14307107 0.062016 4 3 1.04E-03 

ETV7 6 36336764 36343720 0.14729 8 5 1.10E-03 

* Fraction of entire population (129 individuals) that harbors at least one rare variant, # Number 

of unique variants that passed filtering in this region, ^Number of unique variants that only 

occurred once in either sub-cohort of this population 

 

 

 
Table 10. Measurement of rs61754411 genotype in the Pittsburgh SCCOR cohort 

rs61754411 

Genotype 

n Median 

Age [IQR] 

Females 

(%)  

Smoking History 

(Pack Years) 

[IQR] 

F-950 [IQR] FEV1 (percent 

predicted) 

[IQR] 

CC 652 64 [60-69] 46.6 54.8 [30 -60] 0.076 [0.004-

0.096] 

0.692 [0.403-

0.931] 

CG 34 64 [59-66] 41.2 56.1 [35-70] 0.126 [0.010-

0.216] 

0.542 [0.232-

0.828] 

P-value*  0.217 0.539 0.843 0.035 0.009 

*Two-tailed t-test 
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Figure 11. Quantile-quantile plot showing P-values from group-wise testing of non-synonymous variants by 

gene. QQ plot of P-values resulting from tests for association of gene-based regions collapsing non-synonymous 

variation by gene across the exome using SKAT-O.  

2.4 DISCUSSION 

We hypothesized that by selecting two populations of heavy smokers with extreme phenotypes of 

emphysema we would be able to identify associations with disease using group-wise rare variant 

tests. The selection of individuals with extreme traits has been shown to enrich for causal variants 

and this approach has been used successfully to identify candidate genes in sequencing studies 

(209, 224). Our cohort included two groups of heavy smokers that had extremely different 

outcomes in terms of both obstruction and emphysema (Figure 4, Table 5).  
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A primary goal of this study was to test for association of non-genic variants with 

emphysema. However, our knowledge of the effect of variants in non-coding regions remains 

limited, making it extremely difficult to prioritize variants as is possible in coding regions (225). 

Based on this, we chose to test for association with all filtered rare variants in standardized 

windows across the genome. Using physical distance rather than genetic distance to define the 

windows tested with SKAT-O was a simple approach to identify clusters of rare variation between 

two populations. Although more complex approaches have been described, SKAT remains an ideal 

approach when it is unknown whether variants in a region will have similar or different directions 

of effect (226).   

We identified a single suggestive association using this approach, located on 19q13.41. 

This region is enriched for rare variants within the gene ZNF816 in the emphysema susceptible 

sub-cohort. Notably, when we tested for association of all rare variation with emphysema across 

gene-based regions, ZNF816 was also our most significant result (P= 7.2x10-6, Table 8).  Based 

on its sequence, this gene, which encodes zinc finger protein 816 (ZNF816), contains 15 zinc 

finger domains and is likely to be a DNA binding protein, but otherwise its function remains 

undescribed. It is interesting to note however, that early linkage studies of COPD identified linkage 

between 19q and pre-bronchodilator FEV1 in smokers (93, 99).  

Although falling below conservative Bonferroni multiple testing correction thresholds, a 

number of other top associations from our whole-genome scan are of interest. The second most 

significant association in this test included intronic and exonic variants of the coiled-coil domain 

containing 38 (CCDC38) gene (P=1.84x10-5). This gene was identified as a candidate in the first 

WES study of heavy smokers, looking at resistance to airflow obstruction (180). In that study, the 

authors identified the non-synonymous SNP rs10859974 as nominally associated with their 
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phenotype. This SNP was filtered due to MAF in our study suggesting this association is 

independent of that finding. A common variant association study also identified an intronic variant 

associated with lung function that is located within our associated region (121). Although the 

function of CCDC38, is not well-understood, it has been suggested to play a role in ciliary function 

(180).   

 A region on 8p11.21 was the fourth highest association with emphysema (P = 3.74x10-5) 

and contains the regulatory region for the gene PLAT, which encodes the protein tissue 

plasminogen activator (PLAT, also known as t-PA). PLAT is a serine protease that catalyzes the 

cleavage of plasminogen to plasmin, activating the fibrinolytic system as well as activating matrix 

metalloproteinases that have been implicated in lung destruction leading to emphysema (section 

1.1.2) (27, 227). The plasminogen system is altered in COPD, with levels of plasminogen and 

soluble urokinase plasminogen activator receptor (SPLAUR, also known as suPAR) correlating 

with both stable COPD and acute exacerbations of disease (228, 229).  Serine protease inhibitor 

E1 (SERPINE1, also known as PAI), the primary inhibitor of plasminogen activation has also been 

shown to be increased in smoking (230).  

A number of top regions in this study that do not contain any coding material are in close 

proximity to previously identified common variant associations with a phenotype of COPD. One 

of these is at 11q22.3, 1.6Mbp from an association with severe COPD between the genes MMP3 

and MMP12 (115). Another is located 8.9Mbp from a locus on 4q31 near the gene HHIP that has 

repeatedly been shown to be associated with phenotypes of pulmonary function and COPD, 

including FEV1 in smokers (115).  

While WGS allows interrogation of the non-coding regions of the genome, it also offers 

more efficient coverage of exonic SNPs than WES (223).  By testing for association with 
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emphysema in a gene-based test collapsing only non-synonymous variants, we identified a 

suggestive association with the gene PTPRO on 12p12.3. We replicated the association between 

the most prevalent rare non-synonymous SNP in this gene (rs61754411) and emphysema and 

obstruction in a larger cohort. Similar to the top association from our region-based test, the location 

of this gene is notable as it is located less than 1Mbp from the short tandem repeat D12S1715, 

which was shown to demonstrate the most significant linkage with moderate airflow obstruction 

in smokers as well as FEV1 in smokers in two early linkage studies of COPD (93, 94). While 

SOX5 was suggested as a candidate gene in this region, it is relatively distant from the top LOD 

score in that study (100). In this study, only individuals susceptible to emphysema harbored any 

of the four deleterious substitutions in this gene, which encodes the protein tyrosine phosphatase, 

receptor type O (PTPRO). PTPRO, a tumor suppressor, is regulated by methylation in lung and 

liver tumors, with increased methylation leading to decreased growth (231, 232).  Prenatal tobacco 

smoke exposure leads to a significant increase in methylation of PTPRO, suggesting that there 

may be a functional role for the protein following cigarette smoke exposure, perhaps inhibiting 

tissue repair (233).  

Hence, we have identified an association of rare variation with a gene previously associated 

with protection from heavy smoking in an exome sequencing study, two associated regions at loci 

previously shown to be in linkage with phenotypes of COPD, and two regions near associations 

of common variation with numerous phenotypes of COPD. Replication in larger cohorts will be 

necessary to provide stronger evidence for each of these loci, but the implications are intriguing. 

It is likely that coding regions can be affected by both common and rare variation, as seen with 

CCDC38. However, regions that are in relatively close proximity but too distant to be plausible 

regulatory regions for the same genes, such as the association in this study identified near 4q31, 
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may represent larger ‘disease susceptibility regions’ in which multiple nearby loci may contribute 

to COPD susceptibility independently, as has been seen in other complex diseases (234).  

Our study has limitations. As the first whole genome sequencing study of emphysema, our 

sample sizes were limited - even with the extremes of a well-defined phenotype, we were unable 

to demonstrate significant association at the genome-wide level. Our filtering approach employed 

an arbitrary MAF, which is more inclusive than has been used in some sequencing studies but still 

lower than what is measured in a common variant study where markers are specifically chosen for 

MAF > 0.05.  We did this in part because we relied on allele frequencies from relatively small 

NHW populations from public databases as a background.  Finally, the gene-based tests reported 

here do not correct for gene size and thus favor the detection of larger genes.  

2.5 CONCLUSIONS 

This is the first study in which individuals with a phenotype of COPD were whole genome 

sequenced and the first investigation of the contribution of genome-wide rare variation to a 

phenotype of COPD. Suggestive associations of emphysema with the genes ZNF816 and PTPRO 

will require further study to determine their biological relevance in this disease. The replication of 

an association with the gene CCDC38 using an alternate rare variant analysis approach gives 

further evidence that rare variation in this gene contributes to emphysema susceptibility. The 

suggestive or nominal association of numerous loci with previous human genetic evidence for 

linkage or association with COPD supports the hypothesis that rare variation contributes to this 

disease in a complex manner. However, as seen in recent exome studies, the effect is likely to be 
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due to contributions from multiple genes, and potentially as seen here, from multiple genes in 

nearby ‘disease susceptibility regions.’  
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3.0  INTEGRATED MURINE AND HUMAN GENOME-WIDE SCANS OF 

SUSCEPTIBILITY TO CIGARETTE SMOKE-INDUCED EMPHYSEMA  

3.1 INTRODUCTION 

One hypothesis to explain the ‘missing heritability’ of chronic diseases is that common variants 

that do not reach genome-wide significance contribute to disease risk. A number of approaches to 

identify this type of variant have been proposed, and many of them leverage additional genetic 

evidence from other sources. For example, Andreassen et al used suspected pleiotropy in two 

psychiatric disorders to identify previously unrecognized loci that have overlapping genetic 

mechanisms (235).  An alternative to using additional human studies to generate this supportive 

information is to compare genetic studies in mice to human genetic results. Inbred mice are readily 

available, their short life span allows studies of diseases that progress for decades in humans to 

occur in significantly shorter time frames, and their environments can be carefully controlled. 

These advantages have frequently been employed in molecular studies, and many mechanisms 

delineated in mouse models have also been found to play a role in the heritability of human disease 

(236).  

Like human CVAS, murine CVAS test the statistical probability of an association given 

each individual’s genotype and phenotype, in this case using inbred strains as individuals. Using 

the same technologies that have revolutionized human studies such as microarray genotyping and 

NGS, since inbred mice are homozygous at all loci it is possible to genotype one mouse and test 

for association with quantitative phenotypes in silico. This approach was first demonstrated by 
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Pletcher et al. in a study of high-density lipoprotein phenotypes with 10,990 SNPs in 48 inbred 

mouse strains to replicate previous findings from human linkage analyses (237). Since then, 

genotyping of inbred strains has improved, with whole genome sequences now available for 17 

strains of mice, and dense genotyping (approximately 100,000 SNPs, with imputation up to 4 

million SNPs) for 94 strains of mice (238).  

One of the major concerns with the classic mouse GWAS has been its lack of power to 

differentiate between spurious associations and positive results (239). These false positives were 

found to be largely attributable to the complex population structure of the highly related strains. 

Although linear mixed model corrections (EMMA, EMMAX, GEMMA) or principal component 

analysis (PCA) can be used to take account of this structure, these corrections often reduce the 

power of a study (221, 239-241). However, coupled with other techniques like linkage mapping 

or comparison to genetic studies in humans, mouse GWAS do reveal genetic contributors to the 

disease they model (242, 243). Since proposed alternatives such as the Mouse Hybrid Diversity 

Panel often include phenotyping of over 100 strains of mice, for the long periods of exposure that 

must be conducted to model chronic disease, mouse GWAS using inbred strains still offer 

significant potential for discoveries in diseases like COPD if their results are supported in 

additional studies.  

In this strain survey, we chose to use a mouse model of pulmonary emphysema in which 

environmental exposure can be tightly controlled and the extent of emphysema can be directly 

measured in the lung. This model accounts for difficulties with studying emphysema in humans, 

notably accurate quantification of the extent of emphysema, accurately accounting for factors such 

as body size and degree of inflation, and heterogeneous environmental effects. Mice develop 

emphysema following chronic cigarette smoke exposure and this model has been successfully used 



 62 

 

to elucidate the mechanisms of human COPD (27, 244). While variable susceptibility to cigarette 

smoke-induced emphysema has been reported in five inbred strains of mice, the susceptibility of 

other commonly used inbred strains remains undescribed as do genetic contributions to that 

variability (245). To date, no genome-wide assessments using cross-strain comparisons of mouse 

models of COPD have been conducted, although they have effectively identified candidate genes 

in other lung diseases, including asthma and pulmonary hypertension (243, 246).  

In this study we confirm that mice have variable susceptibility to cigarette smoke-induced 

emphysema as measured by alveolar chord length (CL) and show that this trait is continuous when 

measured in 34 inbred strains. By testing for association of this quantitative trait across the genome 

and integrating our findings with a human genome-wide scan of COPD, we identify a candidate 

gene for future study.  

3.2 METHODS 

3.2.1 Animal experiments 

All animal experiments were performed in accordance with the Institutional Animal Care and Use 

Committee (IACUC) of the University Of Pittsburgh School Of Medicine. Mice were housed in a 

pathogen-free barrier facility that maintains a 12-hour light/dark cycle in Plexiglas cages (one to 

four mice per cage) with free access to autoclaved water and irradiated pellet food. Animal health, 

weight, and overall behavior were monitored throughout the experiments. 
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Female mice of 34 inbred strains (129S1/SvImJ, A/J, AKR/J, BALB/cByJ, BALB/cJ, 

BPN/3J, BTBRT+tf/J, BUB/BnJ, C3H/HeJ,C57BL/10J, C57BL/6J, C57BLKS/J, C57BR/cdJ, 

C57L/J, CBA/J, CE/J, DBA/1J, DBA/2J, FVB/NJ, I/LnJ, KK/HlJ, LG/J, LP/J, MRL/MpJ, 

NOD/ShiLtJ, NON/ShiLtJ, NZO/HlLtJ, NZW/LacJ, P/J, PL/J, RIIIS/J, SJL/J, SM/J, SWR/J) were 

exposed to either room air (NS, n=4-7/strain) or cigarette smoke (SM, 4 cigarettes/day, 5 

days/week for 6 months, n=3-7/strain) as previously described (12). Kentucky Reference 

Cigarettes (1R5F) were obtained from the Tobacco and Health Research Institute of the University 

of Kentucky (Lexington, KY). Following smoke exposure, mice were sacrificed, tracheostomized, 

and lungs were removed and inflated with 10% buffered formalin to a constant pressure of 25 cm 

water for 10 minutes. Lungs were fixed for 24 hours in formalin before embedding in paraffin. 

Serial midsagittal sections were obtained and stained with modified Gill’s stain. Using Scion 

Image software (Version 4.0.2, Scion Corp., Frederick, MD), mean alveolar chord length (CL) 

was calculated on 10 randomly selected 200X fields per slide. Airway and vascular structures were 

masked from the analysis and the images were manually thresholded. CL was determined in both 

a horizontal and vertical plane, allowing for the calculation of alveolar airspace areas. Finally, the 

quantitative phenotype we used in genetic association testing (SMCL) was determined by the 

following equation: log(SM-NS). This log-transformed value was used in order to ensure 

phenotype normality.   
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Figure 12. Setup for exposing mice to cigarette smoke.  

3.2.2 Genetic association testing 

Testing for association between SMCL and 4 million SNPs published by the NIEHS was 

performed using the genome-wide efficient mixed model algorithm (GEMMA) (238, 241). These 

SNPs were aligned to NCBI37 and all genomic locations reported in this study reflect that unless 

otherwise noted. To account for non-variant sites and sites in complete LD between all 34 strains, 
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simpleM was employed to determine the effective number of tests which was then used to calculate 

Bonferroni corrected thresholds in this study (247, 248).   

3.2.3 Identification of genomic regions enriched for nominal associations 

A candidate region was defined as all SNPs yielding P < 10-3 (nominal associations) that were 

within 1Mbp of another nominal SNP. The number of nominal associations in each region was 

recorded and 1Mbp was added in each direction to the location of the boundary SNPs in order to 

account for the significant linkage disequilibrium that can occur between inbred mouse strains 

(249). A hypergeometric enrichment test implemented in R was then used to identify regions 

enriched for nominal associations compared to the average number of nominal associations in an 

average region size.  

3.2.4 Identification of nominal associations in human GWAS data 

Regions in the human genome that are homologous to candidate regions identified in the mouse 

strain survey were identified using mouse-human homology maps, publically available from the 

NCBI (250).  Human homologs to all genes in the candidate regions were identified. Human 

homologous regions were identified as continuous blocks of these genes and all separating non-

coding regions. Manhattan plots of searched regions were generated using LocusZoom (Version 

1.1, http://locuszoom.sph.umich.edu/locuszoom/) (251). 

http://locuszoom.sph.umich.edu/locuszoom/
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3.2.5 Searching for nominal SNPs in meta-analysis of human COPD 

Homologous regions in the human genome were searched for nominal associations (P < 10-4) in a 

previously published meta-analysis of individuals with moderate to severe COPD from the 

COPDGene, ECLIPSE, NETT/NAS and Norway GenKOLS studies (115). Nominal associations 

were recorded and the closest genes to these associations were identified as genes of interest.  

3.2.6 Identification of candidate genes 

All variants resulting in a change to the amino acid sequence of the encoded protein (missense 

variants, stop gained variants, and frameshift variants) with a predicted deleterious SIFT score 

(SIFT < 0.05) were identified in Ensembl (dbSNP142) in each of the mouse homologs of the genes 

of interest in this study. The genotype of each of these non-synonymous variants in CBA/J and 

A/J mice was downloaded from Ensembl (GRCm38.p4) and the genotype of any variant which 

differed between these two extreme strains was downloaded for all strains in this study if available.  

3.2.7 mRNA expression 

Lung tissue was homogenized in Trizol solution and total RNA was isolated according to the 

manufacturer’s instructions (Thermo Fisher, Grand Island, NY). RNA was quantified and used for 

reverse transcription with reverse transcriptase (Applied Biosystems, Grand Island, NY). Total 

cDNA was used for real time PCR using primer and probe sets specific for the target genes 
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(Applied Biosystems, Grand Island, NY). Relative fold change was calculated by comparing 

abundance normalized to GAPDH between samples with the ΔΔCT method. 

3.2.8 Statistics  

Chord lengths are reported as mean ± standard deviation. Error bars in figures represent SEM 

unless otherwise noted. P-values represent between-group comparisons using Welch’s two sample 

t-test unless otherwise noted. Bonferroni corrected genome-wide thresholds were calculated as 

alpha/effective number of tests determined by simpleM, using an alpha of 0.05 for genome-wide 

significance and 1 for genome-wide suggestive significance. Statistics were calculated using R 

(http://cran.r-project.org/).  

3.3 RESULTS: 

3.3.1 Susceptibility to cigarette smoke-induced emphysema varies continuously in inbred 

mouse strains 

We measured CL in 34 inbred mouse strains after exposure to either six months of cigarette smoke 

exposure (SM) or room air (NS) (Table 11, Figure 13). There was significant variability in 

response to SM compared to NS (Table 11, Figure 14). This trait was continuous across 34 inbred 

strains with CBA/J mice having essentially no response to cigarette smoke (Δ CL -0.3 +/- 1.2 μm) 

and A/J mice being most susceptible to cigarette smoke (Δ CL 7.0 +/- 2.2 μm) (Figure 13, Table 

11). The mean change in chord length across all strains was 3.7 +/- 1.6 μm, and mice of the 
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129S1/SvImJ strain most closely reflected this change. While the majority of the strains 

demonstrated a significant change in CL following cigarette smoke exposure, seven strains did not 

(BPN/3J, CBA/J, ILn/J, KK/HlJ, NOD/ShiLtJ, NZO/HILtJ, and RIIIS/J, Table 11).  
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Figure 13. Alveolar chord lengths of 34 inbred strains of mice exposed to cigarette smoke. Alveolar chord length 

of 34 inbred strains of mice exposed to either room air (NS) or cigarette smoke (SM) for six months.  
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Table 11. Alveolar chord length in 34 inbred strains of mice exposed to cigarette smoke 

 NS  SM  P-value* Δ CL# 

 n Mean CL SEM n Mean CL  SEM   

129S1/SvImJ 4 28.55 0.48 5 32.18 0.67 4.58E-02 3.63 

A/J 5 33.78 0.74 6 40.77 2.11 1.83E-02 6.99 

AKR/J 7 27.98 0.31 7 32.91 0.41 3.82E-04 4.93 

BALB/cByJ 5 30.79 0.77 6 35.93 0.92 2.12E-04 5.14 

BALB/cJ 5 30.16 0.79 6 32.64 1.15 4.10E-03 2.48 

BPN/3J 4 27.49 1.00 5 30.62 1.07 6.13E-02 3.13 

BTBRT+tf/J 5 31.00 0.83 6 35.59 0.57 9.79E-05 4.59 

BUB/BnJ 4 30.79 0.91 5 33.01 0.73 3.28E-02 2.22 

C3H/HeJ 5 40.49 0.41 6 46.76 0.48 1.95E-03 6.27 

C57BL/10J 5 28.27 0.49 6 31.50 0.50 1.34E-03 3.23 

C57BL/6J 5 29.67 0.79 6 36.02 0.90 8.21E-07 6.35 

C57BLKS/J 5 34.05 0.32 6 38.57 0.85 1.27E-03 4.52 

C57BR/cdJ 5 29.74 0.32 6 32.02 0.41 5.64E-03 2.27 

C57L/J 5 32.29 0.56 6 37.60 0.25 2.35E-06 5.30 

CBA/J 4 30.52 0.48 4 30.27 0.38 8.39E-01 -0.25 

CE/J 5 30.67 0.80 6 32.94 0.60 4.09E-02 2.26 

DBA/1J 5 28.75 1.04 6 31.92 0.53 5.23E-04 3.17 

DBA/2J 5 28.92 0.59 6 33.31 0.44 5.96E-03 4.38 

FVB/NJ 5 28.73 0.69 6 33.77 0.28 2.63E-03 5.04 

I/LnJ 5 33.12 1.28 6 34.65 0.78 1.13E-01 1.53 

KK/HlJ 4 31.19 1.17 3 34.10 0.90 1.22E-01 2.92 

LG/J 5 33.92 1.24 5 36.64 0.68 2.25E-02 2.72 

LP/J 5 30.72 0.39 6 35.03 0.33 1.52E-02 4.31 

MRL/MpJ 5 31.19 0.36 4 34.59 0.89 3.91E-03 3.39 

NOD/ShiLtJ 4 27.80 0.36 5 30.93 1.09 6.80E-02 3.13 

NON/ShiLtJ 5 40.03 0.59 6 44.40 0.62 1.49E-02 4.37 

NZO/HILtJ 5 32.88 0.57 6 36.31 0.55 5.97E-02 3.43 

NZW/LacJ 5 30.79 0.68 6 32.57 1.58 9.09E-03 1.78 

P/J 5 29.23 0.76 6 34.85 0.59 1.41E-02 5.62 

PL/J 5 30.02 1.13 6 32.96 0.93 6.19E-04 2.93 

RIIIS/J 5 27.82 0.65 6 30.07 1.34 1.04E-01 2.25 

SJL/J 5 29.50 0.31 6 34.50 0.51 6.58E-04 4.99 

SM/J 5 32.11 0.55 4 34.67 0.60 1.27E-02 2.56 

SWR/J 4 31.48 1.18 5 36.68 0.84 2.02E-03 5.20 

* P-values are the result of two-tailed t-tests between SM and NS groups by strain, # Difference 

between mean SM CL and mean NS CL  
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Figure 14. Response to cigarette smoke exposure in 34 inbred strains of mice. Inbred strains of mice have variable 

susceptibility to cigarette smoke-induced emphysema. Absolute difference in chord length between mice exposed to 

cigarette smoke and those exposed to room air with SEM. Solid line represents the mean difference in all strains and 

the dotted lines represent the mean +/- SD. 

3.3.2 Genetic contribution to cigarette smoke-induced emphysema is complex in the 

mouse 

We tested for association of SMCL with known genotypes of 34 inbred strains of mice using 

GEMMA (241). No association with a single variant reached genome-wide (P < 6.3x10-7) or 

genome-wide suggestive significance (P < 1. 3x10-5), thresholds determined by Bonferroni 

correction of the 79,492 effective tests determined by simpleM (247). The most significant 
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association was with rs46114044 located at chr16:54194946 (P = 7.21x10-5, Table 12, Figure 15). 

The top fifty most significant associations can be seen in Table 12.  

 

Table 12. Top 50 most significant SNPs following testing for association with SMCL 

SNP Chr BP P-value 

NES15713391 16 57704187 7.21E-05 

NES15713394 16 57704330 7.21E-05 

NES15713400 16 57704563 7.21E-05 

NES15713403 16 57704669 7.21E-05 

NES15713405 16 57704898 7.21E-05 

NES16507860 16 70196382 2.47E-04 

NES16507828 16 70199737 2.47E-04 

NES16507800 16 70202182 2.47E-04 

NES16507715 16 70207149 2.47E-04 

NES16461519 16 58415266 2.72E-04 

NES16461432 16 58422830 2.72E-04 

NES16461435 16 58423286 2.72E-04 

NES16461436 16 58423335 2.72E-04 

NES16461443 16 58423860 2.72E-04 

NES16461447 16 58424113 2.72E-04 

NES16461450 16 58424245 2.72E-04 

NES16461451 16 58424368 2.72E-04 

NES16461452 16 58424487 2.72E-04 

NES16461454 16 58424564 2.72E-04 

NES16461455 16 58424578 2.72E-04 

NES16461456 16 58425007 2.72E-04 

NES16461404 16 58425793 2.72E-04 

NES16461372 16 58431523 2.72E-04 

NES16461287 16 58437863 2.72E-04 

NES16461272 16 58439253 2.72E-04 

NES16461277 16 58439830 2.72E-04 

NES16461278 16 58439865 2.72E-04 

NES16461259 16 58440085 2.72E-04 

NES16461261 16 58440161 2.72E-04 

NES16461256 16 58441448 2.72E-04 

NES16461237 16 58442890 2.72E-04 

NES16461239 16 58443143 2.72E-04 

NES16461247 16 58443682 2.72E-04 

NES16461219 16 58444119 2.72E-04 



 73 

 

NES16461202 16 58446668 2.72E-04 

NES16461203 16 58446800 2.72E-04 

NES16461166 16 58447932 2.72E-04 

NES16461186 16 58448798 2.72E-04 

NES16461133 16 58449357 2.72E-04 

NES16461135 16 58449410 2.72E-04 

NES16461137 16 58449471 2.72E-04 

NES16461139 16 58449543 2.72E-04 

NES16461141 16 58449642 2.72E-04 

NES16461145 16 58450042 2.72E-04 

NES16461100 16 58450973 2.72E-04 

NES16461014 16 58456238 2.72E-04 

NES16461019 16 58456527 2.72E-04 

NES16461020 16 58456665 2.72E-04 

NES16461031 16 58457356 2.72E-04 

NES16460911 16 58461084 2.72E-04 
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Figure 15. Manhattan plot showing association with SMCL. Manhattan plot of associations with SMCL. Each dot 

represents a single nucleotide polymorphism (SNP) with its genomic location represented on the x-axis and the 

negative log of P-values on the y-axis. The top threshold represents genome-wide significance following Bonferroni 

correction of the effective number of tests, the middle threshold represents suggestive significance and the bottom 

threshold is drawn at P=10-3 to demonstrate nominally associated SNPs were used to identify candidate regions. 
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In order to identify loci that may be of further interest despite falling below strict multiple 

testing correction thresholds, we identified regions of variation that had a statistically improbable 

number of associations below a nominal threshold of significance (P<=0.001) compared to random 

regions. Using this approach we identified two candidate regions, chr16:54194946-58510508 

(region-based P = 0.03) and chr9:107615932-111617795 (region-based P=0.005) (Table 13). 

Importantly, the region on chromosome 16 also contains the most significantly associated SNP in 

this study, indicating a region with nominal and robust association. 

 

Table 13. Candidate regions and region-associated P-values 

Chr Start End Lowest P-value 

in Region 

Number of 

nominal SNPs 

Region-associated 

P-value 

5 144132865 144522414 5.90E-04 13 1 

6 147568652 147572360 3.37E-04 2 1 

7 146250946 146777905 6.08E-04 208 0.5943 

9 3878327 6240922 6.08E-04 683 0.1385 

9 29543038 29543038 7.56E-04 1 1 

9 32890118 33020069 6.08E-04 2 1 

9 107615932 111617795 5.32E-04 1134 0.0054 

11 19232959 20754394 5.10E-04 121 0.8403 

12 102164703 102164703 8.35E-04 1 1 

16 54194946 58510508 7.21E-05 903 0.0301 

16 70196382 70207149 2.47E-04 4 1 

16 84379042 84426219 4.55E-04 9 1 

 

3.3.3 Identification of candidate associations from human GWAS 

We mapped our candidate regions from the mouse to homologous regions in the human genome 

using a gene-based approach. Both of these regions mapped to human chromosome 3 (Table 14). 

We then searched the results of a previously conducted meta-analysis of COPD GWAS in these 
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regions for any association yielding P<1x10-4 (115). Only one association met this threshold, 

located at 3q12.2 (Figure 16). The most significantly associated variant at this locus is 

rs62280585 (P = 7.72x10-5) which is located between the genes IMPG2 and ABI3BP.  

 

Table 14. Genomic location of homologous candidate regions in the mouse and human genomes 

Human Mouse 

Chr Start End Chr Start End 

16 54194946 58510508 3 96533425 102198685 

9 107615932 111617795 3 35683849 50400230 
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Figure 16. Manhattan plot showing association at human syntenic candidate region. Manhattan plot showing 

location on chromosome 3 and gene annotations on the x-axis and negative log of P-values on the y-axis. Linkage 

disequilibrium with the most significant SNP as determined from the CEU cohort of 1000 Genomes is illustrated by 

different colored SNPs. Plot created with LocusZoom (Version 1.1).  

3.3.4 Abi3bp contains non-synonymous mutations and is differentially expressed between 

extreme strains 

We attempted to identify coding non-synonymous SNPs (cnSNPs) in the murine homologs of 

ABI3BP and IMPG2, in order to identify potentially causal variants.  We compared the most 

susceptible strain, A/J, to the most resistant strain, CBA/J, and determined whether either strain 
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held the alternate allele of a cnSNP predicted to be deleterious by SIFT. Two non-synonymous 

mutations in Abi3bp, rs253717433 and rs45694439 are predicted to be deleterious to the gene and 

the alternate allele of each of these variants occurs in CBA/J mice but not in A/J mice (Figure 17). 

Of note, one of these variants, rs253717433, occurs in exon 5 of Abi3bp which is shared among 

all known transcripts. The only other strain in this study harboring this allele is SM/J which has a 

small but significant response to cigarette smoke (ΔLm = 2.6 +/- 0.7 μm, Table 11). The alternate 

allele of rs45694439 is harbored by several susceptible strains, but this mutation only occurs in 

one of the four known transcripts of this gene (Figure 17A). Neither of the extreme strains harbor 

the alternate allele of any of the non-synonymous mutations in Impg2 with predicted deleterious 

effect (Figure 17B).  
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Figure 17. Non-synonymous, deleterious variants in Abi3bp and Impg2. Non-synonymous variants predicted to be 

deleterious by SIFT in (A) Abi3bp and (B) Impg2 on mouse chromosome 3. A/J mice harbor the reference allele for 

all labeled variants, CBA/J mice harbor the alternate allele of those labeled in red. Figure generated with UCSC 

Genome Browser (252).  

 

Finally, we looked at the RNA expression of Abi3bp in the two extreme strains of this 

study to identify potential functional effects. There is a significant difference in Abi3bp gene 

expression between the extreme strains, with an approximately 100 fold greater expression in A/J 

mice that are susceptible to cigarette-smoke induced emphysema than in CBA/J mice that are 

resistant. (Figure 18).   
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Figure 18. RNA expression of Abi3bp in A/J and CBA/J mice. RNA expression of Abi3bp in A/J and CBA/J mice 

exposed to cigarette smoke (SM, n=5/strain) or room air (NS, n=5/strain). RNA was isolated from whole lungs after 

6 months of exposure to room air (NS) or cigarette smoke (SM); P-values determined by two-tailed t-test of between-

group comparisons of ΔCt (***P<0.001).  

3.4 DISCUSSION  

In this study, we measured alveolar chord length, a surrogate for airspace size and an important 

measure of emphysema, following chronic cigarette smoke-exposure in 34 inbred strains of mice. 

This study adds to our understanding of the variable susceptibility to cigarette smoke-induced 

emphysema in mice, originally described in five inbred strains (NZWLac/J, C57BL6/J, A/J, SJ/L, 

and AKR/J) (245). Through the measurement of this trait in 29 additional strains, we showed that 
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there is a continuous range of response to chronic cigarette smoke exposure, from mice that have 

essentially no response (CBA/J) to mice that are extremely susceptible (A/J). Importantly, we 

report several common inbred strains in addition to the previously reported NZWLac/J that are 

extremely resistant to cigarette smoke, demonstrating no significant change in chord length 

following chronic smoke exposure. At the same time, commonly used strains are comparatively 

more susceptible to cigarette smoke-induced emphysema than previously reported – for example, 

C57BL/6J mice are the second most susceptible strain in our study.  

While the genetic evidence offered by human GWAS results offer improved resolution and 

additional confidence to the findings of an inbred strain GWAS, the findings of murine genome-

wide scans may also inform our interpretation of the results of future human COPD GWAS. 

Significant and replicated variants in human studies explain only a small portion of the heritability 

of COPD and other complex diseases (9, 152). Although some of this ‘missing’ heritability is 

likely to be explained by rare and structural variation, it has been demonstrated that for some traits, 

a significant portion can be  explained by common variation failing to reach genome-wide 

significance due to lack of power or phenotypic heterogeneity (161). Genetic evidence at 

homologous loci in both mice and humans can thus be helpful in identifying associations that fail 

to meet significance thresholds but may still represent susceptibility loci.  

By integrating our mouse and human genome-wide scans in this way, we identified Abi3bp 

as a candidate gene in emphysema in a relatively large (4.3Mb) region originally identified in our 

murine inbred strain association study. ABI3BP (Also known as TARSH and eratin) is an 

extracellular matrix binding protein that was first identified in a yeast two-hybrid screen as binding 

to c-Abl binding protein ABI3 (253). Additional studies have shown that differential expression 

or splicing of the gene occurs in lung and thyroid cancers and specifically that reduced expression 
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of the gene increases tumor growth (254-256). ABI3BP has also been shown to play a significant 

role in mesenchymal stem cell and cardiac progenitor cell growth; cells lacking ABI3BP 

demonstrate significant increases in proliferation and differentiation (257, 258). In our study we 

showed that CBA/J mice, that are highly resistant to cigarette smoke-induced emphysema, carry 

predicted non-synonymous deleterious mutations in Abi3bp and have significantly lower 

expression of Abi3bp transcript.  It is intriguing to consider that a functional decrease of this gene, 

which controls growth and differentiation of stem and tumor cells, may also protect from cigarette 

smoke-induced emphysema potentially by promoting growth and survival of the lung epithelium.  

This study has limitations. Although we measured the response to cigarette smoke-induced 

emphysema in 34 inbred strains, we were still unable to detect any regions that met strict multiple 

testing correction thresholds. As mentioned, this is partially due to the genetic complexity of the 

trait and partially because of the power of inbred strain surveys, and a larger survey may be able 

to overcome this. Since we did not have any regions at genome-wide significance, we chose to 

only use the most significant association to identify candidate genes. While this was useful for 

identifying Abi3bp, it remains possible that other nominal associations could be of interest with 

additional supporting evidence.  

3.5 CONCLUSIONS  

We have demonstrated that susceptibility to cigarette smoke-induced emphysema is a variable trait 

in 34 inbred strains of mice. Although we were not able to identify any single variants associated 

with this phenotype at a genome-wide level, we integrated our mouse genome-wide scan with the 



 83 

 

results of a human GWAS and identified a novel candidate gene, Abi3bp. As the absence of Abi3bp 

has been shown to increase cellular growth in both tumor and stem cells, its potential role in 

pulmonary emphysema is intriguing and requires further investigation.  
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4.0  INTEGRATED MURINE AND HUMAN GENOME-WIDE SCANS OF EARLY 

LIFE PREDISPOSITION TO COPD  

4.1 INTRODUCTION 

Significant evidence supports the role of a developmental predisposition to chronic respiratory 

disease (section 1.1.2) but the genetic factors contributing to prenatal and early life predisposition 

to chronic respiratory disease have not been directly assessed. CVAS have identified numerous 

susceptibility loci for pulmonary function in the general population (128, 259). Interestingly, many 

of the loci associated with pulmonary function differ from those associated with COPD. One 

notable exception to this is a robustly replicated locus at 4q31 near the gene HHIP (115, 259). 

HHIP is a regulator of the sonic hedgehog signaling pathway which plays a known role in lung 

development, indicating that its association with both pulmonary function and COPD may be at 

least in part due to this role (see section 1.2.6) (260).  

A major reason that human genetic studies of early life contributors to COPD have not 

been conducted is the lack of well-characterized longitudinal cohorts in which pulmonary function 

is measured in early life. As an alternative to human studies, we look at alveolar size at maturity 

in a panel of inbred mice to approximate lung growth and development. We test for genetic 

association and integrate our findings with a genome-wide scan of human disease in order to 

suggest candidate genes that play a role in both development and disease. This is one of the first 

genetic studies testing for association with early life predisposition to decreased lung growth and 

the first time this trait has been systematically studied in the mouse.  
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4.2 METHODS 

4.2.1 Animal experiments 

The University of Pittsburgh Institutional Animal Care and Use Committee (IACUC) approved all 

animal studies described here. Mice were anesthetized using sodium pentobarbital and were 

sacrificed by carbon dioxide narcosis. 

Mice of 36 strains (129S1/SvImJ, A/J, AKR/J, BALB/cByJ, BALB/cJ, BPN/3J, 

BTBRT+tf/J, BUB/BnJ, C3H/HeJ, C57BL/10J, C57BL/6J, C57BLKS/J, C57BR/cdJ, C57L/J, 

CBA/J, CE/J, DBA/1J, DBA/2J, FVB/NJ, I/LnJ, KK/HlJ, LG/J, LP/J, MRL/MpJ, NOD/ShiLtJ, 

NON/ShiLtJ, NZO/HlLtJ, NZW/LacJ, P/J, PL/J, RIIIS/J, SJL/J, SM/J, SWR/J) were used in the 

following animal studies. Unless otherwise described, mice were sacrificed at 10 weeks of age.   

4.2.1.1 Morphometric analysis 

Animals used for morphometry were tracheostomized, lungs were removed and inflated with 10% 

buffered formalin to a constant pressure of 25 cm H2O for 10 minutes. Lungs were fixed for 24 

hours in formalin before embedding in paraffin. Serial midsagittal sections were obtained and 

stained with modified Gill’s stain. Using Scion Image software (Version 4.0.2, Scion Corp., 

Frederick, MD), mean alveolar chord length (CL) was calculated on 10 randomly selected 200X 

fields per slide. Airway and vascular structures were masked from the analysis and the images 

were manually thresholded. CL was determined in both a horizontal and vertical plane, allowing 

for the calculation of alveolar airspace areas. 



 86 

 

4.2.1.2 Cigarette smoke exposure:  

Kentucky Reference Cigarettes (1R5F) were obtained from the Tobacco and Health Research 

Institute of the University of Kentucky (Lexington, KY) and cigarette smoke exposure was 

performed as previously described (28). Female C3H/HeJ or NOD/ShiLtJ mice received exposures 

equivalent to a single cigarette, two weeks of smoke, or six months cigarette smoke. For single 

cigarette smoke exposure, mice were exposed to one whole cigarette at 10 weeks of age. Thirty 

minutes later, animals were sacrificed and lungs were immediately harvested and frozen in liquid 

nitrogen for downstream mRNA or protein analysis. For two week exposures, mice were exposed 

to either room air or cigarette smoke (two cigarettes a day, 5 days a week for two weeks) beginning 

at 10 weeks of age. Lungs were harvested the afternoon of the last exposure day and frozen in 

liquid nitrogen. For six month chronic cigarette smoke exposures, female mice of C3H/HeJ, 

NOD/ShiLtJ, or Il1r1-/- strains were exposed to either room air (NS) or cigarette smoke (SM, two 

cigarettes a day, 5 days/week for 6 months). Following smoke exposure, mice were sacrificed, and 

lungs were either frozen in liquid nitrogen or processed for morphometry as described above.  

4.2.1.3 Lipopolysaccharide exposure  

Ten-week-old C3H/HeJ or NOD/ShiLtJ mice were exposed to 5 ug of LPS (E. coli strain 11-B4, 

Sigma, St. Louis, MO) diluted in phosphate buffered saline (PBS) or saline alone by intratracheal 

(IT) administration. Thirty minutes after exposure, mice were sacrificed and lungs were harvested 

and immediately frozen in liquid nitrogen.  
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4.2.1.4 In utero anakinra exposure 

Ten-week-old female C3H/HeJ mice were injected with 50mg/kg anakinra in saline (Swedish 

Orphan Biovitrum AB, Stockholm, Sweden) or saline subcutaneously twice daily beginning the 

day after being paired with male C3H/HeJ mice. If determined to be pregnant, mice were treated 

through the duration of their pregnancy. Pups were allowed to age to ten weeks and morphometry 

was measured as described above. 

4.2.2 Genetic association testing  

Genome-wide scans were performed using the GEMMA algorithm and 4 million SNPs made 

publicly available by the NIEHS and published in the Mouse HapMap project (238, 241). simpleM 

was used to determine the effective number of tests using a principal components based approach 

to account for non-variant loci and loci in total linkage disequilibrium between these 36 strains. 

The effective number of tests was then used for Bonferroni multiple testing correction of the results 

(247).  

4.2.3 Identification of homologous regions in the human genome 

A candidate region was defined as all SNPs yielding P < 10-3 (nominal associations) that were 

within 1Mb (Mb = 1 million base pairs) of another nominally significant SNP. Regions in the 

human genome homologous to the candidate regions identified in the mouse strain survey were 

identified using mouse-human homology maps, publically available from the NCBI (250).  Human 
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homologs to all genes in the candidate regions were identified. Human homologous regions were 

identified as continuous blocks of these genes and separating non-coding regions.  

4.2.4 Identification of nominal SNPs in meta-analysis of human COPD  

Homologous regions in the human genome were searched for association in a previously published 

meta-analysis of individuals with moderate to severe COPD and control smokers from the 

COPDGene, ECLIPSE, NETT/NAS and Norway GenKOLS studies (115). Top associations in 

these regions were recorded and the closest genes to any association of nominal significance (P < 

10-3 ) was recorded as a candidate gene.  

4.2.5 Identification of potentially causal SNPs 

All non-synonymous variants (missense variants, stop gained variants, and frameshift variants) 

with a predicted deleterious SIFT score (SIFT < 0.05) were identified in Ensembl (Release 84, 

dbSNP142) in each of the mouse homologs of the genes of interest in this study (261, 262). 

4.2.6 mRNA Expression 

Total RNA was collected from whole lung tissue with an RNA collection kit (Qiagen, 

Germantown, MD) and stored at -80C. Using a NanoDrop spectrophotometer samples were 

quantified and cDNA was obtained by reverse transcription using an RT kit (Life Sciences, St. 

Petersburg, FL). Quantitative real-time PCR was conducted on an Applied Biosystems 3700 

system with gene-specific TaqMan primers (Life Sciences, St. Petersburg, FL). 
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4.2.7 Antibodies 

Primary antibodies against IL-1R1 (AF771, R & D Systems, Minneapolis, MN), IL-1R2 (AF563, 

R & D Systems, Minneapolis, MN), AQP5 (sc-9891, Santa Cruz Biotechnology, Santa Cruz, CA), 

SP-C (sc-7706, Santa Cruz Biotechnology, Santa Cruz, CA), and F4/80 (sc-59171, Santa Cruz 

Biotechnology, Santa Cruz, CA) were used in the following protein detection methods. CD 115 

PE (AFS98, eBioscience, San Diego, CA) and CD11c PE (N418, eBioscience, San Diego, CA) 

were used for cell selection. Secondary antibodies for immunofluorescence included species-

relevant Alexa Fluor antibodies (Thermo Fisher Scientific, Pittsburgh, PA).  

4.2.8 Isolation of perfused, lavaged lung tissue, alveolar macrophages and blood 

monocytes 

C3H/HeJ or NOD/ShiLtJ mice were sacrificed, blood was drawn from the left ventricle, and the 

systemic circulation was perfused with PBS. Following tracheostomy, bronchoalveolar lavage 

using PBS was performed and BAL fluid was obtained. Whole blood was treated with RBC lysis 

buffer (Sigma, St. Louis, MO), centrifuged and following resuspension, the pellet was used for 

blood monocyte isolation using CD115 PE as the primary antibody, anti-PE MACS beads as a 

secondary antibody (Miltenyi Biotec, Bergisch Gladbach, Germany), and MACS separation 

columns (Miltenyi Biotec, Bergisch Gladbach, Germany) according to the recommended protocol. 

BAL fluid was centrifuged, and this pellet was used with CD11c PE as a primary antibody antibody 

in the same way, for isolation of alveolar macrophages.  
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4.2.9 Immunofluorescence 

Immunofluorescence was performed as previously described. Briefly, frozen slices of whole lung 

tissue were permeabilized, blocked with bovine serum albumin, exposed to primary antibodies, 

secondary antibodies and stained with Hoechst to visualize the nucleus. Stained sections were 

imaged using a Fluoview 1000 upright confocal microscope (Olympus, Center Valley, PA). 

4.2.10 Western Blotting 

Detection of proteins by immunoblotting was performed as previously described. Briefly, whole 

lung tissue was homogenized mechanically and resuspended in RIPA buffer. Equalized protein 

samples were separated on 4-15% Tris-HCl gels, transferred to PVDF membranes and probed with 

protein-specific antibodies. HRP-conjugated antibodies targeted against the primary antibody 

were, detected with chemiluminescent substrates (Pierce) and visualized by x-ray film. 

Quantification was performed with ImageJ.  

4.3 RESULTS 

4.3.1 Alveolar chord length varies between inbred strains at 10 weeks of age  

We attempted to model structural differences resulting from development and early growth in the 

lung by looking at mean alveolar chord length, an approximation of alveolar size, at ten weeks of 

age (10wkCL) in a panel of inbred mice. In mice of 36 inbred strains (n=6-9 mice/group) we 
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observed a significant inter-strain variation of this quantitative trait (Figure 19, Table 15). 

NOD/ShiLtJ mice demonstrated the smallest 10wkCL (25.8 ± 1.5 μm) and C3H/HeJ mice 

demonstrated the largest 10wkCL (38.6 ± 3.9 μm). The mean 10wkCL for all mice in this study 

was 30.7 ± 3.4 μm. In addition to C3H/HeJ mice, NON/ShiLtJ (37.7 ± 1.5 μm) and A/J mice (35.0 

± 2.3 μm) had relatively large airspaces at ten weeks of age while DBA1/J (27.0 ± 1.6 μm), DBA2/J 

(27.3 ± 1.3 μm) and the wild-derived PWD/PhJ (27.8 ± 1.0 μm) had relatively small airspaces 

(Table 15).  

 

 

Figure 19. Chord length at 10 weeks of age for 36 inbred strains of mice. Mice of 36 inbred strains (n=6-9/strain) 

have variable chord lengths at 10 weeks of age. Solid horizontal line represents the mean difference in all strains and 

the dotted horizontal lines represent the mean of all strains ± SD. 
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Table 15. Alveolar chord length at 10 weeks of age in 36 inbred strains of mice 

Strain n Mean 10wkCL Stdev 

129S1/SvImJ 6 29.1 2.0 

A/J 8 35.0 2.3 

AKR/J 6 30.4 2.8 

BALB/cByJ 8 28.4 2.6 

BALB/cJ 6 28.3 3.0 

BPN/3J 8 29.8 1.3 

BTBRT+tf/J 6 31.4 3.0 

BUB/BnJ 6 29.5 0.5 

C3H/HeJ 6 38.6 3.9 

C57BL/10J 6 28.6 2.4 

C57BL/6J 8 29.7 2.1 

C57BLKS/J 6 31.6 2.2 

C57BR/cdJ 6 30.8 1.6 

C57L/J 6 29.5 2.1 

CBA/J 7 34.0 1.0 

CE/J 9 32.3 2.9 

DBA/1J 6 27.0 1.6 

DBA/2J 6 27.3 2.3 

FVB/NJ 6 28.5 0.6 

ILn/J 7 33.7 1.2 

KK/HlJ 6 31.5 2.1 

LG/J 8 34.6 2.6 

LP/J 6 28.8 1.3 

MA/MyJ 6 28.3 1.7 

MRL/MpJ 6 32.5 1.7 

NOD/ShiLtJ 6 25.8 1.5 

NON/ShiLtJ 6 37.7 1.5 

NZO/HlLtJ 6 32.2 1.1 

NZW/LacJ 6 30.0 2.2 

P/J 7 29.5 2.1 

PL/J 6 31.2 1.1 

PWD/PhJ 6 27.8 1.0 

RIIIS/J 6 28.0 2.4 

SJL/J 6 30.0 2.7 

SM/J 6 28.6 1.7 

SWR/J 6 31.0 1.4 
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4.3.2 Genetic association testing identifies variants suggestively associated with 10wkCL 

We conducted a genome-wide test for association between 4 million SNPs published by the 

NIEHS and 10wkCL (238).  The most significant association was with rs33154484, an intronic 

variant of Nr3c2 at 8qC1 (Figure 20, Table 16, P= 3.64x10-6).  This association was suggestive but 

not significant (suggestive – P<8.4x10-6, significant – P<4.0x10-7) at the genome-wide level 

following Bonferroni correction of the effective number of tests (118,393) as determined by 

simpleM. Several other loci at 1qC1, 8qC1, and 1qB contained at least one suggestively associated 

SNP (Table 16).  
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Figure 20. Manhattan plot showing association with 10wkCL. Manhattan plot of associations with 10wkCL. Each 

dot represents a single nucleotide polymorphism (SNP) with its genomic location represented on the x-axis and the 

negative log of P-values on the y-axis. The top threshold (red) represents genome-wide significance following 

Bonferroni correction of the effective number of tests, and the lower threshold (blue) represents genome-wide 

suggestive significance. 
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Table 16. Variants suggestively associated with 10wkCL 

Chr BP P-value SNP 

8 79564934 3.64E-06 mm37-8-79564934:NES14066236 

1 56225427 4.71E-06 rs13475877:MAG14282659:NES14282659 

8 79142238 4.71E-06 NES16284294 

8 79205459 4.71E-06 NES16283916 

8 79205519 4.71E-06 NES16283917 

8 79208276 4.71E-06 NES16283899 

8 79210220 4.71E-06 NES16283843 

8 79213262 4.71E-06 NES16283782 

8 79214330 4.71E-06 NES16283796 

8 79214563 4.71E-06 NES16283729 

8 79279933 4.71E-06 NES14067935 

8 79348872 4.71E-06 NES14066836 

8 79361156 4.71E-06 mm37-8-79361156:rs3676644:NES14066739 

8 79368817 4.71E-06 NES14066697 

8 79369183 4.71E-06 NES14066705 

8 79372040 4.71E-06 NES14057139 

8 79372107 4.71E-06 NES14057141 

8 79372176 4.71E-06 NES14057142 

8 79372644 4.71E-06 NES14057148 

8 79373422 4.71E-06 NES14057099 

8 79400600 4.71E-06 mm37-8-79400600:NES14056554 

8 79400764 4.71E-06 mm37-8-79400764:NES14056557 

8 79427254 4.71E-06 NES14056247 

8 79427487 4.71E-06 NES14056131 

8 79428278 4.71E-06 NES14056135 

8 79428474 4.71E-06 NES14056137 

8 79429503 4.71E-06 NES14056086 

8 79430344 4.71E-06 NES14056049 

8 79431489 4.71E-06 NES14055981 

8 79432710 4.71E-06 NES14055882 

8 79432761 4.71E-06 NES14055883 

8 79434009 4.71E-06 mm37-8-79434009:NES14055884 

8 79434052 4.71E-06 NES14055885 

8 79434147 4.71E-06 NES14055886 

8 79438813 4.71E-06 NES14055735 

8 79439597 4.71E-06 NES14055745 

8 79440171 4.71E-06 NES14066638 

8 79511863 4.71E-06 NES14066332 

8 79532925 4.71E-06 mm37-8-79532925 
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Table 16 continued 

8 79541874 4.71E-06 mm37-8-79541874 

8 79568840 4.71E-06 NES14066217 

8 79569211 4.71E-06 NES14066220 

8 79570189 4.71E-06 NES14066212 

8 79854044 4.71E-06 NES14982349 

8 79869287 4.71E-06 NES14982146 

8 79870669 4.71E-06 NES14982161 

8 79872908 4.71E-06 mm37-8-79872908:NES14982089 

8 79872943 4.71E-06 mm37-8-79872943 

8 90590642 4.71E-06 NES14061147 

8 90593471 4.71E-06 NES14061089 

8 90681391 4.71E-06 NES14063803 

8 90746561 4.71E-06 NES16265493 

8 90778159 4.71E-06 NES14062796 

8 90807840 4.71E-06 NES14062258 

8 90814685 4.71E-06 NES14062068 

8 90815448 4.71E-06 NES14062071 

8 79408593 5.27E-06 mm37-8-79408593 

8 90623652 5.27E-06 mm37-8-90623652:rs6235292:NES14060695 

8 90725209 5.27E-06 mm37-8-90725209:rs6210223 

1 42093961 7.55E-06 NES11101025 

8 79584455 7.77E-06 mm37-8-79584455:NES14066168 

    

4.3.3 Integration of mouse and human genome-wide scans 

To prioritize top loci and detect candidate genes that may contribute both to early life 

predisposition and to COPD, we integrated the findings of our mouse genome-wide scan with the 

results from a meta-analysis of human COPD CVAS.  

 We began by looking for candidate regions in the mouse that were enriched for nominal 

associations (P<10-3). Six regions at 1qB, 1qG, 2qF1, 8qC1, 8qC2 and 8qC3 were identified for 

integration with human data (Table 17). Importantly, these top regions included the single variants 

with the lowest P-values in this study (Table 17).  Using mouse-human homology maps, publicly 
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available from NCBI, we used a gene-based approach to identify human regions homologous to 

these candidate regions on human chromosomes 1, 2, 4, 15, 16 and 17 (Table 17, Figure 21).  

 

Table 17. Mouse candidate regions and syntenic regions in the human genome 

Mouse 

#^ Chr Start End Most Significant  

P-value 

SNP Nearest genes 

1 1 38054855 40912112 1.06E-05 rs32434308  

2 1 151808414 155066052 3.70E-05 rs33656443  

3 2 124893863 127988283 5.73E-04 mm37-2-

126837474 

 

4 8 79426407 80918225 3.64E-06 rs33154484  

5 8 82495773 85608713 1.05E-04 rs33218702  

6 8 89365037 91566338 4.71E-06 rs38483583  

Human 

1 2 99953834 103434138 2.23E-04 rs6729857 IL1R1/IL1R2* 

2 1 182992595 186958113 3.89E-02 rs78343664 OCLM/PDC 

 17 57187308 57232800 5.03E-03 rs12945875 SKA2 

3 15 48413169 51298097 4.42E-05 rs1843147 DTWD1/ATP8B4* 

 7 43798272 43846941 4.23E-02 rs849185 BLVRA 

 2 95691479 97041274 2.80E-03 rs1006021 PROM2 

 2 110841447 111926022  4.60E-04 rs4494791 ACOXL 

4 4 147628179 149363643 4.01E-04 rs79824712 TTC29/EDNRA* 

5 4 141786725 145659881 1.57E-12 rs13141641 HHIP* 

6 16 48572637 51185183 2.95E-02 rs74017995 N4BP1 

^Region numbers identify homologous genomic regions in the mouse and human, *Candidate 

genes based on being nearest a nominal SNP (P<10-3) with lowest P-value in each region 



 98 

 

 

Figure 21. Manhattan plots of results from human GWAS with nominal results. Manhattan plots of associations 

results in human syntenic candidate regions. Four candidate regions on chromosomes 1, 4 and 15 contain nominal 

associations with COPD in humans. Manhattan plots showing genomic location and gene annotations on the x-axis 

and negative log of P-values on the y-axis. The nearest genes to these regions are (A) IL1R1/IL1R2, (B) 

DTWD1/ATPB84, (C) TTC29/EDNRA, and (D) HHIP. Linkage disequilibrium with the most significant SNP as 

determined from the CEU cohort of 1000 Genomes is illustrated by SNP color. Plot created with LocusZoom (Version 

1.1). 
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4.3.4 Expression of candidate genes varies between extreme strains at 10 weeks of age 

Genes containing or surrounding nominal human SNPs from human studies were chosen as 

candidate genes for further study. These genes were IL1R1 (mouse homolog:Il1r1), IL1R2 (Il1r2), 

DTWD1 (Dtwd1), ATP8B4 (Atp8b4), TTC29, (Ttc29), EDNRA (Ednra),  and HHIP (Hhip). We 

looked for coding non-synonymous variants (cnSNPs) of functional effect that varied between the 

extreme strains of our study, C3H/HeJ and NOD/ShiLtJ.  None of the seven candidate genes harbor 

any cnSNPs with SIFT score < 0.05. As variation in regulatory regions of these genes may also be 

causal, we measured RNA expression of the candidate genes in lung tissue from these extreme 

strains. We found significant differences in the expression of Il1r2, Dtwd1, Atpb8b4, and Ttc29 

between the two strains (Figure 22).   
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Figure 22. Relative expression of candidate genes in extreme strains. Relative expression of candidate genes in 

C3H/HeJ mice compared to NOD/ShiLtJ mice (n=10/strain). P-values are determined by two-tailed t-test (* P < 0.05, 

** P < 0.01, *** P < 0.001) 

4.3.5 C3H/HeJ mice have lower relative expression of Il1r2 in the lung epithelium  

We chose to follow up on Il1r2, as the IL-1 pathway has been shown to play a role in both 

prenatal and chronic lung disease but has not previously been implicated in predisposition to 

adult disease in the absence of prenatal exposures. Since our screening experiment was in whole 

lung tissue and Il1r1 and Il1r2 are highly expressed by innate immune cells, we compared the 

expression of these genes in perfused, lavaged lung tissue to isolated blood monocytes and 

alveolar macrophages and found that the only significant change in expression occurred in lung 
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tissue (Figure 23A). Further, using immunofluorescence, we found IL-1R2 is expressed on 

alveolar type 1 (AT1) and 2 (AT2) cells as well as alveolar macrophages (Figure 23B, C, and D). 

However, while C3H/HeJ mice have the same levels of IL-1R2 on AT2 and alveolar 

macrophages, co-localization with aquaporin 5 (AQP5), a marker of alveolar type 1 cells, was 

significantly lower than in NOD/ShiLtJ (Figure 23E).  
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Figure 23. Levels of IL1R2 in the lung epithelium of extreme strains. (A) Lower expression of Il1r2 in C3H/HeJ 

mice (n=10/group) compared to NOD/ShiLtJ mice (n=10/group) occurs in lung tissue that has been perfused and 

lavaged (L) but not in blood monocytes (BM) or alveolar macrophages (AM). Levels of IL1R2 are lower in cells from 

C3H/HeJ mice (n=8/group) compared to NOD/ShiLtJ mice (n=8/group) co-expressing (B) AQP5, a marker of lung 

alveolar type I cells, but not (C) SPC, a marker of alveolar type II cells or (D) F4/80, a marker of mature macrophages. 

(E) Quantification of density of IL1R2 compared to density of AQP5 staining is significantly different between the 

two strains. All p-values represent two-tailed t-tests between groups (* P<0.05) 
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4.3.6 C3H/HeJ mice have an adequate Il1r2 response following injury 

By integrating our mouse genome-wide scan of predisposition to COPD with a human genome-

wide scan of COPD we attempted to identify genes contributing to developmental predisposition 

to disease, so we were interested in determining whether the regulation of Il1r2 in extreme strains 

was also altered during lung injury. Following exposure to lipopolysaccharide (LPS) and exposure 

to a single cigarette, we observed a significantly higher expression of Il1r2 in C3H/HeJ mice 

compared to control-treated mice (saline or room air respectively) (Figure 24A). There was no 

significant change in NOD/ShiLtJ mice (Figure 24A). When exposed to two weeks or six months 

of cigarette smoke, C3H/HeJ mice did not maintain this acute upregulation of Il1r2 (Figure 24A). 

Following chronic cigarette smoke exposure over the course of six months (a mouse model of 

emphysema) C3H/HeJ mice, which have larger 10wkCL, also developed significantly greater 

airspace enlargement (Figure 24B and C).  
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Figure 24. Extreme strain response to inflammatory stimuli. C3H/HeJ mice respond to acute stimuli with 

upregulation of Il1r2 but are more susceptible to chronic cigarette smoke exposure. (A) C3H/HeJ mice exposed to 

lipopolysaccharide (LPS) or a single cigarette significantly upregulate Il1r2 while NOD/ShiLtJ mice do not 

(n=5/strain/group). Neither strain shows a significant difference in expression of Il1r2 after two weeks of cigarette 

smoke exposure When exposed to six months of chronic cigarette smoke (SM), C3H/HeJ mice have a significantly 

higher difference in chord length between SM and room air (NS) compared to NOD/ShiLtJ mice as seen in (B) Gill 

staining and (C) quantified by morphometry (n=6/strain/group). 
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4.3.7 Il1r1-/- mice have the same 10wkCL as C57BL6/J controls  

To determine whether an absence of IL-1 signaling was responsible for the differences we 

observed in our extreme strains, we compared the alveolar chord lengths of IL1R1-/- mice to their 

background controls (C57BL/6J) at ten weeks of age and saw no significant difference in this 

phenotype (Figure 25).  

 

 

Figure 25. Chord length of IL1R1-/- mice at 10 weeks of age. Chord length of Il1r1-/- mice at 10 weeks of age is not 

significantly different than C57BL/6J control mice. Gill stained example images of lung parenchyma of (A) C57BL/6J 

(n=5) and (B) IL1R1-/- mice (n=6). (C) When measured by morphometry, chord length is not significantly different 

between these strains (by two-tailed t-test).  
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4.3.8 C3H/HeJ mice exposed to anakinra in utero have significantly smaller 10wkCL than 

saline-exposed controls 

We exposed pregnant C3H/HeJ mice to anakinra, a clinically utilized IL-1 antagonist, during the 

course of their pregnancy and measured the alveolar chord length of their pups at 10 weeks of age 

(Figure 26A). C3H/HeJ mice exposed to anakinra in utero had a significantly smaller 10wkCL 

(33.1 ± 1.2 μm) than C3H/HeJ mice exposed to saline in utero (38.2 ± 1.0 μm, Figure 26B and C).  

 

 



 107 

 

 

Figure 26. 10wkCL in C3H/HeJ mice exposed to in utero anakinra. (A) C3H/HeJ mice were exposed to in utero 

anakinra or saline. (B) Representative Gill stained images of C3H/HeJ mice exposed to either in utero anakinra or 

saline. (C) C3H/HeJ mice have a lower chord length following in utero anakinra exposure (n=11) compared to saline 

exposed controls (n=11). All p-values represent two-tailed t-tests compared between experimental group and relevant 

controls (* P<0.05, ** P<0.01). 
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4.4 DISCUSSION  

In this study, we sought to leverage phenotypic differences between inbred strains of mice to 

identify genetic loci associated with lung development and growth and to determine whether these 

genetic loci were likely to be related to human COPD. To do this, we measured mean linear 

intercept (CL) in 36 inbred strains of mice at 10 weeks of age. CL is a stereological measurement 

that grossly estimates airspace size and architecture, and has been successfully used to model lung 

structural changes following cigarette smoke exposure (27, 263).  Although alveolarization 

continues at a low level throughout life in mice, by far the majority of lung development and 

growth has finished by ten weeks of age (264, 265). Thus, we hypothesized that genetic factors 

contributing to this phenotype were likely to be major regulators of lung growth and development.  

We conducted a genome-wide scan testing for association with 10wkCL and integrated 

these findings with the results of a previously published CVAS of COPD in humans. In so doing, 

we aimed to identify loci that contributed to both lung development and risk of COPD. The 

identification of one of our candidate genes, Hhip, strongly supported this approach. A locus near 

HHIP was identified in the first GWAS of COPD and pulmonary function and has been replicated 

in numerous studies (111, 259). The protein product of this gene, hedgehog-interacting protein 

(HHIP) is known to directly regulate the signaling molecule sonic hedgehog (SHH), an essential 

component of early lung development (260). In fact, HHIP is essential for murine lung 

development, as homozygous deletion of the gene causes respiratory failure at birth and 

haploinsufficiency of the gene predisposes to both cigarette smoke-induced emphysema and age-

related emphysema (150, 151). Protein and transcript levels of HHIP have been shown to be altered 



 109 

 

in COPD compared to non-COPD controls, and are correlated with variants in an upstream 

enhancer (149).  

Another candidate region identified in our study contains a nominal association with 

rs6729857, a SNP located between IL1R1 and IL1R2. There is a notable recombination peak 

separating this association and IL1R1 in the human, suggesting that if this is not a directly causal 

SNP, nearby tagged SNPs are more likely to be affecting IL1R2. This was further supported by the 

observation of a significant difference in Il1r2 but not Il1r1 expression between the two extreme 

strains. IL-1R2 is a classic decoy receptor for the cytokine interleukin 1 (IL-1), a primary mediator 

of both infectious and sterile inflammation (266). The protein is structurally similar to IL-1R1 

which mediates signaling of both IL-1β and IL-1α, but lacks an intracellular signaling domain and 

thus serves as a potent antagonist to the pathway (266).  

Evidence exists for a role of IL-1 signaling in both lung development and disease. Mice 

exposed to human IL-1β in utero have a significantly increased chord length at seven days of age 

due to disrupted alveolar septation (267). Similarly, in chronic disease, transgenic mice induced to 

express human IL-1β postnatally develop an immune phenotype similar to COPD and ultimately 

emphysema as measured by an increase in chord length (265). Mice lacking IL-1R1, the primary 

signaling receptor for both IL-1β and IL-1α, are largely protected from cigarette smoke-induced 

emphysema (268). Support for the role of IL-1 has also been shown in human disease – peripheral 

neutrophils from individuals with COPD have been shown to have increased expression of IL1B, 

IL1R2 and IL1RA, and such expression correlates with disease severity (269). In development, 

excess IL-1 has been seen to result in both early maturation and acute damage to the lung leading 

to simplification of lung structure and ultimately resulting in respiratory distress system or 

bronchopulmonary dysplasia (270).  
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Given the significant evidence supporting the role of IL-1 signaling in disease, we were 

intrigued to identify Il1r2 as a candidate gene in this study since all of the candidate loci were 

identified using a gross measurement of growth and development in mice raised in sterile 

conditions. We found lower levels of the transcript and protein in C3H/HeJ mice that have larger 

10wkCL compared to NOD/ShiLtJ mice, and observed that this difference is due to decreased IL-

1R2 levels in the lung ATI cell. When exposed to stimuli, C3H/HeJ mice significantly upregulate 

Il1r2 acutely while NOD/ShiLtJ mice do not, although they do not appear to be able to maintain 

this increased regulation chronically. Finally, C3H/HeJ mice exposed to cigarette smoke have 

increased airspace enlargement compared to NOD/ShiLtJ mice, indicating this predisposition to 

low IL1R2 levels contributes both to predisposition to large airspaces and is worsened in disease 

states.  

Based on these findings, we hypothesized that genetic variants resulting in an insufficient 

level of IL-1 antagonism, as seen in the low levels of expression of Il1r2 in the C3H/HeJ mouse, 

could result in the same increased CL observed in mice exposed to in utero inflammation or IL-1 

beta upregulation. After exposing pregnant C3H/HeJ mice to anakinra, a recombinant therapeutic 

based on IL-1Ra, we observed that pups exposed in utero to the drug had a significantly smaller 

chord length compared to C3H/HeJ mice exposed to saline in utero. We did not observe any other 

gross morphological differences between these mice, indicating a lung-specific effect, most likely 

due to the large difference in expression of the protein in the lung epithelium of C3H/HeJ mice. 

This is the first time lung development of an inbred strain has been modulated therapeutically and 

implicates IL-1 signaling in lung development in the absence of disease.  

The implications of these findings for human populations are intriguing. Although a 

number of variants predicted to be deleterious by PolyPhen or SIFT in IL1R2 have been identified 
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in human populations, they are rare (See Table E2). Rare variants could potentially produce a 

synthetic association at this locus, which could also explain why association tests did not reach 

genome-wide significance (167). More likely, variants in regulatory regions of IL1R2 affect lung 

development or growth in humans but this effect is difficult to detect for reasons affecting all 

CVAS, including varied environmental effects and phenotypic heterogeneity (116, 117).  Of note, 

IL1RN, encoding the soluble IL-1 antagonist IL-1Ra that anakinra is based on, has been associated 

with COPD risk in several populations and variants in the same gene have been associated with 

lung function decline in smokers and asthmatics (108, 271-273). One possibility, then, is that 

variants in one or more genes function to antagonize IL-1 signaling and may jointly contribute to 

this phenotype. 

While the literature strongly supports the role of HHIP in lung development and disease, 

and evidence presented here supports a similar function for IL1R2, additional function for the other 

candidate genes identified in this study cannot be ruled out. Several genes were differentially 

expressed between the two extreme strains. Further, while we chose to use the extreme strains of 

our study to identify genomic differences with the most dramatic effect on phenotype, it remains 

possible that variation in any of the candidate genes could affect other strains with large or small 

chord 10wkCL. EDNRA, the receptor for endothelin signaling, is an intriguing candidate, as 

variants in another endothelin receptor, EDNRB, have been shown to associate with obstruction in 

asthma (274). Moreover, although we chose to focus on the genes nearest nominal SNPs from 

human studies of COPD, some of these SNPs are in LD with variants in or near other potential 

candidate genes. An excellent example of this in our study occurs on human chromosome 15, 

where a nominal association with rs1843147, between the genes DTWD1 and ATP8B4, is in high 

LD with variants in FGF7, a well-recognized mediator of alveolar growth and differentiation (275, 
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276).  Supporting this finding, in another approach intended to identify candidate genes falling 

below strict multiple testing correction, FGF7 was identified as a susceptibility locus for COPD 

(277). Interestingly, there was significantly higher relative expression of both Dtwd1 and Atp8b4 

in C3H/HeJ mice compared to NOD/ShiLtJ mice, suggesting potential chromatin-level regulation 

of genes surrounding this locus.  

This study has limitations. The phenotype chosen to represent lung growth and 

development is a relatively gross measure of these effects, and so this approach is only likely to 

identify genes with a significant effect on this quantitative phenotype. Similarly, combining these 

results with the results of human GWAS of COPD reduces the ability to detect regions that may 

be involved in lung growth but not with the disease itself. While in combination, using traits with 

significant phenotypic heterogeneity likely allowed for the detection of well-known regions near 

HHIP and FGF7 in this study, it is also the likely reason that individual studies were underpowered 

to detect other candidate genes at a genome-wide significance in humans or mice.  

4.5 CONCLUSIONS 

In this study, we used a stepwise approach to identify candidate genes associated with a 

developmental predisposition to emphysema in the mouse and COPD in humans. One of our 

candidate genes, Hhip, has previously been shown to be associated with phenotypes of pulmonary 

function in healthy and diseased individuals. We further investigated another candidate gene, Il1r2, 

and showed that correction of a genetic predisposition to decreased expression of this IL-1 

antagonist in C3H/HeJ mice also decreases that strain’s 10wkCL. This study suggests the need for 
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further investigation into early-life genetic factors contributing to lung disease and for an improved 

understanding of the role of the IL-1 axis in the relationship between lung growth and disease.  
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5.0  INTEGRATED REVIEW OF GENETIC STUDIES OF COPD 

5.1 INTRODUCTION 

The genetic architecture of COPD is complex, likely involving multiple genes, a balance between 

susceptibility and protective variants, and gene-gene interactions all potentially affected by 

environmental exposures (see section 1.2.6). As outlined in section 1.2, in the last 20 years, our 

knowledge of genomic loci that contribute to the heritability of chronic diseases like COPD has 

increased significantly but remains incomplete, in part due to this complexity. In this work, we 

have already explored some of the architectural features of the genetics of COPD, including loci 

affected by rare variation (section 2) and by common variation not detected by current CVAS 

(section 3 and 4). In the latter approach, we integrated mouse and human genome-wide scans in 

order to identify loci that are associated with disease in humans and models of disease in mice. 

This approach is supported by studies that demonstrate that there is overlap between genes that 

contribute to both common human diseases and murine genetic models of disease (236, 243). 

Similarly, common variants, rare variants and copy number variants can contribute to human 

disease at the same disease-relevant loci (278). Thus, as illustrated in section 2.4, the significant 

store of knowledge of susceptibility loci that has been established over the last 20 years can be a 

useful tool in analyzing novel studies. Looking at the results of these studies in an integrated way 

can identify candidate genes at genomic loci of previously unclear significance, and can aid in 

prioritizing targets for future studies.  
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To demonstrate this approach in COPD, I conducted a literature review of the results of all 

published linkage analyses, CVAS, and RVAS for COPD-related traits and integrated them with 

the results of the studies reported in sections 2, 3, and 4 in a visual and tabular format.  

5.2 METHODS 

5.2.1 Identification of loci demonstrating linkage with COPD 

The US National Library of Medicine service PubMed was searched for studies using the search 

term: ‘(genome-wide OR genomewide) AND linkage AND (copd OR emphysema OR chronic 

bronchitis)’ in May, 2016 returning 58 results. Studies were included if they involved tests for 

genome-wide linkage of a phenotype of COPD measured by spirometry, clinical definition or 

imaging.  

Polymorphic markers with suggestive linkage to a COPD phenotype (LOD > 2.0) from 

each of these studies were recorded and the physical locations of markers in GRCh37 were 

identified using the UCSC genome browser (252). When possible, the genomic region for further 

analysis was recorded as the physical distance between all suggestive markers. When only a single 

marker was available, the region was estimated as the physical location of the marker and a 

3.85Mbp flanking region in either direction, based on gross estimates of sex average recombination 

rates in the human genome of 1.3 cM/Mb and the average genetic distance of 10cM between 

markers in these studies (279).  
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5.2.2 Retrieval of results of COPD CVAS 

The results of the NHGRI-EBI GWAS catalog (version e84_r2016-06-12) were downloaded from 

the European Molecular Biology Laboratory-European Bioinformatics Institute’s (EMBL-EBI) 

website (https://www.ebi.ac.uk/gwas/home). This catalog includes all SNP-trait associations with 

P < 1 x 10-5 (110). SNPs yielding suggestive association with the following traits were recorded: 

'Pulmonary function', 'Chronic obstructive pulmonary disease', 'Emphysema-related traits', 'Age at 

smoking initiation in chronic obstructive pulmonary disease', 'Pulmonary function decline', 

'Airflow obstruction', 'Smoking cessation in chronic obstructive pulmonary disease', 'Lifetime 

average cigarettes per day in chronic obstructive pulmonary disease', 'Current cigarettes per day in 

chronic obstructive pulmonary disease', 'Lung function (forced expiratory volume in 1 second)', 

'Lung function (forced vital capacity)', 'Lung function (forced expiratory volume in 1 second to 

forced vital capacity ratio)', 'Lung function (forced expiratory flow between 25% and 75% of 

forced vital capacity)', 'Resting oxygen saturation in chronic osbtructive pulmonary disease (pulse 

oxymetry)', 'Pulmonary emphysema', 'Chronic obstructive pulmonary disease (severe)', 'Chronic 

obstructive pulmonary disease (moderate to severe)', 'Forced expiratory volume in 1 second', 

'Asthma or chronic obstructive pulmonary disease', 'Chronic bronchitis in chronic obstructive 

pulmonary disease', 'Chronic bronchitis and chronic obstructive pulmonary disease', 'Airway 

responsiveness in chronic obstructive pulmonary disease', 'Emphysema imaging phenotypes', and 

'Airway imaging phenotypes'. The location of each of these variants was identified in GRCh37 

using Ensembl’s archived Biomart (Ensembl Variation 75) (261).  
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5.2.3 Literature review to identify results of COPD RVAS 

PubMed was searched for studies using the search term: ‘rare variant association study copd OR 

exome sequencing copd OR whole genome sequencing copd’ in May, 2016 returning 23 results. 

Studies were included if they involved tests for genome-wide association of rare variation using 

exome sequencing (3 studies), exome array analysis (2 studies) or whole genome sequencing (0 

studies). Suggestive or significant associations with single variants were recorded as the physical 

location of the variant in GRCh37, suggestive or significant associations with genes were recorded 

as the start and end of the gene in GRCh37.  

5.2.4 Identification of regions that are in close physical proximity  

Using Python, all genomic loci identified using the methodologies described in 5.2.1, 5.2.2, 5.2.3, 

as well as the top ten most significant results from each of the three group-wise tests for association 

with rare variation described in section 2, the human genomic region homologous to the most 

significant result from section 3, and all human genomic regions homologous to suggestively 

associated results from section 4, that were within 1Mbp from each other were identified. Groups 

of variants reported in Table 17 only include those with multiple types of genetic evidence.  

All genomic loci were also plotted using Circos (version 0.69-2) (280).  
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5.3 RESULTS 

From six linkage studies, 24 CVAS and five RVAS that met the criteria described in the methods, 

I identified 20 regions from linkage analyses, 374 loci yielding at least suggestive association from 

CVAS, and 18 loci yielding suggestive association from RVAS. In order to identify loci with 

robust evidence for a role in COPD, I combined these loci with the most significant results of the 

studies in sections 2, 3, and 4 (see Methods) by identifying all loci that were within 1Mbp of 

another locus. In total, I identified 57 regions that have at least two loci within 1Mbp of another. 

The majority of these are replication of SNPs in multiple CVAS, so the 19 loci at which multiple 

types of evidence were present are shown in Table 18. These results can also be seen visually in 

Figure 27.  
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Table 18. Genomic loci with multiple pieces of evidence for contribution to COPD susceptibility 

Region Evidence SNP/Gene Chr Start End Phenotype 

1p linkage  1 82895173 98685573 Post-bronchodilator 

FEV1/FVC (98) 

 common 

variant 

rs3843306 1 91288130 91288130 Pulmonary function 

decline (281) 
 linkage  1 98685301 106281721 Post-bronchodilator FEV1 

(98) 

 common 

variant 

rs17121403 1 100335977 100335977 Pulmonary function 

decline (281) 
2q linkage  2 214579787 232206614 FEV1/FVC (94) 

 common 

variant 

rs10932600 2 216114257 216114257 Airway imaging 

phenotypes (139) 

 linkage  2 218246863 238078675 Post-bronchodilator 

FEV1/FVC (98) 

 linkage  2 218576474 227029884 FEF25-75, smokers (95) 

 common 

variant 

rs2571445 2 218683154 218683154 Pulmonary function (128) 

4p16 linkage  4 11267900 18968275 FEV1/FVC in the general 

population (282) 
 common 

variant 

rs3893377 4 15742129 15742129 Current cigarettes per day 

in COPD (124) 

4q24 common 

variant 

rs1541374 4 106048360 106048360 Pulmonary function (121) 

 rare variant 

array 

TET2 4 106067842 106200960 FEV1 (141) 

 common 

variant 

rs1982346 4 106578754 106578754 Lung function (FEV1) 

(283) 
 common 

variant 

rs11727189 4 106619140 106619140 Pulmonary function (123) 

 common 

variant 

rs10516526 4 106688904 106688904 Pulmonary function (128) 

 rare variant 

array 

NPNT 4 106816597 106892828 FEV1 (141) 

 common 

variant 

rs11097912 4 107000462 107000462 Airflow obstruction (131) 

4q28 common 

variant 

rs142200419 4 127323308 127323308 Airway imaging 

phenotypes (139) 

 sliding 

window 

 4 128040000 128069999 Emphysema  
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Table 17 (continued) 

4q31 10wkCL  4 141786725 145659881 Predisposition to lung 

disease  

 common 

variant 

rs13105210 4 145262927 145262927 Chronic obstructive 

pulmonary disease (284) 
 common 

variant 

rs12510916 4 145372248 145372248 Chronic obstructive 

pulmonary disease (284) 
 common 

variant 

rs12504628 4 145436324 145436324 Pulmonary function (128) 

 common 

variant 

rs138641402 4 145445779 145445779 Chronic obstructive 

pulmonary disease (284) 
 common 

variant 

rs13147758 4 145460230 145460230 Pulmonary function (112) 

 common 

variant 

rs1828591 4 145480780 145480780 Chronic obstructive 

pulmonary disease (285) 
 common 

variant 

rs1980057 4 145485738 145485738 Pulmonary function (123)  

 common 

variant 

rs13118928 4 145486389 145486389 Chronic obstructive 

pulmonary disease (113) 

6p21 rare variant 

array 

HLA-DQB1 6 32627241 32634466 FEV1 (141) 

 common 

variant 

rs2647044 6 32667910 32667910 Pulmonary function (121) 

 common 

variant 

rs2647050 6 32669767 32669767 Emphysema imaging 

phenotypes (139) 

 rare variant 

array 

HLA-DQA2 6 32709163 32714664 FEV1(141) 

 common 

variant 

rs9394152 6 33465482 33465482 Age at smoking initiation 

in COPD (124) 

 common 

variant 

rs7747216 6 33476718 33476718 Age at smoking initiation 

in COPD (124) 

 common 

variant 

rs9296092 6 33478496 33478496 Age at smoking initiation 

in COPD (124) 

6p21 WES DNAH8 6 38683117 38998574 Severe, early onset COPD 

(182) 
 common 

variant 

rs2395730 6 39784365 39784365 Pulmonary function (128) 

6q linkage  6 150000000 171115067 FEV1 (97) 

 common 

variant 

rs3734729 6 150570867 150570867 Pulmonary function (121) 
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Table 17 (continued) 

8p22 common 

variant 

rs2638663 8 18673731 18673731 FEV1 (283) 

 sliding 

window 

CSGALNACT1 8 19560000 19589999 Emphysema 

 gene-based ATP6V1B2 8 20054059 20084860 Emphysema 

8p11 common 

variant 

rs7006290 8 41615138 41615138 Pulmonary function 

decline (281) 
 sliding 

window 

 8 42060000 42089999 Emphysema 

10q26 WES TACC2 10 123748689 124014057 Severe COPD (181) 
 common 

variant 

rs10794613 10 124514138 124514138 Smoking cessation in 

COPD (124) 

 common 

variant 

rs1896376 10 125515829 125515829 Smoking cessation in 

COPD (124) 

12p linkage  12 8157605 17015211 FEF25-75, smokers (95) 

 common 

variant 

rs2856329 12 11942720 11942720 Lung function (forced 

expiratory volume in 1 

second) (283) 
 linkage  12 12846869 20547246 FEV1 (94) 

 linkage  12 13164928 20865211 Moderate airflow 

obstruction (93) 

 linkage  12 13606455 16696869 Mild airflow obstruction 

(93) 

 non-

synonymous 

PTPRO 12 15654574 15656846 Emphysema 

 linkage  12 17889218 25589539 FEV1/FVC (94) 

 common 

variant 

rs11044734 12 19795906 19795906 Lifetime average 

cigarettes per day in 

COPD (124) 

 common 

variant 

rs11044737 12 19801753 19801753 Lifetime average 

cigarettes per day in 

COPD (124) 

 common 

variant 

rs4762767 12 19866129 19866129 Pulmonary function (121) 

12q23 common 

variant 

CCDC38 12 96260826 96336428 Healthy individuals with 

significant smoking 

histories (180) 
 common 

variant 

rs1036429 12 96271428 96271428 Pulmonary function (121) 

 sliding 

window 

CCDC38 12 96300000 96329999 Emphysema  
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Table 17 (continued) 

12q24 rare variant 

array 

RBM19 12 114251543 114404176 FEV1 (141) 

 common 

variant 

rs4767234 12 114637848 114637848 Airflow obstruction (97) 

 rare variant 

array 

TBX5 12 114846000 114850637 FEV1 (141) 

15q25 non-

synonymous 

TBC1D2B 15 78316850 78317844 Emphysema 

 common 

variant 

rs8042238 15 78774271 78774271 Chronic obstructive 

pulmonary disease (136) 

 common 

variant 

rs11858836 15 78783277 78783277 Chronic obstructive 

pulmonary disease (114) 

 common 

variant 

rs13180 15 78789488 78789488 Chronic obstructive 

pulmonary disease (115) 

 common 

variant 

rs8034191 15 78806023 78806023 Chronic obstructive 

pulmonary disease (285) 
 common 

variant 

rs8031948 15 78816057 78816057 Airflow obstruction (131) 

 common 

variant 

rs28675338 15 78827631 78827631 Lifetime average 

cigarettes per day in 

COPD (124) 

 common 

variant 

rs2036527 15 78851615 78851615 Pulmonary function (121) 

 common 

variant 

rs503464 15 78857896 78857896 Emphysema imaging 

phenotypes (139) 

 common 

variant 

rs17486278 15 78867482 78867482 Airflow obstruction (131) 

 common 

variant 

rs55676755 15 78898932 78898932 Emphysema imaging 

phenotypes (139) 

17q21 linkage  17 42823055 50523346 Post-bronchodilator 

FEV1/FVC (98) 

 rare variant 

array 

KANSL1 17 44107282 44119280 FEV1 (141) 

19q13 common 

variant 

rs11668505 19 48348363 48348363 Lung function (forced 

vital capacity) (283) 
 common 

variant 

TMEM143 19 48845944 48866796 Pulmonary function 

decline (281) 
 gene-based BCAT2 19 49298537 49314089 Emphysema 

19q13 gene-based ZNF816 19 53429414 53466404 Emphysema 

 sliding 

window 

ZNF816 19 53430000 53459999 Emphysema 
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Figure 27. Circos plot of genomic locations of results of genetic studies of COPD. Circos plot demonstrating the 

genomic location of genome-wide suggestive results from several types of genetic studies. The outer track identifies 

genomic location and chromosomal banding patterns. The inner tracks represent different types of evidence mapped 

to their genomic location.  

5.4 DISCUSSION 

The analysis of all three studies in this work relies on the results of previously published genetic 

data to offer support for associations that do not meet strict multiple testing correction thresholds. 

To demonstrate how this approach can be used to prioritize loci, I conducted a literature review 
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and knowledge-based integration of previously published suggestive evidence from studies 

looking at genetic susceptibility to COPD, aiming to identify loci supported by more than one type 

of genetic evidence. There are 19 loci that have suggestive evidence from multiple different 

techniques and that contribute to either pulmonary function or COPD phenotypes within 1Mbp of 

another such region. For example, the well-studied region at 4q31 near the gene HHIP, was 

identified in our mouse study of predisposition to lung disease (section 4). Similarly, a frequently-

replicated locus at 15q25 near the genes CHRNA3/5 and IREB2, was also near one of the top results 

of our non-synonymous exome-wide test for association with emphysema (section 2). Almost all 

of the results of linkage analyses are supported by common variant associations, and some are 

supported by additional evidence such as 12p, which also contains the gene PTPRO, the top 

association in our non-synonymous exome-wide test in section 2. PTPRO is less than 1Mbp from 

D12S1715, the STR with the highest LOD score in multiple COPD-related traits (Table 2) (94). 

Of interest, several regions identified in this approach occur in close proximity to one 

another at 4q24, 4q28, and 4q31. Based on the phenotypes connected to each of these regions, 

individual loci appear to uniquely associate with different COPD-related traits: pulmonary 

function, emphysema, and COPD respectively. This region may represent a larger ‘disease 

susceptibility region’ (section 4.4) where multiple susceptibility loci act independently in affecting 

different disease mechanism. Genomic regions with complex contribution to susceptibility like 

this one have been identified in other complex diseases (234).  

 This was a simple approach to demonstrate that there are numerous genomic locations that 

are enriched for COPD susceptibility variants. I only accounted for physical distance between 

regions, an imprecise metric of the likelihood that two loci may be contributing to the same trait. 

A better approach would be to use an LD-based approach in specific populations. This would be 
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confounded by the variable populations in which literature results are reported and the possibility 

of synthetic associations, in which common variants tag rare variants outside of the range of LD 

between common variants (167). Finally, the physical distance used here is arbitrary and affected 

the reported results. For example, associations near MMP12 at 11q22, which were discussed in 

section 2 were not identified since the sliding-window based region result at 11q22 was greater 

than 1 Mbp away from variants between MMP12 and MMP3 identified in CVAS.   

5.5 CONCLUSIONS 

Using a literature-curated set of suggestively significant results from human genetic studies of 

COPD, I highlighted a number of genomic loci with strong supportive evidence for their 

contribution to disease susceptibility. In addition to offering support for the hypothesis presented 

in sections 1.2.7, 2, 3, and 4, that the genetic architecture underlying COPD is complex, this 

approach also prioritizes genomic loci for future studies. Few studies have been conducted to 

identify the biological function of susceptibility loci, due in part to difficulties in identifying 

causative variants or genes (section 1.2.6). Prioritizing loci using a combination of more than one 

genetic technique may be a useful approach to narrow specific causative genes. In addition, while 

candidate gene studies (see section 1.2.4) are less practical now that NGS techniques are widely 

accessible, one goal of precision medicine for COPD is early stratification of disease risk using 

genomics. Candidate gene panels, like those used in cancer diagnosis, could be used for this 

purpose but will require a limited number of genomic loci for testing and this approach could aid 

in prioritizing susceptibility loci for further testing.  
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6.0  IMPACT AND FUTURE DIRECTIONS 

Our current understanding of the genetic basis of COPD, like other complex diseases, is 

incomplete (see section 1.2). This work employs techniques not previously used in COPD to 

implicate susceptibility loci and candidate genes, and offers support for the hypothesis that both 

rare variants and common variants not detected by current CVAS contribute to ‘missing 

heritability’ in COPD. These results will require replication and biological validation. Some 

possible approaches to future studies are outlined below.  

6.1 REPLICATION STUDIES 

In section 2, we identified suggestive associations with emphysema using region-based, gene-

based and non-synonymous gene-based group-wise tests. None of these loci reached genome-wide 

significance – a probable explanation is a lack of power based on the small number of individuals 

included in the study. Although these findings are supported by previous genetic studies, 

replication in an independent cohort will offer the strongest support for their contribution to the 

susceptibility of COPD. Targeted sequencing of a panel of the top loci from this study is possible, 

but recent decreases in WGS cost suggests that a more effective approach is a separate WGS study 

on an independent population of individuals with COPD (286). Currently, the National Heart, 

Lung and Blood Institute (NHLBI) at the National Institutes of Health (NIH) is conducting a large 

WGS study, sequencing individuals with atrial fibrillation, asthma, COPD, obesity, and sleep 
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apnea through the Trans-Omics for Precision Medicine (TOPMed) Program. Nearly 10,000 

participants with COPD will be sequenced through TOPMed. This large WGS study of COPD will 

offer the opportunity to test for replication of the results presented here and in the previously 

reported WES studies of COPD. While it will also have better statistical power to detect rare 

variant associations than any study conducted to-date, even such a large study may be 

underpowered to detect rare variants of moderate effect (208). One approach to solving this 

problem will be to use the extremely large population studies currently being conducted in 

countries like England and Iceland, which include sequencing of over 100,000 individuals each 

(287). When properly combined with electronic health record data, sequencing repositories will 

allow for rare variant association testing of numerous traits of complex diseases in extremely large 

populations.   

Association of rare, non-synonymous mutations identified in this study should also be 

replicated in independent cohorts, which can be done without sequencing.  As described in section 

1.2, several large cohorts of individuals with COPD exist and would be ideal for this purpose. 

6.2 CANDIDATE GENES 

Candidate genes identified in genetic studies have successfully informed our understanding of the 

biological underpinnings of many diseases. In COPD, follow-up studies on candidate genes have 

begun to give hints to the roles of genes such as HHIP and HTR4 that are near loci implicated in 

CVAS (see section 0) (149, 150). This work identifies a number of candidate genes in COPD, and 

some suggested experiments to further investigate their roles are described below.  
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6.2.1 ABI3BP 

ABI3BP is an extracellular matrix-binding protein that contributes to major cellular processes, 

including proliferation and cellular differentiation (257, 258). Tumor cells decrease expression of 

the gene, in order to decrease senescence and escape cell death (256). In section 3, we 

demonstrated a significantly higher relative expression of Abi3bp in mice that are susceptible to 

cigarette smoke (A/J) than in mice that are resistant (CBA/J) (Figure 18). Connecting these two 

findings, a reasonable hypothesis is that A/J mice are more susceptible to cigarette smoke because 

of increased expression of Abi3bp and decreased protection from cell death. As mentioned in 1.1.2, 

senescence and apoptosis are likely to contribute to the severity and progression of COPD.  

Several experiments could be conducted to test this hypothesis.  Cell lines with variable 

ABI3BP gene expression could be treated with cigarette smoke extract (CSE) and apoptosis 

measured. Correlation between ABI3BP expression and apoptosis would give preliminary support 

for the gene’s contribution to apoptosis in a COPD model. Similarly, knockdown of ABI3BP using 

siRNA in vitro would be expected to reduce apoptosis. In vivo analysis could be conducted by 

producing mice that transgenically upregulate Abi3bp. Comparing chord lengths of these mice to 

background controls following chronic cigarette smoke exposure would support the findings 

shown here in A/J and CBA/J mice but removes potential confounders related to the complex 

genetic background of inbred strains. 
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6.2.2 PTPRO 

We identified the gene PTPRO using a group-wise test of non-synonymous rare variants grouped 

by gene across the exome in our extreme-trait study of emphysema (section 2). Protein tyrosine 

phosphatase, receptor-type O (PTPRO) is a known tumor suppressor and its inactivation via DNA 

methylation occurs in numerous tumors (231, 232). In breast cancer, PTPRO dephosphorylates 

ERBB2 (HER2) leading to its degradation and decreased tumor growth (288). Interestingly, similar 

enzymatic specificity has been observed in liver inflammation, where decreased PTPRO results in 

decreased NF-κB signaling via an ErbB2/Akt/GSK-3β/β-catenin cascade (289). Although little is 

known about the role of the gene in the lung, global PTPRO DNA methylation patterns are 

significantly altered following prenatal cigarette smoke exposure, indicating a role for epigenetic 

alterations of the gene in smoke exposure (233, 290). We observed several predicted deleterious 

non-synonymous variants in PTPRO that occur only in the susceptible population of our cohort, 

variation that is likely to have similar functional effects as inactivation by DNA methylation. There 

are two plausible hypotheses about the role of PTPRO in emphysema, based on these previous 

studies. First, like ABI3BP, the gene’s role in tumor growth could suggest that alteration of PTPRO 

function can affect tissue repair or cellular survival in the lung. Second, decreased PTPRO function 

may contribute to the dysregulated inflammatory response in COPD (section 1.1.2).   

Since we identified non-synonymous mutations in PTPRO that are predicted to be 

deleterious by in silico methods, a useful initial experiment would be to confirm that these 

mutations alter protein function. PTPRO is a protein phosphatase with known targets, so the 

introduction of each of these variants into cell lines using site-directed mutagenesis would allow 

for enzymatic assays testing the efficiency of wild type enzyme compared to mutant enzyme. 
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Dephosphorylation of a downstream target such as ERBB2 would be an ideal readout for this 

assay. In vitro studies combining CSE and siRNA silencing of PTPRO could test the hypothesis 

that PTPRO plays a role in alteration of cellular proliferation. PTPRO-/- mice have been described, 

and although they do not have a reported lung phenotype, chronic cigarette smoke exposure would 

model individuals with PTPRO mutations that develop emphysema. This would also be a useful 

model to see whether PTPRO knockdown reduces NF-κB signaling following cigarette smoke 

exposure in an ERBB2-dependent mechanism similar to that seen in liver inflammation.  

6.2.3 ZNF816 

The top association of both the sliding-window based approach and the gene-based approach of 

the WGS study described in section 2 is with the gene ZNF816. Searching PubMed for ‘ZNF816’ 

gives only one result (on 7/4/2016), a study identifying ZNF816 as a candidate gene in Mayer-

Rokitansky-Kuster-Hauser syndrome, a form of Mullerian agenesis (291). Structurally, the zinc 

finger motifs encoded by this gene suggest a DNA binding role. However, since our knowledge of 

this gene is extremely limited, basic exploratory studies will be necessary in order to hypothesize 

how it may contribute to the pathogenesis of COPD. Sequence analysis and molecular modeling 

of the protein may offer some insight into potential binding partners of the protein (292). Cellular 

and tissue localization experiments, including qPCR and immunofluorescence similar to those 

described in section 4 would be useful for clarifying where the gene is expressed in the lung. In 

addition, our study includes at least one individual with a rare, predicted deleterious, non-

synonymous variant in the gene and replication of this variant using site-directed mutagenesis and 

comparison to wild-type protein may reveal functional alterations in relevant cell types.  
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6.3 IL-1 SIGNALING IN HUMAN LUNG DEVELOPMENT AND DISEASE 

In section 4, we integrated mouse and human genome-wide scans to identify candidate genes likely 

to contribute to susceptibility to altered lung growth and development and COPD. Although we 

identified several candidate genes, we focused on the role of Il1r2 in this phenotype, as IL-1 

signaling is known to be involved in both prenatal and chronic disease, but had not previously been 

implicated in development. We demonstrated that anakinra, an IL-1 antagonist, can be used to 

reduce the alveolar chord length at 10 weeks of age in C3H/HeJ mice compared to mice treated 

with saline. This finding has important implications for human populations. It suggests that 

individuals with variants that reduce expression of IL-1 antagonists, such as known variants in 

IL1RN, are at increased risk of altered pulmonary development and growth (271, 273). In addition, 

variants in multiple genes encoding IL-1 antagonists or agonists acting in concert may contribute 

to susceptibility to decreased lung function. Finally, it suggests that there may be a therapeutic role 

for IL-1 antagonism in COPD.   

Additional animal studies would be useful to support the findings presented here. No Il1r2-

/- mouse has been reported in the literature but it could be used to support the findings in the 

C3H/HeJ mouse. An Il1rn-/- mouse is commercially available and measurement of 10wkCL in this 

strain could also offer further support for an altered balance of IL-1 agonists and antagonists in 

development and disease. Finally, crossing these two transgenic strains to produce a mouse 

deficient in both genes would be a powerful tool for testing the hypothesis that variation in multiple 

IL-1 antagonists has an additive effect on disease.   

Additional genetic studies will be necessary to fully support the relevance of the results of 

section 4 to human populations. Although we included the findings of a meta-analysis of four 
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COPD cohorts in our studies, replication of the association near IL1R2 in an independent cohort 

would be worthwhile. To test the hypothesis that variants in multiple agonists and antagonists may 

jointly contribute, looking at common variants previously associated with COPD in individuals 

with disease in large studies like the COPD meta-analysis would be useful. Variants in IL1B and 

IL1RN have been associated with COPD in some studies, and variants in IL1A and IL1R1 have 

been associated with other inflammatory diseases (271, 272).  Using a risk-scoring approach it 

would be possible to test whether having the minor allele of increasing numbers of these genotypes 

correlates with increasing FEV1.  

Therapeutic uses for IL-1 antagonists face several challenges. Safety data for anakinra in 

pregnancy are limited, so widespread use of the drug to protect from even a moderate increase in 

risk of adult disease seems improbable. However, in specific situations, such as severe infections 

known to significantly increase the risk of bronchopulmonary dysplasia (BPD), anakinra may be 

a useful tool to prevent both neonatal disease and associated long-term chronic health effects (293-

295). In COPD, clinical trials using IL-1β blocking antibodies have failed to show reduced decline 

in FEV1 or protection from exacerbations (296). Anakinra has not been used for treatment of 

COPD, but a phase I clinical study suggests that it may be useful for specific individuals with 

neutrophil-predominant asthma (297). Similarly, IL-1 antagonism in COPD may only be 

applicable to individuals with a specific phenotype or genetic predisposition (as suggested in 

section 4), which may explain the failure of IL-1β blocking antibodies. Importantly, soluble IL-

1R2 has therapeutic potential given its unique pharmacologic profile but it is not currently FDA 

approved, unlike anakinra (266).  



 133 

 

6.4 INTEGRATED GENETICS OF COPD 

Genome-wide linkage analyses and CVAS of complex diseases have improved our understanding 

of the genetic basis of COPD.  Despite this, these studies are affected by a lack of power due to 

inadequate sample sizes and phenotypic heterogeneity (see section 3.1). Today, significant 

resources are being put into large RVAS, as described in section 6.1.  Although it may one day be 

possible to conduct appropriately powered studies to detect both common variants and rare 

variants, it is useful to prioritize future directed studies based on our current understanding of the 

genetic architecture underlying complex disease. One important demonstration of all three studies 

presented in this work is that data from one project can inform the results of another in order to 

offer additional evidence to support associations that do not reach genome-wide significance 

thresholds. The integrated literature review approach described in section 5 is a simple first step 

in prioritizing loci in this way, but more complex multidimensional approaches have been 

proposed (298). Similarly, network and pathway approaches use curated datasets to identify 

underlying interactions that would otherwise be missed (299, 300).   

Such approaches can be expanded further with the addition of other ‘big’ datasets from 

transcriptomics, epigenetics, and proteomics studies, particularly useful given that some broad-

sense heritability is certainly attributable to non-germline variation (see section 1.2.7)  (301). A 

recent study integrating CVAS and gene expression data in asthma-COPD overlap syndrome 

identified several loci that would not have been identified in a traditional CVAS of the trait (302). 

In other diseases, systems biology approaches have been proposed that include the integration of 

multiple ‘omics datasets with large clinical datasets in order to give a better perspective on disease 

processes (298, 303).  
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7.0  FINAL THOUGHTS 

The last fifteen years have seen incredible advances in human genetics, from the publication of the 

first human genome to sequencing projects including hundreds of thousands of individuals (185, 

287). This progress has largely been driven by improvements in technology that have increased 

the speed and reduced the cost of genotyping  - even in the three years since this work began, the 

cost of obtaining a whole genome sequence has fallen by 300% (286). With the ability to detect 

the majority of genetic variation in large populations of individuals, the genetic architecture of 

complex diseases will be illuminated and many more susceptibility loci will be identified in 

diseases like COPD. As we account for this ‘missing heritability’, genetic testing to predict an 

individual’s disease progression or response to therapy may become possible. It will also be 

necessary to identify the biological relevance of these loci, and biochemical and molecular studies 

in vitro, in animals, and in human populations will remain necessary to achieve an understanding 

of chronic disease that allows for individualized approaches to medicine. In this work, we used 

techniques that are novel to COPD to identify susceptibility loci, prioritizing those loci for further 

study, and giving suggestions of their potential mechanisms in disease. Precision medicine will be 

achieved by the integration of large genetic data like those presented here and the systematic 

analysis of their relevance to both the genetic architecture and the pathogenesis of complex disease.    
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APPENDIX A 

EXTREME TRAIT WHOLE GENOME SEQUENCING TABULAR RESULTS 

This section contains two large tables: results from tests for association between single rare 

variants and emphysema described in Chapter 2 and descriptions of single variants in the most 

significantly associated region at 19q31 described in Chapter 2.  

 

Table 19. Top 100 single rare variant associations with emphysema 

CH BP rsID R A MAF RES 

CNT 

SUSC 

CNT 

Fisher's 

Exact P 

EMMA

X P 

9 37075550 rs117400947 G A 0.03101 65/0/0 56/8/0 2.90E-03 7.13E-05 

9 37124176 rs80121798 G A 0.03101 65/0/0 56/8/0 2.90E-03 7.13E-05 

9 37134601 rs77945177 C T 0.03101 65/0/0 56/8/0 2.90E-03 7.13E-05 

9 37314057 rs75985055 A G 0.03101 65/0/0 56/8/0 2.90E-03 7.13E-05 

15 90189675 rs148642238 G A 0.03876 65/0/0 54/10/0 6.16E-04 1.34E-04 

18 4471111 rs111462267 G A 0.03488 65/0/0 55/9/0 1.34E-03 1.38E-04 

3 173744839 rs13098521 G T 0.05814 64/1/0 50/14/0 2.29E-04 1.93E-04 

15 61872199 rs72745729 A G 0.05426 64/1/0 52/11/1 1.91E-03 2.40E-04 

15 61889602 rs17270990 G C 0.05426 64/1/0 52/11/1 1.91E-03 2.40E-04 

15 61895853 rs72745743 A G 0.05426 64/1/0 52/11/1 1.91E-03 2.40E-04 

15 61904639 rs72745747 T A 0.05426 64/1/0 52/11/1 1.91E-03 2.40E-04 

15 61909066 rs77410935 C T 0.05426 64/1/0 52/11/1 1.91E-03 2.40E-04 

8 81289897 rs11776280 A G 0.03488 65/0/0 55/9/0 1.34E-03 2.86E-04 

19 31940634 rs138069014 C T 0.02326 65/0/0 58/6/0 1.32E-02 3.28E-04 

11 2588398 rs61871513 T G 0.03101 65/0/0 56/8/0 2.90E-03 3.99E-04 

14 85438864 rs111859478 T C 0.04264 64/1/0 54/10/0 4.26E-03 4.39E-04 

7 78185077 rs192210418 G T 0.02326 65/0/0 58/6/0 1.32E-02 4.60E-04 

7 78191156 rs112837300 A G 0.02326 65/0/0 58/6/0 1.32E-02 4.60E-04 

10 46112395 rs116889933 C T 0.03101 65/0/0 56/8/0 2.90E-03 4.69E-04 

5 78475623 rs192753231 C T 0.03876 65/0/0 54/10/0 6.16E-04 4.74E-04 

5 78479584 rs78476112 T C 0.03876 65/0/0 54/10/0 6.16E-04 4.74E-04 
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2 179873383 rs115470223 G A 0.03101 65/0/0 56/8/0 2.90E-03 4.81E-04 

7 79334839 rs74979129 G C 0.03488 65/0/0 55/9/0 1.34E-03 4.87E-04 

7 139341566 rs113455073 C T 0.01938 65/0/0 59/5/0 2.77E-02 4.91E-04 

21 37146881 rs4816515 C A 0.02326 65/0/0 58/6/0 1.32E-02 5.15E-04 

6 99594258 rs140042863 A G 0.02713 65/0/0 57/7/0 6.22E-03 5.25E-04 

6 164321549 rs148204975 C T 0.05426 64/1/0 51/13/0 4.87E-04 5.26E-04 

14 94555818 rs117299001 A G 0.03101 65/0/0 56/8/0 2.90E-03 5.28E-04 

15 34124930 rs72716807 G A 0.02713 65/0/0 57/7/0 6.22E-03 5.30E-04 

15 34173857 rs72716841 C T 0.02713 65/0/0 57/7/0 6.22E-03 5.30E-04 

7 158417916 rs62478283 C G 0.02326 65/0/0 58/6/0 1.32E-02 5.50E-04 

4 8538084 rs116146113 A T 0.04651 53/12/

0 

64/0/0 5.00E-01 5.52E-04 

6 16616251 rs143110024 G A 0.03876 55/10/

0 

64/0/0 5.00E-01 5.53E-04 

6 16618885 rs142770327 G A 0.03876 55/10/

0 

64/0/0 5.00E-01 5.53E-04 

10 8658326 rs142243250 T C 0.04651 65/0/0 52/12/0 1.26E-04 5.57E-04 

18 34999616 rs74848094 C G 0.03488 64/1/0 56/8/0 1.67E-02 5.61E-04 

8 22983423 rs75164982 G T 0.03488 65/0/0 55/9/0 1.34E-03 5.94E-04 

16 8851223 rs11647952 C G 0.05426 63/2/0 52/12/0 4.43E-03 6.15E-04 

19 33812605 rs79285836 G T 0.02326 65/0/0 58/6/0 1.32E-02 6.18E-04 

18 34924293 rs111773668 C T 0.02713 65/0/0 57/7/0 6.22E-03 6.20E-04 

4 96344416 rs17380396 C T 0.02713 65/0/0 57/7/0 6.22E-03 6.37E-04 

4 124006098 rs77202835 A T 0.04264 55/10/

0 

63/1/0 5.01E-01 6.40E-04 

3 142971115 rs183482652 G A 0.02713 65/0/0 57/7/0 6.22E-03 6.42E-04 

11 125706441 rs79456491 C T 0.02713 65/0/0 57/7/0 6.22E-03 6.85E-04 

11 125706973 rs75243465 A T 0.02713 65/0/0 57/7/0 6.22E-03 6.85E-04 

11 125771340 rs76032729 T C 0.02713 65/0/0 57/7/0 6.22E-03 6.85E-04 

20 60671377 rs138999600 A G 0.03101 65/0/0 56/8/0 2.90E-03 7.02E-04 

4 70114376 rs182747166 C T 0.02326 65/0/0 58/6/0 1.32E-02 7.64E-04 

4 70292860 rs141048116 T C 0.02326 65/0/0 58/6/0 1.32E-02 7.64E-04 

4 70311770 rs148015248 G A 0.02326 65/0/0 58/6/0 1.32E-02 7.64E-04 

6 103722012 rs118164141 G T 0.03101 65/0/0 56/8/0 2.90E-03 7.79E-04 

11 125380076 rs144720627 G A 0.03101 65/0/0 56/8/0 2.90E-03 8.01E-04 

14 40422078 rs117435965 G A 0.05039 64/1/0 52/12/0 1.02E-03 8.11E-04 

9 136404884 rs147342065 G A 0.02713 65/0/0 57/7/0 6.22E-03 8.15E-04 

2 83816815 rs11674200 A C 0.04264 64/1/0 54/10/0 4.26E-03 8.24E-04 

5 95202969 rs143135605 C T 0.03101 58/7/0 63/1/0 5.09E-01 8.29E-04 

7 14622069 rs77314012 A G 0.04264 55/10/

0 

63/1/0 5.01E-01 8.35E-04 

7 14628074 rs78555834 T C 0.04264 55/10/

0 

63/1/0 5.01E-01 8.35E-04 
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7 14628400 rs62443559 A C 0.04264 55/10/

0 

63/1/0 5.01E-01 8.35E-04 

7 14634332 rs62445562 T G 0.04264 55/10/

0 

63/1/0 5.01E-01 8.35E-04 

7 14635257 rs117728549 T C 0.04264 55/10/

0 

63/1/0 5.01E-01 8.35E-04 

7 14637904 rs62445565 T C 0.04264 55/10/

0 

63/1/0 5.01E-01 8.35E-04 

2 12516191 rs149393532 T G 0.02326 65/0/0 58/6/0 1.32E-02 8.40E-04 

5 78514519 rs141529932 C T 0.03488 65/0/0 55/9/0 1.34E-03 8.40E-04 

5 78589856 rs77378764 T A 0.03488 65/0/0 55/9/0 1.34E-03 8.40E-04 

3 169970698 rs138920376 C G 0.02713 65/0/0 57/7/0 6.22E-03 9.05E-04 

3 169991792 rs145849596 G T 0.02713 65/0/0 57/7/0 6.22E-03 9.05E-04 

3 169996200 rs115345596 G A 0.02713 65/0/0 57/7/0 6.22E-03 9.05E-04 

3 173594773 rs35842459 A G 0.06202 63/2/0 50/14/0 1.14E-03 9.13E-04 

3 173692407 rs13100934 A G 0.06202 63/2/0 50/14/0 1.14E-03 9.13E-04 

4 69945014 rs78748694 T G 0.02326 65/0/0 58/6/0 1.32E-02 9.13E-04 

8 80363918 rs56059927 C T 0.02713 65/0/0 57/7/0 6.22E-03 9.20E-04 

7 30647900 rs71530517 G A 0.03876 64/1/0 55/9/0 8.51E-03 9.51E-04 

2 222364436  A T 0.05195 40/0/0 31/4/2 4.31E-02 9.65E-04 

12 39280387 rs113363481 A C 0.01938 65/0/0 59/5/0 2.77E-02 9.85E-04 

12 39606170 rs189149634 T A 0.01938 65/0/0 59/5/0 2.77E-02 9.85E-04 

9 37051488 rs77572427 C G 0.02326 65/0/0 58/6/0 1.32E-02 9.91E-04 

9 37172516 rs140817625 T C 0.02326 65/0/0 58/6/0 1.32E-02 9.91E-04 

9 37172676 rs144676436 G T 0.02326 65/0/0 58/6/0 1.32E-02 9.91E-04 

9 37176133 rs186530114 C T 0.02326 65/0/0 58/6/0 1.32E-02 9.91E-04 

14 68912098 rs117086110 C T 0.05039 64/1/0 54/8/2 1.47E-02 1.01E-03 

8 14698506 rs140046273 C A 0.03488 56/9/0 64/0/0 5.00E-01 1.01E-03 

8 14701780 rs117495771 T C 0.03488 56/9/0 64/0/0 5.00E-01 1.01E-03 

8 14751370 rs146299088 G T 0.03488 56/9/0 64/0/0 5.00E-01 1.01E-03 

8 14754589 rs188849037 C G 0.03488 56/9/0 64/0/0 5.00E-01 1.01E-03 

8 14754764 rs143351817 C T 0.03488 56/9/0 64/0/0 5.00E-01 1.01E-03 

6 164116241 rs76377186 G A 0.03101 65/0/0 56/8/0 2.90E-03 1.01E-03 

6 164157762 rs78273041 G A 0.03101 65/0/0 56/8/0 2.90E-03 1.01E-03 

3 54065004 rs147514340 T C 0.03876 55/10/

0 

64/0/0 5.00E-01 1.06E-03 

9 127199876 rs139831782 T C 0.04651 64/1/0 53/11/0 2.10E-03 1.06E-03 

11 21143884 rs74343549 T C 0.02713 65/0/0 57/7/0 6.22E-03 1.07E-03 

12 33964475 rs111393860 T A 0.01938 65/0/0 59/5/0 2.77E-02 1.10E-03 

12 33979286 rs77690974 C T 0.01938 65/0/0 59/5/0 2.77E-02 1.10E-03 

12 34243833 rs113312838 G A 0.01938 65/0/0 59/5/0 2.77E-02 1.10E-03 

12 34310738 rs112841437 T A 0.01938 65/0/0 59/5/0 2.77E-02 1.10E-03 
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12 34697903 rs140355302 C A 0.01938 65/0/0 59/5/0 2.77E-02 1.10E-03 

12 34755876 rs111647128 C A 0.01938 65/0/0 59/5/0 2.77E-02 1.10E-03 

12 38049795  C T 0.01938 65/0/0 59/5/0 2.77E-02 1.10E-03 

12 38052440  G A 0.01938 65/0/0 59/5/0 2.77E-02 1.10E-03 

12 38070260 rs139708476 G A 0.01938 65/0/0 59/5/0 2.77E-02 1.10E-03 

 

 

Table 20. Rare variants in suggestively associated 30kbp region at 19q31 

Chr BP rsID Ref Alt MAF RESCNT SUSCNT P-value 

EMMAX 

P-value 

Fisher's 

Exact 

TR NS 

19 53429414 rs188376139 G A 0.00775 65/0/0 62/2/0 NA 0.24   

19 53429531 rs138869751 G A 0.00388 65/0/0 63/1/0 NA 0.50   

19 53430152 rs144927208 C T 0.00775 65/0/0 62/2/0 NA 0.24 *  

19 53430463  C T 0.00775 63/2/0 64/0/0 NA 0.57 *  

19 53430708  G A 0.00388 65/0/0 63/1/0 NA 0.50 *  

19 53430787 rs113303237 G A 0.00388 65/0/0 63/1/0 NA 0.50 *  

19 53430883  A G 0.00388 64/1/0 64/0/0 NA 0.67 *  

19 53430966 rs145727688 G A 0.00388 65/0/0 63/1/0 NA 0.50 *  

19 53430994  A C 0.00388 65/0/0 63/1/0 NA 0.50 *  

19 53432433 rs201431366 T C 0.00388 65/0/0 63/1/0 NA 0.50 * * 

19 53432434 rs368707615 G A 0.00388 65/0/0 63/1/0 NA 0.50 * * 

19 53432449 rs191740949 C G 0.00388 65/0/0 63/1/0 NA 0.50 * * 

19 53432603 rs11880173 G T 0.00388 65/0/0 63/1/0 NA 0.50 *  

19 53432854  A G 0.00388 65/0/0 63/1/0 NA 0.50 *  

19 53433186 rs73936446 A G 0.00388 64/1/0 64/0/0 NA 0.67 *  

19 53433347 rs184201997 A C 0.00388 65/0/0 63/1/0 NA 0.50 *  

19 53433779 rs117992573 T C 0.02326 65/0/0 58/6/0 0.02 0.01 *  

19 53434172  G A 0.00388 65/0/0 63/1/0 NA 0.50 *  

19 53435491 rs142908218 A T 0.00775 64/1/0 63/1/0 NA 0.99 *  

19 53435806 rs184509400 C T 0.00388 64/1/0 64/0/0 NA 0.67 *  

19 53436018  C T 0.00388 65/0/0 63/1/0 NA 0.50 *  

19 53436384  C T 0.00459 52/1/0 56/0/0 NA 0.66 *  

19 53436881  T C 0.00388 64/1/0 64/0/0 NA 0.67 *  

19 53437356  C A 0.00388 65/0/0 63/1/0 NA 0.50 *  

19 53437589  G A 0 65/0/0 64/0/0 NA 1.00 *  
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19 53437638 rs182735408 T A 0.00388 65/0/0 63/1/0 NA 0.50 *  

19 53438497  C G 0.00388 65/0/0 63/1/0 NA 0.50 *  

19 53438548 rs368064459 G A 0.00388 65/0/0 63/1/0 NA 0.50 *  

19 53438661 rs145781156 G C 0.02713 62/3/0 60/4/0 0.64 0.70 *  

19 53439162 rs115986175 C T 0.0155 64/1/0 61/3/0 0.72 0.36 *  

19 53439198 rs73055039 G A 0.00388 65/0/0 63/1/0 NA 0.50 *  

19 53439524 rs145982953 T C 0.00388 65/0/0 63/1/0 NA 0.50 *  

19 53440178 rs78149901 G A 0.0155 64/1/0 61/3/0 0.24 0.36   

19 53440653 rs10402011 C T 0.00388 65/0/0 63/1/0 NA 0.50   

19 53441295 rs10408640 C T 0.00388 65/0/0 63/1/0 NA 0.50   

19 53441741 rs10411282 T C 0.00388 65/0/0 63/1/0 NA 0.50   

19 53441962 rs111305521 T C 0.00388 65/0/0 63/1/0 NA 0.50   

19 53441978 rs181118223 G A 0.00388 65/0/0 63/1/0 NA 0.50   

19 53442258 rs73055051 T C 0.00388 65/0/0 63/1/0 NA 0.50   

19 53442548  C T 0.00388 65/0/0 63/1/0 NA 0.50   

19 53442969 rs77289965 C T 0.01938 63/2/0 61/3/0 0.33 0.67   

19 53443767 rs149342050 C T 0.00775 65/0/0 62/2/0 NA 0.24   

19 53444153 rs117035844 A C 0.00388 65/0/0 63/1/0 NA 0.50   

19 53444251 rs112878696 C T 0.00388 65/0/0 63/1/0 NA 0.50   

19 53444258 rs111714424 G A 0.00388 65/0/0 63/1/0 NA 0.50   

19 53444490 rs190552009 G A 0.00388 65/0/0 63/1/0 NA 0.50   

19 53444664 rs140251724 C G 0.01163 62/3/0 64/0/0 0.08 0.53   

19 53444797  C T 0.00388 64/1/0 64/0/0 NA 0.67   

19 53444888 rs181429793 C G 0.00775 64/1/0 63/1/0 NA 0.99   

19 53444945  C T 0.00388 65/0/0 63/1/0 NA 0.50   

19 53445603 rs148671377 C A 0.00388 64/1/0 64/0/0 NA 0.67   

19 53447139 rs138542567 G C 0.00388 64/1/0 64/0/0 NA 0.67   

19 53447288 rs147249472 G A 0.00775 65/0/0 62/2/0 NA 0.24   

19 53447695 rs184291701 C T 0.00775 64/1/0 63/1/0 NA 0.99   

19 53448477  A G 0.00388 65/0/0 63/1/0 NA 0.50   

19 53448528  C T 0.00388 65/0/0 63/1/0 NA 0.50   

19 53449470 rs2011866 T A 0.00775 65/0/0 62/2/0 NA 0.24   

19 53449521 rs187405014 A G 0.00388 65/0/0 63/1/0 NA 0.50   

19 53449645  G A 0.00388 64/1/0 64/0/0 NA 0.67   

19 53451295  C T 0.00388 64/1/0 64/0/0 NA 0.67   

19 53451336 rs142649507 A C 0.00388 65/0/0 63/1/0 NA 0.50   

19 53451911  C T 0 65/0/0 64/0/0 NA 1.00   
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19 53452544  C T 0.00388 65/0/0 63/1/0 NA 0.50   

19 53453131 rs146901011 G A 0.00388 64/1/0 64/0/0 NA 0.67   

19 53453403 rs149695139 C A 0.00388 64/1/0 64/0/0 NA 0.67  * 

19 53453530 rs138196750 G C 0.00388 65/0/0 63/1/0 NA 0.50  * 

19 53453880 rs138017999 G A 0.02326 61/4/0 62/2/0 0.67 0.65  * 

19 53454301  G A 0.00388 65/0/0 63/1/0 NA 0.50   

19 53454654 rs139245005 T C 0.00388 65/0/0 63/1/0 NA 0.50   

19 53455229 rs145113439 T C 0.00388 65/0/0 63/1/0 NA 0.50   

19 53456179 rs185038404 T C 0.00388 65/0/0 63/1/0 NA 0.50   

19 53456397  C T 0.00775 65/0/0 62/2/0 NA 0.24   

19 53457415 rs189344696 T C 0.00388 65/0/0 63/1/0 NA 0.50   

19 53458122 rs150144819 C T 0.00388 65/0/0 63/1/0 NA 0.50   

19 53458855 rs113242585 T C 0.00388 65/0/0 63/1/0 NA 0.50   

19 53458891 rs137897568 G T 0.00388 65/0/0 63/1/0 NA 0.50   

19 53459155 rs182706082 A G 0.00388 65/0/0 63/1/0 NA 0.50   

19 53459265 rs140408256 A G 0.00388 64/1/0 64/0/0 NA 0.67   

19 53459540 rs193096949 G A 0.00388 65/0/0 63/1/0 NA 0.50   

19 53459573 rs185460031 C T 0.00388 65/0/0 63/1/0 NA 0.50   

19 53459581 rs139377623 C T 0.00775 64/1/0 63/1/0 NA 0.99   

19 53459792 rs146649631 C T 0.00388 65/0/0 63/1/0 NA 0.50   

19 53459946 rs185565621 A G 0.00388 65/0/0 63/1/0 NA 0.50   

19 53460267 rs146806388 A G 0.00388 65/0/0 63/1/0 NA 0.50   

19 53460290 rs184996223 T C 0.00388 65/0/0 63/1/0 NA 0.50   

19 53460534 rs187216641 C T 0.00388 65/0/0 63/1/0 NA 0.50   

19 53460590 rs191584336 G C 0.00388 65/0/0 63/1/0 NA 0.50   

19 53460814 rs191714893 G A 0.00388 65/0/0 63/1/0 NA 0.50   

19 53460911 rs182493458 C T 0.00388 65/0/0 63/1/0 NA 0.50   

19 53460976 rs187574014 C G 0.00388 65/0/0 63/1/0 NA 0.50   

19 53461003 rs192566620 A G 0.00388 65/0/0 63/1/0 NA 0.50   

19 53461079 rs185574162 C T 0.00388 65/0/0 63/1/0 NA 0.50   

19 53461170 rs192162626 A T 0.00388 65/0/0 63/1/0 NA 0.50   

19 53461333 rs184282140 T C 0.00388 65/0/0 63/1/0 NA 0.50   

19 53461447 rs188656697 C A 0.00388 65/0/0 63/1/0 NA 0.50   

19 53461495 rs181188954 A T 0.00388 65/0/0 63/1/0 NA 0.50   

19 53461541 rs189205014 G A 0.0155 64/1/0 61/3/0 0.23 0.36   

19 53461623 rs145781671 C G 0.00388 65/0/0 63/1/0 NA 0.50   

19 53461691 rs180676933 G C 0.0155 62/3/0 63/1/0 0.19 0.62   
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19 53461850  G C 0.00388 64/1/0 64/0/0 NA 0.67   

19 53462136 rs148559635 G A 0.00388 65/0/0 63/1/0 NA 0.50   

19 53462242 rs141948083 C T 0.00775 64/1/0 63/1/0 NA 0.99   

19 53462269 rs146141405 C T 0.00388 65/0/0 63/1/0 NA 0.50   

19 53462279  G A 0.00388 65/0/0 63/1/0 NA 0.50   

19 53462294  T G 0.00388 65/0/0 63/1/0 NA 0.50   

19 53462507 rs140190373 T C 0.00388 65/0/0 63/1/0 NA 0.50   

19 53462548 rs185996096 A G 0.00388 65/0/0 63/1/0 NA 0.50   

19 53462587 rs188084686 C A 0.00388 65/0/0 63/1/0 NA 0.50   

19 53463043 rs146234264 T C 0.00388 65/0/0 63/1/0 NA 0.50   

19 53463114 rs138652725 C G 0.00388 65/0/0 63/1/0 NA 0.50   

19 53463449 rs150311813 G A 0.00388 65/0/0 63/1/0 NA 0.50   

19 53463718  C G 0.00388 64/1/0 64/0/0 NA 0.67   

19 53463964 rs146129847 C G 0.00388 65/0/0 63/1/0 NA 0.50   

19 53464050 rs117695884 T C 0.0155 63/2/0 62/2/0 0.97 0.99   

19 53464136 rs146404860 G A 0.00388 65/0/0 63/1/0 NA 0.50   

19 53464169 rs115102058 C T 0.00388 65/0/0 63/1/0 NA 0.50   

19 53464452 rs184779820 T C 0.00388 65/0/0 63/1/0 NA 0.50   

19 53464513 rs180913203 A G 0.00775 64/1/0 63/1/0 NA 0.99   

19 53465148 rs145204396 C T 0.01163 65/0/0 61/3/0 0.10 0.12   

19 53465793 rs186408317 G A 0.00388 65/0/0 63/1/0 NA 0.50   

19 53466208 rs117179994 G A 0.00388 65/0/0 63/1/0 NA 0.50   

19 53466404 rs187857443 G A 0.00388 65/0/0 63/1/0 NA 0.50   
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APPENDIX B 

MURINE GWAS TABULAR RESULTS 

Table 21. Known predicted deleterious variants in IL1R2 

Variant* Chr BP^ Ref Alleles Global 

MAF 

SIFT PolyPhen 

rs371567278 2 102009585 T C/T <0.001 0.04 0.824 

rs563050165 2 102009597 C T/C <0.001 0.04 0.89 

rs779320040 2 102009627 T C/T <0.001 0 0.998 

rs772776365 2 102009631 C T/C <0.001 0.03 0.898 

rs747233440 2 102009641 C G/C <0.001 0 0.97 

rs771059282 2 102009642 G T/G <0.001 0 1 

rs749271077 2 102009658 G A/G <0.001 0.05 0.771 

rs781298497 2 102009714 G T/G <0.001 0 0.999 

rs139061430 2 102009747 T C/T <0.001 0 1 

rs145651311 2 102009748 A G/A 0.003 0.02 0.904 

rs765986681 2 102009774 C T/C <0.001 0 0.982 

rs776289279 2 102009775 T G/T <0.001 0 0.999 

rs751909955 2 102009810 G T/G <0.001 0 1 

rs548206510 2 102015885 A G/A <0.001 0 1 

rs746839384 2 102015897 G C/G <0.001 0 0.991 

rs770663605 2 102015905 G C/G <0.001 0 0.982 

rs757210661 2 102015906 C T/C <0.001 0 1 

rs762159296 2 102015947 C T/C <0.001 0 0.993 

rs766781084 2 102015957 G A/G <0.001 0 1 

rs567036098 2 102015980 C G/C <0.001 0 0.999 

rs371661087 2 102016051 T G/T <0.001 0 0.998 

rs781638818 2 102019687 T G/T <0.001 0 0.776 

rs780347152 2 102019699 C T/C <0.001 0 0.998 

rs753591681 2 102019735 G A/G <0.001 0 0.973 

rs764905517 2 102019740 T C/T <0.001 0.02 0.963 

rs138667044 2 102019741 A G/A/T <0.001 0.02 0.855 

rs538224389 2 102019744 A G/A <0.001 0 0.999 

rs370953333 2 102019762 G A/G <0.001 0.05 0.937 
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rs760605159 2 102019789 A G/A <0.001 0.03 0.977 

rs111549937 2 102019803 T C/T <0.001 0 0.974 

rs369886122 2 102022222 T C/T <0.001 0.01 0.998 

rs758651036 2 102022223 G C/G <0.001 0 0.999 

rs183091210 2 102022236 G A/G <0.001 0 0.962 

rs199970902 2 102022244 T C/T <0.001 0 0.985 

rs751969491 2 102024533 T G/T <0.001 0 1 

rs142547344 2 102024551 G C/G/T <0.001 0 0.999 

rs142547344 2 102024551 T C/G/T <0.001 0 0.994 

rs756165966 2 102024556 G A/G <0.001 0 0.974 

rs753708553 2 102024566 A T/A <0.001 0 0.997 

rs369088604 2 102024574 C G/A/C <0.001 0 0.973 

rs770557266 2 102024611 G A/G <0.001 0 0.998 

rs550245933 2 102024646 A C/A/T <0.001 0 0.993 

rs550245933 2 102024646 T C/A/T <0.001 0 0.999 

rs374536258 2 102024647 A G/A <0.001 0 0.991 

rs780802660 2 102024649 A G/A <0.001 0 0.991 

rs3218976 2 102024655 A G/A/T <0.001 0.01 0.962 

rs772421571 2 102024658 A G/A <0.001 0 0.98 

rs776757109 2 102024664 T C/T <0.001 0.01 0.951 

rs764160421 2 102026113 G A/G <0.001 0 0.868 

rs761679495 2 102026139 T A/T <0.001 0 0.953 

rs201032704 2 102026140 C T/C <0.001 0 0.957 

rs139885028 2 102026149 T C/T <0.001 0 0.882 

rs144482163 2 102026155 C T/C <0.001 0.01 0.983 

rs747569608 2 102026199 C T/C <0.001 0 0.999 

rs766020542 2 102028235 T C/T <0.001 0.05 0.961 

rs756425037 2 102028261 T C/T <0.001 0 1 

rs780634571 2 102028262 T C/T <0.001 0 1 

rs748144607 2 102028288 C G/C <0.001 0 0.955 

rs772243120 2 102028292 A G/A <0.001 0 0.991 

rs773007739 2 102028295 G T/G <0.001 0 0.794 

rs368078017 2 102028385 A C/A/G <0.001 0 0.997 

rs368078017 2 102028385 G C/A/G <0.001 0 0.997 

rs371567278 2 102009585 T C/T <0.001 0.04 0.824 

rs563050165 2 102009597 C T/C <0.001 0.04 0.89 

rs779320040 2 102009627 T C/T <0.001 0 0.998 

rs772776365 2 102009631 C T/C <0.001 0.03 0.898 

rs747233440 2 102009641 C G/C <0.001 0 0.97 

rs771059282 2 102009642 G T/G <0.001 0 1 

rs749271077 2 102009658 G A/G <0.001 0.05 0.771 

rs781298497 2 102009714 G T/G <0.001 0 0.999 
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rs139061430 2 102009747 T C/T <0.001 0 1 

rs145651311 2 102009748 A G/A 0.003 0.02 0.904 

rs765986681 2 102009774 C T/C <0.001 0 0.982 

rs776289279 2 102009775 T G/T <0.001 0 0.999 

rs751909955 2 102009810 G T/G <0.001 0 1 

rs548206510 2 102015885 A G/A <0.001 0 1 

rs746839384 2 102015897 G C/G <0.001 0 0.991 

rs770663605 2 102015905 G C/G <0.001 0 0.982 

rs757210661 2 102015906 C T/C <0.001 0 1 

rs762159296 2 102015947 C T/C <0.001 0 0.993 

rs766781084 2 102015957 G A/G <0.001 0 1 

rs567036098 2 102015980 C G/C <0.001 0 0.999 

rs371661087 2 102016051 T G/T <0.001 0 0.998 

rs781638818 2 102019687 T G/T <0.001 0 0.776 

rs780347152 2 102019699 C T/C <0.001 0 0.998 

rs753591681 2 102019735 G A/G <0.001 0 0.973 

rs764905517 2 102019740 T C/T <0.001 0.02 0.963 

rs138667044 2 102019741 A G/A/T <0.001 0.02 0.855 

rs538224389 2 102019744 A G/A <0.001 0 0.999 

rs370953333 2 102019762 G A/G <0.001 0.05 0.937 

rs760605159 2 102019789 A G/A <0.001 0.03 0.977 

rs111549937 2 102019803 T C/T <0.001 0 0.974 

rs369886122 2 102022222 T C/T <0.001 0.01 0.998 

rs758651036 2 102022223 G C/G <0.001 0 0.999 

rs183091210 2 102022236 G A/G <0.001 0 0.962 

rs199970902 2 102022244 T C/T <0.001 0 0.985 

rs751969491 2 102024533 T G/T <0.001 0 1 

rs142547344 2 102024551 G C/G/T <0.001 0 0.999 

rs142547344 2 102024551 T C/G/T <0.001 0 0.994 

rs756165966 2 102024556 G A/G <0.001 0 0.974 

rs753708553 2 102024566 A T/A <0.001 0 0.997 

rs369088604 2 102024574 C G/A/C <0.001 0 0.973 

rs770557266 2 102024611 G A/G <0.001 0 0.998 

rs550245933 2 102024646 A C/A/T <0.001 0 0.993 

rs550245933 2 102024646 T C/A/T <0.001 0 0.999 

rs374536258 2 102024647 A G/A <0.001 0 0.991 

rs780802660 2 102024649 A G/A <0.001 0 0.991 

rs3218976 2 102024655 A G/A/T <0.001 0.01 0.962 

rs772421571 2 102024658 A G/A <0.001 0 0.98 

rs776757109 2 102024664 T C/T <0.001 0.01 0.951 

rs764160421 2 102026113 G A/G <0.001 0 0.868 

rs761679495 2 102026139 T A/T <0.001 0 0.953 
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rs201032704 2 102026140 C T/C <0.001 0 0.957 

rs139885028 2 102026149 T C/T <0.001 0 0.882 

rs144482163 2 102026155 C T/C <0.001 0.01 0.983 

rs747569608 2 102026199 C T/C <0.001 0 0.999 

rs766020542 2 102028235 T C/T <0.001 0.05 0.961 

rs756425037 2 102028261 T C/T <0.001 0 1 

rs780634571 2 102028262 T C/T <0.001 0 1 

rs748144607 2 102028288 C G/C <0.001 0 0.955 

rs772243120 2 102028292 A G/A <0.001 0 0.991 

rs773007739 2 102028295 G T/G <0.001 0 0.794 

rs368078017 2 102028385 A C/A/G <0.001 0 0.997 

rs368078017 2 102028385 G C/A/G <0.001 0 0.997 

rs371567278 2 102009585 T C/T <0.001 0.04 0.824 

rs563050165 2 102009597 C T/C <0.001 0.04 0.89 

rs779320040 2 102009627 T C/T <0.001 0 0.998 

rs772776365 2 102009631 C T/C <0.001 0.03 0.898 

rs747233440 2 102009641 C G/C <0.001 0 0.97 

rs771059282 2 102009642 G T/G <0.001 0 1 

rs749271077 2 102009658 G A/G <0.001 0.04 0.771 

rs781298497 2 102009714 G T/G <0.001 0 0.999 

rs139061430 2 102009747 T C/T <0.001 0 1 

rs145651311 2 102009748 A G/A <0.001 0.02 0.904 

rs765986681 2 102009774 C T/C <0.001 0 0.982 

rs776289279 2 102009775 T G/T <0.001 0 0.999 

rs751909955 2 102009810 G T/G <0.001 0 1 

rs548206510 2 102015885 A G/A <0.001 0 1 

rs746839384 2 102015897 G C/G <0.001 0 0.991 

rs770663605 2 102015905 G C/G <0.001 0 0.982 

rs757210661 2 102015906 C T/C <0.001 0 1 

rs762159296 2 102015947 C T/C <0.001 0 0.993 

rs766781084 2 102015957 G A/G <0.001 0 1 

rs567036098 2 102015980 C G/C <0.001 0 0.999 

rs371661087 2 102016051 T G/T <0.001 0 0.998 

rs781638818 2 102019687 T G/T <0.001 0 0.776 

rs780347152 2 102019699 C T/C <0.001 0 0.998 

rs753591681 2 102019735 G A/G <0.001 0 0.973 

rs764905517 2 102019740 T C/T <0.001 0.01 0.963 

rs138667044 2 102019741 A G/A/T <0.001 0.02 0.855 

rs538224389 2 102019744 A G/A <0.001 0 0.999 

rs370953333 2 102019762 G A/G <0.001 0.05 0.937 

rs760605159 2 102019789 A G/A <0.001 0.04 0.977 

rs111549937 2 102019803 T C/T <0.001 0 0.974 
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rs369886122 2 102022222 T C/T <0.001 0.01 0.998 

rs758651036 2 102022223 G C/G <0.001 0 0.999 

rs183091210 2 102022236 G A/G <0.001 0 0.962 

rs199970902 2 102022244 T C/T <0.001 0 0.985 

rs751969491 2 102024533 T G/T <0.001 0 1 

rs142547344 2 102024551 G C/G/T <0.001 0 0.999 

rs142547344 2 102024551 T C/G/T <0.001 0 0.994 

rs756165966 2 102024556 G A/G <0.001 0 0.974 

rs753708553 2 102024566 A T/A <0.001 0 0.997 

rs369088604 2 102024574 C G/A/C <0.001 0 0.973 

rs770557266 2 102024611 G A/G <0.001 0 0.998 

rs550245933 2 102024646 A C/A/T <0.001 0 0.993 

rs550245933 2 102024646 T C/A/T <0.001 0 0.999 

rs374536258 2 102024647 A G/A <0.001 0 0.991 

rs780802660 2 102024649 A G/A <0.001 0 0.991 

rs3218976 2 102024655 A G/A/T <0.001 0.01 0.962 

rs772421571 2 102024658 A G/A <0.001 0 0.98 

rs776757109 2 102024664 T C/T <0.001 0 0.951 

rs371567278 2 102009585 T C/T <0.001 0.05 0.824 

rs779320040 2 102009627 T C/T <0.001 0.01 0.998 

rs772776365 2 102009631 C T/C <0.001 0.03 0.898 

rs747233440 2 102009641 C G/C <0.001 0 0.97 

rs771059282 2 102009642 G T/G <0.001 0.01 1 

rs781298497 2 102009714 G T/G <0.001 0 0.999 

rs139061430 2 102009747 T C/T <0.001 0 1 

rs145651311 2 102009748 A G/A <0.001 0.02 0.904 

rs765986681 2 102009774 C T/C <0.001 0 0.982 

rs776289279 2 102009775 T G/T <0.001 0 0.999 

rs751909955 2 102009810 G T/G <0.001 0 1 

rs548206510 2 102015885 A G/A <0.001 0 1 

rs746839384 2 102015897 G C/G <0.001 0 0.991 

rs770663605 2 102015905 G C/G <0.001 0 0.982 

rs757210661 2 102015906 C T/C <0.001 0 1 

rs762159296 2 102015947 C T/C <0.001 0 0.993 

rs766781084 2 102015957 G A/G <0.001 0 1 

rs567036098 2 102015980 C G/C <0.001 0 0.999 

rs367683772 2 102016016 T C/T <0.001 0.04 0.922 

rs371661087 2 102016051 T G/T <0.001 0 0.998 

rs781638818 2 102019687 T G/T <0.001 0 0.776 

rs780347152 2 102019699 C T/C <0.001 0 0.998 

rs753591681 2 102019735 G A/G <0.001 0 0.973 

rs764905517 2 102019740 T C/T <0.001 0.03 0.963 
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rs138667044 2 102019741 A G/A/T <0.001 0.05 0.855 

rs538224389 2 102019744 A G/A <0.001 0 0.999 

rs370953333 2 102019762 G A/G <0.001 0.03 0.937 

rs760605159 2 102019789 A G/A <0.001 0 0.977 

rs111549937 2 102019803 T C/T <0.001 0 0.974 

* SNP IDs were identified in dbSNP146, ^Chromosomal location mapped to GRCh38 
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