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Jason Gregory Pickel, PhD

University of Pittsburgh, 2016

An optical trap uses radiation pressure of light to manipulate microscopic objects. The in-

teraction between the light and the microscopic objects result in the objects experiencing

optical forces. These forces are on the same order of magnitude as biological forces (typically

0.1 to 100 pN) and this feature makes optical traps appropriate for single-molecule studies.

Currently, there is a growing need to create an automated optical trap that uses the entire

operating range of the optical trap to study the biological forces. Spatial nonlinearities in

the optical force and parameter uncertainty complicate feedback control for optical traps.

A consequence is that users are spending an enormous amount of time calibrating the in-

strument and designing a controller, and this diverts their time away from studying the

biophysics. This research explores the use of nonlinear and adaptive feedback methods to

create an automated optical trap.

A model is defined to describe the coupling between the dynamics of the optical trap and

molecule, and the nominal force within the molecule is treated as a disturbance. The distur-

bance information is obtained by creating a disturbance model and combining its dynamics

with the system dynamics. The system nonlinearities are addressed by using a nonlinear

Kalman filter to estimate the system state, then the system state is used in a input-output

feedback linearization and linear quadratic structure to satisfy performacne requirements.

Statistical analyses are performed to assess the effectiveness the feedback methods have on

the open-loop and closed-loop systems. Its performance is compared with that of linear

integral control used in practice to quantify the performance improvement when considering

iv



the system nonlinearities in the control design. The system nonlinearities and parameter

uncertainty are addressed by using adaptive and nonlinear feedback methods. An adaptive

state observer provides a simultaneous estimate of the system state and parameters, then

these estimated entities are used in an adaptive input-output feedback linearization and LQ

structure. The result is the creation of an automated self-tuning optical trap that minimizes

the user interaction with the instrument calibration and control design, uses the entire op-

erating range of the optical trap, and obtains an unbiased estimate of the molecule force.

The closed-loop performance of these feedback methods are demonstrated by replicating the

force-extension curve of a DNA molecule.
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increment that are obtained using the nonlinear PI design. . . . . . . . . . . . 210

10 The lifetime of different bonds as a function of force. Source [5]. . . . . . . . 226

11 Material used for the Apa1 restriction digest. . . . . . . . . . . . . . . . . . . 230

ix



12 Nanodrop results after the APA1 digests to determine the sample density and

the DNA purity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

13 Nanodrop results after the APA1 digests with ethanol precipitation. The Nan-

odrop determines the sample density and the DNA purity. . . . . . . . . . . . 233

14 Nanodrop results after using the second restriction enzyme Sph1 . . . . . . . 238

15 Nanodrop results after using the second restriction enzyme Sph1 and concen-

trating the sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

16 Nanodrop results after double labeling the DNA . . . . . . . . . . . . . . . . 238

x



LIST OF FIGURES

1 Schematic of how individual light rays applies forces on a bead. When the

bead is displaced from the focus, optical forces act on the bead to pull it back.

A) The bead is displaced downstream from the focus and forces pull the bead

upstream. B) The bead is displaced upstream from the focus and the forces

pull the bead downstream. C) The bead is displaced off axis of the focus and

forces pull the bead back to the axis. . . . . . . . . . . . . . . . . . . . . . . . 18

2 A schematic showing the absorption properties for deoxyhemoglobin Hb, oxy-

hemoglobin HbO2 and water H20 as a function of the wavelength of light.

Longer wavelengths in the infrared regime provide better health for biological

material because biological material becomes more transparent while the laser

energy becomes absorbed by the surrounding water. Source [6]. . . . . . . . . 21

3 The schematic of the optical trap setup. The laser beam expands then is

collimated with the collimating lens f1. The collimated light is directed with

mirrors to the fast steering mirror (FSM), that is placed at the back Fourier

plane of the objective. Then, the light gets expanded by a telescope (f2 and f3)

before entering the microcope’s epi-flourence port. Once inside the microscope,

the light is redirected with a dichroic mirror to the objective, which focuses

the light to the specimen plane. The condenser collects the forward scattered

light, which is redirected by a second dichroic mirror to the QPD. . . . . . . 23

4 The transmission plot for the Zeiss Plan-Apochromat 63x/1.4 NA objective.

When the laser has a wavelength of 1064 nm then the resulting laser power at

the specimen plan is ∼30% of its input power at the objective. . . . . . . . . 24

xi



5 A schematic of a cascaded system of three lens that is in between the FSM

placed at the object plane and the specimen plane placed at the image plane.

The FSM being placed at the BFP of the objective allows for FSM angle inputs

be turned into lateral translations of the laser in the specimen plane. . . . . . 26

6 A schematic of the sensing system. The sensing system is composed of the

condenser, collimating lens, and the QPD. . . . . . . . . . . . . . . . . . . . . 28

7 A schematic showing the effects positional misplacements of the optical com-

ponents on the Fourier transform property of the cascaded three lens system. 29

8 A schematic showing the effects positional misplacements of the optical com-

ponents on the QPD measurements. . . . . . . . . . . . . . . . . . . . . . . . 31

9 Schematic of QPD position detection system. The forward scattered light that

is refracted by the dielectric bead is collected by the condenser and transmitted

to the QPD. The QPD is located at the BFP of the condenser. . . . . . . . . 34

10 Schematic of the intensity profiles at the QPD’s surface. When the bead

deflection is zero, the resulting intensity profile is symmetric at the QPD. If the

bead deflection becomes nonzero, then the resulting intensity profile becomes

antisymmetric in the direction of the bead deflection. . . . . . . . . . . . . . . 35

11 The coordinate notation used for the QPD modeling. . . . . . . . . . . . . . 42

12 Schematics of the QPD response. Figure (12a) shows the QPD intensity verses

bead displacement and figure (12b) shows the QPD sensitivity verses bead

displacement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

13 The sensitivity as a function of (13a) the bead radius and (13b) the condenser

NA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

14 The QPD response to scanning the laser across a 3 µm diameter polystyrene

bead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

15 Schematic of the dimensionless optical force ft(z)/(klt) verses the dimensionless

bead’s deflection z/lt and the dimensionless optical stiffness kopt(z)/k verses

the dimensionless bead’s deflection. . . . . . . . . . . . . . . . . . . . . . . . 49

xii



16 A schematic that compares both the dimensionless nonlinear optical force and

the dimensionless linear optical force verses the dimensionless bead deflection.

This comparison shows that the linearization provides a good approximation

when the dimensionless bead deflection is such that z/lt . 0.2. The lineariza-

tion provides a poor approximation when the dimensionless bead deflection is

such that z/lt > 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

17 A schematic that shows the different forces acting on dielectric bead within

the optical trap. and the relationship between the different extensions. These

forces include an optical force, a viscous drag force, Brownian noise, and the

molecule’s force. The extensions are the molecule extensions xm, the bead

deflection z, and the laser position xt. . . . . . . . . . . . . . . . . . . . . . . 51

18 A schematic of the dimensionless molecule force verses the dimensionless molecule

extension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

19 A root locus that graphical shows how the poles of the trap-molecule system

change when the value of the dimensionless constant κ is increased. . . . . . . 59

20 A root locus showing how increasing the value of d̄m
lm

affects the value of x̄m
lm

. . 62

21 Bode plot of actuation dynamics relating the laser position in the specimen

plane to the voltage input of the FSM. . . . . . . . . . . . . . . . . . . . . . . 64

22 The block diagram for the optical trap system. The optical trap system is the

plant in this research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

23 A schematic of the estimation bandwidth obtained using a Kalman filter. For a

given κ, as kt is increased, the estimation bandwidth has an initial high slope,

then the slope changes and becomes small in the same direction. For a given

kt, increasing κ (the molecule is becoming stiffer) results in the estimation

bandwidth increasing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xiii



24 A schematic for the variance of the bead deflection and its estimate obtained

using a Kalman filter. For a given κ, increasing kt (also km is increased to

maintain a constant κ) results in a decrease in the variance for the state and

estimated state; a stiffer optical trap and molecule reduces the variance. Then,

for a given kt, an increase in κ (a stiffer molecule) results in an decrease in the

variance for the state and an increase in variance for the estimated state. . . 88

25 A schematic for the variance of the molecule extension and its estimate ob-

tained using a Kalman filter. For a given κ, increasing kt (also km is increased

to maintain a constant κ) results in a decrease in the variance for the states

and their estimates; a stiffer optical trap and molecule reduces the variance.

Then, for a given kt, an increase in κ (a stiffer molecule) results in an decrease

in the variance for the state and estimated state. . . . . . . . . . . . . . . . . 89

26 A schematic for the variance of the estimated disturbance obtained using a

Kalman filter. For a given κ, an increase in kt (km is also increased to maintain

κ) initially reduces the variance quickly, then the variance decreases slowly.

Then, for a constant kt, an increase in κ (the molecule becoming stiffer) reduces

the variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

27 A schematic for the SNR of the estimated force disturbance obtained using a

Kalman filter. For a given κ, increasing kt results in a decrease in the SNR. . 91

28 The schematic of the block diagram for the closed-loop system. The block

diagram has two feedback loops. The linearization loop (loop 1) transforms

the optical trap system into normal form such that the input-output map is

transformed to controllable canonical form by state feedback u(x̂, v, r̈). The

tracking loop (loop 2) uses the controllable canonical state equation in an LQ

optimal algorithm to find the state feedback v = −Kξ ξ̆(x̂) that drives the

tracking error to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xiv



29 A schematic for the variance of the bead deflection and its estimate obtained

using LQG control. For a given κ, increasing kt (also km is increased to main-

tain a constant κ) results in a decrease in the variance for the states and their

estimates; a stiffer optical trap and a stiffer molecule reduces the variance.

Then, for a given kt, an increase in κ (a stiffer molecule) results in an decrease

in the variance for the states and the variance. . . . . . . . . . . . . . . . . . 104

30 A schematic for the variance of the molecule extension and its estimate ob-

tained using LQG control. For a given κ, increasing kt (also km is increased

to maintain a constant κ) results in a decrease in the variance for the states

and their estimates; a stiffer optical trap and a stiffer molecule reduces the

variance. Then, for a given kt, an increase in κ (a stiffer molecule) results in

an decrease in the variance for the states and the variance. . . . . . . . . . . 105

31 The block diagram schematic of the closed-loop optical trap with integral con-

trol. In the diagram, the plant is G1, the controller is K, the molecule dis-

turbances are filtered by G2, the Brownian disturbance is filtered by G3, and

the control u is filtered by a phase-lead compensation filter H to form v. The

other signals are the reference signal r and the error e. . . . . . . . . . . . . . 107

32 A schematic of the pole-map for the plant G1(s). . . . . . . . . . . . . . . . . 109

33 A schematic of the loop gain, sensitivity function, and the complementary

sensitivity function obtained using linear integral control. . . . . . . . . . . . 110

34 A schematic of the estimation bandwidth obtained using the nonlinear Kalman

filter. The bandwidth increases with increasing κ and is independent of the

value of kt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

35 A schematic of the sensor gain optical bandwidth difference 1
gs

(ωt − ω̄t). The

optical bandwidth difference is the additional effect the sensor noise has on the

estimated bead deflection and the estimated molecule extension as the bead

deflection increases. The difference is the result of the nonlinear state observer

because nonlinear pseudo measurements are used to yield linear observer error

dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xv



36 A schematic for the variance of the bead deflection and its estimate obtained

using a nonlinear Kalman filter. For a given kt, increasing κ (a stiffer molecule),

the variance of the bead deflection decreases, while the variance for the esti-

mated bead deflection increases. The variance decreases for the bead deflection

because the molecule becomes stiffer as it is extended and able to suppress the

fluctuations. The variance increases for the estimated bead deflection because

the estimated bead deflection experiences a greater effect from the sensor noise

as κ increases, and this effect is a feature of the state observer. For a given κ,

increasing kt results in the variance decreases for the bead deflection and the

estimated bead deflection. A stiffer optical trap has a larger linear operating

range and is able to help suppress the fluctuations. . . . . . . . . . . . . . . . 127

37 A schematic for the variance of the molecule extension and its estimate ob-

tained using a nonlinear Kalman filter. For a given kt, increasing κ (a stiffer

molecule), the variance of the molecule extension decreases, while the variance

for the estimated molecule extension increases. The variance decreases for the

molecule extension because the molecule becomes stiffer as it is extended and

is able to suppress the fluctuations. The variance increases for the estimated

molecule extension because the estimated molecule extension experiences a

greater effect from the sensor noise as κ increases, and this effect is a feature of

the state observer. For a given κ, increasing kt results in the variance decreases

for the molecule extension and the estimated molecule extension. A stiffer op-

tical trap has a larger linear operating range and is able to help suppress the

fluctuations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

38 A schematic for the variance of the estimated disturbance obtained using a

nonlinear Kalman filter. For a given kt, the variance of the estimated distur-

bance decreases as κ is increased (the molecule is extended), and the variance

is independent of the value of kt. . . . . . . . . . . . . . . . . . . . . . . . . . 129

39 A schematic for the SNR of the estimated force disturbance obtained using the

nonlinear Kalman filter. For a given kt, increasing κ results in a decrease in

the SNR; for a given κ, increasing kt results in the SNR decreasing. . . . . . . 131

xvi



40 The schematic of the block diagram for the closed-loop system. The block

diagram has two feedback loops. The linearization loop (loop 1) transforms the

optical trap system into normal form such that the input-output map can be

linearized using state feedback. The tracking loop (loop 2) uses the linearized

input-output map in an LQ optimal algorithm to find the state feedback to

drive the tracking error to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . 132

41 A schematic for the variance of the bead deflection and its estimate obtained

using the closed-loop nominal nonlinear design. For a given kt, increasing κ

(a stiffer molecule), the variance of the bead deflection decreases, while the

variance for the estimated bead deflection increases. The variance decreases

for the bead deflection because the molecule becomes stiffer as its extended

and able to suppress the fluctuations. The variance increases for the estimated

bead deflection because the estimated bead deflection experiences a greater

effect from the sensor noise as κ increases, and this effect is a feature of the

state observer. For a given κ, increasing kt results in the variance decreases for

the bead deflection and the estimated bead deflection. A stiffer optical trap

has a larger linear operating range and able to help suppress the fluctuations.

The control reduces the variance of the estimated state when compared to that

of the open-loop case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xvii



42 A schematic for the variance of the molecule extension and its estimate ob-

tained using the closed-loop nominal nonlinear design. For a given kt, increas-

ing κ (a stiffer molecule), the variance of the molecule extension decreases,

while the variance for the estimated molecule extension increases. The vari-

ance decreases for the molecule extension because the molecule becomes stiffer

as its extended and is able to suppress the fluctuations. The variance increases

for the estimated molecule extension because the estimated molecule exten-

sion experiences a greater effect from the sensor noise as κ increases, and this

effect is a feature of the state observer. For a given κ, increasing kt results in

the variance decreases for the molecule extension and the estimated molecule

extension. A stiffer optical trap has a larger linear operating range and able

to help suppress the fluctuations. The control reduces the variance of the

estimated state when compared to that of the open-loop case. . . . . . . . . . 140

43 The schematic for the block diagram of the closed-loop block diagram. The

block diagram has three feedback loops. The linearization loop (loop 1) trans-

forms the optical trap system into normal form such that the input-output

map can be linearized with state feedback. The tracking loop (loop 2) uses the

linearized input-output map in an adaptive LQ optimal algorithm to find the

state feedback to drive the tracking error to zero. The self-tuning loop (loop

3) performs the identification process and finds the online control soltuion. . . 165

44 A schematic of the bead deflection and its estimate using the LQG design.

Small values are used for the weight on the tracking error in the LQ control

algorithm. The result is large transients each instance the molecule is stretched.193

45 A schematic of the estimated disturbance obtained using the LQG controller.

The DNA molecule is extended to have its force increase in increments of 2 pN

every 2 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

xviii



46 A schematic showing the estimation force-extension curve and the estimation

error of the force-extension curve obtained using the LQG controller. As the

molecule is stretched between the dimensionless extensions of 0 and 0.96, the

absolute of the maximum estimation error is 0.62 pN. Also, as the molecule

is further stretched closer to its contour length (the dimensionless extension

xm
lm
→ 1), the estimation error increases to an absolute value of 75 pN. . . . . 197

47 The response of the tracking error using LQG design. At each instance the

reference signal is increased, the tracking error has an initial bias that converges

to zero at steady-state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

48 The response of the measured bead deflection and the estimation error be-

tween the measured bead deflection and the estimated bead deflection using

the LQG design. At each instance the measured bead deflectioin is increased,

the estimation error has an initial bias that converges to zero at steady-state. 199

49 A schematic of the estimated disturbance obtained using the nominal nonlin-

ear controller. The DNA molecule is extended to have its force increase in

increments of 2 pN every 2 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

50 A schematic showing the estimation force-extension curve and the estimation

error of the force-extension curve obtained using the nominal nonlinear con-

troller. As the molecule is extended between the dimensionless extensions of 0

and 0.96, the absolute of the maximum estimation error is 0.22 pN. Then, as

the molecule is further extended close to its contour length (the dimensionless

extension xm
lm
→ 1), the estimation error increases to an estimation error with

absolute value of 1.63 pN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

51 The response of the tracking error using the nominal nonlinear design. At each

instance the reference signal is increased, the tracking error has an initial bias

that converges to zero at steady-state. . . . . . . . . . . . . . . . . . . . . . . 205

xix



52 The response of the measured bead deflection and the estimation error be-

tween the measured bead deflection and the estimated bead deflection using

the nominal nonlinear design. At each instance the measured bead deflectioin

is increased, the estimation error has an initial bias that converges to zero at

steady-state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

53 The response of the reference signal and the tracking error using the nonlinear

PI controller. The tracking error has zero bias for each instance the reference

signal is increased. Also, the tracking error has a constant variance throughout

the optical trap operating range, which is expected because of the controller

linearized the input-to-state map. . . . . . . . . . . . . . . . . . . . . . . . . 207
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1.0 INTRODUCTION

This research focuses on creating a sensitive and automated optical trap for use in single-

molecule studies. An optical trap is an instrument that uses the radiation pressure of light

to manipulate microscopic objects. The interaction between the light and the microscopic

objects results in the objects experiencing optical forces. These optical forces are on the

same order of magnitude as biological forces (typically 0.1 to 100 pN) and this feature makes

optical traps appropriate for single-molecule studies.

Currently, there is interest and a need to use the entire operating range of the optical trap

to produce the optical forces. Producing these optical forces is challenging due to the inherent

system nonlinearities and the parameter uncertainty associated with each experiment. This

research addresses these challenges by using adaptive and nonlinear control methods to create

an automated self-tuning optical trap that

• uses its entire operating range to produce the optical forces;

• performs parameter identification;

• finds the unique control gains;

• provides an unbiased filtered estimate of the molecular force;

• minimizes the user interaction with the instrument calibration and control design.

1.1 MOTIVATION

Biophysicists are studying single-molecules to obtain information about their characteristics.

These characteristics include the mechanical flexibility of DNA and the step-size and stall
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force of motor proteins and enzymes. The molecular characteristics have an important role

in cellular functions; for example, the mechanical flexibility of DNA affects packaging and

transcription; the motor proteins kinesin and myosin convert the chemical energy adenosine

triphosphate (ATP) into mechanical energy to perform cellular functions including cellular

transport and muscle contraction. While many discoveries have been made about the un-

derlying molecule characteristics, there still remains unanswered questions. For example,

molecular motors work in groups within the cellular environment and the environmental ef-

fects on their behavior remains unknown [7]; during transcription, the RNA polymerase can

stall and/or backtrack for unknown reasons [8]; DNA experiences hysteresis behavior when

overstretched and the environmental effects on the hysteresis behavior remains unknown [9].

Currently, there is interest to study molecular phenomena to obtain information about their

characteristics.

Biophysicists began studying molecular phenomena by performing bulk studies on a

molecule population. These studies resulted in average information about the population

and no information about a single molecule [10, 11]. Bulk studies present a challenge when

studying individual molecules because a molecule population can be heterogeneous and/or

stochastic. This challenge has been addressed with the creation of single-molecule instru-

ments, and these instruments have allowed the study of single molecules to gain insight

about their mechanical properties and energy landscape [12, 13]. These instruments include

atomic force manipulators, magnetic traps, and optical traps [14].

Optical traps are a popular choice because they are noninvasive and versatile. They are

created by focusing laser light with a microscope objective to produce an optical force on a

dielectric bead. The optical forces are on the same order of magnitude as biological forces,

usually from 0.1 pN to 100 pN, and this feature makes optical traps appropriate for single

molecule studies. Thus far, optical traps have revealed the stall force of viral packaging

motors being 57 pN, the step-size of kinesin being 8 nm, and the effects nucleotides have on

RNA polymerase during transcription [15, 16, 17, 18].

There is an interest to stretch molecules to study their characteristics (mechanical prop-

erties and energy landscape) as a function of force [19, 20]. Force plays an essential role

in the function of motor proteins, nucleic acids, and proteins. For example, the mechani-
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cal flexibility of DNA affects its functions, including packaging, transcription, and folding

[19]; DNA becomes compacted due to protein wrapping, which creates contractile forces

[21]; proteins are essential for cellular functions and can enter different conformation states

by folding/unfolding events [22, 23, 24, 20], folding and unfolding events occur at different

force scales with the unfolding events occurring at higher forces ∼19 pN than the folding

events ∼5 pN [25, 26]; DNA viral motors are highly efficient and package their genome into

host cells by producing high mechanical forces [16, 27]. These characteristics are studied by

detecting local changes in the molecular force about its nominal value.

On average, the molecular force balances the optical force once the bead deflection, the

relative displacement between the center of the dielectric bead and the laser, reaches steady

state. Small bead deflections allow the linearized optical force to be a good approximation of

the optical force and the molecular force be approximated with Hooke’s law [28, 29]. If the

bead deflection exceeds its linear range, then approximating the molecular force with Hooke’s

law may yield poor measurements. The molecular force estimate fluctuates at steady state

because of thermal fluctuations (Brownian noise). Brownian noise is the result of the free

diffusion of water molecules, with each water molecule having kBT energy, that continually

collides with the dielectric bead and the molecule.

The molecule characteristics are studied by detecting local changes in the molecular force

about its nominal value. One approach to detect the force changes is to detect the changes

in the bead deflection, then use Hooke’s law to relate the change in the bead deflection to a

force [30]. However, the presence of Brownian noise makes it difficult to detect small changes

in the bead deflection. Brownian noise is Gaussian, white noise that effects the response of

the bead deflection over a broad range of frequencies, which results in the bead deflection

having a large variance. Consequently, the user is unable to detect small changes in the bead

deflection, which presents a challenge when detecting changes in the molecular force or the

discrete steps of molecular motors and enzymes [31, 6, 32, 33]. For example, in a typical

optical trap experiment, an optical force of 10 pN is applied to a molecular motor, resulting

in a bead deflection having a mean value of 70 nm with a standard deviation of 5.3 nm due

to Brownian motion [31]. The standard deviation of the bead deflection is on the same order

of magnitude as the discrete step-size of molecular motors and the base pair resolution of
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nucleic acids: kinesin has a step-size of 8 nm, myosin-2 has a step-size of 5.5 nm, and the

DNA base pair resolution is 0.34 nm [31]. The optical trap’s performance is hindered by the

presence of Brownian noise and hence, currently there is a need to improve the sensitivity

of the optical trap.

Brownian noise presents a fundamental limit to detect changes in the bead deflection.

The Brownian noise effect on the response of the bead deflection can be reduced with the

use of low-pass filtering or feedback control. Low-pass filtering the response of the bead

deflection reduces its frequency content (filtered bandwidth) by smoothing out its response

and removing the short-period fluctuations. The tradeoff is a reduction in the measurement

bandwidth. The disadvantage is low-pass filters only remove frequency content and cannot

manipulate other variables (e.g., the bead deflection (molecule extension) or the applied

optical trap). Feedback control can also reduce the effects of the Brownian noise, and has

an additional advantage of manipulating other variables. Controlling the bead deflection

in the presence of Brownian noise is a servocontrol problem. Improving the servocontrol

problem (i.e., disturbance rejection) will lead to better information about the molecule’s

characteristics.

Servocontrol has been used to create two feedback configurations: position clamps and

force clamps [28, 34]. Position clamps servocontrol the bead deflection while providing force

measurements; force clamps servocontrol the applied optical force while providing deflection

measurements. These feedback configurations were originally created with proportional (P)

control. Position clamps with P-control servocontrol the bead deflection in one of two ways:

either moving the laser beam with respect to the dielectric bead, or dynamically changing

the stiffness of the optical trap [28]. This feedback configuration were used to study: the

interaction between myosin and actin filaments, which showed that myosin has discrete step-

sizes of 11 nm and force transients of 3 to 4 pN [35]; the compliance of DNA by dynamically

changing the stiffness of the optical trap [19]. Combining position clamps with a high

resolution photodiode detector has yielded displacement and force measurements on the

order of nanometers and piconewtons with millisecond resolution [36]. Force clamps were

first demonstrated by quantifying the stall force of kinesin through maintaining a constant

optical force [28]. These feedback configurations provide a molecular force estimate, and
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determining its quality requires studying its signal-to-noise ratio (SNR). Position clamps

have a detrimental effect on the unfiltered bandwidth SNR and have no effects on the filtered

bandwidth SNR; force clamps have an upper bound on the unfiltered bandwidth SNR and

have no effect on the filtered bandwidth SNR [37, 38]. Proportional control having no

effect on the filtered bandwidth SNR has allowed some researchers to claim feedback control

cannot improve the SNR of the force estimate [38]. This statement overlooks the fact that

frequency shaped controllers can shape the system response, increase SNR of a signal, and

reject disturbances all while manipulating other variables.

These feedback configurations operate about a setpoint (e.g., the molecule is elongated a

desired amount or a desired optical force is applied) and have satisfactory performance when

the optical trap does not deviate significantly far from that setpoint [28]. If the trapped

bead does deviate significantly from the setpoint, then the instrument may exhibit poor re-

sponse, which may include poor measurements or the dielectric bead leaving the optical trap

altogether. As a result, maintaining the optical trap near the setpoint requires considerable

user interaction with the controller to yield satisfactory performance. Consequently, users

are diverting their time and resources away from studying the biophysics. Thus, there is

interest and a need to design feedback controllers to minimize the user interaction and to

push the limit of performance to enable automated single molecule optical trap studies.

1.2 FEEDBACK METHODS IN PRACTICE

The current controllers implemented in optical trap studies have yielded satisfactory closed-

loop performance under strict conditions. The strict conditions include limited operating

range, the molecular dynamics being simplified or neglected during the control design process,

and assuming exact model knowledge. These conditions inhibit the creation of an automated

optical trap.

Researchers have incorporated linear control structures into the optical trap design to

improve its closed-loop performance. These control structures include a proportional plus

integral controllers (linear PI control), system inversion approach, and the combination of
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state observers with state feedback. The first type of controller is linear PI control and it

has the advantages of reducing the effects of Brownian noise, increasing the system type,

and providing an unbiased estimate of the molecule force with an increase in its SNR. [37].

The second type of controller is the combination of a system inverse approach with PI

control and robust control. This controller manipulates the dielectric bead and provides

an estimate of the molecule force by multiplying the system output by the transfer function

relating the system output to the molecular force [39]. Note, care is needed because increasing

the proportional gain leads to a peak forming in the power spectral density (PSD) of the

sensitivity function due to latencies in the actuation dynamics [40]. The presence of the

peak causes a problem by reducing the bandwidth of the molecular force estimate. These

latencies are addressed with robust control methods by using weighted functions to show the

tradeoffs between robustness and performance. The system inversion approach has been used

to detect the discrete step-sizes of molecular motors when combined with a mixed H2/H∞

control structure, where the H∞ norm is minimized for force regulation by reducing the H2

norm of the Brownian noise [41].

Finally, the third controller is a combination of a state observer and state feedback. The

controller provides the molecule force estimate by augmenting the optical trap state to in-

clude a fictitious state describing the molecule force. The augmented optical trap is placed in

a state observer architecture to allow a Luenberger state observer to provide a state estimate;

the state estimate is then used in state feedback to manipulate the molecule. This controller

has been demonstrated with an adaptive Luenberger state observer to simultaneously esti-

mate the system parameters and the molecular force when the molecular force dynamics are

approximated as a second-order regression model [42].

Linear controllers yield satisfactory closed-loop performance when the optical forces are

small. The limited operating range presents challenges when the optical trap needs to pro-

duce higher optical forces. Higher optical forces are necessary when studying, for example,

the stall force of viral packaging motors, DNA hystersis, and RNA polymerase backstepping

[9, 43, 8]. There are two approaches to produce the higher optical forces. The first approach

expands the linear operating range by increasing the laser power to continue using the lin-

ear control methods. The disadvantage to increasing the laser power is the increase in the
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undesirable photodamage [44]. The second approach produces the optical forces within the

entire operating range by considering the system nonlinearities in the control design. The

advantage is the photodamage reduction because low laser power is used; the disadvantage

is the bead deflection becomes large, which causes stability issues due to the decreasing op-

tical stiffness and difficulties in estimating the molecular force. These issues are addressed

with nonlinear feedback methods, which provides one method to account for the system

nonlinearities in the control design.

Nonlinear control has been incorporated into the optical trap design to improve its closed-

loop performance. The nonlinear controllers used are global asymptotic stabilizing control

and nonlinear PI control [45, 46, 47, 48]. The global asymptotic stabilizing control uses a hy-

perbolic tangent function to cancel the effects of the spatial nonlinearities and to regulate the

bead deflection. Nonlinear PI control reduces the effects of the Brownian noise, provides an

unbiased molecular force estimate, and manipulates the bead deflection to track a reference

signal [49, 48]. These control structures are designed when the molecular force dynamics are

simplified or neglected. Simplifying or neglecting the molecular dynamics leads to inaccu-

rate information about molecule characteristics. One approach to improve the quality of the

molecule characteristics is to consider the molecule dynamics during the control design. The

molecule dynamics have been considered during the design of the nonlinear PI controller and

this placed additional constraints on the control gains [46].

The control structures mentioned are model based designs based on the assumption of

exact model knowledge. Exact physical models are rarely available due to modeling errors,

parameter uncertainty, and computational cost [50, 51]. In optical traps studies, exact

model knowledge is a bad assumption due to parameter uncertainty. Parameter uncertainty

is present due to the surrounding medium’s properties changing per experiment and the

optical trap stiffness being affected by the bead’s attachment to the molecule [52, 53, 54,

55, 31, 52]. The interaction between the laser and the surrounding medium causes the

medium’s temperature to increase. The temperature increase affects the medium’s viscosity

and the power spectral density of the Brownian noise. For example, in a typical optical trap

experiment, a laser beam of wavelength 1064 nm with an approximate power of 100 mW

causes a temperature increase of ∼1.2 K. Further increasing the laser power to 500 mW
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causes the temperature to increase by ∼6 K and the viscosity being underestimated by ∼12%.

This viscosity change affects the value of the other parameters because many calibration

methods use Stokes’ drag as a reference force [28]. Parameter uncertainty causes robustness

issues in the closed-loop optical trap performance. A consequence is that users are spending

an enormous amount of time calibrating the instrument and designing the controller, and

this diverts their time away from studying the biophysics. Currently, there is a need and

interest to create an automated optical trap that minimizes the user interaction with the

calibration process and the control design. One approach to address this need is to use a

low authority controller robust enough for the parameter range. The drawback is there is

a tradeoff between performance and robustness. A second approach uses adaptive control

methods that can perform parameter identification and find the unique control gains for each

experiment.

Adaptive feedback methods has been incorporated into the optical trap design to address

the parameter uncertainty and improve its closed-loop performance. These feedback methods

include parameter identification, adaptive Q-parameterization, adaptive state observers, and

adaptive controller. The first adaptive method used a least mean-squared approach for

parameter identification and control [56, 57]. Parameter identification on the optical trap

system through was performed using LMS to adjust weights in a tapped delay line using

a gradient descent method [56]. The LMS approach was used in an adaptive controller to

provide estimates of the actuator dynamics and the Brownian noise, and to minimize the

weighted error. This adaptive controller is a feedforward controller, where the estimated

disturbance is fedforward in a model-matching scheme and using filtered x-LMS algorithm

to minimized the error to create an adaptive Q-parameterization controller.

The second type of adaptive method uses adaptive state observers to simultaneously

provide state and parameter estimates. The first state observer was a reduced order adap-

tive Kalman filter to provide parameter estimates and the molecular force estimate. These

estimates were used in a digital controller to satisfy performance requirements [42]. The

second state observer was a full order adaptive state observer to provide an estimate of the

parameters and states to the combined actuator and optical trap system [58].
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The third type of adaptive method manipulates the bead deflection using a Lyapunov

design approach [59]. The Lyapunov design approach provides a parameter update equation

with zero estimation error if the persistently exciting condition is satisfied. The bead de-

flection is manipulated by designing a sliding mode controller such that the tracking error is

asymptotically stable via LaSalle’s Invariance Principle.

These adaptive methods yield satisfactory closed-loop performance, but each method

has at least one following limitations. The first limitation is the operating range because

the adaptive methods all operate within the linear operating range of the optical trap. The

second limitation is the molecular force is not estimated, which creates a challenge when

studying biological phenomena. The third limitation is the entire system dynamics is not

considered in the control design because the actuator and/or the molecule dynamics are

neglected. These limitations need to be addressed to create a fully automated optical trap

for single-molecule studies.

1.3 RESEARCH PROBLEM

There is an interest and need to create an automated optical trap that uses its entire op-

erating range, addresses the parameter uncertainty, and considers the molecular dynamics.

This research has aimed to create an automated optical trap that addressed these challenges.

The first challenge requires the molecular dynamics be considered during the control design.

The molecular dynamics are modeled and included with the optical trap to form the optical

trap system. The optical trap system can then be manipulated in such a way that addresses

the problems of operating range and parameter uncertainty. In this research, these problems

are addressed with adaptive and nonlinear feedback methods. The proposed control struc-

ture uses the combination of an adaptive Luenberger type state observer with a feedback

linearization and linear quadratic (LQ) structure. This proposed controller addresses three

problems: the operating range problem, the estimation problem, and the control problem.

The operating range problem is addressed with nonlinear feedback methods to use the entire

operating range of the optical trap. The estimation problem uses a Luenberger type state
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observer with the system model to reconstruct the system’s state. The control problem uses

a feedback linearization and LQ structure to have the system satisfy the performance re-

quirements. The first part of the control problem uses feedback linearization to linearize the

input-output map of the system and to decouple the effects of the nominal molecular force

on the response of the system output. The second part of the control problem uses an LQ

optimal control algorithm to find the state feedback to satisfy the performance requirements.

Both the estimation and the control problems contain parameter uncertainty, which is ad-

dressed with adaptive self-tuning feedback methods to improve the closed-loop performance.

Adaptive self-tuning methods can improve the estimation and the control problems by per-

forming real-time parameter estimation, using the parameter estimate as the true parameter

value, and finding the map between the parameter estimate and the control values. This

ensures the closed-loop performance satisfies the performance requirements while accounting

for the parameter uncertainty in the optical trap.

The proposed controller is analyzed and separated into two parts: a nominal nonlinear

design and the adaptive nonlinear design.

1. The nominal nonlinear design assumes exact model knowledge. The purpose of the

nominal nonlinear design is to demonstrate the control methodology using fixed-gain

feedback methods before adaptive feedback methods are used. The Luenberger state

observer uses a state-dependent observer gain to provide the state estimate. The problem

of finding the state dependent observer gain is turned into a problem of finding a state

transformation such that, in the transformed state, the state estimation error dynamics

exhibit linear behavior. The state estimate is then used in the feedback linearization

with LQ structure to satisfy performance requirements.

2. The adaptive nonlinear design assumes the plant parameters are unknown constants.

The adaptive Luenberger type state observer is used to simultaneously perform state

and parameter estimation. These estimated entities are used in an adaptive feedback

linearization with LQ structure to satisfy performance requirements.
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The proposed control structure creates an automated self-tuning optical trap that:

• uses the entire operating range to produce optical forces;

• performs parameter identification;

• finds the unique control gains;

• provides an unbiased filtered estimate of the molecule force;

• minimizes the user interaction with the instrument calibration and control design.

1.3.1 Research Objectives

The following objectives aid in the creation of the automated optical trap.

• Objective 1: Find the functional structures of the state observers

The bead deflection measurement contains the information about the molecule charac-

teristics. The challenge in obtaining the molecule characteristics is that optical traps

operate in a noisy environment due to Brownian noise, which places a fundamental limit

for detecting changes in the bead deflection. Currently, there is a need to improve the

measurement sensitivity to enhance further discoveries in single molecule studies. Here,

measurement sensitivity is improved by using a state observer to simultaneously provide

a state estimate and parameter estimate.

• Objective 2: Design the control structure to satisfy experimental conditions

The molecule characteristics are studied by manipulating the bead deflection in a sys-

tematic and reliable manner. Feedback control manipulates the bead deflection in a

systematic way to allow the molecule to enter different conformations to study its char-

acteristics.

• Objective 3: Analyze noise effects on the closed-loop nominal system

Feedback control changes the system dynamics. Care is needed during the control design

because poor designs may have detrimental effects on the system performance. In order

to assess the effectiveness of the nominal design on the quality of the measurements,

statistical analyses are performed to quantify the control effects on the system bandwidth
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and the statistical properties of the system state. The statistical analysis shows any

tradeoffs in performance to provide insight when choosing control gains for individual

experiments.

• Objective 4: Demonstrate the control structure

Proof of concept demonstrates the closed-loop performance of the optical trap when using

adaptive and nonlinear feedback methods. The demonstration allows for the comparison

of the closed-loop performance of the proposed controller to the current controllers in

practice. The comparison quantifies the improvement in the closed-loop performance

when considering the system nonlinearities and parameter uncertainty in the control

design.

1.3.2 Simulations

Proof of concept is needed to demonstrate the performance of the proposed controller on

a single-molecule study. The study chosen is the stretching of DNA to replicate its force-

extension curve. In the study, it is assumed the DNA molecule is attached at one end to

a glass surface, while its other end is attached to a polystyrene bead. The molecule’s end-

to-end distance determines its extension, and its extension is manipulated by controlling

the position of the dielectric bead [60]. The information obtained about the molecule’s

extension is then related to the corresponding molecular force. The simulation allows for the

comparison of the closed-loop performance of the proposed controller to that of controllers

used in practice. The two metrics to be quantified are:

1. The improvement in the closed-loop performance when using nonlinear control instead

of linear control when considering the system nonlinearities in the control design.

2. The closed-loop performance of an automated optical trap using adaptive self-tuning

feedback compared to that using fixed-gain feedback methods and assuming exact model

knowledge.

Current control methods use linear proportional plus integral control or only integral control

because of its ability to increase the system type, reject constant disturbances, reduce the

effects of the Brownian noise, and provide a disturbance estimate. The statistical character-
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istics of the estimated molecule force can also be obtained with linear quadratic Gaussian

(LQG) control. This statistical equivalence is crucial because LQG control has a similar ar-

chitecture to that of the proposed nonlinear feedback designs to address the estimation and

control problems. The similar architecture of the LQG control with the nonlinear feedback

designs allow the comparison of the statistical characteristics of the estimated molecule force

with a controller used in practice to the statistical characteristics of the estimated molecule

force obtained with the proposed nonlinear feedback designs. In addition, the closed-loop

performance of the proposed nonlinear feedback designs are compared with the closed-loop

performance of a nonlinear PI controller, a controller used in practice. The second metric

compares the closed-loop performance using adaptive self-tuning control methods to that of

fixed-gain control methods. Fixed gain control methods yield satisfactory performance after

the user spends considerable time interacting with the instrument and the control design.

Adaptive self-tuning control methods can provide similar performance as fixed-gain con-

trollers by performing real-time parameter estimation, using the parameter estimates as the

true parameter in the control design, and finding the map between the parameter estimate

and the control parameters.

1.4 RESEARCH IMPACT AND SIGNIFICANCE

This research has aimed to create an automated optical trap by expanding on its areas of

sensing and control. Typically, users spend an enormous amount of time interacting with

the optical trap during the calibration process and the controller design due to their limited

knowledge with feedback control. A consequence is that users are diverting their resources

away from studying the biophysics at hand. To date, there is no automated optical trap to

probe molecules. One method to address this need is to use adaptive and nonlinear control

methods to create an automated self-tuning optical trap. The combination of adaptive and

nonlinear control creates a new controller to allow optical traps be used in single-molecule

studies that allows the users to redirect their resources back to studying the biophysics at

hand.
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Improving single-molecule studies has a direct impact in medicine, especially the un-

derstanding of disease pathology and the monitoring of disease activity. Single molecule

malfunction leads to disease. Aging is a risk factor for degenerative diseases like Hunting-

ton’s and Alzheimers due to protein misfolding and amyloid aggregation [61, 22]. The motor

proteins kinesin, myosin, and dynein transport cargo and it recently has been discovered that

these motor proteins have an unexpected role in brain wiring and neural survival. A func-

tional defect in these motor proteins can lead to ALS, Huntington’s disease, and Alzheimer

disease [62]. DNA is essential for transcription and replication, and defective DNA due to le-

sions or mismatch can interfere with these processes and cause genome instability, which can

lead to neurodegenerative diseases and cancer [63]. Disease monitoring can also be achieved.

Red blood cells can aggregate and the corresponding force between membranes can be an

additional tool to monitor disease activity, especially in lupus patients. The aggregation

force is approximately doubled in lupus patients rather than in healthy patients [64]. The

result of creating an automated optical trap can provide one platform to allow medical re-

searchers to study the characteristics of single-molecules to improve their understanding of

disease pathology, monitor diseases, and hopefully improve treatments.

Finally, improving the state-of-the-art of optical traps can impact other applications,

including the physical sciences and nano-fabrication. In the physical sciences, optical traps

can create features smaller than the wavelength of light and also study optically modulated

collisions and thermal rackets. In nano-fabrication applications, optical traps have been used

to manipulate nanotubes and nano wires [65, 66]. Advancing the state-of-the-art of optical

traps will have a broad impact in many applications.
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1.5 DISSERTATION ORGANIZATION

This dissertation is organized as follows:

Chapters two and three describe the process of constructing and calibrating the optical

trap. The construction of an optical trap requires the consideration of many components.

The optical trap is constructed to demonstrate and compare the performance of the different

control structures on an actual single-molecule experiment.

Chapter four describes the dynamics of the optical trap system. The optical trap system

is composed of the actuator, the dielectric bead, sensor, and the molecule. The model of

these dynamics will be used to design the control structures.

Chapters five, six, and seven discuss the design and the performance of the different

control structures: the LQG design, linear integral control, the nominal nonlinear design,

the nonlinear PI control, and the adaptive nonlinear design.

Chapter eight discusses the simulations and proof of concept by demonstrating and com-

paring the closed-loop performance of the optical trap with the different control structures

on an actual single-molecule experiment .

Chapter nine is the conclusion and future work.
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2.0 OPTICAL TRAP THEORY

Optical traps are instruments capable of manipulate microscopic objects using the momen-

tum of light. The light is focused with a high numerical aperture microscope objective to

produce the optical forces. These optical forces are small, typically 0.1 pN to 100 pN, and

this feature makes optical traps appropriate for single molecule studies. In single-molecule

studies, optical traps have been used in many configurations, including single-beam, dual-

beam, and holographic [30, 67]. This research will use the optical trap in a single-beam

configuration. The process of constructing an optical trap involves the consideration of

many components, including the choice of laser, objective, actuation method, and detection

method. This chapter discusses the theory of the optical forces, the design considerations

during the construction process, and the optical trap design.

2.1 OPTICAL FORCES

Optical traps use the radiation pressure from a tightly focused laser beam to manipulate

microscopic objects. The idea first arose in 1969 when Arthur Ashkin became interested

in calculating the radiation pressure force on a reflecting mirror [68]. Each photon has a

momentum of h/vc (where h is Plank’s constant, c is the speed of light, and v is frequency)

and given an incident laser power of P , then there is P/hv photons per second striking the

mirror. Assuming an incident laser power of 1 W results in a the force of 10 nN applied

to the mirror [69, 68]. These results were experimentally verified by Ashkin in 1970 [69]

and showed the presence of two forces: a scattering force and an unexpected gradient force.

The scattering force pushes the bead downstream and acts in the direction of the light
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propagation; the gradient force pulls the bead to the region of highest intensity and acts

in the direction of the highest intensity gradient. The presence of the gradient force led to

the discovery of the single-beam gradient optical trap [70]. The single-beam gradient optical

trap is formed when the gradient force overcomes the scattering force to stabilize the bead

deflection.

The scattering and gradient forces have been described in two regimes and these regimes

depends on the dimension of the bead, its diameter d, to that of the light wavelength λ.

When the bead’s diameter is much greater than that of the light’s wavelength, d � λ,

the optical trap is operating within the Mie scattering regime. Mie scattering allows for

geometric optics or ray optics to describe the optical forces. If the bead’s diameter is much

less than that of the light’s wavelength, d� λ, then the optical trap is operating within the

Rayleigh scattering regime. Rayleigh scattering uses electromagnetic theory to describe the

optical forces because the dielectric bead behaves as a point dipole in the electric field.

In the Mie scattering regime, ray optics is used to describe the optical forces, as shown

in figure 1. Displacing the bead with respect to the objective’s focus results in the gradient

force overcoming the scattering force to pull the bead to the location where these forces are

balanced. The scattering force fs and the gradient force fg are described by [71],

fs =
nP

c

(
1 +R cos 2θ − T 2 [cos (2θ − 2φ) +R cos 2θ]

1 +R22R cos 2φ

)
, (2.1a)

fg =
nP

c

(
R sin 2θ − T 2 [sin (2θ − 2φ) +R sin 2θ]

1 +R2 + 2R cos 2φ

)
, (2.1b)

where R and T is the Fresnel reflection and transmission coefficients of the bead’s surface,

θ and φ are the angles of incidence and refraction, and nP/c is the incident momentum

per second in a medium of index of refraction n. Equation (2.1) describes the forces that

are polarization dependent because the Fresnel coefficients R and T are different for rays

polarized parallel or perpendicular to the plane of incidence [71].

Rayleigh scattering uses electromagnetic theory to describe the optical forces because

the dielectric bead behaves as a point dipole in the electric field. The optical forces depend

on the laser’s intensity I, the bead’s radius r, the medium’s index of refraction n, and the

effective index ne, which is defined as the ratio of the refractive index of the bead to the
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Figure 1: Schematic of how individual light rays applies forces on a bead. When the bead

is displaced from the focus, optical forces act on the bead to pull it back. A) The bead is

displaced downstream from the focus and forces pull the bead upstream. B) The bead is

displaced upstream from the focus and the forces pull the bead downstream. C) The bead

is displaced off axis of the focus and forces pull the bead back to the axis.

refractive index of the medium. The scattering force and the gradient force are described by

[70].

fs =
I

c

128π5r6

3λ4

(
n2
e − 1

n2
e + 2

)2

n, (2.2a)

fg = −n
3r3

2

(
n2
e − 1

n2
e − 2

)
∇E2. (2.2b)

In most experiments, the dimension of the bead has the same order of magnitude as

the light’s wavelength, typically between 0.5 µm to 5 µm. Even though there have been

advancements in describing the optical forces within this size range, [72, 73], they do not

provide a further understanding of the optical traps. In general, the optical forces are

described by [1]

f = Q
nP

c
(2.3)

where Q is the trapping efficiency. The trapping efficiency is determined experimentally and

its value is different for axial and lateral trapping forces, as shown in table 1.
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Table 1: Trapping efficiency, Q for polystyrene beads of different sizes and with using objec-

tives with different NA. [1, 2].

Diameter (µm) n NA Depth (µm) P (mW) Q

Lateral

0.303 1.57 1.3 13 1-90 0.012

1.02 1.57 1.3 13 1-90 0.085

2.97 1.57 1.3 13 1-90 0.21

0.4 1.57 1.25 8.3 60 0.01

1 1.57 1.25 8.3 60 0.08

2.1 1.57 1.25 8.3 60 0.16

6.1 1.57 1.25 8.3 60 0.20

Axial

1.2 1.57 1.3 9 1-90 0.0058

0.4 1.57 1.25 8.3 60 0.02

1 1.57 1.25 8.3 60 0.07

2.1 1.57 1.25 8.3 60 0.08

6.1 1.57 1.25 8.3 60 0.29
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2.2 OPTICAL TRAP CONSIDERATIONS

The construction of an optical trap requires the consideration of the choice of actuation

method, detection method, laser, and the microscope objective that focuses the laser and

images the specimen plane.

In biological applications, the choice of laser, particularly its wavelength, is crucial to

reduce biological photodamage and opticution [74, 75, 44]. Wavelengths within the visible

spectrum are absorbed by naturally occurring pigments found in biological material, and

this fact may lead to damage and cell death. Longer wavelengths in the infrared spectrum

are better for the health of biological material because biological material becomes more

transparent and the surrounding medium absorbs the laser energy, as shown in figure 2

[74, 6]. The photodamage is minimized when using wavelengths of 830 nm and 970 nm [44].

The popular choice of wavelength is 1064 nm because its economical and results in small

amounts of photodamage. Lasers at this wavelength are available and the common used

laser is the diode pumped Nd:YAG laser.

The most important component is the microscope objective that is used for trapping

and imaging. The objective choice affects the efficiency of the optical trap system, which

depends on the objective’s numerical aperture (NA) and transmittance [76]. Numerical

aperture quantifies the objective’s ability to collect light and is defined by

NA = n sin θ

where n is the refractive index of the medium and θ is the half-angle of the angular aperture

[77]. In trapping applications, the laser beam is focused with a high NA (typically 1.2 NA

to 1.4 NA) objective to create the steep gradients and high intensities to have the gradient

force overcome the scattering force. When choosing the objective, its immersion medium is

crucial because the immersion medium affects the trapping depth. Oil immersion objectives

have high NA with the tradeoff of a refractive index mismatch with the surrounding medium

[76]. The refractive index mismatch results in spherical aberrations that limit the trapping

depth. Water immersion objectives provide a deeper trapping depth because these objectives
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Figure 2: A schematic showing the absorption properties for deoxyhemoglobin Hb, oxyhe-

moglobin HbO2 and water H20 as a function of the wavelength of light. Longer wavelengths

in the infrared regime provide better health for biological material because biological mate-

rial becomes more transparent while the laser energy becomes absorbed by the surrounding

water. Source [6].
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do not cause spherical aberrations, however, water immersion objectives have smaller NA

than oil immersion objectives.

The objective is placed in an imaging system that can either be a commercial or cus-

tom microscope. Custom microscopes allow for design flexibility, which can overcome the

increased complexity of building the optical paths for trapping and imaging. The preferred

imaging system is a commercially inverted microscope because of their stability, the fixed

stage, and the objective moves in the vertical direction [76].

Typically, the microscope and laser are placed on a vibration isolation table to reduce the

influence of building equipment on the measurements. Building equipment (e.g., compressors

and HVAC systems) and renovations can cause vibrations in the low frequency range to be

present in the floor. The vibrations are transmitted to the top surface of the platform

containing the optical trap, which cause fluctuations in the optical components and leads

to measurement degradation. These issues can be addressed by placing the microscope and

optical components on a vibration isolation table with active vibration legs that uses air to

change their stiffness to reduce the vibrations.

2.3 OPTICAL TRAP SETUP

The optical trap setup is composed of a Zeiss Axiovert 200 inverted microscope and a

Nd:YAG laser at 1064 nm (Coherent Compass 1064-2500 MN diode-pumped Continuous

Wave IR laser) that are placed on a vibration isolation table (Thorlabs). The schematic

of the optical trap design is shown in figure 3. The beam path is initially collimated with

lens f1 before being directed onto the fast steering mirror (FSM, Newport FSM-300). The

FSM can tilt along two orthogonal axes by changing its voltage input and is located at the

back Fourier plane (BFP) of the objective. After the FSM, the beam path is expanded with

a telescope (lenses f2 and f3) to slightly overfill the back aperture of the objective, before

entering into the epi-fluorescence port of the microscope. Once inside the microscope, the

beam path encounters a custom dichroic mirror (Chroma technology), that is placed in the

microscope’s filter cube turret. The dichroic mirror redirects the beam path to the objective
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Figure 3: The schematic of the optical trap setup. The laser beam expands then is collimated

with the collimating lens f1. The collimated light is directed with mirrors to the fast steering

mirror (FSM), that is placed at the back Fourier plane of the objective. Then, the light gets

expanded by a telescope (f2 and f3) before entering the microcope’s epi-flourence port. Once

inside the microscope, the light is redirected with a dichroic mirror to the objective, which

focuses the light to the specimen plane. The condenser collects the forward scattered light,

which is redirected by a second dichroic mirror to the QPD.
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Figure 4: The transmission plot for the Zeiss Plan-Apochromat 63x/1.4 NA objective. When

the laser has a wavelength of 1064 nm then the resulting laser power at the specimen plan is

∼30% of its input power at the objective.

while transmitting the illumination light to image the specimen plane with a CCD camera

(Hitachi). The high NA objective (Zeiss Plan-Apochromat 63×/1.4 NA) creates the steep

gradients for trapping and imaging. The objective is highly corrected with many lens, which

reduces the laser power at the specimen plane to ∼30% of its input power, as shown in figure

4. The interaction between the light and the bead results in forward scattered light, or the

light being scattered in different directions (at different angles). The forward scattered light

is collected with a high NA condenser (Zeiss Achromatic-aplanatic condenser with 1.4 NA).

The collected light is redirected with a second custom dichroic mirror (Chroma Technol-

ogy) to a collimated lens f3 and the quadrant photodiode (QPD, First Sensor). The QPD

measures the intensity profile of the forward scattered light at the BFP of the condenser to

measure the bead deflection.

2.3.1 Choosing the Proper Lenses

The optical trap setup is designed in three parts. The first part places the FSM at the BFP

of the objective using a three lens system; the second part directs the beam path from the
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laser to the FSM; the third part collects the forward scattered light and directs the light to

the QPD. Each part requires the use of lenses. The proper focal lengths are chosen using a

ray-transfer matrix approach to relate the light’s position and angle at the object plane to

that at the image plane [78]. The two ray-transfer matrices used in the analysis describe the

propagation through free space

yi
θi

 =

1 d

0 1

yo
θo

 , (2.4)

and the passage through a thin lens

yi
θi

 =

 1 0

− 1
f

1

yo
θo

 , (2.5)

where d is the distance propagated, f is the focal length, yo and yi are the positions at the

object and image planes respectively, and θo and θi are the angles at the object and image

planes respectively. Equations (2.4) and (2.5) are combined to describe the light propagation

through a single thin lens when the object and image planes are located a focal length away

by yi
θi

 =

1 f

0 1

 1 0

− 1
f

1

1 f

0 1

yo
θo

 =

 0 f

− 1
f

0

yo
θo

 . (2.6)

Equation (2.6) describes the Fourier transform property of a thin lens because angular dis-

placements at the object plane results in position changes at the image plane and also position

changes at the object plane results in angular changes at the image plane. The ray-transfer

matrix approach can be extended to study light propagation through several cascaded thin

lens.

The first part of the optical trap setup places the FSM at the BFP of the objective to use

70% its full dynamic range. The FSM placement requires a lens system be created between

the FSM and the specimen plane. A cascaded three thin lens system can describe the light’s

angle at the FSM to the lateral translations of the light at the specimen plane, as shown in

figure 5. The FSM is located at the object plane and the specimen plane is located at the
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Figure 5: A schematic of a cascaded system of three lens that is in between the FSM placed

at the object plane and the specimen plane placed at the image plane. The FSM being placed

at the BFP of the objective allows for FSM angle inputs be turned into lateral translations

of the laser in the specimen plane.

image plane. The resulting ray-transfer matrix isyi
θi

 =

 0 fobj
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0
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− 1
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0
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which is equivalent to the Fourier transform property for a cascased three lense system.

Assuming only angular displacements at the FSM reduces equation (2.7) to

yi = −f2fobj

f3

θo. (2.8)

The focal length of the objective is found through

fobj =
ft
M
, (2.9)

where M is the objective’s magnification and ft is the focal length of the tube lens. The

objective is a Zeiss Plan-Apochromat objective with a magnification of 63× and its tube

lens has a focal length of 164.5 mm, resulting in the objective focal length given in table

2. The focal lengths of f2 and f3 are design parameters to use the FSM dynamic range

and move the laser ±20 µm in the specimen plane. The lens f3 is to be placed outside the

microscope, which results in the following condition: f3 ≥ 400 mm. These design conditions

are considered when choosing standard lens sizes and the focal lengths chosen are given
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Table 2: The focal lengths for the lens chosen in the optical trap setup.

Focal length Numerical length (mm)

fobj 2.61

f1 750

f2 100

f3 400

f4 250

in table 2. The FSM’s input range of ±10 V allows for angular deflections of ±52.4 mrad.

Applying 1 V to the FSM results in a 3.4 µm laser beam deflection. The applied voltage

comes from a 16 bit D/A board with a range of ±10 V and results in the smallest possible

laser beam deflection being ∼1 nm.

The optical trap setup needs to expand the beam diameter to slightly overfill the back

aperture of the objective. The back aperture of the objective has a diameter of 10 mm. The

beam diameter is expanded with two parts of the optical trap setup: the first part is the lens

system between the FSM and specimen plane and the second part is the lens system between

the laser and FSM. The total optical magnification is the product of the magnification of

each individual part. The first part has a magnification of M = f3/f2 = 4, which implies the

beam diameter needs to be 2.5 mm at the FSM. The second part of the optical trap setup

is designed to expand the beam diameter to 2.5 mm and to direct the beam path from the

laser to the FSM. The beam diameter is expanded using the beam’s natural divergence until

the desired diameter of 2.5 mm is reached. The laser (Coherent Compass IR laser) operates

in the TEM00 mode with an initial beam diameter at 1/e2 of 0.4 mm and a beam divergence

of < 3.5 mrad. The divergence is determined by

tan
(α

2

)
=
dd − di

2l
, (2.10)

where α is the divergence angle, dd is the desired beam diameter, di is the initial beam

diameter, and l is the divergence length. Equation (2.10) is used to find the divergence
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Figure 6: A schematic of the sensing system. The sensing system is composed of the con-

denser, collimating lens, and the QPD.

length that yields the desired beam diameter. At the divergence distance, the laser beam

is collimated by a thin lens with focal length f1 = l. The closest standard lens is chosen,

given in table 2, and results in the beam diameter being 3.01 mm. The collimated beam is

directed to the FSM with stationary mirrors.

The third part is designed to collect the forward scattered light then direct the light to the

QPD. The sensing system includes the condenser, a dichroic mirror, a collimating lens, and

the QPD, as shown in figure 6. The condenser is a black box with unknown components. It

is assumed the condenser is a two lens system with focal lens fc1 and fc2 because the exiting

light is converging, and the condenser focal lengths are aligned with each other and with

the specimen plane. The condenser having two lenses is assumed because the manufacturer

is Zeiss. The light exiting the condenser encounters a second dichroic mirror that redirects

the beam path to the QPD and transmits the illumination light.. The redirected light is

collimated with lens f4 so the light slightly overfills the QPD sensing area. The sensing

system is described by a three cascaded thin lens system to relate the forward scattered light

at the specimen stage to lateral displacements at the QPD. The resulting ray-transfer matrix

is yi
θi

 =

 0 f4

− 1
f4

0

 0 fc2

− 1
fc2

0

 0 fc1

− 1
fc1

0

yo
θo

 =

 0 −fc1f4
fc2

fc2
fc1f4

0

yo
θo

 , (2.11)
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Figure 7: A schematic showing the effects positional misplacements of the optical components

on the Fourier transform property of the cascaded three lens system.

which describes the angular spectrum (equivalent to a Fourier transform) of the sensing

system [78]. The QPD measures position and this fact simplifies equation (2.11) to

yi = −f4fc1
fc2

θo. (2.12)

The optical trap setup is designed with the assumption that the optical components are

placed correctly; however, it is impossible to place these optical components in their exact

locations. Positional misalignments can affect the quality of the Fourier transform property

of the three cascaded lens system used with the FSM and QPD. It is insightful to quantify

the effects the positional misalignments has on the three lens systems.

2.3.2 Actuation Misalignment Issues

A three lens system describes the Fourier transform property between the FSM and the

specimen plane. The presence of positional misalignments can affect the Fourier transform

property of the three lens system. Potential misalignments result in free space between

the focal planes, as shown in figure 7. Free space is possible at three locations: δ1 is the

misalignment of focal length f2 with the FSM, δ2 is the the misalignment of the focal lengths

f2 and f3, and δ3 is the misalignment of the focal length f3 with the objective and movements

of the objective to focus the specimen plane. The free spaces result in light propagation
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according to equation (2.4). The free space effects are quantified with a ray-transfer matrix

analysis. The three lens system with the positional misalignments is described by

yi
θi

 =

 fobjδ2
f1f2

fobjδ1δ2
f1f2

− f1fobj
f2

f2
f1fobj

− δ2δ3
f1f2fobj

f2δ1
f1fobj

− δ1δ2δ3
f1f2fobj

+ f1δ3
f2fobj

yo
θo

 (2.13)

Assuming only angular deflections at the FSM reduces equation (2.13) to

yi
θi

 =

 fobjδ1δ2
f1f2

− f1fobj
f2

f2δ1
f1fobj

− δ1δ2δ3
f1f2fobj

+ f1δ3
f2fobj

 θo =

 6.2(10−5)δ1δ2 − 0.65

1.53δ1 − 9.58(10−6)δ1δ2δ3 + 0.096δ3

 θo, (2.14)

The resulting laser position is the sum of its value with no misalignment 0.65 and a position

error 6.2(10−5)δ1δ2 due to the misalignments. The position error is four orders of magnitude

smaller than the laser position with no misalignment. The misalignments are no larger than

an order of magnitude and even at this extreme, the resulting position error is still two

orders of magnitude smaller than the laser position with no misalignment. The position

error is independent of the misalignment γ3 and implies the movement of the objective does

not contribute to the error. The resulting angular deflections are angular errors due to

misalignments. The dominant angular error term is due to the misalignment of the FSM

with respect to the lens f1 and is at least two orders of magnitude larger than the other error

terms. This error term can be minimized by placed the FSM as close to a distance f1 from

the lens.

2.3.3 Sensing Alignment Issues

A three lens system describes the angular spectrum (Fourier transform) of the forward scat-

tered light at the QPD surface. The presence of positional misalignments can affect the

Fourier transform property of the three lens system. Potential misalignments result in free

space between the focal planes, as shown in figure 8. Free space is possible at two locations:

δ4 is the misalignment of the focal length f4 with the condenser and δ5 is the misalignment
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Figure 8: A schematic showing the effects positional misplacements of the optical components

on the QPD measurements.

of the focal length f4 with the QPD. The free space effects are quantified with a ray-transfer

matrix analysis. The three lens system with the positional misalignments is described byyi
θi

 =

 δ5
f4

(
fc2
fc1

)
δ4δ5−f24

f4

(
fc1
fc2

)
1
f4

(
fc2
fc1

)
δ4
f4

(
fc1
fc4

)
yo

θo

 . (2.15)

The QPD measures position and this fact implies we are only interested in the position error

not the angular error. The resulting position error is

yi =
δ5

f4

(
fc2

fc1

)
yo +

δ4δ5 − f 2
4

f4

(
fc1

fc2

)
θo. (2.16)

Equation (2.16) shows that placing the QPD correctly, δ5 = 0, allows for small misalignments

in the collimating lens (focal length f4) without having detrimental effects on the position

measurements.

The optical trap setup can stretch the molecule and study the molecular characteristics

through the attachment between the bead and molecule. The molecule can be stretched

to desired extensions by changing its end-to-end distance through manipulating the bead

deflection. The molecule characteristics can be obtained by detecting force changes through

detecting changes in the bead deflection. In this research, the bead deflection is manipulated

with the FSM and is measured with the QPD. There are several actuation and sensing

methods used with optical traps. The following discusses the different methods for actuation

and sensing for completeness.
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2.3.4 Position Sensing Methods

Many methods exist to measure the bead deflection and these methods range from video to

interferometric methods. Video methods provide the absolute position of the bead. These

methods use centroid tracking algorithms to track the bead’s position [76, 28]. However, the

disadvantages are the limited bandwidth of the camera, typically ∼30 Hz, and no information

is obtained about the bead deflection. Therefore, it is desirable to use a detection method

that has a faster bandwidth and measures the bead deflection.

Interferometric detection methods measure the bead’s deflection using the forward scat-

tered light of the bead. Two interferometric methods are differential interference contract

(DIC) and quadrant photodiodes (QPDs) [79]. DIC methods measure the change in the

transmitted polarization to that of the incident polarization; QPDs measure the change in

the angular spectrum of the scattered wave about the beam path [80, 79]. Both methods

collect the forward scattered light with a condenser that has a similar NA as the objective

to obtain similar sensitivities.

DIC interferometry measures the bead deflection from the change in the transmitted

polarization to that of the incident polarization. The incident beam with circular polarization

encounters a Wollaston prism, placed in front of the objective, to split the laser beam into its

orthogonal polarization components [79]. These orthogonal beams overlap each other to form

a single optical trap, and are recombined into a single beam by a second Wollaston beam

that is placed after the condenser. The polarization of the recombined beam with respect to

that of the incident beam obtains the information about the bead’s deflection. No change

in polarization implies the bead deflection is zero. If the bead deflection is not zero, then

there is a phase delay between the two orthogonal beams that results in the recombined

beam having an elliptical polarization [79]. The resulting elliptical polarization contains

information about the bead deflection in the lateral direction. This detection method is

the most sensitive with a power spectral density of 1 pm/
√

Hz within the frequency range

of 0.1 Hz to 100 Hz to yield total noise of 99.9 pm2 [81]. The advantages are the detection

method is always aligned because the same laser is used for trapping and detection, and

movements of the beam path in the specimen plane does not require the detection system
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be aligned [82]. However, the disadvantage is the bead deflection is only detected along the

Wollaston sheer axis, which means you can only measure deflection in one axis.

The second interferometric sensing method uses a QPD to measure the bead deflection.

The sensing configuration images the forward scattering light collected by the condenser on

the QPD, as shown in figure 9 [28, 83]. The interaction between the laser beam and the

dielectric bead causes the light to refract in the direction of the bead deflection. The result-

ing light intensity pattern at the QPD describes the angular-intensity pattern (the angular

spectrum) of the forward scattered light and contains the information of the bead deflection

[83]. A symmetric intensity pattern implies the bead deflection is zero; an antisymmetric

intensity pattern implies the bead deflection is nonzero and in the direction of the highest

light intensity, as shown in figure 10. The sensing system is insensitive to laser movements

and only measures the bead deflection [83]. Proper alignment of the QPD at the BFP is

necessary because the QPD is fixed in space [82]. Even though QPDS are not as sensitive

as the DIC method, QPDS still provide measurements on the order of nanometers and this

feature makes the QPD appropriate for single-molecule studies.

2.3.5 Actuation Methods

Manipulating the molecule requires the ability to manipulate the bead deflection in a reliable

manner. Many methods exist to manipulate the bead deflection, and these methods range

from moving the specimen stage with respect to the beam path or moving the beam path

with respect to the specimen stage. Piezoelectric stages can move the specimen stage with

respect to the beam path in three directions. The stages have nanometer resolution over a

limited working area. However, the disadvantages are the cost and the limited bandwidth

due to the movement of the mass of the stage [76]. The second method moves the beam path

with respect to the specimen stage [76, 6]. One such setup involves moving the rear lens

of a telescope with a 3-D position stage that is placed externally infront of the microscope.

Lateral translations of the rear lens result in lateral translations of the laser beam in the

specimen stage. Axial deflections of the rear lens changes the trapping depth. Similarly with

piezoelectric stages, the disadvantage is the limited bandwidth, typically ∼100 Hz, due to

33



Figure 9: Schematic of QPD position detection system. The forward scattered light that is

refracted by the dielectric bead is collected by the condenser and transmitted to the QPD.

The QPD is located at the BFP of the condenser.
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Figure 10: Schematic of the intensity profiles at the QPD’s surface. When the bead deflection

is zero, the resulting intensity profile is symmetric at the QPD. If the bead deflection becomes

nonzero, then the resulting intensity profile becomes antisymmetric in the direction of the

bead deflection.

moving the mass of the lens. The idea of moving the beam path with respect to the specimen

stage lead to actuation methods with faster bandwidths.

Actuation methods with faster bandwidths specify the angular spectrum of the light at

the back focal-plane (BFP) of the objective. The BFP is a Fourier plane to the specimen

plane, and a change in the angle of incidence of the beam path results in a lateral translation

of the beam path in the specimen plane. The angular spectrum is specified using either

acousto-optic deflectors (AOD) or fast steering mirrors (FSM). AODs are composed of a

transparent crystal that has its density grating change by a acoustic wave traveling at ultra-

sound frequencies [76, 82]. This density grating change results in a change in the light’s angle

(translations of the laser position in the specimen plane). AODs provide a fast response with

a bandwidth ∼10 to 100 kHz (“note this is the speed with which deflections respond and not

the bandwidth of the acousto-carrier frequency”) [80]. However, the disadvantages are the

cost and AODs only manipulates the beam path in only one direction. [82]. FSM is a beam

steering mirror that can tilt along two orthogonal axes by changing its voltage input. When

placed at the BFP, a change in the FSM angle results in a change in the lateral translations
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of the laser beam. FSMs provide a fast response, typically on the order of kilohertz, and

provides more than adequate bandwidth for feedback control of optical trap studies in water.

2.4 ALIGNMENT PROCEDURES

This section discusses the procedures used to align the optical components. Alignment was

done in accordance with the University’s safety measures and followed the lab’s SOP. Eye

protection was worn, low laser power was used, an IR viewing card was used to determine the

location and size of the laser beam, irises were used to ensure the beam path is straight and

to act as beam stops, and the laser is turned off each time a component is added, removed,

or changed. The alignment process involves coarsely aligning the beam path first, then finely

aligning and tuning the beam path.

The schematic of the optical trap layout is shown in figure 3. First, the microscope

and laser are placed and secured to the optical trap. Their placement is crucial because

any movement in either component will interfere with the alignment process. After securing

these components, the optical trap is constructed in two parts: the first part directs the

beam path from the laser to the specimen plane, the second part directs the forward scatter

light to the QPD. The alignment procedures for directing the beam path to the specimen

plane from the laser is

1. The laser beam is expanded with its natural divergence to the desired beam diameter

then collimated with a collimating lens f1. This collimating lens is placed one focal

length from the laser.

2. The FSM is placed at its desired distance from the objective to allow the beam path to

enter the back optical port of the microscope. Placing the FSM at its desired distance

allows the lenses f2 and f3 to be installed later in this alignment procedure.

3. From the collimating lens f1, direct the beam path to the FSM with stationary mirrors.

A secondary advantage to using stationary mirrors is the ability to “walk” the beam

path into position and correct angular misalignments at the specimen plane.
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4. At this point, the beam path enters the back optical port of the microscope then redi-

rected with a dichroic mirror to the objective. Next, a sanity check is performed to

determine if the beam path is present at the specimen plane by turning the objective

turret to an open position (no objective) and placing the IR card at the specimen plane.

The beam path should be visible on the IR card. If not, then adjust the tilt of the

stationary mirrors until the beam path is visible at the specimen plane.

5. A second sanity check is performed to determine if the beam path is going straight

through (orthogonal) to the specimen plane. This sanity check requires turning the

objective turret to use the 10x objective to focus on a dirty slide (place fingerprints on

slide or use a black marker) and viewing the specimen plane on a CCD camera. After the

dirty slide is viewed on the CCD camera, turn off the microscope illumination, when if

the beam path is present the monitor should glow. When the beam path is orthogonal to

the specimen plane, then the corresponding effects on the monitor should be concentric

circles expanding and collapsing when the objective is moved into and out of focus.

The stationary mirrors tilt may have to be finely adjusted to have the beam path be

orthogonal to the specimen plane.

6. Next, the lenses f2 and f3 are placed at their desired locations. The resulting beam

path should slightly overfill the back aperture of the objective and be orthogonal to

the specimen plane. Two sanity checks are performed to verify these claims. The first

sanity check measures the beam path diameter by turning the objective turret to an open

position and measuring the diameter. If the measured beam diameter is under/over sized,

then the lenses f2 and f3 need to be reconsidered using the procedure outlined in section

2.3.1. The second sanity check verifying the beam path is orthogonal to the specimen

plane according to the procedure just given for the case when the lenses f2 and f3 are

not in the optical system.
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The alignment procedure for directing the forward scattered light to the QPD is:

1. The forward scattered light is collected with the condenser. This collected light is redi-

rected from the microscope optical path with a dichroic mirror.

2. The QPD is placed in a custom 3-D micro-manipulator apparatus at its desired distance

from the condenser. Next, a sanity check is performed to determine if the collected light

is hitting the QPD surface. This sanity check requires turning the objective turret to an

open position and removing the condenser. The beam path is collimated when striking

the QPD surface and this is verified using visible inspection and the QPD voltage signals.

Adjust the 3-D manipulator if the beam path is not striking the QPD surface

3. The lens f4 is placed at its desired location. A sanity check is performed to verify

the beam path is striking the center of the QPD surface. This sanity check requires

turning the objective turret to an open position and removing the condenser. The lens

f4 converges the beam path to a focal point at the QPD surface. On the QPD surface,

the focal point is determined by analyzing the QPD voltage difference channels. The

QPD voltage difference channels should be zero for the focal point to be at the center

of the QPD. If the QPD voltage difference channels are non-zero, then adjust the 3-D

micro-manipulator until the QPD output voltages are zero.

4. Reinstall the condenser.
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3.0 SYSTEM CALIBRATION

The optical trap setup consists of the FSM (actuator) and the QPD (sensor) that are driven

and displayed in voltages. The voltage signals must be calibrated to obtain quantitive results

on the optical stiffness, the bead deflection, and the optical forces. A calibrated actuator

allows for open-loop manipulation of the bead deflection. The calibrated sensor measures the

bead deflections to quantify the optical stiffness and optical forces. This chapter discusses

the calibration of the optical trap components and parameters.

3.1 FAST STEERING MIRROR CALIBRATION

A calibrated FSM allows for open-loop manipulation of bead deflection. Calibrating the FSM

relates voltage input to beam position. Note that calibration is not required for force control

because force is applied via Hooke’s law. Force control only requires the bead deflection and

optical stiffness be known.

The conversion between the input voltage and the beam position was determined in

section 2.3.1. Applying 1 V to the FSM results in a 3.4 µm beam deflection at the specimen

plane. The FSM input voltage is the output voltage from a 16 bit D/A board with a range

of ±10 V; the resulting beam position has a sensitivity of ∼1 nm. Next, the conversion

between FSM input voltage to beam deflection is experimentally verified by using a CCD

camera to image the beam position at the specimen plane. The CCD resolution limits are

first determined. The resolution R is described by

R =
0.61λ

NA
(3.1)
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Table 3: The FSM input voltages and the corresponding laser position given in pixels to

calibrate the FSM.

Input Voltage (V) Pixel Location Input Voltage (V) Pixel Location

-7 (262, 118) 1 (262, 309)

-6 (262, 140) 2 (262, 336)

-5 (262, 164) 3 (262, 360)

-4 (262, 186) 4 (262, 383)

-3 (262, 208) 5 (262, 406)

-2 (262, 232) 6 (262, 428)

-1 (262, 257) 7 (262, 452)

0 (262, 283)

where λ is the laser wavelength [84]. The optical trap design given in section 2.3 has a

resolution of 0.46 µm. The CCD camera has a pixel size of 8.4× 9.8 µm and is mounted

on a 1x c-mount. The resulting image magnification and resolution at the CCD plane

are 63x and 28.9 µm respectively. The pixel size is smaller than the resolution and this

fact allows the CCD camera to successfully image the displacements. Theoretically, a 1 µm

displacement at the specimen plane results in a 63 nm displacement at the CCD plane,

resulting in a conversion of 7.5 pixels per micrometer. A KR-851 slide (Microscope World)

was used to calibrate the conversion rate, which yielded an experimental value of 6.8 pixels

per micrometer. Next, the conversion between the FSM input voltage and the laser position

is experimentally verified. A blank sample slide was placed in the microscope and the beam

position was stepped through integer voltage values from ±7 V. At each input voltage,

the image was recorded and processed in Matlab to find the centroid. The recorded beam

positions are given in table 3. The experimental results show that 1 V equals 3.5 µm. The

discrepancy is due to small alignment errors that are unavoidable.
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3.2 QUADRANT PHOTODIODE CALIBRATION

There are two methods for sensor calibration that have been used in this work. The first

method directly measures the bead’s deflection by scanning the laser with respect to a

stationary bead; the second method uses the equipartition theorem. The direct measurement

method requires the measured sensor data be curve fitted with the system model. First, a

mathematical model of the sensor system is needed.

3.2.1 Sensor Modeling

The QPD measures the bead deflection based on scattering theory [77]. The interaction

between the laser and dielectric bead results the forward scattered light being refracted in

the direction of the bead deflection. The resulting intensity at the QPD describes the an-

gular spectrum of the forward scattered light and information on the bead deflection. This

scattered theory approach yields satisfactory results when operating within the Rayleigh

scattering regime. The QPD analysis has been provided in the literature for measurements

in the lateral directions [83], and then later expanded to include three-dimensional measure-

ments [85]. The analysis is shown for completeness.

The unscattered electric field is described in a spherical coordinate system centered about

the origin, as shown in figure 11 [83],

E(r) ≈ jkltP
1/2

r(πεc)1/2
exp

(
jkr − 1

4
k2l2t θ

2
)

(3.2)

where k is the wavenumber, ε and c are the permittivity and speed of light in the solvent,

and lt is the laser’s waist.

A dielectric bead with diameter d is placed at a location x from the laser focus. Assume

x is a lateral deflection, then the unscattered electric field is described by

E(x) =
2P 1/2

lt(πεc)1/2
exp

(
−x

2

l2t

)
. (3.3)
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Figure 11: The coordinate notation used for the QPD modeling.

In the electric field, the dielectric bead acts as a point dipole with an induced dipole moment

of 4πεαE, where α is the uniform-field susceptibility. The uniform-form susceptibility is

α =

(
d

2

)3
n2
e − 1

n2
e + 2

, (3.4)

where ne is the effective index, which is the ratio of the refractive index of the bead to the

refractive index of the medium. Assuming a Rayleigh approximation, the scattered electric

field at large r (far-field) is described by

E ′(r) ≈ αk2

r
E(x) exp (jk(r − x sin θ cosφ)) (3.5)

Substituting the unscattered electric field in equation (3.3) into equation (3.5) allows the

scattered electric field be described by

E ′(r) =
2αk2P 1/2

rlt(πεc)1/2
exp

(
−x

2

l2t

)
exp (jk(r − x sin θ cosφ)) . (3.6)

The total intensity is the sum of the unscattered and scattered fields. This detection method

detects the change in the intensity due to the scattering field. The intensity change is

determined using first-order interference because the intensity is small due to the scattering

field at the QPD [83]. The change in intensity is approximated by

δI ≈ εc

2
(|E + E ′|2 − |E|2) ≈ εcRe(|EE ′∗|). (3.7)
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Substituting equation (3.2) and equation (3.5) into equation (3.7) results in the normalized

change in intensity,

δI

P
(x; r, θ, φ) =

2αk3

πr2
exp

(
−x

2

l2t

)
exp

(
−k

2l2t θ
2

4

)
sin (kx sin θ cosφ) . (3.8)

Equation (3.8) describes the angular-interference pattern caused by a particle displaced by

a lateral position x in the focal plane, observed at angles θ and φ. Integrating equation (3.8)

over one half of the QPD, for angles θ ∈ [0, θo] and φ ∈ [−π
2
, π

2
], results in the change in

normalized power due to the interference between the unscattered and scattered waves. The

angle θo is related to the NA of the condenser. The change in the normalized power is

I+ − I−
I+ + I−

=

∫ ∫
δI

P
(x; r, θ, φ)dA (3.9)

where dA = r2 sin θ cos θdθdφ. Assuming a paraxial approximation in the θ direction, equiv-

alent to a small angle assumption, the integrad in equation (3.9) can be simplified by a series

expansion to yield

I+ − I−
I+ + I−

≈ 2αk4

π
x exp

(
−x

2

l2t

)∫ π
2

−π
2

∫ θo

0

θ2 cosφ dθdφ

≈ 4αk4θ3
o

3π
x exp

(
−x

2

l2t

)
,

(3.10)

as shown in figure 12a. The expression in equation (3.10) is similar to the expression given

in Pralle [85]; however, the difference is the explicit dependence on the NA of the condenser.

The sensitivity can be determined by taking the derivative of equation (3.10) to yield

S =
4αk4θ3

o

3π
exp

(
−x

2

l2t

)(
1− 2x2

l2t

)
. (3.11)

A schematic of the sensitivity verses the bead displacement is shown in figure 12b. The

sensitivity can be increased by using a condenser with a large NA value to collect the forward

scattered light. The QPD sensitivity verses the NA of the condenser and the bead radius is

shown in figure 13a and figure 13b.
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(b) QPD sensitivity

Figure 12: Schematics of the QPD response. Figure (12a) shows the QPD intensity verses

bead displacement and figure (12b) shows the QPD sensitivity verses bead displacement.
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(a) QPD sensitivity verses NA condenser.
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(b) QPD sensitivity verses bead radius.

Figure 13: The sensitivity as a function of (13a) the bead radius and (13b) the condenser

NA
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3.2.2 Direct Method Calibration

The direct method calibrates the QPD by requiring the dielectric bead be immobilized-

adhered to the glass surface and the FSM be calibrated. The calibrated FSM moves the laser

with respect to the immobilized bead to create known bead deflections. The known bead

deflections are measured with the QPD. This direct method experimentally determines the

conversion between the bead deflection in nanometers to the QPD voltage. The calibration is

performed on the following sample: the sample is prepared by placing 10 µl of bead solution

on a coverslip. The beads are adhered to the coverslip by evaporating the excess water off.

Next, the coverslip is attached is a microscope slide by double sided tape (3M). Water fills

the rest of the sample to mimic the environment of a sample of free beads. The sample is

placed on the microscope, the coverslip is brought into focus to reveal the beads, and a single

bead to moved to the laser location using the CCD camera for confirmation.

The laser beam is scanned across the bead in increments of 25 nm using custom code that

was created in Simulink. At each increment, the beam is held for 2 s and the corresponding

QPD signal is sampling at 1 kHz. The QPD voltage is averaged at each bead deflection and

is shown in figure 14.

3.3 OPTICAL STIFFNESS CALIBRATION

A calibrated position sensor provides the ability to calibrate the optical stiffness. The optical

stiffness can be calibrated using one of the following methods: the drag, the equipartition

theorem, or the power spectrum methods. Each method will be discussed.

1. Drag Method. This method applies viscous drag forces to the bead by moving the

surrounding medium with respect to the bead. The viscous forces are produced by

moving the laser beam with respect to the stage or the stage with respect to the laser at

a known constant velocity in either a triangular or sinusoidal patterns. The triangular

wave input results in the bead having a square-wave velocity (viscous force is also a

square wave); a sinusoidal wave input results in the bead having a cosine velocity profile
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Figure 14: The QPD response to scanning the laser across a 3 µm diameter polystyrene bead.

(viscous force also has a cosine velocity profile) [28]. The viscous drag force is balanced

with the optical force,

kx = ηẋt, (3.12)

where k is the optical stiffness, η = 6πµa is the Stokes drag coefficient (µ is the medium’s

velocity and a is the bead radius), x is the bead deflection, and ẋt is the laser velocity.

The bead deflection is measured with the calibrated sensor. The optical stiffness is

calibrated by satisfying the force balance in equation (3.12).

2. Power Spectrum Method. This method uses the power spectrum of the trapped bead to

calibrate the optical stiffness. The response of the trapped bead behaves as a first-order

system that is characterized by the frequency ω = k/η. The optical stiffness is found

by curve fitting the auto-spectrum of the response of the trapped bead with known size.

The sensor chosen should have sufficient bandwidth. Note that, caution should be taked

to avoid biased estimates due to low-pass filtering. Low-pass filtering the response of

the bead deflection reduces the cut-off frequency, leading to an underestimation of the
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optical stiffness. Methods exist to address the underestimation have been developing by

Berg-sorenson and Flybjerg [86, 87, 88].

3. Equipartition Theorem. The equipartition theorem uses the fact that trapped beads

are constantly colliding with the surrounding water molecules due to Brownian noise.

Trapped beads are in a harmonic potential well that is characterized by a optical spring.

Each degree of freedom in a system has 1
2
kBT of energy, where kB is the Boltzmann’s

constant and T is absolute temperature. For optical traps, the equipartition theorem is

expressed as
1

2
k〈x2〉 =

1

2
kBT, (3.13)

where 〈x2〉 is the mean-squared displacement of the bead deflection and k is the optical

stiffness [76]. This method requires the sensor be calibrated and have sufficient bandwidth

to measure the mean-squared bead deflection. Caution should be taken because the

mean-squared displacement is a biased estimate due to low-pass filtering or the presence

of additional noise sources [28]. Low-pass filtering the response of the bead deflection

leads to an underestimation of the mean-squared bead deflection, which results in an

overestimation of the optical stiffness. Additional noise sources will inflate the value

of the mean-squared bead deflection, which leads to an underestimation of the optical

stiffness. Finally, the method cannot be used to calibrate both the sensor and optical

stiffness.
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4.0 OPTICAL TRAP SYSTEM DYNAMICS

The performance and limitation of a closed-loop system depends on the structure of the

open-loop system. The ability to design a controller first requires an understanding of

the dynamics of the open-loop system. The open-loop system is the optical trap and its

dynamics are composed of the following components: the bead deflection, the molecule,

the FSM (actuator), and the QPD (sensor). This chapter describes the dynamics for each

component and the properties of the optical trap.

4.1 BEAD DEFLECTION DYNAMICS

The dielectric bead experiences an optical force in the lateral direction due to its interaction

with the laser. This interaction is described by a harmonic Gaussian potential U [89, 90, 91,

92],

U(z) = −U0 exp

(
− z

2

2l2t

)
, (4.1)

where z is the bead deflection, lt is the characteristic length of the laser beam, and U0

depends on the bead volume, the index of refraction of the bead and that of the surrounding

medium, the speed of light, and the magnitude of the electric field generated by the laser.

The optical force (trapping force) is described by

ft(z) = − d

dz
U(z) = −kz exp

(
− z

2

2l2t

)
, (4.2)

where k = U0/l
2
t is the optical stiffness. The schematic of the dimensionless optical force

verses the dimensionless bead deflection is shown in figure 15. The dimensionless optical
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Figure 15: Schematic of the dimensionless optical force ft(z)/(klt) verses the dimensionless

bead’s deflection z/lt and the dimensionless optical stiffness kopt(z)/k verses the dimension-

less bead’s deflection.

force decreases to its minimum value as the dimensionless bead deflection increases to one; as

the dimensionless bead deflection increases beyond one, the magnitude of the dimensionless

optical force decreases, which implies the bead can leave the optical trap. The physical

interpretation is that as the bead moves away from the beam’s center, the bead experiences

an optical force that acts in the opposite direction to pull the bead towards the trap’s

center. Typically, the optical trap operates within its linear range and this allows the optical

force to be approximated by its linearization ftlin(z) = −kz. It is insightful to determine the

operating range where this linearization is valid by comparing the dimensionless optical force

verses the dimensionless bead deflection for both the linear and nonlinear cases, as shown in

figure 16. The comparison shows the linearization provides a good approximation when the

dimensionless bead deflection is such that z/lt . 0.2.

The optical stiffness is described by

kt(z) = − d

dt
ft(z) = k

(
1− z2

l2t

)
exp

(
− z

2

2l2t

)
. (4.3)
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Figure 16: A schematic that compares both the dimensionless nonlinear optical force and the

dimensionless linear optical force verses the dimensionless bead deflection. This comparison

shows that the linearization provides a good approximation when the dimensionless bead

deflection is such that z/lt . 0.2. The linearization provides a poor approximation when the

dimensionless bead deflection is such that z/lt > 0.2.
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Figure 17: A schematic that shows the different forces acting on dielectric bead within the

optical trap. and the relationship between the different extensions. These forces include an

optical force, a viscous drag force, Brownian noise, and the molecule’s force. The extensions

are the molecule extensions xm, the bead deflection z, and the laser position xt.

The schematic of the dimensionless optical stiffness verses the dimensionless bead deflec-

tion is shown in figure 15. Initially, the dimensionless optical stiffness is at its maximum

value, then decreases to zero and even becomes negative, as the dimensionless bead deflec-

tion increases. The decreasing dimensionless optical stiffness cause stability issues because

the bead exits the optical trap when the dimensionless optical stiffness becomes negative.

The dielectric bead experiences additional forces including a viscous drag force, Brownian

noise, and a molecule force, as shown in figure 17. The viscous drag is proportional to the

Stokes drag coefficient η = 6πµa (where µ is the medium’s viscosity and a is the bead’s

radius) when the dielectric bead is near the medium’s bulk. When the bead moves away

from the medium’s bulk towards an object (either another bead, molecule, or surface), then

the bead experiences greater viscous forces and the Stokes drag coefficient increases according

to Faxon’s law [6].

The resulting dynamics describing the bead deflection is

mz̈ + ηż − ft(z) = −mẍt − ηẋt − fm + f̃ , (4.4)
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where m is the bead’s mass, xt is the laser position, f̃ is the Brownian noise, and fm is the

molecular force. Brownian noise is due to the bead colliding with the surrounding water

molecules and is characterized by a zero-mean Gaussian white noise with a constant power

spectral density (PSD) Sf = 2ηkBT (kB is Boltzmann’s constant, and T is the absolute

temperature) [6, 93]. The quantitative behavior of the bead deflection can be described by

its eigenvalues,

λ1 = −k
η
, and λ2 = − η

m
. (4.5)

At the molecular scale, the response of the bead deflection is dominated by viscous effects

and this fact allows the inertial effects to be ignored [6]. Thus, the eigenvalues λ1 and λ2 are

such that λ1 � λ2, and the resulting bead deflection dynamics can be described by a first-

order system that is characterized by the frequency ωt = λ1, the optical trap bandwidth.

This bandwidth provides an upper bound on the response of the optical trap to external

stimuli. The dynamics describing the bead deflection is simplified to

ηż = ft(z)− fm − ηẋt + f̃ , (4.6)

that has the laser’s velocity as the controllable input. It is convenient to have the controllable

input being the laser position xt because the FSM changes the laser position not laser velocity.

In theory, we obtain the laser velocity by multiplying the laser position by s (multiplication

by s in the Laplace domain is equivalent to differentiation in the time domain). In linear

system theory, a pure differentiation is equivalent to placing a zero at the origin, which

adds 90◦ of phase to all frequencies. However, a zero placed at the origin causes closed-

loop stability issues with the control design architecture. The control design architecture

requires the closed-loop system be internally stable (the internal dynamics or zero dynamics

be asymptotically or exponentially stable), and the internal dynamics depend on the zero

locations. A zero placed at the origin does not guarantee internal stability. The control issues

are eliminated by approximating the derivative s in the desired frequency range by using

phase lead compensation type approach (see reference [94] about phase-lead compensation).

The derivative is approximated by the transfer function

Gv(s) =
ẋt(s)

xt(s)
= gv

s+ ωzv
s+ ωpv

, with gv =
ωpv
ωzv

and ωzv < ωpv . (4.7)
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It is convenient to realize the transfer function Gv(s) into an equivalent state-space repre-

sentation to yield

ȧ1 = −ωpva1 + xt (4.8a)

ẋt = gv(ωzv − ωpv)a1 + gvxt. (4.8b)

4.2 MOLECULE AND DISTURBANCE DYNAMICS

A long-chain molecule acts as an entropic spring, with the molecular force being related to the

molecular extension (end-to-end distance) by the worm-like chain (WLC) model [95, 96, 97].

The WLC model describes the molecule as a flexible chain that bends smoothly due to

Brownian noise. The dimensionless molecular force is related to the dimensionless molecular

extension through the WLC model by

lpfm(xm)

kBT
=
xm
lm

+
1

4

(
1− xm

lm

)−2

− 1

4
, (4.9)

where lm is the molecular contour length, and lp is its persistence length, which describes the

molecule’s resistance to thermal forces [97]. A schematic of the dimensionless molecule force

verses the dimensionless molecule extension is shown in figure 18. DNA elasticity behaves as

a hardening spring as xm
lm
→ 1, which implies a greater amount of force is needed to farther

stretch the molecule. The persistence length describes the molecule’s resistance to thermal

bending, and can be related to the molecule’s flexural rigidity and temperature by applying

the Principle of Equipartition of Energy to yield [3]

lp =
EI

kBT
. (4.10)

In this research, the primary interest is detecting changes in the molecular force about

some nominal force and extension, f̄m and x̄m, which satisfy the WLC model. Moreover, we

are also interested in changes in the molecular force due to changes in the molecular extension,

x̃m = xm − x̄m, and changes in the contour length l̃m = lm − l̄m. The molecular force is

53



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

Dimensionless extension (xm/L)

D
im

en
si

on
le

ss
 fo

rc
e 

(L
pf m

 / 
k BT)

 

Figure 18: A schematic of the dimensionless molecule force verses the dimensionless molecule

extension.

described about its nominal value by performing a first-order Taylor series approximation to

yield

fm = f̄m + kmx̃m − k∗ml̃m, (4.11)

where the molecular stiffnesses are

km =
kBT

lmlp

[
1

2

(
1− x̄m

lm

)−3

+ 1

]
' 3kBT

2lmlp
, (4.12)

k∗m =
kBT

lmlp

(
x̄m
lm

)[
1

2

(
1− x̄m

lm

)−3

+ 1

]
= km

x̄m
lm
' 3kBT

2lmlp

(
x̄m
lm

)
. (4.13)

The stiffness approximations are valid for small molecular extensions such that x̄m/lm � 1.

Note, the minus sign in equation 4.11 is due to the fact that increases in the contour length

results in a decrease in the molecular force.

When the molecule is held at a nominal extension, a change in the contour length results

in the molecule experiencing a change its force to maintain its extension. A decrease in

the contour length results in the molecule experiencing an increase in its force (e.g., the
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molecule is stretched); an increase in the contour length results in the molecule experiencing

a decrease in its force (e.g., the molecule is relaxed). The molecule experiences a new force

equal to f̄m − k∗ml̃m, and is due to the change in the dimensionless molecule extension xm
lm

.

The phenomena occurs in DNA transcription when the molecule extension is maintained

constant. During transcription, the enzyme RNA polymerase makes a copy of the DNA

sequence at a rate of one nucleobase at a time, and the rate is equal to the rate that the

contour length is reduced. The DNA molecule maintains its extension by being stretched

harder. The increase in force is related to the change in xm
lm

, a measurable quantity as shown

later in this section. The relationship allows equation 4.11 to be simplified by combining

f̄m and −k∗ml̃m into one variable called the disturbance force fd. The disturbance force is

described by

fd = f̄m − k∗ml̃m, (4.14)

and substituting equation 4.14 in equation 4.11 yields

fm = fd + kmx̃m. (4.15)

Molecular Constraint: The molecule extension depends on the laser position and the

bead deflection, as shown in figure 17. These variables are constrained by xm = xt+z, where

xt =
∫ t

0
ẋt(τ)dτ . Taking a time derivative of the constraint gives the differential constraint,

ẋm = ẋt + ż. (4.16)

Molecular dynamics and Relaxation time: The molecular force changes dynami-

cally due to the relaxation of the molecule and Brownian noise. Polymer relaxation time

describes the dynamic behavior of a polymer transitioning from a stretched state to an

equilibrium state [98, 99]. Relaxation has been studied with optical traps by attaching the

polymer at one end to a polystyrene bead and at its other end to a glass surface. The relax-

ation phenomena is governed by two forces: the friction force acting on the polystyrene bead

and the force the polymer applied to the bead. The friction force on the polymer can be

neglected for local stretches about the equilibrium state. There are many factors affecting

the relaxation time: the contour length, the solvent temperature, and the initial stretching
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Table 4: Relaxation times and bandwidths for representative molecules [3, 4].

Molecule τ

Microtubule, 50 µm long 1.1 s

Microtubule, 5 µm long 500 µs

Actin, 50 µm long 500 s

DNA, 10 µm long 1 s

state [4]. The relaxation can vary order several orders of magnitude, as shown in table 4. In

this research, we are interested in the local behavior of the DNA about its equilibrium state

(nominal extension) and assume the time constant for relaxation is τm = 0.2 s. It will be

convenient to use the molecular bandwidth ωm = 1/τm.

The second phenomena affecting the molecular dynamics is Brownian noise. Water

molecules continually collide with the molecule as it is held at its nominal extension [98].

These collisions cause the molecule extension to want to shorten, however, the molecule is

constrained to its nominal extension. Maintaining the molecule at its nominal extension

results in an increase in the force within the molecule, then the force delays back to its

nominal value. The effects of the water colliding with the molecule on the molecule force

can be modeled as zero mean Gaussian white noise with spectral density of Sm.

The dynamics for the molecular force is described by

τmḟm = −fm + fd + τmkmẋm + f̃m, (4.17)

where f̃m are the thermal fluctuations, which are characterized by a zero mean Gaussian

white noise process with PSD Sm. The dynamics for the molecule force depends on the bead

deflection through the molecule constraint in equation 4.16,

τmḟm = −fm + fd + τmkm(ẋt + ż) + f̃m. (4.18)
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The force fd is treated as an unknown disturbance. The disturbance is of interest because

its value changes with changes in the contour length or if the molecule is stretched to relaxed

to a new extension.

Disturbance dynamics At steady-state, the molecule is held at a constant extension

(equivalent to a constant force) and this fact allows its dynamics to be described by ḟd = 0.

In the analysis to follow, these dynamics must have a nonzero state matrix. Here, we

approximate the dynamics ḟd = 0 by including a pole that is characterized by the frequency

ωd such that ωd � 1. The dynamics describing the nominal molecular extension is

ḟd = −ωdfd + ωef̃d, 0 < ωd � ωe = 1, (4.19)

where f̃d is the zero mean white noise with PSD Sd that drives the disturbance model.

The dynamics describing the bead deflection, equation 4.6, and the molecular force,

equation 4.18, are coupled. It is insightful to describe the quantitative behavior of the

coupled bead-molecule system to understand how changes in the bead deflection affect the

molecule force, and also how changes in the molecule force affect the bead deflection. The

two system metrics to be quantified are the system bandwidth and the steady-state response.

4.2.1 Bead-Molecule System

The dynamics describing the bead deflection and the molecular force, equation 4.6 and

equation 4.18 respectively, are coupled and can be combined to form the bead-molecule

system. The bead-molecule system can be written in matrix form to yield

 η 0

−τmkm τm

 ż
ḟm

 =

ft(z)− fm
−fm

+

 −η
τmkm

 ẋt +

0

1

 fd +

 f̃
f̃m

 . (4.20)

Equation 4.20 can be simplified by the following:

1. The use of the optical bandwidth ωt = kt/η and the molecular bandwidth ωm = 1/τm,

2. Defining new dimensionless constants for the stiffnesses κ = km/kt and the molecular

extension ε = x̄m/lm,
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3. Normalizing the forces by the stiffnesses, making equivalent deflections/extensions, ac-

cording to

d̃ = f̃/kt, dm = fm/km, d̄m = f̄m/km, dd = fd/km, and d̃m = f̃m/km. (4.21)

Substitute the normalizing factors in equation 4.21 into equation 4.20 results in the bead-

molecule system being described by the bead deflection and the molecule extension dm. The

bead-molecule system is described by

 ż

ḋm

 =

 −ωtz exp
(
− z2

2l2t

)
− κωtdm

−ωtz exp
(
− z2

2l2t

)
− (κωt + ωm)dm

+

−1

0

 ẋt +

 0

ωm

 dd +

ωt 0

ωt ωm

 d̃

d̃m

 .
(4.22)

System Bandwidth Its quantitative behavior can be studied by linearizing equation

4.22 about z = 0 to yield

 ż

ḋm

 =

−ωt −κωt
−ωt −(κωt + ωm)

 z

dm

+

−1

0

 ẋt +

 0

ωm

 dd +

ωt 0

ωt ωm

 d̃

d̃m

 . (4.23)

In open-loop, the bead-molecule system is a second order overdamped system (two distinct

real poles), and its poles are the roots of the characteristic equation,

s2 + [(1 + κ)ωt + ωm] s+ ωtωm = 0, (4.24)

where s is the Laplace domain variable. The poles depend on the dimensionless constant κ;

the pole locations are found for three cases: κ� 1, κ� 1, and intermediate values for κ.

1. (κ � 1) A soft molecule and a stiff optical trap: This situation occurs when the bead

deflection is small (the value of kt is large) and the molecular extension is small (the value

of km is small). As a result, the molecular dynamics are decoupled from the dynamics of

the bead deflection in equation 4.23. The corresponding pole locations are

s1 ≈ −ωt and s2 ≈ −ωm. (4.25)
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Figure 19: A root locus that graphical shows how the poles of the trap-molecule system

change when the value of the dimensionless constant κ is increased.

2. (κ � 1) A stiff molecule and a soft optical trap: This situation occurs when the bead

deflection is such that z/lt → 1 (the value of kt is small) and the molecular extension

is such that xm/lm → 1, a nearly rigid molecule (the value of km is high). In this case,

the nearly rigid molecule is attached at one end to a dielectric bead, resulting in the

bead deflection being stationary and nonzero, and the bead deflection not relaxing. The

corresponding pole locations are

s1 ≈ 0 and s2 ≈ −κωt − ωm. (4.26)

3. Intermediate values for κ. The constant κ is considered a gain. It is convenient to express

the characteristic equation in Evan’s root locus form to graphically view how the poles

change as the constant κ is increased. The characteristic equation in equation 4.24 is

expressed in Evan’s root locus form,

1 + κ
ωts

(s+ ωt)(s+ ωm)
= 0 (4.27)

and the corresponding root locus is shown in figure 19. Increasing the constant κ is

equivalent to the molecule being extended (the value of km increasing), and the bead

deflection becomes larger (the value of kt decreasing). The molecule being extended
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implies the molecule relaxation bandwidth is increased while the optical bandwidth is

decreased.

Steady-state response The mean steady-state response of the bead-molecule system

is described by taking the expected value of equation 4.23 to yield

d

dt

 E[z]

E[dm]

 =

−ωt −κωt
−ωt −ωm − κωt

 E[z]

E[dm]

+

−1

0

 ẋt +

 0

ωm

 dd. (4.28)

Recall that the process noise is zero mean, E[d̃] = E[d̃m] = 0. At steady state, d
dt
E[z] =

d
dt
E[dm] = 0, and the corresponding laser position is constant, which implies laser velocity

ẋt = 0. The resulting mean response of the bead deflection and molecule extension are

〈z〉 = −κdd = −κ
(
d̄m −

x̄m
lm
l̃m
)
, (4.29)

〈dm〉 = dd = d̄m −
x̄m
lm
l̃m, (4.30)

where dd = d̄m − x̄m
lm
l̃m from equation 4.14 and equation 4.21 to turn force inputs into

equivalent displacement inputs. Equation 4.30 shows the mean molecular extension E[dm]

is the sum of the nominal extension d̄m, and the changes about that value due to changes

in the molecular contour length l̃m. Equation 4.29 shows the mean bead deflection E[z] is

proportional to E[dm] by the dimensionless stiffness κ. These equations imply a positive

molecular elongation results in the bead being pulled in the negative direction.

4.2.2 Bead-Molecule-Disturbance Dynamics

The dynamics describing the bead-molecule-disturbance dynamics including the

bead-molecule system in equation 4.22, the derivative approximate of the laser position in
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equation 4.8, the disturbance in equation 4.19, and the normalizing factors in equation 4.21.

The bead-molecule-disturbance system can be written in matrix form to yield

d

dt


z

dm

a1

dd

 =


−ωtz exp

(
− z2

2l2t

)
− κωtdm − gv(ωzv − ωpv)a1

−ωtz exp
(
− z2

2l2t

)
− (κωt + ωm)dm + ωmdd

−ωpva1

−ωddd



+


−gv

0

1

0

xt +


ωt 0 0

ωt ωm 0

0 0 0

0 0 ωe



d̃

d̃m

d̃d

 .
(4.31)

Implementing equation 4.31 provides the molecule information in terms of extensions not

forces. Forces are the desirable parameters, and the extensions are related to forces through

the molecule stiffness by the normalizing factors in equation 4.21. However, the molecule

stiffness depends on the molecule extension, and the stiffness is not known a priori. The

molecule stiffness can be found using the information about the disturbance. The following

subsection discussing the relation between the disturbance and the molecule stiffness.

The bead-molecule-disturbance system has the laser position as the controllable input,

while the bead deflection has the measurable state. The laser position is controlled using the

FSM. The bead deflection is measured using the QPD. The following two sections describe

the dynamics for the QPD and the FSM.

4.2.3 Relating The Disturbance to the Molecule Stiffness

The challenge with relating the extensions to forces is that the molecular stiffness is unknown

apriori. The molecule stiffness can be calculated in real-time using information about the

disturbance using the fact there are two one-to-one maps: the first map relates the molecule

stiffness and the dimensionless extension x̄m
lm

via equation 4.12, and the second map relates

the dimensionless extension x̄m
lm

and the dimensionless disturbance d̄m
lm

. The mapping between

the molecule stiffness and the disturbance is determined by first finding the second one-to-one

map, then apply x̄m
lm

to equation 4.12. The mapping between d̄m
lm

and x̄m
lm

can be calculated
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Figure 20: A root locus showing how increasing the value of d̄m
lm

affects the value of x̄m
lm

.

using the nominal force. The nominal force f̄m can be calculated uses the WLC model and

the molecule stiffness via fm

(
x̄m
lm

)
= lmkm

(
x̄m
lm

)
d̄m
lm

to result in a quartic polynomial relating

the dimensionless extension d̄m
lm

to the dimensionless extension x̄m
lm

. The quartic polynomial

is(
x̄m
lm

)4

−
(

13

4
+
d̄m
lm

)(
x̄m
lm

)3

+

(
15

4
+

3d̄m
lm

)(
x̄m
lm

)2

−
(

3

2
+

3d̄m
lm

)(
x̄m
lm

)
+

3d̄m
2lm

= 0.

(4.32)

where x̄m
lm
∈ [0, 1). It is convenient to graphical view how the solution x̄m

lm
changes as the

value d̄m
lm

is increased. The graphical approach is a Evan’s root locus with x̄m
lm

= s and d̄m
lm

is

the gain. Equation 4.32 is expressed in Evan’s root locus form,

1 +
(
d̄m
lm

) −s3 + 3s2 − 3s+ 3
2

s4 − 13
4
s3 + 15

4
s2 − 3

2
s

= 0, (4.33)

and the corresponding root locus is shown in figure 20. The value of x̄m
lm

can then be used in

equation 4.12 to find the molecule stiffness.
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4.3 SENSOR DYNAMICS

The QPD relates the bead deflection to voltage. These dynamics are characterized with a

first-order model

Gs(s) = gs
ωs

s+ ωs
, (4.34)

where ωs is the sensor bandwidth and its value is provided by the manufacturer, and gs is a

gain that is equal to the slope of the QPD intensity curve in figure 14. The sensor bandwidth

is at least two orders of magnitude faster than the bandwidths previously discussed. As a

result, within the operating frequency range, the sensor dynamics can be simplified to a

constant gain of gs.

4.4 ACTUATOR DYNAMICS

The FSM relates voltage input to laser position. Even though the FSM had been calibrated

in section 3.1, a model of the actuator dynamics is necessary because there are no position

sensors on the FSM. The actuator dynamics will implicitly contain the conversion ratio of

1 V equals 3.5 µm. The model is determined by centering the laser beam on a dielectric bead

that is adhered to a coverslip. This approach removed the bead deflection dynamics, leaving

only the actuator dynamics, and required the QPD to measure the actuator response. A

broadband white noise was then used to excite the system and produce the actuator’s transfer

function relating the laser position to the input voltage. This model was curve fit with a

second-order model,

Ga(s) =
xt(s)

u(s)
= ga

s+ ωz
(s+ ωp1)(s+ ωp2)

, with ga =
gωp1ωp2
gsωz

, (4.35)

where g is a gain and u is the FSM input voltage. The magnitude plot and the phase plot of

model dynamics closely resembles that of the actual dynamics, as shown in figure 21 . Note,

the transfer function Ga(s) is a model and can be subjected to possible errors including poor

system identification, nonlinearities, and high frequencies dynamics.
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Figure 21: Bode plot of actuation dynamics relating the laser position in the specimen plane

to the voltage input of the FSM.
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Figure 22: The block diagram for the optical trap system. The optical trap system is the

plant in this research.

It is convenient to realize the transfer function Ga(s) into an equivalent state-space

representation to yield

d

dt

a2

a3

 =

 0 1

−ωp1ωp2 −ωp1 − ωp2

a2

a3

+

0

1

u (4.36a)

xt =
[
gaωz ga

]a2

a3

 . (4.36b)

4.5 OPTICAL TRAP SYSTEM

The optical trap system is composed of following dynamics: the bead-molecule-disturbance

system (equation 4.31), the FSM (equation 4.36) and the QPD. A schematic of the optical

trap system is shown in the block diagram in figure 22. The optical trap system is expressed

in state-space representation with the state x = [z, dm, a1, a2, a3, dd]
T , process noise w̃ =

[d̃, d̃m, d̃d]
T , and measurement noise ñ to yield
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ẋ = f(x) +Buu+Bww̃ (4.37a)

y = h(x) + ñ (4.37b)

where the state x ∈ R6 ⊂M (M is the set of admissible states), the control input u ∈ R ⊂ U

(U is the set of admissible control inputs), the process noise input w ∈ R4, the measurement

y ∈ R, and the measurement noise ñ ∈ R. The vector field f : R6 → R6 and the scalar

field h : R6 → R are smooth and Lipschitz. The input matrices are Bu : R → R6 and

Bw : R3 → R6.. Equation 4.37 describes a stochastic system with additive white process

noise and white measurement noise. The additive noise terms are small, and this fact allows

us to consider the noise inputs as a small perturbation about the nominal trajectory [100].

The optical trap system in equation 4.37 is described explicitly as

ẋ =



−ωtz exp
(
− z2

2l2t

)
− κωtdm − gv(ωzv − ωpv)a1 − gvgaωza2 − gvgaa3

−ωtz exp
(
− z2

2l2t

)
− (κωt + ωm)dm + ωmdd

−ωpva1 + gaωza2 + gaa3

a3

−ωp1ωp2a2 − (ωp1 + ωp2)a3

−ωddd


(4.38a)

+



0

0

0

0

1

0


u+



ωt 0 0

ωt ωm 0

0 0 0

0 0 0

0 0 0

0 0 ωe


w̃

y = gsz + ñ. (4.38b)

The molecule can be stretched to desired extensions by controlling the bead deflection

to track a reference signal. It is convenient to turn the tracking control problem into a

regulation control problem with the new control objective being to design the control to
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drive the tracking error to zero. One question to be asked, is it possible to design a control

to drive the tracking error to zero? The answer to this questions leads into the concept of

output controllability. The output controllability analysis requires a few definitions first and

these define the system relative degree, normal form, and zero dynamics.

4.5.1 Output Controllability Condition

A system is output controllable if for any output y(t0), there exists a control input v that

drives the output to y(t1) in finite time t1 > t0 [101]. In this research, output controllability is

discussed by transforming the optical trap system to a new space such that the map between

the control input and system output can be linearized via state feedback. A more formal

definition of these concepts are provided in references [102, 103]. The literature provides

these definitions for the nominal system or the expected value of the system. The definitions

are first given when the system output is y = h(x), then these definitions are slightly changed

when the system output is the tracking error [102, 103]. These definitions are defined in the

same manner as the literature for the expected value of the optical trap system in equation

4.37. The expected value of equation 4.37 is described by the expected value of the state

x̄ = E[x] and the measurement ȳ = E[y] to yield

˙̄x = f(x̄) +Buu, (4.39a)

ȳ = h(x̄). (4.39b)

Equation 4.39 shows that the control input u affects the system output ȳ through a

nonlinear mapping because of the state equation. The nonlinear mapping presents a challenge

when designing a controller to affect the system output. One approach to address the

challenge is to transform the system to a new space such that the input-output map can be

linearized via state feedback into controllable canonical form. However, the tradeoff is the

linearized input-output map may not contain all the system dynamics, and any remaining

states are called the internal states [102]. Some questions to ask are: What states are in

the input-output map? Are there internal states? If so, then are the internal states stable?

The stability of the internal states is crucial because we want these states to be well-behaved

(remain bounded). The following discussion uses the concept of Lie derivatives.
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Definition 1 (Lie derivative). Given a vector x ∈ Rn, smooth vector fields f : Rn → Rn

and g : Rn → Rn, and a smooth scalar field h : Rn → R, then the Lie derivative is defined as

Lfh(x), which is the gradient of h along the directions of f . The following notation is used

for Lie derivatives [102]:

L0
fh(x) = h(x) (4.40a)

Lfh(x) =
∂h(x)

∂x
f(x) (4.40b)

L2
fh(x) = Lf (Lfh(x)) =

∂Lfh(x)

∂x
f(x) (4.40c)

Lkfh(x) = Lf (L
k−1
f h(x)) =

∂Lk−1
f h(x)

∂x
f(x) ∀k ≥ 0 (4.40d)

LgLfh(x) =
∂Lfh(x)

∂x
g(x) (4.40e)

The optical trap system is transformed to the new space by taking the time derivative of

its output until the control input explicitly appears. The first time derivative of the system

output,

˙̄y = Lfh(x̄) + LBuh(x̄)u, with LBuh(x̄) = 0 ∀x̄ ∈M, (4.41)

shows that ˙̄y is independent of the control input u because the term LBuh(x̄) = 0. The time

derivative of ˙̄y,

¨̄y = L2
fh(x̄) + LBuLfh(x̄)u, with LBuLfh(x̄) 6= 0 ∀x̄ ∈M, (4.42)

shows that ¨̄y depends on the control input because the term LBuLfh(x̄) 6= 0. The total

number of derivatives needed for the control input u to explicitly appear is called the system

relative degree.

Definition 2 (Relative degree). Given a single-input single-output system,

ẋ = f(x) + g(x)u (4.43)

y = h(x) (4.44)

where x ∈ Rn is the state, u ∈ R is the control input, and y ∈ R is the output. The vector

fields f : Rn → Rn and g : Rn → Rn are smooth and Lipschitz in x, and the scaler field
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h : Rn → R is smooth and Lipschitz in x. This system has a relative degree p, with p ≤ n,

when

LgL
i−1
f h(x) = 0, i = 1, . . . , p− 1; LgL

p−1
f h(x) 6= 0 ∀x ∈M. (4.45)

The optical trap system has a relative degree of 2 because

LBuh(x̄) = 0 and LBuLfh(x̄) 6= 0 ∀x̄ ∈M. (4.46)

Equation 4.42 describes the input-output map of the optical trap system. Choosing the state

feedback to be

u =
1

LBuLfh(x̄)

(
−L2

fh(x̄) + v
)
, (4.47)

linearizes the input-output map,

¨̄y = v, (4.48)

where v is the auxiliary control. Equation 4.48 describes a linear system with two integrators

(two poles located at the origin) that can be described in controllable canonical form with

the state ξ̄ = ξ(x̄),

ξ̄ = ξ(x̄) =

ξ1(x̄)

ξ2(x̄)

 =

 h(x̄)

Lfh(x̄

 , (4.49)

to yield

˙̄ξ = Aξ ξ̄ +Bξv, (4.50a)

y = ξ̄1, (4.50b)

with

Aξ =

0 1

0 0

 and Bξ =

0

1

 . (4.51)

The state ξ can be manipulated by designing the auxiliary control with linear system theory

or LQ optimal control theory.

The transformed space is described by two states in the input-output map as given

in equation 4.41 and equation 4.42, and four internal (hidden) states. A question to ask:
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Are the internal states stable? The answer leads to the concepts of normal form and zero

dynamics. The optical trap system is placed in normal form,

˙̄ξ = Aξ ξ̄ +Bξ

(
L2
fh(x̄) + LBuLfh(x̄)u

)
= Aξ ξ̄ +Bξ

(
α(ξ̄, ψ̄) + β(ξ̄, ψ̄)u

)
(4.52a)

˙̄ψ = δ(ξ̄, ψ̄) (4.52b)

where ψ̄ ∈ R4 is the internal state and the vector field δ : R2×4 → R4 is smooth and Lipschitz

in ξ̄ and ψ̄. The states ξ̄ and ψ̄ experience feedback and coupling. The feedback and coupling

can be described as: the state ξ is linearized and manipulated by designing the state feedback

in equation 4.47 that depends on transformed states ξ̄ and ψ̄; the state ξ̄ acts as a virtual

input that drives the state ψ̄. During the application of equation 4.47, the system needs

to be well-behaved or internally stable, and this fact places an additional constraint on the

state transformation that the internal state remains bounded. The internal state remains

bounded if its undriven dynamics are asymptotically or exponentially stable.

The optical trap system is expressed in normal form via the state transformation

[ξ(x̄), ψ(x̄)]T = T (x̄).

The state transformation can be thought of as two parts: the external part described by the

input-output map and the internal part. The external part must have its gradients ∇ξ̄1 and

∇ξ̄2 be linearly independent. The internal part must satisfy three conditions:

1. The internal state is independent of the control input. This constraint is equivalent to

the ψ̄i functions satisfying

∂ψ̄i
∂a3

Bu = 0 for i = 1, 2, 3, 4, and ∀x̄ ∈M. (4.53)

Please note, equation 4.53 has no unique solution because there is no initial condition,

so a constant can always be added to ψ̄i.
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2. The state transformation [ξ(x̄), ψ(x̄)]T = T (x̄) results in a one-to-one map between the

original state x̄ and the transformed state ξ̄ and ψ̄. The mapping requires the gradients

∇ψ̄j (j = 1, 2, 3, 4) be linearly independent with each other and also linearly independent

with the gradients ∇ξ̄i (i = 1, 2). The linear independence condition is equivalent to

rank
[
∇ξ̄1 ∇ξ̄2 ∇ψ̄1 ∇ψ̄2 ∇ψ̄3 ∇ψ̄4

]T
= 6 (4.54)

3. The internal states are well-behaved (remain bounded) during the application of the

control in equation 4.47 and this requires the zero dynamics be asymptotically or expo-

nentially stable.

There exists a set of ψ̄i for i = 1, . . . , 4 functions satisfying the first two conditions due to

the Frobenius Theorem [103, 102].

The internal states are chosen in terms of the original state to satisfy the first two

conditions to yield

ψ̄1 = −ωp1ωp2 ā1 − (ωp1 + ωp2)ā2 (4.55a)

ψ̄2 = d̄d (4.55b)

ψ̄3 = d̄m + d̄d (4.55c)

ψ̄4 = ā2 (4.55d)

Next, the stability of the internal state is studied. The stability analysis has three steps:

1. The transformed state dynamics are expressed in terms of the transformed state by

expressing the original state in terms of the transformed state.

2. The undriven internal state dynamics are derived, and this leads to the concept of zero

dynamics.

3. A Lyapunov stability analysis is performed to study the stability of the internal states.
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The original state is expressed in terms of the transformed state by

z̄ =
1

gs
ξ̄1 (4.56a)

d̄m = ψ̄3 − ψ̄2 (4.56b)

ā1 = − 1

ωp1ωp2
ψ̄1 −

ωp1 + ωp2
ωp1ωp2

ψ̄4 (4.56c)

ā2 = ψ̄4 (4.56d)

ā3 = −ωzv − ωpv
gaωp1ωp2

ψ̄1 +
κωt
gagv

ψ̄2 −
κωt
gagv

ψ̄3 (4.56e)

− ωp2(ωzv − ωpv)− ωp1(ωpv + gaωp2ωz − ωzv)
gaωp1ωp2

ψ̄4

− ωt
gagvgs

ξ̄1 exp

(
− ξ̄2

1

2g2
s l

2
t

)
− 1

gagvgs
ξ̄2

d̄d = ψ̄2 (4.56f)

The transformed state dynamics is found by taking the time derivative of equation 4.55,

substituting in the original state dynamics with equation 4.37, then using equation 4.56

to express the original states in terms of the transformed states. The transformed state

dynamics (equivalent the normal form equations) are described by:

˙̄ξ = Aξ ξ̄ +Bξ

[
α(ξ̄, ψ̄) + β(ξ̄, ψ̄)u

]
(4.57a)

˙̄ψ = δ(ξ̄, ψ̄) = Aψψ̄ + ρ(ξ̄) (4.57b)

with the origin (ξ̄, ψ̄) = (0, 0) being a global equilibrium point.
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The internal state is described by a linear system being driven by the nonlinear function

of the state ξ̄,

˙̄ψ1 =
ωp2(ωpv − ωzv) + ωp1(ωpv − (1 + gaωp2)ωz)

gaωp1ωp2
ψ̄1 −

κωt(ωp1 + ωp2 + gaωp1ωp2)

gagv
ψ̄2 (4.57c)

+
κωt(ωp1 + ωp2 + gaωp1ωp2)

gagv
ψ̄3

+
(ωp1 + ωp2)(ωp2(ωpv − ωzv) + ωp1(ωpv + gaωp2(ωz − ωzv)− ωzv))

gaωp1ωp2
ψ̄4

+
ωp1 + ωp2 + gaωp1ωp2

gagvgs
ωtξ̄1 exp

(
− ξ̄2

1

2g2
s l

2
t

)
+
ωp1 + ωp2 + gaωp1ωp2

gagvgs
ξ̄2

˙̄ψ2 = −ωdψ̄2 (4.57d)

˙̄ψ3 = (2ωm + κωt − ωd)ψ̄2 − (ωm + κωt)ψ̄3 −
ωt
gs
ξ̄1 exp

(
− −ξ̄

2
1

2g2
s l

2
t

)
(4.57e)

˙̄ψ4 =
ωzv − ωpv
gaωp1ωp2

ψ̄1 +
κωt
gagv

ψ̄2 −
κωt
gagv

ψ̄3 (4.57f)

+
−ωp1(ωpv + gaωp2ωz − ωzv) + ωp2(ωzv − ωpv)

gaωp1ωp2
ψ̄4

− ωt
gagvgs

ξ̄1 exp

(
− ξ̄2

1

2g2
s l

2
t

)
− 1

gagvgs
ξ̄2,

Next, the stability of the internal state is studied and this leads to the concept of zero

dynamics. Zero dynamics are intrinsic properties of nonlinear systems (analogous to transfer

function zeros of linear systems) that characterizes the stability of the internal state [50].

The internal states are stable if the zero dynamics are minimum phase. The zero dynamics

are defined as the internal states when the system output is held identically at zero [50].

The system output is identically zero by applying the state feedback,

u = −β(0, ψ̄)

α(0, ψ̄)
, (4.58)

resulting in the zero dynamics being described by

˙̄ψ = δ(0, ψ̄) = Aψψ̄, (4.59)

and constrained on the four-dimensional manifold M ,

M = {x̄ : h(x̄) = Lfh(x̄) = 0}. (4.60)
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The stability of the zero dynamics are characterized by the eigenvalues of Aψ,

λ1 = −ωd (4.61a)

λ2 = −ωzv (4.61b)

λ3 = −ωz (4.61c)

λ4 = −κωt − ωm. (4.61d)

All the eigenvalues have a negative real part and this fact implies the zero dynamics are

exponentially stable. The internal state is bounded by BIBO stability because the state ξ̄ is

bounded as the result of the application of equation 4.47. The proof for BIBO stability will

be given for the case when the system output is the tracking error.

These definitions are now applied to the optical trap system when its output is the

tracking error. The change in system output does not effect the analysis of the system

relative degree, the state transformation T (x̄), or the zero dynamics. However, the change

does affect the state definition in the input-output map and the state feedback used to

linearize the input-output map. The new state in the input-output map is the tracking error

ξ̆, defined as

ξ̆ = ξr − ξ̄, with ξr = [r, ṙ]T , (4.62)

where ξr is the reference signal vector and r is the reference signal. Then, the optical trap

system is transformed into normal form,

˙̆
ξ = Aξ ξ̆ +Bξ

(
r̈ − L2

fh(x̄)− LBuLfh(x̄)u
)

(4.63a)

˙̄ψ = δ(ξr − ξ̆, ψ̄) (4.63b)

There are two differences in the normal form as expressed in equation 4.63 to that in equation

4.52:

1. In equation 4.63, the input-output map depends on the second time derivative of the

reference signal. Thus, the state feedback must contain information about the reference

signal to linearize the input-output map. The reference signal has two constraints: r ∈ C2

and r̈ 6= 0, ∀t ≥ 0. Choosing the state feedback

u = − 1

LBuLfh(x̄)

(
L2
fh(x̄)− r̈ + v

)
, (4.64)
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and substituting it into equation 4.63 results in the linearized input-output map

¨̆
ξ = v.

2. The internal state is driven by two virtual inputs: the controllable state ξ̆ and the

reference signal ξr. The internal state is bounded by BIBO stability because the zero

dynamics are exponentially stable, and the virtual inputs are bounded.

The following theorem states the internal states are uniformly ultimately bounded.

Theorem 1 (Internal states in tracking problems). [103] The optical trap system as expressed

in normal form via equation 4.63 is well-behaved during the application of the state feedback

in equation 4.64. The zero dynamics are exponentially stable, reference signal is chosen such

that it remains bounded and its derivatives are bounded, and the tracking error is bounded

by the application of equation 4.64. Assume there are positive constants b1, b2, b3, b4, and

b5, then the internal states are BIBO stable with the uniformly ultimate bound

∣∣∣∣ψ̄∣∣∣∣ ≤√ b2

b1b3b4

b5. (4.65)

Proof. The following assumptions are used:

Assumption 1. The internal states are Lipschitz in the reference signal and the tracking

error state. There exists a positive constant l1 such that

∣∣∣∣∣∣δ(ξr − ξ̆, ψ̄)− δ(0, ψ̄)
∣∣∣∣∣∣ ≤ l1

∣∣∣∣∣∣ξr + ξ̆
∣∣∣∣∣∣ . (4.66)

Assumption 2. Assuming a matrix Aψ is Hurwitz and a matrix Qψ is positive definite and

symmetric, then there exists a positive definite and symmetric matrix Pψ satisfying

ATψPψ + PψAψ = −Qψ. (4.67)
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The internal state dynamics via equation 4.63 are equal to

˙̄ψ = δ(ξr − ξ̆, ψ̄) + δ(0, ψ̄)− δ(0, ψ̄) = Aψψ̄ + δ(ξr − ξ̆, ψ̄)− δ(0, ψ̄). (4.68)

The Lyapunov function candidate is

W = ψ̄TPψψ̄, (4.69)

and this candidate is positive definite and decrescent because the function can be lower and

upper bounded with class K functions,

b1

∣∣∣∣ψ̄∣∣∣∣2 ≤ W ≤ b2

∣∣∣∣ψ̄∣∣∣∣2 , (4.70)

where b1 = λmin(Pψ) and b2 = λmax(Pψ). Its time deviative is

Ẇ = ˙̄ψTPψψ̄ + ψ̄TPψ
˙̄ψ, (4.71)

and substituting in equation 4.68 yields

Ẇ = ψ̄T
(
ATψPψ + PψAψ

)
ψ̄ + 2ψ̄TPψ

(
δ(ξr − ξ̆, ψ̄)− δ(0, ψ̄)

)
. (4.72)

Applying assumptions 1 and 2 to equation 4.72 yields

Ẇ ≤ −ψ̄TQψψ̄ + 2l1
∣∣∣∣ψ̄∣∣∣∣ ||Pψ|| ∣∣∣∣∣∣ξr + ξ̆

∣∣∣∣∣∣ . (4.73)

Equation 4.73 can be further bounded using a property of positive definite matrices to yield

Ẇ ≤ −b3

∣∣∣∣ψ̄∣∣∣∣2 − b4

∣∣∣∣ψ̄∣∣∣∣2 + 2b5

∣∣∣∣ψ̄∣∣∣∣ , (4.74)

where b3, b4, b5 are such that b3 + b4 = λmin(Qψ) and b5 = l1 ||Pψ||
∣∣∣∣∣∣ξr + ξ̆

∣∣∣∣∣∣. Applying

nonlinear damping (completing the squares) to the last two terms in equation 4.74 yields

Ẇ ≤ −b3

∣∣∣∣ψ̄∣∣∣∣2 +
b2

5

b4

− b4

(∣∣∣∣ψ̄∣∣∣∣− b5

b4

)2

. (4.75)

The term −b4

(∣∣∣∣ψ̄∣∣∣∣− b5
b4

)2

is always negative. Showing the stability case of uniformly

ultimately bounded requires the term −b3

∣∣∣∣ψ̄∣∣∣∣2 be expressed in terms of the Lyapunov
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function. The term −b3

∣∣∣∣ψ̄∣∣∣∣2 is bounded (made less negative) in terms of W by using

equation 4.70 to relate
∣∣∣∣ψ̄∣∣∣∣2 to W . Equation 4.74 is bounded by

Ẇ ≤ −b3

b2

W +
b2

5

b4

, (4.76)

and has the solution

W (t) ≤ W (0) exp

(
−b3

b2

t

)
+

b2

b3b4

b2
5

(
1− exp

(
−b3

b2

t

))
. (4.77)

At steady state, the Lyapunov function converges to the value W (∞) = b2
b3b4

b2
5. The steady-

state value W (∞) is related to the bound on ψ through equation 4.70. The bound on ψ̄

is ∣∣∣∣ψ̄∣∣∣∣ ≤√ b2

b1b3b4

b5, (4.78)

which shows the internal states are BIBO stable.

The implementation of the control law in equation 4.64 is challenging because not all of

the states are available for measurement. One may ask, can the measurement be used to

obtain information on the remaining states? The answer leads to the concept of observability.

Observability is a system property that implies the initial system state can be uniquely

determined from the output [104]. An observable system allows the use of a state observer

to reconstruct/estimate the system state based on its output.

4.5.2 Observability Condition

A system is called observable if for any two initial states: x0, x1 ⊂ M and a control input

v ∈ V , the corresponding system outputs h(x0, v) and h(x1, v) can be distinguished [105, 106].

Observability for nonlinear systems is a local property and the property needs to be satisfied

at each point in the admissible state space. A system is observable if the matrix

O =
[
∇h,∇Lfh(x), · · · ,∇Ln−1

f h(x)
]T
, ∀x ∈M (4.79)

is full rank.
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Applying the optical trap system to the observability condition results in the matrix O

being full rank, which is rank(O) = 6, ∀x ∈ M . The optical trap system being observable

allows for a state observer to reconstruct/estimate its states.

4.5.3 Separation Principle

The ability to manipulate the dielectric bead via feedback control requires two different feed-

back problems be simultaneously addressed. The two feedback problems are an estimation

problem and a control problem. The estimation problem reconstructs/estimates the system

state based on noisy measurements and the control input. The control problem finds the

state feedback that drives the expected value of the tracking error to zero. The challenge of

simultaneously solving the feedback problems can be alleviated by the noise characteristics,

which the noise is additive and contributes a small effect on the system response compared

to the system nonlinearities. The noise characteristics turns the problem of simultaneously

addressing both feedback problems into two separate feedback problems. The estimation

and control problems can be solved independently, then the solutions can be combined.

The ability to solve the estimation and control problems independently, then combine their

solutions, is called the separation principle.

The separation principle is possible for stochastic systems being driven by additive pro-

cess white noise with additive white noisy measurements. The noise terms are additive and

contribute a small effect on the system response compared to the system nonlinearities. The

system response can be described as the sum of a nominal control system response and a

small perturbed control system response (neighboring control solution). The perturbed con-

trol response is due to the noisy measurements and the state estimates. In this research,

the perturbed system dynamics can be described by a first-degree expansion, and the corre-

sponding variational functional can be described by a quadratic functional in the state and

control, then the estimation and control problems can be designed independently.
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5.0 LINEAR DESIGN

Typically, optical traps are operated within their linear range and this fact has allowed

linear controllers to yield satisfactory closed-loop performance. A popular control choice

is linear integral control because of its ability to increase the system type, reject constant

disturbances, and reduce the effects of the Brownian noise. The closed-loop advantages of

linear integral control can also be achieved using LQG control. LQG control addresses the

estimation and the control problems with a similar architecture to the architecture of the

nonlinear control designs. The similar architecture between the LQG and the nonlinear

control designs allow for the improvement in the closed-loop performance of the optical trap

be quantified when considering the system nonlinearities in the control design.

This chapter discusses the design and the performance of the LQG design. The Kalman

filter is a recursive Bayesian approach for state estimation by minimizing the mean-squared

estimation error. The state estimate is then used in an input-output feedback type architec-

ture with an LQ structure to find the suboptimal state feedback that drives the tracking error

to zero. In order to assess the effectiveness of the LQG control on the quality of the mea-

surements, statistical analyzes are made on the resulting open-loop and closed-loop systems

to quantify its effects on the system bandwidth and the state statistical properties. These

statistical quantities affect the quality of the nominal molecular force estimate, and these

effects are studied by deriving a theoretical expression for its SNR. Finally, the performance

of the LQG design is compared to that of linear integral control.
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5.1 LINEARIZED OPTICAL TRAP SYSTEM

When designing linear controllers, it is convenient to use the linearized system dynamics.

The optical trap system in equation 4.37 is linearized about the equilibrium point x = 0

with a first order Taylor series approximation to yield

ẋ = Ax+Buu+Bww̃ (5.1a)

y = Cx+ ñ. (5.1b)

The linearized optical trap system has the state matrix A and the output matrix C. These

matrices are given by

A =
∂f(x)

∂x

∣∣∣∣
x=0

=



−ωt −κωt −gv(ωzv − ωpv) −gvgaωz −gvga 0

−ωt −κωt − ωm 0 0 0 ωm

0 0 −ωpv gaωz ga 0

0 0 0 0 1 0

0 0 0 −ωp1ωp2 −ωp1 − ωp2 0

0 0 0 0 0 −ωd


(5.2a)

C =
∂h(x)

∂x

∣∣∣∣
x=0

=
[
gs 0 0 0 0 0

]
. (5.2b)

The linearized optical trap system satisfies the observability and output controllability con-

ditions because equation 4.79 is full rank and equation 5.1 can be expressed in normal form.

5.2 STATE ESTIMATION WITH A KALMAN FILTER

The state estimation problem is addressed with a Kalman filter by using the linearized

system in a Luenberger observer structure to find the observer gains that minimizes the

mean-squared estimation error [100]. Such observer gains are found when the optical trap

system is subjected to process noise w̃ = [d̃, d̃m, d̃d], and measurement noise ñ. These noise

sources are Gaussian white noise with the following statistical properties:
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1. The process noise w is described by

E [w̃(t)] = 0 and E
[
w̃(t)w̃T (t+ τ)

]
= Swδ(t), (5.3)

where the spectral density matrix Sw is

Sw =


Sd 0 0

0 Sm 0

0 0 Sd

 . (5.4)

2. The measurement noise ñ is described by

E [ñ(t)] = 0 and E
[
ñ(t)ñT (t+ τ)

]
= Snδ(t), (5.5)

3. The process noise and the measurement noise are orthogonal

E
[
ñ(t)w̃T (t+ τ)

]
= 0. (5.6)

The Kalman filter is a recursive Bayesian estimation approach that provides the conditional

expectation of the state x based on the measurements,

x̂(t) = E [x(t)|y(τ)] , τ ∈ [0, t], (5.7)

by minimizing the square of the estimation error [100, 107]. The estimation error is defined

as

x̆ = x− x̂. (5.8)

The state estimate dynamics are expressed in a Luenberger state observer structure and

described by

˙̂x = Ax̂+Buu+ J [y − Cx̂] , (5.9)

where J ∈ R6 is the observer (Kalman) gain. The last term J [y − Cx̂] is the correction

term. The correction term drives the state estimate dynamics because as new measurements

arrive, the measurement error y − Cx̂ is weighted by the observer gain to affect the state

estimate dynamics.
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The Kalman filter finds the observer gain J to ensure the state matrix A− JC is stable

and to minimize the mean-squared estimation error. The dynamics for the estimation error

is described by

˙̆x = (A− JC)x̆+Bww̃ − Jñ, (5.10)

which characterizes a linear system driven by the process noise and the measurement noise.

The observer gain J depends on the estimation error covariance matrix P ,

P = E
[
x̆x̆T

]
,

a symmetric and positive semidefinitie matrix. The estimation error covariance matrix is

the solution to the differential Riccati equation,

Ṗ = PAT + AP +BwSwB
T
w − PCTS−1

n CP. (5.11)

The Riccati equation is model dependent and driven by the spectral densities of the process

noise Sw and the measurement noise Sn. Its solution can be calculated off-line. The Kalman

filter is going to operate longer than its time constant and this fact allows the solution to

the differential Riccati equation to be simplified by only considering its steady-state solution

(Ṗ = 0). The differential Riccati equation is turned into an algebraic Riccati equation,

0 = PAT + AP +BwSwB
T
w − PCTS−1

n CP, (5.12)

which has one solution such that the eigenvalues of the closed-loop estimation problem are

the stabilizing eigenvalues of the Hamiltonian matrix [108]

H =

 A −CTS−1
n C

−BwSwB
T
w −AT

 . (5.13)

The Riccati solution determines the observer gains through

J = PCTS−1
n =

[
j1 j2 j3 j4 j5 j6

]T
. (5.14)

Next, we qualitativaly discuss the effects the magnitude of the process noise and measurement

noise has on the Riccati solution and the observer gains. When the spectral density of the

process noise is smaller than the measurement noise, there are small values for both the
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Riccati solution and the observer gains. Small observer gains imply the system model is

trusted more than the measurements. On the other hand, when the spectral density of the

process noise is larger than the measurement noise, there are large values for both the Riccati

solution and the observer gains. Large observer gains imply the system model is trusted less

than the measurements.

It is insightful to assess the effectiveness the Kalman filter has on the quality of the state

estimate by quantifying the estimation bandwidth, estimation bias, and estimation variance.

These statistical quantities are crucial because the state estimate is used to estimate the

molecule characteristics. The quality of the molecule characteristics is quantified by deriving

the expression for the SNR of the nominal molecular force.

5.3 STATISTICAL ANALYSIS OF KALMAN FILTER

The effectiveness of the Kalman filter is assessed by quantifying the estimation bias, the

estimation bandwidth, and the estimation variance. These statistical properties are then

used to derive the expression for the SNR of the nominal molecular force estimate.

These statistical properties depend on the operating conditions of the optical trap system.

The operating conditions change when there is a change in the laser power or the molecule’s

end-to-end extension. The laser power is related to the optical stiffness kt, which affects ωt =

kt/γ and the linear operating range. An increase/decrease in the laser power results in an

increase/decrease in the optical stiffness and the linear operating range. The molecule’s end-

to-end extension is related to the molecule’s stiffness; an increase/decrease to the molecule’s

end-to-end distance results in an increase/decrease in the molecule’s stiffness km. Thus,

for each pair of kt and km (or κ = km/kt, the dimensionless stiffness), a Kalman filter is

designed. Let us quantify the statistical properties for the different operating conditions

using numerical methods.

The following assumption is used in the analysis.

Assumption 3. The actuator dynamics are not driven by white noise. The Kalman gains

associated with these states are small, such that ||ji|| � 1, compared to the other Kalman

gains.
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The estimation bandwidth and the estimation bias are found from the expected value of

the estimation error dynamics ¯̆x = E [x̆] of equation 5.10,

d

dt
¯̆x = (A− JC)¯̆x. (5.15)

Estimation Bias The accuracy of the Kalman filter is quantified by studying the esti-

mation bias at steady-state. The steady-state response of equation 5.15 converges to zero

(no bias) if all the eigenvalues of A−JC have negative real parts (or stable). The eigenvalues

of A−JC are stable because these eigenvalues are the stable eigenvalues of the Hamiltonian

matrix in equation 5.13.

Estimation Bandwidth The estimation bandwidth provides how fast the Kalman fil-

ter produces the state estimate. It can be characterized by the slowest eigenvalue of the

estimation error dynamics. The estimation bandwidth is shown in figure 23. For a given κ,

as kt is increased, the estimation bandwidth has an initial high slope, then the slope changes

and becomes small in the same direction. For a given kt, increasing κ (the molecule becomes

stiffer) results in the estimation bandwidth increasing.

State Variances The open-loop composite system (the combination of the optical trap

system and the Kalman filter) fluctuates at steady-state due to process noise (Brownian

noise and molecule noise), and the measurement noise. Recall that the optical trap (same

as in equation 5.1 but with no control) is

ẋ = Ax+Bww̃,

and the Kalman filter (same as in equation 5.9 but with no control) is

˙̂x = Ax̂+ J [y − Cx̂] .

The system fluctuations are simplified by using the fact that the noise inputs only drive

the states describing the bead and the molecule; then assumption 3 is used to imply that

measurement noise only affects the state estimates describing the bead and the molecule. In

this research, the fluctuations are characterized by performing a linear noise analysis about

the expected value at steady-state.
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Figure 23: A schematic of the estimation bandwidth obtained using a Kalman filter. For a

given κ, as kt is increased, the estimation bandwidth has an initial high slope, then the slope

changes and becomes small in the same direction. For a given kt, increasing κ (the molecule

is becoming stiffer) results in the estimation bandwidth increasing.
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The fluctuations are determined by first describing the composite system and its expected

value. The dynamics for the composite system xo are described by

ẋo = Aoxo +Bow̃o, with xo = [z, dm, ẑ, d̂m, d̂d]
T , and w̃o = [d̃, d̃m, ñ]T , (5.16)

and its expected value x̄o = E[xo] has dynamics of

˙̄xo = Aox̄o. (5.17)

The system fluctuations are described by the noise x̃o = xo − x̄o and its dynamics are

˙̃xo = Ao(x̃o + x̄o) +Bow̃o − Aox̄o, (5.18a)

= Aox̃o +Bow̃o, (5.18b)

where the matrices Ao and Bo being

Ao =



−ωt κωt 0 0 0

−ωt −κωt − ωm 0 0 0

j1gs 0 −ωt − j1gs −κωt 0

j2gs 0 −ωt − j2gs −κωt − ωm ωm

j6gs 0 −j6gs 0 −ωd


Bo =



ωt 0 0

ωt ωm 0

0 0 j1

0 0 j2

0 0 j6


. (5.19)

The state variances are characterized by the steady-state state covariance matrix Xo =

E
[
x̃ox̃

T
o

]
, which is the solution to the Lyapunov equation

AoXo +XoA
T
o +BoSoB

T
o = 0 where So =


Sd 0 0

0 Sm 0

0 0 Sn

 . (5.20)

The variance for the bead deflection and its estimate are shown in figure 24; the variance of

the molecule extension and its estimate are shown in figure 25. For a given κ, increasing kt

(also km is increased to maintain a constant κ) results in a decrease in the variance for the

states and their estimates; a stiffer optical trap and molecule reduces the variance. Then, for

a given kt, an increase in κ (a stiffer molecule) results in an decrease in the variance for the

state, the variance decreases for the estimated molecule extension, and the variance increases

for the estimated bead deflection when kt ≥ 0.07 pN/nm. The variance for the estimated
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disturbance is shown in figure 26. Figure 26 shows that, for a given κ, an increase in kt

(km is also increased to maintain κ) initially reduces the variance quickly, then the variance

decreases slowly. Then, for a constant kt, an increase in κ (the molecule becoming stiffer)

reduces the variance.

These statistical quantities affect the quality of the estimated force disturbance and the

effect is quantified by studying its SNR.

SNR For Molecule Force Estimate The statistical quantities of the estimated force

disturbance are proportional to that of the disturbance estimate because f̂d = kmd̂d. At

steady-state, the expected value for the estimated force disturbance is

E[f̂d] = kmE[d̂d]. (5.21)

The variance of the estimated force disturbance is described by

Var
(
f̂d

)
= k2

m Var
(
d̂m

)
. (5.22)

The SNR for the estimated force disturbance is

SNR =
1√

Var
(
f̂d

)E[f̂d]. (5.23)

Its value is numerically evaluated for each operating condition (each pair of kt and κ), as

shown in figure 27. For a given κ, increasing kt results in a decrease in the SNR.

A second advantage with the Kalman filter is that the state estimate can be implemented

in the controller to study the molecule. The state estimate is used in the controller to achieve

disturbance rejection and the state estimate contains less noise than the actual state.
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Figure 24: A schematic for the variance of the bead deflection and its estimate obtained using

a Kalman filter. For a given κ, increasing kt (also km is increased to maintain a constant

κ) results in a decrease in the variance for the state and estimated state; a stiffer optical

trap and molecule reduces the variance. Then, for a given kt, an increase in κ (a stiffer

molecule) results in an decrease in the variance for the state and an increase in variance for

the estimated state.
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Figure 25: A schematic for the variance of the molecule extension and its estimate obtained

using a Kalman filter. For a given κ, increasing kt (also km is increased to maintain a

constant κ) results in a decrease in the variance for the states and their estimates; a stiffer

optical trap and molecule reduces the variance. Then, for a given kt, an increase in κ (a

stiffer molecule) results in an decrease in the variance for the state and estimated state.
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Figure 26: A schematic for the variance of the estimated disturbance obtained using a

Kalman filter. For a given κ, an increase in kt (km is also increased to maintain κ) initially

reduces the variance quickly, then the variance decreases slowly. Then, for a constant kt, an

increase in κ (the molecule becoming stiffer) reduces the variance.
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Figure 27: A schematic for the SNR of the estimated force disturbance obtained using a

Kalman filter. For a given κ, increasing kt results in a decrease in the SNR.
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5.4 CONTROL STRUCTURE

The molecule is studied by having the expected value of the bead deflection track a reference

signal. The tracking control problem is turned into a regulation control problem with the

new control objective being design the control to drive the expected value of the tracking

error to zero. Recall that the expected value of the tracking error ξ̆ is defined in equation

4.62 in

ξ̆(x̄) = ξr − ξ(x) =

 r − Cx

ṙ − CAx

 ,
where r is the reference signal. The tracking error is driven to zero by a combination of an

input-output feedback with LQ control architecture, as shown in the block diagram in figure

28. The control structure has two feedback loops: the linearization loop (loop 1) and the

tracking loop (loop 2). The linearization loop transforms the optical trap system such that

the input-output map is in controllable canonical form by state feedback. The tracking loop

uses the controllable canonical state equation in an LQ optimal control algorithm to find the

state feedback that drives the tracking error to zero.

The linearization loop transforms the optical trap system with the tracking error as its

output into normal form (according to the procedure given in section 4.5.1),

d

dt
ξ̆ = Aξ ξ̆(x) +Bξ

[
r̈ − CA2x− CABuu

]
(5.24a)

ψ̇ = δ(ξr − ξ̆, ψ). (5.24b)

The normal form describes the input-output map between the control input u and the track-

ing error ξ̆. Choosing the state feedback to be

u(x̂) = − 1

CABu

[
CA2x̂− r̈ + v

]
, (5.25)

with v being the auxiliary control input, transforms the input-output map to controllable

canonical form,
d

dt
ξ̆ = Aξ ξ̆(x) +Bξv −BξCA

2x̆, (5.26)

where x̆ = x − x̂ is the state estimation error. Equation 5.26 describes the controllable

canonical state equation d
dt
ξ̆ = Aξ ξ̆(x) + Bξv being driven by the perturbation −BξCA

2x̆.
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Figure 28: The schematic of the block diagram for the closed-loop system. The block diagram

has two feedback loops. The linearization loop (loop 1) transforms the optical trap system

into normal form such that the input-output map is transformed to controllable canonical

form by state feedback u(x̂, v, r̈). The tracking loop (loop 2) uses the controllable canonical

state equation in an LQ optimal algorithm to find the state feedback v = −Kξ ξ̆(x̂) that

drives the tracking error to zero.
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The perturbation−BξCA
2x̆ results from the estimation error (mismatch) in the input-output

feedback due to the state estimation process.

The tracking loop uses controllable canonical state equation

d

dt
ξ̆ = Aξ ξ̆(x) +Bξv

in an LQ optimal control algorithm to find the state feedback v(x̂) = −Kξ ξ̆(x̂) (where Kξ is

the state feedback matrix) that drives the tracking error to zero. The LQ control algorithm

assumes the state x is available to find the state feedback v(x), then the state feedback

is implemented using the state estimate. The dynamics for the closed-loop tracking error

are characterized by the eigenvalues of Aξ − BξKξ and its bandwidth is described by a

frequency equal to the slowest eigenvalue. The slowest eigenvalue of Aξ−BξKξ can be made

arbitrarily fast by choosing large values for Kξ, which requires higher signal energy in the

auxiliary control v. High control signal may not be practical due to actuator saturation.

Clearly, there is a tradeoff between the system’s convergence speed and the control energy.

This tradeoff motivates the use of LQ methods to find the state feedback by minimizing

a quadratic functional that reflects the desired closed-loop performance. The LQ control

problem is a constrained minimization problem described by

minimize J =
1

2

∫ ∞
0

[
ξ̆T (x)Qξ ξ̆(x) +Rξv

2
]
dτ with Qξ =

q1 0

0 q2


subject to

˙̆
ξ = Aξ ξ̆(x) +Bξv

(5.27)

where Qξ = QT
ξ > 0 is a weighted matrix placed on the tracking error and Rξ > 0 is

the weight placed on the auxiliary control [109]. The constrained minimization problem

results from the the tracking error and the auxiliary control being dependent because to

solve the controllable canonical state equation. The dependency is addressed by turning the

constrained minimization problem into a unconstrained minimization problem with higher

dimension by introducing Lagrange mulitpliers (costates) [109]. The costates are chosen to

have the tracking error be independent of the auxiliary control. The unconstrained problem

minimizes the Hamiltonian function,

H(ξ̆(x), λ, v) =
1

2
ξ̆T (x)Qξ ξ̆(x) +

1

2
Rξv

2 + λT (Aξ ξ̆(x) +Bξv) (5.28)
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where λ is the costate. The Hamiltonian function is minimized when its gradient ∇H = 0,

which is equivalent to the optimality conditions satisfying

˙̆
ξ =

∂H

∂λ
= Aξ ξ̆(x) +Bξv (5.29a)

λ̇ = −∂H
∂ξ̆

= −Qξ ξ̆(x)− AξTλ (5.29b)

0 =
∂H

∂v
= Rξv +Bξ

Tλ. (5.29c)

The auxiliary control depends on the costate via v(x) = −R−1
ξ Bξ

Tλ(x). To implement

state feedback, the auxiliary control needs to be expressed in the tracking error not the

costate. The auxiliary control can be expressed in the tracking error by relating the costate

to the tracking error via a standard optimal control assumption λ(x) = Pξ ξ̆(x),∀t, where

Pξ = P T
ξ ≥ 0. The matrix Pξ is the solution to the differential Riccati equation [109]

Ṗξ = −AξTPξ − PξAξ −Q+ PξBξR
−1Bξ

TPξ, with Pξ =

p1 p2

p2 p3

 . (5.30)

The Riccati equation is model dependent and driven by the weights Qξ and Rξ. Its solution

can be calculated off-line. The LQ controller is going to operate longer than its time constant

and this fact allows the solution to the differential Riccati equation to be simplified by only

considering its steady-state solution (Ṗξ = 0). The differential Riccati equation is turned

into an algebraic Riccati equation,

0 = Aξ
TPξ + PξAξ +Qξ − PξBξR

−1
ξ Bξ

TPξ, (5.31)

which has one solution such that the eigenvalues of the closed-loop system are the stabilizing

eigenvalues of the Hamiltonian matrix [108],

H =

 Aξ −BξR
−1
ξ Bξ

−Qξ −ATξ

 (5.32)

The Riccati solution relates the auxiliary control to the tracking error via λ(x) = Pξ ξ̆(x)

to yield

v(ξ̆(x)) = −R−1
ξ Bξ

TPξ ξ̆(x) = −Kξ ξ̆(x), (5.33)
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where Kξ = R−1
ξ Bξ

TPξ = [k1 k2] is the state feedback matrix. The implementation of the

auxiliary control uses the state estimate to yield

v(ξ̆(x̂)) = −R−1
ξ Bξ

TPξ ξ̆(x̂) = −Kξ ξ̆(x̂). (5.34)

The dynamics for the closed-loop tracking error are obtained by substituting equation

5.34 into equation 5.26, and adding and subtracting the term Bξv(x) to equation 5.26 to

yield

d

dt
ξ̆ = Aξ ξ̆(x) +Bξv(ξ̆(x̂))−Bξ

(
v(ξ̆(x))− v(ξ̆(x̂))

)
−BξCA

2x̆

=

(
Aξ −BξR

−1
ξ BT

ξ Pξ

)
ξ̆(x) +BξR

−1
ξ BT

ξ Pξ

(
ξ̆(x)− ξ̆(x̂)

)
−BξCA

2x̆.

(5.35)

Equation 6.42 describes the nominal closed-loop tracking error dynamics

d
dt
ξ̆ = (Aξ − BξR

−1
ξ BT

ξ Pξ)ξ̆(x) being driven by two perturbations. The first perturbation

−BξCA
2x̆ results from the estimation error in the input-output feedback due to the state

estimation process; the second perturbation BξR
−1
ξ BT

ξ Pξ(ξ̆(x)−ξ̆(x̂)) results from the pseudo

estimation error of the tracking error definition due to the state estimation process.

It is insightful to assess the effectiveness the control has on the closed-loop composite

system by quantifying the state bias and state variance of the composite system.

5.5 STATISTICAL ANALYSIS ON CLOSED-LOOP COMPOSITE SYSTEM

These statistical properties depend on the operating conditions of the optical trap system.

The operating conditions change when there is a change in the laser power or the molecule’s

end-to-end extension. The laser power is related to the optical stiffness kt, which affects ωt =

kt/γ and the linear operating range. An increase/decrease in the laser power results in an

increase/decrease in the optical stiffness and the linear operating range. The molecule’s end-

to-end extension is related to the molecule’s stiffness; an increase/decrease to the molecule’s

end-to-end distance results in an increase/decrease in the molecule’s stiffness km. Thus, for

each pair of kt and km (or κ = km/kt, the dimensionless stiffness), a Kalman filter is designed.
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Let us quantify the statistical properties for the different operating conditions by performing

Lyapunov stability analysis for the bias and numerical methods for the variances.

The dynamics for the closed-loop composite system is composed of

1. The dynamics for the closed-loop tracking error in equation 5.35,

d

dt
ξ̆ =

(
Aξ −BξR

−1
ξ BT

ξ Pξ

)
ξ̆(x) +BξR

−1
ξ BT

ξ Pξ

(
ξ̆(x)− ξ̆(x̂)

)
−BξCA

2x̆

.

2. The dynamics for the internal states in equation 5.24,

ψ̇ = δ(ξr − ξ̆, ψ)

3. The dynamics for the closed-loop state-estimation error in equation 5.10

˙̆x = (A− JC)x̆+Bww̃ − Jñ.

Closed-loop bias A Lyapunov stability analysis is performed to quantify the bias of the

expected value of the closed-loop composite system. The expected value for the closed-loop

composite sytem is described by

1. The expected value of the dynamics for the closed-loop tracking error is obtained by

taking the expected value of equation 5.35,

d

dt
ξ̆ =

(
Aξ −BξR

−1
ξ BT

ξ Pξ

)
ξ̆(x̄) +BξR

−1
ξ BT

ξ Pξ

(
ξ̆(x̄)− ξ̆(¯̂x)

)
−BξCA

2 ¯̆x. (5.36)

2. The expected value of the dynamics for the internal states is obtained by taking the

expected value of equation 5.24,

ψ̇ = δ(ξr − ˘̄ξ, ψ̄) (5.37)

3. The expected value of the dynamics for the closed-loop state-estimation error is obtained

by taking the expected value of equation 5.10,

d

dt
¯̆x = (A− JC)¯̆x. (5.38)
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The following assumptions are used:

Assumption 4. The tracking error is Lipschitz. The Lipschitz condition implies there exists

a positive constant l2 such that ∣∣∣∣∣∣ξ̆(x̄)− ξ̆(¯̂x
∣∣∣∣∣∣ ≤ l2

∣∣∣∣¯̆x∣∣∣∣ , (5.39)

where ¯̆x = x̄− ¯̂x is the expected value of the state estimation error.

Assumption 5. Assuming the matrix A − JC is Hurwitz and a matrix Qx is a positive

definite and symmetric, then there exists a positive and definite matrix Px satisfying the

Lyapunov equation

(A− JC)TPx + Px(A− JC) = −Qx. (5.40)

Theorem 2. Assume there are positive constants b3, b4, b5 and b6. When these constants

satisfy

b6 = min{b4 − b3, b5 − b3},

the closed-loop composite system yielding exponential stability for the expected value of the

tracking error and the expected value state estimation error. The exponential stability result

implies there is no bias in the tracking error or the state estimation error. The boundedness

of the tracking error and the reference signal implies the internal states are bounded by BIBO

stability according to theorem 1.

Proof. The Lyapunov function candidate is

W = ξ̆T (x̄)Pξ ξ̆(x̄) + ¯̆xTPx ¯̆x, (5.41)

and this candidate is positive definite and decrescent because the function can be lower and

upper bounded with class K functions

b1(
∣∣∣∣∣∣ξ̆∣∣∣∣∣∣2 +

∣∣∣∣¯̆x∣∣∣∣2) ≤ W ≤ b2(
∣∣∣∣∣∣ξ̆∣∣∣∣∣∣2 +

∣∣∣∣¯̆x∣∣∣∣2) (5.42)

where b1 = min{λmin(Pξ), λmin(Px)} and b2 = max{λmax(Pξ), λmax(Px)}. Taking the time

derivative of equation 5.41,

Ẇ =
d

dt
ξ̆TPξ ξ̆ + ξ̆TPξ

d

dt
ξ̆ +

d

dt
¯̆x
T
Px ¯̆x+ ¯̆xTPx

d

dt
¯̆x, (5.43)

98



substituting in the expressions for the closed-loop state estimation error and the tracking

error, and rearranging terms yield

Ẇ = ξ̆T (x̄)

(
ATξ Pξ + PξAξ − PξBξR

−1
ξ BT

ξ Pξ

)
ξ̆(x̄)− ξ̆T (x̄)PξBξR

−1
ξ BT

ξ Pξ ξ̆(x̄)

+ 2ξ̆T (x̄)PξBξR
−1
ξ BT

ξ Pξ

(
ξ̆T (x̄)− ξ̆T (¯̂x)

)
+ 2ξ̆T (x̄)BξCA

2 ¯̆x

+ ¯̆xT
(

(A− JC)TPx + Px(A− JC)

)
¯̆x

(5.44)

Applying assumption 5 to the last term in equation 5.44 and using the fact

−ξ̆T (x̄)PξBξR
−1
ξ BT

ξ Pξ ξ̆(x̄) ≤ 0 yields

Ẇ ≤ ξ̆T (x̄)

(
ATξ Pξ + PξAξ − PξBξR

−1
ξ BT

ξ Pξ

)
ξ̆(x̄)− ¯̆xTQx

¯̆x

+ 2ξ̆T (x̄)PξBξR
−1
ξ BT

ξ Pξ

(
ξ̆T (x̄)− ξ̆T (¯̂x)

)
+ 2ξ̆T (x̄)BξCA

2 ¯̆x

(5.45)

The first term is simplified by applying the steady-state algebraic Riccati equation (as shown

in equation 5.31)

Aξ
TPξ + PξAξ +Qξ − PξBξR

−1
ξ Bξ

TPξ = 0

with Qξ being positive negative. Applying equation 5.31 to equation 5.45 yields

Ẇ = −ξ̆T (x̄)Qξ ξ̆(x̄)− ¯̆xTQx
¯̆x+ 2ξ̆T (x̄)PξBξR

−1
ξ BT

ξ Pξ

(
ξ̆T (x̄)− ξ̆T (¯̂x)

)
+ 2ξ̆T (x̄)BξCA

2 ¯̆x

(5.46)

Equation 5.46 is further bounded by applying the properties of positive definite matrices to

the first two terms, and taking the norm of the last two terms to yield

Ẇ ≤ −b3

∣∣∣∣∣∣ξ̆(x)
∣∣∣∣∣∣2 − b4

∣∣∣∣¯̆x∣∣∣∣2
+

∣∣∣∣∣∣∣∣2ξ̆T (x̄)PξBξR
−1
ξ BT

ξ Pξ

(
ξ̆T (x̄)− ξ̆T (¯̂x)

)∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣2ξ̆T (x̄)BξCA

2 ¯̆x
∣∣∣∣∣∣ (5.47)

where b3 = λmin(Qξ) and b4 = λmin(Qx). Next, the norm of the last two terms are bounded in

terms of
∣∣∣∣∣∣ξ̆(x̄)

∣∣∣∣∣∣2 and
∣∣∣∣¯̆x∣∣∣∣2. The norm

∣∣∣∣∣∣2ξ̆T (x̄)PξBξR
−1
ξ BT

ξ Pξ(ξ̆
T (x̄)− ξ̆T (¯̂x))

∣∣∣∣∣∣ is bounded
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using assumption 4, which implies the tracking error ξ̆(x̄) is Lipschitz. Then, the norms of

the last two terms are bounded by∣∣∣∣∣∣∣∣2ξ̆T (x̄)PξBξR
−1
ξ BT

ξ Pξ

(
ξ̆T (x̄)− ξ̆T (¯̂x)

)∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣2ξ̆T (x̄)BξCA

2 ¯̆x
∣∣∣∣∣∣ ≤ b52

∣∣∣∣∣∣ξ̆(x̄)
∣∣∣∣∣∣ ∣∣∣∣¯̆x∣∣∣∣ (5.48)

where b5 = l2
∣∣∣∣PξBξR

−1
ξ BT

ξ Pξ
∣∣∣∣ + ||BξCA

2||. The norm 2
∣∣∣∣∣∣ξ̆(x̄)

∣∣∣∣∣∣ ∣∣∣∣¯̆x∣∣∣∣ is further bounded

using Young’s inequality to yield

2
∣∣∣∣∣∣ξ̆(x̄)

∣∣∣∣∣∣ ∣∣∣∣¯̆x∣∣∣∣ ≤ ∣∣∣∣∣∣ξ̆(x̄)
∣∣∣∣∣∣2 +

∣∣∣∣¯̆x∣∣∣∣2 .
Then, equation 5.48 is bounded by∣∣∣∣∣∣∣∣2ξ̆T (x̄)PξBξR

−1
ξ BT

ξ Pξ

(
ξ̆T (x̄)− ξ̆T (¯̂x)

)∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣2ξ̆T (x̄)BξCA

2 ¯̆x
∣∣∣∣∣∣ ≤ b5

∣∣∣∣∣∣ξ̆(x̄)
∣∣∣∣∣∣2 + b5

∣∣∣∣¯̆x∣∣∣∣ .
(5.49)

Substituting equation 5.49 into equation 5.47 yields

Ẇ ≤ −(b3 − b5)
∣∣∣∣∣∣ξ̆(x̄)

∣∣∣∣∣∣2 − (b4 − b5)
∣∣∣∣¯̆x∣∣∣∣2

≤ −b6

( ∣∣∣∣∣∣ξ̆(x̄)
∣∣∣∣∣∣2 +

∣∣∣∣¯̆x∣∣∣∣2), (5.50)

where b6 = min{b3 − b5, b4 − b5}. Equation 5.50 is negative definite, which implies that

the estimation error dynamics and the tracking error dynamics are asymptotically stable.

A stronger stability condition of exponential stability is now shown. Exponential stability

requires bounding equation 5.50 (becomes less negative) in terms of the Lyapunov function

W by expressing the term
∣∣∣∣∣∣ξ̆∣∣∣∣∣∣2 +

∣∣∣∣¯̆x∣∣∣∣2 in terms of W using equation 5.42. Equation 5.50

is bounded by

Ẇ ≤ −b6

b2

W, (5.51)

and its solution is

W (t) ≤ W (0) exp

(
−b6

b2

t

)
. (5.52)

This results in the Lyapunov function W being exponentially stable, which implies the

tracking error and the state estimation error are exponentially stable. The boundedness

of the tracking error and the reference signal ξr allows for the internal states to remain

bounded by BIBO stability according to theorem 1 because the undriven internal states are

exponentially stable.
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Control State Variance The closed-loop composite system (the combination of the

optical trap system, the Kalman filter, and the controller) fluctuates at steady-state due to

process noise (Brownian noise and molecule noise), and the measurement noise. Recall that

the optical trap (same as in equation 5.1) is

ẋ = Ax+Buu+Bww̃,

the nonlinear Kalman filter (same as in equation 5.9 ) is

˙̂x = Ax+Buu+ J [y − cx̂],

and the controller is

u(x̂) =
1

CABu

[
(CA2 + k1C + k2CA)x̂− k1r − k2ṙ − r̈

]
.

The system fluctuations are simplified by using the fact that the noise inputs only drive

the states describing the bead and the molecule; then assumption 3 is used to imply that

measurement noise only affects the state estimates describing the bead and the molecule.

The control signal is considered by including the actuator state whose dynamics explicitly

depends on the control signal. In this research, the fluctuations are characterized by per-

forming a linear noise analysis about the expected value at steady-state. The fluctuations are

determined by first describing the composite system and its expected value. The dynamics

for the composite system xc are described by

ẋc = Acxc +Bcw̃c, with xc = [z, dm, a3, ẑ, d̂m, â3, d̂d]
T , and w̃c = [d̃, d̃m, ñ]T , (5.53)

and its expected value x̄c = E[xc] has dynamics of

˙̄xc = Acx̄c. (5.54)

The system fluctuations are described by the noise x̃c = xc − x̄c and its dynamics are

˙̃xc = Ac(x̃c + x̄c) +Bcw̃c − Acx̄c, (5.55a)

= Acx̃c +Bcw̃c. (5.55b)
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The state matrix Ac and the input matrix Bc are partitioned and described by

Ac =

 Ap −Bp(CA
2 + c1C + c2CA)

JCp A− JC −Bv(CA
2 + c1C + c2CA)

 (5.56)

where the state matrices Ap and A are

Ap =


−ωt −κωt −gvga
−ωt −κωt − ωm 0

0 0 −ωp1 − ωp2

 , (5.57)

A =


−ωt −κωt −gvga 0

−ωt −κωt − ωm 0 ωm

0 0 −ωp1 − ωp2 0

0 0 0 −ωd

 ; (5.58)

the input matrices Bp and B are

Bp =
[
0 0 1

]T
, and B =

[
0 0 1 0

]T
; (5.59)

the output matrices Cp and C are

Cp =
[
gs 0 0

]T
, and C =

[
gs 0 0 0

]T
. (5.60)

The state variances are characterized by the steady-state state covariance matrix

Xc = E
[
x̃cx̃

T
c

]
, which is the solution to the Lyapunov equation

AcXc +XcA
T
c +BcScB

T
c = 0 where Sc =


Sd 0 0

0 Sm 0

0 0 Sn

 . (5.61)

The variance for the bead deflection and its estimate are shown in figure 29; the variance

of the molecule extension and its estimate are shown in figure 30. For a given κ, increasing

kt (also km is increased to maintain a constant κ) results in a decrease in the variance for the

states and their estimates; a stiffer optical trap and molecule reduces the variance. Then,

for a given kt, an increase in κ (a stiffer molecule) results in an decrease in the variance for

the states and the variance. The control has minimal effect on the variance of the actual
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state when compared to the open-loop case; the control reduces the variance of the estimated

states when compared to the open-loop case. The variance for the estimated disturbance and

its description are the same its variance in the open-loop case and its description as given

in section 5.3. The SNR analysis for the estimated force disturbance and its description are

the same as given in section 5.3.

The closed-loop performance with LQG control drives the expected value of the tracking

error to zero, provides a real-time unbiased estimate of the molecule force, and reduces the

noise effects. The same statistical characteristics of the estimated molecule force can be

obtained using linear integral control, a feedback method used in practice by biophysicists.

The statistical characteristics being equivalent for both feedback methods is crucial because

the statistical characteristics obtained using a controller in practice can be compared to the

statistical characteristics obtained using the nonlinear feedback methods. The comparison

is then performed with the LQG design because the LQG design has a similar architecture

of the proposed nonlinear feedback designs to address the estimation and controls. First,

we must show the statistical characteristics obtained with the LQG design are equivalent to

that obtained with linear integral control.

5.6 LINEAR INTEGRAL CONTROL

Linear integral control is a fixed-gain design that must be designed for each operating con-

dition (each pair kt and κ). Its closed-loop performance is studied using a transfer function

approach. The transfer function approach requires the optical trap system in equation 5.1 be

expressed into a transfer function matrix to relate each system input to the system output.

The optical trap system is driven by the control input, and three disturbance inputs: the

disturbance extension, the molecule noise, and the Brownian noise. The resulting transfer

function matrix G(s) = C(sI − A)−1B +D describes the three transfer functions:
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Figure 29: A schematic for the variance of the bead deflection and its estimate obtained

using LQG control. For a given κ, increasing kt (also km is increased to maintain a constant

κ) results in a decrease in the variance for the states and their estimates; a stiffer optical

trap and a stiffer molecule reduces the variance. Then, for a given kt, an increase in κ (a

stiffer molecule) results in an decrease in the variance for the states and the variance.
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Figure 30: A schematic for the variance of the molecule extension and its estimate obtained

using LQG control. For a given κ, increasing kt (also km is increased to maintain a constant

κ) results in a decrease in the variance for the states and their estimates; a stiffer optical

trap and a stiffer molecule reduces the variance. Then, for a given kt, an increase in κ (a

stiffer molecule) results in an decrease in the variance for the states and the variance.
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1. The control input affects the system output through the cascaded system of the actuator

and the optical trap dynamics. This cascaded system is described by

G1(s) =
z(s)

u(s)

= −
(
gωp1ωp2ωpv
ωzωzv

)
(s+ ωz)(s+ ωzv)(s+ ωm + κωt)

(s+ ωp1)(s+ ωp2)(s+ ωpv)(s
2 + (ωm + ωt + κωt)s+ ωmωt)

(5.62)

2. The disturbance extension and the molecule noise affect the the system output by

G2(s) =
z(s)

dd(s) + d̃m(s)
= − gsκωmωt

s2 + (ωm + ωt + κωt)s+ ωmωt
. (5.63)

3. The Brownian noise affects the system output by

G3(s) =
z(s)

d̃(s)
=

gsωt(s+ ωm)

s2 + (ωm + ωt + κωt)s+ ωmωt
. (5.64)

The objective is to manipulate the system output in the presence of disturbances, which is

a servocontrol problem. The servocontrol problem (e.g., disturbance rejection and tracking

problem) is described with the block diagram, as shown in figure 31. The error, e, the

difference between the reference signal and the system output (the measured bead deflection),

is fed into the controller, K, to create the control signal, u. For servocontrol, the control

objective is to minimize the error. The closed-loop error is described by

e = Sr − SG2(dd + d̃m)− SG3d̃+ T ñ (5.65)

where S and T are the sensitivity function and the complimentary sensitivity function re-

spectively,

S =
1

1 + L
and T =

L

1 + L
= 1− S, (5.66)

with L = G1K being the loop gain. Of interest is the expected value of the steady-state

error, and its performance is characterized by the loop-gain characteristics. The loop-gain

should be large (equivalent to the sensitivity being small) for disturbance rejection and track-

ing. However, analytic constraints, placed on the closed-loop system, prevent the sensitivity

function being small for all frequencies. Attentuating the sensitivity function by a factor
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Figure 31: The block diagram schematic of the closed-loop optical trap with integral control.

In the diagram, the plant is G1, the controller is K, the molecule disturbances are filtered by

G2, the Brownian disturbance is filtered by G3, and the control u is filtered by a phase-lead

compensation filter H to form v. The other signals are the reference signal r and the error

e.
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of P over the bandwidth wb can cause the sensitivity function to be magnified elsewhere

according to the waterbed effect and the Bode Sensitivity Integral [51].

The closed-loop error is minimized in the presence of process noise (Brownian noise and

molecule noise), disturbance extensions (constant disturbances), and a constant reference

signal for the bead deflection (equivalent to applying a constant optical force). The constant

inputs are modeled with step inputs. Zero steady-state error for step inputs is achieved with

type 1 systems. A type 1 system has its loop gain with a pole located at the origin, or

equivalently, its sensitivity function having a zero at the origin.

The system G1 is Hurwitz, minimum phase, and a type 0 system. Its pole-zero map is

shown in figure 32, and shows that a zero is located at −0.1, which is the zero in the phase-

lead compensation filter to approximate the laser’s velocity. The zero is troublesome because

its location cannot be changed with linear integral control, and its bandwidth provides an

upper limit on the bandwidth of the closed-loop system.

The controller must have one pole at the origin for the loop-gain to be type 1. The

controller chosen is

K(s) = −ωk
s
, with ωk < ωt, (5.67)

with ωk being the control gain. The loop gain, sensitivity function, and the complimentary

sensitivity function are shown in figure 33. Figure 33 shows that T = 1 for DC frequencies

and T ≈ 1 within the system bandwidth, and results in the broadband measurement noise

being directly fed through to the error.

Next, the bias of the closed-loop error is quantified by applying the final value theorem

to its expected value. The expected value of the closed-loop error is ē = E[e]. Taking the

expected value of equation 5.65 and applying the final value theorem yields.

ēss = lim
t→∞

E[e(t)] = lim
s→0

sE[e(s)] = lim
s→0

(
sS(s)

E[r]

s
− sS(s)G2(s)

E[dd]

s

)
= 0. (5.68)

Integral control ensuring perfect disturbance rejection and zero tracking error for step inputs

or DC frequencies. The perfect disturbance rejection is an apparent problem with integral

control because our proxy for the measurement of dd is now forced to zero.

A second advantage with integral control is disturbance estimation, in this case, an

estimate the disturbance extension (force). Disturbance estimation is possible by analyzing
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Figure 32: A schematic of the pole-map for the plant G1(s).
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110



the control, in particular the filtered control (v=Hu), where H is a phase-lead compensation

filter,

H(s) =
ωph
ωzh

(
s+ ωzh
s+ ωph

)
with ωzh < ωph , (5.69)

where ωzh describes the bandwidth of the closed-loop system with integral control and ωph

describes the bandwidth of the closed-loop system with the LQG design.

The closed-loop filtered control is described by

v = Hu = HKSr −HKSG2(dd + d̃m)−HKSG3d̃−HKSñ, (5.70)

as shown in the block diagram in figure 31. The filtered control and not the control is used

for disturbance estimation to address the estimation bandwidth associated with the control.

The control has a bandwidth that is equal to ωzh < 0.1 Hz. One consequence of having

inadequate bandwidth is missed molecular characteristics. The inadequate bandwidth is

addressed by feeding the control through the filter H to improve the estimation bandwidth.

For disturbance estimation, we are interested in the expected value of the steady-state

filtered control v̄ = E[v]. Taking the expected value of equation 5.70 ,

v̄ = HKSr −HKSG2dd, (5.71)

then applying the final value theorem yields

v̄ss = lim
s→0

sE[v(s)] = H(0)K(0)S(0)E[r]−H(0)K(0)S(0)G2(0)E[dd]. (5.72)

The steady-state filtered control depends on the reference signal and the disturbance exten-

sion. This fact is used to obtain an unbiased estimate of the disturbance extension,

E[d̂d] =
1

H(0)K(0)S(0)G2(0)
(H(0)K(0)S(0)E[r]− v̄ss) , (5.73)

then the unbiased estimate of the force disturbance is

E[f̂d] = kmE[d̂d] =
km

H(0)K(0)S(0)G2(0)
(H(0)K(0)S(0)E[r]− v̄ss) . (5.74)
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The estimated force disturbance fluctuates at steady-state due to the Brownian noise,

the molecular noise, and the measurement noise. These fluctuations are characterized by its

variance, which is related to the variance of the filtered control by equation 5.71 to yield

Var
(
f̂d

)
=

(
km

H(0)K(0)S(0)G2(0)

)2

Var(v). (5.75)

The variance of the filtered control is found by taking its inverse Fourier transform of its

PSD in equation 5.70 to yield

Var(v) =
1

2π

∫ ∞
−∞
|H(jω)K(jω)S(jω)G2(jω)|2 Smdω

+
1

2π

∫ ∞
−∞
|H(jω)K(jω)S(jω)G3(jω)|2 Smdω

+
1

2π

∫ ∞
−∞
|H(jω)K(jω)S(jω)|2 Sndω.

(5.76)

The SNR for the estimated force disturbance is

SNR =
1√

Var
(
f̂d

)E[f̂d]. (5.77)

The statistical characteristics of the estimated force disturbance can be numerically solved.

Next, the statistical characteristics of the estimated force disturbance obtained with linear

integral control is compared with the statistical characteristics obtained with the LQG design.
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Table 5: A comparison of the statistical characteristics of the estimated force disturbance

obtained with the LQG design and the linear integral controller. The operating condition is

kt =0.1 pN/nmnd κ =0.6384 The molecule is stretched until its force reaches 6 pN

Controller Estimation bandwidth (Hz) E[f̂d] (pN) Var(f̂d) (pN2) SNR (dB)

LQG 11.21 6 0.09795 25.63

Integral 11.21 6 0.09772 25.66

5.6.1 Comparison of the Linear Controllers

The statistical characteristics of the estimated force disturbances obtained using the linear

I control and the LQG design are compared. The comparison is performed at one operating

condition (a pair of kt and κ). The molecule is initially at zero extension, then the molecule

is stretched until its force reaches 6 pN. The integral control gain ωk is tuned until the

statistical characteristics of the estimated force disturbance are equal to that obtained with

the LQG design, as shown in table 5. Then, it is straighforward to see that for each operating

condition, the integral control gain can be tuned such that the statistical characteristics of

the estimated force disturbance are equal to that obtained with the LQG design. The

statistical characteristics being equivalent for both feedback methods is crucial because the

statistical characteristics obtained using a controller in practice can be compared to the

statistical characteristics obtained using the nonlinear feedback methods. The comparison

is then performed with the LQG design because the LQG design has a similar architecture

of the proposed nonlinear feedback designs to address the estimation and controls.
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6.0 NONLINEAR DESIGNS

Linear controllers yield satisfactory closed-loop performance when the optical forces are

small. The limited operating range presents a challenge when the optical trap needs to

produce higher optical forces. Higher optical forces are necessary when studying, for example,

the stall force of viral packaging motors, DNA hysteresis, and RNA backstepping [8, 9, 43].

The higher optical forces can be produced within the entire operating range by considering

the system nonlinearities in the control design. The advantage is lower laser power can be

used, which can reduce the photodamage; the disadvantage is the bead deflection becomes

large, which causes stability issues due to the decreasing optical stiffness and difficulties in

estimating the molecule force. These issues are addressed with nonlinear feedback methods.

This chapter discusses the design and performance of the nominal nonlinear design to

address the estimation and control problem, and the nonlinear PI design. The nominal design

is a combination of a Luenberger observer with input-output feedback linearization and LQ

structure. The estimation problem is addressed with a Luenberger state observer to provide

a recursive state estimate. The state estimate is then used in the input-output feedback

linearization with LQ structure to find the optimal state feedback that drives the tracking

error to zero. In order to assess the effectiveness of this control approach on the quality of

the measurements, statistical analyses are made on the resulting open-loop and closed-loop

systems to quantify the effects of the nominal controller on the system bandwidth and the

state statistical properties. These statistical quantities affect the quality of the nominal

molecule force estimate, and these effects are studied by deriving a theoretical expression for

its SNR.

114



6.1 NONLINEAR KALMAN FILTER

The estimation problem is addressed with a Kalman filter that uses the optical trap system,

equation 4.37, in a state observer architecture to find the state-dependent observer gains.

The problem of finding the state-dependent observer gain is turned into a problem of finding

a state transformation to ensure that the expected value of the transformed estimation error

exhibit linear dynamic behavior and to minimize the mean-squared estimation error. The

state-dependent observer gains can be found when the optical trap system is subjected to

process noise and measurement noise. These noise sources are Gaussian white noise and

have the same statistical properties given in section 5.2.

The Kalman filter provides the conditional expectation of the state x based on the past

and current measurements,

x̂(t) = E [x(t)|y(τ)] , τ ∈ [0, t], (6.1)

and minimizes the mean-squared estimation error. The state estimate dynamics can be

described by

˙̂x = f(x̂) +Buu+G(x̂) [m(h(x) + ñ)−m(h(x̂))] (6.2)

where G(x̂) is a state-dependent observer gain, and m : R → Rn with m(0) = 0 is a pseudo-

measurement to be chosen later. A pseudo-measurement m(h(x)) is used to expand the

operating range of linear dynamics behavior for the transformed estimation error [110]. The

correction term G(x̂) [m(h(x) + ñ)−m(h(x̂))] drives the state estimate dynamics because as

new measurements arrive, the pseudo-measurement error m(h(x) + ñ)−m(h(x̂)) is weighted

by G(x̂).

The problem of finding G and m is turned into a problem of finding a state transformation

p(x). The state transformation is chosen to satisfy [111, 110]

∂p(x)

∂x
f(x) = Axp(x) +m(h(x)), p(0) = 0, (6.3)

where Ax is a Hurwitz matrix chosen such that the pair (Ax,
∂h(0)
∂x

) is observable and the pair

(Ax,
∂m(0)
∂x

) is controllable.
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For this research, there is a convenient choice for the state transformation,

p(x) = x, (6.4)

and this choice is possible because the system dynamics is affine in the system nonlinearity,

which depends on the measured state. The identity transformation p(x) = x is chosen to

cancel the effects of the control input on the state estimation error dynamics as shown in

the following analysis. The state estimation error dynamics is obtained by first expressing

the dynamics for the optical trap system (same as equation 4.37)

ẋ = f(x) +Buu+Bww̃,

and the state estimate in equation 6.2 in the transformed state. In the transformed state,

the optical trap system is described by

ṗ(x) =
∂p(x)

∂x
ẋ =

∂p(x)

∂x

(
f(x) +Buu+Bww̃

)
, (6.5a)

= Axp(x) +m(h(x)) +
∂p(x)

∂x

(
Buu+Bww̃

)
. (6.5b)

and the state estimate is described by

ṗ(x̂) =
∂p(x̂)

∂x̂
˙̂x =

∂p(x̂)

∂x̂

(
f(x̂) +Buu+G(x̂) [m(h(x) + ñ)−m(h(x̂))]

)
, (6.6a)

= Axp(x̂) +m(h(x̂)) +
∂p(x̂)

∂x̂

(
Buu+G(x̂) [m(h(x) + ñ)−m(h(x̂))]

)
. (6.6b)

On the transformed state, the state estimation error is

x̆ = p(x)− p(x̂), (6.7)

and its dynamics is described by

˙̆x = Axx̆+
∂p(x)

∂x
Bww̃ +

(
∂p(x)

∂x
− ∂p(x̂)

∂x̂

)
Buu

+m(h(x))−m(h(x̂))− ∂p(x̂)

∂x̂
G(x̂)

(
m(h(x) + ñ)−m(h(x̂))

)
.

(6.8)
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Next, we show the control input u has zero effect on x̆ by studying the expected value of

the transformed state estimation error ¯̆x = E[x̆]. Taking the expected value of equation 6.8

yields

d

dt
¯̆x = Ax ¯̆x+

(
∂p(x)

∂x
− ∂p(x̂)

∂x̂

)
Buu

+m(h(x))−m(h(x̂))− ∂p(x̂)

∂x̂
G(x̂)

(
m(h(x))−m(h(x̂))

)
.

(6.9)

Choosing G(x̂) to be

G(x̂) =
[
∂p(x̂)
∂x̂

]−1

, (6.10)

and substituting it into equation 6.9 yields

d

dt
¯̆x = Ax ¯̆x+

(
∂p(x)

∂x
− ∂p(x̂)

∂x̂

)
Buu. (6.11)

The control input effects the dynamics of ¯̆x through the difference of the tangent manifolds,

∂p(x)
∂x
− ∂p(x̂)

∂x̂
. These effects are neglected when using the identity transformation p(x) = x

and ∂p
∂x

= I. Substituting the identity transformation p(x) = x into equation 6.11,

d

dt
¯̆x = Ax ¯̆x, (6.12)

yields ¯̆x exhibiting linear dynamic behavior, and is guaranteed to exponentially converge to

zero if all λ(Ax) < 0.

The next step is to choose the matrix Ax and the pseudo-measurement m that satifies

equation 6.3, ensures Ax is Hurwitz, and minimizes the mean-squared state estimation error.

First, let us simplify equation 6.3 by substituting in the identity transformation p(x) = x to

yield

f(x) = Axx+m(h(x)). (6.13)

The matrix Ax and the pseudo-measurement m are chosen by solving equation 6.13 with a

Taylor series approach and equating the coefficients at each degree. The system dynamics f

and the pseudo-measurement m are expressed in a Taylor series about x = 0,

f(x) = Ax+ f 2(x) + f 3(x) + . . . (6.14a)

m(x) = JCx+m2(h(x)) +m3(h(x)) + . . . (6.14b)

where fd(x) describes the dth degree term in the Taylor series. Substituting equation 6.14

into equation 6.13 yields the following conditions:
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1. For degree d = 1:

Ax = A− JC, (6.15)

where C is the linearized output matrix for the optical trap system given in section 5.1

and J ∈ R6 is defined later.

2. For degree d ≥ 2:

md(x) = fd(x). (6.16)

The higher order terms of the pseudo-measurements can be equated to the higher order terms

of the system dynamics because the system dynamics is affine in the system nonlinearity

that depends on the measured state. The higher order terms of the pseudo-measurements

are considered to expand the operating range where the state estimation error exhibits linear

dynamic behavior. The linear constraint in equation 6.15 exists and unique when the matrix

Ax satisfies a nonresonant condition. The nonresonant condition is now given.

Definition 3 (Nonresonant Condition). Given the eigenvalues of F ∈ Rn×n, λ(F ) =

(λ1, . . . , λn), and a nonnegative vector c = (c1, . . . , cn) whose elements are all not zero,

then a complex number µ is nonresonant with λ(F ) if

µ 6=
n∑
i=1

ciλi. (6.17)

The nonresonant condition requires λ(F ) (where F is defined in definition 3) does not

contain zero in its convex hull. The vector c is nonnegative to ensure the real part of µ has

the same sign as λ(F ). Now, definition 3 is applied to equation 6.15. Equation 6.15 has a

solution that exists and is unique when the matrix Ax is chosen such that each element of

λ(Ax) is nonresonant with λ(A).

Next, the term J is chosen to have Ax satisfy the nonresonant condition, ensure the

pair (A, JC) is controllable, and minimize the mean-squared estimation error. It is easy

to choose J to satisfy the nonresonant and controllability conditions; however, choosing J

to minimize the mean-squared state estimation error also requires the consideration of the

state estimation error dynamics in equation 6.8. The state estimation error dynamics are
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simplified by substituting the state transformation p(x) = x, the matrix Ax = A− JC, and

G(x) into equation 6.8 yields

d

dt
x̆ = (A− JC)x̆+Bww̃ +m(h(x))−m(h(x) + ñ). (6.18)

The state estimation error dynamics are driven by the process noise w̃ and the measurement

noise through the pseudo-measurement error m(h(x)) −m(h(x) + ñ). In this research, we

are interested in minimizing the mean-squared estimation error locally about the expected

value of the bead deflection (the measurement). The local effects of the measurement noise

are determined by expanding the pseudo-measurement error m(h(x))−m(h(x)+ ñ) in a first

order Taylor series about y = h(x) to yield

m(h(x))−m(h(x) + ñ) ≈ −∂m
∂y

(y)ñ. (6.19)

The localized state estimation error dynamics are obtained by substituting equation 6.19

into equation 6.18 to yield

d

dt
x̆ = (A− JC)x̆+Bww̃ −

∂m

∂y
(y)ñ, (6.20)

which has the same structure as the estimation error dynamics given in section 5.2. Equation

6.20 is considered the estimation error dynamics for the following linear system

ẋ = Ax+Bww̃, (6.21a)

y = Cx+
∂m

∂y
(y)ñ. (6.21b)

The term J is an observer gain. The system in equation 6.21 is placed in a Kalman filter

structure to find J that minimizes the mean-squared estimation error. The Kalman filter

analysis is the same as given in section 5.2.
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The final expressions for the matrix Ax and the pseudo-measurement m are

Ax =



−ωt − j1gs −κωt −gv(ωzv − ωpv) −gvgaωz −gvga 0

−ωt − j2gs −κωt − ωm 0 0 0 ωm

−j3gs 0 −ωpv gaωz ga 0

−j4gs 0 0 0 1 0

−j5gs 0 0 −ωp1ωp2 −ωp1 − ωp2 0

−j6gs 0 0 0 0 −ωd


(6.22)

m(y) =



j1y + ωt
gs
y − ωt

gs
y exp

(
− y2

2g2s l
2
t

)
j2y + ωt

gs
y − ωt

gs
y exp

(
− y2

2g2s l
2
t

)
j3y

j4y

j5y

j6y


(6.23)

The Kalman filter provides a state estimate. It is insightful to assess the effectiveness

that the Kalman filter has on the quality of the state estimate by quantifying the estimation

bandwidth, estimation bias, and estimation variance. These statistical quantities are used

to obtain information about the molecule characteristics. The molecule characteristics are

determined by using the statistical properties of the state estimate to derive an expression

for the SNR of the nominal molecular force.

6.2 STATISTICAL ANALYSIS ON NONLINEAR KALMAN FILTER

The effectiveness of the Kalman filter is assessed by quantifying the estimation bias, the

estimation bandwidth, and the estimation variance. These statistical properties are then

used to derive the an expression for the SNR of the nominal molecular force estimate.

These statistical properties depend on the operating conditions of the optical trap system.

The operating conditions change when there is a change in the laser power or the molecule’s

end-to-end extension. The laser power is related to the optical stiffness kt, which affects ωt =
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kt/γ and the linear operating range. An increase/decrease in the laser power results in an

increase/decrease in the optical stiffness and the linear operating range. The molecule’s end-

to-end extension is related to the molecule’s stiffness; an increase/decrease to the molecule’s

end-to-end distance results in an increase/decrease in the molecule’s stiffness km. Thus,

for each pair of kt and km (or κ = km/kt, the dimensionless stiffness), a Kalman filter is

designed. Let us quantify the statistical properties for the different operating conditions

using numerical methods.

Estimation bias The accuracy of the Kalman filter is quantified by studying the esti-

mation bias at steady-state. The steady-state response of equation 6.12 converges to zero

(no bias) if all the eigenvalues of Ax have negative real parts (or stable). All the eigenvalues

of Ax = A− JC are stable as discussed in section 5.2.

Estimation bandwidth The estimation bandwidth provides how fast the Kalman filter

produces the state estimate. It can be characterized by the slowest eigenvalue of the esti-

mation error dynamics. The estimation bandwidth is shown in figure 34. The bandwidth

increases with increasing κ and is independent of the value of kt.

Estimation Variance The open-loop composite system (the combination of the optical

trap system and the nonlinear Kalman filter) fluctuates at steady-state due to process noise

(Brownian noise and molecule noise), and the measurement noise. Recall that the optical

trap (same as in equation 4.37 but with no control) is

ẋ = f(x) +Bww̃,

and the nonlinear Kalman filter (same as in equation 6.2 but with no control) is

˙̂x = f(x̂) +Buu+G(x̂)[m(h(x) + ñ−m(h(x̂))].

The system fluctuations are simplified by using the fact that the noise inputs only drive

the states describing the bead and the molecule; then assumption 3 is used to imply that

measurement noise only affects the state estimates describing the bead and the molecule. In

this research, the fluctuations are characterized by performing a linear noise analysis about

the expected value at steady-state. The fluctuations are determined by first describing the
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Figure 34: A schematic of the estimation bandwidth obtained using the nonlinear Kalman

filter. The bandwidth increases with increasing κ and is independent of the value of kt.

122



composite system and its expected value. The dynamics for the composite system xc are

described by

ẋo = fo(xo, w̃o), with xo = [z, dm, ẑ, d̂m, d̂d]
T , and w̃o = [d̃, d̃m, ñ]T , (6.24)

and its expected value x̄o = E[xo] has dynamics of

˙̄xo = fo(x̄o, 0). (6.25)

The system fluctuations are described by the noise x̃o = xo − x̄o and its dynamics are

˙̃xo = fo(x̃o + x̄o, w̃o)− fo(x̄o, 0). (6.26)

The linear noise analysis requires the linearization of equation 6.26. The linearization is

performed by expressed the term fo(x̃o+ x̄o, w̃) in a first-order Taylor series in two variables,

fo(x̃o + x̄o, w̃o) ≈ fo(x̄o, 0) +
∂f(x, y)

∂x

∣∣∣∣
x=x̄o,y=0

x̃o +
∂f(x, y)

∂y

∣∣∣∣
x=x̄o,y=0

w̃o (6.27a)

= fo(x̄o, 0) + Aox̃o +Bow̃o (6.27b)

with the matrices Ao and Bo being

Ao =
∂f(x, y)

∂x

∣∣∣∣
x=x̄o,y=0

and Bo =
∂f(x, y)

∂y

∣∣∣∣
x=x̄o,y=0

. (6.28)

Substituting equation 6.27 into equation 6.26 yields

˙̃xo = Aox̃o +Bow̃o, (6.29)
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where

Ao =



−ω̄t −κωt 0 0 0

−ω̄t −κωt − ωm 0 0 0

j1gs + ωt − ω̄t 0 −ωt − j1gs −κωt 0

j2gs + ωt − ω̄t 0 −ωt − j2gs −κωt − ωm ωm

j6gs 0 −j6gs 0 −ωd


(6.30a)

Bo =



ωt 0 0

ωt ωm 0

0 0 j1 + 1
gs
ωt − 1

gs
ω̄t

0 0 j2 + 1
gs
ωt − 1

gs
ω̄t

0 0 j6


, (6.30b)

and ω̄t = ωt

(
1− z̄2

l2t

)
exp

(
− z̄2

l2o

)
. The matrices Ao and Bo are features worth mentioning that

are the result of the state observer. In the matrix Ao, the dynamics describing the fluctuations

of the bead deflection and the molecule extension are affected by the bead deflection through

ω̄t. The value of ω̄t decreases as the bead deflection increases (the molecule is extended).

The dynamics describing the fluctuations of the estimated bead deflection and the estimated

molecule extension are affected by the estimated bead deflection through ωt not w̄t such

that ωt = ω̄t when z = 0 and ωt > ω̄t when z > 0 . Thus, as the bead deflection increases

(the molecule is extended), the dynamics describing the fluctuations of the bead deflection

and the molecule extension experience less effect of the bead deflection than that of their

estimated dynamics due to the estimated bead deflection. In the matrix Bo, the dynamics

for the fluctuations of the estimated bead deflection and the molecule extension are affected

by the sensor noise through j1 + 1
gs
ωt − 1

gs
ω̄t and j2 + 1

gs
ωt − 1

gs
ω̄t respectively. The term

1
gs
ωt − 1

gs
ω̄t increases with increasing bead deflection (molecule is extended), as shown in

figure 35, and results in the estimated states experiencing a greater effect from the sensor

noise. These features are inherent to the state observer because its correction term depends

on the difference of nonlinear pseudo measurements to yield linear observer error dynamics.
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Figure 35: A schematic of the sensor gain optical bandwidth difference 1
gs

(ωt − ω̄t). The

optical bandwidth difference is the additional effect the sensor noise has on the estimated

bead deflection and the estimated molecule extension as the bead deflection increases. The

difference is the result of the nonlinear state observer because nonlinear pseudo measurements

are used to yield linear observer error dynamics.
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The state variances are characterized by the steady-state state covariance matrix Xo =

E
[
x̃ox̃

T
o

]
, which is the solution to the Lyapunov equation

AoXo +XoA
T
o +BoSoB

T
o = 0 where So =


Sd 0 0

0 Sm 0

0 0 Sn

 . (6.31)

The variance for the bead deflection and its estimate are shown in figure 36; the variance of

the molecule extension and its estimate are shown in figure 38. For a given kt, increasing

κ (a stiffer molecule), the variance of the state decreases, while the variance for the state

estimate increases. The variance decreases for the state because the molecule becomes stiffer

as its extended and is able to suppress the fluctuations. The variance increases for the state

estimate because the state estimate experiences a greater effect from the sensor noise as κ

increases, and this effect is a feature of the state observer. The increase effect of the sensor

noise on the state estimates in a feature of the state observer because a nonlinear pseudo

measurements are used in the correction term to yield linear observer error dynamics. For

a given κ, increasing kt results in the variance decreases for the molecule extension and the

estimated molecule extension. A stiffer optical trap has a larger linear operating range and

able to help suppress the fluctuations. The variance of the estimated disturbance is shown

in figure 24. For a given kt, the variance of the estimated disturbance decreases as κ is

increased (the molecule is extended), and the variance is independent of the value of kt.

These statistical quantities effect the quality of the estimated force disturbance and their

effect is quantified by studying its SNR.

SNR For Molecule Force Estimate The statistical quantities of the estimated force

disturbance are proportional to that of the disturbance estimate because f̂d = kmd̂d. At

steady-state, the expected value for the estimated force disturbance is

E[f̂d] = kmE[d̂d]. (6.32)

The variance of the estimated force disturbance is described by

Var
(
f̂d

)
= k2

m Var
(
d̂m

)
. (6.33)
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Figure 36: A schematic for the variance of the bead deflection and its estimate obtained using

a nonlinear Kalman filter. For a given kt, increasing κ (a stiffer molecule), the variance of

the bead deflection decreases, while the variance for the estimated bead deflection increases.

The variance decreases for the bead deflection because the molecule becomes stiffer as it is

extended and able to suppress the fluctuations. The variance increases for the estimated

bead deflection because the estimated bead deflection experiences a greater effect from the

sensor noise as κ increases, and this effect is a feature of the state observer. For a given

κ, increasing kt results in the variance decreases for the bead deflection and the estimated

bead deflection. A stiffer optical trap has a larger linear operating range and is able to help

suppress the fluctuations.
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Figure 37: A schematic for the variance of the molecule extension and its estimate obtained

using a nonlinear Kalman filter. For a given kt, increasing κ (a stiffer molecule), the variance

of the molecule extension decreases, while the variance for the estimated molecule extension

increases. The variance decreases for the molecule extension because the molecule becomes

stiffer as it is extended and is able to suppress the fluctuations. The variance increases for

the estimated molecule extension because the estimated molecule extension experiences a

greater effect from the sensor noise as κ increases, and this effect is a feature of the state

observer. For a given κ, increasing kt results in the variance decreases for the molecule

extension and the estimated molecule extension. A stiffer optical trap has a larger linear

operating range and is able to help suppress the fluctuations.
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Figure 38: A schematic for the variance of the estimated disturbance obtained using a

nonlinear Kalman filter. For a given kt, the variance of the estimated disturbance decreases

as κ is increased (the molecule is extended), and the variance is independent of the value of

kt.
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The SNR for the estimated force disturbance is

SNR =
1√

Var
(
f̂d

)E[f̂d]. (6.34)

Its value is numerically evaluated for each operating condition (each pair of kt and κ), as

shown in figure 39. For a given kt, increasing κ results in a decrease in the SNR; for a given

κ, increasing kt results in the SNR decreasing.

A second advantage to using a Luenberger observer is that the state estimate is used in

a control structure to study the molecule characteristics. The state estimate is used in the

control because the state estimate contains less noise and disturbance rejection is achieved.

6.3 CONTROL STRUCTURE

The molecule is studied by having the expected value of the bead deflection track a reference

signal. The tracking control problem is turned into a regulation control problem with the

new control objective being to design the control to drive the expected value of the tracking

error to zero. Recall that the expected value of the tracking error ξ̆ as defined in equation

4.62 is

ξ̆(x) = ξr − ξ(x) =

 r − h(x)

ṙ − Lfh(x)

 ,
where r is the reference signal. The tracking error is driven to zero by a combination of an

input-output feedback linearization with an LQ structure, as shown in the block diagram

in figure 40. The control structure has two feedback loops: the linearization loop (loop 1)

and the tracking loop (loop 2). The linearization loop transforms the optical trap system

into normal form such that the input-output map is linearized via state feedback. The

tracking loop uses the linearized input-output map in an LQ control algorithm to find the

state feedback that drives the tracking error to zero.
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Figure 39: A schematic for the SNR of the estimated force disturbance obtained using the

nonlinear Kalman filter. For a given kt, increasing κ results in a decrease in the SNR; for a

given κ, increasing kt results in the SNR decreasing.

131



Figure 40: The schematic of the block diagram for the closed-loop system. The block diagram

has two feedback loops. The linearization loop (loop 1) transforms the optical trap system

into normal form such that the input-output map can be linearized using state feedback.

The tracking loop (loop 2) uses the linearized input-output map in an LQ optimal algorithm

to find the state feedback to drive the tracking error to zero.
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The linearization feedback loop transforms the optical trap system with the tracking

error as its output into normal form (according to the procedure given in section 4.5.1),

d

dt
ξ̆ = Aξ ξ̆(x) +Bξ

[
r̈ − L2

fh(x)− LBuLfh(x)u
]
, (6.35a)

ψ̇ = δ(ξr − ξ̆(x), ψ). (6.35b)

The normal form describes the input-output map between the control input u and the track-

ing error ξ̆. Choosing the state feedback to be

u(x̂) = − 1

LBuLfh(x)

[
L2
fh(x̂)− r̈ + v

]
, (6.36)

with v being the auxiliary control input, linearizes the input-output map,

d

dt
ξ̆ = Aξ ξ̆(x) +Bξv −Bξ

(
L2
fh(x)− L2

fh(x̂)

)
. (6.37)

Equation 6.37 describes the nominal linearized input-output map d
dt
ξ̆ = Aξ ξ̆(x) +Bξv being

driven by the perturbation −Bξ(L
2
fh(x)−L2

fh(x̂)). The perturbation −Bξ(L
2
fh(x)−L2

fh(x̂))

results from the pseudo estimation error in the input-output feedback due to the state esti-

mation process.

The tracking loop uses the nominal linearized input-output map

d

dt
ξ̆ = Aξ ξ̆(x) +Bξv

in an LQ control algorithm to find the state feedback v(x̂) = −Kξ ξ̆(x̂) (where Kξ is the

state feedback matrix) that drives the tracking error to zero. The LQ control problem is a

minimization problem that is described by

minimize J =
1

2

∫ ∞
0

[
ξ̆(x)TQξ ξ̆(x) +Rξv

2
]
dT with Q =

q1 0

0 q2

 ,
subject to

d

dt
ξ̆ = Aξ ξ̆(x) +Bξv,

(6.38)

where Qξ = QT
ξ > 0 is a weighted matrix placed on the tracking error and R > 0 is the

weight placed on the auxiliary control [109]. The functional J is minimized to find the state
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feedback using the same method as discussed in section 5.4. Then, the algebraic Riccati

equation and the auxiliary control are

ATξ Pξ + PξAξ +Qξ − PξBξR
−1
ξ BT

ξ Pξ = 0, (6.39)

v(ξ̆(x)) = −R−1
ξ BT

ξ Pξ ξ̆(x) = −Kξ ξ̆(x), (6.40)

where Kξ = R−1
ξ BT

ξ Pξ = [k1 k2]T is the state feedback gain. The implementation of the

auxiliary control using the state estimate to yield

v(ξ̆(x̂)) = −R−1
ξ BT

ξ Pξ ξ̆(x) = −Kξ ξ̆(x̂), (6.41)

The dynamics for the closed-loop tracking error is obtained by substituting equation 6.41

into equation 6.37, and adding and subtracting the term Bξv(ξ̆(x)) to yield

d

dt
ξ̆ = Aξ ξ̆(x) +Bξ(ξ̆(x))−Bξ

(
v(ξ̆(x))− v(ξ̆(x̂))

)
−Bξ

(
L2
fh(x)− L2

fh(x̂)

)
,

=

(
Aξ −BξR

−1
ξ BT

ξ Pξ

)
ξ̆(x) +BξR

−1
ξ BT

ξ Pξ

(
ξ̆(x)− ξ̆(x̂)

)
−Bξ

(
L2
fh(x)− L2

fh(x̂)

)
.

(6.42)

Equation 6.42 describes the nominal closed-loop tracking error dynamics

d
dt
ξ̆ = (Aξ − BξR

−1
ξ BT

ξ Pξ)ξ̆(x) being driven by two perturbations. The first perturbation

−Bξ(L
2
fh(x)−L2

fh(x̂)) results from the pseudo estimation error in the input-output feedback

due to the state estimation process; the second perturbation BξR
−1
ξ BT

ξ Pξ(ξ̆(x)− ξ̆(x̂)) results

from the pseudo estimation error of the tracking error definition due to the state estimation

process.

It is insightful to assess the effectiveness the control has on the closed-loop system by

quantifying the state bias and state variance of the composite system.
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6.4 STATISTICAL ANALYSIS ON NONLINEAR CONTROL

The dynamics for the closed-loop composite sytem is composed of:

1. The closed-loop tracking error in equation 6.42,

d

dt
ξ̆ =

(
Aξ −BξR

−1
ξ BT

ξ Pξ

)
ξ̆(x) +BξR

−1
ξ BT

ξ Pξ

(
ξ̆(x)− ξ̆(x̂)

)
−Bξ

(
L2
fh(x)− L2

fh(x̂)

)
.

2. The internal states in equation 6.35,

ψ̇ = δ(ξr − ξ̆(x), ψ).

3. The closed-loop estimation error in equation 6.18,

d

dt
x̆ = (A− JC)x̆+Bww̃ +m(h(x))−m(h(x) + ñ).

Closed-loop bias A Lyapunov stability analysis is performed to quantify the bias of the

expected value of the closed-loop composite system. The expected value for the closed-loop

system is described by:

1. The expected value for the dynamics of the closed-loop tracking error is obtained by

taking the expected value of equation 6.42,

d

dt
ξ̆(x̄) =

(
Aξ −BξR

−1
ξ BT

ξ Pξ

)
ξ̆(x̄) +BξR

−1
ξ BT

ξ Pξ

(
ξ̆(x̄)− ξ̆(¯̂x)

)
−Bξ

(
L2
fh(x̄)− L2

fh(¯̂x)

)
.

(6.43)

2. The expected value for the dynamics of the internal states is obtained by taking the

expected value of equation 6.35,

d

dt
ψ̄ = δ(ξr − ξ̆(x̄), ψ̄). (6.44)

3. The expected value for the dynamics of the estimation error is obtained by taking the

expected value of equation 6.18,

d

dt
¯̆x = (A− JC)¯̆x. (6.45)
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The following assumptions are used:

Assumption 6. The tracking error is Lipschitz. The Lipschitz condition implies there exists

a positive constant l1 such that

∣∣∣∣∣∣ξ̆(x̄)− ξ̆(¯̂x
∣∣∣∣∣∣ ≤ l1

∣∣∣∣¯̆x∣∣∣∣ . (6.46)

Assumption 7. The Lie derivative is Lipschitz. The Lipschitz condition implies there exists

a positive constant l2 such that

∣∣∣∣L2
f (x̄)− L2

fh(¯̂x)
∣∣∣∣ ≤ l2

∣∣∣∣¯̆x∣∣∣∣ , (6.47)

Assumption 8. Assuming the matrix A − JC is Hurwitz and a matrix Qx is a positive

definite and symmetric, then there exists a positive and definite matrix Px satisfying the

Lyapunov equation

(A− JC)TPx + Px(A− JC) = −Qx. (6.48)

Theorem 3. Assume there are positive constants b3, b4, b5 and b6. When these constants

satisfy

b6 = min{b3 − b5, b3 − b5},

the closed-loop composite system yields exponential stability for the expected value of the

tracking error and the state estimation error. The exponential stability implies there is no

bias in either the tracking error or the state estimation error. The boundedness of the tracking

error and the reference signal vector implies the internal states are bounded by BIBO stability

according to theorem 1.

Proof. The proof is essentially the same as Theorem 2.

Control State Variance The closed-loop composite system (the combination of the

optical trap system, the nonlinear Kalman filter, and the controller) fluctuates at steady-

state due to process noise (Brownian noise and molecule noise), and the measurement noise.

Recall that the optical trap (same as in equation 4.37) is

ẋ = f(x) +Buu+Bww̃,
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the nonlinear Kalman filter (same as in equation 6.2) is

˙̂x = f(x̂) +Buu+G(x̂)[m(h(x) + ñ−m(h(x̂))],

and the controller (the combination of equation 6.36 and equation 6.41) is

u(x̂) = − 1

LBuLfh(x̂)

[
L2
fh(x̂) + k1h(x̂) + k2Lfh(x̂)− k1r − k2ṙ − r̈

]
.

The system fluctuations are simplified by using the fact that the noise inputs only drive

the states describing the bead and the molecule; then assumption 3 is used to imply that

measurement noise only affects the state estimates describing the bead and the molecule.

The control signal is considered by including the actuator state whose dynamics explicitly

depends on the control signal. In this research, the fluctuations are characterized by per-

forming a linear noise analysis about the expected value at steady-state. The fluctuations are

determined by first describing the composite system and its expected value. The dynamics

for the composite system xc are described by

ẋc = fc(xc, w̃c), with xc = [z, dm, a3, ẑ, d̂m, â3, d̂d]
T , and w̃c = [d̃, d̃m, ñ]T , (6.49)

and its expected value x̄c = E[xc] has dynamics of

˙̄xc = fc(x̄c, 0). (6.50)

The system fluctuations are described by the noise x̃c = xc − x̄c and its dynamics are

˙̃xc = fc(x̃c + x̄c, w̃c)− fc(x̄c, 0). (6.51)

The linear noise analysis requires the linearization of equation 6.51. The linearization is

performed by expressed the term fc(x̃c + x̄c, w̃) in a first-order Taylor series in two variables,

fc(x̃c + x̄c, w̃c) ≈ fc(x̄c, 0) +
∂f(x, y)

∂x

∣∣∣∣
x=x̄c,y=0

x̃c +
∂f(x, y)

∂y

∣∣∣∣
x=x̄c,y=0

w̃c (6.52a)

= fc(x̄c, 0) + Acx̃c +Bcw̃c (6.52b)
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with the matrices Ac and Bc being

Ac =
∂f(x, y)

∂x

∣∣∣∣
x=x̄c,y=0

and Bc =
∂f(x, y)

∂y

∣∣∣∣
x=x̄c,y=0

. (6.53)

Substituting equation 6.52 into equation 6.51 yields

˙̃xc = Acx̃c +Bcw̃c. (6.54)

The state variances are characterized by the steady-state state covariance matrix Xc =

E
[
x̃cx̃

T
c

]
, which is the solution to the Lyapunov equation

AcXc +XcA
T
c +BcScB

T
c = 0 where Sc =


Sd 0 0

0 Sm 0

0 0 Sn

 . (6.55)

The variance for the bead deflection and its estimate are shown in figure 41; the variance of

the molecule extension and its estimate are shown in figure 42. For a given kt, increasing

κ (a stiffer molecule), the variance of the state decreases, while the variance for the state

estimate increases. The variance decreases for the state because the molecule becomes stiffer

as its extended and is able to suppress the fluctuations. The variance increases for the state

estimate because the state estimate experiences a greater effect from the sensor noise as κ

increases, and this effect is a feature of the state observer. The increase effect of the sensor

noise on the state estimates in a feature of the state observer because a nonlinear pseudo

measurements are used in the correction term to yield linear observer error dynamics. For

a given κ, increasing kt results in the variance decreases for the molecule extension and the

estimated molecule extension. A stiffer optical trap has a larger linear operating range and

able to help suppress the fluctuations. The control reduces the variance of the estimated

state when compared to that of the open-loop case.

The nominal nonlinear controller yields satisfactory closed-loop performance and esti-

mates of the molecule characteristics. It is insightful to compare the statistical properties

of the nominal nonlinear control to the statistical properties of another nonlinear controller

used in practice. The nonlinear controller chosen is a nonlinear PI controller [49].
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Figure 41: A schematic for the variance of the bead deflection and its estimate obtained using

the closed-loop nominal nonlinear design. For a given kt, increasing κ (a stiffer molecule),

the variance of the bead deflection decreases, while the variance for the estimated bead

deflection increases. The variance decreases for the bead deflection because the molecule

becomes stiffer as its extended and able to suppress the fluctuations. The variance increases

for the estimated bead deflection because the estimated bead deflection experiences a greater

effect from the sensor noise as κ increases, and this effect is a feature of the state observer.

For a given κ, increasing kt results in the variance decreases for the bead deflection and the

estimated bead deflection. A stiffer optical trap has a larger linear operating range and able

to help suppress the fluctuations. The control reduces the variance of the estimated state

when compared to that of the open-loop case.
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Figure 42: A schematic for the variance of the molecule extension and its estimate ob-

tained using the closed-loop nominal nonlinear design. For a given kt, increasing κ (a stiffer

molecule), the variance of the molecule extension decreases, while the variance for the es-

timated molecule extension increases. The variance decreases for the molecule extension

because the molecule becomes stiffer as its extended and is able to suppress the fluctuations.

The variance increases for the estimated molecule extension because the estimated molecule

extension experiences a greater effect from the sensor noise as κ increases, and this effect is

a feature of the state observer. For a given κ, increasing kt results in the variance decreases

for the molecule extension and the estimated molecule extension. A stiffer optical trap has a

larger linear operating range and able to help suppress the fluctuations. The control reduces

the variance of the estimated state when compared to that of the open-loop case.
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6.5 NONLINEAR PI CONTROLLER

The nonlinear PI is designed for a simplified version of the optical trap system to be consistent

with the literature. The simplified dynamics ignores the actuator, sensor, and the molecule.

Then, the simplified optical trap system consists only of the bead deflection that is driven

by Brownian noise and a molecule force. The dynamics for the bead deflection are (the

dynamics are similar to the dynamics given in equation 4.6)

ż =
1

η
ft(z)− u− 1

η
fm +

1

η
f̃ (6.56)

where u is the trap’s velocity (control signal). The control objective is the manipulate the

trap’s velocity to have the bead deflection track a reference signal. The control design is

based on the architecture presented in [112]. The nonlinear PI controller has the following

criteria:

1. The controller is first order to limit controller complexity and to facilitate design. The

criteria is achieved by choosing two feedback gains and results in the closed-loop system

being second order.

2. The controller possess integral action. Integral action is necessary to drive the tracking

error to zero at steady-state.

3. The system dynamics in equation 6.56 are input-to-state feedback linearizable to yield

linear closed-loop dynamics. A linear closed-loop system is easier to quantify performance

metrics.

The control criteria is satisfied with the following controller,

d

dt
ẑ = k1(zr − z), (6.57a)

u = −k1(zr − z)− k2(ẑ − z) +
1

η
ft(z), (6.57b)

with the feedback gains being k1 and k2, and the reference signal being zr. Substituting the

controller in equation 6.57 into equation 6.56 yields the closed-loop dynamics

d

dt

z
ẑ

 =

−(k1 + k2) k2

−k1 0

z
ẑ

+

k1

k1

 zr −
 1
η

0

 fm +

 1
η

0

 f̃ (6.58)
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The closed-loop system has second-order linear dynamics that is characterized by the char-

acteristic equation

s2 + (k1 + k2)s+ k1k2 = 0, (6.59)

and the eigenvalues are λ1,2 = {−k1,−k2}. Thus, the closed-loop system is characterized by

the two time constants, τ1 = 1
k1

and τ2 = 1
k2

.

The closed-loop behavior of ẑ is studied when the exogenous forces are zero, fm = f̃ = 0,

and defining the estimation error z − ẑ. The dynamics for the estimation error is

d

dt
(z − ẑ) = −k2 (z − ẑ) , (6.60)

which implies that ẑ approaches z with time constant τ2. The control law has ẑ track z so

that the closed-loop dynamics are linear and first order. For t � τ2, ẑ ≈ z, the closed-loop

dynamics for the bead deflection is

d

dt
z = k1(zr − z) for t� τ2, (6.61)

which has z track zr with the time constant τ1. Notice that equation 6.61 has the same

dynamics as ẑ that is given in equation 6.57. Comparing the dynamics in equation 6.61

and equation 6.57, shows that once the estimator ẑ reaches steady-state, ẑ represents a

precalculated estimate of z in closed-loop.

Next, the dynamics for the closed-loop system is studied when considering fm and f̃ .

For sufficiently long time t� τ2, the expected value of the steady-state response is

E[z] = zr, (6.62)

E[ẑ] = zr +
1

ηk2

E[fm]. (6.63)

The controller has z track zr, and z experiences no effect from the molecule force. Disturbance

rejection is one of the advantages to using integral control. In addition, we see that E[ẑ]

depends on E[fm], then this map allows use to use ẑ to estimate the molecule force

f̂m = ηk2(ẑ − zr). (6.64)
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The results in equation 6.63 shows that

E[f̂m] = ηk2 (E[ẑ]− zr) = E[fm], (6.65)

which makes this an unbiased estimate of the molecule force.

The force estimate f̂m fluctuates about its expected value due to Brownian noise acting

on the system. These fluctuations are characterized by its variance

Var
(
f̂m

)
= (ηk2)2 Var (ẑ) . (6.66)

The variance Var (ẑ) is found by performing a linear noise analysis on the linear closed-loop

dynamics when zr = 0 and fm = 0, so that the closed-loop system is only driven by Brownian

noise. The Brownian noise is modeled by zero mean Gaussian white noise with a spectral

density of Sf = 2γkBT . The state variances of the closed-loop system are characterized by

the steady-state covariance matrix X, which is the solution to the Lyapunov equation

AX +XAT +BBTSf = 0, (6.67)

where

A =

−(k1 + k2) k2

−k1 0

 , B =

− 1
η

0

 , X =

 Var(z) Cov(z, ẑ)

Cov(z, ẑ) Var(ẑ)

 . (6.68)

The state variances are

Var(z) =
1

k1 + k2

(
kBT

η

)
, Var(ẑ) =

k1

k2(k1 + k2)

(
kBT

η

)
, Cov(z, ẑ) = 0. (6.69)

Then, the variance for the force estimate is

Var (fm) = (ηk2)2 Var (ẑ) =
k1k2

k1 + k2

ηkBT ≈ k1ηkBT, (6.70)

with the approximation being valid for k1 � k2. When the approximation holds, the variance

Var (fest) is proportional to k1. The effect of decreasing k1 to decrease the variance has

a similar effect of applying a low-pass filter and reducing its bandwidth. However, the

advantage to using feedback control is the additional ability of controlling the bead deflection

to track a reference signal. Since bead deflections are related to optical forces, we have

precise control over the forces applied to single-molecules. Note that the variance is constant
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throughout the operating range of the optical trap. The constant variance is from the system

dynamics being input-to-state feedback linearizable with state feedback to yield linear closed-

loop dynamics.

The SNR for the force estimate is

SNR =
1√

Var
(
f̂m

)E[f̂m] =
E[f̂m]√
ηkBT

(
1

k1

+
1

k2

)1/2

≈ E[f̂m]√
k1ηkBT

. (6.71)

When ensuring k1 � k2, the SNR is proportional to k
−1/2
1 and E[f̂m]. A decrease in k1

results in an increase of the SNR and a decrease in the time constant τ1. The SNR increases

as E[f̂m] increases (equivalent to the molecule being further stretched).
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7.0 ADAPTIVE NONLINEAR DESIGN

Model based feedback methods yield satisfactory closed-loop performance for the estimation

and control problem when the feedback methods are based on exact model knowledge. Exact

model knowledge is a bad assumption because of parameter uncertainty. In optical trap stud-

ies, parameter uncertainty occurs due to the medium’s viscosity changing per experiment.

The viscosity affects other parameters because many calibration methods use Stokes drag as

a reference force [28]. Parameter uncertainty introduces robustness effects into the estima-

tion and control problems when using feedback methods based on exact model knowledge.

In addition, the operating condition changes per experiment because the laser power can

be changed and the molecule becomes stiffer as it is stretched. A consequence is that users

are spending an enormous amount of time during instrument calibration and control design,

causing the users to divert their time away from the biophysics. As a result, there is a need

and interest to create an automated optical trap that can perform parameter identification

and control the bead deflection. The need is addressed by using adaptive feedback methods

to solve the estimation and control problems. The estimation problem is addressed with an

adaptive Luenberger type state observer to simultaneously provide a state and parameter

estimate when a persistent exciting condition is satisfied. The state and parameter estimates

are then used in an adaptive feedback linearization and LQ structure to find the optimal

state feedback gains for each experiment. The result is an automated self-tuning optical trap

that can probe molecules to obtain information about their characteristics.

This chapter discusses the system parameters that can change, the robustness effects

being quantified from implementing the nominal nonlinear controller on the perturbed esti-

mation and the control problems, and finally the design and analysis of the adaptive nonlinear

design.
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7.1 ROBUSTNESS CHARACTERISTICS OF NOMINAL DESIGN

Parameter uncertainty introduces robustness effects into the estimation and the control prob-

lems. The robustness effects are quantified by:

1. first determining the system parameters that can change,

2. expressing the optical trap system in terms of the parameter uncertainty to define the

perturbed optical trap system,

3. implementing the nominal nonlinear design on the perturbed optical trap system to

quantify its closed-loop performance.

In this research, the following parameters can change per experiment, the optical stiffness

and the dimensionless stiffness (the molecule stiffness). The optical stiffness changes ac-

cordingly to the laser power setting. An increase/decrease in the laser power results in an

increase/decrease in the laser power. The molecule becomes stiffer as it is stretched. Then,

for a given optical stiffness, the dimensionless stiffness increases as the molecule is stretched.

The optical trap system contains the product of these parameters; it is convenient to consider

the product as one parameter. The true parameter is θ = [ωt, κωt]
T , and is defined as

θ = θ̄ + θ̃, (7.1)

where θ̄ is the nominal parameter value and θ̃ is the parameter perturbation (noise) about

the nominal value.

The optical trap system is expressed in terms of the true parameter to form the perturbed

optical trap system. First, recall the expression for the optical trap system (same as given

in equation 4.37 but expressed explicitly in the nominal parameter)

ẋ = f(x, θ̄) +Buu+Bww̃.

Then, substituting the true parameter into the optical trap system yields the perturbed

optical trap system,

ẋ = f(x, θ̄) + f1(x)θ̃ +Buu+Bww. (7.2)
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The parameter perturbation is expressed in linear parametric form. The vector fields

f : R6×2 → R6 and f1 : R2 → R6 describes the nominal system dynamics and the regression

vector respectively.

Next, the robustness effects on the closed-loop perturbed optical trap system are quan-

tified by implementing the nominal nonlinear design on equation 7.2.

Estimation problem: The robustness effects are quantified by implementing the non-

linear Kalman filter as discussed in section 6.1. It is straightforward to show that the

expected value for the estimation error dynamics is

d

dt
E[x̆] = AxE[x̆] + f1(x̄)θ̃, (7.3)

which results in a steady-state estimation bias,

E[x̆] = −A−1
x f1(x̄)θ̃. (7.4)

The estimation bias has two effects: the first effect is the state estimate now contains in-

accurate information about the molecule characteristics; the second effect is the estimation

bias propagates through the closed-loop system because the state estimate is used in state

feedback.

Control problem: The robustness effects are quantified by implementing the input-

output feedback linearization and LQ structure as discussed in section 6.3. The analysis

assumes the state x is available (all states are measurable) to separate the robustness effects

due to the control implementation from the robustness effects due to the propagation of the

estimation bias.

First, the perturbed optical trap system with the tracking error as its output is trans-

formed into normal form (according to the procedure given in section 4.5.1)

˙̆
ξ = Aξ ξ̆ +Bξ

[
r̈ − L2

fh(x)− LBuLfh(x)u
]

−Bξ

[
Lf1θ̃Lfh(x) + LfLf1θ̃h(x) + L2

f1θ̃
h(x) + LBuLf1θ̃h(x)u

] (7.5)

Equation 7.5 describes the input-output map between the control input u and the tracking

error ξ̆. The input-output map has three terms on the right hand side. The first two
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terms represent the nominal input-output map (equivalent input-output map when using

the nominal parameters); the third term is the perturbation due to parameter uncertainty.

The input-output map in equation 7.5 is linearized with state feedback (same as given

in equation 6.36 but with actual states)

u(x) = − 1

LBuLfh(x)

[
L2
fh(x)− r̈ −Kξ ξ̆

]
to yield

˙̆
ξ = (Aξ −BξKξ)ξ̆ −Bξ

[
Lf1θ̃Lfh(x) + LfLf1θ̃h(x)

]
−Bt

[
L2
f1θ̃
h(x)−

LBuLf1θ̃h(x)

LBuLfh(x)

(
L2
fh(x)− r̈ −Kξ ξ̆

)]
.

(7.6)

The input-output map has three terms on the right side. The first term is the closed-loop

state matrix when using the nominal parameters; the last two terms are perturbations due

to parameter uncertainty. Parameter uncertainty in the control problem results in tracking

bias.

The robustness effects must be addressed to improve the closed-loop performance. In

this research, the robustness effects are addressed by using adaptive feedback methods to

solve the estimation and control problems. The estimation problem is addressed with an

adaptive Luenberger type state observer to simultaneously estimate the state and parameter

when a persistently exciting condition is satisfied. The control problem is addressed with

the state and parameter estimates being used the controller using the certainty equivalence

principle, and expressing the control gains in terms of the parameter estimate. This control

design approach creates an automated self-tuning optical trap.
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7.2 ADAPTIVE STATE OBSERVER

The estimation problem is addressed by using an adaptive state observer to simultaneously

estimate the state and parameter. Many methods exists to implement adaptive state ob-

servers for nonlinear systems. The first method uses a global transformation to express the

system into adaptive observable canonical form [113, 114], which is in linear parametric form

and the nonlinearities depend only on the measurements and the control inputs. The simul-

taneous estimation of the state and parameters were obtained by using an auxiliary state, a

time-varying linear combination of the state and the parameter, also known as a filter trans-

formation. The true state estimate/reconstruction requires a persistent excitation condition

be satisfied. The use of the auxiliary state has allowed for further contributions in adaptive

state observers. Adaptive state observer have been designed for MIMO systems when the

auxiliary state is the linear combination of the state estimation error and the parameter

estimation error [115]. The auxiliary state being a function of the estimation errors allowed

for adaptive state observers be designed for systems in nonlinear parametric form [116, 117].

The second method partitions the state space into two groups: measured states and

unmeasured states. The unknown parameters can only appear in either the dynamics for

the measured state [118, 119] or the unmeasured states [120]. Both cases contain the product

of the unmeasured state and the unknown parameter. When the unknown parameters appear

in the measured state, the system is expressed in a modified form of higher dimension to

facilitate the design of the reduced-order adaptive state observer. The system is expressed

in higher dimension to account for the non-zero off-diagonal entries in the product of the

unmeasured state and the unknown product. The reduced order state observer provides

an estimate of the unmeasured state and the parameters, and its stability is shown with

a parameter-dependent Lyapunov function. For the case when the parameters appears in

the unmeasured states, an auxiliary state (the combination of the measured state and the

unmeasured state) is formed, and its stability requires a parameter-dependent Lyapunonv

function and a persistent excitation condition be satisfied.

The third method uses a high-gain adaptive state observer with two correction terms

[117, 121]. The correction terms are the traditional Luenberger correction term that depends
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on the measurement error, and the second correction term is a scaled version of the parameter

estimation dynamics [115, 116, 117]. Its implementation requires the system be transformable

to observable canonical form with the regression matrix being in column triangular form. Its

stability analysis requires the use of an auxiliary state and a parameter-dependent Lyapunonv

function with the time-varying parameter adaptation gain to show asymptotic stability for

high-gain values. The idea of using two correction terms in the state estimation dynamics

allowed for additional contributions in adaptive state observer design for nonlinear systems

when the system is in linear parametric form [122] and nonlinear parametric form [116].

In this research, the adaptive state observer architecture has a similar architecture to

the high-gain adaptive state observers by M. Farza and his colleagues [117, 121]. The state

observer architecture is chosen to address the fact that the dynamics of the optical trap

system contain the product of unmeasured states and an unknown parameter in both the

measured and a unmeasured state. Its implementation requires the optical trap system be

transformed with a parameter independent state transformation to observable canonical form

with the regression vector in column triangular form. The optical trap system (as given in

equation 4.37) is rearranged to

ẋ = f(x) + f1(x)θ +Buu+Bww̃, (7.7a)

y = h(x), (7.7b)

where f : R6 → R6 is the parameter-independent system dynamics, f1 : R6 → R6×3 is the

regression vector and θ ∈ R3 is the unknown parameter vector. Equation 7.7 is transformable

with a parameter-independent state transformation when the parameter-independent system

dynamics f and output function h satisfies the observability condition [113],

rank
[
∇h(x) ∇Lfh(x) . . . ∇L5

fh(x)
]

= 6,∀x ∈M. (7.8)

The observability condition is satisfied by modifying the optical trap system. The system

is modified by adding and subtracting the term ωp(z + dm) to the first two state equations,

where ωp is a bandwidth chosen by the user. The negative term −ωp(z + dm) is added to
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the system dynamics f , while the positive term ωp(z+ dm) is added to f1(x)θ with ωp being

treated as an unknown parameter. Then, the unknown parameter θ is defined as

θ = [ωt, κωt, ωp]
T . (7.9)

The vector field f and the regression vector f1 are defined as

f(x) =



−ωpz − ωpdm − gv(ωzv − ωpv)a1 − gvgaωza2 − gvgaa3

−ωpz − (ωp + ωm)dm + ωmd̄m

−ωpva1 + gaωza2 + gaa3

a3

−ωp1ωp2a2 − (ωp1 + ωp2)a3

−ωdd̄m


(7.10a)

f1(x) =



−z exp
(
− z2

2l2t

)
−dm z + dm

−z exp
(
− z2

2l2t

)
−dm z + dm

0 0 0

0 0 0

0 0 0

0 0 0


. (7.10b)

The optical trap system in equation 7.7 are transformed with the parameter-independent

state transformation m(x),

m(x) = [h(x), Lfh(x), . . . , L5
fh(x)]T , (7.11)

a linear state transformation because f and h are linear in x, that satisfies

∂m(x)

∂x
f(x) = Amm(x) + b1(m). (7.12)

The state matrix Am(i, j) = δi,j−1 (where i and j are the matrix indices and δ is the direc

delta function). The vector field b1 : R6 → R6 is smooth and Lipschitz, and defined as

b1(m) =

 05×1

L6
fh(m)

 ,
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and expressed in terms of m = m(x) because of the one-to-one map between the state x and

the state m. Applying the state transformation in equation 7.11 to the optical trap system

in equation 7.7 yields

ṁ = Amm+ b1(m) + b2(m)θ +
∂m(x)

∂x
Buu+

∂m(x)

∂x
Bww̃, with b2(m(x)) = ∂m(x)

∂x
f1(x),

(7.13a)

y = Cmm+ ñ = m1 + ñ (7.13b)

where the output matrix Cm =
[
1, 0, 0, 0, 0, 0

]
. Notice that ∂m(x)

∂x
Bu is a constant matrix

because the system dynamics f is linear. The regression matrix b2(m) is expressed in column

triangular form and depends on the unmeasured states. The fact that b2 depends on an

unmeasured state presents a challenge in the estimation problem because the regression

vector usually depends on available signals. The challenge is addressed by using the state

estimate in the regression vector.

The transformed optical trap system in equation 7.13 is expressed in the structure for the

implementation of the adaptive state observer. First, some math notations and definitions are

given, then followed by the architecture of the adaptive state observer. The math notations

are:

1. A symmetric and positive definite matrix S ∈ R6×6 satisfies the Lyapunov equation [123],

S + ATmS + SAm − CT
mCm = 0, (7.14)

and has the solution

Sij = (−1)i+jαj−1
i+j−2, 1 ≤ i, j ≤ 6, where αpn =

n!

(n− p)!p!
. (7.15)

The matrix S ensures that the matrix Am − S−1CT
mCm is Hurwitz.

2. For a positive constant λ, the diagonal matrix Λ ∈ R6×6 is defined as

Λ = diag

[
1,

1

λ
, . . . ,

1

λ5

]
. (7.16)

The matrix Λ satisfies the following identities [117]:

ΛAmΛ−1 = λAm and CmΛ−1 = Cm. (7.17)
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3. A function j : R → R satisfies [117]

yT j(y) ≥ yTy, ∀y ∈ R. (7.18)

4. Each of the unknown parameters θj (for j = 1, 2, 3) has a characteristic index cj. The

characteristic index cj is equal to the smallest positive constant i that corresponds to the

state mi (for i = 1, . . . , 6) whose state dynamics ṁi contains the first appearance of the

parameter θj. The characteristic index cj is described by

∂ṁi

∂θj
= 0 for i = 1, . . . , cj − 1, and

∂ṁcj

∂θj
6= 0. (7.19)

In this research, each parameter θj has a characteristic index of one. Then, for a positive

definite λ, and the characteristic indices, a diagonal matrix Ω ∈ R3×3 is defined as

Ω = diag
[

1
λ
, 1
λ
, 1
λ

]
. (7.20)

The matrix Ω satisfies the following identity [121]:

Λb2(m)Ω−1 = λM(m) +R(m, 1
λ
), (7.21)

with the matrices M ∈ R6×3 and R ∈ R6×3 being defined as

M j
i (m) = 0 if i 6= cj, and M j

cj
(m) = bj2,cj(m) (7.22a)

Rj
i (m,

1
λ
) = 0 if i ≤ cj and Rj

i (x,
1
λ
) =

(
1

λ

)i−1−cj
bj2,i(m) otherwise, (7.22b)

where the notation M j
i denotes the ith row and the jth column of the matrix M . The

matrix M is a submatrix of the regression matrix b2 because M accounts only for the first

instance the parameter θj appears in the state equation. Notice that the matrix M(m)

is independent of the positive constant λ, while the matrix R depends on λ through non-

positive powers. Then, given the definitions for M and R in equation 7.22, the following

properties hold [121]:

ΛM(m)Ω = λM(m)

Rj
i (m,

1
λ
) = 0 for j = 1, 2, 3.

(7.23)

The importance of M being independent of λ is that the persistent excitation condition

to be given is bounded with lower and upper bounds independent of λ.
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The architecture for the adaptive state observer is defined as

d

dt
m̂ = Amm̂+ b1(m̂) +

∂m(x)

∂x
Buu+ b2(m̂)θ̂ + λΛ−1S−1CT

mj(Cmm̆) + Λ−1NΩ
d

dt
θ̂ (7.24a)

d

dt
θ̂ = − d

dt
θ̆ = λΩ−1PθN

TCT
mj(Cmm̆) (7.24b)

Ṅ = λ(Am − S−1CT
mCm)N + λM(m̂), with N(0) = 0 (7.24c)

Ṗθ = −λPθNTCT
mCmNPθ + λPθ, with Pθ(0) = Pθ(0)T > 0, (7.24d)

where m̂ = m(x̂) is the state estimate and m̆ = m(x) −m(x̂) defines the state estimation

error, and θ̆ = θ− θ̂ defines the parameter estimation error. The adaptive state observer has

several features:

1. The dynamics for the state estimate in equation 7.24a has two correction terms: the first

term is λΛ−1S−1CT
mj(Cmm̆) and the second term is Λ−1NΩ d

dt
θ̂. The first correction term

is the traditional Luenberger correction term depending on the measurement error. The

second correction term depends on the parameter estimate dynamics.

2. Parameter estimation is achieved using recursive least squares that is combined with

exponential forgetting and a time-varying adaptation gain. The dynamics for the pa-

rameter estimate, as given in equation 7.24b, depends on the measurement error and the

time-varying adaptation gain matrix Pθ = P T
θ > 0, which is governed by equation 7.24d.

3. The matrix N is used in the auxiliary state to form the linear combination of the state

estimation error and the parameter estimation error. Let us show that N has lower and

upper bounds independent of λ by performing a time scale change by setting τ = t
λ

and

let N̄(τ) = N( t
λ
). Then, equation 7.24c becomes

d

dt
N̄ = (Am − S−1CT

mCm)N̄ +M(m̂). (7.25)

The matrix N̄ is bounded with lower and upper bounded independent of λ because the

matrix (Am−S−1CT
mCm) is Hurwitz and M(m̂) is bounded with lower and upper bounds

independent of λ.
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4. State and parameter estimation are possible when a persistent excitation condition is sat-

isfied. The persistent excitation condition is satisfied when there exists positive constants

δ1, δ2, and T (each being independent of λ) such that

δ1I3 ≤
∫ t+T

t

N(τ)TCT
mCmN(τ)dτ ≤ δ2I3. (7.26)

The persistent excitation condition is made on the state estimate not known inputs and

measurements because the dynamics for N are driven by a function of the state estimate

M(m̂). As a result, the persistent excitation condition can be checked on-line by computing

the eigenvalues of the symmetric matrix
∫ t+T
t

N(τ)TCT
mCmN(τ)dτ [121]. If the condition

is not satisfied with the inherent noise (process noise and sensor noise) in the system, then

a perturbation signal of Gaussian white noise is added to the control input and its power

spectral density is increased until the persistent excitation condition is satisfied. Caution

needs to be taken when adding a perturbing white noise signal to the system because the

system performance may degrade as a result. A second potential issue with the persistent

excitation condition is that it depends on N , a filtered version of the regression matrix

b2, more specifically its submatrix matrix M by introducing the concept of characteristic

indices. One may ask if dynamics being ignored by using the matrix M . The answer is given

by substituting the dynamics of N by the dynamics for the matrix Z [121],

Ż = λ(Am − S−1CT
mCm)Z + Λb2(m̂)Ω−1 (7.27)

Notice that the Z dynamics depends on the regression matrix b2(m̂). We show that the

dynamics for Z converges uniformly with respect to time to the dynamics for N when

λ→∞. Performing a time scale change Z̄(τ) = Z( t
λ
) yields

˙̄Z = (Am − S−1CT
mCm)Z̄ +

1

λ
Λb2(m̂)Ω−1, (7.28)

and applying the identity in equation 7.21 yields

˙̄Z = (Am − S−1CT
mCm)Z̄ +M(m̂+ 1

λ
R(m̂, 1

λ
). (7.29)

Since the entries in R are polynominal in 1
λ
, the matrix 1

λ
R(m̂, 1

λ
) → 0 as λ → ∞, and the

dynamics for the matrix Z̄ converges to the dynamics for the matrix N̄ .
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It is insightful to provide the state estimate dynamics given in equation 7.24a in the

original state x. Applying the inverse of the state transformation m = m(x) to equation

7.24a yields the dynamics of the state estimate being

˙̂x = f(x̂) + f1(x̂)θ̂ +Buu+

(
∂m(x̂)

∂x̂

)−1(
λΛS−1CT

mj(Cmm̆) + ΛNΩ
d

dt
θ̂

)
. (7.30)

Before the theorem and proof for the adaptive state observer are given, the following

assumptions are used:

Assumption 9. The state m, the control input u, and the parameters θ are bounded for all

time. This assumption is standard for high-gain adaptive state observers [117, 121].

Assumption 10. The vector field b1(m) is continuous and Lipschitz in m uniformly in u.

The Lipschitz condition implies there exists a positive constant l1 such that

||b1(m)− b1(m̂)|| ≤ l1 ||m̆|| . (7.31)

Assumption 11. The vector field b2(m) is continuous and Lipschitz. The Lipschitz condi-

tion implies there exists a positive constant l2 such that

||b2(m)− b2(m̂)|| ≤ l2 ||m̆|| . (7.32)

Theorem 4 (Adaptive State Observer). Assume the expected value of the system given

in equation 7.13 (with w = 0) satisfies assumption 9, assumption 10, and assumption 11.

Then, for every bounded input that satisfies the persistent excitation condition in equation

7.26, there exists a positiver constant λo, such that for every positive constant λ > λo, the

adaptive state observer in equation 7.24, for the system in equation 7.13 (with w = 0), yields

exponential error convergence to the origin for high values of λ.
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Proof. In this proof, the state estimation error dynamics are first manipulated to a desired

form, the auxiliary state is given, then a Lyapunov stability analysis is performed.

The dynamics for the state estimation error m̆ = m− m̂ are

d

dt
m̆ = Amm̆− λΛ−1S−1CT

mj(Cmm̆)− Λ−1NΩ
d

dt
θ̂

+ b1(m)− b1(m̂) + b2(m)θ − b2(m̂)θ̂,

(7.33)

and is independent of the control input. Equation 7.33 needs to depend on the parameter

estimation error θ̆ and its dynamics d
dt
θ̆. Adding and subtracting the term b2(m̂)θ and

applying d
dt
θ̂ = − d

dt
θ̆ to equation 7.33 yields

d

dt
m̆ = Amm̆− λΛ−1S−1CT

mj(Cmm̆) + Λ−1NΩ
d

dt
θ̆

+ b1(m)− b1(m̂) + (b2(m)− b2(m̂))θ + b2(m̂)θ̆.

(7.34)

Equation 7.34 is driven by two pseudo-state estimation errors. The first pseudo state-

estimation error b1(m) − b1(m̂) results from using the state estimate in the vector field

b1; the second pseudo error (b2(m) − b2(m̂))θ results from using the state estimate in the

regression vector b2.

Next, the auxiliary state is defined by forming a linear combination of a scaled version of

the state estimation error and a scaled version of the parameter estimation error. First, the

state estimation error m̆ and the parameter estimation error θ̆ are scaled by the matrices Λ

and Ω respectivley. The scaled state estimation error ḿ and the scaled parameter estimation

error θ́ are

ḿ = Λm̆ and
d

dt
ḿ = Λ

d

dt
m̆, (7.35)

θ́ = Ωθ̆ and
d

dt
θ́ = Ω

d

dt
θ̆. (7.36)

Then, the dynamics for the scaled state dynamics error and the scaled parameter estimation

error are obtained by:

1. applying the scaling relationships given in equation 7.35 and equation 7.36 to the dy-

namics for the state estimation error in equation 7.34 and the parameter estimation error

in equation 7.24b,
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2. applying the identities ΛAmΛ−1 = λAm and CmΛ−1 = Cm given in equation 7.17.

The dynamics for the scaled state estimation error is

d

dt
ḿ = λAmḿ− λS−1CT

mj(Cmḿ) +N
d

dt
θ́

+ Λ(b1(m)− b1(m̂)) + Λ(b2(m)− b2(m̂))θ + Λb2(m̂)Ω−1θ́,

(7.37)

while the dynamics for the scaled parameter estimation error is

d

dt
θ́ = −λPθNTCT

mj(Cmḿ). (7.38)

The auxiliary state q́ is defined as

q́ = ḿ−Nθ́ (7.39)

Its dynamics are obtained by:

1. taking the time derivative of equation 7.39,

2. applying the dynamics for the scaled state estimation error in equation 7.37 and the

scaled parameter estimation error in equation 7.38,

3. imposing ḿ = q́ +Nθ́ from equation 7.39.

The dynamics for the auxiliary state are then

d

dt
q́ =

d

dt
ḿ− Ṅ θ́ −N d

dt
θ́

= λAmq́ − λS−1CT
mj(Cmḿ) + Λ(b1(m)− b1(m̂))

+ Λ(b2(m)− b2(m̂))θ +

(
λAmN + Λb2(m̂)Ω−1 − Ṅ

)
θ́.

(7.40)

The last term contains θ́ and this term is eliminated by choosing an update law for N

such that θ́ is multiplied by zero. First, apply the identity in equation 7.21 (Λb2(m̂Ω−1 =

λM(m̂) + R(m̂, 1
λ
) with R(m̂, 1

λ
) = 0) , then add and subtract the term λS−1CT

mCmNθ́ to

equation 7.40 to yield

d

dt
q́ = λAmq́ + λS−1CT

mCmNθ́ − λS−1CT
mj(Cmḿ) + Λ(b1(m)− b1(m̂))

+ Λ(b2(m)− b2(m̂))θ +

(
λ(Am − S−1CT

mCm)N + λM(m̂)− Ṅ
)
θ́

(7.41)
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Choosing the update for the N (equivalent to applying equation 7.24c)

Ṅ = λ(Am − S−1CT
mCm)N + λM(m̂)

and substituting back into equation 7.41 yields

d

dt
q́ = λAmq́ + λS−1CT

mCmNθ́ − λS−1CT
mj(Cmḿ)

+ Λ(b1(m)− b1(m̂)) + Λ(b2(m)− b2(m̂))θ.

(7.42)

Next, a stability analysis is performed on the auxiliary state q́ and the scaled parameter

estimation error θ́. The Lyapunov function candidate is

W (q́, θ́) = W1(q́) +W2(θ́) = q́TSq́ + θ́TPθ
−1θ́, (7.43)

and each term is lower and upper bounded with class K functions by

λmin(S) ||q́||2 ≤ W1(q́) ≤ λmax(S) ||q́||2 , (7.44a)

λmin(Pθ)
∣∣∣∣∣∣θ́∣∣∣∣∣∣2 ≤ W2(θ́) ≤ λmax(Pθ)

∣∣∣∣∣∣θ́∣∣∣∣∣∣2 . (7.44b)

Taking the time derivative of equation 7.43 yields

Ẇ =
d

dt
q́TSq́ + q́TS

d

dt
q́ + 2θ́TP−1

θ

d

dt
θ́ − θ́TP−1

θ ṖθP
−1
θ θ́. (7.45)

Substituting in equation 7.42 for d
dt
q́ yields

Ẇ = λq́T (ATmS + SAm)q́ + 2λq́TCT
mCmNθ́ − 2λq́TCT

mj(Cmḿ)

+ 2θ́TP−1
θ

d

dt
θ́ − θ́TP−1

θ ṖθP
−1
θ θ́

+ 2q́TSΛ (b1(m)− b1(m̂)) + 2q́TSΛ (b2(m)− b2(m̂)) θ.

(7.46)

The first term λq́T (ATmS+SAm)q́ is expressed in terms of the Lyapunov function W1. Equa-

tion 7.46 is modified by adding and subtracting the term λq́TCT
mCmq́, applying the Lyapunov

equation (same as given in equation 7.14),

S + ATmS + SAm − CT
mCm = 0,
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and imposing q́TSq́ = W1 from equation 7.43 to yield

Ẇ = −λW1 + λq́TCT
mCmq́ + 2λq́TCT

mCmNθ́ − 2λq́TCT
mj(Cmḿ)

+ 2θ́TP−1
θ

d

dt
θ́ − θ́TP−1

θ ṖθP
−1
θ θ́

+ 2q́TSΛ (g1(m,u)− g1(m̂, u)) + 2q́TSΛ (g2(m)− g2(m̂)) θ.

(7.47)

Equation 7.47 is further bounded by taking the norm of the last two terms to yield

Ẇ ≤ −λW1 + λq́TCT
mCmq́ + 2λq́TCT

mCmNθ́ − 2λq́TCT
mj(Cmḿ)

+ 2θ́TP−1
θ

d

dt
θ́ − θ́TP−1

θ ṖθP
−1
θ θ́

+
∣∣∣∣2q́TSΛ (b1(m)− b1(m̂))

∣∣∣∣+
∣∣∣∣2q́TSΛ (b2(m)− b2(m̂)) θ

∣∣∣∣ .
(7.48)

Next, the norms
∣∣∣∣2q́TSΛ (b1(m)− b1(m̂))

∣∣∣∣ and
∣∣∣∣2q́TSΛ (b2(m)− b2(m̂)) θ

∣∣∣∣ are

bounded in terms of ||q́||2 and
∣∣∣∣∣∣θ́∣∣∣∣∣∣2. These norms are bounded using assumption 10

and assumption 11, which implies the vector fields b1(m) and b2(m) are Lipschitz in m.

The same procedure is used to bound both norms. The procedure is given to bound the

norm
∣∣∣∣2q́TSΛ (b1(m)− b1(m̂))

∣∣∣∣, then the bound for the norm
∣∣∣∣2q́TSΛ (b2(m)− b2(m̂)) θ

∣∣∣∣
is given. First, the norm Λ (b1(m)− b1(m̂)) is bounded in terms of ||ḿ|| by using the mean

value theorem, applying assumption 10, and using equation 7.35 (m̆ = Λ−1ḿ) to yield

||Λ (b1(m)− b1(m̂))|| ≤
∣∣∣∣∣∣∣∣Λ∂b1

∂m
Λ−1

∣∣∣∣∣∣∣∣ ||ḿ|| ≤ β1 ||ḿ|| .

The vector field g1 being in lower triangular structure enables
∣∣∣∣Λ∂b1

∂m
Λ−1

∣∣∣∣ to be bounded by

a positive constant β1, which is independent of λ for λ ≥ 1 [117]. The norm ḿ is bounded

in terms of q́ and θ́ by using equation 7.39 (ḿ = q́ +Nθ́) to yield

||Λ (b1(m)− b1(m̂))|| ≤ β1 ||ḿ|| ≤ β1

(
||q́||+ ||N ||

∣∣∣∣∣∣θ́∣∣∣∣∣∣ ) (7.49)

Then, the norm
∣∣∣∣2q́TSΛ (b1(m)− b1(m̂))

∣∣∣∣ is bounded by

∣∣∣∣2q́TSΛ (b1(m)− b1(m̂))
∣∣∣∣ ≤ β1 ||S||

(
2 ||q́||2 + ||N || 2 ||q́||

∣∣∣∣∣∣θ́∣∣∣∣∣∣ ) (7.50)

The norm 2 ||q́||
∣∣∣∣∣∣θ́∣∣∣∣∣∣ is bounded by Young’s inequality to yield

2 ||q́||
∣∣∣∣∣∣θ́∣∣∣∣∣∣ ≤ ||q́||2 +

∣∣∣∣∣∣θ́∣∣∣∣∣∣2 ,
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then equation 7.50 is bounded by

∣∣∣∣2q́TSΛ (b1(m)− b1(m̂))
∣∣∣∣ ≤ β1 ||S||

(
(2 + ||N ||) ||q́||2 + ||N ||

∣∣∣∣∣∣θ́∣∣∣∣∣∣2). (7.51)

The norms ||q́||2 and
∣∣∣∣∣∣θ́∣∣∣∣∣∣2 are bounded in the Lyapunov functions W1 and W2 by using

equation 7.44 to yield

||q́||2 ≤ 1

λmin(S)
W1 and

∣∣∣∣∣∣θ́∣∣∣∣∣∣2 ≤ 1

λmin(P−1)
W2.

Then equation 7.51 is bounded by

∣∣∣∣2q́TSΛ (b1(m)− b1(m̂))
∣∣∣∣ ≤ (2 + ||N ||)β1 ||S||

λmin(S)
W1 +

β1 ||S|| ||N ||
λmin(P−1

θ )
W2 (7.52)

The norm of 2q́TSΛ (b2(m)− b2(m̂)) θ is obtained using the same procedure. It is

straight-forward to show its bound is

∣∣∣∣2q́TSΛ (b2(m)− b2(m̂)) θ
∣∣∣∣ ≤ (2 + ||N ||)β2 ||θ|| ||S||

λmin(S)
W1 +

β2 ||θ|| ||S|| ||N ||
λmin(P−1)

W2, (7.53)

where the positive constant β2 is defined as
∣∣∣∣Λ∂b2

∂m
Λ−1

∣∣∣∣ ≤ β2 with β2 being independent of

λ for λ ≥ 1. It is convenient to add the norms of equation 7.52 and equation 7.53 to yield

∣∣∣∣2q́TSΛ (b1(m)− b1(m̂)) θ
∣∣∣∣+

∣∣∣∣2q́TSΛ (b2(m)− b2(m̂)) θ
∣∣∣∣

≤ η1W1 + η2W2,
(7.54)

where the positive constants η1 and η2 are defined as

η1 =
(2 + ||N ||)(β1 + β2 ||θ||) ||S||

λmin(S)
and η2 =

(β1 + β2 ||θ||) ||S|| ||N ||
λmin(P−1

θ )
. (7.55)

Equation 7.54 is substituted back into Ẇ in equation 7.48 to yield

Ẇ = −(λ− η1)W1 + η2W2 + 2θ́TP−1
θ

d

dt
θ́ − θ́TP−1

θ ṖθP
−1
θ θ́

+ λq́TCT
mCmq́ + 2λq́TCT

mCmNθ́ − 2λq́TCT
mj(Cmḿ).

(7.56)
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Next, the update laws for θ́ and Pθ are chosen. These update laws are chosen by first

manipulating the last three terms in equation 7.56. The last three terms are expressed in

terms of ḿ and θ́ by imposing q́ = ḿ−Nθ́ from equation 7.39 to yield

λq́TCT
mCmq́ = λḿTCT

mCmḿ− 2λθ́TNTCT
MCmḿ+ λθ́TMTCT

mCmMθ́, (7.57a)

2λq́TCT
mCmNθ́ = 2λθ́TNTCT

mCmḿ− 2λθ́TNTCT
mCmNθ́, (7.57b)

−2λq́TCT
mj(Cmḿ) = −2λḿTCT

mj(Cmḿ) + 2λθ́TNTCT
mj(Cmḿ). (7.57c)

Substituting equation 7.57 into equation 7.56 and rearranging the terms yield

Ẇ =− (λ− η1)W1 + η2W2 + λḿTCT
mCmḿ− 2λḿTCT

mj(Cmḿ)

− θ́T
(
P−1
θ ṖθP

−1
θ + λNTCT

mCmN

)
θ́ + 2θ́T

(
P−1
θ

d

dt
θ́ + λNTCT

mj(Cmḿ)

) (7.58)

Choosing the update laws for θ́ and P to be equation 7.38 and equation 7.24d respectively

d

dt
θ́ = −λPθNTCT

mj(Cmḿ)

Ṗθ = −λPθNTCT
mCmNPθ + λPθ

yields

Ẇ = −(λ− η1)W1 − λθ́TP−1
θ θ́ + η2W2 + λḿTCT

mCmḿ− 2λḿTCT
mj(Cmḿ) (7.59)

The term λḿTCT
mCmḿ is always positive and is bounded by 2λḿTCT

mCmḿ. Also, impose

θ́TP−1
θ θ́ = W2 using equation 7.43 to yield

Ẇ ≤ −(λ− η1)W1 − (λ− η2)W2 + 2λ

(
ḿTCT

mCmḿ− ḿTCmj(Cmḿ)

)
. (7.60)

The term ḿTCT
mCmḿ− ḿTCmj(Cmḿ) is always negative because the function j is defined

in equation 7.18 as yT j(y) > yTy. Then, equation 7.60 is bounded by

Ẇ ≤− (λ− η1)W1 − (λ− η2)W2,

≤ −(λ− λo)(W1 +W2), where λo = max(η1, η2),

= −(λ− λo)W.

(7.61)

Equation 7.61 shows that the Lyapunov function W is exponentially converges to the

origin. We can conclude that W ∈ L∞ and W is exponentially stable. Signal tracing is now

performed to show that the transformations do not affect the stability properties and that

the signals are bounded.
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1. The Lyapunov function is W ∈ L∞ and exponentially stable, then equation 7.43 implies

that q́, θ́ ∈ L∞, and q́ and θ́ are exponentially stable.

2. The scaled parameter estimation error θ́ ∈ L∞ and exponentially stable, and Ω ∈ L∞,

then equation 7.36 (θ̆ = Ωθ́) implies θ̆ ∈ L∞ and θ̆ exponentially stable.

3. The parameter estimation error θ̆ ∈ L∞ and the true parameter θ ∈ L∞, then from

θ̆ = θ − θ̂ implies θ̂ ∈ L∞.

4. The scaled estimation errors q́, θ́ ∈ L∞ and exponentially stable, and ||N || ∈ L∞, then

equation 7.39 (q́ = ḿ−Nθ́ implies ḿ ∈ L∞ and ḿ exponentially stable.

5. The scaled state estimation error ḿ ∈ L∞ and ḿ exponentially stable, and Λ ∈ L∞,

then equation 7.35 (ḿ = Λm̆) implies m̆ ∈ L∞ and m̆ is exponentially stable.

6. The state estimation error and the state m̆,m ∈ L∞, then from m̆ = m − m̂ implies

m̂ ∈ L∞.

7. The state estimate m̂ ∈ L∞ and using the one-to-one map between m and x implies

x̂ ∈ L∞.

A second advantage to using an adaptive state observer is the state estimate and pa-

rameter estimate is implemented in a control structure to study the molecule characteristics.

The state estimate is used in the control because the state estimate contains less noise and

disturbance rejection is possible. The parameter estimate is used because to address the pa-

rameter uncertainty in the state feedback to linearize the input-output map and the tracking

error state.

7.3 ADAPTIVE CONTROL STRUCTURE

The molecule is studied by having the bead deflection track a reference signal. The tracking

control problem is turned into a regulation control problem with the new control objective

being design the control to drive the tracking error to zero. The tracking error is driven
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to zero by a combination of an adaptive input-output feedback linearization with an LQ

structure, as shown in the block diagram in figure 43.

The control structure has three feedback loops: the linearization loop (loop 1), the

tracking loop (loop 2), and the self tuning loop (loop 3). The linearization loop transforms

the optical trap system into normal form such that the input-output map is linearized via

state feedback. The state feedback is implemented with the parameter estimate because the

input-output map depends on the system parameters. The tracking loop uses the linearized

input-output map in an adaptive LQ control algorithm to find the state feedback that drives

the tracking error to zero. The state feedback is obtained in the self-tuning loop that

1. performs online parameter identification on the linearized input-output map by using re-

cursive least squares combined with exponential forgetting and the projection algorithm,

2. finds the mapping between the state feedback parameters and the system parameters,

3. implements the state feedback parameters with the parameter estimate by applying the

certainty equivalence principle.

The control architecture uses adaptive self-tuning methods (indirect adaptive control) to ad-

dress the parameter uncertainty in the feedback loops. The desired closed-loop performance

is satisfied by adjusting the state feedback parameters indirectly through using the param-

eter estimation process [124]. Self-tuning methods use the certainty equivalence principle

to have the parameter estimate be considered the true parameter during the control design

process [124].

First, to ease the notation, changes are made to the definitions of the tracking error

and the Lie derivative to account for these definitions depending explicitly on the system

parameters. The Lie derivative definition given in definition 1 is modified as followed:

Definition 4 (Lie derivative modification). Given a state x ∈ Rn and parameters θ ∈ Rp,

smooth vector fields f : Rn × Rp → Rn and g : Rn → Rn, and a smooth scalar field

h : Rn×Rp → R, then the Lie derivative is defined as Lfh(x, θ), which is the gradient of the

scalar field h along the directions of the vector field f . The following notation is used for the
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Figure 43: The schematic for the block diagram of the closed-loop block diagram. The block

diagram has three feedback loops. The linearization loop (loop 1) transforms the optical

trap system into normal form such that the input-output map can be linearized with state

feedback. The tracking loop (loop 2) uses the linearized input-output map in an adaptive

LQ optimal algorithm to find the state feedback to drive the tracking error to zero. The

self-tuning loop (loop 3) performs the identification process and finds the online control

soltuion.
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Lie derivatiives:

L0
fh(x, θ) = h(x, θ), (7.62a)

Lfh(x, θ) =
∂h(x, θ)

∂x
f(x, θ), (7.62b)

L2
fh(x, θ) =

∂Lfh(x, θ)

∂x
f(x, θ), (7.62c)

LgLfh(x, θ) =
∂Lfh(x, θ)

∂x
g(x). (7.62d)

The tracking error is defined in terms of the system parameters as

ξ̆(x, θ) = ξr − ξ(x, θ) =

 r − h(x, θ)

ṙ − Lfh(x, θ)

 , (7.63)

where r is the reference signal. Equation 7.63 is defined as the expected value of the tracking

error and the bar accent notation is not used to simplify the notation.

The linearization loop transforms the optical trap system with the tracking error as its

output into normal form (according to the procedure given in section 4.5.1),

d

dt
ξ̆(x, θ) = Aξ(φ)ξ̆(x, θ) +Bξ(φ)

[
r̈ − L2

fh(x, θ)− LBuLfh(x, θ)u
]
, (7.64a)

ψ̇ = δ(ξr − ξ̆(x, θ), ψ) (7.64b)

The input-output map describes the relationship between the control input u and the tracking

error ξ̆. The matrices Aξ(φ) and Bξ(φ) are the state matrix and input matrix that result

from transforming the optical trap system to normal form. These matrices are assumed to

have unknown constant parameters and are described by

Aξ(φ) =

 0 1

−φ1 −φ2

 , and Bξ(φ) =

 0

φ3

 ,
with the true parameters being φ1 = φ2 = 0 and φ3 = 1. Equation 7.64 has the term

L2
fh(x, θ), which depends on the system state and parameters, and the term LBuLfh(x, θ),

which is a constant. The input-output map is linearized using state feedback that depends

on the state and parameter estimates. Choosing the state feedback to be

u(x̂, θ̂) = − 1

LBuLfh(x, θ)

[
L2
fh(x̂, θ̂)− r̈ + v

]
, (7.65)
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with v being the auxiliary control input, and adding and subtracting the term Bξ(φ)L2
fh(x̂, θ)

results in the input-output map

d

dt
ξ̆ = Aξ(φ)ξ̆(x, θ)+Bξ(φ)v−Bξ(φ)

[
L2
fh(x, θ)− L2

fh(x̂, θ)
]
−Bξ(φ)

[
L2
fh(x̂, θ)− L2

fh(x̂, θ̂)
]
.

(7.66)

Equation 7.66 describes the nominal linearized input-output map d
dt
ξ̆ = Aξ(φ)ξ̆(x, θ)+Bξ(φ)v

being driven by two perturbations. The first perturbation −Bξ(φ)
[
L2
fh(x, θ)− L2

fh(x̂, θ)
]

results from the pseudo estimation error in the input-output feedback due to the state es-

timation process; the second perturbation −Bξ(φ)
[
L2
fh(x̂, θ)− L2

fh(x̂, θ̂)
]

results from the

pseudo estimation error in the input-output feedback due to the parameter estimation pro-

cess.

The tracking loop uses the nominal linearized input-output map

d

dt
ξ̆ = Aξ(φ)ξ̆(x, θ) +Bξ(φ)v,

in an adaptive LQ optimal control architecture. The adaptive LQ architecture finds the

state feedback that drives the tracking error to zero. The state feedback is obtained in the

self-tuning loop that

1. performs online parameter identification on the linearized input-output map,

2. finds the mapping between the state feedback parameters and the system parameters,

3. implements the state feedback parameters with the parameter estimate by applying the

certainty equivalence principle.

Online parameter identification is performed by using recursive least squares combined

with exponential forgetting and projection [124, 125]. Least squares provide the param-

eter estimate by curve fitting a mathematical model to observed data, and minimizing a

quadratic cost function on the observation error, the difference between the observed value

and the estimated value [124]. Exponential forgetting places more emphasis on new data

by discarding old data. Projection uses prior knowledge of the parameter φ to restrict the

parameter search space to a bounded convex set Φ such that φ ∈ Φ. The result is an online

parameter identification process with parameter update laws in the constrained convex set.

There are additional benefits to using projection in adaptive systems. Projection reduces
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large transients in the parameter trajectories and ensures the estimated plant is controllable

(well-posed) for all time [125]. The parameter identification approach is discussed as follows:

first the parameter update laws are derived using recursive least squares with exponential

forgetting, then the parameter update laws are combined with projection.

The implementation of recursive least squares require d
dt
ξ̆ = Aξ(φ)ξ̆(x, θ) + Bξ(φ)v be

expressed with a mathematical model in linear parametric form. The mathematical model

is obtained by expressing d
dt
ξ̆ = Aξ(φ)ξ̆(x, θ) + Bξ(φ)v in its second order differential input-

output form, and taking its Laplace transform to yield

s2ξ̆1(x, θ) = −φ1ξ̆1(x, θ)− φ2sξ̆1(x, θ) + φ3v, (7.67)

where ξ̆1(x, θ) = r − h(x, θ) is the observed value and s is the Laplace domain variable.

Equation 7.67 requires the the observed value and its first two derivatives be available.

However, the derivatives are not available and measuring derivatives is bad due to noise

amplification at high frequencies. The derivative measurements are obtained by low-pass

filtering equation 7.67 with a second-order filter (s+ ωφ)2, where ωφ is the frequency chosen

by the user. Applying the low-pass filter to equation 7.67 yields

ξ̆1 =
[

1
(s+ωφ)2

ξ̆1
s

(s+ωφ)2
ξ̆1

1
(s+ωφ)2

v
]

ω2
φ − φ1

2ωφ − φ2

φ3

 = wTφ, (7.68)

yields the observed value being described with a mathematical model in linear parametric

form. The system parameter is φ = [ω2
φ − φ1, 2ωφ − φ2, φ3]T . The regression vector w is

the filtered version of the observed value ξ̆(x, θ) and the input v. The observed value is

then estimated using the mathematical value in equation 7.68 by
ˆ̆
ξ1 = wT φ̂, where φ̂ is the

parameter estimate.

Parameter estimation with an unconstrained minimization problem described by

minimize J =

∫ t

0

exp (−β(t− τ))
(
ξ̆1(τ)− wT (τ)φ̂(t)

)2

dτ,

subject to φ̂ ∈ R3,

(7.69)
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where β is a positive constant that describes the exponential forgetting factor. Taking its

gradient yields the parameter estimate

φ̂(t) =

(∫ t

0

exp (−β(t− τ))w(τ)wT (τ)dτ

)−1 ∫ T

0

exp (−β(t− τ))w(τ)ξ̆1(τ)dτ. (7.70)

Defining the symmetric matrix Pφ as

Pφ(t) =

(∫ t

0

exp (−β(t− τ))w(τ)wT (τ)dτ

)−1

, (7.71)

allows for the update laws in the parameter estimation to be described as [124],

Ṗφ = βPφ − PφwwTPφ, with Pφ(0) > 0, (7.72a)

˙̂
φ = Pφwε, (7.72b)

where ε = ξ̆1(t) − wT (t)φ̂(t) is the observation error. The parameter estimate converges

to the true parameter φ̂ → φ when the matrix Pφ is positive definite. The matrix Pφ

is positive definite when the regression vector w is persistently exciting. The persistent

exciting condition is satisfied when there exists positive constants δ1, δ2, and T such that

δ1I3 ≤
∫ t+T

t

w(τ)wT (τ)dτ ≤ δ3I3. (7.73)

The persistent excitation condition is made on the tracking error and the auxiliary control

input. If the condition is not satisfied, then a perturbation signal of Gaussian white noise

is added to the auxiliary control input and its power spectral density is increased until the

condition is satisfied. Caution needs to be taken when adding a perturbing white noise signal

to the system because the system performance may degrade as a result.

The parameter update laws in equation 7.72 has the following properties [125]:

1. The signals ξ̆(x̂, θ̂), v ∈ L∞ due to assumption 9 implies w,P, φ̂, d
dt
φ̂ ∈ L∞.

2. The signal d
dt
φ̂ ∈ L2

3. When the signal w ∈ L∞ and w is PE, then φ̆ = φ− φ̂ converges exponentially to zero.
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Equation 7.72 describes the parameter update laws for an unconstrained search algorithm

because the parameter can be everywhere or φ ∈ R3. The unconstrained search algorithm can

lead to two problems: large transients in the parameter trajectories and the estimated plant

may not being controllable or well-posed for all time. In this research, both problems are

addressed by modifying the parameter update laws with projection. Projection uses prior

knowledge of the system parameter to constrain the parameter search to the constrained

convex set Φ such that φ ∈ Φ ⊂ R3. The importance of embedding the true parameter

in a convex set is to save the properties/features of the parameter update laws that were

established in the unconstrained case when φ ∈ Φ, ∀t ≥ 0 and φ̂(0) ∈ Φ [125].

The combination of projection with the recursive least squares and exponential forgetting

turns the parameter estimation problem into a constrained minimization problem. The

constrained minimization problem is [125]

minimize J =

∫ t

0

exp (−β(t− τ))
(
ξ̆1(τ)− wT (τ)φ̂(t)

)2

dτ,

subject to φ̂ ∈ Φ,

(7.74)

where Φ is the constrained convex set that is defined by

Φ = {φ ∈ R3|g(φ̂) ≤ 0}, where g(φ̂) = (φ0 − φ̂)T (φ0 − φ̂)−M2
o , (7.75)

and φ0 describes the center of the convex set. The parameter update laws in equation 7.72

are modified by the projection algorithm and are described by

Ṗφ =

βPφ − Pφww
TPφ, if φ̂ ∈ Φo, or φ ∈ ∂Φ and (Pφwε)

T∇g ≤ 0

0, otherwise,

(7.76a)

˙̂
φ =

Pφwε, if φ̂ ∈ Φo, or φ ∈ ∂Φ and (Pφwε)
T∇g ≤ 0,(

1− P∇g∇gT
∇gTP∇g

)
Pφwε, otherwise.

(7.76b)

The modified parameter update laws have the following features [125]:

1. When φ̂(0) ∈ Φ with φ̂ ∈ Φ and g(φ̂) < 0, the parameter update laws are that of the

unconstrained parameter update laws in the absence of projection and guarantees φ̂ ∈ Φ.
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2. When φ̂ ∈ ∂Φ (where ∂Φ is the boundary of Φ) and the direction of the search is directed

toward the interior of Φ (equivalent to Pφwε∇g ≤ 0 ), then the update parameter laws

are that of the unconstrained parameter update laws.

3. When φ̂ ∈ ∂Φ and the direction of the search is directed toward the extenior of Φ (equiv-

alent to Pφwε∇g > 0, then the projection is used. In this case, a constant adaptation

gain Pφ is used and d
dt
φ̂ is modified by projecting the negative of the gradient of the cost

function onto the constrained parameter set Φ.

The second aspect of adaptive self-tuning controllers is to find the mapping between

the plant parameters and the control parameters. The map is found by using d
dt
ξ̆ =

Aξ(φ)ξ̆(x, θ) + Bξ(φ)v in an LQ control algorithm and solving for the control parameters

(state feedback gains) in terms of the plant parameters. The LQ control problem is a con-

strained minimization problem described by

minimize J =
1

2

∫ ∞
0

[
ξ̆T (x, θ)Qξ ξ̆(x, θ) +Rξv

2
]
dτ, with Q =

q1 0

0 q2

 ,
subject to

d

dt
ξ̆ = A(φ)ξ̆(x, θ) +Bξ(φ)v,

(7.77)

where Qξ = QT
ξ > 0 is the weighted matrix on the tracking error and Rξ > 0 is the

weight placed on the auxiliary control. The constrained minimization problem is turned into

an unconstrained minimization problem of higher dimension with the new objective is to

minimize the Hamiltonian function

H(ξ̆, λ, v) =
1

2
ξ̆T (x, θ)Qξ ξ̆(x, θ) +

1

2
Rξv

2 + λT (Aξ(φ)ξ̆(x, θ) +Bξ(φ)v). (7.78)

The Hamiltonian function is minimized when its gradient ∇H = 0, which is equivalent to

the optimality conditions satisfying

d

dt
ξ̆ =

∂H

∂λ
= Aξ(φ)ξ̆(x, θ) +Bξ(φ)v (7.79a)

λ̇ = −∂H
∂ξ̆

= −Qξ ξ̆(x, θ)− ATξ (φ)λ (7.79b)

0 =
∂H

∂v
= Rξv +BT

ξ (φ)λ. (7.79c)
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The auxiliary control depends on the costate by v = −R−1
ξ BT

ξ (φ)λ. Its implementation

requires the auxiliary control be explicitly expressed in the tracking error not the costate.

The auxiliary control is expressed in the tracking error by relating the costate to the tracking

error with a standard optimal control assumption λ = Pξ(φ)ξ̆(x, θ), ∀t, where the matrix

Pξ(φ) is Pξ(φ) = P T
ξ (φ) ≥ 0. The matrix Pξ is the solution to the differential Riccati

equation [109]

Ṗξ = −Pξ(φ)Aξ(φ)− ATξ (φ)Pξ(φ)−Qξ + Pξ(φ)Bξ(φ)R−1
ξ BT

ξ (φ)Pξ(φ), (7.80)

where

Pξ(φ) =

p1(φ) p2(φ)

p2(φ) p3(φ)

 .
The differential Riccati equation is model equation and driven by the weights Qξ and Rξ.

The LQ controller is going to operate longer than its time constant and this fact allows the

solution to the differential Riccati equation to be simplified by only considering its steady-

state solution (Ṗξ = 0). The differential Riccati equation is turned into an algebraic Riccati

equation,

Pξ(φ)Aξ(φ) + ATξ (φ)Pξ(φ) +Qξ − Pξ(φ)Bξ(φ)R−1
ξ BT

ξ (φ)Pξ(φ) = 0, (7.81)

and its solution is

p1(φ) = −Rφ1φ2

φ2
3

+
φ2

3

R

√(
Rφ1

φ2
3

)2

+

(
Rq1

φ2
3

)
× (7.82a)

φ2
3

R

√√√√(Rφ2

φ2
3

)2

+
Rq2

φ2
3

− 2R2

φ2
3

+
2R

φ3

√(
Rφ1

φ2
3

)2

+

(
Rq1

φ2
3

)

p2(φ) = −Rφ1

φ2
3

+

√(
Rφ1

φ2
3

)2

+

(
Rq1

φ2
3

)
(7.82b)

p3(φ) = −Rφ2

φ2
3

+

√√√√(Rφ2

φ2
3

)2

+
Rq2

φ2
3

− 2R2

φ2
3

+
2R

φ3

√(
Rφ1

φ2
3

)2

+

(
Rq1

φ2
3

)
. (7.82c)

172



The Riccati solution relates the auxiliary control to the tracking error via λ = Pξ(φ)ξ̆(x, θ)

to yield the auxiliary control being

v(ξ̆(x, θ), φ) = −R−1
ξ BT

ξ (φ)Pξ(φ)ξ̆(x, θ) = −
[
φ3p2(φ)
Rξ

φ3p3(φ)
Rξ

]
ξ̆(x, θ) = −Kξ(φ)ξ̆(x, θ),

(7.83)

with the state feedback gain Kξ(φ) = [k1(φ), k2(φ)]T being

k1(φ) = φ3p2(φ) = −φ1

φ3

+
φ3

R

√(
Rφ1

φ3

)2

+
Rq1

φ2
3

(7.84a)

k2(φ) = φ3p3(φ) = −φ2

φ3

+
φ3

R

√√√√(Rφ2

φ3

)2

+
Rq2

φ2
3

− 2R2

φ2
3

+
2R

φ3

√(
Rφ1

φ2
3

)2

+
Rq1

φ2
3

. (7.84b)

The algebraic Riccati equation equation in equation 7.81 and the state feedback in equa-

tion 7.83 describes the mapping between the state feedback gains and the system parame-

ters.The mapping is combined with the certainty equivalence principle to create a self-tuning

adaptive LQ controller [124]. The certainty equivalence principle implies that the parameter

estimate is used as true parameter for the plant, then the estimated plant is used in the LQ

control algorithm, and the algebraic Riccati equation and state feedback are implemented

with the state estimates. The result is the state feedback is updated indirectly based on

the parameter estimation process. The implementation of the adaptive LQ controller, the

algebraic Riccati equation and the state feedback, uses the state estimate and the parameter

estimate to yield

Pξ(φ̂)Aξ(φ̂) + ATξ (φ̂)Pξ(φ̂) +Qξ − Pξ(φ̂)Bξ(φ̂)R−1
ξ BT

ξ (φ̂)Pξ(φ̂) = 0, (7.85)

v(ξ̆(x̂, θ̂), φ̂) = −R−1
ξ BT

ξ (φ̂)Pξ(φ̂)ξ̆(x̂, θ̂) (7.86)

The certainty equivalence principle is implementable when the estimated plant with param-

eters φ̂ is controllable or at least stabilizable for all time ∀t ≥ 0. For the estimated plant to

be controllable, a condition is placed on the parameter estimate φ̂3, which is φ̂3 cannot be

zero or change sign. This condition must hold for the estimated plant be controllable and

for the existness and uniform boundedness of the solution to the Riccati equation P (φ̂) and

the state feedback K(φ̂). Therefore, satisfying the condition placed on φ̂3 is the motivating

idea to implement the projection algorithm in the parameter estimation process.
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The dynamics for the closed-loop tracking error are obtained by substituting the auxiliary

control in equation 7.86 into equation 7.66, and adding and subtracting the term

Aξ(φ̂)ξ̆(x, θ) +Bξ(φ̂)v(ξ̆(x, θ), φ̂) +Bξ(φ)v(ξ̆(x, θ), φ̂) +Bξ(φ)v(ξ̆(x̂, θ), φ̂)

to equation 7.66. Then, the dynamics for the closed-loop tracking error is described by

d

dt
ξ̆ =

[
Aξ(φ̂)−Bξ(φ̂)R−1

ξ BT
ξ (φ̂)Pξ

]
ξ̆(x, θ)

+
[
Aξ(φ)− Aξ(φ̂)

]
ξ̆(x, θ) +

[
Bξ(φ)−Bξ(φ̂)

]
v(ξ̆(x, θ), φ̂)

−Bξ(φ)
[
L2
fh(x, θ)− L2

fh(x̂, θ)
]
−Bξ(φ)

[
L2
fh(x̂, θ)− L2

fh(x̂, θ̂)
]

+Bξ(φ)R−1
ξ BT

ξ (φ̂)Pξ(φ̂)
[
ξ̆(x, θ)− ξ̆(x̂, θ)

]
+Bξ(φ)R−1

ξ BT
ξ (φ̂)Pξ(φ̂)

[
ξ̆(x̂, θ)− ξ̆(x̂, θ̂)

]
(7.87)

The dynamics for the closed-loop tracking error is driven by five perturbation terms:

1. The perturbation −Bξ(φ)
[
L2
fh(x, θ)− L2

fh(x̂, θ)
]

results from the pseudo estimation er-

ror in the input-output linearization due to the state estimation process,

2. The perturbation −Bξ(φ)
[
L2
fh(x̂, θ)− L2

fh(x̂, θ̂)
]

results from the pseudo estimation er-

ror in the input-output linearization due to the parameter estimation process,

3. The perturbation Bξ(φ)R−1
ξ BT

ξ (φ̂)Pξ(φ̂)
[
ξ̆(x, θ)− ξ̆(x̂, θ)

]
results from the pseudo esti-

mation error in the tracking error definition due to the state estimation process,

4. The perturbation Bξ(φ)R−1
ξ BT

ξ (φ̂)Pξ(φ̂)
[
ξ̆(x̂, θ)− ξ̆(x̂, θ̂)

]
results from the pseudo esti-

mation error in the tracking error definition due to the parameter estimation process.

5. The perturbation
[
Aξ(φ)− Aξ(φ̂)

]
ξ̆(x, θ)+

[
Bξ(φ)−Bξ(φ̂)

]
v(ξ̆(x, θ), φ̂) results from the

parameter estimation process in the adaptive LQ architecture.

The perturbation
[
Aξ(φ)− Aξ(φ̂)

]
ξ̆(x, θ) +

[
Bξ(φ)−Bξ(φ̂)

]
v(ξ̆(x, θ), φ̂) is

[
Aξ(φ)− Aξ(φ̂)

]
ξ̆(x, θ) +

[
Bξ(φ)−Bξ(φ̂)

]
v(ξ̆(x, θ), φ̂)

= Bφ

[
−ξ̆1(x, θ) − d

dt
ξ̆1(x, θ) v(ξ̆(x, θ), φ̂)

]
φ̆,

(7.88)

where the matrix Bφ = [0, 1]T and the parameter estimation error is defined as φ̆ = φ− φ̂. It

is convenient to express the term Bφ

[
−ξ̆1(x, θ)φ̆1 − d

dt
ξ̆1(x, θ)φ̆2 + v(ξ̆(x, θ), φ̂)φ̆3

]
in terms
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of the regression vector w, that was obtained from the adaptive LQ parameter estimation

process. It is straightforward to show

Bφ

[
−ξ̆1(x, θ)φ̆1 −

d

dt
ξ̆1(x, θ)φ̆2 + v(ξ̆(x, θ), φ̂)φ̆3

]
= Bφ

[
ẅT + 2ωφẇ

T + ω2
φw

T
]
φ̆. (7.89)

Next, the dynamics for the closed-loop tracking error is expressed in terms of the regression

vector w and the parameter estimation error φ̆ by substituting equation 7.88 and equation

7.89 into equation 7.87 to yield

d

dt
ξ̆ =

[
Aξ(φ̂)−Bξ(φ̂)R−1

ξ BT
ξ (φ̂)Pξ

]
ξ̆(x, θ) +Bφ(ẅT + 2ωφẇ

T + ω2
φw

T )φ̆

−Bξ(φ)
[
L2
fh(x, θ)− L2

fh(x̂, θ)
]
−Bξ(φ)

[
L2
fh(x̂, θ)− L2

fh(x̂, θ̂)
]

+Bξ(φ)R−1
ξ BT

ξ (φ̂)Pξ(φ̂)
[
ξ̆(x, θ)− ξ̆(x̂, θ)

]
+Bξ(φ)R−1

ξ BT
ξ (φ̂)Pξ(φ̂)

[
ξ̆(x̂, θ)− ξ̆(x̂, θ̂)

]
(7.90)

It is insightful to assess the effectiveness of the adaptive nonlinear design on the closed-

loop system by quantifying the closed-loop bias.

7.4 STATISTICAL ANALYSIS ON THE CLOSED-LOOP COMPOSITE

SYSTEM

The dynamics for the closed-loop composite system is:

1. The dynamics for the closed-loop tracking error in equation 7.90

d

dt
ξ̆ =

[
Aξ(φ̂)−Bξ(φ̂)R−1

ξ BT
ξ (φ̂)Pξ

]
ξ̆(x, θ) +Bφ(ẅT + 2ωφẇ

T + ω2
φw

T )φ̆

−Bξ(φ)
[
L2
fh(x, θ)− L2

fh(x̂, θ)
]
−Bξ(φ)

[
L2
fh(x̂, θ)− L2

fh(x̂, θ̂)
]

+Bξ(φ)R−1
ξ BT

ξ (φ̂)Pξ(φ̂)

([
ξ̆(x, θ)− ξ̆(x̂, θ)

]
+
[
ξ̆(x̂, θ)− ξ̆(x̂, θ̂)

])
.

2. The dynamics for the internal states in equation 7.64

ψ̇ = δ(ξr − ξ̆(x, θ), φ).
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3. The dynamics for the parameter estimation in the adaptive LQ architecture are obtained

by combining recursive least squares with exponential forgetting and projection as shown

in equation 7.76

Ṗφ =

βPφ − Pφww
TPφ, if φ̂ ∈ Φo, or φ ∈ ∂Φ and (Pφwε)

T∇g ≤ 0

0, otherwise,

˙̂
φ =

Pφwε, if φ̂ ∈ Φo, or φ ∈ ∂Φ and (Pφwε)
T∇g ≤ 0,(

1− P∇g∇gT
∇gTP∇g

)
Pφwε, otherwise.

4. The dynamics for the closed-loop adaptive state observer given in section 7.2,

a. The dynamics for the auxiliary state in equation 7.42

d

dt
q́ = λAmq́ + λS−1CT

mCmNθ́ − λS−1CT
mj(Cmḿ)

+ Λ(g1(m,u)− g1(m̂, u)) + Λ(g2(m)− g2(m̂))θ.

b. The dynamics for the scaled parameter estimation error in equation 7.38

d

dt
θ́ = −λPNTCT

mj(Cmḿ).

c. The dynamics for the N dynamics in equation 7.24c

Ṅ = λ(Am − S−1CT
mCm)N + λΨ(m̂).

d. The dynamics for the time-varying adaptive gain matrix Pθ in equation 7.24d

Ṗθ = −λPθNTCT
mCmNPθ + λPθ.

The following assumptions are used:
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Assumption 12. The Lie derivative L2
fh(x, θ) is Lipschitz in both x and θ. The Lipschitz

condition implies there exists positive constants l1 and l2 such that

∣∣∣∣L2
fh(m, θ)− L2

fh(m̂, θ)
∣∣∣∣ ≤ l1 ||m̆|| (7.92a)∣∣∣∣∣∣L2

fh(x̂, θ)− L2
fh(x̂, θ̂)

∣∣∣∣∣∣ ≤ l2

∣∣∣∣∣∣θ̆∣∣∣∣∣∣ (7.92b)

The state x is related to the state m through a one-to-one mapping due to the state transfor-

mation m(x) in equation 7.11. The one-to-one map allows the term L2
fh(x, θ) to be expressed

as L2
fh(m, θ).

Assumption 13. The tracking error ξ̆(x, θ) is Lipschitz in both x and θ. The Lipschitz

condition implies there exists positive constants l3 and l4 such that

∣∣∣∣∣∣ξ̆(m, θ)− ξ̆(m̂, θ)∣∣∣∣∣∣ ≤ l3 ||m̆|| (7.93a)∣∣∣∣∣∣ξ̆(m̂, θ)− ξ̆(m̂, θ̂)∣∣∣∣∣∣ ≤ l4

∣∣∣∣∣∣θ̆∣∣∣∣∣∣ (7.93b)

The state x is related to the state m through a one-to-one mapping due to the state transfor-

mation m(x) in equation 7.11. The one-to-one map allows the term ξ̆(x, θ) to be expressed

as ξ̆(m, θ).

Assumption 14. Assumption 9 states the state x, the input v, and the parameters θ are

bounded for all time. The use of assumption 9 implies the regression vector w and its first

two derivatives are bounded for all time. Then, there exists a positive constant l6 such that

∣∣∣∣ẅ + 2ωφẇ + ω2
φw
∣∣∣∣ ≤ l6, ∀t ≥ 0. (7.94)

Assumption 15. The state m, the control input u, and the parameters θ are bounded for

all time. This assumption is standard for high-gain adaptive state observers [117, 121].

Assumption 16. The vector field b1(m) is Lipschitz in m. The Lipschitz condition implies

there exists a positive constant l7 such that

||b1(m)− b1(m̂)|| ≤ l7 ||m̆|| . (7.95)
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Assumption 17. The vector field b2(m) is Lipschitz. The Lipschitz condition implies there

exists a positive constant l8 such that

||b2(m)− b2(m̂)|| ≤ l8 ||m̆|| . (7.96)

Theorem 5 (Closed-loop Adaptive System). The dynamics for the expected value of the

closed-loop composite system are described by the tracking error in equation 7.90, the internal

states in equation 7.64, and the parameter estimation for the adaptive LQ architecture in

equation 7.76, and the adaptive state observer in section 7.2. Then, for every bounded input

that satisfies the persistent excitation condition in equation 7.26 and equation 7.73, there

exists a positiver constant λo, such that for every positive constant λ > λo, the closed-loop

composite system is uniformly ultimately bounded for high values of λ.

Proof. The stability analysis is performed on the auxiliary state q́, the scaled parameter

estimation error θ́, the tracking error ξ̆(x, θ), and the parameter estimation error φ̆. The

Lyapunov function candidate is

W (q́, θ́, ξ̆(x, θ), φ̆) = W1(q́) +W2(θ́) +W3(ξ̆(x, θ)) +W4(φ̆)

= q́TSq́ + θ́TP−1
θ θ́ + ξ̆T (x, θ)Pξ ξ̆(x, θ) + φ̆TP−1

φ φ̆,
(7.97)

which is lower and upper bounded by

Υ1

(
||q́||2 +

∣∣∣∣∣∣θ́∣∣∣∣∣∣2 +
∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣2) ≤ W ≤ Υ2

(
||q́||2 +

∣∣∣∣∣∣θ́∣∣∣∣∣∣2 +
∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣2)+ Υ3M

2
o ,

(7.98a)

where the Υ1,Υ2,Υ3 are positive constants with Υ1 and Υ2 defined as

Υ1 ≤ min
(
λmin(S), λmin(P−1

θ ), λmin(Pξ)
)

(7.99)

Υ2 ≥ max
(
λmax(S), λmax(P

−1
θ ), λmax(Pξ)

)
(7.100)

Taking the time derivative of equation 7.97 yields

Ẇ = Ẇ1 + Ẇ2 + Ẇ3 + Ẇ4

=
d

dt
q́TSq́ + q́TS

d

dt
q́ +

d

dt
ξ̆TPξ ξ̆ + ξ̆TPξ

d

dt
ξ̆

+ 2θ́TP−1
θ

d

dt
θ́ − θ́TP−1

θ ṖθP
−1
θ θ́ + 2φ̆TP−1

φ

d

dt
φ̆− φ̆TP−1

φ ṖφP
−1
φ φ̆.

(7.101)
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The stability analysis is simplified by grouping the terms in equation 7.101, finding the bound

for each group, and combining the results of each group. Equation 7.101 is grouped as:

1. Adaptive state observer group: Ẇ1 + Ẇ2

2. Tracking error group: Ẇ3

3. Recursive least squares for control group: Ẇ4

A stability analysis is performed for each group.

1. The adaptive state observer group is

Ẇ1 + Ẇ2 =
d

dt
q́TSq́ + q́TS

d

dt
q́ + 2θ́TP−1

θ

d

dt
θ́ − θ́TP−1

θ ṖθP
−1
θ θ́. (7.102)

The analysis is the same as given in the proof of theorem 4 for the adaptive state observer.

Equation 7.102 is bounded by

Ẇ1 + Ẇ2 ≤ −(λ− η1)W1(q́)− (λ− η1)W2(θ́). (7.103)

The Lyapunov functions W1(q́) and W2(θ́) are bounded in terms of ||q́||2 and
∣∣∣∣∣∣θ́∣∣∣∣∣∣2 by

using equation 7.98 to yield

Ẇ1 + Ẇ2 ≤ −(λ− η1)λmin(S) ||q́||2 − (λ− η2)λmin(Pθ)
∣∣∣∣∣∣θ́∣∣∣∣∣∣2 . (7.104)

2. The tracking error group is

Ẇ3 =
d

dt
ξ̆TPξ ξ̆ + ξ̆TPξ

d

dt
ξ̆. (7.105)

Substitute the tracking error dynamics in equation 7.90 into equation 7.105 yields

Ẇ3 = ξ̆T (x, θ)

(
ATξ (φ̂)Pξ(φ̂) + Pξ(φ̂)Aξ(φ̂)− Pξ(φ̂)Bξ(φ̂)R−1

ξ BT
ξ (φ̂)Pξ(φ̂)

)
ξ̆(x, θ)

− ξ̆T (x, θ)Pξ(φ̂)Bξ(φ̂)R−1
ξ BT

ξ (φ̂)Pξ(φ̂)ξ̆(x, θ)

+ 2ξ̆T (x, θ)Pξ(φ̂)Bφ(ẅT + 2ωφẇ
T + ω2

φw
T )φ̆

− 2ξ̆T (x, θ)Pξ(φ̂)Bξ(φ)

([
L2
fh(x, θ)− L2

fh(x̂, θ)
]

+
[
L2
fh(x̂, θ)− L2

fh(x̂, θ̂)
])

+ 2ξ̆T (x, θ)Pξ(φ̂)Bξ(φ)R−1
ξ BT

ξ (φ̂)Pξ(φ̂)

([
ξ̆(x, θ)− ξ̆(x̂, θ)

]
+
[
ξ̆(x̂, θ)− ξ̆(x̂, θ̂)

])
(7.106)
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It is straighforward to show that the term −ξ̆T (x, θ)Pξ(φ̂)Bξ(φ̂)R−1
ξ BT

ξ (φ̂)Pξ(φ̂)ξ̆(x, θ) is

bounded by

−ξ̆T (x, θ)Pξ(φ̂)Bξ(φ̂)R−1
ξ BT

ξ (φ̂)Pξ(φ̂)ξ̆(x, θ) ≤ 0.

The first term in equation 7.106 is simplified by applying the Riccati equation (same as

given in equation 7.85)

Pξ(φ̂)Aξ(φ̂) + ATξ (φ̂)Pξ(φ̂) +Qξ − Pξ(φ̂)Bξ(φ̂)R−1
ξ BT

ξ (φ̂)Pξ(φ̂) = 0.

The last four terms in equation 7.106 are expressed in the state x. For the stability

analysis, it is convenient to express these terms in the state m. As discussed in section

7.2, a one-to-one map exists between the state x and the state m. The one-to-one map

allows for the Lie derivative L2
fh(x, θ) and the tracking error ξ̆(x, θ) to be expressed

equivalently as L2
fh(m, θ) and ξ̆(x, θ) respectively. Then, equation 7.106 is equal to

Ẇ3 ≤ −ξ̆T (x, θ)Qξ ξ̆(x, θ) + 2ξ̆T (x, θ)Pξ(φ̂)Bφ(ẅT + 2ωφẇ
T + ω2

φw
T )φ̆

− 2ξ̆T (x, θ)Pξ(φ̂)Bξ(φ)

([
L2
fh(m, θ)− L2

fh(m̂, θ)
]

+
[
L2
fh(m̂, θ)− L2

fh(m̂, θ̂)
])

+ 2ξ̆T (x, θ)Pξ(φ̂)Bξ(φ)R−1
ξ BT

ξ (φ̂)Pξ(φ̂)

([
ξ̆(m, θ)− ξ̆(m̂, θ)

]
+
[
ξ̆(m̂, θ)− ξ̆(m̂, θ̂)

])
(7.107)

Equation 7.107 is further bounded by taking the norm of the last five terms and applying

the properties of positive definite matrices to the first term to yield

Ẇ3 ≤ −λmin(Qξ)
∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣2 +

∣∣∣∣∣∣2ξ̆T (x, θ)Pξ(φ̂)Bφ(ẅT + 2ωφẇ
T + ω2

φw
T )φ̆
∣∣∣∣∣∣

+
∣∣∣∣∣∣2ξ̆T (x, θ)Pξ(φ̂)Bξ(φ)

[
L2
fh(m, θ)− L2

fh(m̂, θ)
]∣∣∣∣∣∣

+
∣∣∣∣∣∣2ξ̆T (x, θ)Pξ(φ̂)Bξ(φ)

[
L2
fh(m̂, θ)− L2

fh(m̂, θ̂)
]∣∣∣∣∣∣

+
∣∣∣∣∣∣2ξ̆T (x, θ)Pξ(φ̂)Bξ(φ)R−1

ξ BT
ξ (φ̂)Pξ(φ̂)

[
ξ̆(m, θ)− ξ̆(m̂, θ)

]∣∣∣∣∣∣
+
∣∣∣∣∣∣2ξ̆T (x, θ)Pξ(φ̂)Bξ(φ)R−1

ξ BT
ξ (φ̂)Pξ(φ̂)

[
ξ̆(m̂, θ)− ξ̆(m̂, θ̂)

]∣∣∣∣∣∣
(7.108)

Next, the norm of the last five terms in equation 7.108 are bounded in terms of ||q́||2,∣∣∣∣∣∣θ́∣∣∣∣∣∣2,
∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣2, and

∣∣∣∣∣∣φ̆∣∣∣∣∣∣2. These terms are bounded as follows:
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a. The norm
∣∣∣∣∣∣2ξ̆T (x, θ)Pξ(φ̂)Bφ(ẅT + 2ωφẇ

T + ω2
φw

T )φ̆
∣∣∣∣∣∣ is bounded by using assump-

tion 14, which implies the regression vector and its derivatives are bounded. Taking

the norm of 2ξ̆T (x, θ)Pξ(φ̂)Bφ(ẅT + 2ωφẇ
T + ω2

φw
T )φ̆ yields the bound∣∣∣∣∣∣2ξ̆T (x, θ)Pξ(φ̂)Bφ(ẅT + 2ωφẇ

T + ω2
φw

T )φ̆
∣∣∣∣∣∣ ≤ η32

∣∣∣∣∣∣ξ̆(x, θ∣∣∣∣∣∣ ∣∣∣∣∣∣φ̆∣∣∣∣∣∣ , (7.109)

where η3 = l6

∣∣∣∣∣∣Pξ(φ̂)
∣∣∣∣∣∣ ||Bφ||. The term 2

∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣ ∣∣∣∣∣∣φ̆∣∣∣∣∣∣ is bounded using Young’s

inequality to yield

2
∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣ ∣∣∣∣∣∣φ̆∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣2 +

∣∣∣∣∣∣φ̆∣∣∣∣∣∣2 .
Then, equation 7.109 is bounded by∣∣∣∣∣∣2ξ̆T (x, θ)Pξ(φ̂)Bφ(ẅT + 2ωφẇ

T + ω2
φw

T )φ̆
∣∣∣∣∣∣ ≤ η3

∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣2 + η3

∣∣∣∣∣∣φ̆∣∣∣∣∣∣2 . (7.110)

b. The norm
∣∣∣∣∣∣2ξ̆T (x, θ)Pξ(φ̂)Bξ(φ)

[
L2
fh(m̂, θ)− L2

fh(m̂, θ̂)
]∣∣∣∣∣∣ is bounded using

assumption 12, which implies the Lie derivative L2
fh(m, θ) is Lipschitz in θ. First,

taking the norm of
∣∣∣∣∣∣L2

fh(m̂, θ)− L2
fh(m̂, θ̂)

∣∣∣∣∣∣ yields∣∣∣∣∣∣L2
fh(m̂, θ)− L2

fh(m̂, θ̂)
∣∣∣∣∣∣ ≤ l2

∣∣∣∣∣∣θ̆∣∣∣∣∣∣ .
The norm

∣∣∣∣∣∣θ̆∣∣∣∣∣∣ is bounded in terms of
∣∣∣∣∣∣θ́∣∣∣∣∣∣ by using equation 7.36 (m̆ = Ω−1θ́) to

yield ∣∣∣∣∣∣L2
fh(m̂, θ)− L2

fh(m̂, θ̂)
∣∣∣∣∣∣ ≤ l2

∣∣∣∣Ω−1
∣∣∣∣ ∣∣∣∣∣∣θ́∣∣∣∣∣∣ . (7.111)

Then, the norm
∣∣∣∣∣∣2ξ̆T (x, θ)Pξ(φ̂)Bξ(φ)

[
L2
fh(m̂, θ)− L2

fh(m̂, θ̂)
]∣∣∣∣∣∣ is bounded using

equation 7.111 to be∣∣∣∣∣∣2ξ̆T (x, θ)Pξ(φ̂)Bξ(φ)
[
L2
fh(m̂, θ)− L2

fh(m̂, θ̂)
]∣∣∣∣∣∣ ≤ η42

∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣ ∣∣∣∣∣∣θ́∣∣∣∣∣∣ , (7.112)

where η4 = l2

∣∣∣∣∣∣Pξ(φ̂)
∣∣∣∣∣∣ ||Bξ(φ)|| ||Ω−1||. The norm 2

∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣ ∣∣∣∣∣∣θ́∣∣∣∣∣∣ is bounded using

Young’s inequality to yield

2
∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣ ∣∣∣∣∣∣θ́∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣2 +

∣∣∣∣∣∣θ́∣∣∣∣∣∣2 .
Then, equation 7.112 is bounded by∣∣∣∣∣∣2ξ̆T (x, θ)Pξ(φ̂)Bξ(φ)

[
L2
fh(m̂, θ)− L2

fh(m̂, θ̂)
]∣∣∣∣∣∣ ≤ η4

∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣2 + η4

∣∣∣∣∣∣θ́∣∣∣∣∣∣ ,
(7.113)

181



c. The norm
∣∣∣∣∣∣2ξ̆T (x, θ)Pξ(φ̂)Bξ(φ)

[
L2
fh(m, θ)− L2

fh(m̂, θ)
]∣∣∣∣∣∣ is bounded using

assumption 12, which implies the Lie derivative L2
fh(m, θ) is Lipschitz in m. First,

the norm
∣∣∣∣L2

fh(m, θ)− L2
fh(m̂, θ)

∣∣∣∣ is bounded by

L2
fh(m, θ)− L2

fh(m̂, θ) ≤ l1 ||m̆|| .

The norm ||m̆|| is bounded in terms of ||q|| and
∣∣∣∣∣∣θ́∣∣∣∣∣∣ by using equation 7.35 (m̆ =

Λ−1ḿ) and equation 7.39 (ḿ = q́ +Nθ́) to yield

∣∣∣∣L2
fh(m, θ)− L2

fh(m̂, θ) ≤ l1 ||m̆||
∣∣∣∣ ≤ l1

∣∣∣∣Λ−1
∣∣∣∣ ( ||q́||+ ||N || ||θ||). (7.114)

Then, the norm
∣∣∣∣∣∣2ξ̆T (x, θ)Pξ(φ̂)Bξ(φ)

[
L2
fh(m, θ)− L2

fh(m̂, θ)
]∣∣∣∣∣∣ is bounded using

equation 7.114 to be

∣∣∣∣∣∣2ξ̆T (x, θ)Pξ(φ̂)Bξ(φ)
[
L2
fh(m, θ)− L2

fh(m̂, θ)
]∣∣∣∣∣∣

≤ η52
∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣ ||q́||+ η5 ||N || 2

∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣ ∣∣∣∣∣∣θ́∣∣∣∣∣∣ (7.115)

where η5 = l1

∣∣∣∣∣∣Pξ(φ̂)
∣∣∣∣∣∣ ||Bξ(φ)|| ||Λ−1||. The norms 2

∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣ ||q́|| and

2
∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣ ∣∣∣∣∣∣θ́∣∣∣∣∣∣ are bounded using Young’s inequality to yield

2
∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣ ||q́|| ≤ ∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣2 + ||q́||2 and 2

∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣ ∣∣∣∣∣∣θ́∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣2 +
∣∣∣∣∣∣θ́∣∣∣∣∣∣2 .

Then, equation 7.115 is bounded by

∣∣∣∣∣∣2ξ̆T (x, θ)Pξ(φ̂)Bξ(φ)
[
L2
fh(m, θ)− L2

fh(m̂, θ)
]∣∣∣∣∣∣

≤ η5(1 + ||N ||)
∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣2 + η5 ||q́||2 + η5 ||N ||

∣∣∣∣∣∣θ́∣∣∣∣∣∣2 . (7.116)
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d. The norm
∣∣∣∣∣∣2ξ̆(x, θ)Pξ(φ̂)Bξ(φ)R−1

ξ Bξ(φ̂)Pξ(φ̂)
[
ξ̆(m̂, θ)− ξ̆(m̂, θ̂)

]∣∣∣∣∣∣ is bounded us-

ing assumption 13, which implies the tracking error ξ̆(m, θ) is Lipschitz in θ. First,

the norm
∣∣∣∣∣∣ξ̆(m̂, θ)− ξ̆(m̂, θ̂)∣∣∣∣∣∣ is bounded by

∣∣∣∣∣∣ξ̆(m̂, θ)− ξ̆(m̂, θ̂)∣∣∣∣∣∣ ≤ l4

∣∣∣∣∣∣θ̆∣∣∣∣∣∣ .

The norm
∣∣∣∣∣∣θ̆∣∣∣∣∣∣ is bounded in terms of

∣∣∣∣∣∣θ́∣∣∣∣∣∣ by using equation 7.36 (θ̆ = Ω−1θ́) to

yield ∣∣∣∣∣∣ξ̆(m̂, θ)− ξ̆(m̂, θ̂)∣∣∣∣∣∣ ≤ l4
∣∣∣∣Ω−1

∣∣∣∣ ∣∣∣∣∣∣θ́∣∣∣∣∣∣ . (7.117)

Then, the norm
∣∣∣∣∣∣2ξ̆(x, θ)Pξ(φ̂)Bξ(φ)R−1

ξ Bξ(φ̂)Pξ(φ̂)
[
ξ̆(m̂, θ)− ξ̆(m̂, θ̂)

]∣∣∣∣∣∣ is

bounded using equation 7.117 to yield

∣∣∣∣∣∣2ξ̆(x, θ)Pξ(φ̂)Bξ(φ)R−1
ξ Bξ(φ̂)Pξ(φ̂)

[
ξ̆(m̂, θ)− ξ̆(m̂, θ̂)

]∣∣∣∣∣∣
≤ η62

∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣ ∣∣∣∣∣∣θ́∣∣∣∣∣∣ , (7.118)

where η6 = l4

∣∣∣∣∣∣Pξ(φ̂)
∣∣∣∣∣∣ ||Bξ(φ)||

∣∣∣∣R−1
ξ

∣∣∣∣ ∣∣∣∣∣∣Bξ(φ̂)
∣∣∣∣∣∣ ∣∣∣∣∣∣Pξ(φ̂)

∣∣∣∣∣∣ ||Ω−1||. The norm

2
∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣ ∣∣∣∣∣∣θ́∣∣∣∣∣∣ is bounded using Young’s inequality to yield

2
∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣ ∣∣∣∣∣∣θ́∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣2 +

∣∣∣∣∣∣θ́∣∣∣∣∣∣2 .

Then, equation 7.118 is bounded by

∣∣∣∣∣∣2ξ̆(x, θ)Pξ(φ̂)Bξ(φ)R−1
ξ Bξ(φ̂)Pξ(φ̂)

[
ξ̆(m̂, θ)− ξ̆(m̂, θ̂)

]∣∣∣∣∣∣
≤ η6

∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣2 + η6

∣∣∣∣∣∣θ́∣∣∣∣∣∣2 , (7.119)
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e. The norm
∣∣∣∣∣∣2ξ̆(x, θ)Pξ(φ̂)Bξ(φ)R−1

ξ Bξ(φ̂)Pξ(φ̂)
[
ξ̆(m, θ)− ξ̆(m̂, θ)

]∣∣∣∣∣∣ is bounded us-

ing assumption 13, which implies the tracking error ξ̆(m, θ) is Lipschitz in m. First,

the norm
∣∣∣∣∣∣ξ̆(m, θ)− ξ̆(m̂, θ)∣∣∣∣∣∣ is bounded by∣∣∣∣∣∣ξ̆(m, θ)− ξ̆(m̂, θ)∣∣∣∣∣∣ ≤ l3 ||m̆|| .

The norm ||m̆|| is bounded in terms of ||q|| and
∣∣∣∣∣∣θ́∣∣∣∣∣∣ by using equation 7.35 (m̆ =

Λ−1ḿ) and equation 7.39 (ḿ = q́ +Nθ́) to yield∣∣∣∣∣∣ξ̆(m, θ)− ξ̆(m̂, θ)∣∣∣∣∣∣ ≤ l3
∣∣∣∣Λ−1

∣∣∣∣ ( ||q́||+ ||N || ||θ||). (7.120)

Then, the norm
∣∣∣∣∣∣2ξ̆(x, θ)Pξ(φ̂)Bξ(φ)R−1

ξ Bξ(φ̂)Pξ(φ̂)
[
ξ̆(m, θ)− ξ̆(m̂, θ)

]∣∣∣∣∣∣ is

bounded using equation 7.120 to be∣∣∣∣∣∣2ξ̆(x, θ)Pξ(φ̂)Bξ(φ)R−1
ξ Bξ(φ̂)Pξ(φ̂)

[
ξ̆(m, θ)− ξ̆(m̂, θ)

]∣∣∣∣∣∣
≤ η72

∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣ ||q́||+ η7 ||N || 2
∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣ ∣∣∣∣∣∣θ́∣∣∣∣∣∣ , (7.121)

where η7 = l3

∣∣∣∣∣∣Pξ(φ̂)
∣∣∣∣∣∣ ||Bξ(φ)||

∣∣∣∣R−1
ξ

∣∣∣∣ ∣∣∣∣∣∣Bξ(φ̂)
∣∣∣∣∣∣ ∣∣∣∣∣∣Pξ(φ̂)

∣∣∣∣∣∣ ||Λ||. The norms

2
∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣ ||q́|| and 2

∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣ ∣∣∣∣∣∣θ́∣∣∣∣∣∣ are bounded using Young’s inequality to yield

2
∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣ ||q́|| ≤ ∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣2 + ||q́||2 and 2

∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣ ∣∣∣∣∣∣θ́∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣2 +
∣∣∣∣∣∣θ́∣∣∣∣∣∣2 .

Then, equation 7.121 is bounded by∣∣∣∣∣∣2ξ̆(x, θ)Pξ(φ̂)Bξ(φ)R−1
ξ Bξ(φ̂)Pξ(φ̂)

[
ξ̆(m, θ)− ξ̆(m̂, θ)

]∣∣∣∣∣∣
≤ η7(1 + ||N ||)

∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣2 + η7 ||q́||+ η7 ||N ||
∣∣∣∣∣∣θ́∣∣∣∣∣∣2 . (7.122)

The time derivative Ẇ3 in equation 7.108 is further bounded by bounding the norm of

the last five terms with equation 7.110 , equation 7.113, equation 7.116, equation 7.119,

and equation 7.122 to yield

Ẇ3 ≤−
(
λmin(Qξ)− η3 − η4 − η6 − (η5 + η7)(1 + ||N ||)

) ∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣2
+ (η5 + η7) ||q́||2 + η3

∣∣∣∣∣∣φ̆∣∣∣∣∣∣2 +

(
η4 + η6 + (η5 + η7) ||N ||

) ∣∣∣∣∣∣θ́∣∣∣∣∣∣2 . (7.123)
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3. The recursive least squares for control group is

Ẇ4 = 2φ̆TP−1
φ

d

dt
φ̆− φ̆TP−1

φ ṖφP
−1
φ φ̆. (7.124)

Add and subtract the term φ̆TwwT φ̆ to equation 7.124 yields

Ẇ4 = 2φ̆TP−1
φ

d

dt
φ̆+ φ̆TwwT φ̆− φ̆T

(
P−1
φ ṖφP

−1
φ + wwT

)
φ̆. (7.125)

The term φ̆TwwT φ̆ is always positive and is bounded by 2φ̆TwwT φ̆. Recall from the

recursive least squares formulation, the observation error is defined as

wT φ̆ = ξ̆1(t)− wT (t)φ̂(t). Then, equation 7.125 is bounded by

Ẇ4 ≤ 2φ̆T
(
P−1
φ

d

dt
φ̆+ wε

)
− φ̆T

(
P−1
φ ṖφP

−1
φ + wwT

)
φ̆. (7.126)

The update laws for φ̆ and Pφ are chosen to be equation 7.76,

Ṗφ =

βPφ − Pφww
TPφ, if φ̂ ∈ Φo, or φ ∈ ∂Φ and (Pφwε)

T∇g ≤ 0

0, otherwise,

d

dt
φ̆ = − d

dt
φ̂ =

−Pφwε, if φ̂ ∈ Φo, or φ ∈ ∂Φ and (Pφwε)
T∇g ≤ 0,

−
(

1− P∇g∇gT
∇gTP∇g

)
Pφwε, otherwise.

Applying the update laws in equation 7.76 to equation 7.126 yields

Ẇ4 ≤

−βφ̆
TP−1

φ φ̆, if φ̂ ∈ Φo, or φ ∈ ∂Φ and (Pφwε)
T∇g ≤ 0

−φ̆TwwT φ̆+ 2 φ̆T∇g
∇gTPφ∇g

(
∇gTPφwε

)
, otherwise

. (7.128)

We are interested in the effects that projection has on the stability analysis, and these

effects are quantified by considering the “otherwise” case of Ẇ4. Then, equation 7.128

becomes

Ẇ4 ≤ −φ̆TwwT φ̆+ 2
φ̆T∇g
∇gTPφ∇g

(
∇gTPφwε

)
. (7.129)
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In the stability analysis, the last term
2φ̆T∇g∇gTPφwε
∇gTPφ∇g

may cause a problem, so let us exam-

ine its sign. For this case, φ̆T φ̆ = M2
o and ∇gTPφwε > 0, then the sign

(
2φ̆T∇g∇gTPφwε
∇gTPφ∇g

)
is equated to the sign

(
φ̆T∇g

)
[125]. The gradient of g is ∇g = −φ̆, which implies

φ̆T∇g = −M2
o < 0, (7.130)

and shows that the sign
(

2φ̆T∇g∇gTPφwε
∇gTPφ∇g

)
is always negative. We can conclude the effects

of projection is to make Ẇ4 more negative. Then, equation 7.129 is bounded by

Ẇ4 ≤ −φ̆TwwT φ̆. (7.131)

Recall that the time derivative of the Lyapunov function (same as described in equation

7.101)

Ẇ = Ẇ1 + Ẇ2 + Ẇ3 + Ẇ4

=
d

dt
q́TSq́ + q́TS

d

dt
q́ +

d

dt
ξ̆TPξ ξ̆ + ξ̆TPξ

d

dt
ξ̆

+ 2θ́TP−1
θ

d

dt
θ́ − θ́TP−1

θ ṖθP
−1
θ θ́ + 2φ̆TP−1

φ

d

dt
φ̆− φ̆TP−1

φ ṖφP
−1
φ φ̆.

Equation 7.101 was grouped into three groups and each group was bounded. Substitute

the bound for the adaptive state observer group Ẇ1 + Ẇ2 (same as equation 7.104), the

tracking group Ẇ3 (same as equation 7.123), and the recursive least squares group Ẇ4 (same

as equation 7.131) into Ẇ yields

Ẇ ≤−
(

(λ− η1)λmin(Sq)− η5 − η7

)
||q́||2

−
(

(λ− η1)λmin(P−1
θ )− η4η6 − (η5 + η7)(1 + ||N ||)

) ∣∣∣∣∣∣θ́∣∣∣∣∣∣2
−
(
λmin(Qξ)− η3 − η4 − η6 − (η5 + η7)(1 + ||N ||)

) ∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣2
− φ̆TwwT φ̆+ η3

∣∣∣∣∣∣φ̆∣∣∣∣∣∣2 .
(7.132)

Defining a positive constant Υ4 as

Υ4 = min

(
(λ− η1)λmin(Sq)− η5 − η7,

(λ− η1)λmin(P−1
θ )− η4η6 − (η5 + η7)(1 + ||N ||),

λmin(Qξ)− η3 − η4 − η6 − (η5 + η7)(1 + ||N ||)
)
,

(7.133)
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then equation 7.101 is bounded by

Ẇ ≤ −Υ4

(
||q́||2 +

∣∣∣∣∣∣θ́∣∣∣∣∣∣2 +
∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣2)+ η3

∣∣∣∣∣∣φ̆∣∣∣∣∣∣2 (7.134)

Equation 7.134 is expressed in terms of W by using the upper bound of W (same as given

in equation 7.98)

W ≤ Υ2

(
||q́||2 +

∣∣∣∣∣∣θ́∣∣∣∣∣∣2 +
∣∣∣∣∣∣ξ̆(x, θ)∣∣∣∣∣∣2)+ Υ3M

2
o ,

and applying
∣∣∣∣∣∣φ̆∣∣∣∣∣∣2 ≤M2

o yields

Ẇ ≤ −Υ4

Υ2

W + Υ5M
2
o , (7.135)

where the positive constant Υ4 is defined by Υ5 = Υ3Υ4

Υ2
+ η3. The solution to equation 7.135

is

W (t) ≤ W (0) exp

(
−Υ4

Υ2

t

)
+ Υ5M

2
o

(
1− exp

(
−Υ4

Υ2

t

))
. (7.136)

The Lyapunov function W decays exponentially to its steady-state value of Υ5M
2
o . Thus, we

can conclude that W ∈ L∞. Signal tracing is now performed to show that the closed-loop

system remains bounded.

1. The Lyapunov function is W ∈ L∞, then equation 7.97 imples q́, θ́, ξ̆, φ̆ ∈ L∞.

2. The parameter estimation error and the true parameter are φ, φ̆ ∈ L∞, then from

φ̆ = φ− φ̂ and projection implies φ̂ ∈ L∞.

3. The scaled parameter estimation error θ́ ∈ L∞ and Ω ∈ L∞, then equation 7.36 (θ̆ = Ωθ́)

implies θ̆ ∈ L∞.

4. The parameter estimation error θ̆ ∈ L∞ and the true parameter θ ∈ L∞, then from

θ̆ = θ − θ̂ implies θ̂ ∈ L∞.

5. The scaled estimation errors q́, θ́ ∈ L∞ and ||N || ∈ L∞, then from equation 7.39 (q́ =

ḿ−Nθ́ implies ḿ ∈ L∞
6. The scaled state estimation error ḿ and Λ ∈ L∞, then from equation 7.35 (ḿ = Λm̆)

implies m̆ ∈ L∞.

7. The state estimation error and the state m̆,m ∈ L∞, then from m̆ = m − m̂ implies

m̂ ∈ L∞.
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8. The state estimate m̂ ∈ L∞ and using the one-to-one map between m and x implies

x̂ ∈ L∞.

9. The tracking error ξ̆ ∈ L∞, the reference signal ξr ∈ L∞, the estimates x̂, θ̂ ∈ L∞, then

from equation 7.63 implies ξ(x̂, θθ) ∈ L∞.
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8.0 SIMULATIONS

Proof of concept is needed to demonstrate the closed-loop performance of the controllers in a

single-molecule study. The single-molecule study chosen is the stretching of a DNA molecule

to replicate its force-extension curve. The force-extension curve is nonlinear because the

DNA molecule becomes stiffer the farther it is stretched [126, 97]. The study is performed

with simulations to demonstrate and compare the closed-loop performance of the controllers.

The two metrics to be quantified are:

1. The improvement in the closed-loop performance when considering the system nonlin-

earities in the controller design.

2. The closed-loop performance using adaptive self-tuning feedback compared to that using

fixed-gain feedback methods. The comparison quantifies the effect of using an automated

optical trap to minimize the user interaction to that of an optical trap that requires

extensive user interaction with the instrument and control design.

This chapter discusses the simulation setup and results.

8.1 SIMULATION SETUP

The simulations are performed in Simulink with a fixed-step Dormand-Prince solver. The

optical trap system is modeled according to its dynamics given in equation 4.37. The model

of the optical trap system is used as the plant for the following controllers (LQG, nominal

nonlinear design, and adaptive nonlinear design). The simplified model of the optical trap is

used as the plant for the nonlinear PI controller as discussed in section 6.5. The process noise

189



(Brownian noise and molecule noise) and the sensor noise are modeled with band-limited

white noise.

For the LQG design, the nominal nonlinear design, and the adaptive nonlinear design,

the force-extension curve of the DNA molecule is replicated by mimicking the molecule being

stretched in the following way:

1. Initially, the molecule as zero extension. The molecule is then stretched to have its force

(force disturbance) be increased in increments of 2 pN every 2 s.

2. The molecule’s extension is stretched by having the bead deflection track a reference

signal. The reference signal is increased to have the resulting optical force be increased

in increments by 2 pN every 2 s. The optical force is increased between 0 to 50 pN.

3. For each increment the molecule force is increased, the estimated value of the estimated

disturbance d̂d is related to the estimated molecule’s extension x̂m through the one-to-one

map (same as given in equation 4.32),(
x̂m
lm

)4

−

(
13

4
+
d̂d
lm

)(
x̂m
lm

)3

+

(
15

4
+

3d̂d
lm

)(
x̂m
lm

)2

−

(
3

2
+

3d̂d
lm

)(
x̂m
lm

)
+

3d̂d
2lm

= 0.

The contour length of the DNA molecule is chosen to be lm = 9.5 kb.

4. The estimated molecule’s extension is then used to provide information on the molecule’s

stiffness using equation 4.12,

km =
kBT

lmlp

[
1

2

(
1− x̂m

lm

)−3

+ 1

]
.

5. The estimated disturbance and the molecule’s stiffness is then used to provide an estimate

of the molecule’s force.

For the nonlinear PI design, the force-extension curve of the DNA molecule is replicated

by mimicking the molecule being stretched in the following way:

1. Initially, the molecule as zero extension. The molecule is then stretched to have its force

(force disturbance) be increased in increments of 2 pN every 2 s.

2. The molecule’s extension is stretched by having the bead deflection track a reference

signal. The reference signal is increased to have the resulting optical force be increased

in increments by 2 pN every 2 s. The optical force is increased between 0 to 50 pN.
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Table 6: The values of the dimensionless stiffness κ for each instance the molecule force is

increased by 2 pN. Each pair of κ and kt describes an operating condition.

Force (pN) κ Force (pN) κ Force (pN) κ Force (pN) κ

0 0.00037 14 2.2984 28 6.5612 42 11.66

2 0.11637 16 2.817 30 7.2987 44 12.704

4 0.34324 18 3.313 32 7.8528 46 13.875

6 0.64877 20 3.9327 34 8.7941 48 14.516

8 0.98181 22 4.5727 36 9.5068 50 15.196

10 1.3691 24 5.1884 38 10.299

12 1.81147 26 5.7247 40 11.181

3. The signal ẑ is used to estimate the molecule force through equation 6.64

f̂m = ηk2(ẑ − zr).

4. The force estimate is then used with the WLC model to relate the force to extension

because the WLC model is a one-to-one map between force and extension.

8.2 LQG RESULTS

The LQG design is a fixed gain linear controller that needs to be designed for each operating

condition. The operating condition (each pair of κ and kt) changes at each instance the

molecule’s extension is extended because the molecule stiffness increases (equal to the value

of κ increasing because the optical stiffness is constant). At each instance the molecule is

extended to have its force increase by 2 pN, the corresponding values for the dimensionless

stiffness κ are shown in table 6. Therefore, for each operating condition for the optical trap

system, a Kalman filter and the input-output feedback with LQ structure are designed.
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The LQG design uses high values for the weight placed on the tracking error in the LQ

control algorithm. High values are used because for each instance the molecule is stretched,

large initial transients are present in the response of the bead deflection and its estimate as

shown in figure 44. The large transients are bad because the molecule is stretched farther

beyond its intended extension and the molecule can enter a different physical regime than

intended. An example occurs when the DNA is nearly stretched to its contour length be-

cause large transient can lead to DNA entering a new regime called B-DNA and the DNA

experiencing hysteresis behavior [9]. Large values are used for the weight on the tracking

error in the LQ algorithm to prevent the large transients.

The results of the estimated disturbance d̂d is shown in figure 45. The estimated distur-

bance has an initial expected value of zero. For the first incremental increase, the expected

value of the steady-state estimated disturbance converges to its maximum value, then for

every incremental increase, the expected value of the steady-state estimated disturbance con-

verges to a lesser value. The estimated disturbance has this behavior because the estimated

disturbance is the force disturbance normalized by the molecule stiffness and as the molecule

becomes stiffer the farther it is stretched.

Next, for each incremental value, the estimated disturbance is related to the estimated

molecule’s extension and the molecule’s stiffness. The estimated disturbance is at steady-

state for the last 1.5 s of each increment, and the last second of each increment is used to

calculate its expected value. The expected value for the estimated disturbance is related to

the molecule’s extension through equation 4.32. The molecule’s extension is then related

to the molecule’s stiffness using equation 4.12. The results for the expected value of the

estimated disturbance, the molecule extension, and the molecule stiffness are shown in table

7.

For each increment, the expected value of the estimated force disturbance is E[f̂d] =

kmE[d̂d]. The expected value of the estimated force disturbance is plotted verses the

molecule’s extension to obtain the estimated force-extension curve. The estimated force-

extension curve is compared with the force-extension curve obtained using the WLC model

to quantify the estimation error. Figure 46 shows the estimation force-extension curve and

the estimation error. As the molecule is stretched between the dimensionless extensions of
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Figure 44: A schematic of the bead deflection and its estimate using the LQG design. Small

values are used for the weight on the tracking error in the LQ control algorithm. The result

is large transients each instance the molecule is stretched.
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Figure 45: A schematic of the estimated disturbance obtained using the LQG controller.

The DNA molecule is extended to have its force increase in increments of 2 pN every 2 s.

.
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Table 7: The values of the expected value of the estimated disturbance, molecule extension,

and the molecule stiffness for each increment that are obtained using the LQG design.

E[d̂d] (nm) xm (nm) km (pN/nm) E[d̂d] (nm) xm (nm) km (pN/nm)

0.00918 0.00918 0.000037152 43.048 3144.1 0.65788

171.81 2894.9 0.011119 40.027 3150.1 0.81774

116.39 3000.2 0.03442 38.114 3153.9 0.94666

92.242 3047.1 0.068204 37.291 3155.5 1.0105

81.12 3068.8 0.09973 34.82 3160.5 1.2406

72.528 3085.7 0.139 33.49 3163.1 1.394

65.462 3099.7 0.18849 31.953 3166.2 1.6044

60.069 3110.3 0.24346 30.185 3169.7 1.9024

55.764 3118.8 0.30385 29.464 3171.1 2.0453

53.049 3124.2 0.3526 27.222 3175.6 2.5925

49.37 3131.5 0.43694 24.812 3180.4 3.4221

46.384 3137.4 0.5264 23.03 3184 4.2484

44.24 3141.7 0.60633 20.405 3189.2 6.1482
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0 and 0.96, the absolute of the maximum estimation error is 0.62 pN. Also, as the molecule

is further stretched closer to its contour length (the dimensionless extension xm
lm
→ 1), the

estimation error increases to an absolute value of 75 pN. We can conclude that as the

molecule is stretched such that its force is beyond that of the maximum linear optical force,

the LQG design produces a poor estimate of the force-extension curve.

Next, the tracking error and the estimation error between the measured bead deflection

and the estimated bead deflection are quantified. The response of the tracking error is shown

in figure 47. At each instance the reference signal is increased, the tracking error has an initial

bias that converges to zero at steady-state. A question to ask is, why is linear control yielding

zero bias in the tracking error at steady-state throughout the entire operating range. The

reason is the high values chosen for the weight on the tracking error in the LQ algorithm

that the effects of the system nonlinearities in the input-output feedback are suppressed

with linear state feedback. The estimation error between the measured bead deflection and

the bead deflection is shown in figure 48. At each instance the measured bead deflection

is increased, the estimation error has an initial bias that converges to zero at steady-state.

One possible explanation for the zero estimation error is the high gain control characteristics

that suppresses the effects of the system nonlinearities.

8.3 NOMINAL NONLINEAR DESIGN RESULTS

The nominal nonlinear design is a fixed gain nonlinear controller that needs to be designed

for each operating condition. The operating condition (each pair of κ and kt) changes at

each instance the molecule’s extension is extended because κ increases (the molecule becomes

stiffer). At each instance the molecule is extended to have its force increase by 2 pN, the

corresponding values for the dimensionless stiffness κ are shown in table 6.

The results of the estimated disturbance d̂d is shown in figure 49. The estimated distur-

bance has an initial expected value of zero. For the first incremental increase, the expected

value of the steady-state estimated disturbance converges to its maximum value, then for

every incremental increase, the expected value of the steady-state estimated disturbance con-
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Figure 46: A schematic showing the estimation force-extension curve and the estimation

error of the force-extension curve obtained using the LQG controller. As the molecule is

stretched between the dimensionless extensions of 0 and 0.96, the absolute of the maximum

estimation error is 0.62 pN. Also, as the molecule is further stretched closer to its contour

length (the dimensionless extension xm
lm
→ 1), the estimation error increases to an absolute

value of 75 pN.
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Figure 47: The response of the tracking error using LQG design. At each instance the

reference signal is increased, the tracking error has an initial bias that converges to zero at

steady-state.
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Figure 48: The response of the measured bead deflection and the estimation error between

the measured bead deflection and the estimated bead deflection using the LQG design. At

each instance the measured bead deflectioin is increased, the estimation error has an initial

bias that converges to zero at steady-state.
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verges to a lesser value. The estimated disturbance has this behavior because the estimated

disturbance is the force disturbance normalized by the molecule stiffness and as the molecule

becomes stiffer the farther it is stretched.

Next, for each incremental value, the estimated disturbance is related to the estimated

molecule’s extension and the molecule’s stiffness. The estimated disturbance is at steady-

state for the last 1.5 s of each increment, and the last second of each increment is used to

calculate its expected value. The estimated value for the estimated disturbance is related

to the molecule’s extension through equation 4.32. The molecule’s extension is then related

to the molecule’s stiffness using equation 4.12. The results for the expected value of the

estimated disturbance, the molecule extension, and the molecule stiffness are shown in table

8.

For each increment, the expected value of the estimated force disturbance is E[f̂d] =

kmE[d̂d]. The expected value of the estimated force disturbance is plotted verses the

molecule’s extension to obtain the estimated force-extension curve. The estimated force-

extension curve is compared with the force-extension curve obtained using the WLC model

to quantify the estimation error. Figure 50 shows the estimation force-extension curve and

the estimation error. As the molecule is stretched between the dimensionless extensions of

0 and 0.96, the absolute of the maximum estimation error is 0.23 pN. Then, as the molecule

is further stretched closer to its contour length (the dimensionless extension xm
lm
→ 1), the

estimation error increases to an absolute value of 1.63 pN. We can conclude that as the

molecule is stretched such that its force is beyond that of the maximum linear optical force,

the nominal nonlinear design provides a satisfactory estimate of the force-estimate curve.

The improvement in the estimated force-extension curve using the nominal nonlinear design

to that obtained with the LQG design, shows the advantages of considering the system

nonlinearities in the control design.

Next, the tracking error and the estimation error between the measured bead deflection

and the estimated bead deflection are quantified. The response of the tracking error is shown

in figure 51. At each instance the reference signal is increased, the tracking error has an initial

bias that converges to zero at steady-state. The variance of the tracking error increases as

the reference signal increases and this phenomenon is due to the state observer. Recall that
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Figure 49: A schematic of the estimated disturbance obtained using the nominal nonlinear

controller. The DNA molecule is extended to have its force increase in increments of 2 pN

every 2 s.

.
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Table 8: The values of the expected value of the estimated disturbance, molecule extension,

and the molecule stiffness for each increment that are obtained using the nominal nonlinear

design.

E[d̂d] (nm) xm (nm) km (pN/nm) E[d̂d] (nm) xm (nm) km (pN/nm)

0.00918 0.00918 0.000037152 45.417 3139.4 0.5606

171.85 2894.9 0.01111 42.673 3144.8 0.67532

116.51 3000 0.034311 41.1 3148 0.75552

92.467 3046.6 0.067715 40.745 3148.7 0.77538

81.472 3068.2 0.09846 38.657 3152.8 0.90746

73.035 3084.7 0.13615 37.866 3154.4 0.96536

66.119 3098.4 0.18298 36.891 3156.3 1.0436

60.906 3108.7 0.23364 35.771 3158.6 1.1445

56.794 3116.8 0.28772 36.018 3158.1 1.1211

54.326 3121.7 0.32845 34.63 3160.8 1.2611

50.851 3128.6 0.40004 33.152 3163.8 1.4369

48.105 3134 0.47212 33.066 3163.9 1.4482

46.257 3137.7 0.53073 32.9 3164.3 1.4701
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Figure 50: A schematic showing the estimation force-extension curve and the estimation

error of the force-extension curve obtained using the nominal nonlinear controller. As the

molecule is extended between the dimensionless extensions of 0 and 0.96, the absolute of the

maximum estimation error is 0.22 pN. Then, as the molecule is further extended close to its

contour length (the dimensionless extension xm
lm
→ 1), the estimation error increases to an

estimation error with absolute value of 1.63 pN.
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the state observer results in the estimated bead deflection experiencing a greater effect from

the sensor noise as the bead deflection increases. The estimation error between the measured

bead deflection and the bead deflection is shown in figure 52. At each instance the measured

bead deflection is increased, the estimation error has an initial bias that converges to zero

at steady-state.

8.4 NONLINEAR PI CONTROL RESULTS

The response of the reference signal and tracking error are shown in figure 53. The tracking

error has zero bias for each instance the reference signal is increased. Also, the tracking

error has a constant variance throughout the optical trap operating range, which is expected

because of the controller linearized the input-to-state map.

The response of ẑ is shown in figure 54. The variable ẑ converges to a new steady-state

value each instance the reference signal is increased. The advantage with the nonlinear PI

controller is that ẑ is used to obtain an estimate of the molecule force using equation 6.64.

The estimated molecule force is shown in figure 55. For each incremental value, the estimated

molecule force is at steady-state for the last 1.5 s of each increment, and the last second of

each increment is used to calculate its expected value. The expected value of the molecule

force is related to the molecule extension using the WLC model. The results for the expected

value of the estimated molecule force and the molecule’s extension are shown in table 9. The

expected value of the estimated force disturbance is plotted verses the molecule’s extension to

obtain the estimated force-extension curve. The estimated force-extension curve is compared

with the force-extension curve obtained using the WLC model to quantify the estimation

error. Figure 56 shows the estimation force-extension curve and the estimation error.

8.4.1 Comparison Between the Nonlinear Control Methods

Both the nominal nonlinear control and the nonlinear PI control yields zero bias in the

expected value of the tracking error at steady-state for incremental increases in the reference
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Figure 51: The response of the tracking error using the nominal nonlinear design. At each

instance the reference signal is increased, the tracking error has an initial bias that converges

to zero at steady-state.
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Figure 52: The response of the measured bead deflection and the estimation error between

the measured bead deflection and the estimated bead deflection using the nominal nonlinear

design. At each instance the measured bead deflectioin is increased, the estimation error has

an initial bias that converges to zero at steady-state.
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Figure 53: The response of the reference signal and the tracking error using the nonlinear PI

controller. The tracking error has zero bias for each instance the reference signal is increased.

Also, the tracking error has a constant variance throughout the optical trap operating range,

which is expected because of the controller linearized the input-to-state map.
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Figure 54: The response of ẑ using the nonlinear PI controller. The variable ẑ converges to

a new steady-state value each instance the reference signal is increased.
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Figure 55: The response of the estimated molecule force using the nonlinear PI controller

209



Table 9: The values of the expected value of the ẑ, fd, and the molecule’s for each increment

that are obtained using the nonlinear PI design.

E[ẑ] (nm) E[f̂d] (pN) xm (nm) E[ẑ] (nm) E[f̂d] (pN) xm (nm)

-0.02 -0.01 0 359.06 25.99 3140

26.52 1.99 2900 389.68 28.01 3144

53.07 3.99 3000 420.11 29.98 3147

79.61 5.99 3044 451.74 32.00 3149

106.18 7.99 3068 485.22 33.98 3152

133.78 10.02 3085 519.78 35.99 3154

160.25 11.99 3098 555.34 37.99 3156

187.84 14.01 3108 593.87 39.99 3158

215.35 15.99 3116 634.46 42.00 3159

243.89 17.99 3122 678.98 43.99 3161

271.45 19.99 3128 726.55 46.00 3163

300.07 22.02 3133 783.08 47.99 3164

329.62 24.02 3137 853.61 49.99 3165
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signal and the molecule force. The difference in the methods is in the variance of the

tracking error. The nonlinear PI control linearizes the state equation and the result is a

constant variance in the tracking error throughout the operating range of the optical trap.

The nominal nonlinear control uses a state observer with nonlinear pseudo-measurements

to yield linear observer error dynamics. The tradeoff with the state observer is that the

estimated bead deflection experiences a greater effect from the sensor noise as the bead

deflection increases.

Both the nominal nonlinear control and the nonlinear PI control yield satisfactory es-

timates of the force-extension curve. The nonlinear PI control yields a maximum absolute

error of 0.023 pN, while the nominal nonlinear control yields a maximum absolute error of

1.63 pN. Even though the nonlinear PI control yields less absolute error and is more easily

implementable than the nominal nonlinear design, the nonlinear PI controller has a disad-

vantage that would be hard to satisfy in an experiment. The disadvantage is the nonlinear

PI control requires the system be input-to-state feedback linearizable. In an experiment

when the dynamics of the actuator, sensor, and molecule are considered, input-to-state feed-

back lineariable requires the system state be measurable or available to use in the state

feedback to linearize the system dynamics. In the optical trap system, the sytem state is

not measureable, so state observers are used to estimate/reconstruct the system state. The

state observers also provide disturbance estimation. Thus, the nominal nonlinear design is

a better control design when considering the whole dynamics of the optical trap system.

8.5 ADAPTIVE NONLINEAR DESIGN RESULTS

The response of the adaptive nonlinear design yielded many numerical issues in Simulink

because of the adaptive state observer. Potential causes include the persistent excitation

condition not being satisfied and the use of the characteristic indices that reduces the filtered

version of the regression matrix to a filtered version of its submatrix. It is interesting to note

that the same numerical issues arise for a simplified version of the optical trap dynamics.

The simplified dynamics neglect the dynamics for the actuator, laser derivative state, and the
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molecule relaxation state are neglected. Then, the simplified dynamics for the optical trap

consists only of the bead deflection the disturbance. In what follows, the numerical issues

are easier to explain with the simplified version of the optical trap system. The dynamics

for the simplified optical trap system are

d

dt

 z
dd

 =

−ωp −ωp
0 −ωd

 z
dd

+

−zexp(− z2

2l2t

)
−dd z + dd

0 0 0



ωt

κωt

ωp

 (8.1a)

+

−1

0

u+

ωt 0

0 ωe

 d̃
d̃d


y =

[
gs 0

] z
dd

+ ñ. (8.1b)

and in shorthand notation as

ẋ = Axx+ f1(x)θ +Buu+Bww̃ (8.2)

y = Cxx+ ñ. (8.3)

The dynamics are expressed in the structure for the adaptive state observer by using the

transformation

m = Mxx =

 Cx

CxAx

x, (8.4)

where m = [m1,m2]T , to yield the dynamics in the transformed state,

ṁ = Amm+

0

1

CxA2
xM

−1
x m+Mxf1(x)θ +MxBww̃, (8.5)

where Am = δi,j−1. The term 0

1

CxA2
xM

−1
x m

is in triangular structure in the m state. It is straightforward to express the regression matrix

Mxf1(x) in terms of the m state as

Mxf1(m) =

−m1 exp
(
− m2

1

2g2s l
2
t

)
m1 + 1

ωp
m2 −m2

ωp

ωpm1 exp
(
− m2

1

2g2s l
2
t

)
−ωpm1 −m2 m2

 , (8.6)
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which is expressed in column triangular form with respect to the state m. Each parameter

has a characteristic index of one. Then, the regression matrix is expressed by the identity

(as given in equation 7.21)

ΛMxf1(m)Ω−1 = λM(m) +R(m, 1
λ
).

The submatrices M and R are

M(m) =

−m1 exp
(
− m2

1

2g2s l
2
t

)
m1 + 1

ωp
m2 −m2

ωp

0 0 0

 , (8.7)

R(m, 1
λ
) =

 0 0 0

ωpm1 exp
(
− m2

1

2g2s l
2
t

)
−ωpm1 −m2 m2

 . (8.8)

The M matrix is independent of λ as expected. The adaptive state observer is designed for

the simplified dynamics. The architecture of the adaptive state observer requires a scalar

function j is chosen such that yT j(y) ≥ yTy ∀y ∈ R as given in equation 7.18. Several

functions of j were chosen, which were

j(y) = k1y, (8.9)

j(y) = k2 tanh(k3y), (8.10)

where ki (for i = 1, 2, 3) are positive constants.

Let us look at the potential causes for the numerical issues with the dynamics for the

simplified optical trap system. For this analysis, the molecule is stretched such that its force

is increased from 0 pN to 18 pN. The same j function and the same perturbing signal of

Gaussian white noise are used in the analysis.

1. Persistent excitation condition not being satisfied. The response for the parameter esti-

mates with different values for λ are shown in figure 57, figure 58, and figure 59. These

figures show that increasing the value of λ leads to a numerical singularity being intro-

duced quicker into the system. Approaches to address the issue include

a. adding a perturbing signal of Gaussian white noise and increasing its power spectral

density, the maximum value of the noise level chosen was 50,

b. applying the projection algorithm,
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c. choosing the initial value for the estimated parameter to be the true parameter value.

d. rescaling the problem to reduce the parameter search space,

e. changing the value for the frequency ωp, that is used to have the parameter inde-

pendent system dynamics be observable,

f. decreasing the sampling period,

g. implementing different fixed-step numerical solvers,

h. choosing different scalar functions j,

and none of these approaches were successful.

2. The use of characteristic indices required a high value for λ be chosen to have the filtered

response of the regression matrix converge uniformly with respect to time to the filtered

response of the submatrix of the regression matrix. However, high values for λ cannot

be chosen due to the numerical singularities, and results in the filtered response for

the regression matrix not converging to the filtered response for the submatrix of the

regression matrix. Therefore, the implementation of the adaptive state observer does

not describe the system dynamics when using small value for λ.
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Figure 57: The response of the estimated optical bandwidth ωt for different values of λ.

Increasing the value of λ leads to a numerical singularity being approached quicker. The

actual value for ωt is 6189 rad s−1.
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Figure 58: The response of the estimated optical bandwidth κωt for different values of λ.

Increasing the value of λ leads to a numerical singularity being approached quicker. The

actual value for ωt is 6189 rad s−1.
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Figure 59: The response of the estimated optical bandwidth ωp for different values of λ.

Increasing the value of λ leads to a numerical singularity being approached quicker. The

actual value for ωt is 10 rad s−1.
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9.0 CONCLUSION

An optical trap uses radiation pressure of light to manipulate microscopic objects. The in-

teraction between the light and the microscopic objects result in the objects experiencing

optical forces. These forces are on the same order of magnitude as biological forces (typically

0.1 to 100 pN) and this feature makes optical traps appropriate for single-molecule studies.

Currently, there is a growing need to create an automated optical trap that uses the entire

operating range of the optical trap to study the biological forces. Spatial nonlinearities in

the optical force and parameter uncertainty complicate feedback control for optical traps.

A consequence is that users are spending an enormous amount of time calibrating the in-

strument and designing a controller, and this diverts their time away from studying the

biophysics. This research explores the use of nonlinear and adaptive feedback methods to

create an automated optical trap.

This research created a sensitive and automated optical trap for single-molecule applica-

tions. The effort produced the following contributions to the field of optical trapping:

1. An enhanced description of the optical trap system was derived by including a model

of the molecule dynamics. The molecule experiences relaxation when stretched and

thermal fluctuations due to Brownian noise, and these phenomena effect the optical trap

performance. Combining the dynamics of the molecule and the optical trap results in a

more accurate model of the optical trap system. Then, incorporating feedback control

with the optical trap system results in better closed-loop performance and more accurate

information about the molecule characteristics.
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2. Statistical analyses were performed to quantify the effects of different feedback methods

has on the closed-loop system and the estimate of the molecular characteristics. The

optical trap system changes for each experiment depending on the stiffness of the optical

trap and the molecule. For each operating condition, a fixed-gain controller needs to be

designed. For each operating condition, statistical analyses were performed to quantify

the effects the controller has on the closed-loop system and the estimate of the molecule

characteristics.

3. The molecule characteristics were studied using the entire operating range of the optical

trap. The advantages are lower laser power is used and photodamage is mininized.

The tradeoff is the bead deflection becomes large, which causes stability issues, and

difficulties in estimating the molecule force. These issues were addressed with nonlinear

control methods that considering the system nonlinearities in the control design. The

two nonlinear feedback methods considered were nonlinear PI control and the nominal

nonlinear design (nonlinear Kalman filter combined with a input-output feedback and

LQ structure).

4. A theoretical analysis showed that adaptive self-tuning control methods created an au-

tomated optical trap. The benefit is that the user interaction is minimized with the

instrument calibration and control design. Currently, users are implementing fixed-gain

control methods to improve the closed-loop performance of the optical trap. Fixed-

gain control methods yield satisfactory closed-loop performance with considerable user

interaction with the control design and calibration processes. A consequence is that

users are diverting their time away from studying biological phenomena. This problem

was addressed with adaptive self-tuning feedback methods. Adaptive self-tuning feed-

back methods address the parameter uncertainty by simultaneously providing parameter

estimation, finding the mapping between the state feedback gains and the system pa-

rameters, and implementing the control law using the parameter estimate by applying

the certainty equivalence principle.

In single-molecule studies, the trapping object is a dielectric bead that is attached to

the molecule. On average, the molecule force estimate balances the optical force once the

bead deflection reaches steady state. The molecule force estimate fluctuates at steady-state
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because of Brownian noise. One particular interest is studying the molecule characteristics

by detecting local changes in the molecular force at steady state. The force changes are

measured by detecting changes in the bead deflection, then using Hooke’s law to relate

the position change to force change. However, the presence of Brownian noise presents a

challenge in detecting local changes in the bead deflection. Controlling the bead deflection

in the presence of Brownian noise is a servo control problem. Improving the servo control

problem leads to better information about the molecule characteristics.

In this research, a more accurate description the optical trap system was provided by

including a model of the molecule dynamics. The optical trap system was manipulated

with the FSM (actuator) and the bead deflection was measured with the QPD (sensor). A

complete outline for building the optical trap system was presented along with calibration

methods. This experimental setup used the same laser simultaneously for sensing and ac-

tuation. The advantage of this setup over other setups is that the system is intrinsically

aligned since a second laser for position sensing is not necessary.

The different feedback methods used were the LQG design, the nominal nonlinear design,

nonlinear PI control, and the adaptive nonlinear design. LQG design yielded satisfactory

closed-loop performance and estimates of the force-extension curve as the molecule was

stretched within the linear operating range of the optical trap. As the molecule was stretched

beyond the linear range, the LQG design provided poor estimates of the force-extension. The

nonlinear control methods yielded satisfactory closed-loop performance and estimates of the

force-extension as the molecule was stretched throughout the entire operating range of the

optical trap. Nonlinear PI control yielded less absolute error in the force-extension curve than

the nominal nonlinear design. However, nonlinear PI control requires the system dynamics

be input-to-state feedback linearizable. The requirement would be hard to satisfy in an

actual experiment because the system state is not entirely available for measurement. The

entire state can be estimated with a state observer that must include disturbance estimation.

Therefore, the nominal nonlinear design would be the nonlinear feedback method researchers

use because the feedback method is ready to be implemented in an experiment and the

resulting estimated force-extension curve yielded satisfactory results. The adaptive nonlinear

design analytical work shows that the adaptive state observer yields exponential stability in
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the state estimation error and the parameter estimation error. Its closed-loop analysis shows

that the tracking error is driven to zero. However, numerical issues in the simulation prevent

its demonstration.

9.1 FUTURE WORK

This research provides the foundation for an automated self-tuning optical trap capable of

applying forces within its entire operating range. The research can be expanded in several

ways:

1. Performing a robustness analysis on the fixed-gain controllers,

2. Expanding the control designs for a multi-input multi-output problem,

3. Incorporating the control designs into a magnetic trap,

4. Demonstrating the closed-loop performance of the controllers on an actual experiment.

9.1.1 Fixed gain robustness analysis

In this research, the linear design and the nominal nonlinear design are fixed-gain controllers

based on the nominal values of the parameters. Fixed-gain control designs yield satisfactory

closed-loop performance when assuming exact model knowledge (using the nominal value of

the parameters). However, exact model knowledge is not a practical assumption, and the

optical trap system is operating at off-nominal values of the parameters. The result is the

closed-loop performance degradation in the linear design and the nominal nonlinear design.

It is insightful to quantify the performance degradation (robustness effects) for the linear

design and the nominal nonlinear design when the optical trap system is operating at an

off-nominal value of the parameters, and to quantify the robustness effects on the estimate

of the molecule characteristics.

9.1.2 MIMO control problem

The optical trap system uses the fast steering mirror (actuator) and the quadrant photodiode

(sensor) to manipulate and sense the bead deflection. The optical trap system is configured
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for the fast steering mirror and the quadrant photodiode manipulates and sensing in one

dimension of two orthogonal dimensions. In this configuration, the estimation and control

problems have been posed as a single-input single-output (SISO) problem. For the SISO

problems, the proposed nonlinear and adaptive control designs yield satisfactory closed-loop

performance. However, using only one dimension of the FSM and QPD may be restrictive. It

is insightful to use both dimensions of the FSM and QPD to manipulate and sense the bead

deflection. To manipulate and sense in two dimensions, the estimation and control problems

must be reposed as multi-input multi-output (MIMO) problem. The MIMO problem can

be formulated by modeling the dynamics for the optical trap system in two dimensions,

then calibrating the sensor, actuator dynamics, and the optical stiffness in two dimensions.

Luckily, both dimensions in the optical trap system are uncoupled because the FSM and the

QPD can manipulate and sense in one dimensions independent of the other dimension. The

dynamics for the optical trap system can be described by

d

dt

ẋ1

ẋ2

 =

f1(x1)

f2(x2)

+

Bv1 0

0 Bv2

v1

v2

+

Bw

Bw

w, (9.1a)

y1

y2

 =

h1(x1)

h2(x2)

+

n1

n2

 , (9.1b)

where xi ∈ R6 are the states for each dimension, fi(xi) is the state-dependent vector field, Bvi

is the input matrix for each input vi, and hi(xi) is a scalar field describing the measurements

for each dimension.

Equation 9.1 can then be posed into a MIMO estimation problem and a MIMO control

problem. Both the MIMO estimation and control problems can be turned into two SISO

problems, one SISO problem for each dimension. Therefore, the MIMO estimation and

control problems can be addressed by solving a SISO problem for each dimension using the

proposed nonlinear and adaptive control methods presented in this research.

9.1.3 Magnetic Traps

Optical traps have inherent spatial nonlinearities and parameter uncertainty. In this re-

search, the nonlinearities and parameter uncertainty have been considered in the control
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design via nonlinear and adaptive feedback methods. The proposed feedback methods can

be incorporated into another single-molecule manipulator to account for its inherent nonlin-

earities and parameter uncertainty. The other manipulator is a magnetic trap, which uses

magnetic fields to manipulate microscopic objects. Magnetic traps are able to produce forces

over a large range of magnitudes, selective because only magnetic objects are manipulated,

and noninvasive since the force field can be applied external to the environment. Several

designs exist for magnetic traps, permanent and electromagnet, and we would be interested

in the electromagnet design. For electromagnet magnetic traps, the forces are produced

via the magnetic field and high field gradient. The high field gradients are producing by

shaping the magnetic cores, while the field’s strength and orientation are controlled via the

current flow in the electromagnet. The result is a nonlinear relationship between the force

produced and the current. In addition to nonlinearities, a magnetic trap contains parameter

uncertainties due to the the viscous forces and magnetic characteristics of an individual bead

are unknown. Viscous forces acting on the bead depends on its depth due to wall effects.

The magnetic characteristics of an individual bead are unknown due to uncertainties in the

manufacturing process. One approach to improve the closed-loop performance of a magnetic

trap is to implement the proposed nonlinear and adaptive feedback methods to address the

inherent nonlinearities and parameter uncertainty.

9.1.4 Proof of Concept Demonstration

Proof of concept is needed to demonstrate the closed-loop performance of these controllers

in an actual single molecule experiment. The experiment chosen is the stretching of DNA

to replicate its force-extension curve. The force-extension curve is nonlinear because DNA

becomes stiffer the farther the molecule is stretched [126, 97]. The experiment is performed

in a single-gradient optical trap configuration that requires the one end of the DNA be

attached to the flow cell and the other end of DNA be attached to the dielectric bead.

This experiment enables the closed-loop performance of each controller to be quantified and

compared. The two metrics to be quantified are:
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1. The improvement in the closed-loop performance when considering the system nonlin-

earities in the controller design.

2. The total time saved when using adaptive self-tuning control methods instead of fixed-

gain control methods.

This section discusses the experimental setup, and the materials and methods needed for the

sample preparation.

9.1.4.1 Experimental Setup The optical trap was built according to section 2.3 using

an inverted microscope (Zeiss Axiovert 200) and an infrared laser (Nd:YAG at 1064 nm).

The actuation method uses a fast steering mirror (FSM) to control the laser’s position at

the specimen plane. The FSM provides more than adequate bandwidth according to the

actuator’s Bode plot as shown in figure 21. The sensing method uses a quadrant photodiode

(QPD) to measure the bead deflection. The optical system is intrinsically aligned because

the same laser is used for trapping and sensing. The experimental setup operated in a

single-beam optical trap configuration. The bead deflection is digitized using a dSpace data-

acquisition board. The controllers were built using Matlab’s Simulink environment and

numerically implemented using the dSpace ControlDesk environment. The implementation

was done using a one-step solver (fourth order Runge-Kutta) with a sampling frequency of

10 kHz.

9.1.4.2 Materials and Methods The experiment required a custom-made DNA sample

be compatible with the single-beam optical trap configuration. The sample includes the

flow cell chamber (flow cell), linear DNA differentially labeled at either end, and modified

surfaces to attach the DNA. The sample was created by slightly modifying the protocol given

by Schlingman [5].

It is first necessary to attach the DNA to the flow cell and the dielectric bead. The

attachment methods affect the cleaning process of the flow cell and also the DNA labeling

process. First, consider the attachment between the DNA and dielectric bead. The attach-

ment method chosen is a streptavidin-biotin bond by having a biotin labeled end of the DNA
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Table 10: The lifetime of different bonds as a function of force. Source [5].

Force (pN) Lifetime (s)

Streptavidin-Biotin

10 18.000

20 5.500

30 1.7000

60 46

90 1.3

Digoxigenin - Antidigoxigenin

10 4

20 0.24

30 0.015

react with streptavidin coated dielectric beads [19, 16, 127]. The streptavidin-biotin bond is

chosen because it is a high affinity bond between a protein and a ligand, and is the strongest

noncolavent bond [128].

The second attachment method considered is the attachment between the DNA and

the flow cell. Many methods are used to attach the DNA to the flow cell [5], and these

methods include using a second streptavidin-biotin bond or a digoxigenin-antidigoxigenin

bond [127]. A second streptavidin-biotin bond is not used because both ends of the DNA

need different types of non-convalent bonds to allow consistent binding of the DNA to both

the bead and the flow cell, and weak attachment forces. These attachment methods have a

lifetime (time needed to rupture) that is force dependent [5]. Table 10 lists the lifetime of the

digoxigenin-antidigoxigenin bond and the streptavidin-biotin bond at several forces. Weak

attachment bonds like the digoxigenin-antidigoxigen bond can rupture if the experiment

requires high forces to probe molecules. For example, experiments requiring high forces

to probe molecules include greater than (>20 pN) for polymerases [129] and (>13 pN) for
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Table 1
The average lifetimes of the biotin/streptavidin bond or the dig/anti-dig bonds
calculated using Bell’s Formula (Eq. (1)). The values used are k0 = 1.67 × 10−5 s−1

and XB = 0.49 nm for biotin/streptavidin [15] and k0 = 0.015 s−1 and XB = 1.15 nm for
dig/anti-dig [13].

Force (pN) Average lifetime (s)

Biotin/streptavidin
10 18,000
20 5,500
30 1700
60 46
90 1.3

Dig/anti-dig
10 4
20 0.24
30 0.015

From these estimations, it is clear that using dig/anti-dig is far
from optimal for experiments requiring greater than 20 pN of force.
Therefore an alternative DNA attachment strategy is to label each
end of a single DNA molecule with a single molecule of biotin
[9,16]. Because the biotin–streptavidin bond is much stronger than
the dig/anti-dig interaction, having a biotin bound on each end
allows the DNA to be subjected to higher forces with reasonable
lifetimes [15,17]. However, a significant disadvantage of this tech-
nique is that, because the DNA has the same label on both ends,
the DNA may wrap around so that both ends bind to the surface or
bead. A technique to bind DNA between two streptavidin-coated
beads is sometimes used, in which fluid flow keeps the DNA from
being able to wrap around [18], however, this approach is time
consuming, and only one DNA molecule may be attached at a
time.

Here we present a new method of attaching DNA to a glass sur-
face in which DNA is covalently attached to a PEG-coated glass
surface via reaction of a unique terminal primary amine group on
the DNA with an N-hydroxysuccinimide (NHS) group on the PEG.
Fig. 1 outlines the chemistry of these reactions. This attachment
strategy allows for specific binding of DNA to the surface via its
amine labeled end while the other DNA end is labeled indepen-
dently, permitting directionality in attachment. In the realization
we present, the non-amine DNA end is labeled with biotin. The
advantages of this method over previous methods are that it pro-
vides a strong bond on which to pull, there are many individual
tethers on the surface, and the PEG surface provides a coating that
reduces the amount of non-specific sticking [19]. Here we describe
our attachment strategy in detail and show that DNA attached to
a surface using this method, can be pulled through its overstretch-
ing transition multiple times with forces >60 pN. Covalent bond

Fig. 1. Chemistry of the DNA attachment to the surface. First, silane-PEG-NHS is
bound to the glass surface through the reaction of silane with surface hydroxyls.
Upon addition of DNA labeled with a primary amine, the amine reacts with the NHS
group on the PEG to form a covalent attachment.

Fig. 2. A schematic of the DNA labeling strategy. A 14.5 kb plasmid is cut using KpnI,
leaving 3′ overhangs. Terminal transferase is used to add biotin modified ddUTP to
the free ends. The DNA is then cut with a second enzyme, SgfI, creating a 12.5 kb
and 2.0 kb piece of DNA, each with a free 3′ overhang. Terminal transferase is used
again to add amino-allyl modified dUTP to the free ends giving doubly labeled DNA
of sizes 12.5 kb and 2.0 kb.

rupture forces are only seen with forces in the nanoNewton range
[20,21].

2. Materials and methods

2.1. Labeling of DNA

Our strategy for labeling DNA, outlined in Fig. 2, was applied to a
plasmid containing the restriction sites KpnI and SgfI that each yield
a 3′ DNA overhang upon digestion. The plasmid was first digested
using KpnI (New England BioLabs, Ipswich, MA) yielding a 14.5 kb
piece of DNA. The DNA was ethanol-precipitated and resuspended
in double distilled water (ddH2O). The resulting 3′ overhangs
were labeled using terminal transferase and biotin-ddUTP (Roche,
Indianapolis, IN): 5× TdT Reaction buffer, 5 mM CoCl2, 0.05 mM
biotin-ddUTP, 400 U terminal transferase and 100 pM DNA [22]. To
verify labeling, a DNA gel shift using neutravidin was performed
(data not shown). The DNA was subjected to two additional rounds
of ethanol-precipitation to remove salt and unincorporated biotin-
ddUTP. The DNA was next digested using SgfI (Promega, Madison,
WI) yielding a 12.5 kb and a 2.0 kb piece of DNA, each with 3′ over-
hangs. These free ends were labeled using terminal transferase and
an amino-allyl-dUTP (Invitrogen, Carlsbad, CA), same as above. The
DNA was ethanol-precipitated twice more to remove any unincor-
porated amino-allyl-dUTP. This method gives two pieces of DNA,
12.5 and 2.0 kb, each labeled with a biotin at one end and an amino-
allyl group at the other. At this point, the two DNA sizes can be
separated on an agarose gel and purified if desired.

2.2. Formation of flow cells

A flow cell is made by cutting a channel in 300 LSE double
sided sticky tape (3M, St. Paul, MN) that is used to join a cover-

Figure 60: The surface chemistry of attaching DNA to a glass surface. The glass is first

cleaned with “piranha solution” to remove any dirt and to increase hydroxylation. The OH

groups react with the silane attach the silane-PEG-NHS to the glass surface. The NHS group

then reacts with the amino-allyl labeled end of DNA to attach DNA to the surface. Source

[5].

hairpins [130]. Therefore, strong attachment bonds are needed when the experiment require

high forces and also the binding must be different than the streptavidin-biotin bond.

In this research, DNA is attached to the flow cell through the reaction between a N-

hydrooxysuccinimide (NHS) group on the flow cell with a amino-allyl labeled end of the

DNA. This attachment method involves the flow cell be coated with silane polyethylene

glycol N-hydrooxysuccinimide, silane PEG-NHS (Nanocs); the NHS group on the PEG reacts

with a amino-allyl labeled end of the DNA [5, 131]. PEG is chosen because it is a polymer

that reduces protein absorption on the surface. This surface attachment method has specific

binding between the NHS group and the amino-labeled end of the DNA, and a strong bond

for pulling experiments. The surface chemistry for this attachment has two steps, as shown

in figure 60. The first step requires a clean surface with hydroxyl groups (OH). The hydroxyl

groups react to the silane to attach the silane-PEG-NHS to the surface. The second step

creates the covalent attachment between the amino-allyl labeled end of the DNA with the

NHS group.
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The sample preparation protocol is given in the following subsections The protocol in-

cludes the flow cell creation, attaching the silane PEG-NHS to the surface, labeling the DNA,

and attaching the DNA to the flow cell and the dielectric bead.

Flow Cell Chamber: The flow cell chamber is created with the following materials:

1. Glass coverslips (Corning, Number 1.5, 25 mm2)

2. Glass microscope slides (VWR micro slides, 1 mm thick, Area is 25 mm by 75 mm)

3. Double sided sticky tape (3M)

4. Sulfuric Acid

5. 30% Hydrogen peroxide

6. Double distilled water ddH20

The glass coverslips are cleaned by immersion in “piranha solution”, a solution of 3:1 con-

centrated sulfuric acid to 30% hydrogen peroxide for 15 min. The piranha solution removes

any dirt and debris from the glass coverslips and increases hydroxylation. The coverlsips are

then rinsely thoroghly in ddH20 to remove any remaining piranha solution. The microscope

slides are also rinsed in ddH20. Both the coverslips and the microscope slides are then air

dried at room temperature. Finally the cloverslip is attached to the microscope slides via

the 2 pieces of double sided sticky tape that are placed 20 mm apart.

Applying the Silane PEG-NHS to Surface: The application of the silance PEG-

NHS to the flow cell required the following material:

1. Silane PEG-NHS (Nanocs, 5000 molecular weight)

2. Dimethyl Sulfoxide DMSO (Sigma-Aldrich, anhydrous ≥ 99%)

3. ddH20

4. PBS solution at pH 7.3

The silane PEG-NHS is dissolved in DMSO at a concentration of 1% weight per volume.

The DMSO provides an anhydrous environment to minimize the hydrolysis of NHS. The

solution of silane PEG-NHS with DMSO is flowed into the flow chamber and held there for

1 h to allow the reaction between the silane and the hydroxyl groups to complete. After an

hour, the flow cell is rinsed with ddH20. A second rinse is performed with PBS solution at

pH 7.3. This pH level is chosen to minimizes NHS hydrolysis.
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DNA Preparation: The DNA chosen was pTol2 Dual-fucci (P027.2) that was orig-

inally configured in a circular strand or plasmid. The plasmid needed to be reconfigured

into a linear strand to allow its ends be labeled for the attachments. The reconfiguration

required the use of restriction enzymes. Restriction enzymes look for a particular sequence

of nucleobases, then cut the DNA at that location. DNA is composed of a sequence of four

nucleobases: Adenine (A), Thymine (T), Guanine (G), and Cytosine (C). The DNA labeling

procedure used is shown in figure 61 and outlined as follows:

1. A 10 kb plasmid was cut with the restriction enzyme Apa1 to yield a linear pice of DNA.

2. Biotin label both ends of the DNA. The biotin labeling allows for the biotin labeled end

of DNA to attach to the streptavidin coated dielectric bead via the reaction between

streptavidin and biotin.

3. The biotin-labeled DNA was cut with the restriction enzyme Sph1 to yield two linear

pieces of DNA, a 9.5 kb piece and a 0.5 kb piece. Each DNA piece is biotin labeled on

one end and its other end is unmodified.

4. The unmodified ends of DNA are labeled with amino-allyl. This amino-allyl labeling

allows for the amino-allyl labeled end of DNA to attach to the flow cell via the reaction

between amino-allyl and the NHS group.

The DNA labeling procedure is detailed below. Each step was verified by simultaneously

running the procedure on a second type of DNA, pCS2+ mSA-eGFP (P087), and comparing

the results.

The first step required the restriction enzyme Apa1 (New England Biolabs). Apa1 cut

the plasmid at the nucleobase sequence GGGCCC (5’ to 3’ direction) and left a 3’ overhang.

The restriction digest occurred in a 100 µl sample and required the material listed in table 11.

The restriction digest incubated overnight in a water bath at 37 ◦C. The digests were taken

out of the water bath and cleaned using the PCR clean-up Gel extraction kit from Macherery-

Nagal. Note that the P027 sample contained too much DNA to follow the procedure given

in the PCR clean-up Gel extraction kit. The P027 sample was separated into two equal

samples (labeled P027A and P027B), and cleaned with the PCR clean-up Gel extraction kit.
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Figure 61: A schematic of the DNA preparation process. The DNA (grey) is a plasmid,

or circularly configured. The first step used the restriction enzyme Apa1 (blue) to cut the

plasmid to yield a linear piece of DNA with 3’ overhangs. The 3’ overhangs were labeled

with biotin (green). A second restriction enzyme Sph1 (blue) cuts the biotin-labeled DNA

into two pieces with 3’ overhangs. Finally, the 3’ overhangs were labeled with aminoallyl

(orange).

Table 11: Material used for the Apa1 restriction digest.

Material P027 P087

DNA 30 µl 10 µl

10x CutSmart Buffer 10 µl 10 µl

Apa1 2 µl 2 µl

ddH20 58 µl 78 µl

230



The success of the restriction digest was verified using agarose gel electrophoresis. Aga-

rose gel electrophoresis separates DNA of different lengths (molecular weights) by applying a

voltage to move a charged molecule (DNA is negatively charged due to the phosphate groups)

through an agarose gel. Short linear stranded DNA molecules and plasmids travel farther

than long linear stranded DNA molecules in agarose gel. The agarose gel electrophoresis was

performed on the following samples: P027 without Apa1, P027 with Apa1, P087 without

Apa1, and P087 with Apa1 and the results are shown in figure 62. The DNA samples without

Apa1 traveled farther than the DNA samples with Apa1. These results confirmed the success

of the Apa1 restriction digest.

Next, the DNA purity and density were measured using spectrophotometry. Spectropho-

tometry measures the sample purity and density by analyzing the ultraviolet light absorption

pattern of the sample. DNA purity is determined by the ratio of light absorption at 260 nm

to the light absorption at 280 nm. A pure DNA sample yields a 1.8 ratio. The spectropho-

tometer chosen was a Nanodrop, which obtains these measurements using the surface tension

of a liquid between two optical pedestals. When a small amount of sample is placed between

the optical pedestals, a liquid column is created via surface tension to form an optical path.

The Nanodrop results are shown in table 12. Table 12 showed that the DNA purity was

1.85 and 1.86 for P027A and P027B respectively, but the density was too low to proceed

with sample preparation. The sample density was increased with ethanol precipitation. The

ethanol precipitation process involved the following steps:

1. Combined the elutes of P027A and P027B into one sample.

2. Add 10 µl 5M NH4 Acetate

3. Add 275 µl 100% EtOH.

4. Incubate for 2 h at −20 ◦C.

5. Spin the sample at top speed (15 800 g) for 15 min

6. Remove the EtOH

7. Wash the DNA in 100 µl 70% EtOH

8. Spin the DNA for 5 min

9. Let the DNA dry before resuspending in 10 µl ddH20

231



!

August&20,&2015:&
!
Started!on!the!experiment!for!Jason!Pickle:!
Digest!30!µg!of!pTol2!Dual?Fucci!(P027.2)!in!100!µl!volume,!10!µl!10x!CutSmart,!2!µl!ApaI!(ApaI!is!at!50!
U/µl,!with!each!unit!capable!of!digesting!1!µg!of!DNA!per!hour,!so!100!units!should!be!plenty).!Also!
digest!10!µg!of!pCS2+!mSA?eGFP!(P087.2)!for!a!control!reaction,!using!the!same!conditions.!!
Incubate!o/n!at!37°!C.!
!
!

August&21,&2015:&
!
Take!out!digests!and!freeze.!
!
!

August&24,&2015:&
!
Clean&up&ApaI&Digests!
Check!out!the!o/n!digests!that!I!froze!on!8/21/2015.!!
Digests!are!complete.!
!
Purify!DNA!using!Machery!&!Nagel’s!PCR!Clean?Up!&!Gel!Extraction!kit!that!
came!with!the!InFusion!reagents.!Because!I!think!the!binding!capacity!of!the!
column!is!about!15!µg,!I!split!the!P027!digest!(30!µg)!into!two!columns.!
! ??!Had!100!µl!of!volume!to!start,!so!added!200!µl!of!NTI.!
! ??!Washed!twice!in!700!µl!wash!buffer.!
! ??!Eluted!twice!with!25!µl!Buffer!NE.!The!buffer!was!preheated!to!70°!C,!and!the!column!
incubated!at!70°!C.!The!column!was!spun!first!for!1!min!at!minimal!speed,!then!1!min!at!top!speed.!
!
Analyzed!DNA!content!of!eluate!by!NanoDrop:!
Sample ID ng/µl  A260  A280  260/280  260/230  Constant  
P027 ApaI A 229.54 4.591 2.476 1.85 2.09 50.00 
P027 ApaI B 224.01 4.480 2.411 1.86 2.27 50.00 
P087 ApaI 103.35 2.067 1.127 1.83 2.20 50.00 
!
Yield!is!actually!much!better!than!expected,!around!75%.!
!
The!DNA!is!too!dilute!for!the!next!step,!the!labeling!reaction.!Concentrate!DNA!by!ethanol!precipitation,!
using!ammonium!acetate.!Combine!eluates!from!both!the!A!and!the!B!column,!then!add!10!µl!5M!NH4!
Acetate!and!275!µl!100%!EtOH.!Incubate!at!?20°!C!for!2!hr,!then!spin!at!top!speed!for!15!min.!Remove!
EtOH,!wash!pellet!in!100!µl!70%!EtOH,!then!spin!again!for!5!min.!Let!pellet!dry!before!resuspending!in!10!
µl!ddH2O.!
!
Measure!concentration!by!NanoDrop:!
Sample ID ng/µl  A260  A280  260/280  260/230  Constant  
P027 1335.64 26.713 14.514 1.84 2.12 50.00 
P087 771.21 15.424 8.821 1.75 2.06 50.00 

P027& P087&

11&&&&&&&+&11&&&&&&&+&

Figure 62: The agarose gel electrophoresis was used to determine the success the Apa1 digest

on two different DNAs (P027 and P087). Each DNA has two columns: The negative column

contains no Apa1 digest while the positive sign column contains the Apa1 digest. The Apa1

digests for both DNAs show the DNA traveled less than the no Apa1 digests. This indicates

the success of the Apa1 digest.
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Table 12: Nanodrop results after the APA1 digests to determine the sample density and the

DNA purity.

.

Sample ID ng/µl A260 A280 260/280 260/230 Constant

P027 Apa1 A 229.54 4.591 2.476 1.85 2.09 50.00

P027 Apa1 B 224.01 4.480 2.411 1.86 2.27 50.00

P087 Apa1 103.35 2.067 1.127 1.83 2.2 50.00

After the ethanol precipitation, the DNA purity and density were measured again and the

results are shown in table 13. The results showed that the DNA purity was 1.84 with an

increased density.

The second step is the first labeling reaction. The first labeling reaction was the biotin

labeling the 3’ end of the DNA. The labeling reaction followed the procedure given in the

Roche documentation of Biotin-16-ddUTP, which required adding the following material to

the 10 µl DNA sample:

• 4 µl 5x TdT buffer

• 4 µl 25 mM CoCl2

• 1 µl 1 mM Biotin-16-ddUTP

• 1 ml TdT

Table 13: Nanodrop results after the APA1 digests with ethanol precipitation. The Nanodrop

determines the sample density and the DNA purity.

.

Sample ID ng/µl A260 A280 260/280 260/230 Constant

P027 Apa1 1335.64 26.713 14.514 1.84 2.12 50.00

P087 Apa1 771.21 15.424 8.821 1.75 2.06 50.00
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The reaction incubated at 37 ◦C for 15 min, then 2 µl 0.2 M EDTA with pH 9.0 was added

to stop the reaction. The success of the labeling efficiency was verified using the fact that

biotin reacts with streptavidin. For each DNA sample (P027 and P087), three reactions were

setup: the control reaction (no streptavidin was added to the sample), streptavidin reaction

(streptavidin was added to the sample), bead reaction (DNA binded to streptavidin coated

microspheres). The reactions were composed of:

• Control reaction: 0.5 µl of DNA (either P027 or P087), 14.5 µl 0.1 M M PBS with pH 5.5.

• Streptavidin reaction: 0.5 µl of DNA (either P027 or P087), 5 µl Streptavidin-AF568

(1 µg ml−1)

• Beads reaction: 0.5 µl of DNA (either P027 or P087), 4 µl (Streptavidin-coated, 3 µm

diameter, Spherotech), 10.5 µl 0.1 M PBS pH 5.5

Each reaction incubated for 1 h at room temperature with occasional stirring, then stud-

ied with agarose gel electrophoresis. A successful biotin labeling reaction shows that the

streptavidin reaction travels a shorter distance in the agarose gel than the control reaction

because the addition of streptavidin increases the molecular weight of the sample. Note,

the streptavidin reaction may contain smears because of AF (Alexa-Flour). The agarose gel

electrophoresis results are shown in figure 63. The streptavidin column showed significant

amounts of DNA at a higher molecular weight than the DNA in the control column. The

biotin labeling is successful. It is unclear why the bead columns were empty. Possible ex-

planations include an issue with the binding reaction process, the beads were lost in the

process, or the beads into load in the agarose gel.

The third step is the second restriction enzyme digest to cut the biotin-labeled DNA

into two shorter strands of DNA . The restriction enzyme chosen was Sph1 (New England

Biolabs), which cut the DNA at the nucleobase sequence GCATGC (5’ to 3’ direction) and

left 3’ overhangs. A successful Sph1 digest should cut the 10 kb length of DNA into a 9.5 kb

length piece and a 0.5 kb length piece. The Sph1 digest occured in a 100 µl sample that

required the following material:

• 50 µl of purified biotin labeled DNA

• 10 µl 10x CutSmart buffer
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!

August&25,&2015:&
!
Repeat&binding&reaction&
For!each!DNA!molecule!(P027!and!P087)!set!up!three!reactions:!
! ??!Control:!0.5!µl!DNA!(either!P027!or!P087),!14.5!µl!0.1!M!PBS,!pH!5.5!
! ??!Streptavidin:!0.5!µl!DNA!(either!P027!or!P087),!5!µl!Streptavidin?AF568!(1!mg/ml),!!
! ! 9.5!µl!0.1!M!PBS,!pH!5.5!
! ??!Beads:!0.5!µl!DNA!(either!P027!or!P087),!4!µl!beads!(streptavidin?coated,!3!µm!diameter,!!
! ! Spherotech),!10.5!µl!0.1!M!PBS,!pH!5.5!
!
Incubate!for!1!hr!at!RT,!with!occasional!mixing.!!
!
Beads!are!provided!at!a!concentration!of!0.5%!(w/v),!which!means!0.5!g!beads!in!100!ml!of!liquid.!In!4!
µl,!there!are!0.02!mg!beads.!Spherotech!denotes!the!bead’s!binding!capacity!to!be!0.25!nmol!per!mg,!or!
a!capacity!to!bind!5!pmol!biotin!for!every!0.02!mg!beads,!corresponding!to!4!µl!of!bead!solution.!Given!
the!concentration!of!biotin!on!our!DNA!(which!should!be!about!110!fMol),!there!should!be!more!than!
enough!biotin?binding!capacity!provided!by!4!µl!beads.!
!
!
Then!run!on!0.7%!agarose!gel.!
Due!to!the!Alexa?Flour,!we!could!see!a!smear!of!streptavidin!near!
the!top!of!the!wells!in!the!streptavidin!lanes!even!prior!to!imaging.!
!
Conclusions!
a)!Binding!of!streptavidin!to!biotin!DNA!worked!well,!there!is!now!
significant!amounts!of!DNA!that!is!shifted!to!a!higher!weight.!
Not!clear!why!the!band!corresponding!to!unbound!DNA!is!
stronger!in!the!SA!lane!than!in!the!Cntrl!lane,!as!both!should!have!!
the!same!amount!of!DNA!in!them.!Overall,!the!SA!lane!appears!
to!have!more!DNA!than!the!control!lane,!which!is!puzzling.!
b)!The!beads!work.!Not!sure!whether!this!is!a!problem!with!the!
binding!protocol,!whether!we!lost!beads!in!the!process,!or!
whether!beads!didn’t!load!into!the!gel.!
!
Set&up&SphI&Digest&
Decided!to!move!ahead!with!the!second!digest!of!the!biotin?labeled!DNA.!To!the!50!µl!of!purified,!
biotin?labeled!from!yesterday!(concentration:!250!ng/µl),!add!38!µl!ddH2O,!10!µl!10x!CutSmart!buffer,!
and!2!µl!SphI?HF.!Incubate!o/n!at!37°!C.!
!
!
! &

P027& P087&

Cntrl&

SA&

Beads&

Cntrl&

SA&

Beads&

Figure 63: Agarose gel analysis to determine the success of the biotin labeling the 3’ end of

DNA. Each DNA (P027 and P087) had three reactions: Control (no streptavidin added to

the biotin labeled DNA, Streptavidin or SA (streptavidin binded to the biotin labeled DNA),

and Beads ( streptavidin coated beads binded to the biotin labeled DNA). A successful biotin

labeling shows the streptavidin column moves slower in the agarose gel with the addition

of streptavidin increases the molecular weight. The streptavidin column contains smears

because of Alexa-Floura. The streptavidin column contains more DNA at higher molecular

weights than then control columns. This proves the biotin labeling. It is not clear why the

beads column appear to be empty. Possible explanations include issues with the binding

process, the beads were lost, or the beads did not travel through the agarose gel.
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• 2 µl Sph1

• 38 µl ddH20

The enzyme digest incubated overnight in a water bath at 37 ◦C. The digests were taken out

of the water bath and cleaned using the PCR clean-up Gel extraction kit. The success of the

Sph1 digestion was determined by comparing the sample with a second DNA sample with

only Apa1 digestion using agarose gel electrophoresis. The results are shown in figure 64.

The results showed the Sph1 enzyme was successful for two reasons. The first reason was

the Apa1 and Sph1 column has a DNA band that traveled slighter farther than the DNA

band in the Apa1 column, which was consistent with the 9.5 kb DNA piece that should be

produced. The second reason was the Apa1 and Sph1 column has the additional presence

of a small piece of DNA, which was consist with the 0.5 kb that should be produced.

Next, the DNA purity and concentration were measured using spectrophotometry. The

results are shown in table 14. The results showed the DNA purity was 1.87, however the

density is too low. The density was increased using the following procedure:

1. The sample volume was increased to 100 µl

2. Add 10 µl 3 M Sodium Acetate pH 5.2

3. Add 275 µl of 100% EtOH

4. Incubate the sample at −20 ◦C for 3 h

5. Spin the sample at top speed for 15 min.

6. Remove the ethanol.

7. Wash the sample with 200 µl 70% EtOH

8. Spin the sample at top speed for 5 min

9. Air dry the sample for 5 min

10. Resuspend the sample in 10 µl of ddH20

The resuspended sample was analyzed using spectrophotometry and the results are shown

in table 15. The results show a density increased and an purity improvement.

The final step involved a second labeling reaction. The second labeling reaction was the

amino-allyl labeling the free 3’ ends of the DNA. The labeling reaction followed the proce-
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August&26,&2015:&
!
Check&Out&and&Clean&Up&SphI&Digest&
Check!o/n!digest!by!running!3!µl!on!an!agarose!gel,!next!to!some!singly!digested!DNA!
saved!from!Monday,!08/24.!
!
Digest!looks!complete!and!appears!to!have!shifted!the!DNA!size!lower.!Plus,!there’s!a!
hint!of!a!fragment!of!DNA!right!at!the!bottom!edge!of!the!gel,!which!would!be!
consistent!with!the!0.5!kb!piece!that’s!also!generated.!!
!
Purify!DNA!from!digest!using!Machery?Nagel’s!PCR!Clean?up!&!Gel!Extraction!kit,!with!
the!following!alterations!to!DNA!elution!as!yesterday:!Elute!with!30!µl!Buffer!NE!at!70°!C!
for!5!min.!Then!spin!1!min!at!minimal!speed,!and!1!min!at!top!speed.!Repeat!three!
times.!
!
Check!DNA!by!NanoDrop:!
Sample ID ng/µl  A260  A280  260/280  260/230  Constant  
P027 ApaI SphI Biotin 110.39 2.208 1.183 1.87 2.36 50.00 
!
Total!recovery:!about!10!µg,!or!about!75%!of!the!13!µg!of!DNA!we!had!yesterday.!!
Concentrate!by!using!NaAcetate,!pH!5.2!made!yesterday.!Bring!volume!to!100!µl!with!ddH2O,!then!add!
first!10!µl!3M!NaAcetate,!pH!5.2,!followed!by!275!µl!of!100%!EtOH.!Incubate!at!?20°!C!for!3!hrs.!
Spin!15!min!at!top!speed,!remove!ethanol.!Wash!with!200!µl!70%!EtOH,!spin!5!min!and!remove.!Let!tube!
air!dry!for!5!min,!then!resuspend!in!10!µl!of!ddH2O.!Check!recovery!by!NanoDrop:!
!
Sample ID ng/µl  A260  A280  260/280  260/230  Constant  
P027 ApaI SphI 724.68 14.494 7.962 1.82 1.82 50.00 
!
Total!recovery:!about!7.25!µg,!or!about!75%!of!the!10!µg!input!we!had!earlier.!
!
TdT&Labeling&Reaction&with&Aminoallyl:dUTP&
Set!up!new!TdT?Labeling!reaction:!
10!µl!DNA!(from!last!step)!
4!µl!5x!TdT!Buffer!
4!µl!25!mM!CoCl2!
1!µl!Aminoallyl?dUTP!(2!mM!–!twice!as!concentrated!as!biotin?16?ddUTP)!
1!µl!TdT!
!
Incubate!1!hr!at!37°!C!with!mixing!every!15!min.!Add!2!µl!0.2!M!EDTH,!pH!8.0.!
!
Clean&Up&Labeling&Reaction&
Recover!DNA!using!Machery?Nagel’s!PCR?Clean?up!&!Gel!Extraction!kit,!eluting!3x!with!30!µl!as!earlier!
today.!Check!concentration!by!NanoDrop:!
!
Sample ID ng/µl  A260  A280  260/280  260/230  Constant  
P027 Double Label 80.01 1.600 0.858 1.86 2.39 50.00 
!
Total!recovery!is!about!7.2!µg,!or!almost!100%!of!input.!

P027&

ApaI& ApaI&
&&

SphI&

Figure 64: Agarose gel electrophoresis on the restriction digest samples: Apa1 digest, and

the Apa1 and Sph1 digests. The APa1 digest has one DNA band, which is expected because

the Apa1 digest cuts the plasmid at one location. The Apa1 and Sph1 digests shows are two

pieces of DNA. One piece traveled slightly farther than the DNA band in the Apa1 column,

which indicates the 9.5 kb piece that is expected. The second piece is near the bottom edge

of the gel, which indicates the presence of a smaller piece of DNA, the 0.5 kb piece that is

expected.
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Table 14: Nanodrop results after using the second restriction enzyme Sph1

Sample ID ng/µl A260 A280 260/280 260/230 Constant

P027 Apa1 Sph1 Biotin 110.39 2.208 1.183 1.87 2.36 50.00

Table 15: Nanodrop results after using the second restriction enzyme Sph1 and concentrating

the sample.

Sample ID ng/µl A260 A280 260/280 260/230 Constant

P027 Apa1 Sph1 Biotin 724.68 14.494 7.962 1.82 1.82 50.00

dure given in the Roche documentation for Biotin-16-ddUTP, which required the following

material be added to the 10 µl sample:

• 4 µl 5x TdT buffer

• 4 µl 25 mM CoCl2

• 1 µl 2 mM Aminoallyl-dUTP

• 1 ml TdT

The reaction incubated for 1 h at 37 ◦C with mixing every 15 min. The sample concentration

was analyzed with spectrophotometry and the results are shown in table 16.

Attachment Between DNA and Flow Cell: The attachment of the flow cell to the

aminoallyl labeled end requires dissolving the 7.2 µg of the aminoallyl-dsDNA-biotin sample

Table 16: Nanodrop results after double labeling the DNA

Sample ID ng/µl A260 A280 260/280 260/230 Constant

P027 Double Label 80.01 1.6 0.858 1.86 2.39 50.00
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into PBS solution with pH7.3. The DNA and PBS solution is flowed into the flow cell and

the flow cell is sealed with tape to prevent air from entering, The flow cell must be sealed

because air can destroy the DNA. The reaction proceeded for 1 h at room temperature to

allow the binding between the amino-allyl and the NHS group. Next, the flow cell was rinsed

with PBS solution with pH8.3 to remove any unbounded DNA. A second rinse was performed

with PBS solution with pH9.0 and the reaction proceed for 1 h at room temperature. The

second rinse was needed to hydrolyze any remaining NHS groups to prevent the streptavidin

coated beads from sticking to the flow chamber surface.

Attachment Between DNA and Dielectric Bead: The attachment of the strepta-

vidin beads to the biotin labeled end of DNA required both the flow cell and the streptavidin

beads be washed twice with PBS solution with pH7.3 and 0.1% TWEEN. After washing the

beads were diluted to a concentration of 0.3% mass per volume. The beads were flowed into

the flow cell and the reaction proceeded for 15 to 20 h at room temperature in the humidity

chamber.
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