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DATA VIA MULTI-SOURCE TRANSFER RULE LEARNING

Henry Ato Ogoe, PhD

University of Pittsburgh, 2016

The advent of high-throughput genomics has led to the accumulation of copious amounts of

biomedical data such as gene expression, made available through public repositories like the

NCBI’s GEO. Meanwhile, the digitization of biomedical literature into repositories such as

PubMed, have motivated the creation of curated knowledge bases like the Gene Ontology.

Pooling information from such repositories and integrating it with predictive modeling of

similar biomedical data from multiple studies, could lead to models that are more robust.

Most current methods are unable to leverage background knowledge, referred to herein as

catastrophic forgetting, and often produce black-box models that are difficult for humans to

interpret.

In this era of precision medicine, there is thus a critical need for effective methods that

could incorporate background knowledge from multiple sources, and yet produce simple to

understand models from biomedical datasets. This dissertation develops four novel frame-

works: (i) TRL-FM, (ii) KARL, (iii) MS-TRL, and (iv) iTRL, which use transfer rule learning

to incorporate background knowledge from multiple sources for predictive modeling of gene

expression datasets. They provide significant extensions to an existing method, TRL that

leveraged background knowledge from single sources. This work tests the hypothesis that

“incorporating background knowledge from multiple sources into predictive modeling via the

transfer rule learning approach leads to models that contain more robust propositional rule

patterns than learning without any background knowledge or just from a single source.”

To test this hypothesis, I compared the accuracy and coverage of predictive models that
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were produced with the methods developed herein, to the baseline models, using 25 gene

expression datasets from 5 studies of brain, breast, colon, lung, and prostate cancers. The

results showed that the former, produce on average, statistically significantly more robust

models than the latter. Also, KARL, MS-TRL, and iTRL provide mechanisms that could

be used to discover both domain-specific and domain-independent robust rule patterns.

The methods developed herein augment extant capabilities of predictive modeling tech-

niques to utilize and build robust, easy-to-interpret rule models from sparse, single, diverse

sources of biomedical data and knowledge. These methods can be easily extended to other

application domains beyond biomedicine.
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1.0 INTRODUCTION

In recent years, advances in biomedical research have led to an explosion of data that pro-

vides several avenues for improved knowledge discovery, data mining, and biomedical decision

making. With the advent of high-throughput techniques, for instance, several ‘omic’ data,

like the microarray, that describe measured biomarkers in bodily fluids or tissue are accu-

mulating at a fast pace. What is more, the adoption of standards and reporting requirement

guidelines such as Minimum Information About a Microarray Experiment (MIAME) [1]

as well as the establishment of public repositories for microarray data such as the Gene

Expression Omnibus (GEO) [2] and the ArrayExpress [3], have made it possible for gene

expression data resulting from related studies to be reused and shared. As of the time of

writing this manuscript, ArrayExpress and GEO alone have a combined data for more than

100,000 studies with over three million assays. Meanwhile, the digitization of key biomedical

research findings and publications into publicly available repositories, like PubMed, have mo-

tivated the creation of curated knowledge bases such as the Gene Ontology (GO) [4], Kyoto

Encyclopedia of Genes and Genome (KEGG) [5], or Ingenuity ® Knowledge Base (IKB),

just to name a few. There is thus an explosion of biomedical data and knowledge that when

effectively harnessed could lead to significant progress towards the goal of precision medicine.

Precision medicine is the use of ‘omic’ and other relevant data to describe tailored and

accurate medical treatments selected according to individual characteristics of a patient.

Thus, to effectively pool information from as many sources as useful in order to improve

accuracy and precision of disease diagnosis, prognosis, and/or treatment. According to the

NRC’s report on precision medicine, however, there is a growing shortfall of better tools and

mechanism to commensurate the data explosion [6].

To effectively automate knowledge discovery and learning in the space of data is an active
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research endeavor in biomedical science and medical decision making. Predictive modeling

refers to a collection of machine learning methods which aim at estimating a mathematical

relationship between a target variable (e.g., a disease state) and several predictor variables.

The goal is to make inference with the estimated relationship on the state of a newly un-

seen individual, given its measured predictor variable values. With ample data predictive

modeling could be used for critical medical decision making like disease diagnosis, prognosis,

and/or treatment. Supervised machine learning methods, for instance, have been applied

successfully on gene expression profiles to predict cancer diagnosis [7] and prognosis [8].

Thus, in the context of precision medicine, combining information from multiple related

studies for predictive modeling could lead to the discovery of new biological insight as well

as better models for a more effective medical decision making, in light of the data explosion.

1.1 THE PROBLEM

With the plethora of biomedical data and knowledge repositories, integrating information

from related studies designed to study the same/similar biological problem could lead to the

discovery of predictive models that are more generalizable, reliable, and precise. Inherent

nuances within and between such related studies and models, however, make predictive

modeling of related biomedical data, such as gene expression datasets, a non-trivial task.

Below are some of the challenges:

1. Curse of dimensionality

High-throughput techniques for generating gene expression data are both a blessing and

a curse. They are a blessing because thousands of biomarkers can be assayed simulta-

neously, ensuring high efficiency for estimating expression levels of biomarkers. They

are a curse because most of the thousands—to tens of thousands—measured biomarkers

are irrelevant for disease state classification. In addition, traditional data mining algo-

rithms were not intended for such high dimensional data. Developing a reliable predictive

model with them is a major challenge in machine learning, because of the “over-fitting”

problem [9].
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2. Curse of dataset scarcity

Gene expression datasets, like most ‘omic’ data, are fraught with small sample sizes, usu-

ally in the region of tens or hundreds. Studies [10] have shown that for predictive models

learned on such data to command high stability, generalization power, and reliability, a

large sample size—thousands—is required. Unfortunately, due to cost and limited tissue

(or biofluids) availability, it is prohibitive to obtain ‘omic‘ data with such large sample

size.

3. Variability & noise

In the design of high-throughput experiments, three types of variations can occur in

the final observed data: biological variations, technical variations, and treatment effect

[11, 12]. Biological variations arise due to heterogeneity among individuals (i.e., sample

population), tissues, and/or environmental factors. Technical variations, on the other

hand, refer to all kinds of experimental variability or artifacts introduced when two

identical samples are assayed and analyzed with different equipment, protocols, and/or

methods. Treatment effect refers to the difference between two experimental groups (e.g.,

case versus control) depending on the underlying experimental hypothesis. Because of

these variations, it is not effective to combine, naively, two or more related datasets in

order to boost sample size.

4. Lack of transferability

In most cases, a highly predictive biomarker generated from one study can suffer a

marked decrease in performance when tested on another related study [10]. Results from

a knowledge discovery process on related datasets can be different. For instance, several

microarray studies that have attempted to address similar prediction tasks have reported

sets of predictive biomarkers, which are either entirely different or show very little over-

lap [10,13,14]. The ability to discern such subtleties are essential for model performance,

however, most predictive modeling techniques are unable to identify, incorporate, nor

transfer background information from related studies into new models; a phenomenon

that is also known as catastrophic forgetting [15]. This lack of transferability, which is

mostly caused by inherent heterogeneity within diseases (e.g., cancer), can affect neg-

atively, the discovery of reliable biomarkers and predictive patterns that are useful for
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verification studies between independent, but related, ‘omic’ datasets.

5. Model interpretability

Most of the statistical learning and data mining methods for analyzing high-dimensional

data, like microarrays, generate predictive models that are difficult to interpret by hu-

mans, even though they can potentially yield high accuracies. Striking a balance between

model interpretability and predictive performance can be a daunting task for the biomed-

ical scientist.

1.2 CURRENT METHODS

Methods for predictive modeling can be roughly categorized into two main groups. Given an

‘omic’ data like gene expression, the first group, statistical or pattern-recognition learning

techniques like logistic regression, k -nearest neighbor, artificial neural networks (ANN), or

support vector machines (SVM) [16] could be used to approximate a mathematical function

for future predictions. The second group involves inductive learning of symbolic descriptions,

such as decision trees [17], classification rules [18], or logical representations [19]. Although

the former can result in models with relatively high predictive performance (e.g., SVM),

majority of them (e.g., ANN, SVM) suffer from the interpretability problem. This work

therefore focused on the latter group of methods, particular RL [18], which has been used

extensively, over three decades, for predictive rule modeling of ‘omic’ datasets.

Given a list of training data examples, the goal of a symbolic learning algorithm, like

RL, is to identify a set of classification rules, i.e., a rule model, which can be used to predict

new data instances. A data example, herein, refers to a set of variable-value pairs, where

a variable (e.g., a gene) is a place holder for an object of a domain/world. Meanwhile,

a data instance refers to an example without a class label, while a dataset denotes a set

of examples. An instance is covered by a rule if it logically satisfies the rule’s condition,

while coverage is the fraction of examples that are covered by a rule model. Furthermore,

a rule model is complete and consistent if it covers and accurately predicts the class labels

of all data examples, respectively. Herein, a rule model is said to be robust if it is complete
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and consistent. This definition of robustness would be used throughout this document as a

guiding principle to gauge two or more rule models.

RL and several other symbolic methods can adequately address the model interpretability

problem, however they do suffer from the data scarcity as well as transferability problem,

which make them less robust. Consider, for example, two related microarray studies on lung

cancer, where one involves patient cohorts from Bostom, while the other from Pittsburgh.

While vital information contained within these related studies could be leveraged to improve

predictive performance of models learned on a dataset from each study, RL and most single-

source based algorithms cannot incorporate such background knowledge into their model

development. That is catastrophic forgetting.

To address some of these challenges several methods have been proposed for combining

information from multiple and independent microarray studies that were designed for the

same biological problem (e.g., survival of prostate cancer)—in order to discover more gen-

eralizable models by boosting sample size. Majority of these methods can be categorized

under two main approaches: meta-analysis and analysis by data merging [20–22]. Meta-

analysis methods combine results of individual studies (e.g., classification accuracies, ranks,

p-values, etc.) at the inference level. By contrast, merging methods, like batch effect removal

techniques, after transforming the expression values from different studies into numerically

comparable measures, integrates microarray data at the expression value level. Further-

more, the output of these methods could be fed into machine learning algorithms to develop

classification models.

The major limitations about these methods are that they do not address the transferabil-

ity and variability issues well. Meta-analysis relies on statistical significance to pool infor-

mation from different studies to draw inferences. As alluded to above, however, a biomarker

that is statistically significantly predictive in one study can manifest a different behavior in

another study, which is designed to solve the same biological problem. In addition, most

of these methods are unable to incorporate expert and domain-specific knowledge to guide

model construction and interpretation, nor transfer information from one dataset to another

in order to boost reliability of the integrative analysis.

To address these challenges, Ganchev and colleagues proposed a novel framework (an
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extension of RL), called transfer rule learning (TRL), which leveraged the concept of transfer

learning to build integrative, modular, and interpretable predictive rule models from two

datasets [23]. Transfer learning (TL) is The ability of a system to recognize and adapt

knowledge, and skills learned in previous domains/tasks to novel domains/tasks, which share

some COMMONALITY [24]. Given amble background knowledge, humans are able to

learn efficiently and make better informed decisions using the mechanism of TL.

Given two ‘transcriptomic’ datasets of related studies (see example above), where one is

designated as the source and the other as target, TRL builds predictive rule models, while

using the concept of TL. First, it learns a rule model on the source, and second, it transfers

knowledge learned from the source model to seed learning of a new predictive rule model on

the target. By this mechanism, TRL addresses the data scarcity, as well as the transferability

problem inherent in RL and other single-source machine learning algorithms.

In the spirit of precision medicine, however, TRL has limited capabilities. First, while

gathering information from multiple sources for transfer might lead to better learning and

classification performance on the target, the current implementation of the TRL framework

cannot pool rules learned from multiple data sources for transfer (i.e., it can only transfer

knowledge between a single source and a single target). Second, it cannot imbibe relevant

biological knowledge from external sources to augment the knowledge discovery process.

Extracting, combining, and abstracting vital information from domain experts, literature,

or domain knowledge bases to augment transfer learning, could be an invaluable proposition

for developing robust predictive rule models. Third, it has its own flavor of catastrophic

forgetting. While transferring background knowledge, in the form of rules, from the source to

target, it fails to account for the predictive performance of individual rules in previous studies.

As alluded to above (see section 1.1), some biomarkers and rule patterns may perform well

in one study, but not another. Taking cognizance of this phenomenon, while transferring

knowledge between the source and target could potentially improve model robustness. Last,

for knowledge transfer to be effective and meaningful it is essential to capture the relatedness

between the source and target datasets. TRL’s mechanism of establishing this relatedness

is to identify overlapping variables between the source and target. However, studies have

shown that different classification models built on independent, but related, microarray
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datasets can contain different sets of biomarkers with little overlap. In addition, models

based on different variable sets can yield similar classification performance when tested on

the same validation dataset [25,26]. This means that TRL’s naive approach for establishing

relatedness might not inure well to the benefit of knowledge transfer. In humans, for example,

the TP53 gene, which encodes the tumor protein p53, is known to play a key role in the

activation and/or control of apoptosis. Meanwhile, caspase-6, an effector caspase, which

is encoded by the CASP6 genes, cleaves to other proteins to trigger the apoptosis process

[27]. Superficially, TP53 and CASP6 are different, but they both play a prominent role

in apoptosis. Assuming these genes are significantly predictive in the source and target

datasets respectively, TRL, including many other integrative methods, cannot leverage their

commonality to facilitate knowledge transfer because they are not identical. Thus hampering,

potentially, the robustness of predictive models that are developed by them.

Considering the challenges and limited capabilities of the current methods, one may ask,

“in the wake of biomedical data and knowledge explosion and the drive for precision medicine,

how do we effectively extract and combine background knowledge from multiple sources to

transfer and learn simple, but, robust predictive models on a target dataset?” Thus, there is

a critical need for a new approach to harness the vast amounts of information contained in

the burgeoning biomedical data and knowledge repositories in order to provide alternate, but

more effective tools, to champion precision medicine. To that end, this dissertation presents

a new approach, based on four different, but related algorithms.

1.3 THE APPROACH

This dissertation explores four novel frameworks: (i) Transfer Rule Learning via Func-

tional Mapping (TRL-FM), (ii) Knowledge Augmented Rule Learning (KARL), (iii) Multi-

ple Source Transfer Rule Learning (MS-TRL), and (iv) Incremental Transfer Rule Learning

(iTRL), which offer substantial extensions to TRL [28] by addressing the above-highlighted

limitations, so that predictive rule modeling, via transfer learning, could be more robust.

Figure 1 illustrates an overarching scheme that encapsulates the proposed extensions devel-
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Figure 1: A simplified scheme that encapsulates the multi-source transfer rule learning frame-

works developed herein. First, pertinent knowledge are extracted from two distinct sources:

(1) domain knowledge bases (e.g., GO, KEGG, IPA), and (2) multiple related transcriptomic

data sets (e.g., GEO, TCGA). Second, the knowledge extraction engine, which involves a

suite of frameworks (TRL-FM, KARL, MS-TRL, and iTRL), implements diverse procedures

to process the multi-source background into simplified structures for the prior rules genera-

tion engine. Third, the prior rules generation engine converts the abstracted knowledge into

a list of prior rules. Last, using transfer rule learning (see Figure 30), information from the

prior rules are combined with the target dataset to develop a new target rule model.
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oped herein. Its main goal is to harness vital information contained in the vast amounts

of biomedical data (and knowledge) resources to augment predictive rule modeling via the

transfer learning paradigm.

The main contribution of this framework is the Knowledge Extraction & Abstraction

Engine (KEAE), which consists of two main parts. The first, i.e., the knowledge extrac-

tion engine, consists of four sub-components that implement diverse sub-routines to extract

information from multiple sources to facilitate the induction of a predictive rule model on

a target dataset. The second, a Prior Rules Generation Engine (PRGE) complements the

first by abstracting the source (or background) knowledge into a prior hypothesis in the

form of classification rules. The PRGE is a polymorphic sub-routine in that each of the four

knowledge extractions engines abstracts and generates prior rules differently. The four com-

ponents of the KEAE, i.e., TRL-FM, KARL, MS-TRL, and iTRL, including their nuances,

are briefly explained as below:

TRL-FM The purpose of TRL-FM is to lax TRL’s requirement for establishing common-

ality between the source and target in order to transfer knowledge—that is, identical

variables must occur. It extracts vital domain knowledge from a biomedical knowledge

repository (i.e., the Gene Ontology) into an ontology-based functional modules (FMs)—a

group of variables that perform the same/similar functions. The FMs abstracts common-

alities between source and target variables, and thus could be used to map even non-

identical, but common variables, to facilitate prior rules generation. This mechanism

improves completeness, and hence robustness of a TRL-FM rule model, given the same

target (see example in section 1.2).

KARL The purpose of KARL is to extract and abstract germane domain knowledge from

multiple experts, literature, and/or knowledge bases, to directly augment search for

robust predictive rules. It addresses TRL’s inability to imbibe relevant biological knowl-

edge from external sources to augment the knowledge discovery process. In addition, it

affords a user the flexibility to incorporate subjective domain information into the knowl-

edge discovery process of rule learning. For instance, it provides a generic framework

such that vital information from a domain (e.g., characteristics of cancer or schizophre-

nia) could be used as a guide to discover interesting rule patterns. The rule patterns
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IF VEGFA=Low ==> CONTROL and IF VEGFA=Up ==> CANCER, for example, could be given

a relatively high priority during search for propositional rules because a highly-expressed

VEGFA can be associated with proliferation of the cell—a hallmark of cancer. Using a

biomedical knowledge repository like Ingenuity® Knowledge Base, KARL’s KEAE first

extracts desirable domain knowledge, which is subsequently abstracted and encoded into

a domain-specific data structure—a functional lookup table. Information encoded in the

lookup table augments the generation of prior rules for transfer learning.

MS-TRL MS-TRL is also aimed at addressing the single source limitation of TRL. Here, the

notion of multiple sources is characterized by multiple related rule models, as opposed to

knowledge bases àla TRL-FM/KARL fashion. What is more, MS-TRL alleviates TRL’s

version of catastrophic forgetting by implementing intelligent mechanisms for data trans-

formations, as well as remembering and incorporating the predictive performances of rule

patterns from related models into new ones. Consider, for instance, four related microar-

ray studies on breast cancer, which involved patients from Boston, Pittsburgh, Stanford,

and Michigan, respectively. Unlike TRL, MS-TRL is able to extract and abstract vital

background knowledge from any three to seed learning of a new predictive model on

the fourth. The ability to imbibe information from multiple models makes MS-TRL

relatively more robust.

iTRL Like MS-TRL, iTRL can address the single-source limitation of TRL as well. The

main difference between the two is that for the former, multiple related models are

merged and processed into prior rules, while with the latter, prior rules are generated

and updated from each source, one at a time. Thus, iTRL provides capabilities for TRL

to be used for on-line learning, which could be particularly useful when all source datasets

are not available at the same time.

As fig. 1 illustrates, the knowledge extraction and abstraction engine outputs a set of

prior rules. Using the prior rules as a seed, the framework proceeds in a TRL fashion to

induce a new predictive rule model on the target data. Thus, with this new approach we

are now able to pool background knowledge from a wider and more informative space to

augment transfer rule learning.
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1.4 AIMS OF THE DISSERTATION

In the wake of biomedical data (and knowledge) explosion; the drive for precision medicine;

the limitations of current methods; and hence the critical need for more effective methods,

the aim of this dissertation is threefold. First, to present a novel approach that is founded

on four different, but related, frameworks that are able to harness and combine background

knowledge during search for predictive rule models from multiple sources of related gene

expression data and biomedical knowledge bases using transfer learning. Second, to evaluate

and compare the performance (i.e., robustness) of the frameworks developed herein with

previous methods, using 25 real and publicly available gene expression datasets, which rep-

resent five respective studies on brain, breast, colon, lung, and prostate cancers. Last, to

postulate that:

The multi-source transfer rule learning frameworks developed herein, TRL-FM, KARL, MS-
TRL, and iTRL, produce on average more robust predictive rule models than those produced
from a single-source transfer, or no transfer.

1.5 SIGNIFICANCE

To the best of my knowledge, this is the first transfer learning study that provides diverse

mechanisms to extract, abstract, and combine information from multiple-related biomedical

data sources to develop robust predictive rule models. The significance of the frameworks

developed herein can be viewed from two perspectives: (1) from an informatics point of view

and (2) a biomedical viewpoint.

From an informatics viewpoint, the algorithmic extensions that were developed will im-

prove classification rule learning with TRL and its predecessor, RL [18]. RL performs com-

parably or better than many other machine learning algorithms on several biomarker data

mining case studies [29–32]. TRL was the first method to apply the concept of transfer rule

learning for integrative biomarker discovery. Most of transfer learning methods are unsuit-

able for high-dimensional datasets, like biomedical datasets, because they generate models

that use a large variable set and are difficult to interpret [28,33,34]. Like RL and TRL, the
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extensions that this work proposes output rule models that are modular, intelligible, and

well suited for knowledge discovery and predictive modeling tasks for biomedical datasets.

The algorithmic extensions developed herein will improve transfer rule learning in several

ways. First, by pooling information from multiple source datasets, as opposed to one, to seed

learning on a target dataset, it will more likely improve predictive performance, reliability,

statistical power, and the identification of robust patterns. This is akin to receiving “advice”

from multiple experts. As opposed to just one, whose advice may be good or bad; here

you have more options to sift through the best (and worst) in order to make a better-

informed decision. Most genomic data are fraught with noise and can lead to unreliable

models. Combining information from multiple-related sources, however, could smoothen out

inherent noise from each source, and provide a robust picture of the underlying knowledge.

Second, by leveraging the notion of functional modules to capture and abstract biological

commonalities among variables it will be more suited to tackle the transferability challenge,

which current methods, including TRL are unable to address well. For instance, a biomarker

might be statistically predictive in one study, but not another. FMs can be used as a

pivot to map surrogate biomarkers between independent, but related ‘omic’ datasets. In

addition, the FM mapping and knowledge augmentation (e.g., with KARL) mechanisms

provides another source of information to enrich model development. The advantage these

mechanisms have over other multi-source approaches, such as ensemble methods, is that,

they are able to incorporate, explicitly, prior domain-information to augment the knowledge

discovery process. Finally, the proposed algorithmic extensions provide generic frameworks

that could be customized for cross-domain studies, like ‘panomic’ studies—a key driver for

precision medicine.

From a biomedical standpoint, the frameworks put forward herein could be an invaluable

tool set for translational scientists who are interested in precision medicine. In the advent of

biomedical data explosion, these frameworks provide novel mechanisms that could discover

robust patterns of distinct biomedical knowledge nuggets within and across homogeneous and

heterogeneous datasets, respectively. Identifying similar and robust patterns across related

disease types could have significant implications for treatment strategies. Various molecular

profiling studies, for instance, have revealed that cancers from the same tissue/organ are
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oftentimes distinct, while cancers of different tissue/organ can share common features [35,36].

Certain types of lung and head-and-neck cancers, for example, have similar features as some

types of bladder [35] cancer. This means that by identifying these similar features via the

proposed frameworks herein, could yield several efficient therapeutic options. An oncologist,

for instance, could apply knowledge gained from treating squamous cell lung cancer to some

bladder cancer cases that share the same characteristics. In sections 5.3.8, 5.4.4 and 5.5.3,

the feasibility of KARL, MS-TRL, or iTRL for handling such use case are illustrated via

experimental results, which are supported by literature-based evidence.

Thus, the multi-source transfer rule-learning frameworks developed herein could make

meaningful contribution towards the precision medicine initiative. Given multiple related

datasets, they could be used to discover simple, interpretable, and more robust rule models.

In addition, they are capable of identifying patterns of domain-specific (i.e., distinct features)

and domain-independent (i.e., common features) patterns within a specified domain.

1.6 OVERVIEW OF DISSERTATION

In chapter 2, I will highlight relevant background literature on the proposed frameworks.

Some of the germane topics to be discussed are gene expression, analysis of microarray

gene expression data, integrative analysis of gene expression data, transfer learning, and the

foundation of rule learning. Chapter 3 describes, in details, the conceptual underpinnings, in-

cluding implementation algorithms for all the multi-source transfer rule-learning frameworks

developed and tested in this dissertation. Chapter 4, subsequently describes the design and

experiments that were performed to ascertain the feasibility of the frameworks to address

some of the problems highlighted in section 1.1. In chapter 5, I present results for the ex-

periments, including a detailed analysis of them. Meanwhile, all additional materials (e.g.,

Supplementary results, and user manual for the implementation toolkit) have been provided

in appendices A to F. Chapter 6 concludes the dissertation with highlights of the insights

we gained from this work, the contributions it provide to knowledge within the biomedical

informatics community, identified limitations, and proposed future work.
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2.0 BACKGROUND

This chapter discusses related background literature that is relevant for predictive model-

ing of multiple gene expression data sets using transfer learning, the object of this work.

Section 2.1 provides an overview of gene expression data and its utility for unraveling the

underlying mechanisms of disease states, while section 2.2 highlights, in general, the com-

putational methods that are used for the analysis of gene expression data to gain more

biological insight. Section 2.3 examines, compares, and contrasts integrative data and/or

modeling approaches (e.g., data merging, meta-analysis, ensemble learning) that have been

developed to improve learning by combining information from multiple sources, the context

of this work. Section 2.4 provides a brief survey of transfer learning, the overarching concept

underpinning this work, while section 2.5 describes the foundations of rule learning, which

are the building blocks for the methods put forward in this thesis.

2.1 GENE EXPRESSION

The abundance of mRNA transcript at particular time points can give an indication of the

functional role of a gene, the underlying mechanism of a disease, or a potential drug response

[37–39]. Given a biological sample (i.e., bodily fluid or tissue), gene expression profiling can

be used to measure the abundance of each RNA transcript in the transcriptome—a collection

of all RNA transcripts, including both protein coding mRNA and non-coding RNAs [38,40].

The technology for gene expression profiling has evolved over the past few decades. It started

with the Southern blot [41], and its variant technique, the Northern blot, and then followed

by the quantitative RT-PCR [42]. These pioneering technologies can only interrogate a
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handful of genes at a time.

In the past two decades, the advent of high-throughput techniques such as microarrays

(e.g., cDNA array or whole genome tiling array [38,43]) enabled gene expression profiling of,

potentially, the whole transcriptome. Recently, the application of next generation sequenc-

ing technologies [44], like RNA sequencing (RNA-Seq) [45], to profile the transcriptome is

becoming more popular because of its unprecedented accuracy and sensitivity [45, 46]. Sev-

eral studies in the literature have compared and contrasted the strengths and limitations of

DNA microarrays and and RNA-Seq [47–49]. For instance, reports from some studies claim

that the correlation of technical replicates of the two methods can be higher than 0.9 [50,51].

Meanwhile, RNA-seq has a wider dynamic range, and it is more sensitive than the microar-

ray [47]. The improved sensitivity can enable it to identify more genes, while the wider

dynamic range may increase accuracy [47,49]. However, the RNA-seq is more costly (about

3-5 times the cost of microarray per sample); it can generate very large files (about 30-40

times larger than the microarray); it requires extensive bioinformatics skills and computer

resources; and since it is a new technology, there are lot of tools for analysis, yet no standard

protocol to guide them [47].

This work focused on microarray gene expression since it is still the common choice for

transcriptomic profiling. About 80% of gene expression data that are readily available in

public repositories are microarrays [52]. In addition, the frameworks put forward are flexible

such that they can be easily modified and equally applied to a wide spectrum of ‘omic’

datasets such as RNA-Seq, DNA methylation, etc., when available.

2.2 GENE EXPRESSION DATA ANALYSIS

The simple assumption underpinning microarray data analysis is that: “given that genes are

expressed by transcribing into mRNA—which will be later used to synthesize proteins—if

we are able to identify which (and how much) mRNA is present we should be able to deter-

mine which genes are expressed, including their corresponding expression intensity.” That

is, the number of mRNA molecules resulting from the transcription of a given gene can be
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used to approximate its level of expression. Even though this assumption is not foolproof, it

is the guiding principle for the design and analysis of almost every microarray experiment.

Depending on the microarray technology (e.g., cDNA microarrays or oligonucleotide chips),

gene expression intensities are quantified by means of fluorescence intensities that are cap-

tured by scanners into images. The images are subsequently turned into numbers, which

forms the basis for further statistical analysis [39, 53]. Generally, microarray data analysis

adhere to the following major steps: experimental design, preprocessing, and inference.

Experimental design involves the development of a plan to get the best out of the infor-

mation being measured in order to answer the biological question adequately. For instance,

ensuring reasonable sample replicates and sample size can reduce and increase variability

and statistically power, respectively. After the expression intensity levels have been con-

verted from images to their numerical equivalent, the data is preprocessed in order to ensure

quality, harmonization, and interpretability of the expression values.

The preprocessing step can involve quality control (QC), normalization, data transfor-

mation, and data filtering. The goal of the QC process is to ensure that the transformed

expression intensities are reliable. Several methods for microarray QC [54, 55] have been

proposed, however, there is no specific standard adopted by the microarray community.

Normalization is also another essential preprocessing step. Its goal is to remove sys-

tematic variations and artifacts among different microarray experiments and platforms. It

also allows consistency and harmonization of the data to ease comparison among different

microarray experiments. Several approaches for normalization have been proposed and well

discussed in literature [56–59]. In addition to normalization, other important preprocessing

steps are data transformation and filtering.

Data transformation [60] involves the application of a specific function to change the

data into a different form (e.g., log2, or Z transform) while filtering can be used to simplify

the data analysis by removing expression intensities with relatively low signals [61]. The

output of these data preparation steps is a gene expression matrix, where the rows (tens

of thousands) and columns (from 2 to hundreds) represent genes and samples, respectively.

Depending on the type of microarray technology used, the values of the matrix denote

gene expression (i.e., relative expression for two-channel array technologies and absolute
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expression for single-channel technologies).

Finally, the output of the preprocessing step, the expression matrix, serves as input

to various statistical analyses/hypotheses tests—the inference step—in order to answer the

biological question for which the experiment was designed. Microarray experiments, in

general, are designed with several inference objectives in mind. Majority of these inference

objectives can be categorized into four groups namely, class comparison (i.e., differential gene

expression or candidate marker identification), pathway analysis or functional enrichment,

class discovery, and class prediction [62]. The next subsections review, briefly, the general

inference approaches that are used to meet the objectives for each category.

2.2.1 Class Comparison

The class comparison question, which is also known as “difference in gene expression”, seeks

to identify genes whose expression levels are significantly different between two conditions.

Given two class conditions, say primary lung tumor (condition A) and normal lung tissue

(condition B), an example hypothesis is “there is a difference in gene expression between

tissues belonging to condition A and B in the general population of lung tissues.” Statisti-

cally tests like the t-test or ANOVA, for example, can be used to determine the significant

difference between gene expression means of two or more groups. A comparative review of

statistical methods for discovering differentially expressed genes from microarray experiments

can be found from [63,64].

2.2.2 Pathway Analysis

Generally, differential gene expression analyses result into a long list of genes. With this list,

biomedical scientists are interested in associating the genes to functional classes in order to

give them biological interpretation. Common approaches to seek biological interpretation

is to associate the genes to named functional classes (also known as functional enrichment)

contained in functional annotation databases like Kyoto Encyclopedia of Genes and Genomes

(KEGG) [5] and the Gene Ontology (GO) [65]. Several methods, including their strengths

and demerits, for implementing this approach have been proposed [66–68].
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Two of the most commonly used functional enrichment methods are Gene Enrichment

Analysis (GE) and Gene Set Enrichment Analysis (GSEA). Given a list of genes, the GE-

based methods seek to identify whether a given term, say a KEGG pathway or a GO term

appears more frequently (i.e., enriched) or less frequently (i.e., impoverished) in the given

list than the population from where the genes are obtained. Population here can refer to a

list of differentially expressed genes, set of genes captured by the microarray, or the genome.

The hypergeometric test is usually used to determine the significance of any identified en-

richment. In addition to the gene list, the GSEA [69] methods also require a numerical

variable (usually the p-value) to rank the given gene list. Beginning with the ranked list a

cumulative enrichment score based on the absence or presence of each gene from a known

gene set is computed. To determine whether the known gene set is over-represented at the

top or bottom of the list, a Kolmogorov-Smirnov statistic is used to compare the distribu-

tions of scores between the known gene sets and given gene list. A comparative analysis of

these methods can also be found from [66,68].

In addition to functional enrichment analysis, there are other approaches—biological net-

work analysis—that can be used to identify functional groups or common disease associations

among differentially expressed genes [70]. Majority of these methods, including functional

motifs discovery [71] and functional modules discovery [72] from protein-protein interaction

networks have been reviewed and/or discussed elsewhere [73].

2.2.3 Class Discovery

Apart from pathway and enrichment analysis of the gene expression matrix, class discovery,

also known as clustering, is another essential approach that can be used to identify and group

genes that exhibit similar expression patterns. Subsequently, the identified groups can be

correlated to biological information—from pathway or functional annotation databases—to

make inferences. It can be hypothesized, for instance, that functionally related genes are

co-expressed (i.e., up or down regulated simultaneously) and therefore can be used as a basis

for clustering.

Algorithms for cluster analysis of gene expression data abound [16]. Given a similarity
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metric (say, expression pattern of genes across tissues) and the expression matrix as inputs,

these algorithms can group genes, and even tissue samples, into desirable classes. When

applied to genes, for instance, they can identify co-regulated genes or spatio-temporal ex-

pressions. Meanwhile, when applied to tissue samples, methods like hierarchical clustering

can identify biological classes (e.g., tumor sub-types) or even experimental artifacts [74].

In spite of its wide usage for exploring the gene expression matrix, there are a couple of

open problems in cluster analysis. Although several cluster analysis-based methods abound,

there are no clear guidelines or consensus on, for instance, which particular metric to use to

quantify the similarity among objects; how to determine the optimal cluster size; or how to

validate produced clusters [75–79].

2.2.4 Class Prediction

Given an expression matrix, the goal of class prediction analysis is to develop a multivariate

function or rule that can predict, accurately, the class membership (e.g., primary tumor or

normal) of a new tissue sample based on its gene expression values. Assume that each sample

of the array is labeled with a class, say Y ∈ 1, 2, ..., J , where J is the number of classes, and

characterized by a vector of features, X = (X1, X2, ..., XG), which represent the expression

values of G genes. The goal is to predict the Y value of a newly unclassified sample given

its X.

Depending on the underlying biological question, class prediction functions can be di-

vided into two main categories: diagnostic and prognostic. With the former, the developed

function assigns a new sample to an existing category or disease. For example, Golub et

al. [7] developed a classification model that could assign tumors to their respective sub-

types. The goal of the latter is to predict the progress of patient’s disease. Van’t Veer et

al. [8], for example, developed a predictive model that could determine whether a tumor may

metastasize after given period.

Class prediction is an active research area in biomedical informatics, where a myriad of

machine learning algorithms have been proposed or applied to microarray data [16]. Reviews

[80,81] have demonstrated that relatively simple and well-known machine learning methods
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like Naive Bayes (NB), K-Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA),

Support Vector Machines (SVM), and decision trees (C4.5), perform well on most class-

prediction tasks for microarray data. However, pertinent challenges persist. First, given

an expression matrix, different methods may yield different classification models, which are

not unique and produce different error rates. Thus, choosing an appropriate method for a

particular class prediction task can be a challenging. This challenge can be tackled with

some ensemble or model averaging methods [82, 83], even though they come with inherent

challenges [84].

Meanwhile, interpretation of a class prediction model is very important. Unfortunately,

majority of traditional machine learning algorithms are “black boxes”. They might yield

a high predictive performance but difficult to interpret. A careful balance of model inter-

pretability and predictive performance is key for precision medicine.

In addition, as alluded to earlier, the gene expression matrix is characterized by the

curses of dimensionality and data scarcity, variability, and noise. These attributes may

cause class prediction models to be unstable and lack adequate statistical power. To address

these challenges methods for integrative analysis of gene expression datasets have since been

proposed.

2.3 INTEGRATIVE ANALYSIS OF GENE EXPRESSION DATA

Considering some of the challenges inherent in class prediction analysis that were highlighted

in the previous section, integrative analysis of multiple studies, which ask the same/similar

biological question holds promise towards high predictive performance, consistency, and

robust classification models. Integrative analysis of microarray data can be viewed from

two angles: integrative data analysis and integrative modeling. The former fuses two or more

expression matrices into one big dataset, while the latter combines information from different

expression matrices into one model. In addition, for most practices, the former is a required

input to the latter. The next sections highlight major frameworks that have been developed

for both integrative data and modeling analyses.
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2.3.1 Integrative data analysis

Integrative data analysis of multiple and independent microarray studies can be carried

out with two main approaches: meta-analysis and analysis by data merging [85]. With

the meta-analysis approach, integration occurs at the interpretive level, where results (e.g.,

classification accuracy, p-values, ranks, etc.) from individual studies are combined. By

contrast, the merging approach combines two or more microarray data by rescaling their

expression values into numerically comparable measures.

2.3.1.1 Meta-analysis involves the quantitative review and synthesis of different, but

related microarray studies. With a plethora of gene expression datasets available in public

repositories, meta-analysis has emerged as the most popular technique to compare microarray

studies at the interpretation level [21]. Ramasamay et al.’s [20] proposed seven-step guideline

has been adopted as the de facto standard for conducting microarray meta-analysis.

According to a comprehensive review by Tseng et al. [21], several methods for microarray

meta-analysis have been proposed, developed, and applied. Majority of these methods can

be grouped into three main groups according to the type of statistics they combine namely,

p-values (e.g., Adaptively weighted (AW) Fisher [86]), effective sizes (e.g., Random effects

model [87]), and ranks (e.g., RankProd and RankSum [88]). In terms of hypothesis tests,

they can be further classified into two complementary groups. In the first, the goal is to

determine results, say differently expressed genes, which have a nonzero effective size in all

studies [21]. Considering K microarray studies, the hypothesis can be stated as:

H0 : ∩Kk=1{θk = 0} versus Ha : ∩K
k=1{θk 6= 0} (2.1)

where θk denotes the effective size of the kth study. By contrast, the hypothesis setting

of the second group seeks to determine differentially expressed genes that have a nonzero

effective size in at least one study. Similarly, the hypothesis can be stated as:

H0 : ∩Kk=1{θk = 0} versus Ha : ∪K
k=1{θk 6= 0} (2.2)

Equation (2.1) is a more appropriate approach for integrative studies whose aim is to iden-

tify candidate biomarkers that are consistent and conserved, while eq. (2.2) is suited for
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the identification of study specific biomarkers, particularly for studies where relatively high

degrees of heterogeneity are suspected. Because eq. (2.1) can be very conservative when a

lot of studies are integrated, Song and Tseng [89] relaxed the constraint of nonzero effective

size in “all” studies to “majority” of studies. The modified hypothesis can be viewed as:

H0 : ∩Kk=1{θk = 0} versus Ha :
K∑
k=1

I{θk 6= 0} ≥ r (2.3)

where r is a user specified parameter to indicate “majority”. For example, r ≥ 0.6K, means

identify differently expressed genes with an effective size in at least 60% studies.

In spite of its popularity, inherent intricacies of microarray studies, like noise, biological

and experimental variability, variability in platforms and experiment protocols, may cause

meta-analysis studies to yield false positives and discordant results [22, 85]. However, most

of these variability issues can be ameliorated by data merging methods.

2.3.1.2 Data merging methods, contrary to meta-analysis techniques, integrate gene

expression data of independent, but related, studies into a large data matrix after trans-

forming the expression values of the individual studies into numerically comparable values.

To achieve this, specific data transformation techniques, like normalization, are applied to

the gene expression data. The merged data matrix then becomes the input to further data

analysis such as class prediction tasks.

Several techniques for transforming multiple gene expression data have been developed

and applied in literature [22]. The most common of such methods is normalization. Hwang

et al. [90] used normalization to combine expression values of each gene across samples from

cDNA and Affymetrix platforms such that the mean and standard deviation of each gene

is equal to zero and unity, respectively. Similarly, Cheadle et al. [91] had earlier applied

the Z-score transformation method to transform the intensity values of cDNA microarray.

Meanwhile, methods that are more sophisticated have since been proposed.

Using the distance weighted discriminant (DWD) method [92]—an adaption of SVM—

Benito and Co. [93] integrated Agilent oligonucleotide data with cDNA data by ameliorating

any potential systematic biases lurking in the datasets. Furthermore, Johnson and colleagues

[94] applied an Empirical Bayes method (COMBAT) to transform gene expression data from
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independent but related studies to have equal (similar) mean and/or variance for each gene.

While this method enables data comparison, it does not eliminate any biological signal of

interest nor affect the data distributions across the different studies.

Jiang et al. [95] proposed a distributions transformer (disTran) which can be used to

transform two Affymetrix chip types such that the empirical distributions of two lung cancer

datasets could be identical, so that they can be integrated. They reported that disTran

could provide improved consistency of expression profiles across multiple datasets. Cross-

platform normalization (XPN) [96] is also another method that combines two or more gene

expression datasets into a single expression matrix. Based on a block linear model, XPN

identifies homogeneous clusters of genes and samples across studies that have similar expres-

sion profiles. What is more, Normalized Linear Transform (NLT) [97] allows samples from

two different microarray platforms to be linearly mapped such that the numerical range of

a gene’s expression values can be identical across the platforms. The mapped data can be

further combined and transformed via standard normalization or Z-transform.

In conclusion, many more techniques exist for gene expression data integration (e.g.,

see [22,59,98] for and empirical comparison of various methods), and they provide an essential

step in further analysis of gene expression data such as integrative modeling.

2.3.2 Ensemble & Integrative modeling

The process of seeking advice from multiple experts in order to make a better-informed

decision is second nature to humans. Several methods in ensemble learning and integrative

modeling have been proposed to automate such processes. The overarching assumption is

that: using information (e.g., prediction) from multiple models is superior to that of a single

model. In general, most ensemble learning methods [99–102] combine multiple models that

are learned from a single data source. On the other hand, the multi-view learning approach

(e.g., data fusion [103]) builds models by combining information from multiple data sources.

Combining information from independent, but related studies, have been proposed as

a viable strategy to improve diagnostic and prognostic performance in several biomedical

studies, especially cancer [104–106]. For instance, molecular, clinical, and histopathological
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information can be combined to predict tumor progression in lung cancer [107].

Generally, the integrative approach to a class prediction task can be designed with two

main intents: subjective and an objective bent. The subjective approach is driven by priors,

which are biased by strong user and/or domain assumptions about biomarkers and their

relationships with outcomes. For example, specific clinical features, risk factors, and/or

molecular markers can be considered as inputs into predictive models because they have

been gleaned from a domain expert and/or literature as relevant for a disease diagnosis or

prognosis. By contrast, the latter framework relies on computational techniques to auto-

matically identify and combine relevant information from different information sources (e.g.,

‘omic’ datasets, biomedical knowledge bases, or even related models) to build a predictive

model for disease diagnosis or prognosis.

Combining information from multiple sources for predictive analysis has several advan-

tages. Since most ‘omic’ data are characterized by small sample size and large variable space,

classification models built on them might be noisy. In addition, using different techniques to

build classification models on the same dataset can yield non-unique error rates. However,

combining information from the different models can complement each other so that the

overall predictive error rate can be reduced potentially [83].

Several strategies for integrative model design have been proposed for integrative ‘omic’

data analysis. Azuaje [104] categorized them into five main groups. The strategy of the first

group is to aggregate variables from different datasets, through set union or intersection, be-

fore a prediction model is learned. Naively merging datasets based on common variables can

hamper predictive performance, so more sophisticated methods in meta-analysis and cross-

platform merging have since been proposed [21,85]. For example, Warnat et al. [108] applied

a cross-platform analysis (Quantile Discretization and Median Rank Scores) to combine mul-

tiple cancer microarrays into an input matrix for an SVM classifier. In the second category,

different classification models are learned on homogeneous datasets (i.e., multiple gene ex-

pression datasets containing the set of genes), followed by combining the resulting models

into a generalized model. Zhang et al. [109] used this strategy to improve the performance of

a prognostic model for breast cancer patients. The third category applies feature-engineering

methods to integrate heterogeneous datasets (e.g., gene expression, CNV, DNA methylation,
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etc) into a unit matrix before building the model. For example, Daemen et al. [110] applied

a kernel method [111] to transform diverse ‘omic’ datasets (i.e., gene expression and CNV)

into a ‘kernel matrix’ before building a prognostic SVM model for prostate and rectal can-

cers. In the fourth category of strategies, predictive models are learned on heterogeneous

datasets and/or information sources in a parallel fashion, followed by fusing the resulting

models into a global one. This category can involve the integration of ‘omic’ datasets that

are annotated by interrelated information sources (e.g., pathways). For instance, Ptitsyn et

al. [112] combined microarray datasets and information from pathway databases to predict

metastatic progression in cancer. The last category involves the combination of multiple

datasets and/or predictive models in a serial fashion [113].

Majority of the methods that have been described above generate models that are difficult

to interpret. This work contributes alternate approaches for tackling the integrative model-

ing tasks of related gene expression datasets—with an emphasis on model interpretability.

Nonetheless, it employs a combination of some of the integrative modeling strategies that

have been illustrated above. For instance, it employs both the serial and parallel paradigms

at some stages of the frameworks. At one point, it builds predictive rule models on source

datasets in parallel fashion, while at another point it combines information from the resulting

source models to build a new target model in a multi-step, serial integration fashion. The

mechanism of integration is based on the concept of transfer learning.

2.4 TRANSFER LEARNING

Transfer learning is the ability of a system to recognize and adapt knowledge/skills learned

from previous tasks to a novel one. Humans, in general, will more likely solve new problems in

a much faster time and with better solutions if they apply knowledge learned from previous

but related tasks. For instance, skills learned from driving a sedan could be transferred

easily to learn how to drive a truck. Alternatively, a farmer could leverage skills learned

from growing apples and oranges to grow mangoes in a much faster time and may gain a

higher yield at harvest time. This inherent feature of humans has inspired the concept of
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transfer learning in the machine learning community. Several machine-learning methods,

which are used for microarray class prediction task, learn new models from scratch without

regard for knowledge gained previously.

Transfer learning tries to tackle the challenge of how to leverage knowledge gained from

related source domains to maximize accuracy and efficiency of learning in a new target do-

main [24,114]. It is an effective technique for boosting learning efficiency and performance in

situations where training data are scare, but other related data are available. This character-

istic data requirement particularly suits gene expression as discussed previously. Meanwhile,

majority of the integrative analysis of gene expression data discussed above cannot explicitly

transfer vital information from multiple tasks to boost the analysis of another. Before we

discuss how the transfer learning concept can be applied for integrative modeling of two or

more gene expression datasets, let us first define a transfer learning task.

2.4.1 Defining the transfer learning task

Based on Pan and Yang’s definition [24], let us first consider the following notations. Assume

that a learning domain (e.g., microarray study for breast cancer), D, comprise a feature

space,χ, and a marginal probability distribution P (X), where X = {x1, ..., xn} ∈ χ. Here,

χ is the space for all genes captured by the microarray, xi denotes the i -th gene vector

corresponding to some sample i, and X symbolizes the expression matrix for the learning

sample. Two domains (e.g., breast cancer and lung cancer) can be said to be different if

they have different feature spaces or different marginal probability distribution [24].

Consider a given domain, D = {χ, P (X)}, and a class prediction task, T = {Y, f(.)},

where Y denotes the label space (e.g., “Primary Tumor” or “Normal” for a binary classifica-

tion task), and f(.), represents the objective function or rules that is yet to be determined. In

addition, let us consider a source domain dataset, DT = {(xS1 , yS1), ..., (xSnS
, ySnS

)}, where

xSi
∈ χS and ySi

∈ YS represent a data instance and a corresponding class label, respectively.

Similarly, a target domain dataset, can be defined as DT = {(xT1 , yT1), ..., (xTnT
, yTnT

)}, where

xTi
∈ χT and yTi

∈ YT , respectively, represent data instance and the corresponding class label

for the target data.

26



Using the above notations knowledge transfer from a single source domain to a single

target domain can be defined as follows [24]:

Definition 2.4.1 (Single source transfer). Consider a source domain DS and a source learn-

ing task, TS, a target domain, DT , and a target learning task TT , the aim of a single-source

knowledge transfer is to improve learning of the target predictive function fT (.) in DT , while

incorporating knowledge gleaned from DS and TS, where DS 6= DT or TS 6= TT .

Similarly, we can define knowledge transfer from multiple source domains to a single

target as follows:

Definition 2.4.2 (Multiple source transfer). Consider multiple source domains {DS1 , ..., DSN
}

with corresponding source learning tasks, {TS1 , ..., TSN
}, a target domain, DT , and a tar-

get learning task TT , the aim of a multi-source knowledge transfer is to improve learning

of the target predictive function fT (.) in DT , while incorporating knowledge gleaned from

{DS1 , ..., DSN
} and {TS1 , ..., TSN

}, where ∀k ∈ {1, ..., N}, DSk
6= DT or TSk

6= TT .

A complex scenario of knowledge transfer can involve multiple source domains and multi-

ple target domains; however, for brevity, the above definitions will suffice for this discussion.

From the definitions above, note that the condition DS 6= DT implies that either χS 6= χT

or P (XS) 6= P (XT ) are different (e.g., different array platforms, different disease type,

different study cohort). Similarly, the condition TS 6= TT implies that either YS 6= YT

or P (YS|XS) 6= P (YT |XT ). That is, either the label spaces between the two domains are

different (e.g., source domain has binary class like primary tumor vs normal tissue, while

target domain has 4 classes like stages of cancer), or the user defined classes are unbalanced

in the two domains.

Finally, when there exist some form of relationships—implicit or explicit—between the

variables spaces of the source and target domains, then they are said to be related. Identifying

and abstracting this relatedness is key to effective knowledge transfer, and the basis for

integrative modeling via knowledge transfer. For instance, majority of transfer learning

algorithms leverage the identified relatedness in order to decide on “what” information to

transfer and “how” to transfer them. Meanwhile, the question of “when” to transfer is an

open research problem.
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The goal of transfer learning is to improve the learning performance on the target task.

Positive transfer occurs when the transferred knowledge from the source(s) improves learn-

ing performance on the target, while negative transfer is the reduction of learning perfor-

mance on the target after knowledge transfer. Rosenstein et al. [115] showed that there is a

correlation between relatedness and negative transfer. That is, if two domain and/or tasks

are too dissimilar negative transfer may occur. Given two or more source datasets, it will

be desirable to determine their relative relatedness to the target dataset, and how the relat-

edness can be used to avoid negative transfer (i.e., bad advice). The proposed dissertation

project will explore mechanisms for estimating relative relatedness between the source(s)

and target; and how it affects positive/negative transfer.

2.4.2 Categorization of transfer learning

Based on different conditions between the source and target domains and tasks, Pan and

Yang [24] categorized transfer learning settings as inductive transfer learning, transductive

transfer learning, and unsupervised transfer learning (see table 1).

In the case of inductive transfer learning, the target task is different from the source task,

regardless of whether the source and target domains are the same or not. For instance, in

the case where the target task is a classification or regression one, inductive transfer learning

here aims at achieving a high classification performance by transferring knowledge from the

source task, say another classification task.

For transductive transfer learning, the source and target domains are different while the

source and target tasks are the same. In this setting for instance, knowledge could be trans-

ferred between domains with different but related feature spaces and marginal probability

distributions of input data between the source and target domain. This kind of transfer

learning is referred to as domain adaptation [116].

Unsupervised transfer learning is similar to an inductive transfer learning setting (i.e., the

target task is different but related to the source task), but the focus is to solve unsupervised

learning tasks in the target domain, for example clustering and dimensionality reduction

[117,118].
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Table 1: Different Setting of Transfer Learning [24]

Transfer Learning

Settings

Related Areas Source Do-

main Labels

Target Do-

main Labels

Tasks

Inductive Transfer
Multi-task Learning Available Available

Regression,

Classification

Self-taught Learning Unavailable Available
Regression,

Classification

Transductive

Transfer

Domain Adaptation,

Sample Selection Bias,

Co-variate Shift

Available Unavailable
Regression,

Classification

Unsupervised

Transfer

Unavailable Unavailable

Clustering,

Dimensionality

Reduction

Based on these different transfer-learning settings the notion of what knowledge to trans-

fer between related domains has inspired different transfer learning approaches. The question

on “what to transfer?” between related domains has driven the development of algorithms

and transfer learning research for many years [119]. Based on what information to trans-

fer, transfer-learning approaches can be summarized into instance-based transfer, feature

representation-transfer, parameter-transfer, and relational-knowledge transfer (see table 2).

In cases where the instance space between the source and target domain are the same or

related, certain transfer learning approaches, also known as instance transfer, assume that

some parts of the source domain data could be reused for learning in the target domain. Some

techniques that have been used in this approach are instance re-weighting and importance

sampling [120,121].

For cases where the feature space between the source and target domains are related, some

transfer learning approaches aim to learn good discriminatory feature representation for the
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Table 2: Different Approaches to Transfer Learning [24]

Transfer Learning Approach Description

Instance-based transfer Re-weighing of labeled data in source domain for use in

target domain (e.g., [120,121])

Feature-representation-based

transfer

Identify specific features (“pivot” ) that tends to reduce

the difference between source and target domains (e.g.,

[122,123])

Parameter-based transfer Identify priors or parameters that the source and target

domain models share in common (e.g., [124,125] )

Relational-knowledge trans-

fer

Relational knowledge between the source and target do-

mains are captured to facilitate transfer (e.g., [126,127])

target domain. In other approaches, discriminatory features are transferred across domains

through a mapping function learned between the feature space of the source and target

domain. This type of transfer can be referred to as feature-base or feature-representation

transfer approach [122,123,128].

Driven by parametric statistical models, certain transfer learning methods assume that

the source and target learning tasks share some common parameters or prior distributions

of hyper-parameters of the models. In this approach, knowledge could be transferred across

domains by discovering the shared priors or parameters. This case is also referred to as the

parameter-transfer learning approach [124,125].

Finally, other transfer learning approaches deal with knowledge transfer between rela-

tional domains. The assumption is that, in relational domains the relationships among

objects within the source and target domains are similar. Some transfer learning approaches

learn the structures of these relationships before transfer. This case of transfer learning, also

referred to as relational knowledge transfer, is predominantly driven by Statistical Relational

Learning techniques [126,127].

30



2.4.3 Transfer Rule Learning

Transfer learning techniques have been applied to a slew of real-world applications, including

knowledge discovery problems in biomedical research. See [24,129,130] for a comprehensive

list of examples, as well as the benefits of transfer learning. Majority of transfer learning

applications are based on algorithms (e.g., artificial neural networks (ANN) or SVMs), that

generate models which are difficult to interpret by humans, use relatively large number of

variables, or are computationally intensive to train, and might therefore not be suitable for

‘transcriptomic’ data modeling.

Ganchev [28] proposed a novel framework for transfer learning, called TRL, which is par-

ticularly well suited for integrative biomarker discovery from related but separate biomarker

profiling studies. Based on the transfer-learning concept, TRL learns modular and inter-

pretable rules from the source data, and uses them to aid learning of a new classification

rule model on the target data. TRL proposed two methods of knowledge transfer namely,

whole-rule and structure transfer. The former employs a strict incorporation of source vari-

able values in the transferred rules, while the latter, which transfers rules without variables,

injects flexibility into rule induction on the target dataset. Due to the numerous forms of

variability inherent in different ‘transcriptomic’ studies, such as gene expression, whole-rule

structure should be used with caution.

The proposed multi-source transfer rule-learning frameworks vastly extends the founda-

tion set by TRL. Unlike TRL, it learns and transfers prior rules from multiple datasets. This

is akin to seeking ‘advice’ from multiple experts. They can track the relative contribution of

knowledge from each source, which may give an indication of any potential negative transfers.

While TRL relies on identical variables between source and target domains for knowledge

transfer, the frameworks proposed herein leverages a more biologically intuitive mechanism,

functional modules, to capture and abstract the relatedness between the source(s) and target

domains. In addition, the proposed framework is flexible such that, theoretically, it can be

used for integrative modeling spanning disparate domains. Finally, the proposed framework,

like TRL, is based on the classification rule learner (RL) [18].
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2.5 FOUNDATIONS OF RULE LEARNING WITH RL

RL, a descendant of the Meta-DENDRAL family of inductive rule learning systems [131,132],

was used as the building blocks for this work due to several properties that make it partic-

ularly suitable for predictive modeling of gene expression datasets [28]. First, unlike other

knowledge discovery algorithms like ANN or SVMs, humans can easily interpret classifica-

tion models learned by RL. Second, RL is simple and flexible such that, users can leverage

domain knowledge to set learning parameters a priori in order to improve a search in the

hypothesis space. Third, RL covers rule with replacement. That is, it does not recursively

partition the instance space of the training example (e.g., C4.5 [17]), nor does it eliminate

training instances covered by a rule as learning proceeds (e.g., CN2 [133]), but instead it

allows rules to cover overlapping regions in the instance space. Covering training instances

with replacement particularly suits situations where data are scarce (e.g., microarray data),

since ample data would be available to provide statistical support for newly induced rules.

Fourth, RL can handle nonlinear relationships as well as hierarchical variables, such as can-

cer and its subtypes. Fifth, to avoid costly errors, RL can abstain (i.e., it is agnostic) from

predicting a test case when it has low confidence in the accuracy of the rule [29]. It has there-

fore been used successfully in several classification tasks involving genomic and proteomic

studies [29, 31,32,134,135].

The following sections provide an overview of the core concepts, which underpins induc-

tive rule learning with RL. They describe the general formulation of a rule learning problem;

data and hypothesis representation; the process of learning classification rules; and making

inference with the learned rules.

2.5.1 Problem Formulation

A classification rule learning task, on a given gene expression data set (see section 2.2), can

be formally summarized as shown in fig. 2. Given the data, find a set of classification rules

that can accurately classify new instances. The input involves representation formalisms for

describing, respectively, the gene expression data (i.e., expression matrix) and the induced
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Input:

. a data description language; i.e., defining the form of data set

. a hypothesis description language; i.e., defining the form of rules

. a coverage function, COVERED(r, e), defining whether rule r covers example e

. a class variable, C

. a set of training examples, X , described in the data description language

Output:

. a set of rules, R, formulated in the hypothesis description language such that:

.. it is complete, i.e., covers all examples in X , and

.. it is consistent, i.e., correctly predicts all examples in X

Figure 2: Formulation of a rule learning task; adapted from [19]

set of rules (i.e., rule model). To connect a rule model with the data description a coverage

function is desired. A rule is said to cover a data instance if it logically satisfy the description

of the instance. It should be noted that the notions of completeness and consistency as

defined in fig. 2 are idealistic. Normally, inductive rule learners, like RL, employ heuristics

to search the space of rules to optimize these terms.

2.5.2 Data Representation

Gene expression datasets are comprised of hundreds or thousands of measured variables, most

of which are irrelevant [136]. Majority of machine learning algorithms were not originally

designed to cope with these large amounts of irrelevant variables, which may degrade model

performance [137]. Due to the curse of dimensionality, predictive models can over-fit gene

expression data. Meanwhile, one of the most important goals of predictive modeling is

to identify and select a handful of relevant variables from among the thousands that can

accurately predict a disease state or estimate the risk of disease in an individual. The

selected variables serve as building blocks for constructing classification models. Therefore,
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variable selection is a crucially important component of predictive rule modeling for gene

expression datasets. What is more, variable selection can also facilitate data visualization

and data understanding, provide faster and more cost effective models, enhances results

comprehensibility, and improve model performance.

A variety of variable selection techniques have been proposed for ‘transcriptomic’ data.

Majority of these methods can be classified into three main groups namely filter methods,

wrapper methods, and embedded methods. Filter methods employ a variety of variable rele-

vance score (e.g., correlation), which is based on intrinsic properties of the data, to remove

irrelevant variables. The wrapper methods incorporate a classification model to search the

space of subsets of variables to find variables that maximizes performance of the model.

For the embedded methods, the search for an optimal subset of variables is incorporated

into model development. See [137] for an in-depth review on variable selection methods for

biomedical datasets.

An example (i.e., observed) gene expression data consists of {(x1, y1), (x2, y2), ..., (xn, yn)},

where each xi is a vector, length p, of expression values, and yi is a scalar or qualitative value

denoting the target class value. X is continuous, which a large number of symbolic data

mining algorithms, like RL, are unable to handle and require discrete data [134, 138, 139].

Therefore, the data must be transformed and represented in a discretized form.

Discretization, the process of converting a continuous variable to a discrete one, has

several advantages. It widens the space of knowledge discovery algorithms that can be

applied for modeling. By transforming numerical variables into nominal ones, it also serves

as a data reduction method that can aid data visualization and interpretability. It has

been shown to improve the classification performance of most algorithms, including SVM or

Random Forest, which can handle continuous data [140]. In addition, since ‘transcriptomic’

data can be characterized by noisy and redundant variables, discretization can be used as a

variable selector to weed out irrelevant variables. For instance, variables that are discretized

into a single interval can be filtered out as irrelevant since they cannot discriminate the

target class variable. One notable disadvantage about discretization is that, theoretically, it

can lead to information loss, which can also reduce classification performance [141].

Several techniques have been proposed for discretization [139]. These techniques can
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be classified as supervised or unsupervised. Supervised methods (e.g., Fayyad and Irani

[142] and EBD [141]) use information about the target class variable for discretization,

while the unsupervised techniques (e.g., Equal-width and Equal-Frequency [143]) do not.

In addition, discretization techniques can also be categorized as univariate or multivariate.

Univariate techniques (e.g., EBD) discretize continuous-valued variable independently of all

other predictor variables, while the multivariate methods (e.g., [144]) consider the interaction

among predictor variables during discretization. See [139] for an in-depth review on the

taxonomy and empirical analysis of discretization techniques in supervised machine learning.

2.5.3 Rule Representation

Given a set of training examples, RL learns a disjunctive set of conjunctive IF-THEN rules,

each of which has the form:

IF Antecedent THEN Consequent

where the Antecedent consists of one or more variable tests, which can be called conjuncts,

and the Consequent denotes prediction of the target class variable. Every induced rule

has classification-relevant statistics associated with it. Let us, for instance, consider the

hypothetical rule below:

IF ((gene1 > 1680) AND (gene2 ≤ 28.6)) THEN (Class = Case)

CF = 0.98, PV = 0.007, TP = 56, FP = 4

where gene1 and gene2 are biomarkers with two intervals of values. This rule can be

interpreted as follows: “when gene1 is up-regulated (i.e., value > 1680) and gene2 is down-

regulated (i.e., value ≤ 28.6), then predict the target class as Case.” In addition, relevant

statistics are associated to each rule induced by RL. In the given example above, the ensuing

statistics mean that RL induced the rule with a 98% degree of confidence, which we call the

Certainty Factor (CF). Frequently used measures to estimate CF are precision, informa-

tion gain, Laplace estimate, etc [19]. PV represents the p-value, which can be estimated by

Fishers exact test or likelihood ratio statistic [133]. True Positives (TP) are the number of

examples that are correctly covered by a rule (i.e., it covers the example, and its consequent
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equals the class label of the example). False Positives (FP), on the other hand are the

number of examples that are incorrectly covered by the rule (i.e., it covers the example, but

its consequent does not equal the class label of the example). TP + FP , the fraction of

training examples covered by the rule, is also known as Coverage.

2.5.4 Learning a Rule Model with RL

Figure 3 depicts a pseudocode for the heuristic rule-space search employed by RL. Internally,

RL stores induced rules in a priority queue (aka, the beam) by sorting them according to

their CF and coverage. Given a set of training examples and user specified constraints, the

algorithm proceeds as a heuristic beam search through the space of rules, using a general-

to-specific approach [145].

First, it considers every variable as a potential predictor of the target class variable.

For each variable value, it creates as many rules as there are target class values. Example,

for a Case/Control binary class, it will create two rules for each variable value. One rule

predicts Case and the other predicts Control. Second, it places an induced rule on the beam

if it is interesting and satisfies user-specified constraints, also known as good-rule criteria.

The constraints are minimum CF, minimum coverage, maximum FP, beam width

(i.e., maximum number of rules allowed on the beam), inductive strengthening (i.e.,

the number of previously uncovered instances that a newly induced rule must cover), and

maximum conjuncts (i.e., the maximum number of variable-value pairs allowed in a rule

antecedent.

Subsequently, each rule on the beam is specialized if it satisfies the constraints. Special-

ization is the process of adding conjuncts to the rule antecedent until the constraints are

violated. The algorithm stops and outputs the set of rules on the beam if there are no more

rules to specialize. This set of classification rules output by RL is referred to as a rule model,

which can be used to classify an unobserved data instance.
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1: function BEAM–SEARCH(D,C)

2: . D : a set of training examples

3: . C : user specified constraints for rule learning

4: interesting patterns← ∅

5: new beam← {∅ ⇒ class1, ∅ ⇒ class2, . . .}

6: beam← ∅

7: while new beam 6= ∅ do

8: beam← new beam

9: new beam← ∅

10: for all rule ∈ beam do

11: S ← specialize(rule)

12: for all s ∈ S do

13: if isRuleInteresting(s, IC,D) then

14: . IC : user specified interestingness criteria

15: interesting patterns← interesting patterns ∪ s

16: end if

17: if isGoodRule(s, C,D) then

18: new beam← new beam ∪ s

19: end if

20: end for

21: end for

22: end while

23: return beam

24: end function

Figure 3: Pseudocode for a heuristic rule-space search with RL
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2.5.5 Classification & Conflict Resolution

In using the rule model to predict the class of a new instance, two problems may occur.

First, none of the rules may fire, that is, cover the instance. Second, RL learns rules with

replacement, which means that the rules are not mutually exclusive with respect to the

instances. Therefore, multiple rules could cover the same instance, resulting in potential

conflicting classification.

Several strategies can be adopted to address these problems. With the first problem, a

default rule, which predicts the majority class, can be added to the model. Typical solutions

for the second problem involve voting mechanisms and individual rule statistics. Below are

some strategies used for resolving such conflicts [146]:

1. First matching rule

Since the rules are sorted in the order of CF and coverage, this strategy selects the rule

with the highest confidence.

2. Equal voting

Here, every matching rule contributes a single vote for its class; the class with majority

wins.

3. Weighted voting

For this strategy, each matching rule votes with a weight of its confidence; the class with

the highest summed CF and/or Coverage wins.

4. Lowest FP

The class of the rule with the lowest FP wins.

5. Minimum P-value

The class for the rule with the least p-value (i.e, most relevant) is selected.
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3.0 METHODS

The proposed methods are types of incremental learning. Unlike the traditional approach

where learning from new data normally involves discarding all existing classifier inputs by

retraining a new one—a phenomenon known as catastrophic forgetting [15,147]—TRL-FM,

KARL, MS-TRL, and iTRL are aimed at leveraging previously acquired information from

multiple sources, i.e., classifiers and biological knowledge sources, to augment learning of a

new classifier. Though conceptually simple, these algorithms provide significant extensions to

TRL and its predecessor, RL. Section 3.1 recounts a published work (TRL-FM), which results

motivated the creation of subsequent methods. Section 3.2 presents KARL, which pools

background knowledge from multiple sources like literature, knowledge bases, or domain

experts to augment predictive rule modeling. In contrast, the notion of multiple sources, as

employed by MS-TRL, involves multiple rule models developed from related gene expression

studies; Section 3.3 describes MS-TRL. Finally, section 3.4 concludes this chapter with a

generalized framework for multi-source rule modeling via incremental transfer learning—

iTRL.

3.1 TRL-FM

3.1.1 Background

Knowledge transfer can be facilitated in several ways. For instance, you can leverage the

relatedness between the source and target to facilitate knowledge transfer. TRL’s mecha-

nism of capturing relatedness is to identify common variables between the source and target
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datasets. Although this mechanism was able to facilitate knowledge transfer, however, it

could be improved. Studies have shown that different classification models built on inde-

pendent microarray datasets can contain different sets of biomarkers with little overlap. In

addition, models based on different variable sets can yield similar classification performance

when tested on the same validation dataset [25]. This means that relying solely on iden-

tical variables to establish commonality might not be enough, and therefore exploring and

incorporating other means of determining variable equivalence could be vital for model per-

formance. To that end, we developed a methodology that leverages transfer rule learning

and functional modules (FMs)—two or more genes that are related to the same/similar bi-

ological process—that we call TRL-FM [135], to capture and abstract domain knowledge in

the form of classification rules to facilitate integrative modeling of multiple gene expression

data.

Our goal in this study was threefold. First, to test whether FMs can be used to capture

the underlying commonality among variables of different but related gene expression datasets,

and are more effective when used as bridges to assist knowledge transfer than relying on

identical variables. Second, to test the hypothesis that “integrative modeling via the TRL-

FM approach outperforms traditional models based on single gene expression data sources.”

Last, to evaluate and compare the classification performance of TRL-FM with traditional

methods, using 21 gene expression datasets that were collected from three respective studies:

one on brain cancer, one on prostate cancer, and one on a lung disease (idiopathic pulmonary

fibrosis or IPF).

3.1.2 TRL-FM: The framework

Figure 4 depicts an overview of the TRL-FM framework. For the sake of simplicity, this

framework performs transfer between two different, but related, sets of microarray data,

i.e., a source and a target. The key steps according to the framework are as follows: First,

select relevant variables from the source(s) using a feature selection method such as EBD,

i.e., feature selection via discretization. Second, identify FMs among the selected variables.

Third, using the discovered FMs, along with rules induced from the source(s) datasets; build
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Figure 4: An illustration of a framework for transfer rule learning via functional mapping,

TRL-FM

a prior hypothesis of classification rules. Finally, using the prior hypothesis as a seed, learn

a new classification rule model from the target dataset.

Figure 5 illustrates a pseudocode for implementing the TRL-FM framework. Major

components of the algorithm are, (1) a sub-routine to map and abstract relatedness among a

set of given variables, (2) a prior-rules generation engine, and (3) a modified heuristic beam

search with prior rules (TRL). Given a source dataset (Ds), a target (Dt), and a set of user

specified constraints for rule learning (C), as inputs, the algorithm proceeds as follows.

First, the feature selector (i.e., discretization with EBD in this case) selects relevant

variables from both the source(s) and target datasets (see line 4, fig. 5) for functional mapping

and abstraction of variable relatedness (see line 5, fig. 5). Note that given a list of arbitrary

domain variables, several methods can be used to define and abstract their relatedness.

For instance, with a list of genes, relatedness could be defined as association to a common
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1: function TRL–FM(Ds, Dt, C)

2: . Ds : source dataset; Dt : target dataset

3: . C : user specified constraints for rule learning

4: Sv ← EBD(Ds); Tv ← EBD(Dt)

5: FMs ← mapFunctionalAssociations(Sv, Tv)

6: SM ← RL(Ds, C)

7: SMV
← getModelVariables(SM)

8: prior rules← GeneratePriorRules(SMV
, Dt, FM)

9: model← TRL(prior rules,Dt, C)

10: return model

11: end function

Figure 5: A pseudocode for implementing the TRL-FM framework

molecular function, pathway, or disease. TRL-FM in particular uses a Gene Ontology (GO)-

similarity-based method to identify and abstract relatedness among genes (see section 3.1.3).

Given a list of genes, this method outputs FMs, clusters of functionally related variables

that facilitates the generation of prior rules (see line 8, fig. 5, and section 3.1.4 for details).

Finally, with the prior rules as seed, target dataset, and user the user specified criteria for

good rules, the algorithm induces a new rule model using the TRL sub-routine.

3.1.3 Identifying GO-Based Functional Modules

The major contribution of TRL-FM was the application of GO-based FMs to facilitate the

identification of functionally related variables for transfer rule learning. The Gene Ontology is

a representation of specific domain knowledge in cell biology. It is represented by a directed

acyclic graph, where terms—description of a biological concept like a cellular process—

are nodes and edges are the relationships among them [4]. It also provides an annotation

knowledge base, which describes terms and the gene involved with them [148].
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One major challenge with the Gene Ontology graph is that, several semantically similar

terms annotate the same gene, while the same term can annotate several genes. Our goal

was to avoid redundant GO annotations as well as avoiding losing sight of the many-to-many

relationships between genes and terms. To that end, we clustered semantically similar terms

into functional themes, and then mapped annotated genes to them.

Get input gene list, {A} 

Map a gene, where  

and GO is a set of BP ontology terms 

Cluster the GO terms into functional themes/modules based 

on their semantic similarity. E.g., , 

 

Evaluate the validity of the created clusters 

Map  if annotates  

Output any   as FM 

Figure 6: A protocol to identify FMs from a set of genes

Figure 6 summarizes the major steps involved in our method for capturing GO-based

FMs given an input of arbitrary genes. First, we mapped each gene in the input list to the

corresponding GO term(s) that annotate(s) it, according to the GO annotation database [65].

For example, if G denotes the set of input genes, then each gene, g ∈ G, is mapped to the GO

term, go ∈ GO, that annotates it. Here, GO is a set which refers to terms in the biological

process sub-ontology in the GO graph. For example, the mapping M(g1) ⇒ {go1, go3}

means that terms go1 and go3 annotate gene g1. Subsequently, a union of all GO terms that

annotate at least one member of the input gene set is formed. This set of GO terms served

as input to the clustering phase.
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Second, using semantic similarity [149] as a distance measure, we constructed a simi-

larity matrix among the GO terms. With the similarity matrix as input, we applied the

spectral clustering algorithm [150] to group the GO terms into functionally similar clusters.

Meanwhile, the Silhouette value technique [76] was used to estimate appropriate cluster size

as well as filter out spurious clusters.

Finally, each gene, gi, was mapped to a cluster, Ci, if there existed at least one term in

the latter that annotates the former. This approach enabled us to identify groups of genes

that perform the same or similar functions as well as genes that perform multiple functions.

Any group of genes that mapped to a particular GO cluster (e.g., {g1, g2, g3} ⇒ C1) forms a

functional module—the output. The FMs thus serve as bridges to facilitate the creation of

prior rules for transfer

3.1.4 Prior Rules Generation via Functional Mapping

Figure 7 represents a pseudocode for the prior rule generation engine. Given an input of a

set of source variables, SMV
(i.e., all variables involved in a source rule model), target dataset

(Dt) and a definition of variable relatedness (FM), the algorithm outputs a list of prior rules.

First, using the FM as a bridge between the source(s) and target, rules are instantiated with

variables of the target. For every target variable that co-exist with any source variable in an

FM (see line 8, fig. 7), prior rules are instantiated. Given a variable, the instantiateRule

sub-routine first formulates a rule scaffold, which is then populated with all variable and

target class values. For example, assume a selected target variable, GENE, takes two values

Down and Up , while the target class variable, Class, also take two values, Case, and Control.

First, a rule scaffold of the form (IF (GENE = ?) THEN (Class = ?)) is created, and then

after populated with a permutation of all variable values into the following list of rules:

IF (V = Down) THEN (Class = Case)

IF (V = Up) THEN (Class = Case)

IF (V = Down) THEN (Class = Control)

IF (V = Up) THEN (Class = Control)
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1: function GeneratePriorRules(SMV
, Dt, FM)

2: . SMV
: a set of variables from source rule model

3: . Dt : a set of training examples from target data

4: . FM : a set of functionally related variables

5: prior rules← ∅

6: Tv ← EBD(Dt)

7: for all t ∈ Tv do

8: if t ∈ {SMV
∩ FM} then

9: R← R ∪ instantiateRule(t)

10: for all r ∈ R do

11: if isGoodRule(r, C,Dt) then

12: prior rules← prior rules ∪ r

13: end if

14: end for

15: end if

16: end for

17: return prior rules

18: end function

Figure 7: A pseudocode for generating prior rules via functional mapping

This mechanism, first coined as rule structure transfer by Ganchev et al. [28], of instantiat-

ing prior rules has several advantages. First, it facilitates the needed flexibility for transfer

learning across domains of disparate feature spaces. For domains that have even identical

variables, mapping corresponding variable values can be very challenging because of unequal

value distributions. After discretization, for instance, the number of intervals and the loca-

tions of cut points for identical variables can be different. Second, with this mechanism a

user can formulate prior rules, culled from a domain expect or literature, and explicitly load

them into the framework to seed or guide learning of new classification rules (see section 3.2).

45



Results from the TRL-FM work (see section 5.1) suggested that the provenance of prior

rules, and how they are generated improve, significantly, the performance of transfer rule

learning, particularly when there are multiple related source data available. Therefore, there

was a need to investigate new mechanisms of generating prior rules from multiple sources—

multiple related models, knowledge bases, or literature—to augment transfer learning of

classification rules. To that end, I subsequently developed KARL, MS-TRL, and a general-

ized framework for incremental transfer rule learning, referred herein as iTRL.

3.2 KARL

The Knowledge Augmented Rule Learning (KARL) framework is a variant of the multi-

source transfer rule learning frameworks developed herein for predictive rule modeling. There

are two main differences between MS-TRL and KARL. First, the provenance of multiple

information are different. In the former, prior rules are generated from information gleaned

from multiple “related” rule models, while, for the latter, prior rules are generated from

information that are garnered from multiple domain experts, literature, and/or multiple

domain knowledge bases (e.g., Ontologies or Databases). Second, while the notion of rule

interestingness is purely data-driven (i.e. object) in MS-TRL, KARL augments “objective”

measures with “subjective” notions to induce rules.

Most knowledge discovery systems, like RL, can generate a slew of patterns, most of

which are of no interest to the user. It is therefore important to define a measure of inter-

estingness that could be used to filter out trivial patterns. The main methods for measur-

ing rule/pattern interestingness is based on their properties and/or statistical strengths—

objective means. In RL, for instance, the good-rule (interestingness) criteria is based on

statistics like Coverage, TP, FP, and/or Inductive Strengthening. Other alternate

means of defining interestingness are derived from a users’ beliefs or expectations—subjective

measures—that are specific to domain knowledge. While one user may be interested in pat-

terns that are associated with disease causality, another may be interested in patterns that

highlight drug toxicity.
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3.2.1 Background

Figure 8: Knowledge Augmented Rule Learning framework

Even though objective measures are very useful—in fact, majority of knowledge discovery

systems rely on them—it has been noted that they are unable to capture all the complexities

within the knowledge discovery process [154,155], and therefore it is necessary to complement

them with subjective measures. To this end, KARL was developed. With KARL, a pattern is

interesting if there are evidence that its variables (e.g., genes) are associated with functional

processes with a desirable domain. For this project, we focused on the domain, cancer, and

the markers associated with its hallmarks.

Figure 8 illustrates the general framework of KARL. Its main components are, (1) the

extraction of domain knowledge; (2) abstraction of the domain knowledge into a table of

function evidence; (3) generation of prior rules; and (4), induction of the final rule model.

Sections 3.2.2 to 3.2.5 describe these components in details.

3.2.2 Domain Knowledge Extraction

Every domain has unique characters, interactions, nuances, properties, and different degrees

of complexities—some domains may even exhibit hierarchical inheritance properties. For a

study of this nature, it is essential to focus on a particular domain, a sub-domain, or an

aspect of a domain. This project focused on cancer, and some of its main actors—genes—

that pertain to its diagnosis, prognosis, and screening.
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Cancer is a leading cause of human death in the world, second behind only heart dis-

ease. According to the NCI, there are more than 100 types of cancer, and more than

500 genes involved in cancer. The explosion of cancer-related research has resulted in an

exponential growth of cancer-related data from multiple resources such as scientific publica-

tions, transcriptomics, epigenomics, proteomics, GWAS, cytogenetics, etc, stored in diverse

databases [156]. Due to the complexities and heterogeneity of information stored in these

repositories, it is challenging to retrieve, analyze, and assimilate these data into relevant do-

main knowledge. Knowledge bases and resources, like GO, KEGG and IPA, just to mention

a few, that employ domain experts and computational tools to integrate, curate and anno-

tate relevant biological data from literature into plausible domain-knowledge, have alleviated

these challenges. For brevity, this project adopted the Ingenuity® Knowledge Base as the

resource to extract relevant domain knowledge.

3.2.2.1 Ingenuity® Knowledge Base The Ingenuity® Knowledge Base (IKB) con-

tains evidence-based domain knowledge in the form of gene-interaction networks that were

curated and verified from published literature by PhD-level scientists. The IKB is structured

using an ontology, and using standard gene annotations (e.g., Entrez) each finding is catego-

rized into three main species—human, mouse, or rat. In addition, every finding is supported

by relevant literature citation(s) and a link to their respective PUBMED abstract(s).

Ingenuity® Pathway Analysis (IPA) is a tool, which is built on IKB for inference and

exploratory analyses. Given a list of genes, it creates and outputs molecular networks (al-

gorithmically generated pathways) by mapping each gene to information contained in the

knowledge base. The output networks can be categorized into diseases, biological functions,

or canonical pathways. Using the Hypergeometric test, it can estimate and flag significant

genes based on information within the IKB. For instance, it can answer the question of what

diseases, biological functions, or canonical pathways do the significant genes among the input

list affect. Thus, with IPA we were able to extract domain knowledge in biological functions

and networks that are associated with the hallmarks of cancer.
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3.2.2.2 Hallmarks of Cancer Though cancer is well-known to entail a lot of hetero-

geneity, all cancers have similar traits. For a cell to progress into a tumor, it acquires

a whole gamut of aberrant properties. While different cancer types may require different

combinations of these properties, typical behaviors—hallmarks—that underpin them can be

categorized. Seminal work done by Hanahan and Weinberg [151,157] has suggested that an

extensive catalog of cancer cell genotypes is a manifestation of six main capabilities that

turn to modify the physiology of the cell, and dictates its malignant growth.

These six capabilities’ hallmarks are sustaining proliferative signaling, evading

growth suppressors, activating invasion and metastasis, enabling replicative im-

mortality, inducing angiogenesis, and resisting cell death. These hallmarks can be

merged further into three main properties that enable cells to survive, disseminate, and

proliferate. The first is the faulty control of the cell cycle (i.e., sustaining proliferative

signaling and evading growth suppressors hallmarks); the second property is the faulty con-

trol of cell death (i.e., resisting cell death and enabling replicative immortality hallmarks);

and the third property is the invasiveness and metastatic capabilities (i.e., inducing

angiogenesis and activating invasion and metastasis hallmarks).

KARL relies on the hypothesis that, “domain characters (i.e., genes) that are associated

with these properties are more likely to play a significant role in the induction of a rule

model.” It is this hypothesis, the basis of KARL’s subjective notion of interestingness, that

motivates the algorithm to augment the learning of a predictive rule model with prior domain

knowledge. To generate prior rules to seed knowledge-transfer, KARL relies on IPA-based

functional evidence of genes that are associated with these three main hallmarks. Thus, the

algorithm requires a data structure (i.e., a lookup table that contains abstracted domain

knowledge), which provides gene function evidence to augment rule induction.

3.2.3 Functional Lookup Table

The functional lookup table is a comma-separated values (CSV) file that contains vital

domain knowledge, which KARL can use to instantiate prior rules or augment general rule

induction. It is passed as an input parameter to the KARL algorithm. Thus the KARL
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framework requires it to function, else the default rule generation engine, RL, is used to

induce rules on the target data.

For each target dataset, a complementary functional lookup table was generated with

the aid of IPA. To identify significant domain variables that are associated with domain

hallmarks the whole variable set of the target dataset can be used as input to IPA. Since

gene expression datasets can consist of tens of thousands of variables it is necessary to pre-

filter the variable list in order to simplify the process. Both supervised and unsupervised

variable selection methods, for instance, can be used for this process.

Given the input list, IPA outputs functional networks (or lists, modules) that are ranked

according to a Pscore = − log10(p−value), where the p-value is derived from a hypergeometric

test. With a threshold of Pscore = α all significant networks (i.e., Pscore ≥ α) that are

associated with desired functions can then be parsed further into the lookup table. For

brevity, this work focused on three main functions: cell death and survival, invasion of

the cell, and proliferation of cell.

The lookup table is a data matrix that contains information about genes and their

functional evidence as contained in the Ingenuity Knowledge Base. For each significant

gene, the IPA analysis output provides information on how it affects the desired functions

if there are any evidence from the literature. It indicates, for instance, whether the gene

increase or decrease the function. These findings are abstracted into the lookup table.

Table 3 illustrates a snippet of the lookup table that indicate functional evidence con-

cerning 10 genes. For each GeneID the table indicates how it affects any of the three main

hallmarks. Four indicator values (i.e., Increases = 1, Decreases = -1, Affects = 0, and No

Evidence = NA) were employed to denote functional evidence. A value of zero (0) indicates

that there was not much evidence to support the direction to which the gene effects the

function, while the value NA indicates that there was no evidence to support association of

the gene with the function.

From the table, the gene BMP2 decreases cell invasion as well as survival, while it has no

evidence of association to cell proliferation. On the other hand, there is enough evidence that

VEGFA increases cell invasion and proliferation; it decreases survival of the cell as well. The

information contained in the lookup table provides several subjective avenues to construct
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prior rules and/or augment rule induction on the target dataset.

Table 3: A snippet of a functional lookup table

Functional Evidence

GeneID Invasion Survival Proliferation

ACTA2 1 NA NA

AKAP12 NA -1 0

BMP2 -1 -1 NA

CCL4 NA 1 0

COL1A1 NA -1 1

DUSP6 NA 1 1

VEGFA 1 -1 1

SERPINA3 NA -1 NA

POSTN 1 NA 1

FN1 1 -1 1

3.2.4 Prior Rules Generation

Unlike MS-TRL, where prior rules are generated from multiple related source rule models,

KARL’s prior rules generation engine induce prior rules based off information contained

in the lookup table. As KARL was designed to augment rule induction with subjective

interestingness based on particular domain knowledge, which is dependent on the interest

of the investigator, prior rule generation can take a diverse turn. Different questions can be

asked of the lookup table, which can in turn lead to different prior rules.

The space of prior rules depends on the number of variables contained in the lookup

table, size of their values, and size of the class (response) variable values. Prior rules can

be restricted to specific domain knowledge or it can be generalized to include every variable

contained in the lookup table.

A prior rule of the form: IF (COL4A2 = UP) THEN (Class = CASE), for instance, could

be induced if the lookup table suggests that when a particular gene, COL4A2, is up-regulated
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and there is functional evidence of association to proliferation of cell, then there is a higher

likelihood of cancer. This could be based off the investigator’s prior knowledge of the domain

or test specific hypothesis.

On the other hand, the investigator could induce prior rules with all possible combinations

of genes and class values followed by pruning with less stringent statistics. Assume, for

example, that a variable contained in the table, GENE, takes two values Down and Up, while

the target class variable, Class, also take two values, Case, and Control. Then, prior rules

can be instantiated with a permutation of all variable values into the following list of rules:

IF (GENE = Down) THEN (Class = Case)

IF (GENE = Up) THEN (Class = Case)

IF (GENE = Down) THEN (Class = Control)

IF (GENE = Up) THEN (Class = Control)

This mechanism is applied to every variable contained in the lookup table. Thus, between

the two scenarios there is a lot of wiggle room for exploration. For brevity, KARL adopted

the latter approach to generate prior rules, and the statistic coverage (< 5) was used to

filter out “bad rules”.

3.2.5 Induction of Final Rule Model

The KARL framework was implemented as a semi-automated algorithm as illustrated in

fig. 9. The first two components of the framework, the extraction of domain knowledge

from multiple sources and its subsequent abstraction into a functional lookup table, are

implemented outside the JAVA-based TRL toolkit. A potential future study could consider

automating the whole suite by seamlessly integrating the first two components to the rest.

The algorithm accept as inputs the target dataset (DT ), a user specified constraints, (C),

for learning good rules, and a lookup table (LKPTABLE) that encodes domain knowledge in

a machine-readable csv file. The algorithm first proceeds by preprocessing (e.g., discretiza-

tion via EBD) the target dataset (see—line 5, fig. 9). Second, it applies the LookUpT-

able2RulesGenerator subroutine (line 6, fig. 9), a special prior rules generation engine,
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1: function KARL(DT , LKPTABLE, C)

2: . DT : the target dataset

3: . LKPTABLE : lookup table contains information culled from multiple sources

4: . C : user specified constraints for rule learning

5: PREPROCESS(DT )

6: priorRules← LookUpTable2RulesGenerator(LKPTABLE)

7: model← TRL(priorRules,DT , C)

8: return model

9: end function

Figure 9: Pseudocode for KARL

to generate prior rules from information contained in the lookup table. Here, the basis for

inducing interesting prior rules can take diverse forms as described in section 3.2.4. Finally,

with the generated prior rules, processed target dataset, and the user specified constraints,

the algorithm applies the modified TRL (see section 3.3) algorithm to induce the final rule

model.

3.3 MS-TRL

3.3.1 Background

The fundamental idea of MS-TRL is to learn prior rules from multiple models as opposed to

one—a concept akin to seeking advice from multiple experts. Figure 10 illustrates the general

configuration for the framework, while fig. 11 represents the implementation algorithm, and

explained below.

Given an input of source(s) and target datasets, including user specified constraints to

guide rule induction, the algorithm outputs a classification rule model for the target dataset.
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Figure 10: An illustration of the MS-TRL framework

1: function MS–TRL(DS1...N
, DT , C)

2: . DS1...N
: a set of N source datasets

3: . DT : target dataset

4: . C : user specified constraints for rule learning

5: PREPROCESS(DS1...N
, DT )

6: priorRules← ∅

7: for each DSi
∈ DS1 . . . DSN

do

8: priorRules← priorRules ∪RL(DSi, C)

9: end for

10: model← TRL(priorRules,DT , C)

11: return model

12: end function

Figure 11: A pseudocode for implementing the MS-TRL framework

The main contributions—algorithmic and conceptual—of this method are: (1) an expansion

of the input parameters to accept multiple source datasets, (2) a refined preprocessing sub-
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routine module to address previous challenges of transferring whole rules between source

and target, and (3) a new sub-routine for generating prior rules. Thus, with an input of N

source datasets (DSN
), a target dataset (DT ), and user specified constraints for good rules,

the framework induces a rule model via four main steps: (1) preprocessing, (2) induction of

multiple source rule models (SRMs), (3) generation of prior rules from the SRMs, and (4)

induction of a target rule model using TRL on the prior rules and target dataset.

3.3.2 Data Preprocessing

Figure 12: Preprocessing steps for all datasets prior to rule modeling. NLT: Normalized

Linear Transform; EBD: Efficient Bayesian Discretization

The PREPROCESS engine (see line 5, fig. 11 and fig. 12) involves two main steps. First,

it applies the normalized linear transform (NLT) [97] method to transform the numerical

ranges of source variables to that of their corresponding variables in the target. Assume the

array matrices for the source and target are denoted, respectively, by X(n×p) and Y (n×q),

where n is the number of variables, while p and q are their respective sample sizes. The

fundamental idea of NLT is to map each sample of the source and target to AXi + c and

BYj + d, such that the numerical range of values for each variable across are identical. Here

A and B are transform matrices (n× n), while a and b are bias vectors. Therefore, for each

variable i, you only need to estimate the parameters {aii, ci} and {bii, di} for their respective

equations {aiixij + ci}pj=1 and {biixij + di}qj=1 so that:

min
j

(aiixij + ci) = min
j

(biiyij + di)

max
j

(aiixij + ci) = max
j

(biiyij + di)

55



where xij and yij denote the values of variable i within the jth sample.

This preprocessing step has several advantages. First, the NLT method preserves the

relative ranking order of the expression values for each variable without loss of information.

Second, by transforming the source and target variables onto identical numerical range en-

sures an effective transfer of discretization cut points. Third, it facilitates transfer across

disparate assay platforms. Last, it also facilitates transfer via the whole rule approach, which

has been shown to improve knowledge transfer [23], without much fuss.
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Figure 13: A comparison of the numerical ranges of expression values for example source

and target variables via NLT transform. Left: Before NLT transform. Right: After NLT

transform.

Figure 13 involves two box-plots that illustrates the distribution of expression intensities

for six variables across example source and target datasets. The left and right plots represent,

respectively, the intensity distributions before and after the NLT Transform. Let us consider

the variable ADIPOQ. Before the transform, its minimum values within the source and target

were respectively 532.1 and 310.0; its maximum values, on the other hand, were respectively,

8121.0 and 9292.0. After the transform, it assumes an identical numerical range between the

source and target—that is, identical minimum and maximum values of 421.05 and 8706.05,

respectively.

Meanwhile, observe the variable SELE. Its numerical range (i.e., [0.3, 126.5]) within the

source data is way off that of the target (i.e., [165.0, 6742]). With such a scenario, transferring

discretization cutoff points between the source and target gets quite challenging. Thus, the

56



NLT scheme facilitates the categorization of source and target variables values (say, HIGH),

so that they can be readily comparable.

The final preprocessing step involves discretization. First, using EBD [141], variables

of the target data set are discretized. Then their respective discretization cut points are

transferred to their counterparts within the sources. For instance, if the values of ADIPOQ

are categorized in to groups, LOW and HIGH, and the cut point is, say, 4350.67, then this

value is set as the discretization boundary of ADIPOQ across all data sets. That is, within

each source and target dataset all values of the variable ADIPOQ that are below 4350.67 are

categorized as LOW (i.e., −inf . . . 4350.67 ← LOW). Similarly, all values that are at least

4350.67 are denoted as HIGH (i.e., 4350.67 . . . inf ← HIGH).

3.3.3 Prior Rules Generation

Figure 14: A framework for generating a single source rule model

After the preprocessing phase MS-TRL proceeds with the induction of source rule models

(SRMs) on each processed source data set, using RL with the same user specified criteria

for learning good rules—fig. 14 illustrates the induction of an SRM. Subsequently, all the

SRMs are merged into a unified list of prior rules—see lines 6 to 9 of fig. 11—that together

forms an ensemble of prior classification rule models. In addition, the prior rules generation

engine ensures that redundant rules are filtered out. When a rule co-occur in multiple

source models, counts for its statistics (i.e., TP and FP) are merged. This strategy provides

significant improvements to TRL. First, it improves the confidence of prior rules. Second,

it ameliorates catastrophic forgetting by “remembering” the performance of rule patterns,

which have been discovered in order models. Last, it is able to facilitate the discovery of
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domain-specific, as well as domain-independent, rule patterns across multiple data sets.

Furthermore, to identify the source of each prior rule in the final model, the prior rules

generation engine annotates each source rule with the name of the source dataset from which

it emanated. Finally, the ensemble of prior rule models are used to seed the induction of the

final rule model on the target dataset (DT ).

3.3.4 Induction of Final Rule Model

Having seeded the beam with the prior rules, induction of the final rule model proceeds as a

heuristic beam-search in the space of rules, via a general-to-specific approach (see sections 2.5

and 3.1), using a modified TRL (see the sub-routine on line 10 of fig. 11). A user can opt

to specialize only the prior (OnlyPriors search) rules during the beam search, or learn

and specialize new rules in combination with prior rules (Combo search). This option can

enable you to test and explore the significant merits of transfer learning. For example, “is

there any significant difference in learning performance between specializing on what you

already know as opposed to combining new knowledge with what you already know?” is a

plausible hypothesis to test.

Meanwhile, with the former—that is, OnlyPriors search—individual rule statistics (i.e.,

coverage, TP, FP) are first updated based on the training data. The rules that do not

meet the good-rule criteria are pruned away. The algorithm then proceeds with the usual

beam search (i.e., specialize and test) and outputs the content of the beam when none of

the rules can be specialized. The heuristic beam search with the latter scheme, however, can

be complicated due to potential conflicts between new and prior rules in the search space as

they can cover the same data instance.

Several measures were put in place to address these conflicts. First, new rules (and their

specializations) that would lead to prior rules, which are already on the beam, are pruned and

their respective rule statistics are updated. Second, RL employs inductive strengthening, π,

to minimize over-fitting by ensuring that newly induced rules must cover at least π previously

uncovered training data instances. This means that rules, which are highly ranked on the

beam, can potentially displace other good rules from the final rule list, if they cover the

58



same data instance(s). Since the objective of MS-TRL was to induce robust and more

general rules, rules—especially prior rules that have covered many data—with relatively high

coverage must be favored in such conflicts. To that end, we set the CF function to Laplace

Estimate, which penalizes rules with low coverage, as opposed to PPV, which bias the CF

in favor of rules with zero FP. Third, prior rules which meet the ”good-rule“ criteria, have

high coverage, but relatively low CF to new rule(s) are kept, and included to the final rule

list. Future study can device a new CF heuristic that will appropriately trade-off coverage

and performance.

3.4 iTRL

3.4.1 Background

TRL, TRL-FM, MS-TRL, and KARL are all special cases of incremental learning, where

prior knowledge, abstracted as prior rules, is relied upon to potentially increase the learning

experience of a target model. With the availability of multiple related datasets integrative

modeling can be implemented in an iterative (or on-line) fashion where a rule model learned

on particular dataset(s) can be used to seed learning on subsequent models should new data

become available. This scenario can develop into a generalized framework for incremental

transfer rule learning given multiple datasets. Note that here, the source of the prior rules

can emanate from the output of an RL, TRL, TRL-FM, MS-TRL, or KARL models. I’ve

coined this generalized framework iTRL—incremental transfer rule learning for multiple

related datasets.

The utility of iTRL is particularly useful in several instances of integrative modeling

of related gene expression data. First, in a scenario of federated modeling, where all the

datasets are not available at a time the iTRL approach can be used in an on-line fashion to

learn a model at a time. Second, it can be used as a tool to investigate the role ordering plays

in on-line transfer rule learning. The ordering of prior rules can influence the performance

and structure of the final rule model. Last, it can be an effective tool to detect robust rule
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patterns, as rules that are retained and propagated along intermediate prior models can be

detected.

3.4.2 iTRL: The framework

Figure 15: An illustration of the iTRL framework: SRM, Source Rule Model; TRL, Transfer

Rule Learning subroutine; TRM, Target Rule Model

Figure 15 is a flowchart that illustrates the iTRL framework, while fig. 16 is the im-

plementation algorithm. Unlike MS-TRL, where prior rules are generated from a union of

multiple SRMs, iTRL generates prior rules from one source model at a time for integra-

tive modeling via incremental transfer learning on multiple related datasets. Note that, for

brevity, fig. 15 iterates over multiple datasets using the output of TRL as the source. Fu-

ture work can increase the complexity by integrating and using KARL, MS-TRL, or even

TRL-FM for prior rules generation.

The framework implements a simple feedback loop over TRL on each dataset as follows.

Given a set ofN datasets, including a user specified constraints for good rules; all the datasets
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1: function iTRL(D1...N , C)

2: . D1...N : a set of N datasets

3: . DN : is designated as target dataset

4: . C : user specified constraints for rule learning

5: PREPROCESS(D1...N)

6: model← ∅

7: for i← 1 to N do

8: model← TRL(model,Di, C)

9: end for

10: return model

11: end function

Figure 16: Pseudocode for iTRL

are first preprocessed using the same scheme as illustrated in fig. 12. Then, it initializes the

SRM (i.e., a set of prior rules) and the loop-counter, i, to null and 1, respectively. It proceeds

further by inducing a target rule model, TRM , on the ith dataset using the TRL algorithm.

If i < N , it is incremented by one and the TRM is set as the new SRM—prior rules—and

the loop continues to induce a new TRM on the (i + 1)th dataset, Di+1, and SRM . On

the other hand, if i = N the algorithm outputs TRM . Note that here, the target dataset is

always designated as the last (i.e., DN)
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4.0 EXPERIMENTS

The rationale for developing these frameworks was to improve the performance of predictive

rule modeling for disease diagnosis, prognosis, and screening. The proposed frameworks are

supposed to leverage the advent of biomedical data explosion to improve the discovery of

potent insights that could lead to the development of new therapies and/or treatments. The

pertinent questions you may ask are how would they improve the status quo; how would

they improve learning; what novel biological insights could they provide?

To answer these questions, I performed series of experiments to validate (or otherwise)

the usefulness of the proposed frameworks. Note that TRL-FM is a published work, whose

key findings motivated the development of KARL, MS-TRL, and iTRL. Its experimental

design is thus slightly different from the rest. Section 4.1 briefly describes the experimental

design for TRL-FM, while sections 4.2, 4.3 and 4.5 are dedicated for the rest.

4.1 TRL-FM: EXPERIMENTAL DESIGN

Table 60 in appendix C provides details of the three example datasets that we used for the

experiments. Each example contained 7 microarray studies of two-group comparison (i.e.,

case vs control). The datasets were collected from three studies: a brain cancer study, a

prostate cancer study, and an IPF study. These datasets particularly suit the goals of our

experiments and the utility of integrative modeling of multiple gene expression datasets be-

cause, (1) they are publicly available, (2) they have been used extensively to test experiments

in several integrative modeling studies, and (3) they were generated using diverse microarray

platforms. Testing the flexibility of TRL-FM with datasets generated using diverse platforms
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is essential since other methods (e.g., TRL, or meta-analysis) require identical platforms and

variables for integrative modeling. That is, TRL-FM avoids the critical and often challeng-

ing task of mapping features (e.g., gene names) across disparate platforms for integrative

modeling.

To evaluate the feasibility of the TRL-FM framework, we compared its area under the

ROC curve (AUC) with models developed with RL (baseline), TRL, and selected machine

learning methods namely, Support Vector Machines (SVM), Linear Discriminant Analysis

(LDA), Random Forest (RF), C4.5, Naive Bayes (NB), and Penalized Logistic Regression

(PLR). In addition, we compared TRL-FM with other integrative models driven by meta-

analysis and cross-platform data merging. Using these integrative methods, disease specific

datasets were merged into a single matrix for classification modeling.

For meta-analysis, we applied the AW Fisher method [86], while we adopted COMBAT

[94], a batch-effect removal method, for cross-platform data merging. The advantage of

the AW method over others (e.g., Fisher, Stouffer) is that it is able to weight the relative

contributions of each study towards evidence aggregation and elucidates heterogeneity in

the analysis. However, while several methods for cross-platform data merging have been

proposed, the choice of COMBAT was arbitrary. Tables 61 and 62 (see appendix C) illustrate

the data characteristics, while we used the above-named methods to integrate disease-specific

datasets (i.e., all datasets that correspond to a particular disease, say IPF) into a single

matrix.

4.2 DATA SETS

To evaluate the plausibility of the methods, gene expression data sets were downloaded

from Gene the Expression Omnibus [2]. In all, the total number of data sets were 25, and

consisted of 5 each from 5 different cancer types (i.e., prostate cancer, brain cancer, breast

cancer, lung cancer, and colorectal cancer). Table 4 describes the characteristics of the

datasets. For brevity, the following inclusion/exclusion criteria were considered:

1. A data set should contain 30 or more samples.
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Table 4: Description of gene expression datasets that were used for KARL, MS-TRL, and

iTRL experiments. Series ID=GEO accession number, #S=number of samples, T=tumor

samples, N=normal samples, #V=number of predictor variables

Disease Series ID Platform #S (T/N) #V Source

Brain

Cancer

GSE4412 HG-U133A,B 85 (59/26) 28168 Freije et al [158]

GSE4271 HG-U133A,B 100 (76/24) 28168 Phillips et al [159]

GSE4290 HG-U133 Plus 2 100 (81/19) 20185 Sun et al [160]

GSE1993 HG-U133A 58 (39/19) 12501 Petalidis et al [161]

GSE16011 HG-U133 Plus 2 175 (159/16) 17332 Gravendeel et al [162]

Breast

Cancer

GSE15852 HG-U133A 86 (43/43) 12501 Pau et al [163]

GSE42568 HG-U133 Plus 2 121 (104/17) 20156 Clarke et al [164]

GSE29431 HG-U133 Plus 2 66 (54/12) 20156 Lopez et al [165]

GSE7904 HG-U133 Plus 2 62 (43/19) 20156 Richardson et al [166]

GSE10780 HG-U133 Plus 2 185 (42/143) 20156 Chen et al [109]

Colon

Cancer

GSE24514 HG-U133A 49 (34/15) 12501 Alhopuro et al [167]

GSE23878 HG-U133 Plus 2 59 (35/24) 20185 Uddin et al [168]

GSE20916 HG-U133 Plus 2 70 (36/34) 20185 Skrzpypczak [169]

GSE10715 HG-U133 Plus 2 30 (19/11) 20156 Galamb et al [170]

GSE9348 HG-U133 Plus 2 82 (70/12) 20185 Hong et al [171]

Lung

Cancer

GSE7670 HG-U133A 66 (39/27) 12501 Su et al [171]

GSE10072 HG-U133A 107 (58/49) 12501 Landi et al [172]

GSE18842 HG-U133 Plus 2 91 (46/45) 20156 Palencia et al [173]

GSE19188 HG-U133 Plus 2 156 (91/65) 20156 Hou et al [174]

GSE19804 HG-U133 Plus 2 120 (60/60) 20156 Lu et al [175]

Prostate

Cancer

GSE6956 HG-U133A 2 89 (69/20) 12501 Wallace et al [176]

GSE17951 HG-U133 Plus 2 137 (68/69) 20185 Jia et al [177]

GSE32448 HG-U133 Plus 2 80 (40/40) 20156 Derosa et al [178]

GSE46602 HG-U133 Plus 2 50 (36/14) 20156 Mortensen et al

GSE82188 HG-U133A 136 (65/71) 12501 Wang et al [179]
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2. Each data set should contain samples from both normal and primary tumor tissue. For

instance, for disease type of lung cancer, search keywords values like “lung cancer” OR

“adenocarcinoma” and “normal” OR “control” OR “healthy” for disease and normal

samples, respectively, were used to retrieve desired samples.

3. Each data set should contain at least 10 samples for each class category (e.g., control

samples). This was a necessary criterion for stratified cross-validation tests. It ensured

that each fold would contain at least one sample from each class category.

4. To ensure coverage of relative large pool of variables (i.e., genes), only studies that used

Affymetrix Human Genome U133A,B (GPL96, GPL97) and Affymetrix Human Genome

U133 Plus 2.0 (GPL570, GPL571, GPL8542) platforms were considered.

4.3 GENERAL EXPERIMENTAL DESIGN

To effectively compare and contrast the effects of learning predictive rule models with the

frameworks developed herein, as opposed to RL and TRL, I applied various experimental

strategies on the algorithms using the datasets as inputs. Table 5 summarizes the various

experimental strategies, including highlights of the algorithm used, input datasets, and the

purpose for the experiments. These experiments were motivated by various hypotheses that

this work sought to test.

The overarching hypothesis that “predictive rule modeling of gene expression data via

multi-source transfer learning improves learning performance” could be decomposed further

into two main sub-hypotheses. The first is to test whether learning improves with knowledge

transfer. The second, on the other hand, is to ascertain whether knowledge transfer from

multiple sources leads to better learning than transfer from a single source. To test these

hypotheses effectively it was essential to define baseline—“control”—models.
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Table 5: A summary of general experiments

Method Datasets Purpose

RL All datasets To determine baseline performance of learning

without transfer

TRL All datasets

per cancer

type

To determine baseline performance of transfer

learning with a single source

KARL + only prior All datasets To determine the effects of knowledge augmented

rule learning with only prior rules

KARL + combo

search

All datasets To determine the effects of knowledge augmented

rule learning with both prior and new rules

MS-TRL & iTRL +

only prior +

intra-transfer

All datasets

per cancer

type

To determine the effects of multi-source transfer

by learning with only prior rules

MS-TRL & iTRL +

combo search +

intra-transfer

All datasets

per cancer

type

To determine the effects of multi-source transfer

by learning with both prior and new rules

MS-TRL & iTRL +

only prior +

inter-transfer

One dataset

from each

cancer type

To determine the effect of multi-source transfer

by learning with only prior rules among

heterogeneous datasets

MS-TRL & iTRL +

combo search +

inter-transfer

One dataset

from each

cancer type

To determine the effect of multi-source transfer

by learning with both prior and new rules

among heterogeneous datasets

4.3.1 Baseline Models

RL was set as the baseline for testing the first hypothesis, while TRL was used for the second.

RL experiments were ran on each available dataset. For TRL, the choice of input datasets
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was dicey because each disease type (or data set) contained five datasets, but the algorithms

requires a source and a target to be specified. To address this challenge, an exhaustive

pairing of source-target within a disease set was performed. That is, for each target dataset,

i, each of the n − i remaining was, in turn, set as source. This strategy was particularly

essential to investigate the characteristics of which sources(s) would likely lead to positive

or negative transfer.

Essentially, the same model constraints and learning parameters were used for all models.

This was necessary to ensure fair comparisons of baseline models and the proposed ones.

Thus, model constraints and learning parameters were set as follows: minimum conjuncts

= 1; maximum conjuncts = 5; minimum coverage = 4; minimum TP = 0.05; maximum

FP = 0.10; minimum CF = 0.80; beam width = 2500; inductive strengthening = 1; the

inference method for conflict resolution was set to weighted voting. To test the significance

of induced rules, the likelihood ratio statistic [133] was used. A significance level of 99% was

set a good-rule criterion. In addition, I opted for the Laplace Estimate as the CF function

instead of the default, PPV.

The problem with PPV ( TP
TP+FP

) is that it is not robust and can over-fit rules with

relatively low numbers of TP and FP [19]. The CF value, for instance, may change signif-

icantly for an extra data coverage if both TP and FP are low. Consider two rules, r1 and

r2, where none misfires (i.e., FP1 = FP2 = 0), but the first correctly fires one example (i.e.,

TP1 = 1), while the second correctly fires 99 examples (i.e., TP2 = 99). In this case, both

rules would have a CF value of one (i.e., CF1 = CF2 = 1.0). However, if they both misfire on

a new data instance (i.e., FP1 = FP2 = 1), then their new CF values become CF1 = 0.5 and

CF2 = 0.99, respectively. Even though this problem might be reduced by setting a minimum

FP criterion, it becomes more pronounced when sample size increases—especially integra-

tive modeling of multiple data sets—and rule confidence is measured by the CF value. The

Laplace Estimate ( TP+1
TP+FP+2

) addresses this problem by adding two “smoothing” examples,

one for each class.

Apart from these “default” model constraints and learning parameters, the proposed

frameworks have also individual ancillary parameters. The MS-TRL and KARL frameworks,

for instance, can induce a rule model with only prior rules or a combination of prior rules and
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new ones. The default learning parameters, including the ancillary ones, are command-line

arguments, which can always be changed by the user. In addition, there are variations in

the experimental design of the proposed frameworks based on input data and learning pa-

rameters. The ensuing sections describe experimental design configurations for the proposed

methods.

4.4 PROPOSED MODELS

4.4.1 KARL Models

The motivation for KARL experiments was influenced by three aims. The first and fore-

most was to test the hypothesis that: “predictive rule modeling with KARL is statistically

significantly robust than baseline RL.” The second was to seek answers to questions like

“does augmenting prior rule generation with domain-knowledge lead to significantly better

transfer learning than related model-based priors?” since KARL extracts prior rules from

domain-knowledge—which could be culled from a domain experts, literature, and/or knowl-

edge bases—as opposed to related models like MS-TRL. Answering this question could give

very important perspectives on when to transfer, particularly when the two sources are avail-

able for prior rules generation. Third, was to ascertain whether distinct rule patterns could

be discovered across multiple models for related studies (e.g., same cancer type) by augment-

ing rule learning with the KARL approach. In addition, it was desirable to determine how

the combo search compares and contrasts with the only-priors version, while using KARL.

To meet these aims, KARL models were ran with appropriate input parameters. Rele-

vant domain knowledge, for instance, were extracted, abstracted, and encapsulated into the

functional lookup tables. Thus, KARL models were trained on each dataset, including their

corresponding functional lookup tables, where available. In addition, multi-source transfer

learning with KARL was performed under two main schemes. First, conduct rule space

search with only the seeded prior rules—that, specialize only prior rules (see fig. 19). The

second scenario performs heuristic beam search with prior rules together with newly induced
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rules from target dataset—that is, specialize both prior and new rules (see fig. 18).

4.4.2 MS-TRL Models

Figure 17: Experimental design for MS-TRL

The purpose of the MS-TRL experiments were motivated by five aims. First, to test the

hypothesis that “MS-TRL is more robust than baselines RL and TRL.” Second, to investigate

the relationship between numbers of sources and positive/negative transfer. That is, does

increase in the number of sources correlated with robustness? Third, to investigate the

relative importance/contribution of each source model to the final rule model. Fourth, to

investigate how MS-TRL could be used to discover robust rule patterns from appropriately

determined homogeneous and heterogeneous datasets? Last, to investigate how combo search

compares and contrasts with the only-priors, using MS-TRL.

To meet the above aims several experiments were performed using the MS-TRL frame-

work. Figure 17 illustrates the design for a general experimental set-up. It accepts as input

a set of K datasets, which can consist of disease-specific (i.e., same cancer type) datasets
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or a mix of disease types (see brown blocks of fig. 17). What is more, the datasets can be

randomly pooled from the various disease-specific sets into a mixture of different diseases.

This second option is particularly useful to test the feasibility of MS-TRL on a heteroge-

neous environment. That is, the ability to learn or glean information from remotely related

domains and/or models for transfer learning.

With the input set of datasets, one is designated as the target, while the rest (i.e., K−1)

are earmarked as sources. In fig. 17 the source and target datasets are annotated by light

blue and light green-colored blocks, respectively. In each experiment, up to K − 1 blocks

were used for training source models, while the remaining part was used as target. This was

repeated K times such that each data block was designated as target once.

Meanwhile, for the K−1 available source datasets, an exhaustive combinatorial approach

was used to select every possible—combinations—set between 2 to K − 1 sources. This

strategy was also particularly essential to investigate which particular source models, or

combination thereof, were more likely to yield positive/negative transfer. In addition, this

strategy was also used to investigate whether there is a significant relationship between the

number of source models and positive/negative transfer.

4.4.3 iTRL Models

As stated earlier, the iTRL framework was designed for incremental learning with TRL. It

is also akin to on-line learning, where an existing rule model is updated when new datasets

become available. According to the iTRL framework, the existing model is used as prior rules

to seed learning on the new dataset. Here, the source of the existing model is immaterial;

that is, it could be a product of RL, TRL, TRL-FM, KARL, or MS-TRL. Therefore, for

brevity, iTRL experiments consisted of prior rules that were generated from TRL—that is,

RL plus prior rules.

Like MS-TRL, the iTRL experiments were motivated by several aims. First, to test the

hypothesis that, “predictive rule modeling via the iTRL approach leads to statistically signif-

icantly better models than baseline RL and/or TRL.” Second, which is also the overarching

aim, is to investigate whether for incremental transfer rule learning via the iTRL approach,
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the ordering of datasets significantly affects learning performance of the final model. Third,

to investigate whether the number of sources (i.e., iterations) improve learning performance.

Fourth, to investigate the feasibility of how iTRL could be used to learn robust rule pat-

terns from both homogeneous and heterogeneous biomedical datasets. Fifth, to investigate

how combo search compares and contrasts with the only-priors, using iTRL; and last, to

investigate how iTRL compares and contrasts with MS-TRL, given the same source(s) and

target.

To meet these aims the configuration in fig. 17 was also used. Using a similar combinato-

rial scheme like MS-TRL (see section 4.4.2), every possible ordering—permutations—of 2 to

K−1 sources in a set of K datasets were considered. That is, for every kth target dataset in

a set of K cancer-specific (or mixed) datasets, there were (K−1)!
(K−3)! + (K−1)!

(K−4)!+, ...,+
(K−1)!

1!
order-

ing of possible sources. Meanwhile, like KARL and MS-TRL, two types of beam search were

performed. First, transfer learning with a specialization of only prior rules (see fig. 19), and

second, heuristic beam search with a combination of both prior and new rules (see fig. 18).

4.4.4 Multi-source Transfer Rule Learning: An Example

Figure 18 illustrates an example of the general-to-specific rule space search that the pro-

posed frameworks employ to induce a classification rule model on the target dataset, given

prior rules. The prior rules can be gleaned from multiple related models, like MS-TRL, or

abstracted from multiple domain knowledge source, like KARL. In this example, heuristic

beam search is performed with a combination of prior rules—annotated with light-blue font

color—and new rules—annotated with golden-yellow font color. In addition, the source rule

models have been encoded as S1, S2, . . . , SN to facilitate the identification of prior rules

provenance.

First, the beam is initialized with the transferred prior rules together with the most

general rule pattern for inducing new rules. Subsequently, a specialization operator is applied

to each rule. Rules that do not meet the good rule criteria are pruned away, while the rest

stay on the beam and get specialized in the next iteration. The specialization-pruning

iteration continues until no rule can be specialized, and the algorithm stops and outputs the
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Figure 18: An example of multi-source transfer rule learning

set of rules on the beam. Note that in the first few iterations, specializations (e.g., from the

most general rule) of new rules that will potentially lead to prior rules, which are already on

the beam, are skipped.

In addition, the final rule model contains rules that were retained from the prior rules.

The first two rules, for instance, were retained from source models S4 and S3, respectively.

New rules are annotated with the prefix Nr. Finally, individual rule statistics have also

been indicated. The first rule, for instance, has CF , p-value (PV ), TP , and FP values of

respectively 0.99, 5.06e−13, 100, and 0. Furthermore, Pos (i.e., 105) indicates the number of

training instances that have the same class as this particular rule predicts, while Neg (i.e.,

36) indicates the number of training instances that have a different class than it predicts.
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Figure 19: An example of multi-source beam search with only prior rules

Figure 19 depicts an example of prior-rules-only heuristic beam search. That is, it

specializes only prior rules where appropriate. Unlike fig. 18, the beam is first initialized with

only prior rules gleaned from either multiple related source models or domain knowledge. The

search then proceeds with a specialization-pruning iteration until no rule can be specialized

and the algorithm stops. Here, the annotation format for the prior rules, including their

provenance, are the same as illustrated in fig. 18.

73



4.5 EVALUATION

The aim of transfer learning is to improve learning on the target task by leveraging infor-

mation from the source task. Positive transfer is said to have occurred if a transfer method

improves learning on the target task—in other words, if it improves completeness and con-

sistency of the target model. As explained in section 2.5, an ideal rule learning model is the

one which is complete and consistent. The more complete and consistent a rule model is the

more robust it is. To test for robustness it was essential to evaluate the rule models that

were spawned from the experiments via common measuring instruments.

4.5.1 Metrics

To ascertain whether the proposed frameworks exhibited more completeness and consistency

over the baselines several evaluation metrics were employed. While rule coverage statistics

were used to evaluate completeness, general classification performance metrics were applied

to estimate consistency. Therefore, positive/negative transfer can be said to have occurred

when there is a significant gain/loss in coverage and classification accuracy by a multi-source

transfer rule-learning model over the baseline model.

In addition, other metrics were employed to determine how inherent and related char-

acteristics among the source(s) and target datasets affected learning performance. I present

below, in detail, the metrics I used to evaluate gain/loss of completeness and consistency.

1. Classification

To evaluate the classification performance of the models, I estimated the Sensitivity (SN),

Specificity (SP), Balanced Accuracy (BACC), and Accuracy (Acc) of baseline and all the

multi-source extension models given the same target dataset.

SN =
TP

TP + FP
SP =

TN

TN + FN
BACC =

SN + SP

2

Acc =
TP + TN

TP + FP + TN + FN

where, TP (true positive rate) is the fraction of positive examples (i.e., cases or tumor

examples) that were predicted correctly, TN (true negative rate) is the fraction of negative
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examples (i.e., controls or normal examples) that were predicted correctly, FP (false

positive rate) is the fraction of negative examples predicted wrongly, and FN (false

negative rate) is the fraction of positive examples predicted wrongly.

2. Coverage

Coverage, also known as support, can be used as a measure for the generality and

completeness of a rule—the more data examples a rule covers, the more general and

complete it is. Coverage can be estimated as the probability that a rule pattern will

occur. That is, p(V1 ∩ ... ∩ Vn ∩ C), where Vi and C are the domain-variable and target

class respectively. Several variants of the notion of coverage such coverage difference

(CovDiff = TP − FP ), rate difference (RateDiff = TP/Pos− FP/Neg) or positive

coverage (CovPos = TP/Pos), have been proposed by the inductive learning commu-

nity. For brevity, I opted for the latter. In addition, I estimated the CovPos for each

class. That is, p(V1 ∩ ...∩Vn|C = CASE) for cases and p(V1 ∩ ...∩Vn|C = CONTROL)

for controls. For each cross-validation experiment the minimum, maximum, and median

CovPos were computed. For brevity, the maximum possible CovPos was used due to

inductive strengthening—that is, priority was given to rules that cover as much of the

training examples.

3. Abstentions

A closely related metric to coverage is abstention. A rule model may abstain from

making a prediction if none of it rules cover a test/validation data instance. The number

of instances that the model abstains from is referred to as Abstentions. While coverage

can indicate the completeness of a rule model given set of training examples, the rate

of Abstentions could be indicative of both its completeness and consistency since it

evaluates coverage on the unseen test example set. The more a rule abstains from

making a prediction the less complete it is. Thus, abstentions can also be used to

estimate positive/negative transfer. Here, positive transfer is said to occur if there is

significance difference in abstentions between baseline and proposed model.

4. Significance difference

To determine that the general learning performances (i.e., positive/negative transfer)

between baseline and proposed frameworks did not occur by chance, test of significance
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difference were requirement. To that end, I employed the Paired t-test and the Wilcoxon

Signed-rank tests at significance level of α = 0.05.

5. Level of relatedness

Mutual information (MI) was used to evaluate the relationship between relatedness

and direction of transfer (i.e., positive/negative). MI is the measure of the amount of

information shared by data sets [180]. Given two random variables X and Y with a joint

probability mass function p(x, y) and, respectively, marginal probability mass functions

of p(x) and p(y), the MI can be estimated as:

MI (X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
(4.1)

In cases were X, Y , or both are continuous, estimating MI can be very tricky due to

difficulty in estimating the underlying probability density function. Several methods

(e.g., binning) have been proposed to convert continuous variables to discrete ones be-

fore estimating the MI. Most of the “binning” based methods, however, have inherent

drawbacks—for example, no optimal way of estimating bin size—, so I adopted a “near-

est neighbors” method, which was first proposed by [181]. This method has also been

shown to be robust [182] for estimating MI between a discrete and continuous variable.

Thus given a dataset, you can use MI to quantify the extent to which a disease state

(discrete variable) affects the expression value (continuous) of a given gene. Meanwhile,

MI between X and Y can range between zero (i.e., no relation or they are independent)

and∞. Any MI value higher than 0 is indicative of relatedness, so it is essential to stan-

dardize the upper bound. The global correlation coefficient (λ), a standardized measure

of MI [183], is given by the formula:

λ(X, Y ) = {1− exp[−2MI(X, Y )]}1/2 (4.2)

where 0 ≤ λ ≤ 1. Using a subjective threshold (i.e., 0.1), I used λ to identify domain-

specific genes. That is, for a given dataset, a gene, X, is said to be a disease-specific

(or otherwise disease-dependent) variable, if λ(X, Y ) > 0.1, where Y denote the disease

state (i.e., cancer or normal). It is expected that the more domains (datasets in this
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case) are related the more domain-independent variables they share. In other words, the

degree of relatedness between source(s) and target is related to the degree of independent

variables they share. This assumption was necessary to investigate the notion that: “the

more source and target datasets are related, the more transfer improves target task.”

6. Robust patterns

A rule is said to be robust if it occurs in at least 50% of source models within a model.

Thus for MS-TRL, a robust pattern is a final rule that was retained from at least 3

sources. For the case of iTRL a pattern is robust when it has “survived” (traversed) at

least 3 iterations. This metric was particularly useful in identifying domain-specific as

well pan-cancer patterns. That is, when a robust pattern occurs within a disease set it

can be termed domain-specific; it is general or domain-independent (pan-domain) when

it spans multiple domains.

4.5.2 Cross-Validation

Figure 20: K-fold Cross Validation
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To reduce over-fitting of the frameworks, as well as estimate robust classification per-

formance, K-Fold cross-validation scheme was used. Each data set was partitioned into K

blocks, while ensuring that the distribution of class variable was balanced in each block.

In each experiment, K-1 blocks were used for training a model (i.e., baseline or proposed),

while the remaining part was used for testing. This was repeated K times such that each

block was used for testing once. Finally, the predictive performances (i.e., sensitivity, speci-

ficity, and balanced accuracy) for all K experiments were averaged. Figure 20 illustrates a

schematic depiction of the K-fold cross-validation. For this work, K was set to 10 for all

cross-validation experiments.
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5.0 RESULTS & ANALYSIS

This chapter presents and analyzes the results of the experiments that were described in the

previous chapter. Similarly, section 5.1 briefly presents and discusses results for the published

work, TRL-FM. Further, section 5.2 describes the performances for the baseline models—RL

and TRL, while sections 5.3 to 5.5, discuss KARL, MS-TRL, and iTRL, respectively.

5.1 TRL-FM: RESULTS & DISCUSSION

TRL-FM was able to transfer interpretable classification rules via abstracted biological

knowledge in the form of FMs. Most of the abstracted FMs were associated with known

hallmarks of cancer [151]. In addition, knowledge transfer via an ensemble of FMs, more

often than not, performed better than individual FMs. This observation corroborated results

from other studies which have reported that a combination of FMs(e.g., group of pathways)

improves performance for integrative analysis of genomic data [152,153].

Meanwhile, after comparing TRL-FM with other methods, results (see tables 6 to 8)

show that TRL-FM statistically significantly outperforms TRL as well as other traditional

models based on single source data. Furthermore, TRL-FM performed better than other

integrative models driven by meta-analysis and cross-platform merging.

In summary, the capability of utilizing transferred abstract knowledge derived from

source data using feature mapping enables the TRL-FM framework to mimic the human pro-

cess of learning and adaptation when performing related tasks. This enables the framework

to intelligently incorporate domain knowledge that traditional methods might disregard, to

boost predictive power and generalization performance. In this study, TRL-FM’s abstrac-
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Table 6: AUC comparison of TRL-FM with SVM, LDA, RF, C4.5, NB, and PLR on all

datasets. Note that for TRL, the AUC for the highest performing source is shown, while for

TRL-FM, the medium of knowledge transfer is the union of all FMs.

Dataset SVM LDA RF C4.5 NB PLR RL TRL TRL-FM

Emblom 1.00 1.00 1.00 0.98 0.96 0.98 0.97 0.97 0.94

Freije 0.74 0.72 0.72 0.73 0.82 0.76 0.76 0.78 0.80

Gravendeel 0.52 0.59 0.59 0.53 0.63 0.56 0.49 0.49 0.59

KangA 0.93 0.86 0.86 0.79 0.94 0.90 0.86 0.93 0.97

KangB 0.91 0.87 0.87 0.87 0.91 0.95 0.83 0.91 0.95

Konishi 0.90 0.68 0.68 0.74 0.90 0.90 0.78 0.83 0.95

Lapointe 0.96 0.91 0.91 0.94 0.97 0.96 0.93 0.93 0.97

Larsson 0.33 0.67 0.67 0.58 0.67 0.67 0.75 0.75 1.00

Nanni 0.70 0.61 0.61 0.44 0.57 0.65 0.54 0.54 0.64

Pardo 0.83 0.85 0.85 0.63 0.80 0.88 0.85 0.90 0.95

Paugh 0.48 0.45 0.45 0.43 0.50 0.45 0.51 0.52 0.54

Petalidis 0.75 0.71 0.71 0.69 0.80 0.80 0.83 0.88 0.91

Phillips 0.73 0.70 0.70 0.66 0.75 0.80 0.66 0.73 0.78

Singh 0.89 0.90 0.90 0.89 0.88 0.91 0.89 0.89 0.93

Sun 0.59 0.66 0.66 0.63 0.70 0.73 0.73 0.73 0.84

Varambally 1.00 0.92 0.92 0.67 1.00 1.00 0.83 1.00 1.00

Wallace 0.82 0.85 0.85 0.76 0.81 0.87 0.76 0.81 0.84

Welsh 0.94 0.66 0.66 0.79 0.93 0.94 0.92 0.95 0.93

Yamanaka 0.57 0.57 0.57 0.56 0.71 0.56 0.50 0.50 0.79

Yang 0.69 0.51 0.51 0.89 0.57 0.73 0.94 0.94 0.89

Yu 0.94 0.93 0.93 0.80 0.97 0.94 0.88 0.90 0.93

AVG AUC 0.77 0.74 0.74 0.71 0.80 0.81 0.77 0.80 0.86

AVG SEM 0.06 0.07 0.07 0.07 0.06 0.05 0.07 0.06 0.04
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Table 7: This table shows the average classification performance per disease type as compared

to merged datasets per disease type. In the dataset column, Avg denotes average, MM

denotes merged by meta-analysis, and M means merged by cross-platform data merging. *

denotes that transfer learning methods were not evaluated. Currently, TRL and TRL-FM

cannot be applied to cross-domain studies (i.e., transfer from one disease type to another).

Dataset SVM LDA RF C4.5 NB PLR RL TRL TRL-FM

Average performance per disease type

Avg Brain 0.67 0.66 0.66 0.64 0.73 0.69 0.66 0.68 0.76

Avg IPF 0.80 0.78 0.78 0.78 0.82 0.86 0.85 0.89 0.95

Avg Prostate 0.89 0.83 0.83 0.76 0.88 0.90 0.82 0.86 0.89

Merged per disease type by meta-analysis

MM Brain 0.67 0.70 0.70 0.69 0.70 0.69 0.67 * *

MM IPF 0.88 0.88 0.88 0.85 0.74 0.88 0.81 * *

MM Prostate 0.89 0.84 0.84 0.81 0.70 0.85 0.76 * *

Merged per disease type by batch effect removal

M Brain 0.50 0.51 0.51 0.48 0.53 0.51 0.54 * *

M IPF 0.67 0.63 0.63 0.60 0.63 0.64 0.68 * *

M Prostate 0.53 0.53 0.53 0.53 0.53 0.55 0.59 * *
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Table 8: A Mann-Whitney paired-sample signed rank test with significance level α = 5%. P-

values were adjusted with the Benjamini Hochberg method. Significant p-values are displayed

in bold font.

Method SVM LDA RF C4.5 NB PLR RL TRL

LDA 0.1230

RF 0.1230

C4.5 0.0386 0.0943 0.0943

NB 0.3453 0.0076 0.0076 0.0035

PLR 0.0737 0.0043 0.0043 0.0043 0.6280

RL 0.3473 0.6825 0.6825 0.0137 0.1151 0.0700

TRL 0.6924 0.0648 0.0648 0.0017 0.8666 0.6825 0.0076

TRL-FM 0.0094 0.0006 0.0006 0.0002 0.0094 0.0217 0.0017 0.0052

tion of knowledge is achieved in the form of functional modules, but the overall framework is

generalizable in that different approaches of acquiring abstract knowledge can be integrated

into this framework.

5.2 BASELINES

5.2.1 Classification performance - RL

Tables 9 and 10 represent cross-validation (10 fold) results for RL on all data sets. The table

rows have been partitioned into five blocks, each representing a set of a type of cancer, i.e.,

brain, breast, colon, lung, and prostate in that order. For each dataset the mean Sensitivity

(SN), Specificity (SP), Balanced Accuracy (BACC), Accuracy (Acc), and Abstentions

(Ab) under each cross-validation experiment have been shown. In addition, we recalculated

the accuracies by considering an abstention as error. This is also presented as Accuracy
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Table 9: Mean classification (cross-validation) performance of baseline RL, using weighted-

voting for inference. SN = Sensitivity, SP = Specificity, BACC = Balanced Accuracy, Acc

= Accuracy, AccAb = Accuracy including abstentions, Ab = Abstentions

Dataset SN SP BACC Acc AccAb Ab Ab (%)

GEO16011 98.73 0.00 49.37 90.17 89.14 2 1.14

GEO1993 92.31 73.68 83.00 86.21 86.21 0 0.00

GEO4271 100.00 8.33 54.17 78.00 78.00 0 0.00

GEO4290 100.00 10.53 55.26 82.83 82.00 1 1.00

GEO4412 94.83 53.85 74.34 82.14 81.18 1 1.18

GEO10780 42.50 100.00 71.25 87.43 86.49 2 1.08

GEO15852 86.05 83.72 84.88 84.88 84.88 0 0.00

GEO29431 100.00 100.00 100.00 100.00 93.94 4 6.06

GEO42568 100.00 81.25 90.63 97.48 95.87 2 1.65

GEO7904 92.86 47.37 70.11 78.69 77.42 1 1.61

GEO10715 83.33 37.50 60.42 69.23 60.00 4 13.33

GEO20916 100.00 97.06 98.53 98.55 97.14 1 1.43

GEO23878 100.00 100.00 100.00 100.00 94.92 3 5.09

GEO24514 100.00 80.00 90.00 93.88 93.88 0 0.00

GEO9348 100.00 83.33 91.67 97.50 95.12 2 2.44

GEO10072 100.00 95.83 97.92 98.10 96.26 2 1.87

GEO18842 100.00 90.48 95.24 95.40 91.21 4 4.40

GEO19188 96.70 92.31 94.51 94.87 94.87 0 0.00

GEO19804 94.92 95.00 94.96 94.96 94.17 1 0.83

GEO7670 94.87 87.50 91.19 92.06 87.88 3 4.55

GEO17951 85.08 87.69 86.38 86.36 83.21 5 3.65

GEO32448 97.22 90.00 93.61 93.42 88.75 4 5.00

GEO46602 97.22 91.67 94.44 95.83 92.00 2 4.00

GEO6956 98.53 55.00 76.77 88.64 87.64 1 1.12

GEO82188 85.94 92.75 89.35 89.47 87.50 3 2.21
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Table 10: Mean classification (cross-validation) performance of baseline RL, using minimum

p-value for inference. SN = Sensitivity, SP = Specificity, BACC = Balanced Accuracy,

Acc = Accuracy, AccAb = Accuracy including abstentions, Ab = Abstentions

Dataset SN SP BACC Acc AccAb Ab Ab (%)

GEO16011 82.28 40.00 61.14 78.61 77.71 2 1.14

GEO1993 74.36 84.21 79.29 77.59 77.59 0 0.00

GEO4271 78.95 45.83 62.39 71.00 71.00 0 0.00

GEO4290 88.75 47.37 68.06 80.81 80.00 1 1.00

GEO4412 77.59 88.46 83.02 80.95 80.00 1 1.18

GEO10780 82.50 93.01 87.75 90.71 89.73 2 1.08

GEO15852 74.42 86.05 80.23 80.23 80.23 0 0.00

GEO29431 100.00 100.00 100.00 100.00 93.94 4 6.06

GEO42568 94.18 81.25 87.71 92.44 90.91 2 1.65

GEO7904 59.52 73.68 66.60 63.93 62.90 1 1.61

GEO10715 50.00 62.50 56.25 53.85 46.67 4 13.33

GEO20916 100.00 100.00 100.00 100.00 98.57 1 1.43

GEO23878 100.00 100.00 100.00 100.00 94.92 3 5.09

GEO24514 88.24 86.67 87.45 87.76 87.76 0 0.00

GEO9348 98.53 100.00 99.27 98.75 96.34 2 2.44

GEO10072 98.25 95.83 97.04 97.14 95.33 2 1.87

GEO18842 97.78 92.86 95.32 95.40 91.21 4 4.40

GEO19188 96.70 87.69 92.20 92.95 92.95 0 0.00

GEO19804 93.22 91.67 92.44 92.44 91.67 1 0.83

GEO7670 82.05 100.00 91.03 88.89 84.85 3 4.55

GEO17951 94.03 80.00 87.02 87.12 83.94 5 3.65

GEO32448 86.11 90.00 88.06 88.16 83.75 4 5.00

GEO46602 97.22 91.67 94.44 95.83 92.00 2 4.00

GEO6956 77.94 65.00 71.47 75.00 74.16 1 1.12

GEO82188 84.38 94.20 89.29 89.47 87.50 3 2.21

including abstentions (AccAb).

Generally, RL performs fairly well on all cancer data sets, except poor specificity from
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the brain cancer set (i.e., an average of 29.28% and 61.17% for tables 9 and 10, respectively)

that was largely due to skewness and inherent heterogeneity within the datasets. The lung

cancer set recorded the best baseline performance (i.e., mean SN and SP of 97.30% and

92.22%, respectively as shown, for instance, from table 9). Thus, the baseline classification

performance could be influenced by inherent characteristics of the datasets.

Meanwhile, total abstentions varied across the disease sets. Brain and prostate cancer

sets, respectively, recorded the least(4) and most(15) total abstentions. The rate of absten-

tion can be dependent on both the inherent properties of input datasets and generalizability

of the induced rule model.

For table 9 the inference method for conflict resolution was evaluated by weighted-voting

(default), while the minimum p-value approach was used for the results in table 10. The

weighted-voting method, which is dependent on the CF, is set-up to particularly bias towards

rules that maximize TP and minimize FP. This means that for relatively highly skewed data

majority of the induced rules will cover the majority class, and would results in low sensitivity

or specificity. See, for example, the performances for datasets GEO16011, GEO4271, and

GEO10780, which respectively, have case-control class distributions of 159/16, 76/24, and

42/143. As the results show from table 9 and fig. 21, these datasets have low specificity and

sensitivity due to their inherent skewness and the choice of inference method for resolving

conflicts.

The minimum p-value inference method, which is also based on the likelihood ratio

statistic, on the other hand, relies on the class distribution of the training set to determine

the reliability and/or significance of an induced rule. Thus,it would likely not penalize sensi-

tivity/specificity for highly skewed data sets. In fact, it trades-off sensitivity and specificity

for majority of skewed data sets. In like manner, see the results for same datasets in ta-

ble 10 and fig. 21, where there was a significant improvement in specificity (i.e., GEO16011,

GEO4271 ) and slight loss in sensitivity. In general, the minimum p-value inference method

for baseline RL improves balanced accuracy for datasets that are highly skewed.

Figure 21 illustrates how inference via weighted-voting (left) compares with that of min-

imum p-value (right) over the space of classification performance. The x-axis denotes the

number of case (or control) examples as a percentage of the total sample size, while perfor-
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Figure 21: Performance by inference via Weighted-Voting vs Min P-Value

mance in sensitivity(top) and specificity (bottom) are presented on the y-axis.

In general, and as discussed earlier, inference via weighted-voting is highly sensitive (i.e.,

sensitivity > 75%) for datasets which have 50% or more tumor examples—see top left. On

the other hand, specificity for some datasets, particularly brain cancer, which have 40% or less

normal examples—see bottom left—have relatively low specificity (i.e., specificity < 55%).

Meanwhile, in general, inference via minimum p-value trades-off slightly lower sensitivity

(see top right) for relatively higher specificity (bottom right). A future inference method

that could fuse and balance these two is desirable. This could be particularly useful for both

the MS-TRL and iTRL frameworks were evidence of robust rules are encapsulated in prior

rules statistics such as coverage. For brevity, the weighted-voting method was maintained

for the rest of the frameworks.
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5.2.2 Coverage - RL

Tables 11 and 12 describe the positive coverage statistics of baseline RL on 10-fold cross-

validation. Each table presents the minimum, maximum, and median positive coverage for

both case and control examples. That is ConMin (minimum positive coverage for controls),

ConMax (maximum positive coverage for controls), ConMdn (median positive coverage for

controls), CaseMin (minimum positive coverage for cases), CaseMax (maximum positive

coverage for cases), and CaseMdn (median positive coverage for cases). While table 11

presents the coverage per cancer type, table 12 provides a detailed RL coverage for all

datasets.

Table 11: The average coverage of baseline RL per cancer type on 10-fold cross-validation.

ConMin = minimum positive coverage for controls, ConMax = maximum positive coverage

for controls, ConMdn = median positive coverage for controls, CaseMin = minimum

positive coverage for cases, CaseMax = maximum positive coverage for cases, CaseMdn

= median positive coverage for cases

Disease ConMin ConMax ConMdn CaseMin CaseMax CaseMdn

Brain 0.482 0.673 0.556 0.534 0.765 0.621

Breast 0.652 0.835 0.744 0.660 0.810 0.721

Colon 0.961 0.970 0.965 0.968 0.982 0.975

Lung 0.797 0.932 0.869 0.865 0.952 0.922

Prostate 0.535 0.766 0.671 0.602 0.782 0.678

In general, the brain cancer set presented the lowest (i.e., ConMdn = 0.556 and

CaseMdn = 0.621) baseline coverage for both cases and controls, while the colon cancer

set recorded the highest (i.e., ConMdn = 0.965 and CaseMdn = 0.975). The low coverage

within the brain cancer set, particularly among the controls, could be a likely cause of its

relatively low specificity. For the prostate cancer set, the relatively lower coverage—second

to brain cancer—could also be associated to its relatively higher abstentions. Meanwhile,

apart from presenting the highest average coverage, the colon cancer set also shows the least

variation (i.e., almost zero) in average coverage. This could also be attributed to the reasons

why it recorded one of the best classification performances (see tables 9 and 10).
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Table 12: Mean positive coverage for baseline RL models on 10-Fold cross-validation. Con-

Min = minimum positive coverage for controls, ConMax = maximum positive coverage for

controls, ConMdn = median positive coverage for controls, CaseMin = minimum positive

coverage for cases, CaseMax = maximum positive coverage for cases, CaseMdn = median

positive coverage for cases

Dataset ConMin ConMax ConMdn CaseMin CaseMax CaseMdn

GEO16011 0.513 0.688 0.596 0.549 0.790 0.643

GEO1993 0.603 0.737 0.675 0.607 0.735 0.655

GEO4271 0.426 0.580 0.503 0.491 0.820 0.631

GEO4290 0.433 0.544 0.462 0.519 0.745 0.586

GEO4412 0.436 0.817 0.544 0.503 0.736 0.588

GEO10780 0.497 0.836 0.649 0.402 0.601 0.495

GEO15852 0.421 0.847 0.637 0.362 0.723 0.488

GEO29431 1.000 1.000 1.000 1.000 1.000 1.000

GEO42568 0.889 0.902 0.895 0.975 0.981 0.978

GEO7904 0.451 0.591 0.538 0.561 0.747 0.642

GEO10715 0.869 0.909 0.889 0.895 0.953 0.924

GEO20916 1.000 1.000 1.000 1.000 1.000 1.000

GEO23878 1.000 1.000 1.000 1.000 1.000 1.000

GEO24514 0.934 0.941 0.937 0.944 0.958 0.951

GEO9348 1.000 1.000 1.000 1.000 1.000 1.000

GEO10072 1.000 1.000 1.000 1.000 1.000 1.000

GEO18842 1.000 1.000 1.000 1.000 1.000 1.000

GEO19188 0.576 0.869 0.686 0.740 0.956 0.907

GEO19804 0.583 0.904 0.789 0.652 0.828 0.749

GEO7670 0.824 0.885 0.871 0.935 0.974 0.954

GEO17951 0.346 0.583 0.466 0.536 0.812 0.618

GEO32448 0.419 0.817 0.689 0.439 0.633 0.519

GEO46602 1.000 1.000 1.000 1.000 1.000 1.000

GEO6956 0.556 0.700 0.642 0.639 0.820 0.694

GEO82188 0.354 0.728 0.558 0.395 0.643 0.557
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5.2.3 Classification performance - TRL

Tables 13 and 14 represent classification performance of TRL on brain and mixed cancer

set, respectively. Recall that each dataset within each disease set was designated as target,

while the rest, individually, in turn, served as source. In all, there were 21 TRL experi-

ments involving each disease set. For each experiment, the results present the names of the

source, target, and measured performance such as sensitivity (SN), specificity (SP), balanced

accuracy (BACC), accuracy where abstentions are considered as errors, and percentage of

abstentions.

Table 13: Classification performance of TRL Combo on brain cancer set

Source Target SN SP BACC AccAb Ab (%)

GEO4290 GEO16011 98.734 0.000 49.367 89.143 1.143

GEO4412 GEO16011 98.734 0.000 49.367 89.143 1.143

GEO1993 GEO16011 98.113 12.500 55.307 90.286 0.000

GEO4271 GEO16011 96.855 6.250 51.553 88.571 0.000

GEO4412 GEO1993 92.308 73.684 82.996 86.207 0.000

GEO4271 GEO1993 89.744 73.684 81.714 84.483 0.000

GEO4290 GEO1993 97.436 68.421 82.928 87.931 0.000

GEO16011 GEO1993 97.436 68.421 82.928 87.931 0.000

GEO16011 GEO4271 100.000 12.500 56.250 79.000 0.000

GEO4412 GEO4271 100.000 20.833 60.417 81.000 0.000

GEO4290 GEO4271 100.000 16.667 58.333 80.000 0.000

GEO1993 GEO4271 100.000 16.667 58.333 80.000 0.000

GEO1993 GEO4290 98.765 31.579 65.172 86.000 0.000

GEO4412 GEO4290 95.062 42.105 68.583 85.000 0.000

GEO16011 GEO4290 100.000 10.526 55.263 82.000 1.000

GEO4271 GEO4290 96.296 21.053 58.674 82.000 0.000

GEO4290 GEO4412 98.305 50.000 74.153 83.529 0.000

GEO4271 GEO4412 93.220 53.846 73.533 81.176 0.000

GEO1993 GEO4412 89.831 73.077 81.454 84.706 0.000

GEO16011 GEO4412 94.915 42.308 68.611 78.824 0.000

Note these results were produced from a version of TRL with combination (Combo) rule
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Table 14: Classification performance of TRL Combo on mixed cancer set

Source Target SN SP BACC AccAb Ab (%)

GEO7904 GEO4412 94.915 53.846 74.381 82.353 0.000

GEO7670 GEO4412 93.103 53.846 73.475 80.000 1.176

GEO6956 GEO4412 98.305 57.692 77.999 85.882 0.000

GEO9348 GEO4412 93.103 53.846 73.475 80.000 1.176

GEO7904 GEO6956 98.551 55.000 76.775 88.764 0.000

GEO9348 GEO6956 95.588 55.000 75.294 85.393 1.124

GEO7670 GEO6956 95.588 55.000 75.294 85.393 1.124

GEO4412 GEO6956 95.588 55.000 75.294 85.393 1.124

GEO6956 GEO7670 94.872 74.074 84.473 86.364 0.000

GEO4412 GEO7670 92.308 81.481 86.895 87.879 0.000

GEO9348 GEO7670 94.872 88.462 91.667 90.909 1.515

GEO7904 GEO7670 94.872 85.185 90.028 90.909 0.000

GEO6956 GEO7904 95.349 31.579 63.464 75.806 0.000

GEO4412 GEO7904 97.674 42.105 69.890 80.645 0.000

GEO9348 GEO7904 95.349 36.842 66.095 77.419 0.000

GEO7670 GEO7904 97.674 42.105 69.890 80.645 0.000

GEO6956 GEO9348 100.000 83.333 91.667 97.561 0.000

GEO7904 GEO9348 100.000 83.333 91.667 97.561 0.000

GEO7670 GEO9348 100.000 75.000 87.500 96.341 0.000

GEO4412 GEO9348 100.000 75.000 87.500 96.341 0.000

space search; it is akin to MS-TRL with one source, and served as baseline for MS-TRL

with two or more sources. For brevity, I will use results for only two disease sets (i.e., brain

and mixed) to illustrate the general performance patterns that were observed. Results for

the rest of the sets (i.e., breast, colon, lung, and prostate) have been provided as additional

material (see appendix B).

In general, positive/negative transfer due to single-source transfer rule learning depends

on the individual baseline (i.e., RL) performances of the source and target datasets. For

all things being equal, if the source and target have, say, about equal sensitivity, but the
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specificity of the source is way higher than that of the target, then positive transfer is most

likely to occur. See, for instance, the transfer of GEO1993 to GEO16011 or GEO4412

to GEO4271, all from the brain cancer set (see table 13). In both cases, the individual

specificity (see table 9) of the sources were far greater than their respective targets. Similar

observations were made on the mixed set (see table 14), where transfer from GEO6956 to

GEO4412 and GEO9348 to GEO7670. Note that in the case of the latter example, positive

transfer occurred due to the relatively higher difference in sensitivity, than specificity, of the

source (GEO9348) over that of the target (GEO7670).

Conversely, positive transfer is less likely to occur when individual performance of the

target far outweigh that of the sources. In table 13, for instance, transfer from all sources

to the target, GEO1993, could not improve performance. Similarly, and as observed from

table 14, performance on the target, GEO9348, was either maintained or reduced. These two

target, in particular, had relatively higher specificity among their cohorts of their respective

disease set.

Finally, TRL with Combo search reduces the rate of abstentions, as observed from both

tables 13 and 14. Thus, the utility of the combination search strategy applies to TRL as

well. Generally, it increases the coverage space, and hence the generality, of the rule model.

In addition, tables 15 and 16 represent the classification performance of TRL on the

same brain and mixed set. Note that the search strategy used here was the “OnlyPriors”

approach. Similarly, this is akin to MS-TRL OnlyPriors with one source dataset. It was

thus used as baseline, as well as basis, for multi-source transfer rule learning with two or

more sources. Like the Combo version, and for brevity, results for the rest of the disease sets

have been provided as additional material (see appendix B).

As expected, there were quite a lot of abstentions from these experiments, and they

affected the general classification by accuracy (see AccAb column). Within the subspace

of data that it covered (see BACC column), it improved performance in most cases, es-

pecially when the class distributions within the data are highly skewed (e.g., GEO4290 or

GEO16011).

Observe that for cases where the rate of abstentions were low (say, < 4%) it performs

well (see transfer from GEO4412 and GEO4290 to GEO4271 in table 15, and GEO7670
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Table 15: Classification performance of TRL OnlyPriors on brain cancer set

Source Target SN SP BACC AccAb Ab (%)

GEO4290 GEO16011 99.194 20.000 59.597 70.857 26.286

GEO4412 GEO16011 99.270 0.000 49.635 77.714 20.000

GEO1993 GEO16011 95.205 50.000 72.603 83.429 8.571

GEO4271 GEO16011 90.667 54.545 72.606 81.143 8.000

GEO4412 GEO1993 89.474 50.000 69.737 74.138 3.448

GEO4271 GEO1993 86.111 68.421 77.266 75.862 5.172

GEO4290 GEO1993 97.297 29.412 63.355 70.690 6.897

GEO16011 GEO1993 97.368 50.000 73.684 77.586 6.897

GEO16011 GEO4271 97.183 36.842 67.013 76.000 10.000

GEO4412 GEO4271 89.474 62.500 75.987 83.000 0.000

GEO4290 GEO4271 94.667 54.545 74.606 83.000 3.000

GEO1993 GEO4271 90.667 52.381 71.524 79.000 4.000

GEO1993 GEO4290 84.416 57.895 71.155 76.000 4.000

GEO4412 GEO4290 84.211 52.632 68.421 74.000 5.000

GEO16011 GEO4290 95.890 20.000 57.945 73.000 12.000

GEO4271 GEO4290 88.000 53.333 70.667 74.000 10.000

GEO4290 GEO4412 91.071 43.478 67.275 71.765 7.059

GEO4271 GEO4412 96.491 45.833 71.162 77.647 4.706

GEO1993 GEO4412 90.741 68.000 79.370 77.647 7.059

GEO16011 GEO4412 98.214 16.667 57.440 68.235 12.941

to GEO9348 in table 16), and even much better for highly skewed data. Finally, and as

discussed above, positive transfer hardly occur when, individually, the target performs much

better than the sources.

The TRL results as discussed above would be used in sections 5.4 and 5.5 to compare

and contrast multi-source transfer rule learning with MS-TRL and iTRL, respectively, as

well as baseline RL. The next section presents results for multi-source transfer rule learning

via explicit augmentation of domain knowledge (aka KARL).
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Table 16: Classification performance of TRL OnlyPriors on mixed cancer set

Source Target SN SP BACC AccAb Ab (%)

GEO7904 GEO4412 95.745 21.429 58.587 56.471 28.235

GEO7670 GEO4412 94.340 43.750 69.045 67.059 18.824

GEO6956 GEO4412 88.889 62.500 75.694 68.235 17.647

GEO9348 GEO4412 50.000 71.429 60.714 18.824 65.882

GEO7904 GEO6956 96.154 50.000 73.077 35.955 55.056

GEO9348 GEO6956 42.857 87.500 65.179 11.236 83.146

GEO7670 GEO6956 63.636 86.667 75.152 38.202 46.067

GEO4412 GEO6956 86.111 58.333 72.222 42.697 46.067

GEO6956 GEO7670 100.000 66.667 83.333 80.303 9.091

GEO4412 GEO7670 90.625 72.222 81.424 63.636 24.242

GEO9348 GEO7670 81.250 85.714 83.482 57.576 30.303

GEO7904 GEO7670 97.297 91.304 94.301 86.364 9.091

GEO6956 GEO7904 94.118 20.000 57.059 54.839 29.032

GEO4412 GEO7904 96.552 45.455 71.003 53.226 35.484

GEO9348 GEO7904 73.333 42.857 58.095 22.581 64.516

GEO7670 GEO7904 89.744 33.333 61.538 64.516 12.903

GEO6956 GEO9348 98.529 83.333 90.931 93.902 2.439

GEO7904 GEO9348 100.000 90.000 95.000 96.341 2.439

GEO7670 GEO9348 100.000 66.667 83.333 95.122 0.000

GEO4412 GEO9348 100.000 36.364 68.182 90.244 1.220

5.3 KARL

5.3.1 Domain & model variables

Table 17 presents the characteristics of domain and model variables for knowledge augmented

rule learning. For each dataset, the variables extracted from its functional lookup table are

the number of gene-function associations (GFA), and number of functional genes (FG). Note

that GFA can be significantly larger than FG in some instances. This is because some of the

genes are multi-functional. In addition, FG formed the building blocks of RLT, the number
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Table 17: Characteristics of domain & model variables for KARL models. GFA = # of gene-

function associations, FG = # of functional genes, RLT = # of prior rules instantiated from

Lookup Table, PrCo = # of priors rules in final model via combo search, TrCo = total

number of rules via combo search, PvCo = # of prior variables in model via combo search,

TvCo = total number of variables in model via combo search, TvOp = total number of

variables in model via priors only search, TrOp = total number of rules in model via priors

only search

Dataset GFA FG RLT PrCo TrCo PvCo TvCo TvOp TrOp

GEO16011 42 26 34 9 30 8 29 14 22

GEO1993 81 45 114 11 21 11 21 13 11

GEO4271 133 77 221 13 41 13 41 22 23

GEO4290 100 57 117 11 32 11 32 20 21

GEO4412 157 97 255 24 36 24 36 21 16

GEO10780 2 1 2 0 22 0 21 0 0

GEO15852 27 16 60 7 25 7 25 11 14

GEO29431 726 433 965 2 4 2 4 3 2

GEO42568 819 487 1509 5 6 5 6 8 7

GEO7904 25 15 28 9 21 9 21 10 9

GEO10715 15 10 13 5 10 5 10 5 5

GEO20916 296 176 575 2 4 1 2 2 2

GEO23878 274 170 533 2 4 2 3 3 2

GEO24514 188 113 343 5 8 4 7 5 4

GEO9348 485 297 768 2 4 2 4 3 2

GEO10072 163 98 286 2 2 1 1 2 2

GEO18842 627 381 1057 2 4 1 3 3 2

GEO19188 497 296 969 5 9 4 8 14 9

GEO19804 248 147 539 15 24 13 22 16 9

GEO7670 235 139 439 6 12 6 12 8 5

GEO17951 70 42 146 13 32 13 32 15 14

GEO32448 80 43 122 13 22 13 22 16 14

GEO46602 204 118 326 2 2 1 1 5 3

GEO6956 47 29 48 9 20 9 20 12 11

GEO82188 66 36 128 17 38 13 34 20 16
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of good prior rules that were instantiated from the functional lookup table. Furthermore,

PrCo and PvCo, respectively, constitute the number of prior rules and variables that made

it to the final rule model using the combination search methods, while TvOp and TrOp,

respectively, represent the number of total variables and rules in the final model via search

with only prior rules. Finally, TvCo and TrCo denote the total number of variables and

rules that form the final model via the combination search, respectively.

In general, there were no direct relationship between FG and RLT on the one hand, and

PrCo and TrCo on the other. Though some models (e.g., GEO42568 and GEO18842 ) with

quite high RLTs, only a minute proportion (i.e., 5/1509 and 2/1057) of them made it to

the final model. Meanwhile, other models with relatively low RLTs (e.g., GEO7904 and

GEO10715 ) had relatively higher proportions of PrCo/RLT (i.e., 9/28 and 5/13, respec-

tively). Thus, a variable might be functionally relevant to a particular domain, but may not

necessarily meet the good rules criteria, which is mostly dependent on rule statistics derived

from the data.

A relatively large RLT, however, affords the rule learner a wider space from which to

choose better and robust rules. This might also lead to the discovery of rules that command

stronger support (i.e., coverage) and confidence (i.e., certainty factor); such rules would

more likely lead to parsimonious (i.e., few list of rules) rule models. On the contrary, a small

FG/RLT may cause a very low PrCo/TrOp. A stark evidence of this claim was identified in

GEO10780, which had no transferred prior rule. In fact, its FG list contain only one gene

and more so the rules instantiated from its RLT were not robust enough to make it to the

final model. Thus, the amount of robust prior rules likely to be retained in the final model

may not depend solely on the biological relevance of the functional genes, but their total

size.

5.3.2 Classification performance - KARL

Table 18 represent the average classification performance (see table 63 in appendix D for

entire datasets), while using KARL with combination search (aka Combo) approach. As

observed from baseline RL, on the average, brain cancer recorded the worst performance (i.e.,
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AccAb = 83.591), while lung (i.e., AccAb = 94.788), followed closely by colon (i.e., AccAb

= 94.273) cancer presented the highest classification performance. The low performance from

the brain cancer, especially low specificity, could be attributed to a high degree of inherent

heterogeneity. In addition, the rate of abstaining from predicting a new data instance, on

the average, ranges from 0.0% (brain and lung cancer) to 0.912% (colon cancer). This trend

is not too different from that of baseline RL, albeit the rates are much lower with the Combo

method.

Table 18: Average classification performance per disease, using KARL Combo method. SN

= Sensitivity, SP = Specificity, BACC = Balanced Accuracy, Acc = Accuracy, AccAb =

Accuracy including abstentions, Ab = Rate of abstentions

Disease SN SP BACC Acc AccAb Ab (%)

Brain 95.484 37.238 66.362 83.591 83.591 0.000

Breast 83.191 83.030 83.111 89.443 89.254 0.216

Colon 96.667 91.879 94.273 95.046 94.273 0.911

Lung 97.648 91.225 94.436 94.788 94.788 0.000

Prostate 94.033 86.698 90.365 92.092 91.957 0.147

Table 19: Average classification performance per disease, using KARL OnlyPriors method.

SN = Sensitivity, SP = Specificity, BACC = Balanced Accuracy, Acc = Accuracy, AccAb

= Accuracy including abstentions, Ab = Rate of abstentions

Disease SN SP BACC Acc AccAb Ab (%)

Brain 87.869 59.307 73.588 81.066 78.849 2.787

Breast 95.174 54.106 74.640 76.766 67.349 24.393

Colon 92.500 93.667 93.083 94.492 84.460 11.813

Lung 97.358 93.510 95.434 95.893 89.954 6.193

Prostate 85.223 88.327 86.775 86.653 81.983 6.165

Similarly, table 19 show the average classification performance (see table 64 in appendix D

for entire datasets), while using KARL with only prior rules search (aka OnlyPriors) option.

Here the average performance ranges from 67.349 (breast cancer) to 89.954 (lung cancer).
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Meanwhile, the average rate of abstentions range from 2.787 (brain cancer) to 24.393 (breast

cancer). As explained in section 5.3.1, the apparent high average rate of abstentions on the

breast cancer set was mainly due to a low number of functional genes, coupled with low

support from dataset GEO10780.

As we expected, the Combo search approach was more accurate, overall (i.e., accuracies

with abstentions), than the OnlyPriors method. We take the better performance of the

former to be due largely to its ability to blend background domain knowledge with newly

discovered knowledge into a more robust and expansive rule model. Meanwhile, within the

space of examples that the latter covers, it performed quite well. See, for instance, the average

BACC for brain, colon, and lung cancer sets, where it outperformed the Combo method.

A future method could investigate and device intelligent methods, which can specialize and

apply the priors only approach to only specific subsets of data, where it has been determined

a prior that it would perform well.

5.3.3 Coverage - KARL

Table 20 show the average coverage statistics per disease, using KARL Combo models on

10-fold cross-validation (see table 65 in appendix D for coverage statistics on entire datasets).

As baseline RL, the colon cancer set presented, on the average, the highest coverage with

medians of 0.950 and 0.965 in normal and tumor examples, respectively. It also showed the

least variation in positive coverage—that is [0.918, 0.971] and [0.916, 0.991] for normal and

tumor samples, respectively. As expected, brain cancer recorded the worst average coverage

(median = 0.556 and 0.616 for controls and cases respectively). This has been a recurring

pattern among all the models so far.

Similarly, table 21 represent the average coverage statistics per disease for KARL, us-

ing the priors only search option (see table 66 in appendix D for entire datasets). Once

again, colon cancer recorded the most average coverage for both normal ([0.892, 0.938]) and

tumor ([0.883, 0.889]) examples. Meanwhile, on the average, the breast and brain cancer

sets showed the least coverage (i.e., [0.480, 0.548] and [0.433, 0.783]) on normal and tumor

samples, respectively. The relative average drop in coverage on the breast cancer set could
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Table 20: Average positive coverage per disease, using KARL Combo approach. ConMin

= minimum positive coverage for controls, ConMax = maximum positive coverage for

controls, ConMdn = median positive coverage for controls, CaseMin = minimum positive

coverage for cases, CaseMax = maximum positive coverage for cases, CaseMdn = median

positive coverage for cases

Disease ConMin ConMax ConMdn CaseMin CaseMax CaseMdn

Brain 0.386 0.729 0.556 0.463 0.788 0.616

Breast 0.648 0.840 0.759 0.638 0.825 0.719

Colon 0.918 0.971 0.950 0.916 0.991 0.965

Lung 0.763 0.980 0.855 0.829 0.974 0.910

Prostate 0.494 0.876 0.657 0.550 0.874 0.691

Table 21: Average positive coverage per disease, using KARL, prior rules only option. Con-

Min = minimum positive coverage for controls, ConMax = maximum positive coverage for

controls, ConMdn = median positive coverage for controls, CaseMin = minimum positive

coverage for cases, CaseMax = maximum positive coverage for cases, CaseMdn = median

positive coverage for cases

Disease ConMin ConMax ConMdn CaseMin CaseMax CaseMdn

Brain 0.521 0.727 0.633 0.433 0.783 0.632

Breast 0.480 0.548 0.503 0.634 0.729 0.687

Colon 0.892 0.938 0.914 0.883 0.896 0.889

Lung 0.778 0.855 0.825 0.849 0.958 0.908

Prostate 0.634 0.851 0.744 0.568 0.788 0.691

be due to the reasons as explained in sections 5.3.1 and 5.3.2.

As expected, knowledge augmented rule learning using “prior rules only” does not cover

much data examples as the combination method. It does not incorporate new information

for knowledge discovery and decision making, therefore restricting itself to a subspace of the

entire knowledge space. This is the reason why, comparatively, its rates of abstentions and
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coverage are higher and lower, respectively. The next section will provide further comparative

analyses of these two approaches against baseline accuracy and coverage—particularly, if they

are statistically significantly better.

5.3.4 KARL vs RL

Sections 5.3.5 to 5.3.7 present results for significance tests on whether KARL improves the

consistency (i.e., accuracy) as well as completeness (i.e., coverage and abstentions) on the

baseline model. Section 5.3.5 reports on the difference in classification performance, while

sections 5.3.6 and 5.3.7 recount on differences in coverage and rate of abstentions respectively.

5.3.5 Difference in classification performance
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Figure 22: A comparison of classification performance between KARL and RL using balanced

accuracy. Left: Difference in BACC - KARL Combo vs RL. Right: Difference in BACC -

KARL OnlyPriors vs RL.

Figure 22 displays the difference in classification performances between KARL Combo

and RL on the one hand (left) and KARL OnlyPriors (right) on the other, on all datasets.

The performance metric used here is BACC. Note that positive bars indicate a gain in

performance (i.e., positive transfer), while bars below the x-axis depict negative transfer.

For data points, where there are no bars (e.g., B: GEO1993, C: GEO4271, or G: GEO15852

from the left figure) the difference in performance was zero—no gain or loss.
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The Wins:Ties:Loses ratio between KARL Combo and RL was 13:6:6, while that between

the OnlyPriors version and RL was 14:2:9. In general, KARL Combo made gains on the

brain, colon, and prostate cancer sets; the gains were more pronounced in the latter two.

The OnlyPriors version, on other hand, made majority gains in the brain and colon cancer

sets—especially, the former.

In addition, using a paired t-test and a Wilcoxon signed-rank test, on all datasets, at

a significance level of α = 0.05, the classification performance of KARL Combo, using

BACC, was significantly (p = 0.0287 and p = 0.03624, respectively) better than baseline

RL. Similarly, applying the same significance tests between the OnlyPriors version and RL,

the difference in performance was not significant (p = 0.5454 and p = 0.2591, respectively).

The spikes seen within the brain and colon cancer sets, for both methods, were largely

due to gains in specificity. For prostate cancer, however, a mix of gains caused the spikes

presented from KARL Combo in both sensitivity and specificity. Thus, gains in performance

might depend on the nature of the dataset and the characteristics of the background knowl-

edge that covers it. For instance, KARL OnlyPriors tends to perform well on the control

samples from the brain set. It averaged a gain in specificity in excess of 10% on the brain

cancer set alone.
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Figure 23: A comparison of classification performance between KARL and RL using accu-

racy, and penalizing abstentions. Left: Difference in AccAb - KARL Combo vs RL. Right:

Difference in AccAb - KARL OnlyPriors vs RL.

Classification performance metrics (like SN and SP), which are based solely on the cov-
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erage space of a rule model might not properly elucidate completeness and consistency. A

rule model, for instance, which covers a meager 5% of the entire validation examples might

command an accuracy of 100% if it gets all the predictions right. Comparing such a model to

another that covers, say, 90% of the validation set, and yet scores an accuracy of 80% might

not be fair. Recall that an ideal rule model must be both complete and consistent. To that

end, we penalized abstentions as errors and factored it into the calculation of accuracy—

accuracy including abstentions (AccAb).

Figure 23 displays the difference in performance, using AccAb, between both the Combo

(left) and OnlyPriors (right) versions and baseline RL. Here, we see a significant gain of the

Combo version over RL in almost all disease sets. Its Wins:Ties:Loses ratio over the baseline

are respectively 15:8:2. The gains were particularly pronounced in the colon cancer set, and

followed closed by prostate and lung cancer sets. At a significance level of α = 0.05, and using

paired t-test and Wilcoxon signed-rank tests, the gains were significant (i.e., p = 0.001328

and p = 0.00102, respectively). Observe that the gains recorded using AccAb holds more

power than BACC; p = 0.0287 vs p = 0.001328 on paired t-test. The Wilcoxon signed-rank

test results was even more powerful (i.e., p = 0.03624 vs p = 0.00102)

As expected the OnlyPriors version, which predominantly does specialized learning within

a subspace of the training set, performed poorly using the AccAb metric. Its Wins:Ties:Loses

ratio over the baseline was 9:2:14. While the gains, on the average, were marginal, its loses

were relatively substantial. The breast cancer set recorded the worst performance, and the

reasons are largely due to abstentions (see section 5.3.7 for an in-depth analysis on absten-

tion differences). The drop in performance on the baseline RL, was marginally significant

(p = 0.05234 and p = 0.02166, respectively on paired t-test and Wilcoxon signed-rank test,

all the same level of α = 0.05).

5.3.6 Difference in Coverage

Figure 24 represents the difference in maximum positive coverage between KARL and base-

line RL for normal samples on all datasets. Specifically, the left compares KARL Combo

with RL, while the right, on the other hand, compares RL with the OnlyPriors version.
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Figure 24: A comparison of maximum positive coverage of control examples between KARL

and RL. Left: Difference in Max CovPos of Control Examples - KARL Combo vs RL. Right:

Difference in Max CovPos of Control Examples - KARL OnlyPriors vs RL.

The Wins:Ties:Loses ratio over that of the baseline was 13:12:0. Thus, CovPos on con-

trol training examples of the Combo models was at least that of the baseline. That is, the

difference is either zero or more. This observation was not too surprising as the additional

background knowledge incorporated into the Combo models allows it to cover at least more

training examples. Meanwhile, at a significance level of α = 0.05, this gain in coverage over

control examples was statistically significant (p = 0.006069 and p = 0.001651, using paired

t-test and Wilcoxon signed-rank test respectively).

With the OnlyPriors method, gains in CovPos was more pronounced in the brain and

prostate cancer sets; and as expected it suffered the worst loss in the breast cancer set. The

Wins:Ties:Loses ratio as compared to that of the baseline was 11:4:10. Using the same level

and methods of significance tests as above, the difference was not significant (p = 0.2675

and p = 0.8757).

Furthermore, fig. 25 shows the difference in maximum CovPos between KARL and base-

line RL over tumor training examples. Similarly, the left represents the coverage difference

between the Combo and RL, while the right depicts that of OnlyPriors and RL. Like the

normal examples, the difference in CovPos for cases is zero or more for the Combo. The

Wins:Ties:Loses ratio as compared to the baseline was 9:16:0. The distribution of the 9
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gains were 3, 2, 2, 1, 1 for prostate, brain, colon, and breast cancer, respectively. Expect-

edly, the general difference of CovPos between the Combo and RL over tumor examples

was significant (p = 0.01269 and p = 0.009152).

For the OnlyPriors method, the Wins:Ties:Loses ratio to baseline CovPos over tumor

examples was 10:7:8. The difference was not significant (p = 0.4093 and p = 1.0). Finally,

the distribution of gains/loss among the disease types are quite random. Thus, in general,

the Combo method statistically significantly improves baseline positive coverage on both

tumor and normal examples. The OnlyPriors method, on the other hand, improves baseline

coverage on specific subsets of training examples.
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Figure 25: A comparison of maximum positive coverage of tumor examples between KARL

and RL. Left: Difference in Max CovPos of tumor examples - KARL Combo vs RL. Right:

Difference in Max CovPos of tumor examples - KARL OnlyPriors vs RL.

5.3.7 Difference in Abstentions

Figure 26 represents the difference in the rate of abstaining from predictions between KARL

models and baseline RL on the entire datasets. The sub-figure on the left specifically com-

pares KARL Combo vs RL, while the one on the right contrasts KARL OnlyPriors vs RL.

As seen, the Combo method reduced the rate of abstentions in the baseline on most datasets,

particularly, colon, prostate, and lung cancer sets. Its overall Wins:Ties:Loses ratio over the

rate of abstentions on the baseline were 19:6:0. That is, for every datasets, its rate of absten-
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Figure 26: A comparison of the propensity to abstain from predictions between KARL and

RL. Left: Difference in rate of Abstentions - RL vs KARL Combo. Right: Difference in rate

of Abstentions - RL vs KARL OnlyPriors.

tion was as good as or better than that of baseline. This phenomenon was not surprising as

a similar observation was made over coverage, a closely related metric to abstentions. What

is more, at a significance level of α = 0.05, the reduction in the rate of abstentions by KARL

Combo was statistically significant (p = 0.0001025 and p = 0.000143).

For KARL with only priors search, the rate of abstentions was quite high, especially

among the breast and brain cancer sets. Its Wins:Ties:Loses ratio over the baseline was

6:3:16. The increase in abstentions over the baseline was statistically significant (p =

0.007043) using Wilcoxon signed-rank test at a significance level of α = 0.05.

The apparent increase in abstentions here was largely due to the reason that, this method

relies on the source of the background knowledge, and its relationship with the variables of

the target dataset. If the overlap between source and target variables are low it is very likely

that the target model would suffer from low coverage and high abstentions.

5.3.8 Knowledge Augmented Discovery of robust patterns

Tables 22 to 24 display snippets of robust rule patterns discovered with the knowledge

augmented rule-learning framework on brain, lung, and prostate cancer data sets. For

brevity, the rest have been provided as additional material (see appendix D). Each table
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presents nuggets of general rule patterns that KARL discovered across several datasets within

the same disease type. The name of the datasets where the patterns were discovered are

presented in bold face font. Within the brain cancer set, for instance, the rule patterns

IF(VEGFA=Low)THEN(Class=Control) and IF(VEGFA=High)THEN(Class=Case) were con-

sistent across KARL models induced from datasets GEO16011, GEO1993, GEO4290,

GEO4271, and GEO4412. In addition, each discovered pattern is numbered and anno-

tated with their provenance; Pr denote a prior rule that was retained in the final rule model,

while Nr signify new rule. Note that some rules are annotated with both Pr and Nr. Such

annotations means that the rule was a retained prior rule in one model, and a new one in

another.

Table 22: A snippet of robust rule patterns that were discovered with KARL on brain cancer

datasets. Pr := rule pattern emanates from prior rules, Nr := discovered new rule, XX :=

nomenclature for family of genes

GEO16011, GEO1993, GEO4290, GEO4412

1. Pr,Nr. IF (COLXXX=Low) THEN (Class=Control)

2. Pr,Nr. IF (COLXXX=High) THEN (Class=Case)

GEO16011, GEO1993, GEO4290, GEO4271, GEO4412

1. Pr. IF (VEGFA=Low) THEN (Class=Control)

2. Pr. IF (VEGFA=High) THEN (Class=Case)

3. Pr. IF (LDHA=Low) THEN (Class=Control)

4. Nr. IF (LDHA=High) THEN (Class=Case)

GEO16011, GEO1993, GEO4290, GEO4271

1. Pr. IF (IGFBPX=Low) THEN (Class=Control)

2. Pr. IF (IGFBPX=High) THEN (Class=Case)

GEO16011, GEO1993, GEO4412

1. Pr. IF (SERPINXX=Low) THEN (Class=Control)

2. Nr. IF (SERPINXX=High) THEN (Class=Case)

These patterns have some unique features. First, the polarity (i.e., whether the expres-

105



Table 23: A snippet of robust rule patterns that were discovered with KARL on lung cancer

datasets. Pr := rule pattern emanates from prior rules, Nr := discovered new rule, XX :=

nomenclature for family of genes

GEO10072

1. Pr,Nr. IF (EDNRB=High) THEN (Class=Control)

2. Nr. IF (EDNRB=Low) THEN (Class=Case)

3. Pr. IF (PECAM1=High) THEN (Class=Control)

4. Pr . IF (PECAM1=Low) THEN (Class=Case)

GEO18842, GEO19188

1. Pr. IF (CENPE=Low) THEN (Class=Control)

2. Pr. IF (CENPE=High) THEN (Class=Case)

3. Pr,Nr. IF (PLK4=Low) THEN (Class=Control)

4. Pr IF (PLK4=High) THEN (Class=Case)

5. Pr,Nr. IF (AQPX=High) THEN (Class=Control)

6. Pr,Nr. IF (AQPX=Low) THEN (Class=Case)

GEO19804

1. Pr. IF (AGER=High) THEN (Class=Control)

2. Pr. IF (AGER=Low) THEN (Class=Case)

3. Pr. IF (CDH3=Low) THEN (Class=Control)

4. Pr. IF (CDH3=High) THEN (Class=Case)

GEO19804, GEO18842

1. Nr. IF (CCNB1=Low) THEN (Class=Control)

2. Pr. IF (CCNB1=High) THEN (Class=Case)

sion intensity of the gene is High or Low) of each model variable was consistent across all

models within which it occurred. For the example pattern above, the assertion that if the

variable, VEGFA, is highly regulated, predict Case held same for all models on GEO16011,
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Table 24: A snippet of robust rule patterns that were discovered with KARL on prostate

cancer datasets. Pr := rule pattern emanates from prior rules, Nr := discovered new rule

GEO17951, GEO4660, GEO82188

1. Pr,Nr. IF (HPN = Low) THEN (Class = Control)

2. Pr,Nr. IF (HPN = High) THEN (Class = Case)

GEO17951, GEO82188

1. Pr. IF (TRPM4 = Low) THEN (Class = Control)

2. Pr. IF (TRPM4 = High) THEN (Class = Case)

GEO32448, GEO4660

1. Pr,Nr. IF (CYP3A5 = High) THEN (Class = Control)

2. Pr,Nr. IF (CYP3A5 = Low) THEN (Class = Case)

GEO32448, GEO82188

1. Pr. IF (ID4 = High) THEN (Class = Control)

2. Pr. IF (ID4 = Low) THEN (Class = Case)

GEO1993, GEO4290, GEO4271, and GEO4412. Second, the patterns display closure

on the variables as regards rule structure. That is, when the polarity/direction of a vari-

able value infers one class, its opposite direction concludes the opposite class value as well

(see example above). Note that the target class for all datasets were binary (i.e., “Case”

or “Control”), and almost all variables were dichotomized into two values (i.e., “Low” or

“High”) by EBD. Third, for some models the closure and complement of a rule was pro-

vided by a complimentary source. LDHA, for instance, was involved in two complimentary

rules (see table 22). While one was new (Nr. IF (LDHA=High) THEN (Class=Case)), the

other was a retained prior rule (Pr. IF (LDHA=Low) THEN (Class=Control)). Last, most

of these robust patterns contains variables that belong to gene families (see example of col-

lagen, COLXXX, in table 22 ). The uniqueness about such families was that their polarity was

almost consistent wherever they occurred. An example can be found in table 25, snippets

107



from brain cancer models.

Table 25: Example of unique rules from gene families

Pattern Source

IF (COL4A2=Low) THEN (Class=Control) GEO1993

IF (COL1A1=Low) THEN (Class=Control) GEO4412

IF (COL6A1=Low) THEN (Class=Control) GEO16011

The unique attributes of these robust patterns as elucidated above can be particularly

useful for screening, diagnosis, and prognosis of some types of cancer. Though they require

further and an in-depth verification studies from domain experts, information contained in

majority of then can be verified from literature. Most of the collagen family of genes discov-

ered from the brain cancer (see table 22), for instance, have been implicated in glioblastoma

tumorignesis; diffuse invasion of tumor cells into brain tissue typifies the advancement of

tumor growth in some type of brain cancer, like glioblastoma [184, 185]. Senner et al. [184]

found that the expression of collagen XV I was upregulated in glioblastomas and it promotes

tumor cell adhesion. Meanwhile, studies done by Bauer et al. [185] also found out that the

inhibition of collagen XV I expression reduces glioma cell invasiveness. This information

from the literature suggests that, collagen XV I can be used as viable biomarker to clas-

sify brain cancer examples. That is, when collagen XV I is upregulated, predict “Tumor”,

otherwise predict “Normal”. This general, but vital, knowledge was discovered by KARL

in IF (COLXXX=Low) THEN (Class=Control) and IF (COLXXX=High) THEN (Class=Case)

(see table 22). Note that the discovery of this knowledge was augmented by information con-

tained in the lookup table on genes associated with cell invasion, on of three major hallmarks

of cancer that were considered for this work.

Another example of biomedical significance of knowledge augmented rule pattern dis-

covery, worth discussing, are nuggets of information about the biomarker AGER, which was

discovered among the lung cancer models (see table 23). AGER, also known as RAGE, is a

member of the immunoglobulin superfamily, and a multifunctional receptor with multiple

ligands that have been found to play leading roles in diseases like arthritis, diabetes, and
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Alzeimer’s [186,187]. Evidence from recent studies indicate that this receptor likely plays an

important role in cancer, particularly, its ability to lead cancer cell proliferation, invasion, and

survival [186,188,189]. AGER, as well as several of its isoforms, is highly expressed in normal

lung. However, and unlike other cancers, it is characterized by low expressions in human lung

carcinomas [190, 191]. Thus, a down-regulated AGER would most likely be associated with a

late stage of cancer, and therefore suggests it may function as a tumor suppressor for lung

cancer. What is more, the general hypothesis, as elicited from literature above, that a highly

expressed AGER implies “Normal”, while the converse is true, was dully captured by KARL;

that is IF (AGER=High) THEN (Class=Control) and IF (AGER=Low) THEN (Class=Case)

(see table 23. This is another of several examples that epitomizes KARL’s utility as a

knowledge augmented classification rule learner.

Last, let us consider HPN (Hepsin), another biomarker and a variable that was dis-

covered from the prostate cancer models (see table 24). It contains a transmembrane

serine protease, which may be in several cellular functions such as cell morphology and

blood coagulation [192]. Several studies have identified hepsin as one of the most upreg-

ulated genes in prostate cancer [192–194]. Observe that it was predominant and perva-

sive among most of the prostate cancer models. Similarly, the general notion in litera-

ture as regards correlation of its state of expression to prostate cancer progression was

transferred into the KARL model. Thus, IF (HPN = Low) THEN (Class = Control) and

IF (HPN = High) THEN (Class = Case). Combining the evidence revealed from the ex-

amples above with other biologically unconfirmed/unverified patterns discovered by KARL

turn it into a potent tool for cancer diagnosis and screening.

5.3.9 Results Summary - KARL

Figure 27 summarizes the average classification performance of the two variants of KARL

in comparison with baseline RL per disease type. KARL Combo performs better than the

baseline, including its specialized version, OnlyPriors, in all five type of cancer. Figure 28,

on the other hand, presents a summary of the average positive coverage of “Tumor” and

‘Normal” training examples by both version of KARL and RL within each disease type.
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Figure 27: A summary of classification performance of KARL (Combo and OnlyPriors) with

baseline RL per cancer type. Performance was measured by accuracy, where abstentions

were considered as errors (AccAb)

Similarly, KARL Combo outperforms RL, including its variant, OnlyPriors, on all disease

sets. Using these figures, coupled with the analysis in section 5.3.8 we can generalize the

characteristics and utility of the KARL framework as follows:

1. KARL Combo, in general, is more complete than baseline RL and KARL OnlyPriors.

2. KARL Combo, in general, is more consistent than baseline RL and KARL OnlyPriors.

3. KARL OnlyPriors is more consistent than baseline RL within the subset of data where

it covers as much examples as RL.

4. Rule models induced by KARL provides nuggets of robust patterns, which contains vital

domain knowledge.
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Figure 28: A summary of maximum positive coverage of KARL (Combo and OnlyPriors)

with baseline RL per cancer type

5.4 MS-TRL

5.4.1 Classification performance - MS-TRL

Table 26 (and tables 67 and 68 in appendix E) constitute results for classification performance

on the brain cancer datasets, using MS-TRL Combo with two, three, and four sources,

respectively. Further, table 27 (and tables 69 and 70, also in appendix E) represent predictive

performance results for MS-TRL Combo on the same number of sources, but on the mixed

disease set. Like TRL, each table displays the name of source and target datasets, as well as

the predictive performance in sensitivity (SN), specificity (SP), balanced accuracy, accuracies

where abstentions are considered errors (AccAb), and the rate of abstaining from making a

prediction (Ab). The unit for each performance metric is percent (%).

In general, MS-TRL Combo with two or more sources, more often than not, improves

baseline RL performance. Unsurprisingly, though, the performance hinged on that of the
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Table 26: Classification performance of MS-TRL Combo, using four (all) source datasets

within the brain cancer set

Source Target SN SP BACC AccAb

all sources GEO16011 96.855 12.500 54.678 89.143

all sources GEO1993 92.308 68.421 80.364 84.483

all sources GEO4271 98.684 20.833 59.759 80.000

all sources GEO4290 95.062 31.579 63.320 83.000

all sources GEO4412 98.305 53.846 76.076 84.706

separate TRL (i.e., MS-TRL with a single source) of the sources to the target. If the target

performs poorly on its own, multi-source rule transfer would most likely lead to positive

transfer. Observe all transfers to GEO16011, GEO4271, GEO4412, and GEO4290 from

tables 26, 67 and 68. For GEO1993, which recorded the best performance among the brain

cancer cohort, MS-TRL maintained its performance on 4/6 combination of two sources. The

performance, however, decreased marginally when the number of sources were increased to

three and four.

Table 27: Classification performance of MS-TRL Combo, using four (all) source datasets

within the mixed cancer set

Source Target SN SP BACC AccAb

all sources GEO4412 96.610 50.000 73.305 82.353

all sources GEO6956 95.652 55.000 75.326 86.517

all sources GEO7670 94.872 81.481 88.177 89.394

all sources GEO7904 97.674 31.579 64.627 77.419

all sources GEO9348 100.000 66.667 83.333 95.122

For the mixed cancer set, where heterogeneity was quite high, the performance of multi-

source transfer learning, in general, was low. The observations discussed on the brain cancer

set, however, held same, albeit marginally. Applying TRL on GEO6956 and GEO7904 to

GEO9348 maintained the BACC of the target (i.e., 91.67), while it increased the AccAb from

95.12 to 97.56. When these two sources were combined for MS-TRL, they still maintained
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both the BACC (i.e., for baseline RL and TRL) and AccAb (for TRL). The performance

dropped, however, when poorly performing sources, like GEO4412, were added. This was a

general trend throughout the MS-TRL experiments. Thus, increasing the number of sources

in MS-TRL does not necessarily lead to positive transfer, but finding the right combina-

tion of sources is the key to improvement on performance. Future methods can employ

other intelligent methods, like genetic algorithms, to identify the right blend and number, if

available, of sources for MS-TRL.

Table 28: Classification performance of MS-TRL OnlyPriors, using four (all) source datasets

within the brain cancer set

Source Target SN SP BACC AccAb Ab

all sources GEO16011 92.949 57.143 75.046 87.429 2.857

all sources GEO1993 94.737 57.895 76.316 81.034 1.724

all sources GEO4271 96.000 43.478 69.739 82.000 2.000

all sources GEO4290 88.462 52.632 70.547 79.000 3.000

all sources GEO4412 92.857 52.000 72.429 76.471 4.706

Similarly, table 28 (and tables 71 and 72 see appendix E) as well as table 29 (and ta-

bles 73 and 74 in appendix E) represent the predictive performances of MS-TRL experiments

using the “OnlyPriors” approach on the brain and mixed cancer set respectively. In skewed

datasets like the brain cancer, the balanced accuracies increased with increasing number of

sources. The general trend as expounded above prevailed here too. That is, with the “right”

mix of sources MS-TRL would most likely lead to positive transfer even within subsets of

the training data (see the BACC column for tables 28, 71 and 72). Meanwhile, MS-TRL

OnlyPriors on the mixed or heterogeneous data sets can be very costly. In general, the

abstentions were relatively high, while the classification performances were quite lower.

The general trend of performance of both versions of MS-TRL were pervasive across all

the disease sets. The next section presents an average performance per number of sources

per disease set.
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Table 29: Classification performance of MS-TRL OnlyPriors, using four (all) source datasets

within the mixed cancer set

Source Target SN SP BACC AccAb Ab

all sources GEO4412 91.379 50.000 70.690 76.471 3.529

all sources GEO6956 90.625 60.000 75.312 78.652 5.618

all sources GEO7670 94.872 76.000 85.436 84.848 3.030

all sources GEO7904 93.023 31.250 62.137 72.581 4.839

all sources GEO9348 100.000 50.000 75.000 92.683 0.000

5.4.2 RL vs TRL vs MS-TRL - Classification

Tables 30 and 75 presents average balanced accuracy (BACC) and accuracy (abstentions

considered as errors), respectively, per number of sources for MS-TRL Combo experiments.

Note that when there is no source (i.e., None) RL is implied, while a single source denotes

TRL. In addition, observe that there is an additional disease name termed “Mix”, which

involved a mix of datasets that were randomly selected from each of the five disease sets.

For each target dataset within a disease set, the number of RL, TRL, MS-TRL 2 (MS-

TRL with two sources), MS-TRL 3 (MS-TRL with three sources), and MS-TRL 4 (MS-TRL

with four sources) experiments were, respectively, 1, 4, 6, 4, 1. As discussed in section 5.4

there were variation in both the BACC and AccAb of the TRL as regards positive/negative

transfer. Averaging them out here, for the sake of brevity, may mask some of the trend.

Nonetheless, some of the general trend were still preserved.

MS-TRL on the mixed set resulted in negative transfer when the number of sources were

increased (see the “Mix” block from table 30). This could be attributed to an increase in

noise, as the diversity and heterogeneity of the sources increased. For most of the skewed

datasets within the brain (e.g., GEO16011, GEO4271, GEO4290, GEO4412), breast(e.g.,

GEO10780), and colon (e.g., GEO9348, GEO24514) sets there was general increase in pos-

itive transfer, due to BACC, when increase sources. The same trend was observed for

datasets with relatively high abstentions, like some datasets from the lung (e.g., GEO18842,
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Table 30: The average BACC (%) per number of sources for MS-TRL-Combo

Number of sources

Disease Target None One Two Three Four

Brain GEO16011 49.367 51.399 53.013 54.133 54.678

Brain GEO1993 82.996 82.642 81.883 80.685 80.364

Brain GEO4271 54.167 58.333 60.326 60.801 59.759

Brain GEO4290 55.263 61.923 64.609 64.556 63.320

Brain GEO4412 74.337 74.438 77.586 78.113 76.076

Breast GEO10780 71.250 72.370 73.170 73.650 73.810

Breast GEO15852 84.884 85.466 85.078 84.884 86.047

Breast GEO29431 100.000 91.551 89.969 90.162 90.741

Breast GEO42568 90.625 89.960 87.345 85.549 84.813

Breast GEO7904 70.113 69.601 68.229 67.827 67.564

Colon GEO10715 60.417 69.357 69.820 70.000 71.842

Colon GEO20916 98.529 98.540 98.543 97.835 97.141

Colon GEO23878 100.000 97.298 97.168 97.150 98.571

Colon GEO24514 90.000 94.167 94.755 95.834 96.667

Colon GEO9348 91.667 93.750 99.306 100.000 100.000

Lung GEO10072 97.917 96.923 95.748 95.408 95.918

Lung GEO18842 95.238 97.784 98.152 99.167 100.000

Lung GEO19188 94.505 95.275 95.018 94.890 94.505

Lung GEO19804 94.958 94.993 94.445 94.584 95.000

Lung GEO7670 91.186 93.875 94.041 94.160 93.732

Mix GEO4412 74.337 74.833 73.546 72.659 73.305

Mix GEO6956 76.765 75.664 75.791 75.678 75.326

Mix GEO7904 91.186 88.268 89.625 89.886 88.177

Mix GEO7670 70.113 67.335 64.973 63.755 64.627

Mix GEO9348 91.667 89.584 86.806 83.333 83.333

Prostate GEO17951 86.383 87.079 86.809 86.466 86.136

Prostate GEO32448 93.611 91.513 92.276 93.117 93.750

Prostate GEO46602 94.444 90.377 90.062 89.831 91.468

Prostate GEO6956 76.765 73.813 74.197 71.033 70.326

Prostate GEO82188 89.346 90.914 90.294 89.686 89.686
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Table 31: Pairwise t-test of number of sources (MS-TRL Combo) by BACC

RL TRL MS-TRL 2 MS-TRL 3

TRL 0.7023

MS-TRL 2 0.6609 0.7109

MS-TRL 3 0.9186 0.7626 0.2011

MS-TRL 4 0.8652 0.8675 0.4865 0.7204

Table 32: Pairwise t-test of number of sources (MS-TRL Combo) by AccAb

RL TRL MS-TRL 2 MS-TRL 3

TRL 0.0001217

MS-TRL 2 0.0002222 0.1743000

MS-TRL 3 0.0022620 0.6994000 0.3000000

MS-TRL 4 0.0016820 0.3879000 0.9655000 0.2727000

GEO7670) and colon (e.g., GEO24514) sets. These could be the effect of combining infor-

mation from multiple related models to improve completeness. For baseline RL models that

performed well, transfer hardly improved performance. That is, negative transfer was more

likely to occur when the number of sources were increased. Examples can be seen from the

brain (e.g., GEO1993), breast (e.g., GEO42568, GEO7904), colon (GEO23878), lung (e.g.,

GEO10072), and prostate (e.g., GEO6956) cancer sets. For the rest, gain/loss of BACC due

to transfer were very minimal (see table 30).

With AccAb as performance metric most of the trends expounded above were maintained.

The general performance improvement over baseline RL, however, was more significant.

Tables 31 and 32 present a pairwise t-test (with significance level of α = 0.05) between

baseline RL and MS-TRL with increasing number of sources, while using BACC and AccAb

as performance metric, respectively.

As recounted above, there was no significant change in BACC, on the average. With

AccAb, however, there were significance differences between baseline RL and transfer with
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Table 33: The average BACC (%) per number of sources for MS-TRL-OnlyPriors. For

number of sources, None ≡ RL, and One ≡ TRL

Number of sources

Disease Target None One Two Three Four

Brain GEO16011 49.367 63.610 70.320 72.705 75.046

Brain GEO1993 82.996 71.011 74.248 73.881 76.316

Brain GEO4271 54.167 72.283 72.800 68.223 69.739

Brain GEO4290 55.263 67.047 69.074 70.521 70.547

Brain GEO4412 74.337 68.812 73.141 72.022 72.429

Breast GEO10780 71.250 70.622 79.046 80.164 83.671

Breast GEO15852 84.884 81.860 88.164 89.014 88.088

Breast GEO29431 100.000 83.007 86.831 87.895 87.500

Breast GEO42568 90.625 86.749 87.264 86.404 84.813

Breast GEO7904 70.113 53.177 60.509 61.306 62.798

Colon GEO10715 60.417 71.075 74.172 75.980 82.105

Colon GEO20916 98.529 91.510 93.795 96.016 97.096

Colon GEO23878 100.000 88.296 93.078 95.882 97.143

Colon GEO24514 90.000 78.563 92.042 95.932 96.667

Colon GEO9348 91.667 89.368 95.139 96.875 100.000

Lung GEO10072 97.917 92.719 94.391 94.850 94.898

Lung GEO18842 95.238 96.737 98.651 97.707 96.591

Lung GEO19188 94.505 92.940 93.549 93.868 94.505

Lung GEO19804 94.958 89.053 91.111 93.071 94.096

Lung GEO7670 91.186 92.997 94.286 94.748 93.732

Mix GEO4412 74.337 66.010 70.965 72.308 70.690

Mix GEO6956 76.765 71.408 73.507 73.478 75.312

Mix GEO7904 91.186 85.635 88.886 88.819 85.436

Mix GEO7670 70.113 61.924 63.439 63.396 62.137

Mix GEO9348 91.667 84.362 77.427 76.042 75.000

Prostate GEO17951 86.383 80.000 81.804 82.724 85.075

Prostate GEO32448 93.611 79.966 81.286 83.628 83.487

Prostate GEO46602 94.444 88.294 88.683 89.965 91.468

Prostate GEO6956 76.765 70.450 68.625 69.216 69.697

Prostate GEO82188 89.346 81.691 85.780 86.810 86.221
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Table 34: Pairwise t-test of number of sources (MS-TRL OnlyPriors) by BACC

RL TRL MS-TRL 2 MS-TRL 3

TRL 0.0142359833

MS-TRL 2 0.5393349715 0.000060877

MS-TRL 3 0.860467784 0.0001042242 0.0189138947

MS-TRL 4 0.8490666542 0.0001192489 0.0114259531 0.0779507308

at least one source. Though there was performance increase between TRL and its multiple

sources variants, the changes were not significant (see table 32).

Unlike tables 30 and 75, tables 33 and 76 show the average balanced accuracy (BACC)

and accuracy (abstentions considered as errors), respectively, per number of sources for

experiments involving MS-TRL, with prior rules only search. The general pattern as observed

from both tables were similar. The prior rules had “little knowledge” about the target, so

their initial predictive performance dropped drastically over the baseline. The predictive

performance increased significantly, however, as it pooled information from more sources.

The trend is even more striking when abstentions are considered as errors (see table 76).

Obviously, restricting search with only priors rules on MS-TRL will more likely lead to

increased abstentions; prior rules are more likely to cover limited space within the target

domain. Table 34 illustrates the trend with a pairwise t-test of BACC at a significant level

of α = 0.05 between RL and the multi-source transfer methods with search with only prior

rules.

From the table, the significant change in BACC between RL and TRL is due to the drop

in performance of the latter. Note, however, that there was no significance difference between

RL and the MS-TRL with at least two sources. Meanwhile, there was a stark significance

difference between TRL and its other variants. This general pattern as observed in tables 33,

34 and 76 could be particularly useful for cases where new information is not available to

augment or confirm prior knowledge for transfer learning. Here, information (classification

rules) from multiple related models could be combined to make decisions within a domain.
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5.4.3 RL vs TRL vs MS-TRL - Abstentions

Table 35: The average rate (%) of abstentions per number of sources for MS-TRL-Combo

Number of sources

Disease Target None One Two Three Four

Brain GEO16011 1.143 0.686 0.191 0.000 0.000

Brain GEO1993 0.000 0.000 0.000 0.000 0.000

Brain GEO4271 0.000 0.000 0.000 0.000 0.000

Brain GEO4290 1.000 0.250 0.250 0.000 0.000

Brain GEO4412 1.176 0.000 0.000 0.000 0.000

Breast GEO10780 1.081 0.676 0.361 0.135 0.000

Breast GEO15852 0.000 0.000 0.000 0.000 0.000

Breast GEO29431 6.061 0.379 0.000 0.000 0.000

Breast GEO42568 1.653 0.207 0.000 0.000 0.000

Breast GEO7904 1.613 0.403 0.538 0.807 0.000

Colon GEO10715 13.330 7.450 4.444 3.330 1.429

Colon GEO20916 1.429 0.715 0.238 0.000 0.000

Colon GEO23878 5.085 1.695 0.565 0.339 0.000

Colon GEO24514 0.000 0.000 0.000 0.000 0.000

Colon GEO9348 2.439 0.610 0.000 0.000 0.000

Lung GEO10072 1.869 0.468 0.312 0.468 0.935

Lung GEO18842 4.396 0.274 0.183 0.000 0.000

Lung GEO19188 0.000 0.000 0.000 0.000 0.000

Lung GEO19804 0.833 0.208 0.000 0.000 0.000

Lung GEO7670 4.545 0.000 0.000 0.379 0.000

Mix GEO4412 1.176 0.588 0.392 0.294 0.000

Mix GEO6956 1.124 0.843 0.562 0.281 0.000

Mix GEO7904 1.613 0.000 0.000 0.000 0.000

Mix GEO7670 4.545 0.379 0.000 0.000 0.000

Mix GEO9348 2.439 0.000 0.000 0.000 0.000

Prostate GEO17951 3.650 1.278 0.365 0.183 0.000

Prostate GEO32448 5.000 1.250 0.625 0.313 0.000

Prostate GEO46602 4.000 0.000 0.333 0.000 0.000

Prostate GEO6956 1.124 0.000 0.000 0.000 0.000

Prostate GEO82188 2.206 0.184 0.000 0.000 0.000

Table 35 displays the average rate of abstaining from making a prediction between RL and
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Table 36: Pairwise t-test on the rate of abstentions by number of sources (MS-TRL Combo)

RL TRL MS-TRL 2 MS-TRL 3

TRL 2.987E-06

MS-TRL 2 4.636E-06 8.869E-05

MS-TRL 3 6.153E-06 1.114E-02 4.911E-02

MS-TRL 4 1.266E-05 1.446E-02 3.687E-02 6.279E-02

the MS-TRL methods using combination search. As expected the rate of abstentions increase

with an increasing number of sources. As discussed in previous sections, the main reason

was that as the algorithm combines information from multiple related domain models, it

covers as much space as possible, thereby increasing the baseline completeness. For domains

as diverse as the mixed and prostate cancer sets, where baseline abstentions were relatively

high, increasing the number of sources resulted in a decrease in abstentions.

Table 36 shows a pairwise t-test of the average rate of abstentions based on the number

of sources. At a significant level of α = 0.05 the difference in abstentions was statistically

significant. In addition, the power of the significance increased with increased in the number

of sources.

Table 37: Pairwise t-test on the rate of abstentions by number of sources (MS-TRL OnlyPri-

ors)

RL TRL MS-TRL 2 MS-TRL 3

TRL 8.850E-06

MS-TRL 2 1.051E-02 1.630E-07

MS-TRL 3 0.4183179 1.657E-06 1.074E-03

MS-TRL 4 0.6367931 2.638E-06 1.320E-03 7.172E-03

The general trend of the average rate of abstentions per number of sources is pronounced

in MS-TRL with only prior rules, albeit with a caveat (see table 77). As observed from

predictive performance, the rate of abstentions spikes significantly with a single source,

then reduces as the number of sources increased. Table 37, which presents a pairwise test of
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significance of the rate of abstentions by number of sources, while using MS-TRL OnlyPriors,

summarizes this general trend.

5.4.4 Discovery of Robust patterns with MS-TRL

Tables 38 to 41 illustrate snippet of robust patterns that were discovered from breast, colon,

lung, and the mixed set models using MS-TRL. See appendix E.2 for more details on the

entire disease sets. Recall from section 4.5.1 that a rule pattern is said to be robust in an

MS-TRL model if it was induced from more than 50% of source and target datasets—that

is, retained from at least two source models.

For tables 38 to 40, the name of the source and target datasets are presented in red

and blue font color, respectively. Note also that each rule has been annotated with their

provenance. An annotation of the form, say, S1,S3,S4,T, denote that the pattern em-

anated from sources S1,S2,S3, and was retained in the target, T. For demonstrating clo-

sure, some patterns from less than two sources were included. An example is the rule,

S4,T: 1. IF(HILPDA=High) THEN (Class=CASE), from the colon cancer set (see table 39),

which closed form, S1,S4,T 2. IF(HILPDA=Low) THEN (Class=CONTROL), has been cap-

tured already. Like KARL, MS-TRL could be used to discover nuggets of domain knowledge

for future verification.

Similarly, these robust patterns may require further verification studies to support and

confirm their discovery. Majority of them, however, can be verified from literature. Some

markers from the lung cancer set, for instance, have been mentioned in literature findings.

FAM107A (family with sequence similarity 107, member A) is a protein coding gene that is

expressed in a variety of normal tissues, and has been implicated in several types of can-

cer [195–197]. It is downregulated in primary tumors and cell lines, and has been touted

as a candidate tumor suppressor gene [195, 197]. Liu et at [196], reported that a downreg-

ulated FAM107A was identified in non-small cell lung cancer and primary lung cancers. In

addition, they recounted that an over-expression of this gene in non-small cell lung cancer

lined minimized activities involving cell proliferation and induced apoptosis.

What is more, FAM107A was prevalent in several of the MS-TRL models involving lung
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Table 38: Examples of robust rule patterns that were discovered by MS-TRL on the combined

breast cancer datasets. S1, S2, S3, S4:=: Source datasets and also annotated in red font

color, T:= Target dataset, which have also been marked in blue font color

S1:GEO15852, S2:GEO42568, S3:GEO10780, S4:GEO29431, T:GEO7904

S2,S4,T: 1. IF(ACSL5=Low) THEN (Class=CASE)

S1,S2,S4,T: 2. IF(ADH1B=High) THEN (Class=CONTROL)

S1,S2,T: 3. IF(ADIPOQ=High) THEN (Class=CONTROL)

S2,S4,T: 4. IF(ACADS=High) THEN (Class=CONTROL)

S1,S2,S4,T: 5. IF(ANGPT1=Low) THEN (Class=CASE)

S2,S4,T: 6. IF(ACAA2=Low) THEN (Class=CASE)

S1,S2,S4,T: 7. IF(ABCA8=High) THEN (Class=CONTROL)

S1:GEO7904, S2:GEO15852, S3:GEO42568, S4:GEO29431, T:GEO10780

S2,S3, T 1. IF(ALDH18A1=Low) THEN (Class=CONTROL)

S1,S2,S3,S4,T: 2. IF(ADH1B=High) THEN (Class=CONTROL)

S2,S3,T: 3. IF(CSK=Low) THEN (Class = CONTROL)

S1:GEO7904, S2:GEO42568, S3:GEO10780, S4:GEO29431, T:GEO15852

S1,S2,T: 1. IF(ADH1C=High) THEN (Class=CONTROL)

S2,S4,T: 2. IF(ACACB=Low) THEN (Class=CASE)

S2,S4,T: 3. IF(ACACB=High) THEN (Class=CONTROL)

S1:GEO7904, S2:GEO15852, S3:GEO42568, S4:GEO10780, T:GEO29431

S2,S3,T: 1. IF(COL11A1=High) THEN (Class=CASE)

S2,S3,T: 2. IF(ECT2=High) THEN (Class=CASE)

S1,S2,T: 3. IF(ADH1B=High) THEN (Class=CONTROL)

S2,S3,T: 4. IF(ASPA=High) THEN (Class = CONTROL)

S1:GEO7904, S2:GEO15852, S3:GEO10780, S4:GEO29431, T:GEO42568

S1,S2,T: 1. IF(COMP=High) THEN (Class=CASE)

S2,S4,T: 2. IF(G0S2=High) THEN (Class=CONTROL)

S1,S2,T: 3. IF(FN1=High) THEN (Class=CASE)
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Table 39: Examples of robust rule patterns that were discovered by MS-TRL on the combined

colon cancer datasets. S1, S2, S3, S4:=: Source datasets and also annotated in red font

color, T:= Target dataset, which have also been marked in blue font color

S1:GEO24514, S2:GEO10715, S3:GEO20916, S4:GEO23878, T:GEO9348

S1,S4,T: 1. IF(HILPDA=Low) THEN (Class=CONTROL)

S3,S4,T: 2. IF(CDH3=High) THEN (Class=CASE)

S3,T: 3. IF(CDH3=Low) THEN (Class=CONTROL)

S1:GEO24514, S2:GEO9348, S3:GEO20916, S4:GEO23878, T:GEO10715

S1,S3,T: 1. IF(CNNM2=High) THEN (Class=CONTROL)

S1:GEO24514, S2:GEO9348, S3:GEO10715, S4:GEO23878, T:GEO20916

S4,T: 1. IF(HILPDA=High) THEN (Class=CASE)

S1,S4,T 2. IF(HILPDA=Low) THEN (Class=CONTROL)

S1:GEO24514, S2:GEO9348, S3:GEO10715, S4:GEO20916, T:GEO23878

S2,S4,T: 1. IF(CA7=High) THEN (Class=CONTROL)

S2,T: 2. IF(CA7=Low) THEN (Class=CASE)

S1:GEO9348, S2:GEO10715, S3:GEO20916, S4:GEO23878, T:GEO24514

S3,S4,T: 1. IF(CDH3=High) THEN (Class=CASE)

S3,S4,T: 2. IF(CDH3=Low) THEN (Class=CONTROL)

cancer. Meanwhile, the notion in literature that it is downregulated in primary lung cancer

was confirmed by its general rule pattern (see table 40). Similarly, rules involving variables

(e.g., FAM189A1, and FAM189A2) of its family formed a closure. Other prevalent variables that

were involved in the lung cancer set models were AGER and EDNRB. AGER, a member of the

immunoglobulin superfamily, and a multifunctional receptor with multiple ligands is known

to be associated with stages of several disease, particularly the late stage of lung cancer (see

section 5.3.8). Like KARL, the MS-TRL models induced patterns that confirmed litera-

ture reports that it may be a potential tumor suppressor [190]. Lastly, EDNRB, encodes a G

protein-coupled receptor that activates a phosphatidylinositol-calcium second messenger sys-

tem (RefSeq Accession: NM 000115). It has been implicated in hypoxia and Hirschsprung’s

disease [198, 199]. One of its important paralogs is NMBR (Neuromedin B Receptor) has also
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Table 40: Examples of robust rule patterns that were discovered by MS-TRL on combined

lung cancer datasets. S1, S2, S3, S4:=: Source datasets and also annotated in red font

color, T:= Target dataset, which have also been marked in blue font color

S1:GEO19804, S2:GEO10072, S3:GEO18842, S4:GEO19188, T:GEO7670

S1,T: 1. IF(AHNAK=High) THEN (Class=CONTROL)

T: 2. IF(AHNAK=Low) THEN (Class=CASE)

S1,S4,T: 3. IF(EMP2=High) THEN (Class=CONTROL)

S1:GEO19804, S2:GEO7670, S3:GEO18842, S4:GEO19188, T:GEO10072

S2,S4,T: 1. IF(CLIC5=Low) THEN (Class=CASE)

S1,S4,T: 2. IF(ARHGEF15=High) THEN (Class=CONTROL)

S1,S2,S4,T: 3. IF(FAM107A=Low) THEN (Class=CASE)

S1,S2,T: 4. IF(FAM189A2=High) THEN (Class=CONTROL)

S1,S2,S4,T: 5. IF(AGER=High) THEN (Class=CONTROL)

S1,S4,T: 6. IF(EFNA4=High) THEN (Class=CASE)

S1:GEO19804, S2:GEO10072, S3:GEO7670, S4:GEO19188, T:GEO18842

S4,T: 1. IF(AQP1=Low) THEN (Class=CASE)

T: 2. IF(AQP4=High) THEN (Class=CONTROL)

S1,S2,T: 3. IF(FAM107A=Low) THEN (Class=CASE)

S2,S3,T: 4. IF(EDNRB=Low) THEN (Class=CASE)

S2,T: 5. IF(EDNRB=High) THEN (Class=CONTROL)

S1:GEO19804, S2:GEO10072, S3:GEO7670, S4:GEO18842, T:GEO19188

S2,S3,T: 1. IF(EDNRB=Low) THEN (Class=CASE)

S1:GEO10072, S2:GEO7670, S3:GEO18842, S4:GEO19188, T:GEO19804

S2,T: 1. IF(FAM189A2=High) THEN (Class=CONTROL)

S4,T: 2. IF(FAM107A=Low) THEN (Class=CASE)

T: 3. IF(FAM189A1=Low) THEN (Class=CASE)

S2,T: 4. IF(AGER=Low) THEN (Class=CASE)

S1,T: 5. IF(AGER=High) THEN (Class=CONTROL)

S2,S4,T: 6. IF(FABP4=Low) THEN (Class=CASE)

S4,T: 7. IF(ALDH3B2=High) THEN (Class=CASE)

S1,T: 8. IF(ALDH18A1=Low) THEN (Class=CONTROL)
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been implicated in small cell lung cancer [200].

Comparatively, models on the colon cancer set recorded one of the best predictive per-

formances among the frameworks, in general. In addition, most of the colon cancer models

were relatively short in size (i.e., more parsimonious), and three of the variables that featured

predominantly were HILPDA, CA7, and CDH3 (see table 39). HILPDA (Hypoxia Included Lipid

Droplet-Associated) is a biomarker of hypoxia and known to be elevated in various forms of

cancer [201–203]. Kim et al. [203] recounted that this variable promotes colorectal cancer

progression. Results from their studies revealed that an over-expressed HILPDA promoted

tumor growth by inhibiting apoptosis. CA7 (Carbonic Anhydrase VII ) is a member of the

carbonic anhydrase family, which participates in a variety of biological processes (e.g., res-

piration, calcification, acid-base balance, and bone resorption-RefSeq: NM 001014435), and

implicated in the pathogenesis of several human cancers [204]. CA7 has been reported to

be expressed is several normal tissues including colon [205]. Meanwhile, other studies have

associated a downregulated CA7 to colon tumors, and it’s been implicated as an important

suppressor gene for classifying normal and CRC tissues [206, 207]. Results from Yang et

al. [208] indicated that a decreased expression of CA7 correlated with disease progression

and poor prognosis of CRC. Last, CDH3, a member of the cadherin superfamily, is involved

in several cellular processes such as differentiation, embryonic development, cell polarity,

growth and migration [209]. It has been implicated in various human tumors, including

CRC; upregulated CDH3 is associated with malignant CRC [210,211]. Generally, the pattern

of association involving these variables and CRC, as reported in literature, were detected

and confirmed by the MS-TRL robust rule pattern set.

Unlike tables 38 to 40, table 41 shows robust rule patterns that were discovered from the

mixed disease set, to demonstrate the utility of MS-TRL as a potential tool for conducting

cross-domain studies, like pan-cancer studies. Observe that, here, the annotations for rule

provenance, by font color, are slightly different. Red, blue, green, purple, and orange font

colors were used to represent brain, breast, colon, lung, and prostate cancer, respectively.

These patterns are potential candidates for domain-independent rules. Similarly, thor-

ough verification studies are required to confirm their integrity. Most of the variables in-

volved, however, have been implicated in diverse forms of cancer. CASP8 is a member of the
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Table 41: Examples of robust rule patterns that were discovered by MS-TRL on combined

set of randomly mixed cancer datasets. S1, S2, S3, S4:=: Source datasets, T:= Target

dataset, and color annotations (Brain := Red, Breast := Blue, Colon := Green, Lung :=

Purple, Prostate := Orange) denote the cancer type.

S1:GEO6956, S2:GEO7904, S3:GEO9348, S4:GEO7670, T:GEO4412

S1,S2,T: 1. IF(CASP8=High) THEN (Class=CASE)

S2,S4,T: 2. IF(ABLIM1=High) THEN (Class=CONTROL)

S3,S4,T: 3. IF(CALU=High) THEN (Class=CASE)

T: 4. IF(COL5A2=Low) THEN (Class=CONTROL)

S2,S4,T: 5. IF(COL5A1=High) THEN (Class=CASE)

S1:GEO7904, S2:GEO9348, S3:GEO7670, S4:GEO4412, T:GEO6956

S1,S4,T: 1. IF(BAG1=Low) THEN (Class=CASE)

S1,S2,T: 2. IF(ACADS=High) THEN (Class=CONTROL)

S1,S4,T: 3. IF(DHX9=Low) THEN (Class=CASE)

S1:GEO6956, S2:GEO7904, S3:GEO9348, S4:GEO4412, T:GEO7670

S1,S4,T: 1. IF(CGRRF1=Low) THEN (Class=CASE)

S1:GEO6956, S2:GEO9348, S3:GEO7670, S4:GEO4412, T:GEO7904

S2,S3,S4,T: 1. IF(ABCG2=Low) THEN (Class=CASE)

S3,S4,T: 2. IF(AKT3=Low) THEN (Class=CASE)

S1,S2,T: 3. IF(ACADS=High) THEN (Class=CONTROL)

S1,T: 4. IF(ACADS=Low)&(ADAMTS2=High) THEN (Class=CASE)

S1,S3,T: 5. IF(ANGPT1=Low) THEN (Class=CASE)

S1,S2,S3,T: 6. IF(ACAA2=Low) THEN (Class=CASE)

S3,S4,T: 7. IF(ABLIM1=High) THEN (Class=CONTROL)
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caspase family that are involved in the signaling pathways of cell death (apoptosis, necrosis)

and inflammation [212]. It is expressed in almost all kinds of tissue, which suggests that its

aberrant form can implicate different type of cancer. CASP8 has been cited to affect metas-

tasis. Loss of CASP8, in general, potentiates metastasis; however other studies have reported

that it can promote tumor cell migration and metastasis, under conditions where apoptosis

is compromised [213,214]. Thus its association to various type of cancer.

BAG1 encodes a multifunctional protein, and like CASP8, is associated to survival of the

cell—it can block a step in a pathway leading to apoptosis. In addition, it regulates other

cellular processes such as proliferation, transcription, proteasome-mediated degradation, and

metastasis [215]. It is expressed ubiquitously, and found to be upregulated in several forms of

human cancer like breast, colorectal, prostate, lung, esophageal, and squamous cell carcinoma

[216–218].

The examples discussed above indicates that MS-TRL can be used to isolate candidate

domain-specific (or independent) patterns for further verification. The role and effect of

a variable to one type of cancer may not be necessarily same for another, especially for

multifunctional genes that might influence multiple cellular processes in diverse ways. This

means that the findings from these patterns cannot be blindly generalized. Nonetheless, they

could provide immense insight for integrative studies of related gene expression studies.

5.4.5 Relatedness & transfer

The Venn diagram in Figure 29 depicts the distribution of domain-independent variables,

as measured with mutual information, among the mixed datasets. Recall (see section 4.5.1)

that a variable is considered domain-independent if the mutual information, MI, between

it and the class variable is MI ≤ 0.1. The MI for each variable in within a disease set

was evaluated, but for brevity, I opted to illustrate the mixed set; relatively, it is more

interesting since it involves datasets that were drawn from diverse disease type, which can

also be classified as unique domains.

The color encoding for each disease representative are red, green, purple, orange, and

cyan for breast (GEO7904), colon (GEO9348), lung (GEO7670), prostate (GEO6956), brain
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Figure 29: Distribution of domain-independent variables among mixed datasets

(GEO4412), respectively. In all, the total number of domain-independent variables within

each disease rep was 2344, 634, 1013, 1635, and 1918 for GEO7904, GEO9348, GEO7670,

GEO6956, and GEO4412, in that order. Thus the colon and breast cancer reps recorded the

least and most domain-independent variables, respectively.

Table 42 represents the relationship between the direction of transfer (i.e., positive or

negative) and the fraction of domain-independent variable within the target that the source

(i.e., FracDI). Here, positive transfer is deemed as a gain in accuracy over the target due

to transfer from the source. Positive transfer is denoted by the indicator value 1, while 0

represent negative transfer.

Generally, there were positive transfers from all sources to GEO9348. This could probably

be due to its overall low number of domain-independent variables. The converse of this
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Table 42: Relationship between relatedness & positive transfer. FracDI = fraction of total

domain-independent variables in the target, shared by source. Direction of transfer; positive

= 1; negative = 0

Source Target FracDI Transfer

GEO6956 GEO4412 0.282 1

GEO7670 GEO4412 0.187 0

GEO7904 GEO4412 0.430 1

GEO9348 GEO4412 0.117 0

GEO4412 GEO6956 0.330 0

GEO7670 GEO6956 0.150 0

GEO7904 GEO6956 0.398 1

GEO9348 GEO6956 0.111 0

GEO4412 GEO7670 0.353 1

GEO6956 GEO7670 0.242 0

GEO7904 GEO7670 0.431 1

GEO9348 GEO7670 0.147 1

GEO4412 GEO7904 0.352 1

GEO6956 GEO7904 0.277 0

GEO7670 GEO7904 0.186 1

GEO9348 GEO7904 0.118 0

GEO4412 GEO9348 0.355 1

GEO6956 GEO9348 0.285 1

GEO7670 GEO9348 0.235 1

GEO7904 GEO9348 0.437 1
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hypothesis, however, can not be established for GEO7904, which had the most number

of variables. The trend that stood out, in general, was that for all possible sources to a

particular target, the one with the most FracDI, invariably, led to positive transfer. This

could be an invaluable indicator for selecting which source(s) to use for transfer, as, in some

cases, negative transfer due to just one source can have a costly effect, downstream, on the

performance of a multi-source transfer rule learning model.

5.4.6 Results Summary - MS-TRL

From the experimental results discussed thus far, the following conclusions can be summa-

rized about the MS-TRL framework:

1. The MS-TRL framework statistically significantly improves the classification perfor-

mance of baseline RL. Thus, it is more consistent than RL.

2. For most cases, transfer rule learning models with multiple sources are more accurate

than transfer with a single source. Increasing, the number of sources, however, does

not guarantee improvement in performance. Intelligent approaches for selecting sources

that are more likely to lead to positive transfer are required; negative effects from some

source(s) can ruin the performance downstream.

3. The MS-TRL framework statistically significantly reduces the rate of abstentions. There

is an inverse relationship between the number of sources and rate of abstentions. The

more the sources the less it abstains from making a prediction. Multiple sources increases

coverage of the domain space, and hence the framework is more complete than baseline

RL.

4. MS-TRL is sufficient for discovering robust nuggets of rule patterns that are dependent

or independent of a domain. Majority of the discovered knowledge can be verified from

literature evidence.

5. With the availability of more than one source the one which shares the most domain-

independent variables of the target is most likely to lead to positive transfer.
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5.5 iTRL

5.5.1 Classification performance - iTRL

Section 5.5.1 presents and discusses results from the iTRL cross-validation experiments. Due

to the permutations and ordering of the sources, there were 300 experiments, and results, for

each disease set. For brevity, the results involving one dataset (i.e., GEO16011, brain cancer)

as target, in all permutation scenarios, was selected to highlight the impact and relevance of

ordering as far as sources are concerned as regards incremental transfer rule learning.

Tables 43, 81 and 82 represent cross-validation results of iTRL Combo experiments, while

using the brain cancer data, GEO16011, as target. The number of sources for each results

set is in the order of 2, 3, and 4 respectively. In addition, note that each table presents the

possible permutation of ordering from a given set of sources.

Although, the set of sources were the same for each set of results, there were variations

in both BACC and AccAb. The values of BACC ranged from 49.057% − 55.621%, while

AccAb was 89.143% − 90.857% for two and three sources and 87.429% − 90.857% for four

sources. The variations in the accuracies supports the notion that “ordering of sources,

indeed, matters for incremental learning via transfer rule learning.”

Like MS-TRL, combining sources, which individually improve the baseline accuracies,

more likely lead to positive transfer. The magnitude of the transfer, however, depends on the

ordering. From tables 13 and 81, GEO4271 and GEO1993, individually, improved baseline

accuracy, significantly as compared to the others within the set, and their combination,

thereof, as sources also led to positive transfer. Ordering them yielded slightly different

accuracies. The best accuracy within the set, however, emanated from a combination of

GEO1993 and GEO4290, which had low specificity on its own. It was a better pairing

for GEO1993 than the rest, however, due to its sensitivity (highest in the group). Like

MS-TRL, combining the sources with highest sensitivity and specificity, invariably, led to

positive transfer, getting the ordering right will maximize the accuracy—a potential future

study to explore.

Tables 44, 83 and 84, on the other hand, present cross-validation results on the same
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Table 43: Classification performance of iTRL Combo, with four sources on GEO16011, brain

cancer

Source Target SN SP BACC AccAb

GEO4290 GEO4412 GEO1993 GEO4271 GEO16011 95.60 6.25 50.92 87.43

GEO4412 GEO1993 GEO4290 GEO4271 GEO16011 95.60 6.25 50.92 87.43

GEO4412 GEO4290 GEO1993 GEO4271 GEO16011 95.60 12.50 54.05 88.00

GEO4290 GEO1993 GEO4271 GEO4412 GEO16011 96.86 6.25 51.55 88.57

GEO1993 GEO4290 GEO4412 GEO4271 GEO16011 96.86 6.25 51.55 88.57

GEO1993 GEO4412 GEO4290 GEO4271 GEO16011 96.86 6.25 51.55 88.57

GEO4290 GEO1993 GEO4412 GEO4271 GEO16011 97.48 6.25 51.87 89.14

GEO1993 GEO4290 GEO4271 GEO4412 GEO16011 97.48 6.25 51.87 89.14

GEO4271 GEO1993 GEO4412 GEO4290 GEO16011 98.11 0.00 49.06 89.14

GEO1993 GEO4412 GEO4271 GEO4290 GEO16011 98.11 0.00 49.06 89.14

GEO4290 GEO4271 GEO1993 GEO4412 GEO16011 98.11 6.25 52.18 89.71

GEO4412 GEO1993 GEO4271 GEO4290 GEO16011 98.11 6.25 52.18 89.71

GEO1993 GEO4271 GEO4412 GEO4290 GEO16011 98.73 0.00 49.37 89.14

GEO4271 GEO4412 GEO1993 GEO4290 GEO16011 98.11 6.67 52.39 89.71

GEO1993 GEO4271 GEO4290 GEO4412 GEO16011 98.73 6.25 52.49 89.71

GEO4412 GEO4290 GEO4271 GEO1993 GEO16011 98.11 12.50 55.31 90.29

GEO4290 GEO4412 GEO4271 GEO1993 GEO16011 98.11 12.50 55.31 90.29

GEO4412 GEO4271 GEO1993 GEO4290 GEO16011 98.11 12.50 55.31 90.29

GEO4290 GEO4271 GEO4412 GEO1993 GEO16011 98.11 12.50 55.31 90.29

GEO4271 GEO1993 GEO4290 GEO4412 GEO16011 98.11 12.50 55.31 90.29

GEO4271 GEO4290 GEO1993 GEO4412 GEO16011 98.74 6.67 52.70 90.29

GEO4271 GEO4412 GEO4290 GEO1993 GEO16011 98.74 12.50 55.62 90.86

GEO4271 GEO4290 GEO4412 GEO1993 GEO16011 98.74 12.50 55.62 90.86

GEO4412 GEO4271 GEO4290 GEO1993 GEO16011 98.74 12.50 55.62 90.86
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Table 44: Classification performance of iTRL OnlyPriors, with four sources on GEO16011,

brain cancer

Source Target SN SP BACC AccAb

GEO4271 GEO4290 GEO1993 GEO4412 GEO16011 94.29 0.00 47.14 75.43

GEO4412 GEO1993 GEO4290 GEO4271 GEO16011 96.43 0.00 48.21 46.29

GEO4271 GEO4412 GEO4290 GEO1993 GEO16011 96.95 0.00 48.47 72.57

GEO4271 GEO4290 GEO4412 GEO1993 GEO16011 97.06 0.00 48.53 75.43

GEO4412 GEO1993 GEO4271 GEO4290 GEO16011 97.83 0.00 48.91 51.43

GEO4412 GEO4290 GEO1993 GEO4271 GEO16011 97.90 0.00 48.95 53.14

GEO4290 GEO4412 GEO1993 GEO4271 GEO16011 99.03 0.00 49.52 58.29

GEO4290 GEO1993 GEO4271 GEO4412 GEO16011 99.06 0.00 49.53 60.00

GEO4290 GEO1993 GEO4412 GEO4271 GEO16011 99.08 0.00 49.54 61.71

GEO4412 GEO4290 GEO4271 GEO1993 GEO16011 99.18 0.00 49.59 69.14

GEO4412 GEO4271 GEO1993 GEO4290 GEO16011 99.18 0.00 49.59 69.14

GEO4412 GEO4271 GEO4290 GEO1993 GEO16011 99.19 0.00 49.59 69.71

GEO4290 GEO4412 GEO4271 GEO1993 GEO16011 100.00 0.00 50.00 63.43

GEO4290 GEO4271 GEO1993 GEO4412 GEO16011 100.00 0.00 50.00 56.00

GEO4290 GEO4271 GEO4412 GEO1993 GEO16011 100.00 0.00 50.00 57.14

GEO4271 GEO1993 GEO4412 GEO4290 GEO16011 93.99 33.33 63.66 72.57

GEO4271 GEO4412 GEO1993 GEO4290 GEO16011 94.78 33.33 64.06 73.71

GEO1993 GEO4412 GEO4271 GEO4290 GEO16011 98.94 33.33 66.14 54.29

GEO1993 GEO4412 GEO4290 GEO4271 GEO16011 98.97 33.33 66.15 56.00

GEO4271 GEO1993 GEO4290 GEO4412 GEO16011 96.99 37.50 67.25 75.43

GEO1993 GEO4271 GEO4412 GEO4290 GEO16011 96.67 50.00 73.33 51.43

GEO1993 GEO4290 GEO4412 GEO4271 GEO16011 97.90 50.00 73.95 54.29

GEO1993 GEO4290 GEO4271 GEO4412 GEO16011 97.92 50.00 73.96 54.86

GEO1993 GEO4271 GEO4290 GEO4412 GEO16011 96.63 60.00 78.32 50.86
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dataset, GEO16011, from the brain cancer set, using iTRL with only prior rules search. The

accuracies range about 47%− 78% for both BACC and AccAb.

As observed throughout results from the other frameworks, rule space search with only

prior rules performs very well on subsets of the data examples, which they cover. This

pattern was no different from the iTRL. The BACC were much better than the “Combo”

version as reported in tables 43, 81 and 82. The AccAb, however, were, comparatively, very

low. This was caused by a relatively high rate of abstentions.

Generally, the trend for the rate of abstentions due to iTRL, particularly OnlyPriors

search, were different. Unlike MS-TRL OnlyPriors, where the rate of abstentions decreased

with increasing number of sources, abstentions withing iTRL (OnlyPriors) increases with the

number of iterations; that is, 69.71, 64.31, and 61.76, respectively, for tables 44, 83 and 84.

See appendix F.1 for detailed iTRL classification results on the entire datasets.

By combining snippets of rule models from multiple related sources, the MS-TRL would

likely increases the coverage space of data examples, therefore reducing the rate of absten-

tions. The case for iTRL is slightly different as the source models are not lumped, àla

MS-TRL style, but rather, merged incrementally—one at a time. That is, when the sources

emanate from heterogeneous domains they are more likely to cover diverse spaces, if at all,

within the test, and the more it abstains from making predictions. See more examples from

appendix F.1, particularly, result on the mixed cancer set, where heterogeneity was relatively

high.

5.5.2 RL vs TRL vs MS-TRL vs iTRL - classification

The results discussed in sections 5.4.2 and 5.5.1 suggest that, in general, transfer learning

improves the baseline classification performance. The more accurate individual sources are

the more likely their combination, into a multi-source transfer, leads to positive transfer. It

also emerged from the above results that getting the “right mix” and “ordering” of sources,

more often than not, led to positive transfer.

Table 45 highlights a comparison of accuracies (including abstentions) from all frame-

works given a target dataset. Note that RL, the overarching baseline, can be considered
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Table 45: A comparison of best accuracies via all frameworks. Src = number of sources

RL TRL MS-TRL iTRL

Target Src=0 Src=1 Src=2 Src=3 Src=4 Src=2 Src=3 Src=4

GEO16011 89.14 90.29 90.86 90.86 89.14 90.86 90.86 90.86

GEO1993 86.21 87.93 87.93 86.21 84.48 89.66 89.66 89.66

GEO4271 78.00 81.00 81.00 81.00 80.00 82.00 82.00 82.00

GEO4290 82.00 85.00 86.00 84.00 83.00 86.00 87.00 85.00

GEO4412 81.18 84.71 87.06 85.88 84.71 85.88 85.88 85.88

GEO10780 86.49 88.11 88.65 88.65 88.11 88.65 88.65 88.11

GEO15852 84.88 86.05 87.21 86.05 86.05 87.21 88.37 88.37

GEO29431 93.94 96.97 96.97 96.97 95.46 95.46 93.94 93.94

GEO42568 95.87 96.69 96.69 95.87 95.04 95.87 95.87 97.52

GEO7904 77.42 79.03 79.03 77.42 77.42 79.03 79.03 79.03

GEO10715 60.00 70.00 70.00 73.33 70.00 73.33 76.67 76.67

GEO20916 97.14 100.00 100.00 100.00 97.14 100.00 100.00 100.00

GEO23878 94.92 100.00 98.31 98.31 98.31 100.00 100.00 98.31

GEO24514 93.88 97.96 97.96 97.96 97.96 97.96 97.96 97.96

GEO9348 95.12 100.00 100.00 100.00 100.00 100.00 100.00 100.00

GEO10072 96.26 98.13 97.20 96.26 95.33 98.13 98.13 97.20

GEO18842 91.21 98.90 100.00 100.00 100.00 98.90 100.00 100.00

GEO19188 94.87 95.51 95.51 95.51 94.87 95.51 95.51 95.51

GEO19804 94.17 95.83 95.00 95.00 95.00 95.83 95.83 95.83

GEO7670 87.88 95.46 95.46 95.46 93.94 96.97 96.97 96.97

GEO4412 81.18 85.88 83.53 83.53 82.35 85.88 88.24 88.24

GEO6956 87.64 88.76 88.76 87.64 86.52 88.76 88.76 88.76

GEO7670 87.88 90.91 92.42 92.42 89.39 92.42 92.42 92.42

GEO7904 77.42 80.65 79.03 77.42 77.42 80.65 80.65 80.65

GEO9348 95.12 97.56 97.56 96.34 95.12 98.78 98.78 98.78

GEO17951 83.21 86.86 87.59 87.59 86.13 88.32 89.78 89.78

GEO32448 88.75 93.75 93.75 93.75 93.75 95.00 95.00 95.00

GEO46602 92.00 98.00 98.00 96.00 94.00 98.00 98.00 98.00

GEO6956 87.64 88.76 91.01 85.39 84.27 89.89 89.89 88.76

GEO82188 87.50 91.91 91.91 89.71 89.71 93.38 93.38 91.91
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as learning without any prior knowledge—that is, no source (Src = 0). In addition, TRL

can be considered as a variant of both MS-TRL and iTRL, albeit with a single source.

Apart from RL, the results from the other frameworks represent the best accuracy among all

possible sources. For the brain cancer dataset GEO16011, for instance, as target, the best

accuracy from TRL resulted from the source GEO1993. Similarly, {GEO1993, GEO4290}

and {GEO1993, GEO4290, GEO4412} were the best sources form MS-TRL with two and

three sources, respectively. Meanwhile, the ordering {GEO4290, GEO1993}, {GEO4271,

GEO4290, GEO1993}, and {GEO4412, GEO4271, GEO4290, GEO1993}, respectively, were

the best source set for iTRL with two, three, and four source (i.e. iterations).

Note that accuracies for MS-TRL with all sources (i.e., four sources) is likely to be inferior

to the other transfer variants. This is because there were no alternate sets of four. All four

were merged, and as discussed in section 5.4.2, a lowly performing source among the lot

might ruin the accuracy of the entire source set—àla “a bad apple spoils the bunch.” See

appendix F.1 for a detailed list of all “best source(s)”, including their accuracies, for each

target dataset while using TRL, MS-TRL, and iTRL.

In general, the “best” source from each transfer learning method beats baseline RL

as far as accuracy is concerned. Thus, for all things being equal, there exist a source or

set of sources, which when used for transfer rule learning—single or multiple—would most

likely lead to positive transfer. That said, the notion that “multiple source rule transfer

is significantly better than single” might be conditionally dependent on the accuracy of the

individual sources themselves. While this condition, in most cases, is necessary for MS-TRL,

in iTRL, the “right” ordering of these “good” sources are also required for the above notion

to hold.

Table 46 provides a summary of wins, draws, and losses by accuracy of the best TRL

versus that of the multiple source variants, while using the same target. The results suggests

that, on the same target dataset the best single source rule transfer is more accurate than

the multiple rule source (àla MS-TRL) as the number of sources increases. The main reason,

as alluded to above, hinged on the accuracies of the individual sources that constitute the

source. With incremental learning (àla iTRL), however, there seem to exist paths or ordering

of multiple sources, which outperforms the best single source transfer. A potential future
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Table 46: Summary of wins, draws, and loses in best accuracy of the MS methods versus

TRL, given the same target. MS = Multi-source.

MS Methods Wins Draws Losses

MS-TRL 2 9 16 5

MS-TRL 3 7 9 14

MS-TRL 4 1 7 22

iTRL 2 15 13 2

iTRL 3 17 11 2

iTRL 4 14 13 3

study, which identifies these “sweet spots” or ordering, independently, could be crucially

important for incremental transfer learning, particularly when the sources are large in order

to avoid fruitless knowledge transfer.

Table 47: Pairwise t-test on the best accuracy per framework

RL TRL MS-TRL 2 MS-TRL 3 MS-TRL 4 iTRL 2 iTRL 3

TRL 4.6E-09

MS-TRL 2 5.1E-09 4.9E-01

MS-TRL 3 2.4E-05 5.3E-02 1.5E-02

MS-TRL 4 1.7E-03 1.5E-06 1.4E-06 3.3E-06

iTRL 2 9.0E-09 1.6E-03 3.0E-02 1.5E-04 4.5E-08

iTRL 3 9.5E-08 4.6E-03 2.3E-02 7.3E-05 1.6E-07 7.2E-02

iTRL 4 2.3E-07 3.0E-02 1.0E-01 1.9E-04 4.8E-07 6.4E-01 1.1E-01

Table 47 presents a paired t-test, at a significance level of α = 0.05, of the difference in

accuracies by the rule learning frameworks as displayed in table 46. This results confirms

that, within a disease set (homogeneous or otherwise), there exit a source or set of sources

that when used for transfer learning, statistically significantly outperforms the accuracy of

learning without transfer. What is more, the power of the significant difference in accuracies

was more pronounced in transfers with at most two sources. This also suggest that, on the

average, two of the four sources from each disease, more often than not, lead to positive
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transfer.

Furthermore, while there was no significant difference in accuracy between TRL and

MS-TRL with two sources, the reduction in performance, however, when the number of

sources increased were apparent, especially when all sources were used for MS-TRL. The

improvement over TRL accuracy by iTRL was also significant. Here too, the power of the

significance dropped gradually as the number of sources (i.e., iterations) increased. Thus,

more datasets and experiments might be need to estimate the inflection points of where

number of sources change classification performance.

5.5.3 Discovery of Robust patterns with iTRL

Like tables 38 to 41 in section 5.4.4, tables 48 to 51 here represent robust rule patterns that

were identified with iTRL. Recall that in iTRL, a rule pattern is said to be robust within

or across a domain if it traversed (or survived) at least 50%—3 or more—of the datasets

within a disease set. Thus only retained prior rules from source models S1, S2, and S3 were

considered.

Majority of the robust patterns and variables as discovered with the iTRL framework

from the breast (e.g., ADIPOQ, COL11A1, ASPA), colon (e.g., HILPDA, CDH3, CNNM2), lung (e.g.,

AGER, EDNRB, AQP1), and mixed (e.g., ABLIM1, CALU, ABCG2) set were identical with most of

those captured with MS-TRL (see tables 38 to 41 and tables 48 to 51). See appendix F.2

for more details on robust rule patterns for the entire disease sets.

Like MS-TRL, the iTRL framework is sufficient for discovering robust rule patterns

within and across homogeneous and heterogeneous domains respectively. Similarly, and as

discussed in section 5.4.4, these patterns require further verification studies to affirm and/or

falsify their utility for knowledge discovery within specified domains. For brevity, I will not

expound on them any further as I have done in previous sections (see sections 5.3.8 and 5.4.4)

with support from literature evidence. A future study, however, could compare and contrast

the robust patterns that were discovered with the MS-TRL and iTRL frameworks.
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Table 48: Examples of robust rule patterns that were discovered by iTRL on the combined

breast cancer datasets. S1, S2, S3:=: Source datasets and also annotated in red font color,

T:= Target dataset, which have also been marked in blue font color

S1:GEO7904, S2:GEO10780, S3:GEO15852, T:GEO29431

S2,T: 1. IF(BNIP3L=High) THEN (Class=CONTROL)

S3,T: 2. IF(ADH1C=High) THEN (Class=CONTROL)

S3,T: 3. IF(ACACB=High) THEN (Class=CONTROL)

S3,T: 4. IF(AOC3=High) THEN (Class=CONTROL)

S3,T: 5. IF(ANGPT1=High) THEN (Class=CONTROL)

S3,T: 6. IF(CCT3=High) THEN (Class=CASE)

S3,T: 7. IF(AOC3=Low) THEN (Class=CASE)

S3,T: 8. IF(ASPA=High) THEN (Class=CONTROL)

S3,T: 9. IF(ADH1B=High) THEN (Class=CONTROL)

S3,T: 10. IF(COL11A1=High) THEN (Class=CASE)

S3,T: 11. IF(ECT2=High) THEN (Class=CASE)

S3,T: 12. IF(CLDN5=High) THEN (Class=CONTROL)

S1:GEO42568, S2:GEO7904, S3:GEO10780, T:GEO15852

S3,T: 1. IF(ACIN1=High) THEN (Class=CONTROL)

S1,T: 2. IF(ADAR=High) THEN (Class=CASE)

S1,T: 3. IF(GPR157=High) THEN (Class=CASE)

S1:GEO7904, S2:GEO10780, S3:GEO29431, T:GEO42568

S2,T: 1. IF(CAP1=High)&(FHL1=Low) THEN (Class=CASE)

S3,T: 2. IF(G0S2=High) THEN (Class=CONTROL)

S2,T: 3. IF(ADIPOQ=Low) THEN (Class=CASE)

S2,T: 4. IF(ETNK1=High) THEN (Class=CASE)

S1,T: 5. IF(ADIPOQ=High)&(ADNP=Low) THEN (Class=CONTROL)
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Table 49: Examples of robust rule patterns that were discovered by iTRL on the combined

colon cancer datasets. S1, S2, S3:=: Source datasets and also annotated in red font color,

T:= Target dataset, which have also been marked in blue font color

S1:GEO10715, S2:GEO23878, S3:GEO20916, T:GEO9348

S2,T: 1. IF(HILPDA=Low) THEN (Class=CONTROL)

S2,T: 2. IF(CDH3=High) THEN (Class=CASE)

S3,T: 3. IF(CDH3=Low) THEN (Class=CONTROL)

S2,T: 4. IF(CXCL12=High) THEN (Class=CONTROL)

S3,T: 5. IF(FABP6=High) THEN (Class=CASE)

S1:GEO9348, S2:GEO23878, S3:GEO24514 T:GEO10715

S3,T: 1. IF(DDX56=High) THEN (Class=CASE)

S3,T: 2. IF(DUS1L=High) THEN (Class=CASE)

S2,T: 3. IF(CXCL12=High) THEN (Class=CONTROL)

S3,T: 4. IF(CHP2=High) THEN (Class=CONTROL)

S3,T: 5. IF(CHGA=High) THEN (Class=CONTROL)

S1,T: 6. IF(CEBPB=Low) THEN (Class=CONTROL)

S2,T: 7. IF(BGN=High) THEN (Class=CASE)

S1,T: 8. IF(C4orf19=High) THEN (Class=CONTROL)

S3,T: 9. IF(CNNM2=High) THEN (Class=CONTROL)

S1:GEO9348, S2:GEO23878, S3:GEO20916 T:GEO24514

S3,T: 1. IF(CNNM2=High) THEN (Class=CONTROL)

S2,T: 2. IF(CBFB=Low) THEN (Class=CONTROL)

S3,T: 3. IF(ABCA8=Low) THEN (Class=CASE)

S2,T: 4. IF(CBFB=Low) THEN (Class=CONTROL)

S1,T: 5. IF(CA2=High) THEN (Class=CONTROL)

S3,T: 6. IF(CXCL2=Low) THEN (Class=CONTROL)

S2,T: 7. IF(ETV4=High) THEN (Class=CASE)

S3,T: 8. IF(CCT3=High) THEN (Class=CASE)

S2,T: 9. IF(CDH3=Low) THEN (Class=CONTROL)

S2,T: 10. IF(ADAMDEC1=High) THEN (Class=CONTROL)

S1,T: 11. IF(CEACAM7=High) THEN (Class=CONTROL)

S1,T: 12. IF(AKR1B10=High) THEN (Class=CONTROL)
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Table 50: Examples of robust rule patterns that were discovered by iTRL on combined lung

cancer datasets. S1, S2, S3:=: Source datasets and also annotated in red font color, T:=

Target dataset, which have also been marked in blue font color

S1:GEO10072, S2:GEO19188, S3:GEO18842 T:GEO7670

S1,T: 1. IF(EDNRB=Low) THEN (Class=CASE)

S2,T: 2. IF(AQP1=Low) THEN (Class=CASE)

S3,T: 3. IF(GAPDH=High) THEN (Class=CASE)

S3,T: 4. IF(CLDN18=High) THEN (Class=CONTROL)

S1,T: 5. IF(ARHGAP6=Low) THEN (Class=CASE)

S3,T: 6. IF(CENPF=High) THEN (Class=CASE)

S2,T: 7. IF(ADRB2=Low) THEN (Class=CASE)

S2,T: 8. IF(AGER=High) THEN (Class=CONTROL)

S2,T: 9. IF(FABP4=Low) THEN (Class=CASE)

S1,T: 10. IF(CDH5=Low) THEN (Class=CASE)

S2,T: 11. IF(CITED2=Low) THEN (Class=CASE)

S2,T: 12. IF(CAV1=High) THEN (Class=CONTROL)

S2,T: 13. IF(ALOX5=Low) THEN (Class=CASE)

S2,T: 14. IF(ABCA8=Low) THEN (Class=CASE)

S2,T: 15. IF(CACYBP=High) THEN (Class=CASE)

S3,T: 16. IF(COX7A1=Low) THEN (Class=CASE)

S1,T: 17. IF(FRY=Low) THEN (Class=CASE)

S1,T: 18. IF(GPM6B=Low) THEN (Class=CASE)

S2,T: 19. IF(CELF2=Low) THEN (Class=CASE)
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Table 51: Examples of robust rule patterns that were discovered by iTRL on combined set of

randomly mixed cancer datasets. S1, S2, S3:=: Source datasets, T:= Target dataset, and

color annotations (Brain := Red, Breast := Blue, Colon := Green, Lung := Purple, Prostate

:= Orange) denote the cancer type.

S1:GEO6956, S2:GEO7670, S3:GEO7904, T:GEO4412

S1,T: 1. IF(ATP5C1=Low) THEN (Class=CASE)

S2,T: 2. IF(ABLIM1=High) THEN (Class=CONTROL)

S2,T: 3. IF(CALU=High) THEN (Class=CASE)

S3,T: 4. IF(CEBPB=Low) THEN (Class=CONTROL)

S2,T: 5. IF(CCT6A=High) THEN (Class=CASE)

S1,T: 6. IF(ALG3=High)&(CLIC1=Low) THEN (Class=CASE)

S1:GEO4412, S2:GEO7904, S3:GEO7670, T:GEO6956

S3,T: 1. IF(CCT3=High) THEN (Class=CASE)

S3,T: 2. IF(CCL23=High) THEN (Class=CONTROL)

S3,T: 3. IF(FABP4=Low) THEN (Class=CASE)

S2,T: 4. IF(GNG11=High) THEN (Class=CONTROL)

S1:GEO6956, S2:GEO4412, S3:GEO7670, T:GEO7904

S2,T: 1. IF(ABCG2=Low) THEN (Class=CASE)

S2,T: 2. IF(ADORA2B=Low)&(ARHGEF6=Low) THEN (Class=CASE)

S2,T: 3. IF(ALPL=Low)&(ARHGEF6=Low) THEN (Class=CASE)

S3,T: 4. IF(ACTG2=Low)&(ANXA3=Low) THEN (Class=CASE)
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5.5.4 Results summary - iTRL

Based on the experimental results discussed in this section, salient attributes about the iTRL

framework that were revealed can be highlighted as follows:

1. The iTRL framework, for most cases, improves the accuracy of the baseline (i.e., more

consistent). The magnitude of the improvement, i.e., positive/negative transfer, however,

depends on the independent accuracies of sources as well as their ordering. Given a set

of sources, where at least one can independently improve accuracy of the target, there

exist a set of ordering involving these sources that will always lead to positive transfer.

In addition, increasing the number of sources (or iterations) does not necessarily increase

the magnitude or power of transfer.

2. Within a subspace of the data examples, which it covers, the iTRL, with the OnlyPri-

ors variant, is more accurate than the Combo search. Given the entire data example,

however, it performs poorly than the latter.

3. The iTRL Combo improves the baseline coverage by reducing the rate of abstentions. On

the average, the rate of abstentions does not necessarily decrease with number of source

or iterations. The OnlyPriors version, on the other hand, has relatively low coverage.

The rate of abstentions increase with number of sources or iterations. Thus, only the

Combo version improves baseline completeness.

4. Like MS-TRL, the iTRL framework is capable of capturing robust rules patterns within

and across homogeneous and heterogeneous domains, respectively. Though further ver-

ification analysis of them, say in a wet lab, is required, literature evidence supports

majority of them.
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6.0 CONCLUSIONS

In this dissertation, I presented four novel frameworks, i.e., TRL-FM, KARL, MS-TRL, and

iTRL, that combine background knowledge during search for predictive rule models from

multiple sources of related gene expression data using transfer learning. I implemented them

with four distinct algorithms, which provide significant extensions to an existing transfer rule

learning method. They provide sufficient mechanisms to augment (e.g., tagging of sources,

and knowledge extraction), combine and store (e.g., prior rules) domain knowledge for the

transfer and use of robust rule patterns from multiple related datasets while learning a pre-

dictive model on the target. In addition, empirical results from an extensive evaluation on

several gene expression data sets, reveal some key findings. First, they are more complete;

combining information from multiple sources enables the rule model to describe more data

examples. The more sources are incorporated into transfer rule model, the more expansive

it becomes. Second, they are more consistent ; more often than not, combining information

from multiple sources improves prediction of a new data instance. The magnitude of the im-

provement, however, does not necessarily increase with amount of sources, but independent

predictive performance of the sources as well as their ordering in the multi-source transfer

framework. Third, by using the framework both domain-specific and domain-independent

(general) robust rule patterns can be learned from appropriate homogeneous or heteroge-

neous biomedical datasets. Last, the methods developed herein provides generic frameworks

that could be applied to other domains apart from biomedical data sets, to develop robust

predictive rule models. These key findings thus confirm the overarching hypothesis of this

work.
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6.1 CONTRIBUTIONS

The advent of high-throughput genomics has led to the accumulation of biomedical data

such as gene expression, are available through public repositories such as NCBI’s GEO

or EMBL-EBI’s ArrayExpress. Meanwhile, the digitization of biomedical literature into

repositories such as PubMed, have inspired the creation of curated knowledge bases like the

Gene Ontology or Ingenuity® Knowledge Base. Pooling information from as many of these

repositories as useful and integrating it with predicting modeling of similar biomedical data

from multiple studies, could lead to models that are more robust.

This dissertation describes the development and evaluation of novel approaches for robust

predictive modeling from multiple related biomedical data sources via transfer learning of

classification rules. The new methods are able to avail pertinent information contained in

several biomedical data sources to augment the knowledge discovery process in classification

rules. The main contribution is the development of a knowledge extraction engine, which sits

on an existing transfer rule learning framework, TRL, to facilitate information extraction,

data preprocessing and transformations, and the abstraction of background knowledge into

classification rules. Based on specific needs and use cases the multi-source transfer rule

learning engine can be subdivided into four distinct, but related, frameworks presented

herein:

TRL-FM implements a semi-automated algorithm, in a three-pronged approach, that ab-

stract background knowledge into classification rules for knowledge transfer. First, it

extracts pertinent domain knowledge from repositories such as the Gene Ontology. Sec-

ond, it abstracts the information extracted into distinct ontology-based functional mod-

ules. Third, the functional modules are used as a bridge to map variables across multiple

datasets to facilitate the generation of prior rules for transfer learning. While TRL re-

quires identical variables across the source and target datasets for knowledge transfer

to happen, TRL-FM goes a step further by availing relevant domain-knowledge that are

contained in external sources to map non-identical variables for transfer. Though a group

of variables may be described with non-identical symbols, they may belong to the same

gene-family, biochemical pathway, or play several related roles in the same disease. The
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ability to take cognizance of this underlying domain knowledge and incorporate them

into predictive rule modeling enables TRL-FM to produce more informative and robust

rules than TRL.

KARL implements a semi-automated algorithm, applies domain knowledge to define rule

interestingness. In contemporary classification rule modeling, a rule is said to be inter-

esting if it satisfies certain requirements, which are usually based on statistics estimated

on the training data examples. Such measures, which are also objective, may not yield

robust rule models, particularly in a noisy environment like biomedical data. To reduce

the impact of such noise, background knowledge of the domain could be used to define

and/or augment rule interestingness. Such measures are subjective since the definition

of interestingness is at the discretion of a user. The key contribution of KARL is that

it applies the subjective notion of interestingness to augment the knowledge discovery

process. For proof of concept, it adopted cancer as a domain; and a rule is deemed

interesting if it contained variables that are significantly associated to the hallmarks

of cancer as contained in curated knowledge repository like IPA. First, it considers all

variables in the target dataset that can also be found in the external source as contain-

ing evidence of association to the hallmarks. Second, the evidence is abstracted into a

data structure called the functional lookup table. Third, information contained in the

lookup table is used to abstract background knowledge into classification rules. Last, the

background knowledge is used to augment knowledge discovery. The uniqueness about

this method is that some of the prior rules may not have strong statistical support on

the training data, but may contained a strong evidence of disease association from the

literature. Meanwhile, majority of the infused background knowledge complements new

rules to uncover hidden nuggets of robust rule patterns that are germane to the domain.

Thus, by combining the background knowledge with new rules, the models generated by

KARL are more expressive, robust, and have better predictive performance as compared

to learning without background knowledge.

MS-TRL was built directly on top of TRL. Unlike TRL, which relies on one source model

for prior rules, MS-TRL incorporates as much number of sources as useful to generate

background knowledge. The key contribution here is the scale of possible prior rules. As
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more transcriptomic data of related studies become available, it provides a mechanism

that can involve as many sources as practicable. Depending on the characteristics of the

source dataset, the performance of the model could be improved or degraded, follow-

ing transfer learning. A single source transfer is thus a “hit or miss” endeavor. With

multiple sources, it is possible to sift through the “good” and the “bad” before trans-

fer. Another vital contribution of MS-TRL was that it applied a data transformation

method (normalized linear transform) to align the source(s) and target datasets into a

comparable numerical range before transfer. This mechanism enables discretization cut-

off points or “whole rules” to be transferred from the sources. Given multiple related

transcriptomic datasets, the algorithm first transforms the variables of the sources and

target into a comparable numerical range. Second, it learns classification rule models on

the preprocessed source datasets into source rule models. Third, it merges the source

rule models into a unified set of background knowledge. Like TRL-FM and KARL, the

background knowledge is then used to augment learning of the target rule model. Sim-

ilarly, due to the increased number of sources it is able to generate rule models that

are more expansive, robust, and improved predictive performance. MS-TRL provides a

novel annotation of rules which is able to track rule patterns that co-occur in multiple

models. When the datasets are homogeneous or common to the same type of disease,

for instance, this mechanism could be used to discover robust patterns specific to the

domain. On the other hand, if the datasets emanates from a heterogeneous domain, like

a mix of different types of diseases, it could be used to also detect rule patterns that are

general or independent of any particular domain. This feature is particularly useful for

cross-domain studies such as “panomic”. Last, MS-TRL implements a mechanism for up-

dating rule-level statistics that could make it particularly useful for federated modeling.

Instead of estimating the statistics of a transferred rule from scratch on a new dataset,

the counts of its performance on related studies could be transferred, instead, to update

its statistics on the new data, accordingly. This mechanism, which ameliorates catas-

trophic forgetting, improves efficiency of transfer rule learning, as well as the discovery of

robust rule patterns. A rule that performs well on one dataset might perform badly on

another. When such a rule is transferred, it may not meet the good rule criteria on the
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target, and every prior information about it may be lost; in machine learning parlance,

such a phenomenon is known as catastrophic forgetting.

iTRL applies a similar concept as MS-TRL, however, it does not merge all the source rule

models into a unified set before transfer. Instead, it transfers one source model at a

time, while updating rule statistics on the target, where applicable. This mechanism is

particularly useful in scenarios where all the source datasets are not available at the same

time. The target model can rather be updated upon arrival of new data. Meanwhile, it

could also be used to discover robust rule patterns within or across domains. When a

particular rule “survives” (or is retained) a number of N iterations, it could be deemed

as robust. The main contribution of iTRL was to provide an avenue and mechanism for

on-line learning, using the transfer rule learning framework.

Furthermore, KARL, MS-TRL, and iTRL implemented two mechanisms of rule space

search: (1) and also the default, employs a quasi-parallel beam to combine background

knowledge with new information to search for predictive rule models from multiple sources,

and (2) combines only prior rules from multiple related models to search for predictive rule

models. While models developed by the latter are less general and less robust than the

former, they perform better within a subset of validation datasets. Thus, they could be used

to specialize models on a subset of training data. In the event where data examples are not

available for training new models, it provides an avenue for previously developed models to

be combined for making inference.

6.2 LIMITATIONS

The results presented in this dissertation suggest that the multi-source transfer rule learning

frameworks, i.e., TRL-FM, KARL, MS-TRL, and iTRL, are useful for combining background

knowledge from multiple sources to discover robust predictive rule models. The conclusions

should, however, be interpreted, bearing in mind, the following limitations:

(a) The frameworks were evaluated with microarray data sets that were downloaded from

148



NCBI GEO, where, predominantly, the assay platform are of the Affymetrix family.

It should be desirable to validate them with data sets from other repositories (e.g.,

ArrayExpress, or TCGA) and/or platforms (e.g., Illumina). In addition, they could be

validated on modern gene expression technologies like RNA sequencing (RNA-Seq).

(b) The discovery of robust rule patterns within homogeneous and heterogeneous datasets

were premised on only five datasets. Although literature evidence supported majority of

the discoveries, they cannot be wholly generalized per se, until validated on large number

of datasets.

(c) Data transformation methods like discretization are known to cause information loss. In

addition, EBD was the only discretization method used; other methods (e.g., Fayyad

& Irani’s MDL) could yield different results, as discretization, inherently, is a feature

selector.

(d) The frameworks were founded on RL, which involves many parameters. Different param-

eter settings leads to different results. An example of this consequence was demonstrated

in section 5.2.1, where different conflict-resolution methods produced different results.

(e) Several biomedical knowledge bases have been created that contain vital information

on gene function, pathways, diseases, drugs, etc. The information contained in some of

them (e.g., GO, KEGG, IPA) could overlap, yet they are diverse, in general. Thus relying

solely on GO (i.e., TRL-FM) and IPA (i.e., KARL) to extract domain knowledge might

limit the knowledge base for generating prior rules. Different repositories would result

in different set of prior rules, which would subsequently result in different rule models.

6.3 FUTURE WORK

The experimental work as presented in this dissertation was intended as proof of concept to

highlight the utility of applying transfer learning for combining background knowledge from

multiple sources for predictive rule modeling of gene expression data. The observations and

key findings may create avenues for extensions and directions for future work.
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Simplification of rule models. Combining prior knowledge from multiple sources may

lead to the generation of too many rules, especially when the number of source datasets are

large. A relatively large set of rules may cause the model to be complex and less parsimo-

nious [19]. Exploring an intelligent mechanism to reduce the rule size, while maintaining

its predictive performance at a desirable minimum may be required. Previous work and

preliminary results from TRL-FM have shown that some variables, though represented with

different symbols, perform the same or similar functions within a domain. Thus, two or more

rules that describe the same pattern (i.e., same consequent, similar variable values in an-

tecedent, but different variables), but with different variables could be collapsed into a single

rule representation. Such a single representation, for instance, could represent a pathway or

biological process.

Incorporate background knowledge in rule confidence. Currently, all methods

for estimating rule confidence are founded on rule-level statistic, which are calculated on the

training data. We have learned from this exercise that the propensity of a rule pattern to

occur could have strong support from a domain expert, knowledge base, and/or literature

findings. Such a rule, however, may have less statistical support, and hence, low confidence on

some data sets. Thus, there is a critical need for new approaches to compute rule confidence

by combining evidence from background knowledge with statistics on the training data. A

Bayesian approach, for instance, that could combine evidence from prior rules and literature

to estimate rule confidence, could be explored.

Intelligent selection of prior models. Key findings from the experiments suggested

that multi-source transfer rule learning methods statistically significantly outperforms learn-

ing without background knowledge. We also learned that increasing the number of sources

does not necessarily correlate with positive transfer. This is because some sources improve

learning, while others ruin it. Therefore, increasing the number of sources naively could be

an exercise in futility. An intelligent approach is thus required to filter and select the “best”

sources before transfer. One approach is to employ a validation set to pre-test all the source

models before transfer. The ones whose accuracy exceed a certain threshold, say β, could

be considered for transfer. In addition, the feasibility of genetic algorithms to address this

challenge could be explored.
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Intelligent ordering of prior models. We learned that iTRL is a viable tool for on-

line learning using the multi-source transfer rule learning mechanism. Experimental results

also revealed that the ordering of source models really matter for predictive performance.

Given a set of source models, some particular orderings within the iterative process improve

predictive performance, while some can ruin it. Devising an intelligent mechanism to get the

ordering right is crucially needed. Combination of “good” source models at the beginning

or tail-end of the iteration may significantly improve knowledge transfer. Identifying such

good sources, as well as their right ordering, may not be trivial. The utility of stochastic

methods like random walk could be explored for this open problem.
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APPENDIX A

TRL++ MANUAL

NAME

TRL++ - Program for transfer rule learning, variable selection

and discretization, and data preprocessing.

SYNOPSIS

java [JAVA_PARAMETERS] -jar TRLplus.jar

-lp [LEARNING_PARAMETERS]

-dp [DATA_PARAMETERS]

DESCRIPTION

TRL++, is a toolkit for learning rule-based classification

models from data. It implements several algorithms

for learning classification rules--Classic RL, Transfer Rule

Learning (TRL), Multiple Source Transfer Rule Learning (MS-TRL),

Incremental Transfer Rule Learning (iTRL), and Knowledge Augmented

Rule Learning (KARL). The algorithms have several learning

parameters with sensible default values. The program can also

transform input data in various ways before learning, or even

without any learning.

TRL’s input is a set (or multiple) of training data instances, each

specified in a data file (see DATA FILE FORMAT), where each
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instance is a vector of values for the input variables, and a

class value. The variables can be continuous or categorical.

With the input it learns classification rule model, which comprises

an unordered list of rules of the form:

IF <antecedent> THEN <consequent>

where the antecedent consists of a logical conjunction of one or

more variable-value pairs (conditions), and the consequent is a

prediction of the class variable. For example, a learned rule

might be:

IF ((Age=High) AND (BloodPressure=Low)) THEN Class=Control

which means ‘‘if the variable Age is in the High range, and the

variable BloodPressure is in the Low range, then predict that

the data instance has the class value Control.’’ Values such as Low

and High represent intervals of real numbers that result from

discretizing the variables before learning. A rule is said to cover

or match a data instance if each variable value of the instance is

in the range specified in the rule antecedent. The classifier also

includes an evidence gathering method for breaking ties when several

rules match a query data instance but predict different classes.

The classic RL algorithm proceeds as a heuristic beam search through

the space of rules from general to specific. Starting with all rules

containing no variable-value pairs, it iteratively specializes the

rules by adding conjuncts to the antecedent. It evaluates the rules,

calculating a certainty factor value and other statistics for each

rule. It re-inserts promising rules onto the beam, while removing
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other rules. The beam is sorted by decreasing certainty factor value

and is trimmed to a pre-defined length during each iteration. Beam

search is used to limit the running time and space of the algorithm.

Multiple learned rules in an RL classifier may cover the same

training instance. This is unlike most other classification rule and

tree learning algorithms, which cover data without replacement, so

that each data instance is covered by only one rule. With small

sample size data sets, covering with replacement allows RL, and its

extensions, to utilize more of the available evidence for each rule

when computing the generalizability of the rule.

The extensions to RL (i.e., TRL, MS-TRL, iTRL, and KARL) also allows

transfer learning, where some ‘‘prior’’ rules are learned on ‘‘source’’

data set(s) or domain-knowledge bases, and are then placed on the

beam for learning on the ‘‘target’’ data set, while also learning a

new set of rules on this data set.

DATA FILE FORMAT

Each data file comprises a table of rows (lines) and columns

representing vectors of variable values. Example data file:

#ID Age Sex Temperature @Diagnosis

A42 22 F 37 Healthy

D25 35 M 39 Sick

... ... ... ... ...

In normally-oriented data files, each row represents a data instance

vector and each column represents a variable of values for the

instances; the first row is a header line specifying the names of

the variables. However, the input file can be transposed, so that
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rows represent variables and columns represent data instances; this

must be specified using the ‘‘-tpf’’ option.

Columns can be separated by tabs or by commas (CSV). The separator

must be the same throughout the file, and is assumed to be Tab unless

"," occurs more frequently in the header line. The user can

explicitly specify the separator by using the data parameters.

The data must contain exactly one class variable (output variable),

and a number of input variables. The class variable is indicated by a

‘‘@’’ as the first character of the variable name. The class value

of the first data instance that appears in the file is used in the

predictive performance statistics in the output.

A data file may contain one ID input variable, indicated by a ‘‘#’’

as the first character of the variable name. TRL ignores the ID

variable during learning but uses it to identify data instances in

the output. If no ID variable is specified, the program uses data

instance IDs ‘‘1’’, ‘‘2’’ and so on, namely the index of the data

instance in the data file.

Each input variable can be continuous or categorical. A continuous

variable is one whose values can be parsed as a numbers, such as

‘‘100’’ or ‘‘1.25’’ (without the quotes). Categorical variables have

values such as ‘‘F’’ and ‘‘M’’. Before learning, TRL discretizes the

continuous-valued variables using the specified discretizer. If you

want the program to treat some numeric variable as categorical instead

of continuous, and thus avoid discretizing it, you can add a single

quote before each value. For example, instead of ‘‘100’’

(without the quotes), use ‘‘’100’’.
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JAVA PARAMETERS

Because TRL is a java program, it must be run on a Java virtual

machine. Java can take a number of parameters, which are described

in the Java manual. In addition, it uses some of the Weka program

libraries, so Weka must be installed on the system and the Java

classpath must include the Weka classes (jar file). The classpath

can be set in the CLASSPATH environment variable, or using the

‘‘-classpath’’ Java parameter. To provide enough memory on

the Java virtual machine, use the ‘‘-Xmx’’ Java parameter.

For example, ‘‘java -Xmx1000m’’.

LEARNING PARAMETERS

Learning parameters are command line attributes that bias the learning

process of the algorithms, and are initiated by the flag ‘‘-lp’’.

They can be specified in any order after the Java parameters and must

precede the data parameters flag, ‘‘-dp’’, on the command line. The

learning parameters, including their meanings, are presented below.

-cftype INDEX_VAL

Function to compute the certainty factor value for each rule.

0 Positive predictive value (default):

TP / (TP + FP)

1 Positive predictive value with Yates correction:

(TP + 0.05) / (TP + FP) if TP > FP,

(TP - 0.05) / (TP + FP) if TP < FP,

TP / (TP + FP) otherwise.

2 Positive predictive value, normalized for asymmetric

class distributions:

1 if FP = 0
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0 if TP + FP = 0

TP / (TP + FP * Pos / Neg)

3 Laplace estimate:

(TP + 1) / (TP + FP + num_of_classes)

4 Laplace extended:

(TP + k*m) / (TP + FP + k),

where

k = number of target values

m = Pos / (Pos + Neg)

5 Laplace extended with bias for short rules:

(TP + c * q) / (TP + FP + k),

where

c = 1 + number of conjuncts in the rule

q = TP / (TP + TN)

6 F-Measure:

2 * precision * recall / (precision +recall)

where

precision = TP / (TP + FP)

recall = TP / (TP + FN)

7 Laplace estimate, normalized for asymmetric class

distributions:

(TP + 1) / (TP + FP * Pos / Neg + num_of_classes)

8 P-Value, log likelihood ratio test:

2 * (TP * log2(TPfreq/PosFreq) + \

FP * log2(FPfreq/NegFreq))

where

TPfreq = TP / (TP + FP)

FPfreq = FP / (TP + FP)

PosFreq = Pos / (Pos + Neg)

NegFreq = Neg / (Pos + Neg)
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-inftype INDEX_VAL

The "inference type" or "evidence-gathering" function that is

to be used during inference to make a prediction from a given

data instance from the learned set of rules. It combines the

predictions of all rules that match the given instance.

0 Weighted voting (default). Predict the highest-weighted

class, where the weight of each class is the sum of

certainty factors of rules predicting that class. If

there is a tie, predicts class 0.

1 Maximum likelihood ratio

2 "Combine CF"

3 Lowest p-value: use the rule with the lowest p-value

4 Single best: use the rule with the highest certainty factor

5 Minimum weighted voting. Like weighted voting, but use only

the highest k rules to calculate the weight of each class,

where k is the minimum number of rules voting for any

class.

6 Single best specific: use the rule with the highest worth

(certainty divided by cost) and the highest number of

conjuncts.

7 Most specific single best: use the rule with the most

conjuncts among rules with the highest certainty factor.

8 Highest Coverage: use the rule with the highest coverage.

-mincf NUMBER

The minimum certainty factor value that any rule in the model will

have. The default is 0.80.

-minconj NUMBER
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The minimum number of conjuncts in any rule in the model. The

default is 1.

-maxconj NUMBER

The maximum number of conjuncts in any rule in the model. The

default is 5.

-specialize

If this option is specified, when a rule is added to the model,

RL will also check if some specializations of this rule should

also be added to the model. If the option is omitted (default),

RL stops specialization of a rule once it is found to satisfy

the search constraints.

-cover NUMBER

The minimum number of training examples that any rule in the model

will cover. The default is 4.

-minTP DECIMAL

The minimum true positive rate that any rule in the model will

have. The defalt is 0.05. Valid values are in the range [0, 1].

-maxFP DECIMAL

The maximum false positive rate that any rule in the model will

have. This option is not set by default. Valid values are in the

range [0, 1].

-indStr NUMBER

Inductive strengthening: the minimum number of previously uncovered

examples that each new rule must cover. The default is 1. The
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smaller this number, the larger the overlap of instances covered by

different rules. Because RL covers data with replacement, using

some non-zero inductive strengthening helps to learn a more

generalizable model.

-beam WIDTH

The number of rules kept at any time to be specialized in the next

iteration iteration. The default is 2500.

-cv NUM_FOLDS

Stratified cross-validation. If the option is not specified, no

cross-validation is performed. In any case, a classifier is

learned on all the training (target) data.

-d Discretize. The parameters are as described in PREPROCESSING

PARAMETERS, but the discrete intervals for each variable are

computed based on the training data only, then applied to the

test data. If cross-validation is specified, the discretization

is computed on the training subset separately for each fold.

TRANSFER LEARNING PARAMTERS

For the transfer learning algorithms to be invoked the ‘‘-tr’’

flag must first be specified, else the program runs RL by default.

Below are the specific transfer learning parameters, including

descriptions of their usage.

-tr INDEX_VAL

The type of transfer for prior rules. Prior rules are handled

before any learning of new rules on the training data. The

INDEX_VAL argument is a number, which signals the type of
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transfer, and it can be denoted by either ‘‘1’’ or ‘‘2’’:

1 Whole rules (default)

Transfer each prior rule, including the exact variable-value

pairs of both its antecedent and consequent. This ensures that

the source and target (training) data have the same values for

each variable.

2 Rule structure

Each prior rule is converted to a generalized structure where

the variable values are removed, leaving only the variables

in the LHS and the RHS. After transfer, this structure is

converted into a set of rules, where for each variable all

possible combinations of values in the target are considered.

-nocoverprior

Ignore the coverage of prior rules for inductive strengthening.

That is, examples covered by prior rules will be considered not

previously covered until they are covered by new rules.

-nopriorrulesspecialize

Do not specialize prior rules. If this option is omitted (default),

prior rules are specialized on the beam.

-onlypriorrules

Perform heuristic rule space search with only prior rules. The

default is a combo/dual beam search, where different beams are

assigned to the prior and new rules for a side-by-side beam search.

-parallel

This flag invokes the main MS-TRL algorithm, where prior rules are

generated from multiple source data sets in a parallel fashion.

161



Ensure that the ‘‘-src’’ data parameter (see DATA PARAMETERS) is

flagged.

-serial

This flag invokes the iTRL algorithm, where transfer learning

occurs in an incremental manner given multiple data sets. Ensure

that the ‘‘-src’’ data parameter (see DATA PARAMETERS) is

flagged.

-lookuptable FILENAME

This flag invokes the KARL algorithm, where prior rules are

generated from abstracted evidence of domain-knowledge contained

in the FILENAME. The FILENAME is a csv file, which

contains domain variables and their evidence (from literature) of

association with pertinent domain processes. Below is a snippet

of a lookup table file which contains abstracted information from

the domain, cancer.

GeneID Findings #Evidence Function

COL1A1 -1 8 1

IGFBP2 +1 9 1

VEGFA +1 31 2

CAV1 -1 24 3

... ... ... ...

In the example above, ‘‘GeneID’’ referes to the name of a domain

variable (gene); ‘‘Findings’’ indicates the general consensus and

evidence from literature on whether the variable decreases(-1),

increases(+1), or affects (0) specific domain processes;

‘‘Function’’ denotes specific domain processes like cell death(1),

cell invasion (2), or cell proliferation (3); and ‘‘#Evidence’’
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indicates the number of literature references that attest to the

functional evidence of the variable. Note that each lookup table

file is specific to the training or target data set and must be

processed outside the program.

PREPROCESSING PARAMETERS

These are optional parameters that specify operations to be performed

on all the data before any rule learning. They can appear in any order

after the "-lp" flag and before the "-dp" flag. Only operations

specified will be performed.

-d DISC_MECHOD DISC_VALUE

Discretize using DISC_METHOD with specified parameter

PARAMETER DISC_METHOD PARAMETER2

0 GaussianU Number of bins

1 EqualWidthU Number of bins

2 EqualFreqU Number of bins

3 OneR Number of instances

4 ErrorBased Max number of bins

5 D2S (none - max number of bins is set to 8)

6 FayyadIraniMDL Number of bins

7 HEBD c structure prior (use value "1")

8 MODL none?

9 EBD lambda prior

Example: EBD (2011) discretization with default parameter:

-d 9 0.5

-r Remove trivial variables after discretization
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-chi NUM_OF_VARS_TO_SELECT

Chi-squared variables selection: select the top

NUM_VARS_TO_SELECT variables.

-s SCALING_METHOD ...

Scale each variable by the specified SCALING_METHOD in turn

0 0-1 scaling

1 Subtract local minimum

2 Subtract global minimum

3 Log2

4 Square root

5 Exponent 2

6 Square

7 Normalize to mean 0 and standard deviation 1

-ctr

Combine technical replicates. The samples must have the same name,

with ’#’ next to it

DATA PARAMETERS

Data parameters specify the input and output files and their format.

The training data file is a mandatory data parameter and must be the

last parameter. Data parameters must be preceded by the "-dp" flag.

The ‘‘-dp’’ flag and the data parameters must appear after the

‘‘-lp’’ flag and any learning parameters, and after the.

-itrncsv

Training data file is comma-separated

-itstcsv
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Test data file is comma-separated

-c CSV_DATA_FILE

Convert the csv-delimited file to tab-delimited or vice versa.

-tpf DATA_FILE

Transpose the file data file; that is, make the rows be columns

(variables) and columns be rows (instances).

-dtr TRAINING_DIRECTORY

Directory containing the training data files, one file for each

training data instance. Each file contains two columns: variable

and value. Within the directory files grouped by class folder;

e.g. inside the training directory, there are two folders:

"disease" and "control". There should be no trailing "/" in

TRAINING_DIRECTORY name.

-tst TEST_FILE

Specify a test data file

-dtst TEST_DIRECTORY

Similar to -dtr.

-od OUTPUT_DIRECTORY

The output directory where to write the result files. The

directory is automatically created if it does not already exist.

-o OUTPUT_DATA_FORMAT

csv Comma-separated values format. The default is tab-separated.
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-rand SEED

Specifies a seed for creating random folds for running multiple

runs of RL with cross-validation. SEED is an integer. On

Unix-like systems and on Windows, a random integer is provided

by the RANDOM environment variable. If this option is not

specified, the default seed is 1.

-cmbf DIRECTORY

Combine the files in DIRECTORY. Each file represents one

training example (such as a mass spectrum), and contains two

comma-separated columns. The first column contains the names

of the variables (such as M/Z values). The second column

contains the values for those variables (e.g., intensity values).

-src

This parameter flags the source data file(s) for learning rules

for transfer in TRL, MS-TRL, and iTRL frameworks. One (for TRL)

or more (for MS-TRL or iTRL) files can be specified after this

flag. Note that this flag is mandatory for the aforementioned

transfer rule learning frameworks.

TRAINING_FILE

The training data file is specified as the last argument. This

argument must ALWAYS be specified. For all transfer learning algorithms,

this data file is designated as the target dataset.

OUTPUT

The program prints to standard output a log of its working that

includes the the program parameters (and learning parameters),

classifier learned, predictive performance statistics, starting time
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and total running time.

For each rule, the log includes the following statistics: CF,

CF/cost, p-value, true positive (TP) count, false positive (FP) count,

and test TP and test FP. These last two statistics are the number

of test examples for which the rule was applied correctly (TP) or

incorrectly (FP) when using the whole model. When applying the model,

a rule may not fire even if it matches a test example, because of

interaction with other rules. (See the discussion of evidence

gathering under the ‘‘-inftype’’ parameter.)

The program also creates some output files containing any pre-processed

data, rules learned on the whole training data set, prior rules learned

from source(s), rules learned from each cross-validation fold

(if cross-validation was used), predictions on the data instances used

in validation, and the predictive performance of the model calculated

from the predictions. The files are in the output directory, which by

default is named as TRL_run_YYYY-MM-DD-hhmmss where the last part of

the file name is the time when the program was run. A dedicated output

directory can be specified using the ‘‘-od’’ parameter.

EXAMPLES

Learn using classic RL with default parameters (including EBD

discretization) and 10-fold cross-validation.

java -jar TRL.jar -lp -cv 10 -d 9 0.5 -dp data.txt

Train and test an RL model on a training and test data, respectively

java -jar TRL.jar -lp -d 9 0.5 -dp -tst test-data.txt train-data.txt

Transfer rule learning with whole-rule transfer after averaging
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technical replicates and 10-fold cross-validation:

java -Xmx1300m -jar TRL.jar -LP -tr 1 -cv 10 -PPP -ctr\

-DP -src source-data.txt target-data.txt

Single source TRL with structure transfer

java -jar TRL.jar -lp -tr 2 -d 9 0.5 \

-dp -src source-data.txt target-data.txt

Multiple source transfer rule learning (MS-TRL)

java -jar TRL.jar -lp -tr 1 -parallel -d 9 0.5 \

-dp -src source-data-1.txt source-data-2.txt target-data.txt

Incremental transfer rule learning (iTRL)

java -jar TRL.jar -lp -tr 1 -serial -d 9 0.5 \

-dp -src source-data-1.txt source-data-2.txt target-data.txt

Knowledge augmented rule learning (KARL)

java -jar TRL.jar -lp -tr 2 -lookuptable LTable.csv -d 9 0.5 \

-dp target-data.txt

MS-TRL with only prior rules on 10 fold cross-validation

java -jar TRL.jar -lp -tr 1 -parallel -onlypriorrules -cv 10 -d \

9 0.5 -dp -src source-data-1.txt source-data-2.txt target-data.txt

AUTHORS

Jonathan Lustgarten, 2006 - 2009

Philip Ganchev, 2009 - 2010

Jeya Balaji Balasubramanian, 2011 - 2015

Henry Ato Ogoe, 2014 - 2016
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APPENDIX B

TRL - SUPPLEMENTARY

Table 52: Classification performance of TRL Combo on breast cancer set

Source Target SN SP BACC AccAb Ab (%)

GEO42568 GEO10780 47.619 100.000 73.810 88.108 0.000

GEO7904 GEO10780 46.341 100.000 73.171 87.568 0.541

GEO29431 GEO10780 45.000 100.000 72.500 87.027 1.081

GEO15852 GEO10780 40.000 100.000 70.000 85.946 1.081

GEO10780 GEO15852 86.047 83.721 84.884 84.884 0.000

GEO42568 GEO15852 88.372 83.721 86.047 86.047 0.000

GEO7904 GEO15852 86.047 83.721 84.884 84.884 0.000

GEO29431 GEO15852 86.047 86.047 86.047 86.047 0.000

GEO15852 GEO29431 100.000 83.333 91.667 96.970 0.000

GEO10780 GEO29431 90.741 100.000 95.370 90.909 1.515

GEO7904 GEO29431 100.000 75.000 87.500 95.455 0.000

GEO42568 GEO29431 100.000 83.333 91.667 96.970 0.000

GEO7904 GEO42568 100.000 76.471 88.235 96.694 0.000

GEO15852 GEO42568 100.000 76.471 88.235 96.694 0.000

GEO29431 GEO42568 100.000 82.353 91.176 96.694 0.826

GEO10780 GEO42568 96.154 88.235 92.195 95.041 0.000

GEO10780 GEO7904 90.698 47.368 69.033 77.419 0.000

GEO29431 GEO7904 90.698 42.105 66.401 75.806 0.000

GEO15852 GEO7904 90.698 52.632 71.665 79.032 0.000

GEO42568 GEO7904 95.238 47.368 71.303 79.032 1.613
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Table 53: Classification performance of TRL Combo on colon cancer set

Source Target SN SP BACC AccAb Ab (%)

GEO23878 GEO10715 78.947 60.000 69.474 70.000 3.333

GEO24514 GEO10715 73.684 70.000 71.842 70.000 3.333

GEO20916 GEO10715 83.333 55.556 69.444 66.667 10.000

GEO9348 GEO10715 83.333 50.000 66.667 63.333 13.333

GEO10715 GEO20916 100.000 97.059 98.529 97.143 1.429

GEO9348 GEO20916 100.000 94.118 97.059 97.143 0.000

GEO24514 GEO20916 97.143 100.000 98.571 97.143 1.429

GEO23878 GEO20916 100.000 100.000 100.000 100.000 0.000

GEO20916 GEO23878 94.286 100.000 97.143 96.610 0.000

GEO24514 GEO23878 100.000 100.000 100.000 100.000 0.000

GEO9348 GEO23878 97.143 100.000 98.571 93.220 5.085

GEO10715 GEO23878 100.000 86.957 93.478 93.220 1.695

GEO23878 GEO24514 100.000 86.667 93.333 95.918 0.000

GEO10715 GEO24514 100.000 86.667 93.333 95.918 0.000

GEO9348 GEO24514 100.000 86.667 93.333 95.918 0.000

GEO20916 GEO24514 100.000 93.333 96.667 97.959 0.000

GEO20916 GEO9348 100.000 100.000 100.000 100.000 0.000

GEO24514 GEO9348 100.000 91.667 95.833 98.780 0.000

GEO23878 GEO9348 100.000 91.667 95.833 98.780 0.000

GEO10715 GEO9348 100.000 66.667 83.333 92.683 2.439
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Table 54: Classification performance of TRL Combo on lung cancer set

Source Target SN SP BACC AccAb Ab (%)

GEO19188 GEO10072 100.000 91.837 95.918 96.262 0.000

GEO18842 GEO10072 100.000 93.750 96.875 96.262 0.935

GEO7670 GEO10072 100.000 93.878 96.939 96.262 0.935

GEO19804 GEO10072 100.000 95.918 97.959 98.131 0.000

GEO10072 GEO18842 100.000 100.000 100.000 98.901 1.099

GEO19188 GEO18842 100.000 93.333 96.667 96.703 0.000

GEO19804 GEO18842 100.000 97.778 98.889 98.901 0.000

GEO7670 GEO18842 97.826 93.333 95.580 95.604 0.000

GEO10072 GEO19188 96.703 93.846 95.275 95.513 0.000

GEO18842 GEO19188 96.703 93.846 95.275 95.513 0.000

GEO19804 GEO19188 96.703 93.846 95.275 95.513 0.000

GEO7670 GEO19188 96.703 93.846 95.275 95.513 0.000

GEO7670 GEO19804 96.667 95.000 95.833 95.833 0.000

GEO18842 GEO19804 96.610 93.333 94.972 94.167 0.833

GEO10072 GEO19804 95.000 95.000 95.000 95.000 0.000

GEO19188 GEO19804 96.667 91.667 94.167 94.167 0.000

GEO19804 GEO7670 94.872 96.296 95.584 95.455 0.000

GEO10072 GEO7670 94.872 96.296 95.584 95.455 0.000

GEO18842 GEO7670 92.308 92.593 92.450 92.424 0.000

GEO19188 GEO7670 94.872 88.889 91.880 92.424 0.000
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Table 55: Classification performance of TRL Combo on prostate cancer set

Source Target SN SP BACC AccAb Ab (%)

GEO32448 GEO17951 83.824 89.706 86.765 86.131 0.730

GEO46602 GEO17951 88.060 90.909 89.484 86.861 2.920

GEO6956 GEO17951 85.075 84.058 84.566 83.942 0.730

GEO82188 GEO17951 88.235 86.765 87.500 86.861 0.730

GEO6956 GEO32448 97.368 87.500 92.434 90.000 2.500

GEO17951 GEO32448 97.500 90.000 93.750 93.750 0.000

GEO82188 GEO32448 90.000 87.500 88.750 88.750 0.000

GEO46602 GEO32448 94.737 87.500 91.118 88.750 2.500

GEO32448 GEO46602 100.000 92.857 96.429 98.000 0.000

GEO6956 GEO46602 97.222 85.714 91.468 94.000 0.000

GEO17951 GEO46602 100.000 71.429 85.714 92.000 0.000

GEO82188 GEO46602 97.222 78.571 87.897 92.000 0.000

GEO17951 GEO6956 95.652 50.000 72.826 85.393 0.000

GEO82188 GEO6956 92.754 45.000 68.877 82.022 0.000

GEO32448 GEO6956 98.551 55.000 76.775 88.764 0.000

GEO46602 GEO6956 98.551 55.000 76.775 88.764 0.000

GEO17951 GEO82188 89.231 91.549 90.390 90.441 0.000

GEO46602 GEO82188 89.231 91.549 90.390 90.441 0.000

GEO6956 GEO82188 90.769 90.141 90.455 90.441 0.000

GEO32448 GEO82188 89.062 95.775 92.419 91.912 0.735
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Table 56: Classification performance of TRL OnlyPriors on breast cancer set

Source Target SN SP BACC AccAb Ab (%)

GEO42568 GEO10780 80.769 80.000 80.385 35.135 56.216

GEO7904 GEO10780 83.333 50.000 66.667 23.243 62.162

GEO29431 GEO10780 100.000 0.000 50.000 1.081 98.378

GEO15852 GEO10780 88.571 82.301 85.436 67.027 20.000

GEO10780 GEO15852 45.161 89.474 67.317 55.814 19.767

GEO42568 GEO15852 94.737 86.486 90.612 79.070 12.791

GEO7904 GEO15852 83.333 94.737 89.035 76.744 13.953

GEO29431 GEO15852 66.667 94.286 80.476 43.023 52.326

GEO15852 GEO29431 100.000 58.333 79.167 90.909 1.515

GEO10780 GEO29431 70.270 90.000 80.135 53.030 28.788

GEO7904 GEO29431 100.000 63.636 81.818 92.424 1.515

GEO42568 GEO29431 100.000 81.818 90.909 93.939 3.030

GEO7904 GEO42568 100.000 68.750 84.375 95.041 0.826

GEO15852 GEO42568 99.038 70.588 84.813 95.041 0.000

GEO29431 GEO42568 98.901 82.353 90.627 85.950 10.744

GEO10780 GEO42568 74.359 100.000 87.179 61.983 21.488

GEO10780 GEO7904 15.385 33.333 24.359 6.452 69.355

GEO29431 GEO7904 90.476 33.333 61.905 37.097 46.774

GEO15852 GEO7904 84.375 41.667 63.021 51.613 29.032

GEO42568 GEO7904 86.842 40.000 63.421 62.903 14.516
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Table 57: Classification performance of TRL OnlyPriors on colon cancer set

Source Target SN SP BACC AccAb Ab (%)

GEO23878 GEO10715 80.000 71.429 75.714 56.667 26.667

GEO24514 GEO10715 72.727 77.778 75.253 50.000 33.333

GEO20916 GEO10715 100.000 66.667 83.333 26.667 70.000

GEO9348 GEO10715 50.000 50.000 50.000 6.667 86.667

GEO10715 GEO20916 88.462 87.500 87.981 62.857 28.571

GEO9348 GEO20916 96.552 90.323 93.437 80.000 14.286

GEO24514 GEO20916 93.548 90.476 92.012 68.571 25.714

GEO23878 GEO20916 91.667 93.548 92.608 88.571 4.286

GEO20916 GEO23878 94.286 95.833 95.060 94.915 0.000

GEO24514 GEO23878 93.939 86.957 90.448 86.441 5.085

GEO9348 GEO23878 71.429 93.333 82.381 40.678 50.847

GEO10715 GEO23878 100.000 70.588 85.294 71.186 20.339

GEO23878 GEO24514 96.970 73.333 85.152 87.755 2.041

GEO10715 GEO24514 76.471 88.889 82.680 42.857 46.939

GEO9348 GEO24514 0.000 100.000 50.000 22.449 69.388

GEO20916 GEO24514 100.000 92.857 96.429 95.918 2.041

GEO20916 GEO9348 94.286 91.667 92.976 93.902 0.000

GEO24514 GEO9348 100.000 75.000 87.500 96.341 0.000

GEO23878 GEO9348 100.000 100.000 100.000 100.000 0.000

GEO10715 GEO9348 91.489 62.500 76.995 58.537 32.927
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Table 58: Classification performance of TRL OnlyPriors on lung cancer set

Source Target SN SP BACC AccAb Ab (%)

GEO19188 GEO10072 98.276 83.673 90.975 91.589 0.000

GEO18842 GEO10072 92.000 88.235 90.118 71.028 21.495

GEO7670 GEO10072 98.214 93.750 95.982 93.458 2.804

GEO19804 GEO10072 96.296 91.304 93.800 87.850 6.542

GEO10072 GEO18842 100.000 100.000 100.000 97.802 2.198

GEO19188 GEO18842 100.000 87.805 93.902 90.110 4.396

GEO19804 GEO18842 97.826 100.000 98.913 95.604 3.297

GEO7670 GEO18842 95.238 93.023 94.131 87.912 6.593

GEO10072 GEO19188 95.604 93.750 94.677 94.231 0.641

GEO18842 GEO19188 88.506 86.538 87.522 78.205 10.897

GEO19804 GEO19188 97.802 93.846 95.824 96.154 0.000

GEO7670 GEO19188 96.703 90.769 93.736 94.231 0.000

GEO7670 GEO19804 93.220 91.228 92.224 89.167 3.333

GEO18842 GEO19804 90.196 85.366 87.781 67.500 23.333

GEO10072 GEO19804 93.333 91.228 92.281 90.000 2.500

GEO19188 GEO19804 96.667 71.186 83.927 83.333 0.833

GEO19804 GEO7670 92.308 96.296 94.302 93.939 0.000

GEO10072 GEO7670 94.737 96.296 95.517 93.939 1.515

GEO18842 GEO7670 84.211 91.667 87.939 81.818 6.061

GEO19188 GEO7670 100.000 88.462 94.231 93.939 1.515
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Table 59: Classification performance of TRL OnlyPriors on prostate cancer set

Source Target SN SP BACC AccAb Ab (%)

GEO32448 GEO17951 74.242 88.710 81.476 75.912 6.569

GEO46602 GEO17951 97.778 74.194 85.986 48.905 44.526

GEO6956 GEO17951 90.625 55.000 72.812 66.423 9.489

GEO82188 GEO17951 88.235 71.212 79.724 78.102 2.190

GEO6956 GEO32448 93.939 50.000 71.970 51.250 33.750

GEO17951 GEO32448 94.737 76.316 85.526 81.250 5.000

GEO82188 GEO32448 81.579 83.784 82.681 77.500 6.250

GEO46602 GEO32448 86.957 72.414 79.685 51.250 35.000

GEO32448 GEO46602 100.000 92.857 96.429 98.000 0.000

GEO6956 GEO46602 100.000 83.333 91.667 90.000 6.000

GEO17951 GEO46602 100.000 50.000 75.000 86.000 0.000

GEO82188 GEO46602 94.444 85.714 90.079 92.000 0.000

GEO17951 GEO6956 83.871 47.368 65.620 68.539 8.989

GEO82188 GEO6956 76.923 47.368 62.146 66.292 5.618

GEO32448 GEO6956 83.636 70.588 77.112 65.169 19.101

GEO46602 GEO6956 84.615 69.231 76.923 34.831 56.180

GEO17951 GEO82188 83.871 85.507 84.689 81.618 3.676

GEO46602 GEO82188 92.308 52.941 72.624 39.706 46.324

GEO6956 GEO82188 88.710 72.131 80.420 72.794 9.559

GEO32448 GEO82188 86.885 91.176 89.031 84.559 5.147
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1: function TRL(p rules,D,C)

2: . p rules : a set of prior rules

3: . D : a set of training examples

4: . C : user specified constraints for rule learning

5: interesting patterns← ∅

6: new beam← p rules ∪ {∅ ⇒ class1, ∅ ⇒ class2, . . .}

7: beam← ∅

8: while new beam 6= ∅ do

9: beam← new beam

10: new beam← ∅

11: for all rule ∈ beam do

12: S ← specialize(rule)

13: for all s ∈ S do

14: if isRuleInteresting(s, IC,D) then

15: . IC : user specified interestingness criteria

16: interesting patterns← interesting patterns ∪ s

17: end if

18: if isGoodRule(s, C,D) then

19: new beam← new beam ∪ s

20: end if

21: end for

22: end for

23: end while

24: return beam

25: end function

Figure 30: Pseudocode for a heuristic rule-space search given prior rules, TRL
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APPENDIX C

TRL-FM - SUPPLEMENTARY

Table 60: Description of datasets for TRL-FM experiments

Disease Author Year Platform
Sample Size

(T/N)
Source

Prostate

Cancer

Singh 2002 HG-U95Av2 102 (52/50) broad.mit.edu

Lapointe 2004 cDNA 103 (62/41) GSE3933

Wallace 2008 HGU133A2 89 (69/20) GSE6956

Nanni 2006 HG-U133A 30 (23/7) GSE3868

Varambally 2005 HG-U133 Plus 2 13 (7/6) GSE3325

Welsh 2001 HG-U95A 34 (25/9) public.gnf.org

Yu 2004 HG-U95Av2 83 (65/18) GSE6919

Brain

Cancer

Freije 2004 HG-U133A,B 85 (59/26) GSE4412

Phillips 2006 HG-U133A,B 100 (76/24) GSE4271

Sun 2006 HG-UI33 Plus 100 (81/19) GSE4290

Petalidis 2008 HG-U133A 58 (39/19) GSE1993

Gravendeel 2009 HG-U133 Plus 2 175 (159/16) GSE16011

Paugh 2010 HG-U133 Plus 2 42 (33/9) GSE19578

Yamanaka 2006 Agilent 29 (22/7) GSE4381

Lung

Disease

Studies

(IPF)

Pardo 2005 Codelink 24 (13/11) GSE2052

Yang 2007 Agilent 43K 29 (20/9) GSE5774

Konishi 2009 Agilent 4x44K 38 (23/15) GSE10667

KangA 2011 Agilent 4x44K 63 (52/11) Dr. Kaminski

KangB 2011 Agilent 8x60K 96 (75/21) Dr. Kaminski

Larsson 2008 HG-U133 Plus 2 12 (6/6) GSE11196

Emblom 2010 cDNA 58 (38/20) GSE17978

178



Table 61: Meta-analysis approach to integrate datasets into single disease-specific matrix.

First, the common genes that occur among all datasets of a specific disease (e.g., IPF)

are determined. Second, using the AW Fisher method [86], all candidate genes that are

differentially expressed (DEGs) in one or more studies are determined. Last, disease-specific

datasets are merged into a single matrix according DEGs. ∗T = Tumor; N = Normal

Cancer

Type
Dataset

Samples

(T/N)∗
Genes

Common

Genes
DEGs

Merged

Matrix

Singh 102 (52/50) 9700

Lapointe 103 (62/41) 13579

Wallace 89 (69/20) 14704

Prostate Nanni 30 (23/7) 14713 6940 2869 454 X 2869

Varambally 13 (7/6) 33727

Welsh 34 (25/9) 9700

Yu 83 (65/18) 9700

Freije 85 (59/26) 28168

Phillips 100 (76/24) 28168

Sun 100 (81/19) 33675

Brain Petalidis 58 (39/19) 14713 6019 1707 589 X 1707

Gravendeel 175 (159/16) 17332

Paugh 42 (33/9) 19738

Yamanaka 29 (22/7) 12043

Pardo 24 (13/11) 8653

Yang 29 (20/9) 17198

Konishi 38 (23/15) 19749

IPF KangA 63 (52/11) 19614 5481 2455 320 X 2455

KangB 96 (75/21) 22627

Larsson 12 (6/6) 16123

Emblom 58 (38/20) 16679
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Table 62: A batch-effect removal method (BERM) was used to merge disease-specific datasets

into a single matrix. First, the common genes that occur among all datasets of a specific

disease (e.g., IPF) are determined. Subsequently, disease-specific datasets are merged into a

single data matrix with a BERM. The BERM used was COMBAT. Note that several BERM

have been proposed, and the choice of COMBAT was arbitrary. ∗T = Tumor; N = Normal

Cancer

Type
Dataset

Samples

(T/N)∗
Genes

Common

Genes

BERM

Merged

Singh 102 (52/50) 9700

Lapointe 103 (62/41) 13579

Wallace 89 (69/20) 14704

Prostate Nanni 30 (23/7) 14713 6940 454 X 6940

Varambally 13 (7/6) 33727

Welsh 34 (25/9) 9700

Yu 83 (65/18) 9700

Freije 85 (59/26) 28168

Phillips 100 (76/24) 28168

Sun 100 (81/19) 33675

Brain Petalidis 58 (39/19) 14713 6019 589 X 6019

Gravendeel 175 (159/16) 17332

Paugh 42 (33/9) 19738

Yamanaka 29 (22/7) 12043

Pardo 24 (13/11) 8653

Yang 29 (20/9) 17198

Konishi 38 (23/15) 19749

IPF KangA 63 (52/11) 19614 5481 320 X 5481

KangB 96 (75/21) 22627

Larsson 12 (6/6) 16123

Emblom 58 (38/20) 16679
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APPENDIX D

KARL - SUPPLEMENTARY

D.1 CLASSIFICATION PERFORMANCE
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Table 63: Mean classification (cross-validation) performance for KARL using Combo search.

SN = Sensitivity, SP = Specificity, BACC = Balanced Accuracy, Acc = Accuracy, AccAb

= Accuracy including abstentions, Ab = Abstentions

Dataset SN SP BACC Acc AccAb Ab Ab (%)

GEO16011 95.60 18.75 57.17 88.57 88.57 0 0.00

GEO1993 92.31 73.68 83.00 86.21 86.21 0 0.00

GEO4271 100.00 8.33 54.17 78.00 78.00 0 0.00

GEO4290 96.30 31.58 63.94 84.00 84.00 0 0.00

GEO4412 93.22 53.85 73.53 81.18 81.18 0 0.00

GEO10780 42.50 100.00 71.25 87.43 86.49 2 1.08

GEO15852 83.72 86.05 84.88 84.88 84.88 0 0.00

GEO29431 100.00 100.00 100.00 100.00 100.00 0 0.00

GEO42568 99.04 76.47 87.76 95.87 95.87 0 0.00

GEO7904 90.70 52.63 71.67 79.03 79.03 0 0.00

GEO10715 83.33 72.73 78.03 79.31 76.67 1 3.33

GEO20916 100.00 100.00 100.00 100.00 100.00 0 0.00

GEO23878 100.00 100.00 100.00 100.00 100.00 0 0.00

GEO24514 100.00 86.67 93.33 95.92 95.92 0 0.00

GEO9348 100.00 100.00 100.00 100.00 98.78 1 1.22

GEO10072 100.00 91.84 95.92 96.26 96.26 0 0.00

GEO18842 100.00 93.33 96.67 96.70 96.70 0 0.00

GEO19188 96.70 90.77 93.74 94.23 94.23 0 0.00

GEO19804 96.67 95.00 95.83 95.83 95.83 0 0.00

GEO7670 94.87 85.19 90.03 90.91 90.91 0 0.00

GEO17951 89.71 94.20 91.95 91.97 91.97 0 0.00

GEO32448 92.50 85.00 88.75 88.75 88.75 0 0.00

GEO46602 100.00 92.86 96.43 98.00 98.00 0 0.00

GEO6956 95.65 70.00 82.83 89.89 89.89 0 0.00

GEO82188 92.31 91.43 91.87 91.85 91.18 1 0.74
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Table 64: Mean classification (cross-validation) performance for KARL using only priors

rules for search. SN = Sensitivity, SP = Specificity, BACC = Balanced Accuracy, Acc =

Accuracy, AccAb = Accuracy including abstentions, Ab = Abstentions

Dataset SN SP BACC Acc AccAb Abs Abs (%)

GEO16011 76.87 68.75 72.81 76.07 70.86 12 6.86

GEO1993 86.84 73.68 80.26 82.46 81.03 1 1.72

GEO4271 92.00 37.50 64.75 78.79 78.00 1 1.00

GEO4290 92.41 47.37 69.89 83.67 82.00 2 2.00

GEO4412 91.23 69.23 80.23 84.34 82.35 2 2.35

GEO10780 100.00 0.00 50.00 25.00 1.08 177 95.68

GEO15852 88.37 87.81 88.09 88.10 86.05 2 2.33

GEO29431 100.00 72.73 86.36 95.16 89.39 4 6.06

GEO42568 100.00 50.00 75.00 95.58 89.26 8 6.61

GEO7904 87.50 60.00 73.75 80.00 70.97 7 11.29

GEO10715 62.50 90.00 76.25 77.78 46.67 12 40.00

GEO20916 100.00 100.00 100.00 100.00 95.71 3 4.29

GEO23878 100.00 100.00 100.00 100.00 86.44 8 13.56

GEO24514 100.00 86.67 93.33 95.92 95.92 0 0.00

GEO9348 100.00 91.67 95.83 98.77 97.56 1 1.22

GEO10072 100.00 95.92 97.96 98.11 97.20 1 0.94

GEO18842 100.00 97.56 98.78 98.84 93.41 5 5.50

GEO19188 97.75 86.00 91.88 93.53 83.33 17 10.90

GEO19804 91.67 93.33 92.50 92.50 92.50 0 0.00

GEO7670 97.37 94.74 96.05 96.49 83.33 9 13.64

GEO17951 89.71 92.65 91.18 91.18 90.51 1 0.73

GEO32448 82.05 87.18 84.62 84.62 82.50 2 2.50

GEO46602 100.00 91.67 95.83 97.92 94.00 2 4.00

GEO6956 66.67 80.00 73.33 70.59 53.93 21 23.60

GEO82188 87.69 90.14 88.92 88.97 88.97 0 0.00
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Table 65: Mean positive coverage for KARL with combo search on models on 10-Fold cross-

validation. ConMin = minimum positive coverage for controls, ConMax = maximum

positive coverage for controls, ConMdn = median positive coverage for controls, CaseMin

= minimum positive coverage for cases, CaseMax = maximum positive coverage for cases,

CaseMdn = median positive coverage for cases

Dataset ConMin ConMax ConMdn CaseMin CaseMax CaseMdn

GEO16011 0.395 0.695 0.548 0.549 0.790 0.643

GEO1993 0.538 0.778 0.681 0.507 0.761 0.657

GEO4271 0.329 0.654 0.495 0.430 0.820 0.618

GEO4290 0.327 0.702 0.529 0.453 0.745 0.584

GEO4412 0.342 0.817 0.526 0.375 0.825 0.580

GEO10780 0.497 0.836 0.649 0.386 0.601 0.471

GEO15852 0.421 0.858 0.739 0.362 0.795 0.526

GEO29431 1.000 1.000 1.000 1.000 1.000 1.000

GEO42568 0.889 0.902 0.889 0.948 0.981 0.971

GEO7904 0.433 0.603 0.521 0.493 0.747 0.625

GEO10715 0.667 0.909 0.813 0.848 0.959 0.892

GEO20916 1.000 1.000 1.000 1.000 1.000 1.000

GEO23878 1.000 1.000 1.000 1.000 1.000 1.000

GEO24514 0.926 0.948 0.937 0.731 0.997 0.935

GEO9348 1.000 1.000 1.000 1.000 1.000 1.000

GEO10072 1.000 1.000 1.000 1.000 1.000 1.000

GEO18842 1.000 1.000 1.000 1.000 1.000 1.000

GEO19188 0.535 0.959 0.662 0.716 0.956 0.898

GEO19804 0.481 0.957 0.730 0.600 0.939 0.724

GEO7670 0.799 0.983 0.881 0.832 0.974 0.930

GEO17951 0.324 0.891 0.481 0.472 0.884 0.665

GEO32448 0.381 0.817 0.611 0.350 0.792 0.533

GEO46602 1.000 1.000 1.000 1.000 1.000 1.000

GEO6956 0.411 0.822 0.608 0.565 0.820 0.686

GEO82188 0.354 0.850 0.585 0.363 0.875 0.569
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Table 66: Mean positive coverage for KARL using search with only prior rules on models on

10-Fold cross-validation. ConMin = minimum positive coverage for controls, ConMax =

maximum positive coverage for controls, ConMdn = median positive coverage for controls,

CaseMin = minimum positive coverage for cases, CaseMax = maximum positive coverage

for cases, CaseMdn = median positive coverage for cases

Dataset ConMin ConMax ConMdn CaseMin CaseMax CaseMdn

GEO16011 0.418 0.723 0.581 0.361 0.692 0.510

GEO1993 0.649 0.790 0.734 0.629 0.889 0.766

GEO4271 0.560 0.695 0.615 0.545 0.784 0.670

GEO4290 0.479 0.702 0.611 0.151 0.749 0.539

GEO4412 0.501 0.726 0.624 0.476 0.800 0.673

GEO10780 0.000 0.000 0.000 0.109 0.109 0.109

GEO15852 0.718 0.827 0.762 0.646 0.873 0.738

GEO29431 0.990 0.990 0.990 1.000 1.000 1.000

GEO42568 0.252 0.292 0.272 0.932 1.000 0.983

GEO7904 0.439 0.632 0.491 0.481 0.661 0.606

GEO10715 0.677 0.828 0.747 0.500 0.512 0.506

GEO20916 1.000 1.000 1.000 1.000 1.000 1.000

GEO23878 0.828 0.904 0.866 1.000 1.000 1.000

GEO24514 0.956 0.956 0.956 0.915 0.967 0.941

GEO9348 1.000 1.000 1.000 1.000 1.000 1.000

GEO10072 1.000 1.000 1.000 1.000 1.000 1.000

GEO18842 1.000 1.000 1.000 1.000 1.000 1.000

GEO19188 0.485 0.657 0.595 0.734 0.940 0.812

GEO19804 0.830 0.924 0.895 0.717 0.900 0.848

GEO7670 0.575 0.695 0.633 0.795 0.952 0.880

GEO17951 0.572 0.792 0.669 0.634 0.874 0.825

GEO32448 0.589 0.856 0.721 0.514 0.758 0.592

GEO46602 0.976 0.984 0.980 1.000 1.000 1.000

GEO6956 0.450 0.811 0.639 0.143 0.497 0.336

GEO82188 0.584 0.814 0.711 0.547 0.810 0.702
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D.2 ROBUST RULE PATTERNS VIA KARL

D.2.1 BRAIN CANCER

=== GEO1993 ===

Pr 2. ((COL4A2 = -inf..8.226)) ==> (@Class = CONTROL)

CF=0.933, PV=6.71939E-7, TP=13, FP=0, Pos=19, Neg=39

Pr 8. ((COL6A3 = 6.661..inf)) ==> (@Class = CASE)

CF=0.902, PV=5.33844E-4, TP=27, FP=1, Pos=39, Neg=19

Pr 9. ((COL1A1 = -inf..5.706)) ==> (@Class = CONTROL)

CF=0.884, PV=9.34323E-6, TP=14, FP=2, Pos=19, Neg=39

Nr 17. ((COL5A2 = -inf..5.552)) ==> (@Class = CONTROL)

CF=0.938, PV=2.26509E-7, TP=14, FP=0, Pos=19, Neg=39

=== GEO4290 GEO4412 GEO16011 ===

Pr 2. ((COL6A3 = 9.672..inf)) ==> (@Class = CASE)

CF=0.972, PV=2.80074E-3, TP=34, FP=0, Pos=81, Neg=19

Pr 20. ((COL1A1 = -inf..9.404)) ==> (@Class = CONTROL)

CF=0.86, PV=6.47036E-6, TP=16, FP=4, Pos=26, Neg=59

Nr 28. ((COL6A1 = -inf..6.448)) ==> (@Class = CONTROL)

CF=0.86, PV=1.08795E-6, TP=7, FP=3, Pos=16, Neg=159

=== GEO16011 ===

Pr 1. ((VEGFA = 9.367..inf)) ==> (@Class = CASE)

CF=0.992, PV=7.47022E-5, TP=116, FP=0, Pos=159, Neg=16

Pr 3. ((VEGFA = -inf..7.475)) ==> (@Class = CONTROL)

CF=0.877, PV=5.02443E-8, TP=9, FP=4, Pos=16, Neg=159

=== GEO4271 GEO1993 GEO4290 GEO16011 ===

Pr 7. ((VEGFA = -inf..8.676)) ==> (@Class = CONTROL)
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CF=0.904, PV=5.15453E-6, TP=13, FP=1, Pos=19, Neg=39

Pr 3. ((VEGFA = 10.677..inf)) ==> (@Class = CASE)

CF=0.922, PV=7.3132E-5, TP=48, FP=1, Pos=76, Neg=24

Pr 4. ((VEGFA = 12.671..inf)) ==> (@Class = CASE)

CF=0.911, PV=4.92388E-4, TP=53, FP=1, Pos=81, Neg=19

Nr 17. ((LDHA = 12.648..inf)) ==> (@Class = CASE)

CF=0.98, PV=6.10817E-6, TP=49, FP=0, Pos=76, Neg=24

Pr 10. ((LDHA = -inf..10.110)) ==> (@Class = CONTROL)

CF=0.884, PV=9.34323E-6, TP=14, FP=2, Pos=19, Neg=39

Nr 10. ((LDHA = 12.670..inf)) ==> (@Class = CASE)

CF=0.991, PV=1.42534E-4, TP=109, FP=0, Pos=159, Neg=16

=== GEO4412 GEO4290 ===

Pr 6. ((IL8 = -inf..6.806)) ==> (@Class = CONTROL)

CF=0.866, PV=3.01787E-5, TP=7, FP=1, Pos=19, Neg=81

Pr 19. ((IL8 = 11.240..inf)) ==> (@Class = CASE)

CF=0.88, PV=4.27811E-3, TP=23, FP=1, Pos=59, Neg=26

=== GEO16011 GEO1993 GEO4271 GEO4290 ===

Pr 4. ((IGFBP2 = -inf..6.238)) ==> (@Class = CONTROL)

CF=0.923, PV=5.8798E-6, TP=11, FP=0, Pos=19, Neg=39

Pr 2. ((IGFBP2 = 11.040..inf)) ==> (@Class = CASE)

CF=0.99, PV=2.71578E-4, TP=102, FP=0, Pos=159, Neg=16

Pr 13. ((IGFBP2 = -inf..7.401)) ==> (@Class = CONTROL)

CF=0.85, PV=5.71568E-5, TP=10, FP=3, Pos=24, Neg=76

Pr 9. ((IGFBP4 = -inf..7.710)) ==> (@Class = CONTROL)

CF=0.824, PV=3.14646E-4, TP=7, FP=3, Pos=19, Neg=81

=== GEO4412 ===

Nr 32. ((ALDH5A1 = 12.977..inf)) ==> (@Class = CONTROL)
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CF=0.929, PV=8.14298E-7, TP=12, FP=0, Pos=26, Neg=59

Nr 35. ((ALDH6A1 = 13.840..inf)) ==> (@Class = CONTROL)

CF=0.917, PV=8.1329E-6, TP=10, FP=0, Pos=26, Neg=59

=== GEO1993 GEO16011 GEO4412 ===

Pr 6. ((SERPINH1 = -inf..7.591)) ==> (@Class = CONTROL)

CF=0.91, PV=1.84265E-6, TP=14, FP=1, Pos=19, Neg=39

Nr 24. ((SERPINH1 = 8.732..inf)) ==> (@Class = CASE)

CF=0.905, PV=1.87403E-3, TP=103, FP=1, Pos=159, Neg=16

Pr 24. ((SERPINA3 = -inf..12.788)) ==> (@Class = CONTROL)

CF=0.833, PV=4.85168E-5, TP=15, FP=5, Pos=26, Neg=59

=== GEO16011 GEO4412 ===

Pr 9. ((MELK = 11.481..inf)) ==> (@Class = CASE)

CF=0.944, PV=7.88746E-3, TP=16, FP=0, Pos=59, Neg=26

Nr 30. ((MELK = -inf..7.069)) ==> (@Class = CONTROL)

CF=0.851, PV=2.71454E-7, TP=11, FP=11, Pos=16, Neg=159

D.2.2 BREAST CANCER

=== GEO15852 ===

Pr 3. ((KRT18 = 7.214..inf)) ==> (@Class = CASE)

CF=0.912, PV=2.20972E-7, TP=30, FP=2, Pos=43, Neg=43

Pr 6. ((KRT19 = -inf..5.649)) ==> (@Class = CONTROL)

CF=0.895, PV=1.92648E-7, TP=33, FP=3, Pos=43, Neg=43

D.2.3 COLON CANCER

=== GEO20916 GEO24514 ===

Pr 1. ((MMP7 = 6.187..inf)) ==> (@Class = CASE)
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CF=0.974, PV=1.23811E-10, TP=36, FP=0, Pos=36, Neg=34

Pr 2. ((MMP7 = -inf..6.187)) ==> (@Class = CONTROL)

CF=0.972, PV=6.25084E-11, TP=34, FP=0, Pos=34, Neg=36

Nr 3. ((CDH3 = 6.355..inf)) ==> (@Class = CASE)

CF=0.974, PV=1.23811E-10, TP=36, FP=0, Pos=36, Neg=34

Nr 4. ((CDH3 = -inf..6.355)) ==> (@Class = CONTROL)

CF=0.972, PV=6.25084E-11, TP=34, FP=0, Pos=34, Neg=36

Pr 2. ((MMP12 = 7.695..inf)) ==> (@Class = CASE)

CF=0.968, PV=8.42805E-5, TP=29, FP=0, Pos=34, Neg=15

=== GEO23878 ===

Nr 3. ((ABCA8 = -inf..7.290)) ==> (@Class = CASE)

CF=0.973, PV=3.893E-8, TP=35, FP=0, Pos=35, Neg=24

Nr 4. ((ABCA8 = 7.290..inf)) ==> (@Class = CONTROL)

CF=0.962, PV=8.94963E-10, TP=24, FP=0, Pos=24, Neg=35

Pr 1. ((CXCL12 = -inf..8.567)) ==> (@Class = CASE)

CF=0.97, PV=1.91249E-7, TP=31, FP=0, Pos=31, Neg=22

Pr 2. ((CXCL12 = 8.567..inf)) ==> (@Class = CONTROL)

CF=0.958, PV=8.29696E-9, TP=22, FP=0, Pos=22, Neg=31

Pr 1. ((LPAR1 = -inf..7.721)) ==> (@Class = CASE)

CF=0.971, PV=3.19315E-7, TP=32, FP=0, Pos=32, Neg=21

Pr 2. ((LPAR1 = 7.721..inf)) ==> (@Class = CONTROL)

CF=0.957, PV=7.06764E-9, TP=21, FP=0, Pos=21, Neg=32

=== GEO24514 ===

Pr 4. ((MCM2 = -inf..9.183)) ==> (@Class = CONTROL)

CF=0.938, PV=8.18121E-8, TP=14, FP=0, Pos=15, Neg=34

Pr 5. ((MCM2 = 9.183..inf)) ==> (@Class = CASE)

CF=0.915, PV=1.22339E-4, TP=34, FP=1, Pos=34, Neg=15

Pr 3. ((PMAIP1 = -inf..6.326)) ==> (@Class = CONTROL)
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CF=0.929, PV=5.17967E-7, TP=12, FP=0, Pos=13, Neg=31

Pr 4. ((PMAIP1 = 6.326..inf)) ==> (@Class = CASE)

CF=0.904, PV=5.10453E-4, TP=31, FP=1, Pos=31, Neg=13

Nr 5. ((TEX10 = 8.359..inf)) ==> (@Class = CASE)

CF=0.97, PV=6.71667E-5, TP=31, FP=0, Pos=31, Neg=13

Nr 6. ((TEX10 = -inf..8.359)) ==> (@Class = CONTROL)

CF=0.933, PV=1.57808E-7, TP=13, FP=0, Pos=13, Neg=31

=== GEO9348 ===

Pr 1. ((INHBA = 5.114..inf)) ==> (@Class = CASE)

CF=0.985, PV=1.75372E-4, TP=63, FP=0, Pos=63, Neg=11

Pr 2. ((INHBA = -inf..5.114)) ==> (@Class = CONTROL)

CF=0.923, PV=4.19698E-10, TP=11, FP=0, Pos=11, Neg=63

=== GEO10715 ===

Pr 3. ((LILRB4 = 6.147..inf)) ==> (@Class = CASE)

CF=0.863, PV=8.54581E-3, TP=16, FP=1, Pos=17, Neg=10

Pr 4. ((LILRB4 = -inf..6.147)) ==> (@Class = CONTROL)

CF=0.863, PV=9.60573E-4, TP=9, FP=1, Pos=10, Neg=17

D.2.4 LUNG CANCER

=== GEO10072 ===

Pr 1. ((EDNRB = -inf..7.480)) ==> (@Class = CASE)

CF=0.983, PV=1.44329E-15, TP=58, FP=0, Pos=58, Neg=49

Pr 2. ((EDNRB = 7.480..inf)) ==> (@Class = CONTROL)

CF=0.98, PV=1.11022E-16, TP=49, FP=0, Pos=49, Neg=58

Nr 3. ((EDNRB = -inf..7.480)) ==> (@Class = CASE)

CF=0.981, PV=5.37348E-14, TP=52, FP=0, Pos=52, Neg=44

Pr 1. ((PECAM1 = -inf..10.741)) ==> (@Class = CASE)

190



CF=0.981, PV=5.37348E-14, TP=52, FP=0, Pos=52, Neg=44

Pr 2. ((PECAM1 = 10.741..inf)) ==> (@Class = CONTROL)

CF=0.978, PV=3.77476E-15, TP=44, FP=0, Pos=44, Neg=52

=== GEO18842 GEO19188 ===

Pr 1. ((CENPE = 5.343..inf)) ==> (@Class = CASE)

CF=0.979, PV=7.9603E-14, TP=46, FP=0, Pos=46, Neg=45

Pr 2. ((CENPE = -inf..5.343)) ==> (@Class = CONTROL)

Pr 1. ((PLK4 = 5.412..inf)) ==> (@Class = CASE)

CF=0.977, PV=2.05735E-12, TP=42, FP=0, Pos=42, Neg=40

Nr 3. ((AQP4 = -inf..10.455)) ==> (@Class = CASE)

CF=0.977, PV=1.45239E-12, TP=41, FP=0, Pos=41, Neg=41

Nr 4. ((AQP4 = 10.455..inf)) ==> (@Class = CONTROL)

CF=0.977, PV=1.45239E-12, TP=41, FP=0, Pos=41, Neg=41

Pr 1. ((AQP1 = -inf..11.015)) ==> (@Class = CASE)

CF=0.988, PV=0E0, TP=84, FP=0, Pos=91, Neg=65

Pr 3. ((AQP1 = 11.015..12.226)) ==> (@Class = CONTROL)

CF=0.974, PV=0E0, TP=63, FP=1, Pos=65, Neg=91

Nr 4. ((PLK4 = -inf..5.412)) ==> (@Class = CONTROL)

CF=0.976, PV=1.04927E-12, TP=40, FP=0, Pos=40, Neg=42

=== GEO19804 ===

Pr 14. ((AGER = -inf..9.445)) ==> (@Class = CASE)

CF=0.952, PV=3.55271E-15, TP=58, FP=2, Pos=60, Neg=60

Pr 15. ((AGER = 9.445..inf)) ==> (@Class = CONTROL)

CF=0.952, PV=3.55271E-15, TP=58, FP=2, Pos=60, Neg=60

Pr 4. ((CDH3 = -inf..6.161)) ==> (@Class = CONTROL)

CF=0.976, PV=5.68434E-12, TP=39, FP=0, Pos=60, Neg=60

Pr 8. ((CDH3 = 7.506..inf)) ==> (@Class = CASE)

CF=0.975, PV=1.12412E-11, TP=38, FP=0, Pos=60, Neg=60
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=== GEO19804 GEO18842 ===

Pr 9. ((CCNB1 = 6.633..inf)) ==> (@Class = CASE)

CF=0.974, PV=2.22247E-11, TP=37, FP=0, Pos=60, Neg=60

Nr 4. ((CCNB1 = -inf..6.983)) ==> (@Class = CONTROL)

CF=0.979, PV=5.70655E-14, TP=45, FP=0, Pos=45, Neg=46

D.2.5 PROSTATE CANCER

=== GEO46602 GEO17951 ===

Pr 1. ((HPN = 7.963..inf)) ==> (@Class = CASE)

CF=0.974, PV=2.71643E-5, TP=36, FP=0, Pos=36, Neg=14

Pr 2. ((HPN = -inf..7.963)) ==> (@Class = CONTROL)

CF=0.938, PV=2.1384E-8, TP=14, FP=0, Pos=14, Neg=36

Pr 3. ((HPN = 7.807..inf)) ==> (@Class = CASE)

CF=0.968, PV=1.11022E-16, TP=59, FP=1, Pos=68, Neg=69

=== GEO82188 GEO17951 ===

Pr 1. ((HPN = -inf..7.605)) ==> (@Class = CONTROL)

CF=0.979, PV=3.5949E-13, TP=46, FP=0, Pos=71, Neg=65

Pr 8. ((HPN = 8.949..inf)) ==> (@Class = CASE)

CF=0.949, PV=1.77636E-14, TP=52, FP=2, Pos=65, Neg=71

Pr 7. ((CLU = 11.518..inf)) ==> (@Class = CONTROL)

CF=0.958, PV=3.20943E-12, TP=47, FP=1, Pos=71, Neg=65

Pr 10. ((CLU = -inf..10.121)) ==> (@Class = CASE)

CF=0.936, PV=6.3712E-8, TP=27, FP=1, Pos=65, Neg=71

Pr 11. ((GDF15 = -inf..9.977)) ==> (@Class = CONTROL)

CF=0.931, PV=6.55994E-10, TP=42, FP=2, Pos=71, Neg=65

Pr 15. ((GDF15 = 11.976..inf)) ==> (@Class = CASE)
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CF=0.908, PV=6.71046E-9, TP=36, FP=3, Pos=65, Neg=71

Pr 14. ((TRPM4 = -inf..8.995)) ==> (@Class = CONTROL)

CF=0.91, PV=4.94493E-13, TP=64, FP=5, Pos=71, Neg=65

Pr 17. ((TRPM4 = 8.995..inf)) ==> (@Class = CASE)

CF=0.892, PV=9.43023E-13, TP=60, FP=7, Pos=65, Neg=71

Pr 3. ((EPCAM = 10.407..inf)) ==> (@Class = CASE)

CF=0.966, PV=4.89446E-9, TP=27, FP=0, Pos=58, Neg=64

Pr 4. ((EPCAM = -inf..8.545)) ==> (@Class = CONTROL)

CF=0.964, PV=1.41931E-7, TP=26, FP=0, Pos=64, Neg=58

=== GEO17951 GEO32448 ===

Nr 20. ((FGF2 = 8.546..inf)) ==> (@Class = CONTROL)

CF=0.97, PV=1.66195E-9, TP=31, FP=0, Pos=69, Neg=68

Pr 7. ((FGFR2 = 7.425..inf)) ==> (@Class = CONTROL)

CF=0.903, PV=1.41289E-6, TP=27, FP=2, Pos=40, Neg=40

=== GEO82188 GEO32448 ===

Pr 6. ((ID4 = -inf..7.554)) ==> (@Class = CASE)

CF=0.96, PV=1.01793E-7, TP=23, FP=0, Pos=65, Neg=71

Pr 6. ((ID4 = 9.140..inf)) ==> (@Class = CONTROL)

CF=0.913, PV=1.89246E-5, TP=20, FP=1, Pos=40, Neg=40

=== GEO32448 GEO4660 ===

Nr 19. ((CYP3A5 = 6.448..inf)) ==> (@Class = CONTROL)

CF=0.938, PV=5.89155E-8, TP=29, FP=1, Pos=36, Neg=36

Nr 3. ((CYP3A5 = -inf..6.786)) ==> (@Class = CASE)

CF=0.971, PV=6.46417E-5, TP=32, FP=0, Pos=32, Neg=13
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APPENDIX E

MS-TRL - SUPPLEMENTARY

E.1 CLASSIFICATION PERFORMANCE

194



Table 67: Classification performance of MS-TRL Combo, two source datasets, on brain

cancer set

Source Target SN SP BACC AccAb Ab

GEO4271 GEO4290 GEO16011 96.855 6.250 51.553 88.571 0.000

GEO4271 GEO4412 GEO16011 96.855 6.250 51.553 88.571 0.000

GEO1993 GEO4271 GEO16011 96.855 12.500 54.678 89.143 0.000

GEO4290 GEO4412 GEO16011 98.734 0.000 49.367 89.143 1.143

GEO1993 GEO4412 GEO16011 98.113 12.500 55.307 90.286 0.000

GEO1993 GEO4290 GEO16011 98.742 12.500 55.621 90.857 0.000

GEO4271 GEO4412 GEO1993 87.179 73.684 80.432 82.759 0.000

GEO4290 GEO4412 GEO1993 94.872 63.158 79.015 84.483 0.000

GEO4271 GEO4290 GEO1993 92.308 73.684 82.996 86.207 0.000

GEO4271 GEO16011 GEO1993 92.308 73.684 82.996 86.207 0.000

GEO16011 GEO4290 GEO1993 97.436 68.421 82.928 87.931 0.000

GEO16011 GEO4412 GEO1993 97.436 68.421 82.928 87.931 0.000

GEO4290 GEO4412 GEO4271 97.368 20.833 59.101 79.000 0.000

GEO1993 GEO4412 GEO4271 98.684 20.833 59.759 80.000 0.000

GEO16011 GEO4412 GEO4271 100.000 20.833 60.417 81.000 0.000

GEO1993 GEO4290 GEO4271 98.684 25.000 61.842 81.000 0.000

GEO16011 GEO4290 GEO4271 100.000 20.833 60.417 81.000 0.000

GEO1993 GEO16011 GEO4271 100.000 20.833 60.417 81.000 0.000

GEO4271 GEO4412 GEO4290 93.827 36.842 65.335 83.000 0.000

GEO16011 GEO4412 GEO4290 95.062 31.579 63.320 83.000 0.000

GEO4271 GEO16011 GEO4290 96.296 31.579 63.938 84.000 0.000

GEO1993 GEO4271 GEO4290 96.296 31.579 63.938 84.000 0.000

GEO1993 GEO4412 GEO4290 95.062 36.842 65.952 84.000 0.000

GEO1993 GEO16011 GEO4290 98.765 31.579 65.172 86.000 0.000

GEO16011 GEO4290 GEO4412 96.610 50.000 73.305 82.353 0.000

GEO4271 GEO16011 GEO4412 94.915 57.692 76.304 83.529 0.000

GEO1993 GEO4271 GEO4412 93.220 61.538 77.379 83.529 0.000

GEO4271 GEO4290 GEO4412 96.610 57.692 77.151 84.706 0.000

GEO1993 GEO16011 GEO4412 91.525 69.231 80.378 84.706 0.000

GEO1993 GEO4290 GEO4412 96.610 65.385 80.997 87.059 0.000
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Table 68: Classification performance of MS-TRL Combo, three source datasets, on brain

cancer set

Source Target SN SP BACC AccAb

GEO4271 GEO4290 GEO4412 GEO16011 96.855 6.250 51.553 88.571

GEO1993 GEO4271 GEO4290 GEO16011 96.855 12.500 54.678 89.143

GEO1993 GEO4271 GEO4412 GEO16011 96.855 12.500 54.678 89.143

GEO1993 GEO4290 GEO4412 GEO16011 98.742 12.500 55.621 90.857

GEO4271 GEO4290 GEO4412 GEO1993 89.744 68.421 79.082 82.759

GEO4271 GEO16011 GEO4412 GEO1993 92.308 68.421 80.364 84.483

GEO16011 GEO4290 GEO4412 GEO1993 94.872 68.421 81.646 86.207

GEO4271 GEO16011 GEO4290 GEO1993 94.872 68.421 81.646 86.207

GEO16011 GEO4290 GEO4412 GEO4271 98.684 20.833 59.759 80.000

GEO1993 GEO4290 GEO4412 GEO4271 97.368 25.000 61.184 80.000

GEO1993 GEO16011 GEO4412 GEO4271 100.000 20.833 60.417 81.000

GEO1993 GEO16011 GEO4290 GEO4271 98.684 25.000 61.842 81.000

GEO4271 GEO16011 GEO4412 GEO4290 93.827 26.316 63.000 81.000

GEO1993 GEO4271 GEO4412 GEO4290 93.827 36.842 65.335 83.000

GEO1993 GEO16011 GEO4412 GEO4290 95.062 36.842 65.952 84.000

GEO1993 GEO4271 GEO16011 GEO4290 96.296 31.579 63.938 84.000

GEO4271 GEO16011 GEO4290 GEO4412 98.305 53.846 76.076 84.706

GEO1993 GEO4271 GEO16011 GEO4412 94.915 61.538 78.227 84.706

GEO1993 GEO16011 GEO4290 GEO4412 96.610 61.538 79.074 85.882

GEO1993 GEO4271 GEO4290 GEO4412 96.610 61.538 79.074 85.882
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Table 69: Classification performance of MS-TRL Combo, using two source datasets within

the mixed cancer set

Source Target SN SP BACC AccAb Ab

GEO7904 GEO7670 GEO4412 93.22 50.00 71.61 80.00 0.00

GEO9348 GEO7670 GEO4412 93.10 53.85 73.48 80.00 1.18

GEO7904 GEO9348 GEO4412 96.55 50.00 73.28 81.18 1.18

GEO6956 GEO9348 GEO4412 94.92 53.85 74.38 82.35 0.00

GEO6956 GEO7670 GEO4412 94.92 53.85 74.38 82.35 0.00

GEO6956 GEO7904 GEO4412 98.31 50.00 74.15 83.53 0.00

GEO9348 GEO7670 GEO6956 94.12 55.00 74.56 84.27 1.12

GEO7670 GEO4412 GEO6956 95.59 55.00 75.29 85.39 1.12

GEO9348 GEO4412 GEO6956 95.59 55.00 75.29 85.39 1.12

GEO7904 GEO4412 GEO6956 97.10 55.00 76.05 87.64 0.00

GEO7904 GEO7670 GEO6956 98.55 55.00 76.78 88.76 0.00

GEO7904 GEO9348 GEO6956 98.55 55.00 76.78 88.76 0.00

GEO6956 GEO7904 GEO7670 94.87 81.48 88.18 89.39 0.00

GEO6956 GEO9348 GEO7670 94.87 81.48 88.18 89.39 0.00

GEO9348 GEO4412 GEO7670 94.87 85.19 90.03 90.91 0.00

GEO7904 GEO9348 GEO7670 94.87 85.19 90.03 90.91 0.00

GEO6956 GEO4412 GEO7670 94.87 85.19 90.03 90.91 0.00

GEO7904 GEO4412 GEO7670 97.44 85.19 91.31 92.42 0.00

GEO6956 GEO9348 GEO7904 93.02 31.58 62.30 74.19 0.00

GEO6956 GEO4412 GEO7904 95.35 31.58 63.46 75.81 0.00

GEO9348 GEO7670 GEO7904 95.35 31.58 63.46 75.81 0.00

GEO9348 GEO4412 GEO7904 95.35 36.84 66.10 77.42 0.00

GEO6956 GEO7670 GEO7904 97.67 36.84 67.26 79.03 0.00

GEO7670 GEO4412 GEO7904 97.67 36.84 67.26 79.03 0.00

GEO7904 GEO7670 GEO9348 100.00 66.67 83.33 95.12 0.00

GEO6956 GEO4412 GEO9348 100.00 66.67 83.33 95.12 0.00

GEO7670 GEO4412 GEO9348 100.00 66.67 83.33 95.12 0.00

GEO6956 GEO7670 GEO9348 100.00 75.00 87.50 96.34 0.00

GEO7904 GEO4412 GEO9348 100.00 83.33 91.67 97.56 0.00

GEO6956 GEO7904 GEO9348 100.00 83.33 91.67 97.56 0.00
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Table 70: Classification performance of MS-TRL Combo, using three source datasets within

the mixed cancer set

Source Target SN SP BACC AccAb Ab

GEO6956 GEO7904 GEO9348 GEO4412 94.915 46.154 70.535 80.000 0.000

GEO7904 GEO9348 GEO7670 GEO4412 94.828 50.000 72.414 80.000 1.176

GEO6956 GEO9348 GEO7670 GEO4412 93.220 53.846 73.533 81.176 0.000

GEO6956 GEO7904 GEO7670 GEO4412 98.305 50.000 74.153 83.529 0.000

GEO9348 GEO7670 GEO4412 GEO6956 94.118 55.000 74.559 84.270 1.124

GEO7904 GEO7670 GEO4412 GEO6956 97.101 55.000 76.051 87.640 0.000

GEO7904 GEO9348 GEO4412 GEO6956 97.101 55.000 76.051 87.640 0.000

GEO7904 GEO9348 GEO7670 GEO6956 97.101 55.000 76.051 87.640 0.000

GEO6956 GEO7904 GEO9348 GEO7670 94.872 81.481 88.177 89.394 0.000

GEO6956 GEO7904 GEO4412 GEO7670 94.872 81.481 88.177 89.394 0.000

GEO6956 GEO9348 GEO4412 GEO7670 94.872 88.889 91.880 92.424 0.000

GEO7904 GEO9348 GEO4412 GEO7670 97.436 85.185 91.311 92.424 0.000

GEO6956 GEO9348 GEO4412 GEO7904 93.023 31.579 62.301 74.194 0.000

GEO9348 GEO7670 GEO4412 GEO7904 97.674 26.316 61.995 75.806 0.000

GEO6956 GEO9348 GEO7670 GEO7904 95.349 36.842 66.095 77.419 0.000

GEO6956 GEO7670 GEO4412 GEO7904 97.674 31.579 64.627 77.419 0.000

GEO7904 GEO7670 GEO4412 GEO9348 100.000 58.333 79.167 93.902 0.000

GEO6956 GEO7670 GEO4412 GEO9348 100.000 66.667 83.333 95.122 0.000

GEO6956 GEO7904 GEO7670 GEO9348 100.000 66.667 83.333 95.122 0.000

GEO6956 GEO7904 GEO4412 GEO9348 100.000 75.000 87.500 96.341 0.000
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Table 71: Classification performance of MS-TRL OnlyPriors, using two source datasets

within the brain cancer set

Source Target SN SP BACC AccAb Ab

GEO1993 GEO4290 GEO16011 96.599 50.000 73.299 85.143 8.000

GEO4290 GEO4412 GEO16011 98.561 20.000 59.281 78.857 17.714

GEO1993 GEO4412 GEO16011 95.425 50.000 72.712 87.429 4.571

GEO4271 GEO4412 GEO16011 89.103 50.000 69.551 82.286 5.143

GEO1993 GEO4271 GEO16011 91.613 57.143 74.378 85.714 3.429

GEO4271 GEO4290 GEO16011 90.850 54.545 72.698 82.857 6.286

GEO4271 GEO4412 GEO1993 87.179 47.368 67.274 74.138 0.000

GEO4271 GEO4290 GEO1993 94.737 57.895 76.316 81.034 1.724

GEO4290 GEO4412 GEO1993 97.368 44.444 70.906 77.586 3.448

GEO4271 GEO16011 GEO1993 91.429 64.706 78.067 74.138 10.345

GEO16011 GEO4290 GEO1993 100.000 50.000 75.000 77.586 6.897

GEO16011 GEO4412 GEO1993 94.737 61.111 77.924 81.034 3.448

GEO1993 GEO16011 GEO4271 94.667 54.545 74.606 83.000 3.000

GEO1993 GEO4412 GEO4271 93.333 54.545 73.939 82.000 3.000

GEO16011 GEO4412 GEO4271 93.421 50.000 71.711 82.000 2.000

GEO1993 GEO4290 GEO4271 93.421 43.478 68.450 81.000 1.000

GEO16011 GEO4290 GEO4271 96.053 52.174 74.113 85.000 1.000

GEO4290 GEO4412 GEO4271 93.421 54.545 73.983 83.000 2.000

GEO4271 GEO16011 GEO4290 88.462 38.889 63.675 76.000 4.000

GEO4271 GEO4412 GEO4290 88.462 52.632 70.547 79.000 3.000

GEO1993 GEO4271 GEO4290 86.420 52.632 69.526 80.000 0.000

GEO1993 GEO4412 GEO4290 85.897 57.895 71.896 78.000 3.000

GEO1993 GEO16011 GEO4290 85.000 57.895 71.447 79.000 1.000

GEO16011 GEO4412 GEO4290 87.342 47.368 67.355 78.000 2.000

GEO1993 GEO16011 GEO4412 98.246 56.522 77.384 81.176 5.882

GEO1993 GEO4271 GEO4412 91.228 66.667 78.947 80.000 4.706

GEO1993 GEO4290 GEO4412 87.500 60.000 73.750 75.294 4.706

GEO4271 GEO4290 GEO4412 91.525 46.154 68.840 77.647 0.000

GEO16011 GEO4290 GEO4412 96.491 41.667 69.079 76.471 4.706

GEO4271 GEO16011 GEO4412 98.214 43.478 70.846 76.471 7.059
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Table 72: Classification performance of MS-TRL OnlyPriors, using three source datasets

within the brain cancer set

Source Target SN SP BACC AccAb Ab

GEO4271 GEO4290 GEO4412 GEO16011 90.968 44.444 67.706 82.857 6.286

GEO1993 GEO4271 GEO4290 GEO16011 92.258 57.143 74.700 86.286 3.429

GEO1993 GEO4271 GEO4412 GEO16011 92.949 57.143 75.046 87.429 2.857

GEO1993 GEO4290 GEO4412 GEO16011 96.732 50.000 73.366 88.571 4.571

GEO16011 GEO4290 GEO4412 GEO1993 97.436 43.750 70.593 77.586 5.172

GEO4271 GEO16011 GEO4290 GEO1993 94.595 57.895 76.245 79.310 3.448

GEO4271 GEO4290 GEO4412 GEO1993 94.737 52.632 73.684 79.310 1.724

GEO4271 GEO16011 GEO4412 GEO1993 92.105 57.895 75.000 79.310 1.724

GEO1993 GEO16011 GEO4412 GEO4271 94.667 43.478 69.072 81.000 2.000

GEO16011 GEO4290 GEO4412 GEO4271 94.737 40.909 67.823 81.000 2.000

GEO1993 GEO4290 GEO4412 GEO4271 93.333 43.478 68.406 80.000 2.000

GEO1993 GEO16011 GEO4290 GEO4271 96.053 39.130 67.592 82.000 1.000

GEO1993 GEO16011 GEO4412 GEO4290 88.750 57.895 73.322 82.000 1.000

GEO1993 GEO4271 GEO4412 GEO4290 86.250 52.632 69.441 79.000 1.000

GEO1993 GEO4271 GEO16011 GEO4290 87.500 52.632 70.066 80.000 1.000

GEO4271 GEO16011 GEO4412 GEO4290 91.139 47.368 69.254 81.000 2.000

GEO4271 GEO16011 GEO4290 GEO4412 98.214 38.462 68.338 76.471 3.529

GEO1993 GEO4271 GEO16011 GEO4412 92.982 60.870 76.926 78.824 5.882

GEO1993 GEO16011 GEO4290 GEO4412 94.737 48.000 71.368 77.647 3.529

GEO1993 GEO4271 GEO4290 GEO4412 90.909 52.000 71.455 74.118 5.882
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Table 73: Classification performance of MS-TRL OnlyPriors, using two source datasets

within the mixed cancer set

Source Target SN SP BACC AccAb Ab

GEO7904 GEO9348 GEO4412 84.906 37.500 61.203 60.000 18.824

GEO6956 GEO7904 GEO4412 91.379 52.381 71.880 75.294 7.059

GEO7904 GEO7670 GEO4412 91.071 50.000 70.536 71.765 10.588

GEO6956 GEO9348 GEO4412 83.636 68.421 76.029 69.412 12.941

GEO6956 GEO7670 GEO4412 94.828 52.381 73.604 77.647 7.059

GEO9348 GEO7670 GEO4412 90.909 54.167 72.538 74.118 7.059

GEO7904 GEO4412 GEO6956 96.296 55.556 75.926 69.663 19.101

GEO7904 GEO7670 GEO6956 91.667 55.000 73.333 74.157 10.112

GEO9348 GEO7670 GEO6956 61.765 87.500 74.632 39.326 43.820

GEO7904 GEO9348 GEO6956 95.455 50.000 72.727 56.180 32.584

GEO7670 GEO4412 GEO6956 88.462 55.556 72.009 62.921 21.348

GEO9348 GEO4412 GEO6956 83.721 61.111 72.416 52.809 31.461

GEO9348 GEO4412 GEO7670 91.667 80.769 86.218 81.818 6.061

GEO7904 GEO9348 GEO7670 92.308 92.000 92.154 89.394 3.030

GEO6956 GEO7904 GEO7670 97.436 83.333 90.385 87.879 4.545

GEO6956 GEO9348 GEO7670 94.872 80.769 87.821 87.879 1.515

GEO6956 GEO4412 GEO7670 97.368 80.000 88.684 86.364 4.545

GEO7904 GEO4412 GEO7670 92.105 84.000 88.053 84.848 4.545

GEO6956 GEO4412 GEO7904 94.595 33.333 63.964 64.516 16.129

GEO6956 GEO7670 GEO7904 90.476 40.000 65.238 70.968 8.065

GEO9348 GEO7670 GEO7904 90.698 35.714 63.206 70.968 8.065

GEO7670 GEO4412 GEO7904 95.349 31.250 63.299 74.194 4.839

GEO9348 GEO4412 GEO7904 92.308 40.000 66.154 67.742 12.903

GEO6956 GEO9348 GEO7904 84.211 33.333 58.772 58.065 19.355

GEO7904 GEO4412 GEO9348 100.000 55.556 77.778 91.463 3.659

GEO7904 GEO7670 GEO9348 100.000 50.000 75.000 92.683 0.000

GEO6956 GEO4412 GEO9348 100.000 50.000 75.000 92.683 0.000

GEO6956 GEO7670 GEO9348 100.000 58.333 79.167 93.902 0.000

GEO7670 GEO4412 GEO9348 100.000 33.333 66.667 90.244 0.000

GEO6956 GEO7904 GEO9348 98.571 83.333 90.952 96.341 0.000
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Table 74: Classification performance of MS-TRL OnlyPriors, using three source datasets

within the mixed cancer set

Source Target SN SP BACC AccAb Ab

GEO7904 GEO9348 GEO7670 GEO4412 91.228 50.000 70.614 75.294 4.706

GEO6956 GEO7904 GEO9348 GEO4412 91.379 57.143 74.261 76.471 7.059

GEO6956 GEO9348 GEO7670 GEO4412 91.379 52.174 71.777 76.471 4.706

GEO6956 GEO7904 GEO7670 GEO4412 92.982 52.174 72.578 76.471 5.882

GEO7904 GEO9348 GEO7670 GEO6956 90.625 55.000 72.812 77.528 5.618

GEO9348 GEO7670 GEO4412 GEO6956 87.500 60.000 73.750 68.539 14.607

GEO7904 GEO7670 GEO4412 GEO6956 92.063 50.000 71.032 76.404 6.742

GEO7904 GEO9348 GEO4412 GEO6956 94.737 57.895 76.316 73.034 14.607

GEO6956 GEO9348 GEO4412 GEO7670 97.368 80.769 89.069 87.879 3.030

GEO6956 GEO7904 GEO9348 GEO7670 94.872 76.000 85.436 84.848 3.030

GEO6956 GEO7904 GEO4412 GEO7670 94.872 83.333 89.103 86.364 4.545

GEO7904 GEO9348 GEO4412 GEO7670 94.872 88.462 91.667 90.909 1.515

GEO9348 GEO7670 GEO4412 GEO7904 95.349 25.000 60.174 72.581 4.839

GEO6956 GEO9348 GEO7670 GEO7904 90.698 40.000 65.349 72.581 6.452

GEO6956 GEO7670 GEO4412 GEO7904 93.023 37.500 65.262 74.194 4.839

GEO6956 GEO9348 GEO4412 GEO7904 88.095 37.500 62.798 69.355 6.452

GEO6956 GEO7904 GEO7670 GEO9348 100.000 50.000 75.000 92.683 0.000

GEO6956 GEO7670 GEO4412 GEO9348 100.000 50.000 75.000 92.683 0.000

GEO6956 GEO7904 GEO4412 GEO9348 100.000 66.667 83.333 95.122 0.000

GEO7904 GEO7670 GEO4412 GEO9348 100.000 41.667 70.833 91.463 0.000
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Table 75: The average AccAb (%) per number of sources for MS-TRL-Combo. For number

of sources, None ≡ RL, and One ≡ TRL.

Number of sources

Disease Target None One Two Three Four

Brain GEO16011 89.143 89.286 89.429 89.429 89.143

Brain GEO1993 86.207 86.638 85.920 84.914 84.483

Brain GEO4271 78.000 80.000 80.500 80.500 80.000

Brain GEO4290 82.000 83.750 84.000 83.000 83.000

Brain GEO4412 81.176 82.059 84.313 85.294 84.706

Breast GEO10780 86.486 87.162 87.658 87.973 88.108

Breast GEO15852 84.884 85.466 85.078 84.884 86.047

Breast GEO29431 93.939 95.076 95.758 95.833 95.455

Breast GEO42568 95.868 96.281 95.868 95.248 95.041

Breast GEO7904 77.419 77.822 77.150 77.016 77.419

Colon GEO10715 60.000 67.500 68.888 69.167 70.000

Colon GEO20916 97.143 97.857 98.333 97.857 97.143

Colon GEO23878 94.915 95.763 96.610 96.610 98.305

Colon GEO24514 93.878 96.428 96.599 97.449 97.959

Colon GEO9348 95.122 97.561 99.797 100.000 100.000

Lung GEO10072 96.262 96.729 95.794 95.327 95.327

Lung GEO18842 91.209 97.527 98.166 99.176 100.000

Lung GEO19188 94.872 95.513 95.299 95.193 94.872

Lung GEO19804 94.167 94.792 94.445 94.584 95.000

Lung GEO7670 87.879 93.940 94.192 93.939 93.939

Mix GEO4412 81.176 82.059 81.569 81.176 82.353

Mix GEO6956 87.640 86.236 86.704 86.798 86.517

Mix GEO7904 87.879 89.053 90.657 90.909 89.394

Mix GEO7670 77.419 78.629 76.882 76.210 77.419

Mix GEO9348 95.122 96.951 96.138 95.122 95.122

Prostate GEO17951 83.212 85.949 86.496 86.314 86.131

Prostate GEO32448 88.750 90.313 91.666 92.813 93.750

Prostate GEO46602 92.000 94.000 94.000 94.000 94.000

Prostate GEO6956 87.640 86.236 86.142 83.989 84.270

Prostate GEO82188 87.500 90.809 90.319 89.706 89.706
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Table 76: The average AccAb (%) per number of sources for MS-TRL-OnlyPriors. For

number of sources, None ≡ RL, and One ≡ TRL

Number of sources

Disease Target None One Two Three Four

Brain GEO16011 89.143 78.286 83.714 86.286 87.429

Brain GEO1993 86.207 74.569 77.586 78.879 81.034

Brain GEO4271 78.000 80.250 82.666 81.000 82.000

Brain GEO4290 82.000 74.250 78.333 80.500 79.000

Brain GEO4412 81.176 73.824 77.843 76.765 76.471

Breast GEO10780 86.486 31.622 55.766 69.595 76.216

Breast GEO15852 84.884 63.663 83.721 87.210 86.047

Breast GEO29431 93.939 82.576 93.939 94.697 95.455

Breast GEO42568 95.868 84.504 95.592 95.455 95.041

Breast GEO7904 77.419 39.516 57.796 64.516 69.355

Colon GEO10715 60.000 35.000 59.445 72.500 80.000

Colon GEO20916 97.143 74.999 90.429 96.040 95.714

Colon GEO23878 94.915 73.305 90.678 94.915 96.610

Colon GEO24514 93.878 78.565 89.116 96.939 97.959

Colon GEO9348 95.122 87.195 98.577 99.085 100.000

Lung GEO10072 96.262 85.981 92.679 92.991 93.458

Lung GEO18842 91.209 92.857 96.520 95.879 94.505

Lung GEO19188 94.872 90.705 93.590 93.750 94.872

Lung GEO19804 94.167 82.500 89.861 92.500 93.333

Lung GEO7670 87.879 90.909 93.182 93.939 93.939

Mix GEO4412 81.176 52.647 71.373 76.177 76.471

Mix GEO6956 87.640 32.023 59.176 73.876 78.652

Mix GEO7904 87.879 71.970 86.364 87.500 84.848

Mix GEO7670 77.419 48.791 67.742 72.178 72.581

Mix GEO9348 95.122 93.902 92.886 92.988 92.683

Prostate GEO17951 83.212 67.336 79.927 81.752 83.212

Prostate GEO32448 88.750 65.313 74.792 80.000 81.250

Prostate GEO46602 92.000 91.500 92.333 93.000 94.000

Prostate GEO6956 87.640 58.708 71.910 76.405 77.528

Prostate GEO82188 87.500 69.669 82.598 84.375 83.824
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Table 77: The average rate (%) of abstentions per number of sources for MS-TRL-OnlyPriors

Number of sources

Disease Target None One Two Three Four

Brain GEO16011 1.143 15.714 7.523 4.286 2.857

Brain GEO1993 0.000 5.604 4.310 3.017 1.724

Brain GEO4271 0.000 4.250 2.000 1.750 2.000

Brain GEO4290 1.000 7.750 2.167 1.333 3.000

Brain GEO4412 1.176 7.941 4.533 4.706 4.706

Breast GEO10780 1.081 59.189 27.838 10.676 4.865

Breast GEO15852 0.000 24.709 5.039 2.035 2.326

Breast GEO29431 6.061 8.712 1.515 0.758 0.000

Breast GEO42568 1.653 8.265 0.138 0.207 0.000

Breast GEO7904 1.613 39.919 18.011 11.291 6.452

Colon GEO10715 13.333 54.167 22.222 6.667 3.333

Colon GEO20916 1.429 18.214 2.619 1.429 1.429

Colon GEO23878 5.085 19.068 3.108 0.848 0.000

Colon GEO24514 0.000 30.102 4.762 0.000 0.000

Colon GEO9348 2.439 8.232 0.000 0.000 0.000

Lung GEO10072 1.869 7.710 2.181 2.337 1.869

Lung GEO18842 4.396 4.121 2.198 1.923 2.198

Lung GEO19188 0.000 2.885 0.534 0.641 0.000

Lung GEO19804 0.833 7.500 1.389 0.625 0.833

Lung GEO7670 4.545 2.273 1.515 1.136 0.000

Mix GEO4412 1.176 32.647 10.588 5.588 3.529

Mix GEO6956 1.124 57.584 26.404 10.394 5.618

Mix GEO7904 1.613 35.484 11.559 5.646 4.839

Mix GEO7670 4.545 18.182 4.040 3.030 3.030

Mix GEO9348 2.439 1.525 0.610 0.000 0.000

Prostate GEO17951 3.650 15.694 2.312 1.095 2.190

Prostate GEO32448 5.000 20.000 8.125 4.063 2.500

Prostate GEO46602 4.000 1.500 1.000 1.000 0.000

Prostate GEO6956 1.124 22.472 6.929 3.652 3.371

Prostate GEO82188 2.206 16.177 3.677 2.757 2.941
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Table 78: Accuracy of MS-TRL with two best sources

Source Target SN SP BACC AccAb

GEO1993 GEO4290 GEO16011 98.742 12.500 55.621 90.857

GEO16011 GEO4412 GEO1993 97.436 68.421 82.928 87.931

GEO1993 GEO16011 GEO4271 100.000 20.833 60.417 81.000

GEO1993 GEO16011 GEO4290 98.765 31.579 65.172 86.000

GEO1993 GEO4290 GEO4412 96.610 65.385 80.997 87.059

GEO7904 GEO42568 GEO10780 50.000 100.000 75.000 88.649

GEO7904 GEO29431 GEO15852 88.372 86.047 87.209 87.209

GEO7904 GEO15852 GEO29431 100.000 83.333 91.667 96.970

GEO7904 GEO29431 GEO42568 100.000 76.471 88.235 96.694

GEO42568 GEO10780 GEO7904 95.238 47.368 71.303 79.032

GEO9348 GEO23878 GEO10715 78.947 60.000 69.474 70.000

GEO10715 GEO23878 GEO20916 100.000 100.000 100.000 100.000

GEO24514 GEO9348 GEO23878 100.000 100.000 100.000 98.305

GEO9348 GEO20916 GEO24514 100.000 93.333 96.667 97.959

GEO10715 GEO20916 GEO9348 100.000 100.000 100.000 100.000

GEO19804 GEO18842 GEO10072 100.000 93.878 96.939 97.196

GEO19804 GEO10072 GEO18842 100.000 100.000 100.000 100.000

GEO10072 GEO7670 GEO19188 96.703 93.846 95.275 95.513

GEO7670 GEO18842 GEO19804 96.667 93.333 95.000 95.000

GEO19804 GEO18842 GEO7670 94.872 96.296 95.584 95.455

GEO6956 GEO7904 GEO4412 98.305 50.000 74.153 83.529

GEO7904 GEO9348 GEO6956 98.551 55.000 76.775 88.764

GEO7904 GEO4412 GEO7670 97.436 85.185 91.311 92.424

GEO7670 GEO4412 GEO7904 97.674 36.842 67.258 79.032

GEO6956 GEO7904 GEO9348 100.000 83.333 91.667 97.561

GEO46602 GEO32448 GEO17951 83.824 91.304 87.564 87.591

GEO82188 GEO17951 GEO32448 100.000 90.000 95.000 93.750

GEO6956 GEO32448 GEO46602 100.000 92.857 96.429 98.000

GEO46602 GEO32448 GEO6956 100.000 60.000 80.000 91.011

GEO6956 GEO46602 GEO82188 92.308 91.549 91.928 91.912
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Table 79: Accuracy of MS-TRL with 3 best sources

Source Target SN SP BACC AccAb

GEO1993 GEO4290 GEO4412 GEO16011 98.742 12.500 55.621 90.857

GEO4271 GEO16011 GEO4290 GEO1993 94.872 68.421 81.646 86.207

GEO1993 GEO16011 GEO4290 GEO4271 98.684 25.000 61.842 81.000

GEO1993 GEO4271 GEO16011 GEO4290 96.296 31.579 63.938 84.000

GEO1993 GEO4271 GEO4290 GEO4412 96.610 61.538 79.074 85.882

GEO7904 GEO42568 GEO29431 GEO10780 50.000 100.000 75.000 88.649

GEO7904 GEO10780 GEO29431 GEO15852 86.047 86.047 86.047 86.047

GEO7904 GEO15852 GEO42568 GEO29431 100.000 83.333 91.667 96.970

GEO7904 GEO15852 GEO29431 GEO42568 100.000 70.588 85.294 95.868

GEO15852 GEO42568 GEO10780 GEO7904 95.238 42.105 68.672 77.419

GEO9348 GEO20916 GEO23878 GEO10715 84.211 60.000 72.105 73.333

GEO9348 GEO10715 GEO23878 GEO20916 100.000 100.000 100.000 100.000

GEO24514 GEO10715 GEO20916 GEO23878 97.143 100.000 98.571 98.305

GEO9348 GEO10715 GEO20916 GEO24514 100.000 93.333 96.667 97.959

GEO24514 GEO10715 GEO20916 GEO9348 100.000 100.000 100.000 100.000

GEO19804 GEO18842 GEO19188 GEO10072 100.000 91.837 95.918 96.262

GEO19804 GEO10072 GEO7670 GEO18842 100.000 100.000 100.000 100.000

GEO10072 GEO7670 GEO18842 GEO19188 96.703 93.846 95.275 95.513

GEO10072 GEO18842 GEO19188 GEO19804 95.000 95.000 95.000 95.000

GEO19804 GEO10072 GEO18842 GEO7670 94.872 96.296 95.584 95.455

GEO6956 GEO7904 GEO7670 GEO4412 98.305 50.000 74.153 83.529

GEO7904 GEO9348 GEO7670 GEO6956 97.101 55.000 76.051 87.640

GEO7904 GEO9348 GEO4412 GEO7670 97.436 85.185 91.311 92.424

GEO6956 GEO7670 GEO4412 GEO7904 97.674 31.579 64.627 77.419

GEO6956 GEO7904 GEO4412 GEO9348 100.000 75.000 87.500 96.341

GEO6956 GEO46602 GEO32448 GEO17951 83.824 91.304 87.564 87.591

GEO46602 GEO82188 GEO17951 GEO32448 97.436 92.500 94.968 93.750

GEO6956 GEO82188 GEO32448 GEO46602 100.000 85.714 92.857 96.000

GEO82188 GEO17951 GEO32448 GEO6956 95.652 50.000 72.826 85.393

GEO6956 GEO46602 GEO32448 GEO82188 89.231 90.141 89.686 89.706
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Table 80: Accuracy of MS-TRL with all sources

Source Target SN SP BACC AccAb

all sources GEO16011 96.855 12.500 54.678 89.143

all sources GEO1993 92.308 68.421 80.364 84.483

all sources GEO4271 98.684 20.833 59.759 80.000

all sources GEO4290 95.062 31.579 63.320 83.000

all sources GEO4412 98.305 53.846 76.076 84.706

all sources GEO10780 47.619 100.000 73.810 88.108

all sources GEO15852 88.372 83.721 86.047 86.047

all sources GEO29431 98.148 83.333 90.741 95.455

all sources GEO42568 99.038 70.588 84.813 95.041

all sources GEO7904 93.023 42.105 67.564 77.419

all sources GEO10715 73.684 70.000 71.842 70.000

all sources GEO20916 97.222 97.059 97.141 97.143

all sources GEO23878 97.143 100.000 98.571 98.305

all sources GEO24514 100.000 93.333 96.667 97.959

all sources GEO9348 100.000 100.000 100.000 100.000

all sources GEO10072 100.000 91.837 95.918 95.327

all sources GEO18842 100.000 100.000 100.000 100.000

all sources GEO19188 96.703 92.308 94.505 94.872

all sources GEO19804 95.000 95.000 95.000 95.000

all sources GEO7670 94.872 92.593 93.732 93.939

all sources GEO4412 96.610 50.000 73.305 82.353

all sources GEO6956 95.652 55.000 75.326 86.517

all sources GEO7670 94.872 81.481 88.177 89.394

all sources GEO7904 97.674 31.579 64.627 77.419

all sources GEO9348 100.000 66.667 83.333 95.122

all sources GEO17951 86.765 85.507 86.136 86.131

all sources GEO32448 95.000 92.500 93.750 93.750

all sources GEO46602 97.222 85.714 91.468 94.000

all sources GEO6956 95.652 45.000 70.326 84.270

all sources GEO82188 89.231 90.141 89.686 89.706
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E.2 ROBUST RULE PATTERNS VIA MS-TRL

E.2.1 BRAIN CANCER

=== TARGET ===

GEO1993.txt

=== SOURCES ===

S1: GEO4271.txt

S2: GEO16011.txt

S3: GEO4290.txt

S4: GEO4412.txt

=== Robust rules ===

S1,S4 12. IF(COL3A1 = -inf..7.259)) THEN (@Class = CONTROL)

CF=0.904, PV=4.78375E-11, TP=27, FP=5, Pos=67, Neg=171

S1,S3 7. IF(PRKCZ = -inf..6.716)) THEN (@Class = CASE)

CF=0.924, PV=5.30643E-5, TP=50, FP=1, Pos=193, Neg=60

S1,S4 14. IF(ABLIM1 = 9.413..inf)) THEN (@Class = CONTROL)

CF=0.871, PV=2.01865E-11, TP=35, FP=11, Pos=67, Neg=170

S3,S4 4. IF(PSMA3 = 8.022..inf)) THEN (@Class = CASE)

CF=0.977, PV=1.16612E-5, TP=42, FP=0, Pos=175, Neg=62

S1,S4 10. IF(SMC4 = -inf..6.228)) THEN (@Class = CONTROL)

CF=0.905, PV=2.83551E-12, TP=31, FP=6, Pos=67, Neg=170

S1,S2,S3 4. IF(PRKCZ = -inf..6.802)) THEN (@Class = CASE)

CF=0.945, PV=5.70458E-7, TP=95, FP=1, Pos=351, Neg=76

S1,S2 4. IF(MBD2 = 7.053..inf)) THEN (@Class = CASE)

CF=0.976, PV=2.15297E-3, TP=39, FP=0, Pos=270, Neg=57
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=== TARGET ===

GEO4271.txt

=== SOURCES ===

S1: GEO1993.txt

S2: GEO16011.txt

S3: GEO4290.txt

S4: GEO4412.txt

=== Robust rules ===

S3,S4 9. IF(NUCB1 = 10.347..inf)) THEN (@Class = CASE)

CF=0.94, PV=1.27185E-6, TP=63, FP=1, Pos=208, Neg=67

S1,S4 10. IF(MGP = -inf..7.792)) THEN (@Class = CONTROL)

CF=0.935, PV=5.35139E-12, TP=25, FP=2, Pos=67, Neg=166

S3,S4 14. IF(PPP2R5A = 10.062..inf)) THEN (@Class = CONTROL)

CF=0.894, PV=5.16809E-13, TP=32, FP=9, Pos=67, Neg=208

S2,S3 13. IF(IGFBP4 = 9.201..inf)) THEN (@Class = CASE)

CF=0.891, PV=3.48447E-5, TP=96, FP=2, Pos=308, Neg=57

S1,S3 3. IF(STXBP1 = -inf..9.626)) THEN (@Class = CASE)

CF=0.937, PV=2.42759E-6, TP=61, FP=1, Pos=188, Neg=60

S2,S3 15. IF(MORF4L2 = 12.887..inf)) THEN (@Class = CASE)

CF=0.88, PV=9.76961E-3, TP=46, FP=1, Pos=308, Neg=57

S1,S2,S4 16. IF(HSPG2 = 6.593..inf)) THEN (@Class = CASE)

CF=0.838, PV=5.41672E-7, TP=126, FP=6, Pos=325, Neg=83

S1,S2 7. IF(NASP = 10.219..inf)) THEN (@Class = CASE)

CF=0.979, PV=6.31374E-4, TP=46, FP=0, Pos=267, Neg=56

S2,S3 15. IF(PPP3CB = -inf..9.884)) THEN (@Class = CASE)

CF=0.905, PV=9.39122E-9, TP=167, FP=3, Pos=309, Neg=56
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=== TARGET ===

GEO4290.txt

=== SOURCES ===

S1: GEO1993.txt

S2: GEO4271.txt

S3: GEO16011.txt

S4: GEO4412.txt

=== Robust rules ===

S1,S4 16. IF(IFNGR2 = -inf..11.235)) THEN (@Class = CONTROL)

CF=0.863, PV=2.9495E-10, TP=31, FP=11, Pos=63, Neg=170

S1,S3 1. IF(THBS1 = 6.373..inf)

(RAE1 = 10.352..inf)) THEN (@Class = CASE)

CF=0.991, PV=3.29205E-8, TP=108, FP=0, Pos=271, Neg=52

S2,S3 2. IF(SLC9A3R1 = -inf..9.608)

(PPIF = -inf..10.553)) THEN (@Class = CASE)

CF=0.989, PV=1.01364E-6, TP=91, FP=0, Pos=308, Neg=57

S2,S3,S4 12. IF(PPIB = 12.877..inf)) THEN (@Class = CASE)

CF=0.919, PV=1.44682E-7, TP=110, FP=2, Pos=367, Neg=83

S1,S2 14. IF(ALDH2 = 13.026..inf)) THEN (@Class = CONTROL)

CF=0.903, PV=1.22319E-11, TP=26, FP=6, Pos=60, Neg=188

S2,S4 5. IF(NET1 = -inf..9.021)) THEN (@Class = CASE)

CF=0.944, PV=3.48346E-7, TP=68, FP=1, Pos=208, Neg=67

S1,S4 3. IF(ITPR3 = 7.331..inf)) THEN (@Class = CASE)

CF=0.985, PV=1.61111E-8, TP=63, FP=0, Pos=171, Neg=62

S1,S3 10. IF(PFN1 = 12.861..inf)) THEN (@Class = CASE)

CF=0.942, PV=1.86968E-6, TP=99, FP=1, Pos=271, Neg=52

S1,S4 14. IF(GLUD1 = 11.745..inf)

(ACTA2 = -inf..10.827)) THEN (@Class = CONTROL)
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CF=0.856, PV=6.02923E-11, TP=35, FP=14, Pos=62, Neg=171

S1,S2 15. IF(MYL9 = 8.413..inf)) THEN (@Class = CASE)

CF=0.851, PV=8.95858E-7, TP=94, FP=5, Pos=188, Neg=60

=== TARGET ===

GEO4412.txt

=== SOURCES ===

S1: GEO1993.txt

S2: GEO4271.txt

S3: GEO16011.txt

S4: GEO4290.txt

=== Robust rules ===

S1,S4 4. IF(ITPR3 = 9.381..inf)) THEN (@Class = CASE)

CF=0.98, PV=2.11915E-6, TP=48, FP=0, Pos=173, Neg=61

S1,S2 6. IF(MGP = -inf..9.736)) THEN (@Class = CONTROL)

CF=0.92, PV=6.49589E-11, TP=24, FP=3, Pos=66, Neg=168

S2,S4 8. IF(ACO2 = -inf..12.967)) THEN (@Class = CASE)

CF=0.944, PV=3.97578E-7, TP=69, FP=1, Pos=210, Neg=66

S2,S3 14. IF(RPS24 = -inf..17.042)) THEN (@Class = CASE)

CF=0.916, PV=3.18315E-7, TP=109, FP=2, Pos=288, Neg=63

S2,S4 5. IF(RAD21 = -inf..12.466)) THEN (@Class = CASE)

CF=0.943, PV=5.12497E-7, TP=68, FP=1, Pos=210, Neg=66

S3,S4 3. IF(GSS = 11.868..inf)) THEN (@Class = CASE)

CF=0.978, PV=1.22777E-3, TP=44, FP=0, Pos=293, Neg=59

S2,S4 15. IF(SNX19 = -inf..11.023)) THEN (@Class = CASE)

CF=0.889, PV=4.34601E-5, TP=57, FP=2, Pos=210, Neg=67

S1,S2,S4 18. IF(PPP2R5A = 12.456..inf)) THEN (@Class = CONTROL)
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CF=0.9, PV=3.21965E-15, TP=39, FP=10, Pos=86, Neg=249

S3,S4 7. IF(CASP3 = 10.998..inf)) THEN (@Class = CASE)

CF=0.981, PV=4.28914E-4, TP=50, FP=0, Pos=293, Neg=59

S2,S4 8. IF(SNX19 = -inf..11.023)) THEN (@Class = CASE)

CF=0.93, PV=1.445E-5, TP=54, FP=1, Pos=210, Neg=67

S2,S3 2. IF(ZMYM2 = -inf..11.957)) THEN (@Class = CASE)

CF=0.986, PV=3.12389E-6, TP=71, FP=0, Pos=288, Neg=64

S1,S3 9. IF(UPP1 = 9.905..inf)) THEN (@Class = CASE)

CF=0.935, PV=8.80857E-6, TP=74, FP=1, Pos=251, Neg=59

S2 15. IF(LAMC1 = 12.362..inf)) THEN (@Class = CASE)

CF=0.89, PV=5.23229E-7, TP=72, FP=3, Pos=129, Neg=48

S1,S2 16. IF(ABLIM1 = 14.070..inf)) THEN (@Class = CONTROL)

CF=0.858, PV=1.96977E-10, TP=34, FP=12, Pos=67, Neg=168

S1,S2 16. IF(SMC4 = -inf..11.376)) THEN (@Class = CONTROL)

CF=0.843, PV=1.17172E-10, TP=38, FP=16, Pos=66, Neg=169

=== TARGET ===

GEO16011.txt

=== SOURCES ===

S1: GEO1993.txt

S2: GEO4271.txt

S3: GEO4290.txt

S4: GEO4412.txt

=== Robust Rules ===

S1,S3,S4 3. IF(PLOD1 = 8.723..inf)

(ARPC1A = 10.395..inf)) THEN (@Class = CASE)

CF=0.971, PV=2.5091E-14, TP=168, FP=1, Pos=322, Neg=78
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S2,S3 16. IF(EPAS1 = 9.104..inf)

(GLUD1 = -inf..10.090)) THEN (@Class = CASE)

CF=0.876, PV=2.78827E-9, TP=192, FP=5, Pos=300, Neg=57

S1,S2 8. IF(PLOD1 = 8.723..inf) (IMMT = 9.917..inf)

(MYL9 = 5.967..inf)) THEN (@Class = CASE)

CF=0.906, PV=9.15999E-9, TP=139, FP=3, Pos=258, Neg=57

S1,S2,S3,S4 10. IF(CALU = 8.728..inf)) THEN (@Class = CASE)

CF=0.88, PV=2.84046E-11, TP=178, FP=6, Pos=398, Neg=102

S2,S4 12. IF(LAMC1 = -inf..8.484)

(IMMT = -inf..9.917)) THEN (@Class = CONTROL)

CF=0.838, PV=2.68817E-8, TP=22, FP=15, Pos=64, Neg=278

S1,S2 1. IF(MYL9 = 5.970..inf)

(C5orf13 = 8.444..inf)) THEN (@Class = CASE)

CF=0.994, PV=1.84852E-13, TP=154, FP=0, Pos=258, Neg=58

S2,S3,S4 4. IF(LDHA = 12.680..inf)) THEN (@Class = CASE)

CF=0.933, PV=1.00142E-13, TP=192, FP=3, Pos=359, Neg=84

S1,S2 5. IF(PTPRF = 7.792..inf)

(MYL9 = 5.709..inf)) THEN (@Class = CASE)

CF=0.935, PV=5.32095E-10, TP=141, FP=2, Pos=258, Neg=58

S1,S4 9. IF(PLOD1 = 8.723..inf)

(MYL9 = 5.709..inf)) THEN (@Class = CASE)

CF=0.903, PV=8.79279E-11, TP=158, FP=4, Pos=241, Neg=60

S2,S4 3. IF(LAMC1 = 9.107..inf)) THEN (@Class = CASE)

CF=0.935, PV=4.75264E-10, TP=139, FP=2, Pos=279, Neg=64

E.2.2 BREAST CANCER

=== TARGET ===
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GEO7904.txt

=== SOURCES ===

S1: GEO15852.txt

S2: GEO42568.txt

S3: GEO10780.txt

S4: GEO29431.txt

=== Robust Rules ===

S2,S4 1. IF(ACSL5 = -inf..6.050)) THEN (@Class = CASE)

CF=0.984, PV=9.63608E-6, TP=62, FP=0, Pos=196, Neg=46

S1,S2,S4 4. IF(ADH1B = 9.624..inf)) THEN (@Class = CONTROL)

CF=0.96, PV=0E0, TP=50, FP=3, Pos=90, Neg=239

S1,S2 8. IF(ADIPOQ = 7.488..inf)) THEN (@Class = CONTROL)

CF=0.912, PV=0E0, TP=48, FP=9, Pos=77, Neg=185

S2,S4 9. IF(ACADS = 7.037..inf)) THEN (@Class = CONTROL)

CF=0.909, PV=4.21885E-15, TP=30, FP=9, Pos=46, Neg=196

S1,S2,S4 9. IF(ANGPT1 = -inf..5.018)) THEN (@Class = CASE)

CF=0.905, PV=3.57936E-13, TP=137, FP=5, Pos=240, Neg=89

S2,S4 7. IF(ACAA2 = -inf..8.449)) THEN (@Class = CASE)

CF=0.907, PV=2.30744E-6, TP=92, FP=2, Pos=197, Neg=46

S1,S2,S4 2. IF(ABCA8 = 8.548..inf)) THEN (@Class = CONTROL)

CF=0.957, PV=0E0, TP=38, FP=2, Pos=89, Neg=240

=== TARGET ===

GEO10780.txt

=== SOURCES ===

S1: GEO7904.txt
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S2: GEO15852.txt

S3: GEO42568.txt

S4: GEO29431.txt

== Robust Rules ===

S2,S3 5. IF(ALDH18A1 = -inf..8.064)) THEN (@Class = CONTROL)

CF=0.88, PV=0E0, TP=104, FP=13, Pos=189, Neg=185

S1,S2,S3,S4 6. IF(ADH1B = 11.517..inf)) THEN (@Class = CONTROL)

CF=0.807, PV=2.36592E-8, TP=52, FP=15, Pos=220, Neg=282

S2,S3 4. IF(CSK = -inf..8.147)) THEN (@Class = CONTROL)

CF=0.897, PV=0E0, TP=114, FP=12, Pos=189, Neg=185

=== TARGET ===

GEO15852.txt

=== SOURCES ===

S1: GEO7904.txt

S2: GEO42568.txt

S3: GEO10780.txt

S4: GEO29431.txt

=== Robust Rules ===

S1,S2 5. IF(ADH1C = 6.888..inf)) THEN (@Class = CONTROL)

CF=0.95, PV=0E0, TP=41, FP=3, Pos=74, Neg=186

S2,S4 8. IF(ACACB = -inf..8.532)) THEN (@Class = CASE)

CF=0.924, PV=0E0, TP=186, FP=5, Pos=197, Neg=68

S2,S4 7. IF(ACACB = 8.532..inf)) THEN (@Class = CONTROL)

CF=0.929, PV=0E0, TP=62, FP=11, Pos=68, Neg=197
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=== TARGET ===

GEO29431.txt

=== SOURCES ===

S1: GEO7904.txt

S2: GEO15852.txt

S3: GEO42568.txt

S4: GEO10780.txt

=== Robust Rules ===

S2,S3 5. IF(COL11A1 = 7.688..inf)) THEN (@Class = CASE)

CF=0.955, PV=9.99201E-16, TP=139, FP=2, Pos=196, Neg=70

S2,S3 5. IF(ECT2 = 7.814..inf)) THEN (@Class = CASE)

CF=0.973, PV=2.22045E-16, TP=134, FP=1, Pos=196, Neg=71

S1,S2 7. IF(ADH1B = 11.084..inf)) THEN (@Class = CONTROL)

CF=0.959, PV=4.55191E-15, TP=35, FP=1, Pos=73, Neg=135

S2,S3 4. IF(ASPA = 8.321..inf)) THEN (@Class = CONTROL)

CF=0.965, PV=0E0, TP=47, FP=2, Pos=71, Neg=196

=== TARGET ===

GEO42568.txt

=== SOURCES ===

S1: GEO7904.txt

S2: GEO15852.txt

S3: GEO10780.txt

S4: GEO29431.txt
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=== Robust Rules ===

S1,S2 5. IF(COMP = 6.190..inf)) THEN (@Class = CASE)

CF=0.953, PV=4.32987E-15, TP=114, FP=2, Pos=179, Neg=77

S2,S4 4. IF(G0S2 = 12.039..inf)) THEN (@Class = CONTROL)

CF=0.968, PV=0E0, TP=40, FP=1, Pos=70, Neg=191

S1,S2 6. IF(FN1 = 11.440..inf)) THEN (@Class = CASE)

CF=0.938, PV=5.55112E-15, TP=121, FP=3, Pos=180, Neg=77

E.2.3 COLON CANCER

=== TARGET ===

GEO9348.txt

=== SOURCES ===

S1: GEO24514.txt

S2: GEO10715.txt

S3: GEO20916.txt

S4: GEO23878.txt

=== Robust rules ===

S1,S4 3. IF(HILPDA = -inf..7.338)) THEN (@Class = CONTROL)

CF=0.98, PV=0E0, TP=48, FP=0, Pos=50, Neg=132

S3,S4 1. IF(CDH3 = 5.874..inf)) THEN (@Class = CASE)

CF=0.993, PV=0E0, TP=133, FP=0, Pos=134, Neg=69

S3 2. IF(CDH3 = -inf..5.874)) THEN (@Class = CONTROL)

CF=0.979, PV=0E0, TP=45, FP=0, Pos=45, Neg=99
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=== TARGET ===

GEO10715.txt

=== SOURCE ===

S1: GEO24514.txt

S2: GEO9348.txt

S3: GEO20916.txt

S4: GEO23878.txt

=== Robust rules ===

S1,S3 1. IF(CNNM2 = 6.231..inf)) THEN (@Class = CONTROL)

CF=0.966, PV=0E0, TP=46, FP=1, Pos=59, Neg=87

=== TARGET ===

GEO20916.txt

=== SOURCES ===

S1: GEO24514.txt

S2: GEO9348.txt

S3: GEO10715.txt

S4: GEO23878.txt

=== Robust Rules ===

S4 3. IF(HILPDA = 8.429..inf)) THEN (@Class = CASE)

CF=0.963, PV=1.96287E-13, TP=56, FP=1, Pos=67, Neg=55

S1,S4 1. IF(HILPDA = -inf..7.901)) THEN (@Class = CONTROL)

CF=0.983, PV=0E0, TP=58, FP=0, Pos=70, Neg=101

=== TARGET ===
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GEO23878.txt

=== SOURCES ===

S1: GEO24514.txt

S2: GEO9348.txt

S3: GEO10715.txt

S4: GEO20916.txt

=== Robust rules ===

S2,S4 2. IF(CA7 = 6.663..inf)) THEN (@Class = CONTROL)

CF=0.984, PV=0E0, TP=61, FP=0, Pos=67, Neg=138

S2 4. IF(CA7 = -inf..6.663)) THEN (@Class = CASE)

CF=0.935, PV=4.48012E-10, TP=102, FP=2, Pos=102

S1 4. IF(ABCA8 = 7.290..inf)) THEN (@Class = CONTROL)

CF=0.971, PV=1.26565E-14, TP=32, FP=0, Pos=37, Neg=66

Nr 7. IF(ABCA8 = -inf..7.290)) THEN (@Class = CASE)

CF=0.971, PV=1.7356E-7, TP=32, FP=0, Pos=32, Neg=22

=== TARGET ===

GEO24514.txt

=== SOURCES ===

S1: GEO9348.txt

S2: GEO10715.txt

S3: GEO20916.txt

S4: GEO23878.txt

=== Robust rules ===

S3,S4 1. IF(CDH3 = 7.449..inf)) THEN (@Class = CASE)

CF=0.977, PV=0E0, TP=101, FP=1, Pos=102, Neg=71
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S3,S4 2. IF(CDH3 = -inf..7.449)) THEN (@Class = CONTROL)

CF=0.977, PV=0E0, TP=70, FP=1, Pos=71, Neg=102

E.2.4 LUNG CANCER

=== TARGET ===

GEO7670.txt

=== SOURCES ===

S1: GEO19804.txt

S2: GEO10072.txt

S3: GEO18842.txt

S4: GEO19188.txt

=== Robust Rules ===

S1 8. IF(AHNAK = 12.145..inf)) THEN (@Class = CONTROL)

CF=0.969, PV=0E0, TP=58, FP=1, Pos=84, Neg=95

Nr 9. IF(AHNAK = -inf..12.175)) THEN (@Class = CASE)

CF=0.972, PV=6.48352E-8, TP=34, FP=0, Pos=35

S1,S4 5. IF(EMP2 = 11.747..inf)) THEN (@Class = CONTROL)

CF=0.972, PV=0E0, TP=116, FP=3, Pos=149, Neg=186

=== TARGET ===

GEO10072.txt

=== SOURCES ===

S1: GEO19804.txt

S2: GEO7670.txt
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S3: GEO18842.txt

S4: GEO19188.txt

=== Robust Rules ===

S2,S4 6. IF(CLIC5 = -inf..9.439)) THEN (@Class = CASE)

CF=0.978, PV=0E0, TP=163, FP=2, Pos=182, Neg=136

S1,S4 7. IF(ARHGEF15 = 8.265..inf)) THEN (@Class = CONTROL)

CF=0.978, PV=0E0, TP=117, FP=2, Pos=169, Neg=203

S1,S2,S4 6. IF(FAM107A = -inf..8.803)) THEN (@Class = CASE)

CF=0.973, PV=0E0, TP=209, FP=4, Pos=242, Neg=197

S1,S2 6. IF(FAM189A2 = 8.816..inf)) THEN (@Class = CONTROL)

CF=0.973, PV=0E0, TP=99, FP=2, Pos=131, Neg=15

S1,S2,S4 6. IF(AGER = 8.923..inf)) THEN (@Class = CONTROL)

CF=0.967, PV=0E0, TP=171, FP=6, Pos=196, Neg=243

S1,S4 5. IF(EFNA4 = 5.989..inf)) THEN (@Class = CASE)

CF=0.971, PV=0E0, TP=152, FP=3, Pos=204, Neg=169

=== TARGET ===

GEO18842.txt

=== SOURCES ===

S1: GEO19804.txt

S2: GEO10072.txt

S3: GEO7670.txt

S4: GEO19188.txt

=== Robust Rules ===

S4 1. IF(AQP1 = -inf..10.949)) THEN (@Class = CASE)

CF=0.992, PV=0E0, TP=119, FP=0, Pos=132, Neg=106
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Nr 6. IF(AQP4 = 10.455..inf)) THEN (@Class = CONTROL)

CF=0.977, PV=1.45239E-12, TP=41, FP=0, Pos=41, Neg=41

S1,S2 1. IF(FAM107A = -inf..8.559)) THEN (@Class = CASE)

CF=0.992, PV=0E0, TP=116, FP=0, Pos=160, Neg=149

S2,S3 1. IF(EDNRB = -inf..7.750)) THEN (@Class = CASE)

CF=0.993, PV=0E0, TP=134, FP=0, Pos=139, Neg=116

S2 7. IF(EDNRB = 7.750..inf)) THEN (@Class = CONTROL)

CF=0.97, PV=0E0, TP=89, FP=2, Pos=89, Neg=100

=== TARGET ===

GEO19188.txt

=== SOURCES ===

S1: GEO19804.txt

S2: GEO10072.txt

S3: GEO7670.txt

S4: GEO18842.txt

=== Robust rules ===

S2,S3 1. IF(EDNRB = -inf..8.107)) THEN (@Class = CASE)

CF=0.994, PV=0E0, TP=170, FP=0, Pos=179, Neg=134

=== TARGET ===

GEO19804.txt

=== SOURCES ===

S1: GEO10072.txt

S2: GEO7670.txt
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S3: GEO18842.txt

S4: GEO19188.txt

=== Robust Rules ===

S2 2. IF(FAM189A2 = 8.240..inf)) THEN (@Class = CONTROL)

CF=0.972, PV=0E0, TP=64, FP=1, Pos=81, Neg=93

S4 5. IF(FAM107A = -inf..8.850)) THEN (@Class = CASE)

CF=0.964, PV=0E0, TP=124, FP=3, Pos=145, Neg=119

Nr 17. IF(FAM189A1 = -inf..4.560)) THEN (@Class = CASE)

CF=0.973, PV=8.67973E-11, TP=35, FP=0, Pos=54, Neg=54

S2 6. IF(AGER = -inf..9.445)) THEN (@Class = CASE)

CF=0.976, PV=0E0, TP=88, FP=1, Pos=93, Neg=81

S1 7. IF(AGER = 9.445..inf)) THEN (@Class = CONTROL)

CF=0.972, PV=0E0, TP=96, FP=2, Pos=103, Neg=112

S2,S4 6. IF(FABP4 = -inf..8.791)) THEN (@Class = CASE)

CF=0.962, PV=0E0, TP=152, FP=4, Pos=184, Neg=146

S4 7. IF(ALDH3B2 = 4.816..inf)) THEN (@Class = CASE)

CF=0.968, PV=3.33067E-16, TP=67, FP=1, Pos=145

S1 11. IF(ALDH18A1 = -inf..8.158)) THEN (@Class = CONTROL)

CF=0.959, PV=0E0, TP=86, FP=3, Pos=103, Neg=112

E.2.5 MIX CANCER

=== TARGET ===

GEO4412.txt

=== SOURCES ===

S1: GEO6956.txt

S2: GEO7904.txt
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S3: GEO9348.txt

S4: GEO7670.txt

=== Robust Rules ===

S1,S2 7. IF(CASP8 = 9.728..inf)) THEN (@Class = CASE)

CF=0.92, PV=7.3607E-5, TP=41, FP=1, Pos=165, Neg=62

S2,S4 9. IF(ABLIM1 = 14.364..inf)) THEN (@Class = CONTROL)

CF=0.922, PV=2.90551E-9, TP=23, FP=2, Pos=70, Neg=135

S3,S4 2. IF(CALU = 13.113..inf)) THEN (@Class = CASE)

CF=0.93, PV=7.83928E-13, TP=115, FP=3, Pos=162, Neg=63

Nr 24. IF(COL5A2 = -inf..10.045)) THEN (@Class = CONTROL)

CF=0.923, PV=3.23118E-6, TP=11, FP=0, Pos=24, Neg=53

S2,S4 4. IF(COL5A1 = 9.352..inf)) THEN (@Class = CASE)

CF=0.914, PV=9.57892E-10, TP=71, FP=3, Pos=135, Neg=70

=== TARGET ===

GEO6956.txt

=== SOURCES ===

S1: GEO7904.txt

S2: GEO9348.txt

S3: GEO7670.txt

S4: GEO4412.txt

=== Robust Rules ===

S1,S4 6. IF(BAG1 = -inf..8.945)) THEN (@Class = CASE)

CF=0.882, PV=2.10034E-6, TP=65, FP=3, Pos=164, Neg=63

S1,S2 1. IF(ACADS = 6.763..inf)) THEN (@Class = CONTROL)

CF=0.947, PV=3.33067E-16, TP=27, FP=2, Pos=49, Neg=175
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S1,S4 4. IF(DHX9 = -inf..8.370)) THEN (@Class = CASE)

CF=0.899, PV=8.43334E-6, TP=54, FP=2, Pos=164, Neg=63

=== TARGET ===

GEO7670.txt

=== SOURCES ===

S1: GEO6956.txt

S2: GEO7904.txt

S3: GEO9348.txt

S4: GEO4412.txt

=== Robust Rules ===

S1,S4 1. IF(CGRRF1 = -inf..6.787)) THEN (@Class = CASE)

CF=0.978, PV=8.43651E-7, TP=43, FP=0, Pos=163, Neg=70

S3 4. IF(GARS = 10.044..inf)) THEN (@Class = CASE)

CF=0.963, PV=1.28723E-11, TP=101, FP=1, Pos=105, Neg=36

S3 5. IF(GARS = -inf..10.044)) THEN (@Class = CONTROL)

CF=0.938, PV=0E0, TP=35, FP=4, Pos=36, Neg=105

=== TARGET ===

GEO7904.txt

=== SOURCES ===

S1: GEO6956.txt

S2: GEO9348.txt

S3: GEO7670.txt

S4: GEO4412.txt
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=== Robust Rules ===

S2,S3,S4 6. IF(ABCG2 = -inf..5.029)) THEN (@Class = CASE)

CF=0.901, PV=2.59581E-12, TP=122, FP=5, Pos=206, Neg=82

S3,S4 7. IF(AKT3 = -inf..7.035)) THEN (@Class = CASE)

CF=0.886, PV=4.69261E-5, TP=37, FP=2, Pos=136, Neg=70

S1,S2 4. IF(ACADS = 7.037..inf)) THEN (@Class = CONTROL)

CF=0.947, PV=2.22045E-16, TP=27, FP=2, Pos=49, Neg=177

S1 2. IF(ACADS = -inf..7.037) (ADAMTS2 = 7.133..inf)) THEN (@Class = CASE)

CF=0.971, PV=2.00021E-4, TP=33, FP=0, Pos=107, Neg=37

S1,S3 4. IF(ANGPT1 = -inf..5.163)) THEN (@Class = CASE)

CF=0.94, PV=5.03122E-7, TP=51, FP=1, Pos=147, Neg=64

S1,S2,S3 5. IF(ACAA2 = -inf..8.449)) THEN (@Class = CASE)

CF=0.941, PV=6.25469E-7, TP=61, FP=1, Pos=217, Neg=76

S3,S4 6. IF(ABLIM1 = 10.319..inf)) THEN (@Class = CONTROL)

CF=0.93, PV=1.167E-10, TP=26, FP=2, Pos=70, Neg=137

E.2.6 PROSTATE CANCER

=== TARGET ===

GEO6956.txt

=== SOURCES ===

S1: GEO46602.txt

S2: GEO82188.txt

S3: GEO17951.txt

S4: GEO32448.txt

=== Robust rules ===
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S2,S3 3. IF(E2F5 = -inf..5.024)) THEN (@Class = CONTROL)

CF=0.949, PV=1.12626E-10, TP=33, FP=1, Pos=158, Neg=195

S1,S3 6. IF(DPT = -inf..6.315)) THEN (@Class = CASE)

CF=0.937, PV=8.38427E-11, TP=63, FP=2, Pos=166, Neg=101

S1,S4 10. IF(CSTA = 9.448..inf)) THEN (@Class = CONTROL)

CF=0.924, PV=2.55351E-15, TP=43, FP=5, Pos=72, Neg=138

S2,S3 17. IF(BDH1 = -inf..6.859)) THEN (@Class = CONTROL)

CF=0.882, PV=1.92069E-14, TP=67, FP=10, Pos=158, Neg=195

S2,S3 19. IF(ANP32E = 9.329..inf)) THEN (@Class = CONTROL)

CF=0.86, PV=2.40164E-9, TP=45, FP=8, Pos=158, Neg=195

S2,S3 4. IF(FEZ2 = 10.575..inf)) THEN (@Class = CONTROL)

CF=0.958, PV=5.23803E-13, TP=40, FP=1, Pos=158, Neg=195

S2,S3 15. IF(GDF15 = -inf..9.522)) THEN (@Class = CONTROL)

CF=0.877, PV=0E0, TP=99, FP=16, Pos=158, Neg=195

S2,S3 16. IF(GRSF1 = 8.869..inf)) THEN (@Class = CASE)

CF=0.874, PV=2.44249E-15, TP=100, FP=11, Pos=195, Neg=158

S2,S3 7. IF(CAMKK2 = 10.412..inf)) THEN (@Class = CASE)

CF=0.934, PV=1.10245E-13, TP=66, FP=3, Pos=195, Neg=158

S2,S3 12. IF(APOL1 = -inf..8.203)) THEN (@Class = CASE)

CF=0.917, PV=1.38511E-12, TP=65, FP=4, Pos=195, Neg=158

S2,S3 1. IF(DAPK1 = 9.127..inf)) THEN (@Class = CASE)

CF=0.987, PV=0E0, TP=74, FP=0, Pos=195, Neg=158

S1,S2,S3,S4 12. IF(ANXA2 = -inf..12.361)) THEN (@Class = CASE)

CF=0.916, PV=0E0, TP=142, FP=9, Pos=231, Neg=172

S1,S4 15. IF(FLRT3 = 7.820..inf)) THEN (@Class = CONTROL)

CF=0.881, PV=6.15064E-13, TP=45, FP=10, Pos=72, Neg=138

S2,S3 4. IF(CDC42BPA = 9.773..inf)) THEN (@Class = CONTROL)

CF=0.937, PV=2.35821E-11, TP=38, FP=2, Pos=158, Neg=195

S2,S3,S4 12. IF(DNAJC15 = -inf..8.187)) THEN (@Class = CASE)

CF=0.902, PV=2.10942E-15, TP=85, FP=7, Pos=235, Neg=198
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S1,S2 7. IF(DUS1L = -inf..9.044)) THEN (@Class = CONTROL)

CF=0.919, PV=2.08322E-12, TP=39, FP=4, Pos=103, Neg=163

S1,S3 10. IF(BEX1 = -inf..6.644)) THEN (@Class = CASE)

CF=0.945, PV=1.57863E-12, TP=72, FP=2, Pos=166, Neg=101

S1,S2,S3 6. IF(HPN = 8.074..inf)) THEN (@Class = CASE)

CF=0.924, PV=0E0, TP=174, FP=10, Pos=231, Neg=172

=== TARGET ===

GEO17951.txt

=== SOURCES ===

S1: GEO6956.txt

S2: GEO46602.txt

S3: GEO82188.txt

S4: GEO32448.txt

=== Robust rules ===

S1,S3 18. IF(ANXA2 = -inf..11.597)) THEN (@Class = CASE)

CF=0.942, PV=4.44089E-16, TP=78, FP=3, Pos=195, Neg=153

S3 10. IF(ANXA6 = 9.700..inf)) THEN (@Class = CONTROL)

CF=0.953, PV=1.33227E-15, TP=62, FP=2, Pos=133, Neg=126

S3,S4 17. IF(ABCC4 = 11.120..inf)) THEN (@Class = CASE)

CF=0.928, PV=0E0, TP=98, FP=7, Pos=166, Neg=173

S1,S3 21. IF(CLDN3 = 8.384..inf)) THEN (@Class = CASE)

CF=0.892, PV=1.86295E-13, TP=81, FP=7, Pos=195

S2,S4 21. IF(AMACR = -inf..8.466)) THEN (@Class = CONTROL)

CF=0.895, PV=0E0, TP=80, FP=10, Pos=116, Neg=137

S3,S4 6. IF(B3GAT1 = 7.493..inf)) THEN (@Class = CASE)

CF=0.971, PV=0E0, TP=65, FP=1, Pos=166, Neg=173
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S2,S4 14. IF(COL4A6 = 8.302..inf)) THEN (@Class = CONTROL)

CF=0.909, PV=4.44089E-16, TP=68, FP=7, Pos=116, Neg=137

S2 1. IF(COL4A6 = -inf..7.338)) THEN (@Class = CASE)

CF=0.983, PV=1.90958E-14, TP=57, FP=0, Pos=97, Neg=76

S1,S3,S4 2. IF(ERG = 8.766..inf)) THEN (@Class = CASE)

CF=0.973, PV=0E0, TP=79, FP=1, Pos=236, Neg=193

S1,S3 4. IF(C2orf72 = 8.250..inf)) THEN (@Class = CASE)

CF=0.953, PV=2.22045E-15, TP=71, FP=2, Pos=196, Neg=153

S1,S2 8. IF(AOX1 = -inf..7.045)) THEN (@Class = CASE)

CF=0.955, PV=7.77156E-16, TP=92, FP=2, Pos=166, Neg=97

S1,S3 16. IF(GOLM1 = 11.838..inf)) THEN (@Class = CASE)

CF=0.909, PV=0E0, TP=97, FP=7, Pos=195, Neg=154

=== TARGET ===

GEO32448.txt

=== SOURCES ===

S1: GEO6956.txt

S2: GEO46602.txt

S3: GEO82188.txt

S4: GEO17951.txt

=== Robust rules ===

S1,S2,S3,S4 15. IF(ANXA2 = -inf..10.596)) THEN (@Class = CASE)

CF=0.881, PV=0E0, TP=141, FP=14, Pos=274, Neg=210

S3,S4 1. IF(ABCC4 = 10.185..inf) (ANXA1 = -inf..8.243)) THEN (@Class = CASE)

CF=0.973, PV=0E0, TP=69, FP=1, Pos=169, Neg=176

S2,S3,S4 4. IF(AKR1B1 = -inf..5.854)) THEN (@Class = CASE)

CF=0.957, PV=8.52873E-12, TP=45, FP=1, Pos=205, Neg=190

S1,S2,S3,S4 5. IF(ACSM1 = 6.041..inf)) THEN (@Class = CASE)
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CF=0.95, PV=1.94289E-14, TP=68, FP=2, Pos=274, Neg=210

S3,S4 7. IF(ABCC4 = 10.185..inf) (AKAP7 = -inf..7.068)) THEN (@Class = CASE)

CF=0.947, PV=0E0, TP=86, FP=4, Pos=169, Neg=176

S3,S4 17. IF(ADCY2 = -inf..6.747)) THEN (@Class = CASE)

CF=0.866, PV=2.868E-10, TP=55, FP=8, Pos=169, Neg=176

S1,S2,S4 5. IF(AHCY = 7.303..inf)) THEN (@Class = CASE)

CF=0.942, PV=6.1919E-8, TP=40, FP=1, Pos=209, Neg=139

S2,S4 11. IF(AMACR = -inf..5.492)) THEN (@Class = CONTROL)

CF=0.891, PV=1.76126E-8, TP=35, FP=4, Pos=119, Neg=140

S1,S4 14. IF(AMPD3 = 8.561..inf)) THEN (@Class = CASE)

CF=0.861, PV=4.5244E-5, TP=31, FP=3, Pos=173, Neg=125

S2,S3 6. IF(AKR1B1 = -inf..5.854)) THEN (@Class = CASE)

CF=0.948, PV=1.59185E-9, TP=38, FP=1, Pos=137, Neg=121

S1,S2,S4 7. IF(AHCY = 7.303..inf)) THEN (@Class = CASE)

CF=0.945, PV=2.38132E-8, TP=42, FP=1, Pos=209, Neg=139

S2,S3 6. IF(AGAP1 = 7.378..inf)) THEN (@Class = CASE)

CF=0.957, PV=7.09788E-12, TP=47, FP=1, Pos=137, Neg=121

S1,S2,S4 16. IF(AOX1 = -inf..6.525)) THEN (@Class = CASE)

CF=0.808, PV=3.91866E-8, TP=79, FP=12, Pos=209, Neg=139

S3,S4 9. IF(ACSF2 = -inf..5.928) (APOO = 6.659..inf)) THEN (@Class = CASE)

CF=0.923, PV=1.48881E-13, TP=57, FP=4, Pos=169, Neg=176

S2,S3 15. IF(ACSF2 = 6.073..inf)) THEN (@Class = CONTROL)

CF=0.828, PV=1.31091E-9, TP=59, FP=13, Pos=121, Neg=137

=== TARGET ===

GEO46602.txt

=== SOURCES ===

S1: GEO6956.txt
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S2: GEO82188.txt

S3: GEO17951.txt

S4: GEO32448.txt

=== Robust rules ===

S2,S4 6. IF(CHRM3 = 6.647..inf)) THEN (@Class = CASE)

CF=0.962, PV=1.01918E-13, TP=53, FP=1, Pos=137, Neg=124

S2,S3 6. IF(ACTG2 = 11.680..inf)) THEN (@Class = CONTROL)

CF=0.956, PV=4.70046E-12, TP=41, FP=1, Pos=153, Neg=165

S2,S4 8. IF(CYP3A5 = 6.786..inf)) THEN (@Class = CONTROL)

CF=0.953, PV=2.36047E-11, TP=38, FP=1, Pos=124, Neg=137

S2,S3 5. IF(COBLL1 = 9.160..inf)) THEN (@Class = CASE)

CF=0.944, PV=1.16751E-12, TP=52, FP=2, Pos=165, Neg=153

S1,S3 6. IF(ARMCX1 = -inf..8.053)) THEN (@Class = CASE)

CF=0.96, PV=8.77842E-12, TP=64, FP=1, Pos=170, Neg=101

S1,S2,S3,S4 8. IF(B3GAT1 = 6.004..inf)) THEN (@Class = CASE)

CF=0.955, PV=2.22045E-16, TP=76, FP=2, Pos=275, Neg=212

S2,S4 9. IF(COL4A6 = 7.734..inf)) THEN (@Class = CONTROL)

CF=0.939, PV=4.77396E-15, TP=56, FP=3, Pos=123, Neg=138

S2,S4 1. IF(AKR1B1 = -inf..7.750)) THEN (@Class = CASE)

CF=0.98, PV=3.47611E-13, TP=47, FP=0, Pos=138, Neg=123

S1,S3 4. IF(AOX1 = -inf..6.249)) THEN (@Class = CASE)

CF=0.968, PV=4.32987E-15, TP=81, FP=1, Pos=170, Neg=101

S2,S3 4. IF(CBLC = -inf..5.543)) THEN (@Class = CONTROL)

CF=0.964, PV=1.1718E-8, TP=26, FP=0, Pos=152, Neg=166

=== TARGET ===

GEO82188.txt
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=== SOURCES ===

S1: GEO6956.txt

S2: GEO46602.txt

S3: GEO17951.txt

S4: GEO32448.txt

=== Robust Rules ===

S1,S3,S4 8. IF(CSRP2 = -inf..8.918)) THEN (@Class = CASE)

CF=0.938, PV=0E0, TP=108, FP=5, Pos=236, Neg=192

S1,S2 13. IF(ACACA = 10.223..inf)) THEN (@Class = CASE)

CF=0.917, PV=8.84848E-13, TP=85, FP=4, Pos=164, Neg=97

S1,S3 1. IF(COX7A1 = -inf..8.432)) THEN (@Class = CASE)

CF=0.986, PV=0E0, TP=68, FP=0, Pos=195, Neg=153

S3,S4 14. IF(EFEMP2 = 9.748..inf)) THEN (@Class = CONTROL)

CF=0.918, PV=1.11022E-16, TP=80, FP=6, Pos=173, Neg=166

S3,S4 20. IF(BPHL = 7.094..inf)) THEN (@Class = CASE)

CF=0.891, PV=1.05749E-12, TP=62, FP=7, Pos=166, Neg=173

S3,S4 7. IF(CDC42EP3 = 9.974..inf)) THEN (@Class = CONTROL)

CF=0.954, PV=4.44089E-16, TP=63, FP=2, Pos=173, Neg=166

S1,S4 11. IF(ERG = 7.839..inf)) THEN (@Class = CASE)

CF=0.944, PV=1.82365E-12, TP=61, FP=2, Pos=167, Neg=124

S2,S4 7. IF(CYP3A5 = 8.056..inf)) THEN (@Class = CONTROL)

CF=0.956, PV=3.19411E-12, TP=40, FP=1, Pos=118, Neg=134

S1,S4 20. IF(DNAJC15 = -inf..7.955)) THEN (@Class = CASE)

CF=0.827, PV=9.58703E-10, TP=81, FP=12, Pos=167, Neg=124

S1,S3 9. IF(ATP11B = 8.852..inf)) THEN (@Class = CASE)

CF=0.957, PV=1.85698E-11, TP=50, FP=1, Pos=196, Neg=153
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APPENDIX F

ITRL - SUPPLEMENTARY

F.1 CLASSIFICATION PERFORMANCE

Table 81: Classification performance of iTRL Combo, with two sources on GEO16011, brain

cancer

Source Target SN SP BACC AccAb

GEO4271 GEO4290 GEO16011 98.113 0.000 49.057 89.143

GEO4290 GEO4412 GEO16011 98.734 0.000 49.367 89.143

GEO4412 GEO4290 GEO16011 98.734 0.000 49.367 89.143

GEO4412 GEO4271 GEO16011 96.855 6.250 51.553 88.571

GEO4290 GEO4271 GEO16011 96.855 6.250 51.553 88.571

GEO4271 GEO4412 GEO16011 97.484 6.250 51.867 89.143

GEO1993 GEO4290 GEO16011 98.734 6.667 52.700 89.714

GEO1993 GEO4412 GEO16011 98.742 6.667 52.704 90.286

GEO1993 GEO4271 GEO16011 95.597 12.500 54.049 88.000

GEO4271 GEO1993 GEO16011 97.484 12.500 54.992 89.714

GEO4412 GEO1993 GEO16011 98.113 12.500 55.307 90.286

GEO4290 GEO1993 GEO16011 98.742 12.500 55.621 90.857
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Table 82: Classification performance of iTRL Combo, with three sources on GEO16011,

brain cancer

Source Target SN SP BACC AccAb

GEO4412 GEO4271 GEO4290 GEO16011 98.113 0.000 49.057 89.143

GEO4271 GEO4412 GEO4290 GEO16011 98.734 0.000 49.367 89.143

GEO4271 GEO4290 GEO4412 GEO16011 98.734 0.000 49.367 89.143

GEO4412 GEO1993 GEO4271 GEO16011 95.597 6.250 50.924 87.429

GEO4290 GEO4412 GEO4271 GEO16011 96.855 6.250 51.553 88.571

GEO4412 GEO4290 GEO4271 GEO16011 96.855 6.250 51.553 88.571

GEO1993 GEO4271 GEO4412 GEO16011 97.484 6.250 51.867 89.143

GEO4290 GEO4271 GEO4412 GEO16011 97.484 6.250 51.867 89.143

GEO1993 GEO4412 GEO4271 GEO16011 97.484 6.250 51.867 89.143

GEO4271 GEO1993 GEO4412 GEO16011 98.113 6.250 52.182 89.714

GEO1993 GEO4271 GEO4290 GEO16011 98.113 6.250 52.182 89.714

GEO1993 GEO4290 GEO4412 GEO16011 98.734 6.667 52.700 89.714

GEO4412 GEO1993 GEO4290 GEO16011 98.734 6.667 52.700 89.714

GEO1993 GEO4412 GEO4290 GEO16011 98.734 6.667 52.700 89.714

GEO4290 GEO1993 GEO4412 GEO16011 98.742 6.667 52.704 90.286

GEO1993 GEO4290 GEO4271 GEO16011 95.597 12.500 54.049 88.000

GEO4290 GEO1993 GEO4271 GEO16011 95.597 12.500 54.049 88.000

GEO4412 GEO4271 GEO1993 GEO16011 97.484 12.500 54.992 89.714

GEO4290 GEO4271 GEO1993 GEO16011 98.113 12.500 55.307 90.286

GEO4271 GEO4412 GEO1993 GEO16011 98.113 12.500 55.307 90.286

GEO4271 GEO1993 GEO4290 GEO16011 98.113 12.500 55.307 90.286

GEO4290 GEO4412 GEO1993 GEO16011 98.742 12.500 55.621 90.857

GEO4412 GEO4290 GEO1993 GEO16011 98.742 12.500 55.621 90.857

GEO4271 GEO4290 GEO1993 GEO16011 98.742 12.500 55.621 90.857
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Table 83: Classification performance of iTRL OnlyPriors, with two sources on GEO16011,

brain cancer

Source Target SN SP BACC AccAb

GEO4412 GEO1993 GEO16011 97.345 0.00 48.67 62.86

GEO4290 GEO4412 GEO16011 98.333 0.00 49.17 67.43

GEO4412 GEO4290 GEO16011 98.438 0.00 49.22 72.00

GEO4412 GEO4271 GEO16011 98.496 0.00 49.25 74.86

GEO4290 GEO4271 GEO16011 100.000 0.00 50.00 60.00

GEO4271 GEO4290 GEO16011 94.964 20.00 57.48 76.00

GEO4290 GEO1993 GEO16011 98.276 25.00 61.64 65.71

GEO4271 GEO1993 GEO16011 92.199 37.50 64.85 76.00

GEO1993 GEO4290 GEO16011 94.175 50.00 72.09 56.57

GEO1993 GEO4412 GEO16011 96.774 50.00 73.39 71.43

GEO4271 GEO4412 GEO16011 91.367 55.56 73.46 75.43

GEO1993 GEO4271 GEO16011 94.245 60.00 77.12 78.29
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Table 84: Classification performance of iTRL OnlyPriors, with three sources on GEO16011,

brain cancer

Source Target SN SP BACC AccAb

GEO4271 GEO4290 GEO1993 GEO16011 95.00 0.00 47.50 76.00

GEO4271 GEO4412 GEO4290 GEO16011 96.95 0.00 48.47 72.57

GEO4271 GEO4290 GEO4412 GEO16011 97.06 0.00 48.53 75.43

GEO4412 GEO1993 GEO4290 GEO16011 97.20 0.00 48.60 59.43

GEO4412 GEO1993 GEO4271 GEO16011 97.27 0.00 48.64 61.14

GEO4412 GEO4290 GEO1993 GEO16011 97.92 0.00 48.96 53.71

GEO4290 GEO4412 GEO1993 GEO16011 99.04 0.00 49.52 58.86

GEO4290 GEO1993 GEO4271 GEO16011 99.07 0.00 49.53 60.57

GEO4412 GEO4271 GEO4290 GEO16011 99.20 0.00 49.60 70.86

GEO4412 GEO4290 GEO4271 GEO16011 99.20 0.00 49.60 70.86

GEO4412 GEO4271 GEO1993 GEO16011 99.21 0.00 49.60 71.43

GEO4290 GEO4412 GEO4271 GEO16011 100.00 0.00 50.00 64.00

GEO4290 GEO4271 GEO4412 GEO16011 100.00 0.00 50.00 58.86

GEO4290 GEO4271 GEO1993 GEO16011 100.00 0.00 50.00 57.14

GEO4271 GEO1993 GEO4412 GEO16011 91.97 33.33 62.65 73.71

GEO4271 GEO4412 GEO1993 GEO16011 90.71 40.00 65.36 74.86

GEO4290 GEO1993 GEO4412 GEO16011 98.21 33.33 65.77 63.43

GEO1993 GEO4412 GEO4290 GEO16011 99.07 33.33 66.20 61.71

GEO1993 GEO4271 GEO4412 GEO16011 94.44 44.44 69.44 60.57

GEO4271 GEO1993 GEO4290 GEO16011 96.90 42.86 69.88 73.14

GEO1993 GEO4290 GEO4271 GEO16011 94.95 50.00 72.48 54.86

GEO1993 GEO4290 GEO4412 GEO16011 96.88 50.00 73.44 54.29

GEO1993 GEO4271 GEO4290 GEO16011 92.55 57.14 74.85 52.00

GEO1993 GEO4412 GEO4271 GEO16011 96.40 55.56 75.98 64.00
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Table 85: The average BACC per number of sources for iTRL-Combo

Target RL TRL iTRL 2 iTRL 3 iTRL 4

GEO16011 49.367 51.399 52.345 52.853 52.797

GEO1993 82.996 82.642 82.973 82.979 83.092

GEO4271 54.167 58.333 60.316 60.842 61.248

GEO4290 55.263 61.923 63.770 64.222 64.674

GEO4412 74.337 74.438 76.643 77.204 77.852

GEO10780 71.250 72.370 72.322 73.228 72.022

GEO15852 84.884 85.466 85.465 85.562 85.853

GEO29431 100.000 91.551 90.278 89.661 89.815

GEO42568 90.625 89.960 89.979 90.039 89.989

GEO7904 70.113 69.601 69.289 69.023 69.023

GEO10715 60.417 69.357 70.201 69.046 68.726

GEO20916 98.529 98.540 97.968 97.798 97.859

GEO23878 100.000 97.298 97.031 96.953 96.519

GEO24514 90.000 94.167 93.399 94.555 94.861

GEO9348 91.667 93.750 96.875 98.437 98.785

GEO10072 97.917 96.923 96.253 96.007 95.846

GEO18842 95.238 97.784 97.319 97.271 97.362

GEO19188 94.505 95.275 95.131 94.963 94.821

GEO19804 94.958 94.993 94.514 94.653 94.931

GEO7670 91.186 93.875 94.195 94.201 94.510

GEO4412 74.337 74.833 74.992 74.878 75.039

GEO6956 76.765 75.664 75.670 75.642 75.642

GEO7904 91.186 88.268 88.770 88.859 88.396

GEO7670 70.113 67.335 66.580 66.690 66.032

GEO9348 91.667 89.584 88.889 88.194 88.889

GEO17951 86.383 87.079 87.028 87.418 87.701

GEO32448 93.611 91.513 91.135 90.879 90.829

GEO46602 94.444 90.377 88.731 88.079 87.884

GEO6956 76.765 73.813 73.336 72.234 72.483

GEO82188 89.346 90.914 90.780 90.714 90.509
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Table 86: The average AccAb per number of sources for iTRL-Combo

Target RL TRL iTRL 2 iTRL 3 iTRL 4

GEO16011 89.143 89.286 89.381 89.476 89.476

GEO1993 86.207 86.638 86.782 86.638 86.638

GEO4271 78.000 80.000 80.667 80.833 81.000

GEO4290 82.000 83.750 84.000 83.917 83.833

GEO4412 81.176 82.059 83.627 83.971 84.559

GEO10780 86.486 87.162 87.162 87.628 87.027

GEO15852 84.884 85.466 85.465 85.562 85.853

GEO29431 93.939 95.076 95.329 95.392 95.644

GEO42568 95.868 96.281 96.556 96.660 96.591

GEO7904 77.419 77.822 77.688 77.553 77.553

GEO10715 60.000 67.500 68.611 68.195 68.333

GEO20916 97.143 97.857 97.738 97.738 97.738

GEO23878 94.915 95.763 96.751 96.963 96.681

GEO24514 93.878 96.428 95.578 96.428 96.854

GEO9348 95.122 97.561 98.679 99.339 99.644

GEO10072 96.262 96.729 96.262 96.067 95.950

GEO18842 91.209 97.527 97.069 97.115 97.207

GEO19188 94.872 95.513 95.393 95.246 95.112

GEO19804 94.167 94.792 94.514 94.653 94.931

GEO7670 87.879 93.940 94.318 94.381 94.634

GEO4412 81.176 82.059 82.059 82.059 82.157

GEO6956 87.640 86.236 86.423 86.470 86.470

GEO7904 87.879 89.053 89.647 89.836 89.457

GEO7670 77.419 78.629 78.091 78.158 77.755

GEO9348 95.122 96.951 96.748 96.545 96.748

GEO17951 83.212 85.949 86.496 87.044 87.348

GEO32448 88.750 90.313 90.625 90.573 90.677

GEO46602 92.000 94.000 93.167 92.917 92.750

GEO6956 87.640 86.236 85.955 85.393 85.206

GEO82188 87.500 90.809 90.747 90.686 90.472
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Table 87: The average rate (%) of abstentions per number of sources for iTRL-Combo

Target RL TRL iTRL 2 iTRL 3 iTRL 4

GEO16011 1.143 0.686 0.381 0.286 0.167

GEO1993 0.000 0.000 0.000 0.000 0.000

GEO4271 0.000 0.000 0.000 0.000 0.000

GEO4290 1.000 0.250 0.000 0.000 0.000

GEO4412 1.176 0.000 0.000 0.000 0.000

GEO10780 1.081 0.676 0.631 0.481 0.631

GEO15852 0.000 0.000 0.000 0.000 0.000

GEO29431 6.061 0.379 0.253 0.063 0.063

GEO42568 1.653 0.207 0.069 0.069 0.103

GEO7904 1.613 0.403 0.269 0.202 0.202

GEO10715 13.330 7.450 5.278 4.167 4.028

GEO20916 1.429 0.715 0.238 0.060 0.119

GEO23878 5.085 1.695 0.565 0.212 0.141

GEO24514 0.000 0.000 0.000 0.000 0.000

GEO9348 2.439 0.610 0.407 0.203 0.000

GEO10072 1.869 0.468 0.312 0.273 0.234

GEO18842 4.396 0.274 0.275 0.183 0.183

GEO19188 0.000 0.000 0.000 0.000 0.000

GEO19804 0.833 0.208 0.000 0.000 0.000

GEO7670 4.545 0.000 0.000 0.000 0.000

GEO4412 1.176 0.588 0.686 0.588 0.588

GEO6956 1.124 0.843 0.656 0.562 0.562

GEO7904 1.613 0.000 0.126 0.000 0.000

GEO7670 4.545 0.379 0.000 0.000 0.000

GEO9348 2.439 0.000 0.000 0.000 0.000

GEO17951 3.650 1.278 0.608 0.426 0.395

GEO32448 5.000 1.250 0.521 0.313 0.156

GEO46602 4.000 0.000 0.167 0.000 0.083

GEO6956 1.124 0.000 0.000 0.000 0.000

GEO82188 2.206 0.184 0.061 0.031 0.031
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Table 88: The average BACC per number of sources for iTRL-OnlyPriors

Target RL TRL iTRL 2 iTRL 3 iTRL 4

GEO16011 49.367 63.610 60.528 57.691 56.849

GEO1993 82.996 71.011 72.944 73.550 73.651

GEO4271 54.167 72.283 78.168 77.179 76.959

GEO4290 55.263 67.047 69.979 73.533 74.820

GEO4412 74.337 68.812 72.219 73.850 76.471

GEO10780 71.250 70.622 57.557 43.250 57.650

GEO15852 84.884 81.860 73.723 61.286 60.243

GEO29431 100.000 83.007 82.037 73.915 64.469

GEO42568 90.625 86.749 70.305 65.135 62.444

GEO7904 70.113 53.177 49.508 50.501 33.681

GEO10715 60.417 71.075 66.439 62.531 60.567

GEO20916 98.529 91.510 76.236 67.343 60.786

GEO23878 100.000 88.296 81.229 71.530 62.238

GEO24514 90.000 78.563 78.885 75.832 70.713

GEO9348 91.667 89.368 93.249 92.636 87.084

GEO10072 97.917 92.719 91.097 90.698 91.168

GEO18842 95.238 96.737 97.317 97.594 97.690

GEO19188 94.505 92.940 83.219 83.176 83.172

GEO19804 94.958 89.053 88.388 87.728 87.216

GEO7670 91.186 92.997 91.382 92.415 92.198

GEO4412 74.337 66.010 58.538 55.277 42.360

GEO6956 76.765 71.408 64.134 61.898 54.463

GEO7904 91.186 85.635 68.630 57.120 43.750

GEO7670 70.113 61.924 62.624 61.249 62.205

GEO9348 91.667 84.362 87.344 84.885 69.112

GEO17951 86.383 80.000 77.234 72.592 72.213

GEO32448 93.611 79.966 71.696 66.593 64.424

GEO46602 94.444 88.294 85.143 82.116 79.207

GEO6956 76.765 70.450 68.384 67.331 66.032

GEO82188 89.346 81.691 73.331 67.530 67.670
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Table 89: The average AccAb per number of sources for iTRL-OnlyPriors

Target RL TRL iTRL 2 iTRL 3 iTRL 4

GEO16011 89.143 78.286 69.714 64.310 61.762

GEO1993 86.207 74.569 67.960 60.920 56.394

GEO4271 78.000 80.250 64.583 52.167 45.875

GEO4290 82.000 74.250 67.917 61.208 53.083

GEO4412 81.176 73.824 65.588 53.676 43.235

GEO10780 86.486 31.622 10.180 5.203 7.432

GEO15852 84.884 63.663 41.473 23.546 13.324

GEO29431 93.939 82.576 59.596 36.427 17.992

GEO42568 95.868 84.504 45.799 25.999 9.332

GEO7904 77.419 39.516 19.758 9.812 2.218

GEO10715 60.000 35.000 21.111 19.167 17.778

GEO20916 97.143 74.999 42.976 36.964 32.381

GEO23878 94.915 73.305 50.848 33.051 20.410

GEO24514 93.878 78.565 46.429 36.395 29.507

GEO9348 95.122 87.195 57.825 37.246 24.035

GEO10072 96.262 85.981 82.399 80.880 80.724

GEO18842 91.209 92.857 91.209 90.064 89.148

GEO19188 94.872 90.705 80.396 78.419 76.336

GEO19804 94.167 82.500 77.778 76.840 75.868

GEO7670 87.879 90.909 80.808 74.684 70.897

GEO4412 81.176 52.647 27.451 16.373 9.510

GEO6956 87.640 32.023 15.471 10.768 6.835

GEO7904 87.879 71.970 36.111 19.697 11.995

GEO7670 77.419 48.791 28.898 21.371 16.264

GEO9348 95.122 93.902 49.593 28.760 16.718

GEO17951 83.212 67.336 53.285 42.245 35.462

GEO32448 88.750 65.313 52.708 47.500 42.135

GEO46602 92.000 91.500 86.000 79.500 75.083

GEO6956 87.640 58.708 54.682 48.830 43.258

GEO82188 87.500 69.669 51.777 41.146 33.977
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Table 90: The average rate (%) of abstentions per number of sources for iTRL-OnlyPriors

Target RL TRL iTRL 2 iTRL 3 iTRL 4

GEO16011 1.143 15.714 25.619 31.976 35.286

GEO1993 0.000 5.604 18.103 28.089 34.483

GEO4271 0.000 4.250 24.167 37.708 45.250

GEO4290 1.000 7.750 17.000 26.167 35.292

GEO4412 1.176 7.941 21.079 35.098 47.794

GEO10780 1.081 59.189 87.027 93.536 89.302

GEO15852 0.000 24.709 50.581 71.899 84.206

GEO29431 6.061 8.712 34.848 60.038 79.798

GEO42568 1.653 8.265 49.931 71.660 89.842

GEO7904 1.613 39.919 70.296 85.349 95.631

GEO10715 13.333 54.167 71.111 70.139 70.278

GEO20916 1.429 18.214 51.667 57.798 62.500

GEO23878 5.085 19.068 44.350 62.994 76.695

GEO24514 0.000 30.102 47.449 59.099 66.837

GEO9348 2.439 8.232 39.634 61.230 74.797

GEO10072 1.869 7.710 12.461 14.759 15.343

GEO18842 4.396 4.121 6.410 7.876 8.883

GEO19188 0.000 2.885 14.263 16.346 18.643

GEO19804 0.833 7.500 13.472 14.618 15.451

GEO7670 4.545 2.273 12.752 19.949 23.737

GEO4412 1.176 32.647 64.608 79.510 87.843

GEO6956 1.124 57.584 79.084 86.096 91.292

GEO7904 1.613 35.484 56.439 75.821 84.407

GEO7670 4.545 18.182 61.694 73.992 81.116

GEO9348 2.439 1.525 45.935 68.750 82.165

GEO17951 3.650 15.694 32.360 46.320 55.839

GEO32448 5.000 20.000 29.688 35.313 42.917

GEO46602 4.000 1.500 6.333 12.583 16.917

GEO6956 1.124 22.472 28.558 36.985 44.335

GEO82188 2.206 16.177 35.662 48.101 57.874
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Table 91: Accuracy of iTRL with two best sources

Source Target SN SP BACC AccAb

GEO4290 GEO1993 GEO16011 98.742 12.500 55.621 90.857

GEO4271 GEO16011 GEO1993 97.436 73.684 85.560 89.655

GEO4290 GEO4412 GEO4271 100.000 25.000 62.500 82.000

GEO4271 GEO16011 GEO4290 97.531 36.842 67.186 86.000

GEO1993 GEO16011 GEO4412 93.220 69.231 81.226 85.882

GEO15852 GEO42568 GEO10780 50.000 100.000 75.000 88.649

GEO7904 GEO10780 GEO15852 90.698 83.721 87.209 87.209

GEO7904 GEO10780 GEO29431 96.296 100.000 98.148 95.455

GEO15852 GEO10780 GEO42568 96.154 94.118 95.136 95.868

GEO29431 GEO15852 GEO7904 90.698 52.632 71.665 79.032

GEO23878 GEO20916 GEO10715 83.333 70.000 76.667 73.333

GEO10715 GEO23878 GEO20916 100.000 100.000 100.000 100.000

GEO20916 GEO24514 GEO23878 100.000 100.000 100.000 100.000

GEO10715 GEO20916 GEO24514 100.000 93.333 96.667 97.959

GEO10715 GEO20916 GEO9348 100.000 100.000 100.000 100.000

GEO19188 GEO19804 GEO10072 100.000 95.918 97.959 98.131

GEO19804 GEO10072 GEO18842 97.826 100.000 98.913 98.901

GEO18842 GEO10072 GEO19188 96.703 93.846 95.275 95.513

GEO19188 GEO7670 GEO19804 96.667 95.000 95.833 95.833

GEO19804 GEO18842 GEO7670 94.872 100.000 97.436 96.970

GEO9348 GEO6956 GEO4412 98.305 57.692 77.999 85.882

GEO9348 GEO7904 GEO6956 98.551 55.000 76.775 88.764

GEO4412 GEO9348 GEO7670 94.872 92.308 93.590 92.424

GEO7670 GEO4412 GEO7904 100.000 36.842 68.421 80.645

GEO6956 GEO7904 GEO9348 100.000 91.667 95.833 98.780

GEO82188 GEO6956 GEO17951 89.706 86.957 88.331 88.321

GEO46602 GEO17951 GEO32448 97.500 92.500 95.000 95.000

GEO17951 GEO32448 GEO46602 100.000 92.857 96.429 98.000

GEO32448 GEO46602 GEO6956 100.000 55.000 77.500 89.888

GEO46602 GEO32448 GEO82188 90.769 95.775 93.272 93.382
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Table 92: Accuracy of iTRL with 3 best sources

Source Target SN SP BACC AccAb

GEO4271 GEO4290 GEO1993 GEO16011 98.742 12.500 55.621 90.857

GEO4271 GEO4290 GEO16011 GEO1993 97.436 73.684 85.560 89.655

GEO16011 GEO4412 GEO1993 GEO4271 98.684 29.167 63.925 82.000

GEO4271 GEO16011 GEO1993 GEO4290 98.765 36.842 67.804 87.000

GEO4271 GEO1993 GEO16011 GEO4412 93.220 69.231 81.226 85.882

GEO15852 GEO29431 GEO42568 GEO10780 50.000 100.000 75.000 88.649

GEO7904 GEO10780 GEO29431 GEO15852 90.698 86.047 88.372 88.372

GEO42568 GEO7904 GEO10780 GEO29431 94.444 100.000 97.222 93.939

GEO29431 GEO15852 GEO10780 GEO42568 96.154 94.118 95.136 95.868

GEO42568 GEO29431 GEO15852 GEO7904 90.698 52.632 71.665 79.032

GEO24514 GEO23878 GEO9348 GEO10715 78.947 72.727 75.837 76.667

GEO24514 GEO10715 GEO23878 GEO20916 100.000 100.000 100.000 100.000

GEO9348 GEO20916 GEO24514 GEO23878 100.000 100.000 100.000 100.000

GEO10715 GEO23878 GEO20916 GEO24514 100.000 93.333 96.667 97.959

GEO20916 GEO24514 GEO10715 GEO9348 100.000 100.000 100.000 100.000

GEO18842 GEO19188 GEO19804 GEO10072 100.000 95.918 97.959 98.131

GEO7670 GEO19804 GEO10072 GEO18842 100.000 100.000 100.000 100.000

GEO18842 GEO19804 GEO10072 GEO19188 96.703 93.846 95.275 95.513

GEO18842 GEO19188 GEO7670 GEO19804 96.667 95.000 95.833 95.833

GEO19188 GEO19804 GEO18842 GEO7670 97.436 96.296 96.866 96.970

GEO7670 GEO9348 GEO6956 GEO4412 98.305 65.385 81.845 88.235

GEO9348 GEO4412 GEO7904 GEO6956 98.551 55.000 76.775 88.764

GEO7904 GEO9348 GEO4412 GEO7670 92.308 92.593 92.450 92.424

GEO4412 GEO6956 GEO7670 GEO7904 97.674 42.105 69.890 80.645

GEO4412 GEO7670 GEO7904 GEO9348 100.000 91.667 95.833 98.780

GEO32448 GEO82188 GEO6956 GEO17951 92.647 86.957 89.802 89.781

GEO6956 GEO46602 GEO17951 GEO32448 97.500 92.500 95.000 95.000

GEO32448 GEO17951 GEO82188 GEO46602 100.000 92.857 96.429 98.000

GEO17951 GEO32448 GEO46602 GEO6956 100.000 55.000 77.500 89.888

GEO46602 GEO6956 GEO32448 GEO82188 92.308 94.366 93.337 93.382
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Table 93: Accuracy of iTRL with four best sources

Source Target SN SP BACC AccAb

GEO4412 GEO4271 GEO4290 GEO1993 GEO16011 98.74 12.50 55.62 90.86

GEO4271 GEO16011 GEO4412 GEO4290 GEO1993 97.44 73.68 85.56 89.66

GEO4290 GEO16011 GEO4412 GEO1993 GEO4271 98.68 29.17 63.93 82.00

GEO16011 GEO4412 GEO4271 GEO1993 GEO4290 96.30 36.84 66.57 85.00

GEO4271 GEO4290 GEO1993 GEO16011 GEO4412 93.22 69.23 81.23 85.88

GEO29431 GEO7904 GEO15852 GEO42568 GEO10780 47.62 100.00 73.81 88.11

GEO42568 GEO7904 GEO10780 GEO29431 GEO15852 90.70 86.05 88.37 88.37

GEO15852 GEO42568 GEO7904 GEO10780 GEO29431 94.44 100.00 97.22 93.94

GEO15852 GEO29431 GEO7904 GEO10780 GEO42568 99.04 88.24 93.64 97.52

GEO42568 GEO10780 GEO29431 GEO15852 GEO7904 90.70 52.63 71.67 79.03

GEO20916 GEO24514 GEO23878 GEO9348 GEO10715 84.21 63.64 73.92 76.67

GEO9348 GEO24514 GEO10715 GEO23878 GEO20916 100.00 100.00 100.00 100.00

GEO9348 GEO20916 GEO10715 GEO24514 GEO23878 100.00 95.83 97.92 98.31

GEO20916 GEO23878 GEO10715 GEO9348 GEO24514 100.00 93.33 96.67 97.96

GEO20916 GEO23878 GEO10715 GEO24514 GEO9348 100.00 100.00 100.00 100.00

GEO18842 GEO19188 GEO7670 GEO19804 GEO10072 100.00 93.88 96.94 97.20

GEO7670 GEO19188 GEO19804 GEO10072 GEO18842 100.00 100.00 100.00 100.00

GEO18842 GEO19804 GEO10072 GEO7670 GEO19188 96.70 93.85 95.28 95.51

GEO18842 GEO10072 GEO19188 GEO7670 GEO19804 96.67 95.00 95.83 95.83

GEO10072 GEO19188 GEO19804 GEO18842 GEO7670 97.44 96.30 96.87 96.97

GEO7670 GEO9348 GEO7904 GEO6956 GEO4412 98.31 65.39 81.85 88.24

GEO7670 GEO4412 GEO9348 GEO7904 GEO6956 98.55 55.00 76.78 88.76

GEO4412 GEO6956 GEO9348 GEO7904 GEO7670 94.87 88.89 91.88 92.42

GEO9348 GEO4412 GEO6956 GEO7670 GEO7904 97.67 42.11 69.89 80.65

GEO6956 GEO4412 GEO7670 GEO7904 GEO9348 100.00 91.67 95.83 98.78

GEO46602 GEO32448 GEO82188 GEO6956 GEO17951 92.65 86.96 89.80 89.78

GEO82188 GEO17951 GEO6956 GEO46602 GEO32448 100.00 90.00 95.00 95.00

GEO17951 GEO82188 GEO6956 GEO32448 GEO46602 100.00 92.86 96.43 98.00

GEO82188 GEO17951 GEO46602 GEO32448 GEO6956 98.55 55.00 76.78 88.76

GEO17951 GEO46602 GEO32448 GEO6956 GEO82188 95.39 88.73 92.06 91.91
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F.2 ROBUST RULE PATTERNS VIA ITRL

F.2.1 BRAIN CANCER

=== TARGET ===

GEO16011.txt

=== SOURCES ===

S1: GEO1993.txt

S2: GEO4271.txt

S3: GEO4290.txt

S4: GEO4412.txt

=== Robust Rules ===

S1 6. ((ARPC1A = -inf..10.395) (MYL9 = -inf..5.967)) ==> (@Class = CONTROL)

CF=0.861, PV=3.83027E-14, TP=40, FP=22, Pos=102, Neg=398

S1 5. ((HSP90B1 = 10.767..inf) (PLOD1 = 8.723..inf)) ==> (@Class = CASE)

CF=0.913, PV=1.49425E-12, TP=174, FP=4, Pos=398, Neg=102

S1 8. ((HSP90B1 = 10.767..inf) (GLUD1 = -inf..10.090)) ==> (@Class = CASE)

CF=0.887, PV=2.25053E-12, TP=191, FP=6, Pos=398, Neg=102

S3 9. ((LAMC1 = -inf..8.484) (MYL9 = 5.967..inf)

(SYPL1 = 9.243..inf)) ==> (@Class = CONTROL)

CF=0.812, PV=3.96806E-8, TP=25, FP=24, Pos=59, Neg=283

S1 5. ((MYL9 = -inf..5.664) (C5orf13 = -inf..8.444)) ==> (@Class = CONTROL)

CF=0.926, PV=2.0407E-12, TP=21, FP=3, Pos=102, Neg=398

S2 3. ((LDHA = 12.680..inf)) ==> (@Class = CASE)

CF=0.933, PV=1.00142E-13, TP=192, FP=3, Pos=359, Neg=84

S1 5. ((CALU = 8.784..inf)) ==> (@Class = CASE)

CF=0.871, PV=5.70211E-13, TP=214, FP=8, Pos=398, Neg=103

S3 1. ((HSPA9 = 10.061..inf) (CALU = 8.784..inf)) ==> (@Class = CASE)
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CF=0.951, PV=4.53005E-8, TP=111, FP=1, Pos=283, Neg=60

S3 2. ((PLOD1 = 8.718..inf) (ARPC1A = 10.395..inf)) ==> (@Class = CASE)

CF=0.936, PV=3.62683E-10, TP=151, FP=2, Pos=283, Neg=60

S3 3. ((EPAS1 = 9.104..inf) (ANXA7 = -inf..10.059)) ==> (@Class = CASE)

CF=0.949, PV=1.25205E-7, TP=107, FP=1, Pos=283, Neg=59

=== TARGET ===

GEO4412.txt

=== SOURCES ===

S1: GEO1993.txt

S2: GEO4271.txt

S3: GEO4290.txt

S4: GEO16011.txt

=== Robust Rules ===

S3 9. ((NUCB1 = 12.539..inf)) ==> (@Class = CASE)

CF=0.879, PV=3.49414E-6, TP=116, FP=3, Pos=293, Neg=58

S3 10. ((P4HB = 14.225..inf)) ==> (@Class = CASE)

CF=0.874, PV=7.49962E-6, TP=111, FP=3, Pos=293, Neg=58

S2 11. ((PPP2R5A = 12.491..inf)) ==> (@Class = CONTROL)

CF=0.872, PV=1.65312E-13, TP=33, FP=18, Pos=82, Neg=369

S1 12. ((ABLIM1 = 14.070..inf)) ==> (@Class = CONTROL)

CF=0.869, PV=4.27436E-14, TP=37, FP=19, Pos=101, Neg=408

S2 1. ((CALU = 13.234..inf) (WDR77 = 11.469..inf)) ==> (@Class = CASE)

CF=0.915, PV=4.607E-10, TP=155, FP=3, Pos=369, Neg=82

S2 6. ((PPP2R5A = 12.456..inf)) ==> (@Class = CONTROL)

CF=0.87, PV=1.05804E-13, TP=34, FP=19, Pos=82, Neg=369

S1 12. ((IGFBP2 = -inf..11.418)) ==> (@Class = CONTROL)

CF=0.842, PV=0E0, TP=57, FP=40, Pos=101, Neg=408
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S3 10. ((P4HB = 14.225..inf) (PLOD3 = 12.986..inf)) ==> (@Class = CASE)

CF=0.926, PV=1.82973E-8, TP=135, FP=2, Pos=293, Neg=59

S1 17. ((PPP2R5A = 12.456..inf)) ==> (@Class = CONTROL)

CF=0.882, PV=1.11022E-16, TP=42, FP=19, Pos=102, Neg=408

S1 18. ((ANXA5 = -inf..13.856) (CDC20 = -inf..9.246)) ==> (@Class = CONTROL)

CF=0.854, PV=6.32161E-13, TP=37, FP=22, Pos=102, Neg=408

S1 9. ((SMC4 = -inf..11.376)) ==> (@Class = CONTROL)

CF=0.867, PV=5.55112E-16, TP=44, FP=24, Pos=101, Neg=409

=== TARGET ===

GEO1993.txt

=== SOURCES ===

S1: GEO4271.txt

S2: GEO4290.txt

S3: GEO16011.txt

S4: GEO4412.txt

=== Robust rules ===

S1 7. ((GSS = -inf..7.641) (ARL4C = -inf..7.900)) ==> (@Class = CONTROL)

CF=0.892, PV=1.60094E-13, TP=30, FP=11, Pos=102, Neg=410

S1 8. ((GLUD1 = 8.976..inf) (MYL9 = -inf..6.190)) ==> (@Class = CONTROL)

CF=0.886, PV=2.02061E-14, TP=34, FP=14, Pos=102, Neg=410

S1 6. ((SMC4 = -inf..6.228)) ==> (@Class = CONTROL)

CF=0.892, PV=1.55431E-15, TP=36, FP=14, Pos=102, Neg=410

S1 7. ((PRKCZ = -inf..6.802)) ==> (@Class = CASE)

CF=0.888, PV=6.03522E-7, TP=103, FP=3, Pos=410, Neg=102

S2 6. ((PFN1 = 10.507..inf)) ==> (@Class = CASE)

CF=0.886, PV=8.97637E-7, TP=107, FP=3, Pos=334, Neg=78

S2 9. ((PKM2 = 10.472..inf) (PTPN12 = 6.660..inf)) ==> (@Class = CASE)
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CF=0.885, PV=1.61344E-8, TP=139, FP=4, Pos=334, Neg=78

S2 4. ((ANXA7 = -inf..8.470) (ATF3 = 6.741..inf)) ==> (@Class = CASE)

CF=0.95, PV=9.78106E-14, TP=168, FP=2, Pos=329, Neg=83

S2 6. ((COL3A1 = -inf..7.259)) ==> (@Class = CONTROL)

CF=0.907, PV=7.88258E-15, TP=31, FP=9, Pos=84, Neg=329

S1 9. ((ADD3 = -inf..9.980) (PGM1 = 8.495..inf)) ==> (@Class = CASE)

CF=0.876, PV=2.55884E-12, TP=203, FP=7, Pos=410, Neg=103

S1 10. ((ABLIM1 = 9.413..inf)) ==> (@Class = CONTROL)

CF=0.885, PV=1.34004E-13, TP=32, FP=13, Pos=83, Neg=329

S2 5. ((GLUD1 = 8.976..inf) (MGP = -inf..7.231)) ==> (@Class = CONTROL)

CF=0.917, PV=5.89528E-14, TP=24, FP=6, Pos=57, Neg=270

S1 6. ((SMC4 = -inf..6.228)) ==> (@Class = CONTROL)

CF=0.914, PV=1.66533E-15, TP=31, FP=8, Pos=83, Neg=329

S3 7. ((MTHFD2 = -inf..7.284)) ==> (@Class = CASE)

CF=0.851, PV=2.37646E-3, TP=72, FP=2, Pos=194, Neg=33

S1 8. ((MGP = -inf..6.907)) ==> (@Class = CONTROL)

CF=0.849, PV=1.73174E-11, TP=33, FP=20, Pos=83, Neg=329

S2 8. ((GLUD1 = 8.976..inf)) ==> (@Class = CONTROL)

CF=0.876, PV=4.36162E-12, TP=27, FP=14, Pos=57, Neg=270

=== TARGET ===

GEO4271.txt

=== SOURCES ===

S1: GEO4412.txt

S2: GEO1993.txt

S3: GEO4290.txt

S4: GEO16011.txt

=== Robust Rules ===
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S1 5. ((GLUD1 = -inf..10.960) (CCT6A = 10.397..inf)) ==> (@Class = CASE)

CF=0.928, PV=8.69818E-9, TP=115, FP=2, Pos=407, Neg=101

F.2.2 BREAST CANCER

=== TARGET ===

GEO29431.txt

=== SOURCES ===

S1: GEO7904.txt

S2: GEO10780.txt

S3: GEO15852.txt

S4: GEO42568.txt

=== Robust Rules ===

S2 2. ((BNIP3L = 10.814..inf)) ==> (@Class = CONTROL)

CF=0.977, PV=7.80487E-14, TP=42, FP=0, Pos=214, Neg=237

S3 5. ((ADH1C = 6.030..inf)) ==> (@Class = CONTROL)

CF=0.962, PV=0E0, TP=43, FP=2, Pos=71, Neg=195

S4 6. ((ACACB = -inf..10.741)) ==> (@Class = CASE)

CF=0.958, PV=1.73878E-9, TP=147, FP=1, Pos=152, Neg=28

S3 7. ((ACACB = 10.741..inf)) ==> (@Class = CONTROL)

CF=0.944, PV=0E0, TP=59, FP=7, Pos=71, Neg=195

S3 2. ((AOC3 = 10.329..inf)) ==> (@Class = CONTROL)

CF=0.96, PV=0E0, TP=49, FP=3, Pos=71, Neg=195

S3 3. ((ANGPT1 = 7.790..inf)) ==> (@Class = CONTROL)

CF=0.969, PV=0E0, TP=30, FP=0, Pos=70, Neg=196

S3 4. ((CCT3 = 10.149..inf)) ==> (@Class = CASE)

CF=0.967, PV=1.82521E-13, TP=112, FP=1, Pos=196, Neg=70

S3 7. ((AOC3 = -inf..8.790)) ==> (@Class = CASE)
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CF=0.902, PV=9.99201E-15, TP=160, FP=6, Pos=196, Neg=71

S3 2. ((ASPA = 8.321..inf)) ==> (@Class = CONTROL)

CF=0.975, PV=0E0, TP=38, FP=0, Pos=71, Neg=196

S3 3. ((ADH1B = 11.084..inf)) ==> (@Class = CONTROL)

CF=0.963, PV=0E0, TP=44, FP=2, Pos=71, Neg=196

S3 4. ((COL11A1 = 7.688..inf)) ==> (@Class = CASE)

CF=0.938, PV=5.21805E-15, TP=140, FP=3, Pos=196, Neg=71

S3 2. ((ECT2 = 7.814..inf)) ==> (@Class = CASE)

CF=0.973, PV=2.22045E-16, TP=134, FP=1, Pos=196, Neg=71

S3 6. ((CLDN5 = 9.204..inf)) ==> (@Class = CONTROL)

CF=0.904, PV=3.21965E-15, TP=39, FP=9, Pos=71, Neg=196

=== TARGET ===

GEO42568.txt

=== SOURCES ===

S1: GEO7904.txt

S2: GEO10780.txt

S3: GEO29431.txt

S4: GEO15852.txt

=== Robust Rules ===

S3 2. ((G0S2 = 12.039..inf)) ==> (@Class = CONTROL)

CF=0.968, PV=0E0, TP=40, FP=1, Pos=70, Neg=191

S2 1. ((CAP1 = 11.432..inf) (FHL1 = -inf..7.634)) ==> (@Class = CASE)

CF=0.98, PV=0E0, TP=107, FP=1, Pos=239, Neg=200

S2 2. ((ADIPOQ = -inf..4.498)) ==> (@Class = CASE)

CF=0.912, PV=1.07248E-13, TP=71, FP=5, Pos=238, Neg=201

S2 3. ((ETNK1 = 8.188..inf)) ==> (@Class = CASE)

CF=0.882, PV=0E0, TP=122, FP=13, Pos=239, Neg=201
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S1 4. ((ADIPOQ = 7.981..inf) (ADNP = -inf..7.712)) ==> (@Class = CONTROL)

CF=0.884, PV=0E0, TP=132, FP=20, Pos=230, Neg=281

=== TARGET ===

GEO15852.txt

=== SOURCES ===

S1: GEO42568.txt

S2: GEO7904.txt

S3: GEO10780.txt

S4: GEO29431.txt

=== Robust Rules ===

S3 1. ((ACIN1 = 8.559..inf)) ==> (@Class = CONTROL)

CF=0.938, PV=0E0, TP=122, FP=5, Pos=193, Neg=135

S1 4. ((ADAR = 9.355..inf)) ==> (@Class = CASE)

CF=0.807, PV=7.9492E-13, TP=116, FP=22, Pos=282, Neg=230

S1 1. ((GPR157 = 7.558..inf)) ==> (@Class = CASE)

CF=0.93, PV=1.22125E-15, TP=76, FP=4, Pos=276, Neg=232

F.2.3 COLON CANCER

=== TARGET ===

GEO29431.txt

=== SOURCES ===

S1: GEO7904.txt

S2: GEO10780.txt

S3: GEO15852.txt

S4: GEO42568.txt
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=== Robust Rules ===

S2 2. ((BNIP3L = 10.814..inf)) ==> (@Class = CONTROL)

CF=0.977, PV=7.80487E-14, TP=42, FP=0, Pos=214, Neg=237

S3 5. ((ADH1C = 6.030..inf)) ==> (@Class = CONTROL)

CF=0.962, PV=0E0, TP=43, FP=2, Pos=71, Neg=195

S4 6. ((ACACB = -inf..10.741)) ==> (@Class = CASE)

CF=0.958, PV=1.73878E-9, TP=147, FP=1, Pos=152, Neg=28

S3 7. ((ACACB = 10.741..inf)) ==> (@Class = CONTROL)

CF=0.944, PV=0E0, TP=59, FP=7, Pos=71, Neg=195

S3 2. ((AOC3 = 10.329..inf)) ==> (@Class = CONTROL)

CF=0.96, PV=0E0, TP=49, FP=3, Pos=71, Neg=195

S3 3. ((ANGPT1 = 7.790..inf)) ==> (@Class = CONTROL)

CF=0.969, PV=0E0, TP=30, FP=0, Pos=70, Neg=196

S3 4. ((CCT3 = 10.149..inf)) ==> (@Class = CASE)

CF=0.967, PV=1.82521E-13, TP=112, FP=1, Pos=196, Neg=70

S3 7. ((AOC3 = -inf..8.790)) ==> (@Class = CASE)

CF=0.902, PV=9.99201E-15, TP=160, FP=6, Pos=196, Neg=71

S3 2. ((ASPA = 8.321..inf)) ==> (@Class = CONTROL)

CF=0.975, PV=0E0, TP=38, FP=0, Pos=71, Neg=196

S3 3. ((ADH1B = 11.084..inf)) ==> (@Class = CONTROL)

CF=0.963, PV=0E0, TP=44, FP=2, Pos=71, Neg=196

S3 4. ((COL11A1 = 7.688..inf)) ==> (@Class = CASE)

CF=0.938, PV=5.21805E-15, TP=140, FP=3, Pos=196, Neg=71

S3 2. ((ECT2 = 7.814..inf)) ==> (@Class = CASE)

CF=0.973, PV=2.22045E-16, TP=134, FP=1, Pos=196, Neg=71

S3 6. ((CLDN5 = 9.204..inf)) ==> (@Class = CONTROL)

CF=0.904, PV=3.21965E-15, TP=39, FP=9, Pos=71, Neg=196

=== TARGET ===

254



GEO42568.txt

=== SOURCES ===

S1: GEO7904.txt

S2: GEO10780.txt

S3: GEO29431.txt

S4: GEO15852.txt

=== Robust Rules ===

S3 2. ((G0S2 = 12.039..inf)) ==> (@Class = CONTROL)

CF=0.968, PV=0E0, TP=40, FP=1, Pos=70, Neg=191

S2 1. ((CAP1 = 11.432..inf) (FHL1 = -inf..7.634)) ==> (@Class = CASE)

CF=0.98, PV=0E0, TP=107, FP=1, Pos=239, Neg=200

S2 2. ((ADIPOQ = -inf..4.498)) ==> (@Class = CASE)

CF=0.912, PV=1.07248E-13, TP=71, FP=5, Pos=238, Neg=201

S2 3. ((ETNK1 = 8.188..inf)) ==> (@Class = CASE)

CF=0.882, PV=0E0, TP=122, FP=13, Pos=239, Neg=201

S1 4. ((ADIPOQ = 7.981..inf) (ADNP = -inf..7.712)) ==> (@Class = CONTROL)

CF=0.884, PV=0E0, TP=132, FP=20, Pos=230, Neg=281

=== TARGET ===

GEO15852.txt

=== SOURCES ===

S1: GEO42568.txt

S2: GEO7904.txt

S3: GEO10780.txt

S4: GEO29431.txt

=== Robust Rules ===
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S3 1. ((ACIN1 = 8.559..inf)) ==> (@Class = CONTROL)

CF=0.938, PV=0E0, TP=122, FP=5, Pos=193, Neg=135

S1 4. ((ADAR = 9.355..inf)) ==> (@Class = CASE)

CF=0.807, PV=7.9492E-13, TP=116, FP=22, Pos=282, Neg=230

S1 1. ((GPR157 = 7.558..inf)) ==> (@Class = CASE)

CF=0.93, PV=1.22125E-15, TP=76, FP=4, Pos=276, Neg=232

F.2.4 LUNG CANCER

=== TARGET ===

GEO7670.txt

=== SOURCES ===

S1: GEO10072.txt

S2: GEO19188.txt

S3: GEO18842.txt

S4: GEO19804.txt

=== Robust Rules ===

S1 1. ((EDNRB = -inf..7.502)) ==> (@Class = CASE)

CF=0.994, PV=0E0, TP=173, FP=0, Pos=230, Neg=183

S2 2. ((AQP1 = -inf..10.879)) ==> (@Class = CASE)

CF=0.993, PV=0E0, TP=147, FP=0, Pos=172, Neg=134

S3 3. ((GAPDH = 13.137..inf)) ==> (@Class = CASE)

CF=0.986, PV=0E0, TP=71, FP=0, Pos=81, Neg=69

S3 4. ((CLDN18 = 10.750..inf)) ==> (@Class = CONTROL)

CF=0.974, PV=0E0, TP=68, FP=1, Pos=69, Neg=81

S1 3. ((ARHGAP6 = -inf..6.246)) ==> (@Class = CASE)

CF=0.987, PV=0E0, TP=177, FP=1, Pos=230, Neg=183

S3 4. ((CENPF = 6.523..inf)) ==> (@Class = CASE)
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CF=0.972, PV=0E0, TP=75, FP=1, Pos=81, Neg=69

S2 5. ((ADRB2 = -inf..8.585)) ==> (@Class = CASE)

CF=0.969, PV=0E0, TP=150, FP=3, Pos=172, Neg=134

S2 6. ((AGER = 10.009..inf)) ==> (@Class = CONTROL)

CF=0.963, PV=0E0, TP=125, FP=5, Pos=134, Neg=172

S2 4. ((FABP4 = -inf..9.073)) ==> (@Class = CASE)

CF=0.968, PV=0E0, TP=147, FP=3, Pos=172, Neg=134

S1 5. ((CDH5 = -inf..8.460)) ==> (@Class = CASE)

CF=0.966, PV=0E0, TP=208, FP=5, Pos=230, Neg=183

S2 7. ((CITED2 = -inf..8.506)) ==> (@Class = CASE)

CF=0.959, PV=0E0, TP=112, FP=3, Pos=172, Neg=134

S2 8. ((CAV1 = 12.040..inf)) ==> (@Class = CONTROL)

CF=0.958, PV=0E0, TP=112, FP=5, Pos=134, Neg=172

S2 3. ((ALOX5 = -inf..9.675)) ==> (@Class = CASE)

CF=0.984, PV=0E0, TP=141, FP=1, Pos=172, Neg=134

S2 2. ((ABCA8 = -inf..7.460)) ==> (@Class = CASE)

CF=0.993, PV=0E0, TP=144, FP=0, Pos=172, Neg=134

S2 3. ((CACYBP = 9.938..inf)) ==> (@Class = CASE)

CF=0.967, PV=0E0, TP=102, FP=2, Pos=172, Neg=135

S3 2. ((COX7A1 = -inf..8.840)) ==> (@Class = CASE)

CF=0.987, PV=0E0, TP=73, FP=0, Pos=81, Neg=70

S1 1. ((FRY = -inf..8.276)) ==> (@Class = CASE)

CF=0.993, PV=0E0, TP=150, FP=0, Pos=230, Neg=184

S1 5. ((GPM6B = -inf..7.757)) ==> (@Class = CASE)

CF=0.97, PV=0E0, TP=156, FP=3, Pos=231, Neg=183

S2 1. ((CELF2 = -inf..10.709)) ==> (@Class = CASE)

CF=0.991, PV=0E0, TP=114, FP=0, Pos=173, Neg=134
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F.2.5 MIXED CANCER

=== TARGET ===

GEO4412.txt

=== SOURCES ===

S1: GEO6956.txt

S2: GEO7670.txt

S3: GEO9348.txt

S4: GEO7904.txt

=== Robust Rules ===

S2 8. ((ABLIM1 = 14.070..inf)) ==> (@Class = CONTROL)

CF=0.852, PV=2.45093E-11, TP=39, FP=15, Pos=81, Neg=205

S1 7. ((ATP5C1 = -inf..14.046)) ==> (@Class = CASE)

CF=0.895, PV=1.58572E-7, TP=77, FP=3, Pos=274, Neg=101

S3 5. ((CEBPB = -inf..13.019)) ==> (@Class = CONTROL)

CF=0.847, PV=3.15009E-9, TP=28, FP=13, Pos=54, Neg=166

S2 4. ((CCT6A = 12.695..inf)) ==> (@Class = CASE)

CF=0.871, PV=2.25246E-8, TP=91, FP=5, Pos=205, Neg=81

S2 7. ((CALU = 13.234..inf)) ==> (@Class = CASE)

CF=0.863, PV=3.5973E-10, TP=116, FP=7, Pos=205, Neg=82

S1 8. ((ALG3 = 11.139..inf) (CLIC1 = -inf..12.174)) ==> (@Class = CASE)

CF=0.804, PV=7.60027E-5, TP=69, FP=6, Pos=274, Neg=102

=== TARGET ===

GEO7904.txt

=== SOURCES ===

S1: GEO6956.txt
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S2: GEO4412.txt

S3: GEO7670.txt

S4: GEO9348.txt

=== Robust Rules ===

S2 2. ((ABCG2 = -inf..5.029)) ==> (@Class = CASE)

CF=0.901, PV=2.59581E-12, TP=122, FP=5, Pos=206, Neg=82

S2 2. ((ADORA2B = -inf..7.933) (ARHGEF6 = -inf..8.822)) ==> (@Class = CASE)

CF=0.863, PV=4.12895E-10, TP=116, FP=7, Pos=206, Neg=82

S2 3. ((ALPL = -inf..5.884) (ARHGEF6 = -inf..8.822)) ==> (@Class = CASE)

CF=0.846, PV=2.35369E-9, TP=115, FP=8, Pos=206, Neg=82

S3 4. ((ACTG2 = -inf..9.285) (ANXA3 = -inf..7.756)) ==> (@Class = CASE)

CF=0.862, PV=2.5524E-6, TP=71, FP=4, Pos=148, Neg=56

=== TARGET ===

GEO6956.txt

=== SOURCES ===

S1: GEO4412.txt

S2: GEO7904.txt

S3: GEO7670.txt

S4: GEO9348.txt

=== Robust Rules===

S3 1. ((CCT3 = 10.473..inf)) ==> (@Class = CASE)

CF=0.949, PV=1.60871E-13, TP=129, FP=2, Pos=171, Neg=57

S3 3. ((CCL23 = 3.852..inf)) ==> (@Class = CONTROL)

CF=0.884, PV=3.58558E-12, TP=32, FP=10, Pos=57, Neg=171

S2 3. ((GNG11 = 9.088..inf)) ==> (@Class = CONTROL)

CF=0.847, PV=7.53639E-10, TP=32, FP=14, Pos=76, Neg=214
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S3 4. ((FABP4 = -inf..4.882)) ==> (@Class = CASE)

CF=0.922, PV=2.84162E-11, TP=118, FP=3, Pos=171, Neg=57

F.2.6 PROSTATE CANCER

=== TARGET ===

GEO17951.txt

=== SOURCES ===

S1: GEO32448.txt

S2: GEO6956.txt

S3: GEO46602.txt

S4: GEO82188.txt

=== Robust Rules ===

S1 2. ((ERG = 8.766..inf)) ==> (@Class = CASE)

CF=0.966, PV=0E0, TP=100, FP=2, Pos=271, Neg=208

S2 13. ((GOLM1 = 11.838..inf)) ==> (@Class = CASE)

CF=0.914, PV=0E0, TP=112, FP=7, Pos=231, Neg=168

S3 15. ((GPRC5B = 8.518..inf)) ==> (@Class = CONTROL)

CF=0.891, PV=0E0, TP=89, FP=11, Pos=148, Neg=162

S2 14. ((ANXA2 = -inf..11.597)) ==> (@Class = CASE)

CF=0.953, PV=0E0, TP=104, FP=3, Pos=231, Neg=167

S1 2. ((B3GAT1 = 7.493..inf)) ==> (@Class = CASE)

CF=0.975, PV=0E0, TP=88, FP=1, Pos=271, Neg=207

S2 18. ((ESD = -inf..11.029)) ==> (@Class = CASE)

CF=0.827, PV=8.91154E-10, TP=83, FP=12, Pos=231

S3 15. ((GPRC5B = 8.486..inf)) ==> (@Class = CONTROL)

CF=0.87, PV=1.11022E-16, TP=90, FP=14, Pos=147
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=== TARGET ===

GEO82188.txt

=== SOURCES ===

S1: GEO46602.txt

S2: GEO6956.txt

S3: GEO17951.txt

S4: GEO32448.txt

=== Robust Rules ===

S2 5. ((CSRP2 = -inf..8.918)) ==> (@Class = CASE)

CF=0.938, PV=0E0, TP=108, FP=5, Pos=236, Neg=192

S3 10. ((DNASE2B = -inf..5.417)) ==> (@Class = CONTROL)

CF=0.895, PV=5.21061E-12, TP=60, FP=6, Pos=172, Neg=167

S3 7. ((ABCC4 = 10.220..inf)) ==> (@Class = CASE)

CF=0.913, PV=0E0, TP=100, FP=9, Pos=166, Neg=173

S3 13. ((DPYSL3 = 10.645..inf)) ==> (@Class = CONTROL)

CF=0.847, PV=7.18314E-14, TP=91, FP=15, Pos=173, Neg=166

S2 14. ((ERBB3 = -inf..9.063)) ==> (@Class = CONTROL)

CF=0.846, PV=4.10783E-15, TP=86, FP=18, Pos=193, Neg=235

S1 13. ((ARMCX1 = -inf..7.677)) ==> (@Class = CASE)

CF=0.867, PV=2.22045E-16, TP=116, FP=13, Pos=271, Neg=207

S3 16. ((ACTA2 = 13.306..inf)) ==> (@Class = CONTROL)

CF=0.852, PV=1.33227E-15, TP=101, FP=16, Pos=173, Neg=166

S2 7. ((ERG = 7.839..inf)) ==> (@Class = CASE)

CF=0.898, PV=1.73195E-14, TP=83, FP=7, Pos=236, Neg=193

S2 8. ((CSRP2 = -inf..8.935)) ==> (@Class = CASE)

CF=0.89, PV=0E0, TP=116, FP=11, Pos=236, Neg=193

S2 9. ((DUS1L = 9.893..inf)) ==> (@Class = CASE)

CF=0.862, PV=3.0087E-14, TP=97, FP=12, Pos=236, Neg=193
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S3 18. ((ALDH1A2 = -inf..8.107)) ==> (@Class = CASE)

CF=0.845, PV=7.01539E-12, TP=73, FP=13, Pos=167, Neg=173
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