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Abstract

Introduction: Tissue reperfusion following hemorrhagic shock may paradoxically cause tissue injury and organ
dysfunction by mitochondrial free radical expression. Both nitrite and carbon monoxide (CO) may protect from this
reperfusion injury by limiting mitochondrial free radial production. We explored the effects of very small doses of
inhaled nitrite and CO on tissue injury in a porcine model of hemorrhagic shock.

Methods: Twenty pigs (mean wt. 30.6 kg, range 27.2 to 36.4 kg) had microdialysis catheters inserted in muscle,
peritoneum, and liver to measure lactate, pyruvate, glucose, glycerol, and nitrite. Nineteen of the pigs were bled at
a rate of 20 ml/min to a mean arterial pressure of 30 mmHg and kept between 30 and 40 mmHg for 90 minutes
and then resuscitated. One pig was instrumented but not bled (sham). Hemorrhaged animals were randomized to
inhale nothing (control, n = 7), 11 mg nitrite (nitrite, n = 7) or 250 ppm CO (CO, n = 5) over 30 minutes before fluid
resuscitation. Mitochondrial respiratory control ratio was measured in muscle biopsies. Repeated measures from
microdialysis catheters were analyzed in a random effects mixed model.

Results: Neither nitrite nor CO had any effects on the measured hemodynamic variables. Following inhalation of
nitrite, plasma, but not tissue, nitrite increased. Following reperfusion, plasma nitrite only increased in the control
and CO groups. Thereafter, nitrite decreased only in the nitrite group. Inhalation of nitrite was associated with
decreases in blood lactate, whereas both nitrite and CO were associated with decreases in glycerol release into
peritoneal fluid. Following resuscitation, the muscular mitochondrial respiratory control ratio was reduced in the
control group but preserved in the nitrite and CO groups.

Conclusions: We conclude that small doses of nebulized sodium nitrite or inhaled CO may be associated with
intestinal protection during resuscitation from severe hemorrhagic shock.
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Introduction
The immediate restoration of blood pressure, cardiac
output and oxygen-carrying capacity of patients in he-
morrhagic shock is the fundamental goal of acute resuscita-
tion. Adequate oxygen delivery to the tissues is dependent
on the presence of an adequate perfusion pressure, and it is
known that arterial pressure is strongly related to outcome.
Patients experiencing blunt trauma who present with sys-
tolic hypotension have three times higher mortality than
those who present with a normal blood pressure [1]. Fur-
thermore, preemptive optimization of perfusion guided by
oxygen delivery before surgery in high-risk patients results
in a significant decrease in the rate of complications and
length of stay, and once perfusion pressure is restored,
optimization of cardiac output and oxygen-carrying cap-
acity (oxygen delivery) appear beneficial [2-4]. However,
reperfusion of ischemic tissue can induce reperfusion
injury potentially leading to organ dysfunction and
death [5].
The fundamental assumption in resuscitation physi-

ology is that shock represents inadequate perfusion of
the tissues to meet their metabolic demand and that
rapid restoration of macrocirculatory perfusion pressure
and blood flow will reverse this hypoperfusion, minimiz-
ing tissue injury and promoting recovery. However, it is
unknown how resuscitation based on macrohemody-
namic parameters impacts tissue wellness in the setting
of hemorrhagic shock. Methods to quantify regional and
local microcirculatory and oxygenation status have con-
sistently shown a disconnection between macrohemody-
namic parameters and tissues oxygenation and function.
Mesquida et al. showed that tissue oxygen saturation
measured in the thenar eminence by near-infrared spec-
troscopy had a weak correlation to mixed venous oxygen
saturation (SvO2) [6]. More importantly, Hernandez et
al. recently showed that dobutamine-induced increases
in macrocirculatory parameters did not translate into an
improved microcirculatory flow or an improved organ
system function in septic patients [7]. Thus, it is unclear
if manipulating the macrocirculation will proportionally
benefit the microcirculation after the development of tis-
sue ischemia.
Nitric oxide (NO) is a gaseous, short half-life mol-

ecule typically administered as continuous inhalation
to ventilated neonate and adult patients. The rela-
tively expensive and cumbersome administration has
restricted the utilization of NO to critical care patients.
However, systemic NO effects can also be obtained by
administration of the sodium nitrite (NaNO2) [8]. Nitrite
may be administered intravenously or nebulized as inhal-
ation. In the body, it is reduced to NO by NO reductases
such as xanthine oxidoreductase, aldehyde oxidase, de-
oxyhemoglobin, deoxymyoglobin, and cytochrome c
oxidase [8,9].
Mitochondrial free radical production and calcium
poisoning play significant roles in reperfusion injury [5].
Although the primary function of mitochondria is to
convert energy derived from nutrients into adenosine
triphosphate (ATP), they also produce superoxide as a
byproduct of electron transport and oxygen consump-
tion. Reactive oxygen species (ROS) and reactive nitro-
gen species (RNS) can be generated by superoxide
dismutation and reaction with NO, respectively. In the
setting of ischemia ROS/RNS production increases as
electrons frequently leak from the injured electron trans-
port change before reaching cytochrome c oxidase, poten-
tially causing cell damage, inducing apoptosis, necrosis or
both [10]. During ischemia, pharmacological precondi-
tioning prior to resuscitation with nitrite or carbon mon-
oxide (CO) can prevent this ‘uncontrolled’ production of
free radicals by partially blocking complex I [11-14] and
complex III [15] of the electron transport chain. Poten-
tially, these small molecules may protect the cell from
reperfusion injury. Based on previous studies showing that
beneficial effects of nitrite and CO may be obtained with
very small doses [15-17], we therefore hypothesized that
exogenous administration of low-dose NaNO2 or CO by
inhalation before resuscitation would improve electron
handling by the mitochondrial electron transport chain,
and would decrease tissue injury as measured in the extra-
cellular space through microdialysis catheters [18].

Material and methods
Animal preparation and surgical procedure
All experiments were performed in accordance with the
United States National Institutes of Health guidelines
under protocols approved by the Institutional Animal
Care and Use Committee of the University of Pittsburgh
(protocol No. 13061614). Twenty Yorkshire Durock pigs
(average weight (wt.) of 30.6 kg, range 27.2 to 36.4 kg)
were acclimatized in the animal facility for at least seven
days prior to study. The swine were fasted overnight but
with free access to water prior to the study. Anesthesia
was induced by an intramuscular injection of 0.05 mL/kg
body weight (BW) of a mixture of telazole, xylazine, and
ketamine, all at a concentration of 100 mg/mL. Following
endotracheal intubation, the swine were ventilated with an
approximate fraction of inspired oxygen (FiO2) of 0.6 to
avoid hypoxemia and anesthesia was maintained with 1.0
to 2.5% isoflurane. A 21-gauge catheter was inserted in an
ear vein and a mixture of dextrose 5% and NaCl 0.9%
(Baxter, Deerfield, IL, USA) was infused at 1 mL/kg/hour
thereafter.
A 7 Fr introducer was placed in the right internal

jugular vein and a continuous cardiac output (CCO)
pulmonary artery catheter equipped with fiber optics
(Vigilance catheter, Edwards Lifesciences, Irvine, CA,
USA) was floated to measure CCO and SvO2. A triple-
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lumen 18-gauge catheter for blood sampling and blood
pressure monitoring using a low-volume pressure trans-
ducer (MP50, Gould Inc., Cleveland, OH, USA) was
inserted in the right femoral artery, as well as an 8 Fr
introducer in the right femoral vein. A urine catheter was
surgically inserted in the bladder through a suprapubic
incision.
Three microdialysis catheters (30 mm long, 100 kDa

molecular weight cutoff membranes) (CMA 71, M Dialysis
AB, Stockholm, Sweden) were inserted in the left gluteus
maximus muscle, between the loops of small intestine
through the suprapubic incision, and in the right lobe of
the liver (right anterior medial segment V) through a 4-
cm midline incision starting at the level of the xiphoid
process. The microdialysis catheters in liver and muscle
were placed using a splitable needle (M Dialysis AB,
Stockholm, Sweden) as previously described [19].

Hemorrhage and resuscitation protocol
We used a modified version of a pressure-based he-
morrhagic shock and resuscitation protocol previously
described by us [20] (Figure 1). Briefly, after surgery
swine were allowed to stabilize for 30 minutes. Using a
roller pump (Masterflex™ L/S-Easy-load II, Barnant Co.,
Barrington, IL, USA) swine were then bled at 20 mL/min
through the femoral artery until mean arterial pressure
(MAP) had decreased to 30 mmHg. Repeated episodes of
bleeding (at 60 ml/min) were done if the animal was able
to spontaneously recover to a MAP of 40 mmHg, thus
maintaining the animal between 30 and 40 mmHg for a
Figure 1 Study protocol and experimental design. In the first
bleeding period (baseline (BL) to hemorrhage 60 (H60) the animals
were bled at a rate of 20 mL/min. They were then kept at mean
arterial pressures (MAP) between 30 and 40 mmHg for 90 minutes
(H60 to start resuscitation (R0) by repeatedly hemorrhages if necessary
at rates of 60 mL/min. At the end of this period the animals were
administered the study drug (nitrite or CO). RO samples were obtained
before administration of study drug (shadow). The animals were
resuscitated with Hextend™ at a volume equal to the total bleeding
amount at a rate of 60 mL/min. They were then kept at MAP equal to
or above their baseline MAP using norepinephrine, and mixed venous
oxygen saturation (SvO2) >70% using dobutamine throughout a four-
hour observation period until scheduled euthanasia.
total of 90 minutes, defined as the shock period. Resusci-
tation was started either when the 90-minute shock period
had elapsed, or when the swine had evidence of cardiovas-
cular collapse defined as MAP below 30 mmHg for 5 mi-
nutes or below 20 mmHg for 10 seconds. Resuscitation
was done with Hextend™ (6% hetastarch with electrolytes,
glucose 99 mg/dL, and lactate 28 mM (Hospira Inc., Lake
Forest, IL, USA) at equal parts as shed blood, at a rate of
60 mL/min. After this initial bolus, the animals could
receive crystalloids (Ringer’s lactate) and/or vasopressors
to maintain baseline MAP according to a prespecified
algorithm described elsewhere [20]. Animals were then
observed for a 4-hour period that started at the end of
Hextend™ infusion and finalized with scheduled euthanasia.

Measurements in microdialysate and blood
The microdialysis catheters were perfused with dextran
60 and electrolytes (Plasmodex™, Meda AB, Stockholm,
Sweden) at 1 μl/min−1 by microinjection pumps (CMA
107, M Dialysis AB, Stockholm, Sweden), as previously
described by us [19]. Starting at the end of the 30-
minute stabilization period samples were collected every
30 minutes and analyzed for glucose, lactate, pyruvate,
and glycerol using a microdialysis analyzer (Iscus, M
Dialysis AB, Stockholm, Sweden). The samples obtained
after the hemorrhage period (H60) were collected prior
to starting nitrite or CO in those two animal groups.
After finishing the analyses the samples were frozen in
liquid nitrogen and transferred to the −80°C freezer.
Simultaneously, arterial and mixed venous blood sam-

ples were taken and analyzed in a blood gas analyzer
(ABL-90™, Radiometer, Copenhagen, Denmark) for pH,
pCO2, pO2, SO2, hemoglobin, carboxyhemoglobin (COHb),
methemoglobin (MetHb), glucose and lactate.
Stored plasma and microdialysate samples were subse-

quently analyzed as described elsewhere [21] for concen-
trations of nitrite by injecting plasma samples into a glass
chamber containing tri-iodide, which generated NO,
which was subsequently measured by ozone chemilu-
minescence using a Sievers 280i nitric oxide analyzer ac-
cording to the instructions of the manufacturer (General
Electric, Boulder, CO, USA). Plasma samples were also
analyzed for aspartate aminotransferase (AST), alanine
aminotransferase (ALT), and creatinine (Sigma-Aldrich
assay kit, St. Louis, MO, USA).

Mitochondrial function
Biopsies from the left rectus femoris muscle ventral of
the microdialysis catheter were taken at the end of the
stabilization period (baseline) and two hours after end of
fluid resuscitation (Figure 1). These samples were immedi-
ately homogenized and measured after collection. Oxygen
consumption in the muscle biopsies were immediately
measured using a Clark-type oxygen electrode (Instech
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Laboratories, Plymouth Meeting, PA, USA) in the pres-
ence of succinate (for State 4 measurements) and ade-
nosine diphosphate (ADP) (for State 3 measurement).
Respiratory control ratio (RCR) was calculated as State 3/
State 4.
Complex I activity: complex I activity was measured

spectrophotometrically in biopsied tissue by spectrophoto-
metrically monitoring the oxidation of nicotinamide aden-
ine dinucleotide dehydrogenase (NADH) in the presence
of coenzyme Q and the presence and absence of rotenone.
Aconitase activity: the enzymatic activity of aconitase

was measured in lysed biopsies by spectrophotometric-
ally monitoring the formation of nicotinamide adenine
dinucleotide phosphate (NADPH) at 340 nm using the
Bioxytech Aconitase-340 kit (Oxis Research, Foster City,
CA, USA).
Carbonyl measurement: carbonyl levels were assessed

in homogenized tissue spectrophotometrically (285 nm)
after derivitization of the carbonyls with 2-dinitrophenyl-
hydrazine as per the Colorimetric Carbonyl kit (Cayman
Chemicals, Ann Arbor, MI, USA).

Experimental protocol
Animals were randomized to one of the three prespeci-
fied groups at the end of first bleed: nitrite (n = 7, 30-
minute nebulization of sodium nitrite at a dose of 11 mg
sodium nitrite in 2.5 mL phosphate-buffered saline inde-
pendent of BW); CO (n = 5, 30-minute inhalation of CO
at 250 ppm independent of BW); or control (n = 7, no
further intervention) (Figure 1). Microdialysis monitor-
ing was implemented in the study protocol in the last 20
in a series of 66 pigs in total, explaining the uneven dis-
tribution of animals in each group. So there was no bias
as to groups, but differences in group totals. The nitrite
dose is on the low end of what was previously demon-
strate to be effective in order to minimize vasodilation
in the setting of shock [16]. Either nitrite or CO was
started 30 minutes prior to initiation of resuscitation,
60 minutes into the ischemic shock period and contin-
ued until the end of resuscitation. One animal served as
sham, by undergoing the same surgical procedure but
without bleeding or administration of nitrite or CO.
Additionally, we present complex I and acotinase activity
and carbonyl levels from one sham animal that was in-
cluded before microdialysis catheters were implemented
in the protocol.

Statistical analyses
Between-group comparisons of macrohemodynamic and
systemic oxygenation parameters were performed with
the Kruskal-Wallis and Mann-Whitney U tests. The
changes in mitochondrial RCR values from baseline to
the two-hour observation point were analyzed with the
Wilcoxon signed-rank test and group differences were
explored with the Mann- Whitney U test. Complex 1
and aconitase activities and levels of carbonyl were com-
pared to controls with the Mann-Whitney U test. Values
for AST, ALT, and creatinine at baseline and at the four-
hour observation time point were analyzed with the
Wilcoxon signed-rank test. Other repeated measures
were analyzed in a random effects mixed model: effects
of different animals, groups, BW, and amount of bleeding
were included in the model aiming at achieving low in-
formation criteria. Since the data were not normally dis-
tributed the mixed model analyses were performed on
log10-transformed data. Estimated fixed effects (e.f.e.)
of factors and covariates are reported; values >1 represent
positive effects and values <1 represent negative effects.
The P values are two-tailed and Bonferroni-adjusted for
comparison of three groups. P values lower than 0.05 were
considered to indicate statistical significance (PASW 21.0,
IBM Corp. Armonk, NY, USA).

Results
Seven animals were randomized to the control and ni-
trite groups and five to the CO group. The pigs in the
control group had significantly lower BW than the ani-
mals in the remaining two groups despite randomization
(Table 1). All animals appeared healthy upon arrival and
tolerated the surgical procedure, including insertion of
microdialysis catheters, well and bleeding and resusci-
tation phases of the protocol were carried out without
untoward complications. However, as expected based on
the severity of the hemorrhagic shock protocol, three ani-
mals developed severe hypotension and died 49 (control),
51 (nitrite), and 88 (nitrite) minutes after starting resusci-
tation. Data from these animals were not excluded from
analyses. The remaining animals were observed for a me-
dian of 253 minutes (range 230 to 260 minutes) and com-
pleted the protocol.

Macrohemodynamic and systemic oxygenation
parameters
Hemodynamic behavior of animals followed expected
trends regardless of the groups they were allocated to as
summarized in Figure 2. Pharmacological preconditioning
did not have any effect on MAP, stroke volume variation
(SVV), heart rate (HR), CCO, or mean pulmonary artery
pressure (MPAP) when compared to control animals. The
MAP target of 30 mmHg (time point H0) was reached
after a median of 33 minutes (range 23 to 55 minutes),
with no time difference between groups (P = 0.20). Resus-
citation was triggered by the 90-minute shock period cri-
teria at R0 in all animals but one, in which resuscitation
was started 13 minutes into the shock period for car-
diovascular collapse (defined previously). All but one
animal (control) required norepinephrine to keep their
MAP at baseline values following resuscitation and the



Table 1 Body weight, surgery time, and hemorrhagic and resuscitation data in 19 pigs randomized to inhale nitrite,
carbon monoxide, or no inhalation (control)

Control (n = 7) Nitrite (n = 7) Carbon monoxide (n = 5)

Median Range Median Range P value1 Median Range P value1

Body weight (kg) 29.5 27.2 – 31.4 33.7 30.4 – 36.4 0.004 31.1 28.0 – 35.8 0.40

Surgery time (minutes) 70 61 – 75 75 64 – 87 0.26 78 71 – 90 0.10

Shed blood volume

mL 1000 500 – 1241 1025 761 – 1452 >0.99 711 652 – 1138 0.54

% of TBV2 51 27 – 70 46 38 – 63 >0.99 36 29 – 56 0.40

Duration (minutes)

Hemorrhage 13 37 28 – 55 34 26 – 42 0.77 28 23 – 33 0.06

Resuscitation 15 8 – 20 16 12 – 23 > 0.99 11 8 – 23 >0.99
1Nitrite and carbon monoxide groups were compared with the control group by the Mann-Whitney U test. The P values were Bonferroni-adjusted for comparison
of three groups; 2TBV: total blood volume based on an assumed blood volume of 65 mL/kg; 3hemorrhage 1: time until mean arterial pressure was lower than
30 mmHg.
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median maximum norepinephrine infusion rate was
0.15 μg/kg/min (range 0 to 0.4 μg/kg/min). There was
no difference in the norepinephrine infusion rate be-
tween groups (P = 0.77). None of the animals required
dobutamine.
Figure 2 Macrohemodynamic and systemic oxygenation parameters. Hemod
hemoglobin, methemoglobin and carboxyhemoglobin in animals randomized
(control, n = 7). The inhalations were administered in the shadowed period bef
range. There were no group differences other than that inhalation of CO lead t
SvO2 mirrored CCO and MAP changes, and he-
moglobin dropped during resuscitation, as expected
(Figure 2). There were no significant group differences
in SvO2 or hemoglobin values between groups during
hemorrhage or resuscitation.
ynamic measurements, course of mixed venous oxygen saturation (SvO2),
to inhale nitrite (n = 7), carbon monoxide (CO, n = 5), or no inhalation
ore fluid resuscitation. Values are presented as median with interquartile
o an immediate increase in concentrations of CO in blood (#).
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Toxicity hemoglobin parameters
We found a marked elevation of MetHb after resusci-
tation in all animals (e.f.e. of going from period RO to
EH 1.21 (95% CI (Confidence interval) 1.18 to 1.24, P
<0.001), independent of group (P = 0.84). High BW was
slightly negatively correlated with MetHb (e.f.e. 0.99
(95% CI 0.98 to 1.00) (P = 0.05)), whereas amount of
shed blood had no significant impact (P = 0.38) (Figure 2).
Administration of CO led to an immediate increase of
COHb (e.f.e. of going from H60 to RO 1.26 (95% CI 1.00
to 1.52, P = 0.001), independent of weight (P = 0.15) or
amount of shed blood (P = 0.99). Resuscitation led to an
increase of CO in all animals (e.f.e. of going from
period RO to EH 1.52 (95% CI 1.41 to 1.64, P
<0.001), and there was no difference between the nitrite
and control group (P >0.99). The highest measured
COHb in the CO group was 4.6% [22].
Microdialysis metabolic parameter trends:

1. Nitrite (Figure 3). During hemorrhage nitrite was
unchanged in plasma, muscle, and peritoneal fluid
and liver. Following inhalation of nebulized sodium
nitrite prior to fluid resuscitation there was a
significant increase in nitrite in plasma (e.f.e. of R0
compared to H60 to was 1.51 (95% CI 1.17 to 1.85,
P = 0.01)). Fluid resuscitation did not lead to further
increase in plasma nitrite, and until the end of the
observation period, plasma nitrite decreased with an
hourly e.f.e. of 0.91 (95% CI 0.86 to 0.96) (P = 0.003).
Figure 3 Nitrite concentrations. Nitrite values over time for nitrite (n = 7), carbon m
(sham). The nitrite and CO inhalations timing is displayed by the shadow prior to re
As opposed to the nitrite group, fluid resuscitation
implied an increase of plasma nitrite both in the
control group and CO group; e.f.e. of EH compared
to R0 in the control group was 1.16 (95% CI 1.01
to 1.32) (P = 0.04), and 1.22 (95% CI 1.00 to 1.43)
(P = 0.05) in the CO group. Also different from the
nitrite group, the nitrite levels did not decrease until
the end of the study period neither in the control
group (P = 0.90) nor in the CO group (P = 0.09).
Following nitrite inhalation, concentrations of nitrite
did not increase in microdialysis samples neither
from muscle (P = 0.74) nor from peritoneal fluid
(P = 0.44) (no samples were collected at the H60
observation time point in liver). Resuscitation did
not influence nitrite concentrations in any of the
microdialysis samples (P >0.05 for all). As opposed
to the time-dependent decrease in plasma nitrite
in the nitrite group after fluid resuscitation, no
changes were observed in any of the microdialysis
samples in the nitrite group (P >0.05 for all). In the
CO group, the nitrite concentrations increased
time-dependently in all microdialysis samples
(P <0.05 for all). Similar changes were found in
peritoneal fluid and liver in the control group
(P <0.05 for both), whereas the increase in muscle
nitrite was not significant (P = 0.12). The pig’s weight
and amount of bleeding did not have any statistically
significant influence in any of the performed
statistical analyses.
onoxide (CO, n = 5), or control (n = 7) groups. One animal was not bled
suscitation. Values are presented as median with interquartile range.
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2. Lactate (Figure 4). During hemorrhage and until
fluid resuscitation lactate increased at all measured
sites. The steepest increase was seen in peritoneal
fluid with an hourly e.f.e. of 1.26 (95% CI 1.23 to
1.29), followed by blood (1.20 (95% CI 1.17 to 1.22),
liver 1.14 (95% CI 1.10 to 1.18), and muscle 1.07
(95% CI 1.05 to 1.10) (P <0.001 for all). There were
no group differences. High amount of bleeding was
positively associated with lactate in peritoneal fluid
(e.f.e. of each dL hemorrhage was 1.04 (95% CI 1.02
to 1.07) (P = 0.02). Following resuscitation lactate
continued to increase. Inhalation of nitrite had a
negative effect on this continued increase in blood;
the e.f.e. on lactate in arterial blood was 0.74
(95% CI 0.52 to 0.95) (P = 0.04). After the
post-resuscitation peak lactate decreased time
dependently (P <0.001 for all sites), and there
were no group differences.
Figure 4 Metabolic parameters. Lactate (A), lactate/pyruvate ratio (B), and gl
n = 5), or control (n = 7) groups. One animal was not bled (sham). The nitrite
resuscitation. Values are presented as median with interquartile range. #P <0.0
and CO groups compared to controls.
3. Pyruvate. In general, the course of pyruvate
concentrations throughout the experiments
mirrored the lactate concentrations. As opposed
to lactate, the increases during hemorrhage
were not as steep as for lactate, and amount
of hemorrhage had no influence on the
values. There was a nonsignificant negative
effect of inhaling nitrite and CO prior to
fluid resuscitation.

4. Lactate to pyruvate ratio (LPR) (Figure 4). During
hemorrhage, there was a time-dependent increase
in LPR only in peritoneal fluid and the hourly e.f.e.
was 1.14 (95% CI 1.12 to 1.16) (P <0.001). None
of the inhaled agents had any effect on the
post-reperfusion LPR values, and there were no
group differences in the post-reperfusion period.
Following reperfusion, no group differences were
found for LPR in any of the tissues
ycerol (C) values over time for nitrite (n = 7), carbon monoxide (CO,
and CO inhalations timing is displayed by the shadow prior to
5 for the nitrite group compared to controls. ##P <0.05 for nitrite
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5. Glucose. During hemorrhage, there was a
time-dependent increase in the glucose concentrations
in blood with an hourly e.f.e. of 1.04 (95% CI 1.02
to 1.06) (P <0.001). As opposed to blood, there
were time-dependent decreases in the glucose
concentrations in peritoneal fluid (e.f.e. 0.88
(95% CI 0.82 to 0.94) (P <0.001)), liver (e.f.e. 0.89
(95% CI 0.83 to 0.95) (P <0.001)), and muscle (e.f.e.
0.91 (95% CI 0.87 to 0.96) (P = 0.001)). Following
fluid resuscitation the concentrations of glucose
in tissues tended to increase, but only reaching
statistically significance in peritoneal fluid with an
e.f.e. of resuscitation of 1.12 (95% CI 1.00 to 1.23)
(P = 0.04), without altering blood glucose (e.f.e. 1.00
(95% CI 0.96 to 1.04) (P = 0.87). Thereafter, and
until the end of the observation period, glucose
increased at all measured sites (P <0.001 for all).
There was no effect of any of the inhaled agents
on the post-reperfusion values.

6. Glycerol (Figure 4). During hemorrhage there was a
time-dependent increase in the cell damage marker
glycerol in muscle (hourly e.f.e. of 1.15 (95% CI 1.09
to 1.22) (P <0.001) and peritoneal fluid (hourly e.f.e.
of 1.09 (95% CI 1.03 to 1.15) (P = 0.006)). Amount
of bleeding was positively correlated with glycerol
values (P <0.05 for both), and weight did not have any
influence. Statistical analyses were not performed for
the hemorrhage period in liver since we assume that
the high initial values for glycerol were related to
tissue damage caused by needle insertion. Inhalation
of nitrite implied reduced release of glycerol to
peritoneal fluid as compared to controls and the e.f.e.
of nitrite was 0.41 (95% CI 0.10 to 0.73) (P = 0.002).
The same tendency was observed for CO (e.f.e. 0.68
(95% CI 0.59 to 0.96) (P = 0.06)). Thereafter, and until
the end of the study period, the values normalized
and there were no group differences.

Markers of organ damage
Plasma AST and creatinine increased significantly from
samples collected at the end of the baseline period to
the four-hour time point. AST increased from median
29 U/L (range 17 to 43 U/L) to 70 U/L (range 17 to 102
Table 2 Circulating markers of organ damage measured at en

Baseline

Control (n = 7) Nitrite (n = 7) CO* (n = 5)

Aspartate aminotransferase
(U/L)

27 (17 – 34) 30 (20 – 41) 34 (18 – 43)

Alanine aminotransferase
(U/L)

36 (21 – 52) 41 (28 – 67) 45 (28 – 47)

Creatinine (mg/dL) 1.0 (0.2 – 1.4) 1.0 (0.8 – 1.2) 1.2 (0.7 – 1.4)

*CO, carbon monoxide; **group differences were explored with the Kruskal-Wallis test
U/L) (P <0.001) and creatinine increased from median
1.0 mg/dL (range 0.2 to 1.4 mg/dL) to 1.3 mg/dL (0.2 to
1.8 mg/dL) (P = 0.001). As opposed to AST and creatin-
ine, the ALT values decreased slightly from median 41
U/L (range 2 to 67 U/L) to 34 U/L (range 17 to 54 U/L).
There were no group differences at any of the time
points (Table 2).
Mitochondrial function
Comparison of the RCR two hours after fluid resuscita-
tion to the RCR in the same animal at baseline showed
that RCR was significantly decreased in the control group
over the course of shock and resuscitation (P = 0.04), but
unchanged in both the nitrite (P = 0.45) and CO (P >0.99)
groups (Figure 5). The magnitude of decrease in RCR ob-
served in the control group was significantly greater than
in the nitrite group (P = 0.05), but not compared to the
CO group (P = 0.30). The decrease in RCR over the time
course of the experiment was driven both by an increase
in State 4 respiration and a decrease in State 3 in the
control group, indicative of increased proton leak and
decreased oxidative phosphorylation capacity respectively
(Figure 5B-C).
Antioxidant mechanisms
Both CO and nitrite have been shown to mediate anti-
oxidant effects, particularly in hypoxic models [14-16].
Measurement of protein carbonyls as a marker of pro-
tein oxidation showed a significant decrease with nitrite
(P = 0.004) and CO (P = 0.002) treatment compared to
control animals (Figure 6A). As a second measure of
oxidative stress, the activity of aconitase (an iron-sulfur
enzyme particularly susceptible to oxidative inactiva-
tion) was measured. Though not significant, both nitrite
(P = 0.15) and CO (P = 0.08) treatment showed a strong
trend toward preserving aconitase activity (Figure 6B),
consistent with the prevention of oxidative stress. Fur-
ther, nitrite has been shown to inhibit complex I activity
to attenuate mitochondrial ROS generation. Measure-
ment of complex I activity showed nitrite-dependent
inhibition (P = 0.02), but no change by CO (P = 0.52)
(Figure 6C).
d of baseline and at the end of the study

Four hours after completed resuscitation

P value** Control (n = 6) Nitrite (n = 5) CO* (n = 5) P value**

0.96 68 (63 – 99) 66 (46 – 102) 73 (39 – 87) >0.99

>0.99 37 (18 – 54) 26 (17 – 53) 35 (20 – 44) >0.99

0.83 1.4 (1.1 – 1.5) 1.2 (1.1 – 1.3) 1.3 (1.1 – 1.8) 0.37

and the P values were Bonferroni-adjusted for comparisons of three groups.



Figure 5 Changes in mitochondrial function after fluid resuscitation. (A) Respiratory control ratio for the control (n = 7), CO (n = 5), and nitrite
(n = 7) groups, with one animal not bled (sham). The columns represent median values (with interquartile range as whiskers) after fluid resuscitation at
the two-hour observation time point (‘O2’) as percentage of baseline values. The stapled line indicates levels at baseline. The P values indicate changes
from baseline (Wilcoxon signed-rank test) and were Bonferroni-adjusted for comparison of the three groups. The magnitude of change in the absolute
rate for State 4 (B) and State 3 (C) respiration in each group is shown.
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Discussion
This study suggests that in the setting of severe he-
morrhagic shock, the administration of low-dose nebu-
lized NaNO2 or inhaled CO may be able to reduce the
short-term ischemic and necrotic effects of reperfusion
without altering macrohemodynamic and systemic oxy-
genation parameters although reduced concentrations of
lactate were only found in blood and reduced concentra-
tions of glycerol were only found in peritoneal fluid
[19,23,24]. In accordance to this, these data also demon-
strates that NaNO2 or CO, but not standard resuscita-
tion alone, maintain coupling of the electron transport
chain (assessed with the respiratory controlled ratio) and
prevented mitochondrial dysfunction. Collectively, these
findings are consistent with the hypothesis that inhaled
NaNO2 and CO may limit reperfusion injury when used
as adjuncts to standard resuscitation.
The mechanisms by which NaNO2 and CO exert pro-

tective effects are still unknown, although available data
have consistently suggested that their main action may be
at the mitochondrial level [14]. Nitrite has been shown to
decrease apoptosis and cell damage in other models such
Figure 6 Carbonyl levels and aconitase- and complex I activity. Columns repr
(B) aconitase activity and (C) complex I activity in sham (n = 2), control (n = 7)
values indicate comparison of treated groups to controls (Mann-Whitney U te
as ischemia reperfusion, and across different organs, such
as the heart, liver, brain and kidney [25-32]. Fast reactiva-
tion of complex I during reperfusion is recognized as a
central event in ischemia/reperfusion-induced cell injury
as it is related with increased production of ROS [5]. It
follows that blockade of this reactivation lends a robust
protective mechanism [11-13]. Recent data have sug-
gested that nitrite may exert its protective effects through
S-nitrosation of complex I of the respiratory chain.
Chouchani et al. were able to demonstrate that nitrite
selectively and reversibly S-nitrosates Cys 39 on the ND3
subunit of mitochondrial complex I [33]. This inhibition is
associated with a marked reduction in mitochondria-
derived ROS production, and also with reduced cell dam-
age, necrosis and apoptosis. Our data supports these prior
findings, as the respiratory control ratio, a measure of
coupling of the electron transport chain, was higher in the
nitrite group as compared to control.
As expected, administration of NaNO2 resulted in in-

creased circulating and tissue nitrite levels. However, as
shown in Figure 3, after an initial peak we found a ten-
dency toward declining nitrite levels in our nitrite-treated
esent means +/− standard error of the mean (SEM) of (A) carbonyl levels,
, nitrite (n = 7) and carbon monoxide (CO) (n = 5) treated animals. The P
st) and were Bonferroni-adjusted for comparison of the three groups.
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group, as opposed to the control group where post-resus-
citation nitrite concentrations showed an increasing ten-
dency. In the body, NO2

− is reduced to NO by different
mechanisms including enzymatic reduction by hemoglo-
bin and myoglobin, interaction with components of the
electron transport chain, and the xanthine oxidoreduc-
tase system [16,34]. Importantly, hypoxia and cell injury
promote conversion of NO2

− to NO. We speculate that
nitrite-induced decreases in ROS production resulted in
less vascular endothelial stress reducing the normal re-
sponse to this stress, which is NO production by endothe-
lial NO synthase (eNOS). Since nitrite is the one electron
oxidation product of NO and an excellent measure of
eNOS activity [35], we presume the lower nitrite levels
reflect lower eNOS activation. Another possibility would
be that animals exposed to nitrite could have a higher rate
of conversion to NO and thus, present with lower syste-
mic levels. This does not seem to be the case as these ani-
mals had similar MAP, CCO, blood lactate, and SvO2 to
the other groups.
Carbon monoxide blocks cytochrome c oxidase com-

plex (or complex IV) in the mitochondrial electron
transport chain, which is associated with a low level, but
still increased production of ROS upstream at complex
III. Acting as second messengers for CO, these ROS trigger
adaptive responses and result in protection of the cell and
tissues [15,36,37]. One adaptive response is the activation
of the master energy regulator, adenosine monophosphate-
activated protein kinase (AMPK), and subsequent stimula-
tion of mitophagy by which dysfunctional mitochondria
are self-digested in autophagosomes and their components
recycled as energy substrates [38,39].
The microdialysis method is a useful way to perform

repeated measurements of small molecules in the extra-
cellular space. As such, it is a useful tool to investigate
effects of preconditioning agents at the tissue or organ
level [18]. Glycerol forming the backbone of the fatty
acids in the cell membrane is one of these important
small molecules. It is released under ischemic conditions
by activation of phospholipase A2 and it is an evident
marker of cell injury [19,23,40]. In the present study, the
most consistent effects of pharmacologic preconditioning,
as judged by lower glycerol values, were found in the
peritoneal fluid, suggesting that both NaNO2 and CO may
protect the intestine from injury caused by ischemia and
subsequent reperfusion [41,42]. Since the gut mucosa is at
a higher risk for ischemia/reperfusion injury than other
tissues, like muscle and liver, these finding suggest a po-
tential therapeutic role of these inhalational agents. Simi-
lar results were found in a study investigating the effects
of ischemia preconditioning of heart muscle prior to
coronary artery occlusion [43]. In a recent study, remote
ischemic preconditioning led to reduced levels of glycerol
in ischemic brain tissue [44], and similar effects of direct
ischemic preconditioning have been found in liver tissue
[45,46]. Furthermore, preconditioning has been shown to
sustain lactate, pyruvate and the LPR in liver, muscle, free
flaps and heart [46-49].
Study limitations
Although we demonstrated effects of preconditioning
agents in the extracellular space, we had only small dete-
riorations in organ function as measured by AST, but a
30% increase in creatinine four hours post shock. Thus,
the detrimental effect of this severe hemorrhagic shock
model may be dissimilar among organs and tissues. Fur-
thermore, we did not find any group differences in AST
or creatinine increases. In the setting of hemorrhagic
shock, organ injury and dysfunction may not become
readily apparent in the acute phase, and manifest only
later following resuscitation. We reason that this was
why we did not see greater evidence of organ dysfunc-
tion. Potentially, studies that include a longer window of
observation may provide further insight into whether
these effects on mitochondrial function will translate
into protecting organ function. In addition, despite using
randomization, total BW was different in the three groups,
which can largely affect our results since bleeding rate was
at 20 mL/min independent of BW. However, the effect of
BW on the measured variables was small and furthermore,
was controlled for in the statistical model. Importantly,
BW had no effect on the concentrations of glycerol. A lar-
ger sham group allowing statistical comparisons would
have improved the methodical strength of the study. Fi-
nally, we did not allow for any stabilization after nee-
dle and microdialysis catheter insertion in muscle and
liver before starting microdialysate sampling, and thus
the high baseline values in some animals most likely
reflect local tissue damage inflicted by catheter inser-
tion. Manipulation and catheter insertion in the liver
shortly before obtaining baseline measures may also ex-
plain why circulating ALT was higher at baseline than at
the end of the study.
Conclusions
In conclusion, we found some evidence supporting that
low-dose nebulized NaNO2 or inhaled CO may safely
limit intestinal reperfusion injury in the setting of acute
hemorrhagic shock. These data also suggest that such
protective effects may be secondary to their interaction
with mitochondrial respiration, although other mecha-
nisms cannot be excluded. Both nebulized NaNO2 or
inhaled CO hold promise as potential therapeutic ad-
juncts in the treatment of severe hemorrhagic shock.
However, future studies will need to evaluate if these
short-term effects translate into improved organ func-
tion and recovery.
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Key messages

� Low doses of nitrite or carbon monoxide may
protect intestine from reperfusion injury when
inhaled during hemorrhagic shock

� The effects of nitrite and carbon monoxide are
probably exerted at a mitochondrial level

� Low doses of inhaled nebulized nitrite or carbon
monoxide have no effects on macrohemodynamic
parameters

� Microdialysis catheters allow investigating metabolic
changes at organ or tissue level
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