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Systems biology is an approach that marries complimentary disciplines, encouraging the use of 

quantitative methods to help define, explain, and predict biological processes. By building 

computational models of biological systems, we can pose new biologically motivated questions 

and make falsifiable, quantitative predictions. In this thesis I will discuss the cycle of model 

building and experimental validation, and how it has provided insight into poorly and understood 

systems and allowed us to predict the effects of perturbations on these systems, which could have 

real and significant effects in human health and medicine. First, we model the activation of 

neutrophils in sepsis. By fitting a single model to two sets of data, coming from animals that 

survive and succumb to the same bacterial challenge, we create a realistic representation of 

biological variation, showing how a single network architecture can lead to different outcomes. 

Additionally, this method allows us to identify markers for sepsis susceptibility and identify and 

optimize a potential treatment option to lead to improved outcomes. Next, we model signaling 

downstream of the T cell receptor, and how this leads to differentiation decision making in CD4 

T cells. By modeling the dynamics of this signaling network under varying antigen doses, we are 

able to identify network elements critical to dose discrimination, leading to the production of 
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Treg cells following low dose stimulation and Th cells following high dose stimulation. We can 

then perturb these elements of the network, to potentially fine tune mature T cell populations to 

alter the trajectories of autoimmune disorders or cancer. Finally, we model the dynamics of IL-

17 signaling. This allows us to understand how ubiquitin scaffolds form following cytokine 

stimulation, leading to the activation of NF-κB, and how the ubiquitin editing enzyme A20 acts 

as a negative feedback regulator by breaking these chains. This allows us to better understand 

ubiquitin oligomerization as a fulcrum in the system, and how changes in A20 and ubiquitin 

binding proteins lead to different profiles of NF-κB activation and could play a role in 

inflammatory disorders.  
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1.0  INTRODUCTION 

1.1 A SYTEMS BIOLOGY APPROACH 

1.1.1 Systems biology as an evolving field and a useful tool  

Systems biology as a field is still relatively new and in the process of being defined. It 

encompasses work from many fields, including molecular biology, immunology, biochemistry, 

mathematics, computer sciences, and physics, drawing pieces from each and integrating them to 

push in new directions. All new scientific fields, like species, arise by descent with modification 

[1]. Systems biology has arisen by making modifications on these stalwart fields, and is 

prominently populated by researchers who pride themselves on attempting to cross disciplines 

and learn the basics of other fields. However, as the field grows in prominence, new scientists 

can be trained with a more coherent and focused path, codifying the ideas and needs of the field 

of systems biology, and allowing the field to grow, flourish, and better contribute to the greater 

scientific community.  

The evolution of biology has created a clear need for the growth of systems biology. 

Changes in data collection as well as understanding have led to the need for new methods of 

analysis and explanation. Big data has become a reality and a shift in focus from individual 

components and steady state behavior to network connectivity and dynamical changes [2,3] 
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requires a different tool set to study. We now strive to understand not only how individual 

elements function, but how these pieces can fit together to form functional and robust systems. 

The need to expand from individual components to consider systems and networks has been 

summarized in the following quotations from H. Kitano and J. Gunawardena: “We now think we 

know most of the genes and the interesting question is no longer characterizing this or that gene 

but, rather, understanding how the various molecular components collectively give rise to 

phenotype and physiology” [4]; “While and understanding of genes and proteins continues to be 

important, the focus is on understanding a system’s structure and dynamics” [5]. 

The study of these larger scale systems introduces many new challenges. One 

complication is that these systems often rely on multiple different time and length scales. It can 

be quite difficult to study events that happen on the order of seconds, such as protein-protein 

interactions, minutes, such as transcription and translation, hours or days, such as the time course 

of a disease in an individual, and even longer times such as the spread of disease in a population. 

Labs set up to study the short time scales are often ill equipped to also track longer time scales. 

Often the shortest and longest scales are difficult-to-impossible to measure and can require very 

expensive studies. This is where mathematics and computer science can open new avenues. We 

can easily simulate events that take place on scales ranging less than a second to over many 

years, with varying degrees of coarse graining [6].   

This approach of studying large and complex systems as a whole is where the interests of 

traditional biologists and new systems biologists overlap, and how they can work together for 

mutual benefit. Both groups can find common ground on the systems they are interested in, and 

systems biologists can take the questions and hypotheses of biologists, formalize their 

assumptions, identify new questions, and model their systems. This is helpful in many ways. The 
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wealth of new techniques available, in addition to the thought process and formalisms of systems 

biologists, can contribute to clarification of the core concepts of biology by directly addressing 

and writing down assumptions.  

Modeling can contribute to biology on multiple fronts. It both helps us formalize the 

assumptions we bring to a question, and also allows us to reach new conclusions that we can take 

away. In short, as Gunawardena explains, “a mathematical model is a logical machine for 

converting assumptions into conclusions. If the model is correct and we believe its assumptions 

then we must, as a matter of logic, believe its conclusions” [7]. Well-constructed models will 

give useful predictions (conclusions) we can take back to the lab to test. We can confirm these 

predictions, solidifying new biological knowledge, or refute the prediction, forcing us to 

reexamine and reconsider our assumptions, often leading to new biological knowledge as well. 

The types of insights we gain from these predictions are particularly useful because they are 

mechanistic in nature. Rather than searching for correlations, we specifically search for causality, 

because, as Wenying Shou states: “statistical correlations on their own do not constitute 

understanding. Rather, it is when a mechanistic explanation of the regularities or patterns is 

developed from underlying principles, while relying on as few assumptions as possible, that a 

theory is born” [8]. Modeling allows us to convert assumptions and preliminary data into new 

mechanistic conclusions that take the form of falsifiable predictions.  

Getting the most out of this potential collaboration between biologists and modelers 

requires the two groups to work closely together. This requires both groups to be clear in their 

goals and abilities, and to be generous in understanding the needs and limitations of the other. 

Modelers clearly expressing the data they require and the specific questions they can answer, and 

biologists being open to unusual experiments, sharing their data, and gaining enough 
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understanding of the model to request their own computational experiments will go a long way 

to improve collaborations and greatly improve scientific output.  

1.1.2 Iterative collaborations allow experimental results and model predictions to add to 

each other 

Gold standard science comes not just from collaborations born of convenience, but long standing 

partnerships which take the form of a cycle, as experiments inform model development, the 

model informs new experiments, and new data informs further model refinement.  This format 

functions the best when the two sides are in close contact, and can create a uniform plan for 

attack. The interests of a modeler and experimentalist may not always align, but planning out 

combined efforts in an efficient way can lead to very quick progress [9].  

 

Figure 1 An iterative cycle composed of experimentalists and computationalists exchanging data leads to 

optimal advancement in both fields. 
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One reason this close collaboration is so important is the difficulty in building and 

calibrating new models, and the large barrier of entry this can present. A substantial amount of 

data are typically needed to accurately calibrate a model, and the larger and more detailed the 

model is, the more data are required. Often these data are difficult to collect, typically including 

time course experiments and sometimes requiring very specific time points. Often this will 

involve experiments that otherwise would not be done. This means modelers either needs the 

training, time, and motivation to perform these experiments themselves, or needs a collaborator 

willing to go out of their way to do experiments on their behalf. 

The bright side is that a properly calibrated model can provide a lot of benefit in return 

for the experimentalist. A single model can generate a wealth of predictions and hypotheses and 

can be used repeatedly. While generating predictions may seem to be solely the domain of the 

modeler, this is again an area that benefits from collaboration. An experienced experimentalist in 

the field can sort through potential predictions and their corresponding experiments and decide 

which will be the most fruitful to pursue, based on interest in the field and feasibility of 

experiments. A clever experimentalist can even propose their own simulation scenarios that they 

would like to test, making their own experimental plans more efficient by using a computational 

test run. Additionally, experiments testing model predictions have an inherently low downside. 

Novel predictions that are confirmed are obviously interesting findings. But even when a 

prediction fails, new understanding can be gained. A failed prediction can often tell us even 

more, because it tells us something is wrong or missing from the model. It tells us our 

assumptions were flawed, and this can lead to its own kind of new biological finding. It may call 

into question long standing canon, or point researchers in the direction of a missing piece of the 

puzzle. Even “obvious” predictions made by a model provide us useful information on whether 
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the model is working correctly, and lend additional validity to future predictions. Nearly all 

model predictions and their corresponding experiments provide tangible benefit to both the 

modelers and experimentalists. All new experimental data, whether these confirm or refutes the 

model, can then be used to improve the model, or lead to expansion of the model in interesting 

directions. This cycle of model developments, predictions, and experiments make up the 

backbone of systems biology and lead to the quickest and most robust advancement of the field.  

1.2 BIOLOGICAL BACKGROUND 

1.2.1 Cell signaling methods are well suited to modeling studies 

Within a good systems biology collaboration, a key point is picking the right systems to model 

that will benefit the most from the methods being used. Cell signaling networks are such a 

system that often benefit from computational modeling. These systems consist of complex 

networks, which computationalists are used to dealing with. These networks have many common 

motifs, such as feedback and feedforward loops [10], that can lead to predictable mathematical 

behaviors such as oscillations, bistable switches, and pulses, which computationalists are used to 

analyzing [11]. Additionally, these systems contain a great degree of overlap in terms of 

biological mechanisms. Repeated themes including protein-protein binding, phosphorylation 

events leading to changes in binding and catalytic activity, and trafficking of key components 

between different compartments allow a modeler to work on multiple systems with a baseline 

level of understanding. In this work, I focus on three systems, neutrophil signaling and activation 

leading to sepsis, T cell receptor signaling leading to CD4+ T cell differentiation, and IL-17 
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receptor signaling leading to NF-κB activation, which use many of these well-studied network 

motifs and signaling mechanisms to exert dramatic effects on the global immune response.  

1.2.2 Immunological cell signaling systems 

Sepsis is a case ripe for systems-level study. It involves many different scales, including the 

molecular level of receptor activation and cell signaling, whole cell phenotypic changes, cell 

population migration and behavior, the spread of inflammation, and whole organ failure. Many 

specific mechanisms underlying sepsis have been well studied, but a systems level understanding 

is still lacking. Because of this, clinical treatments are still poor [12,13], and it still has a near 

20% mortality rate [14–17]. Through mathematical modeling, we can begin to tie signaling 

dynamics to changes in cell behavior. By calibrating our model to experimental data from septic 

and non-septic animals exposed to the same bacterial challenge, we can make real predictions of 

markers of sepsis susceptibility and progression. It also allows us to quantitatively test treatments 

that act on a molecular level, and predict the effects on a wider scale in terms of survival.  

CD4+ T cell differentiation is controlled by signaling downstream of the T cell receptor, 

but has wide ranging effects. Naïve CD4+ cells can develop into immune-activating Th cells and 

immune-suppressive Treg cells. The balance of these populations plays a key role in many 

different scenarios. Too few Tregs can lead to overactive immune responses to self-antigens and 

the development of autoimmune disorders [18]. Too many Tregs can lead to a decrease in the 

ability of the immune system to target tumors in cancer patients [19,20]. By understanding how 

the balance of these cell populations change with changes in signaling we can learn how to better 

target immunotherapies and improve outcomes in these scenarios. Our previous modeling efforts 

indicated that differences in the signaling response to different doses of antigens played a critical 
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role in the differentiation decision making process [21]. By using this insight and continuing to 

iterate through the experimental-modeling loop we can identify key mechanisms in the signaling 

pathway, such as positive feedback loops resulting in a switch in activation state, that determine 

the differentiation outcome, and how by targeting elements in this loop we can change outcomes.  

IL-17 signaling is another case study in signaling dynamics exerting a far reaching effect. 

Activation of the transcription factor NF-κB downstream of the IL-17 receptor leads to the 

transcription of pro-inflammatory genes. Defects in this pathway have been linked to 

inflammatory disorders such as psoriasis [22–24] and Rheumatoid Arthritis [25], so better 

understanding the control of NF-κB could have a substantial clinical impact. A key inhibitor of 

NF-κB that could play a role in these disorders is the ubiquitin editing enzyme A20 [26,27]. A20 

acts as a negative feedback element, as it is an NF-κB-induced gene that reduces the activation of 

NF-κB by breaking ubiquitin scaffolds that are required for the activation of kinases necessary 

for IκB degradation and subsequent NF-κB activation. The growth and maintenance of these 

ubiquitin scaffolds is an important step in the signaling pathway, but it is difficult to measure and 

track experimentally using traditional biochemical methods. By building a unique mathematical 

model with a specific focus on ubiquitin oligomerization and A20’s ubiquitin editing 

mechanisms, and calibrating it to experimental data, we can predict the growth dynamics and 

typical sizes of ubiquitin, as well as the activation dynamics their binding partners. This allows 

us to gain new understanding into how a known key player, A20, functions, and make 

quantitative predictions about how changes to its function affect signaling dynamics and 

resultant inflammation.  
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1.3 COMPUTATIONAL BACKGROUND 

1.3.1 Modeling methods 

To model all of these different systems we have to choose methods to match both system and 

question being answered. There exist many methods for model specification and model 

simulation, and each have their own strengths and weaknesses that make them suitable for 

modeling different kinds of systems and answering different kinds of questions [28].  

 Ordinary differential equations  Ordinary differential equation (ODE) networks are one 

of the most common forms of mathematical model [29]. They are simulated deterministically 

and deal well with low complexity systems but can scale poorly in terms of model specification. 

Model simulation is generally fast and lends itself to well established methods of analysis [11]. 

Well suited to handling large populations and provides extensive flexibility.   

They have been extensively used in modeling various aspects of the immune system in, a 

wide variety of contexts and with different approaches [30,31]. Simple, phenomenological 

models that focus on a small number of generalized components have been used to model a wide 

range of immune behaviors. These models may involve a small amount of mechanistic detail, 

such as a receptor binding a ligand, or a pathogen with realistic population growth and decay. 

However, they will also contain more abstract elements, such as generic changes in activation 

state, or transition between phenotypes that involve a series of more complex mechanisms, but 

are simplified to a single step to allow for easier simulation, easier analysis, and to facilitate the 

building of larger scope models. This type of model has been used to great effect in studying 

inflammatory pathways, where a less detailed approach is beneficial due to the sheer complexity 
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involved in considering numerous overlapping signaling pathways. These pathways can 

experience crosstalk complicated by autocrine and paracrine signaling [32–36], and the many 

inflammatory cytokines and other mediators that are produced, which can also have many 

overlapping effects on the system [37,38]. Many models have tried to tackle these problems, at a 

variety of different scales. Models have attempted to understand the dynamics of the 

inflammatory response to specific challenges in a quasi-mechanistic fashion by explicitly 

modeling certain elements of interest, and grouping other mediators into a smaller number of 

abstract variables [39,40]. Alternatively, more abstract, statistical approaches have been used to 

identify inflammatory markers indicative of patient outcomes, in the absence of mechanistic 

detail [41]. A more coarse-grained approach, focusing on the dynamics of gross populations of 

cells, rather than the molecular detail inside of a single cell, has also led to increased 

understanding of the pathology of inflammation in sepsis [42]. By zooming out to an even more 

coarse-grained level of detail, epidemiological models can assess the spread of a disease 

throughout a population, while ignoring the details of a single individual [43–45]. These use 

cases illustrate the great extent to which phenomenological ODE models allow for case-specific 

coarse graining to tackle immunological problems at many levels of detail, including the level of 

molecular interactions, cell population dynamics, the growth of disease in an individual, and the 

spread of disease in populations. However, ODE models can also utilize a greater level of detail, 

maintaining greater fidelity to biological mechanisms. 

More detailed models are often used with the goal of achieving greater mechanistic 

detail, and gaining insight into specific players in a system of interest. JAK-STAT signaling 

pathways received significant modeling attention as a seemingly simple but important system in 

the immune response triggered by many factors. The kinetics were predicted in early models [46] 
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and additional studies followed suit, focusing on the details of specific JAK-STAT combinations 

[47–49] and specific cell types [50,51]. These models can also be reduced back to simpler, more 

phenomenological models for additional analysis [52]. 

It is common for modeling literature to build over time in this manner, with studies 

building on each other to add additional information or analysis to an old model, or creating new 

models to attack the system from a different angle, and fill more gaps in knowledge. A classic 

example of this phenomenon is modeling of signaling through the epidermal growth factor 

(EGFR) receptor [53]. There is a large swath of literature examining the dynamics of this 

signaling cascade [54–56]. Many additional studies have been performed over the years to study 

various aspects of the system such as how information is passed from the ligand-induced signal 

to response [57–59], the complexity of interactions [60–62], the effects of receptor endocytosis 

and trafficking [63–65], the role of the pathway in cancer [66–68]. A similar effect can be seen 

in the NF-κB modeling field [69], where a large number of different groups have modeled 

various aspects of the associated pathways, as discussed in section 4.1.1.  

 Boolean modeling  In Boolean modeling [70] elements are represented as binary 

variables that take the values 0, representing the inactive state, or 1, representing the active state. 

Variable states are determined using a set of logical rules which are constructed using standard 

logical operators such as AND, OR, and NOT. These models are typically simulated 

stochastically with a series of update rounds which can represent the passage of time where each 

variable is updated synchronously or asynchronously [70,71].  

This method is beneficial for modeling very large networks in a coarse grained and 

qualitative manner. There are no explicit parameters in a Boolean model, reducing the need to 

calibrate models to experimental data. This allows models to scale up to much larger sizes 
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without the need for increasing numbers of experiments. This makes the models suitable for 

exploring different network architectures, and understanding all possible behaviors arising from 

a given architecture. The difficulty of integrating quantitative experimental data and lack of 

explicit time make it difficult to make quantitative predictions, but do allow for qualitative 

predictions and can be used to understand the flow of information within a network. 

Boolean modeling has been used to great effect in modeling many different types of 

biological systems, allowing for the inclusion of large complex sets of interactions [72]. Boolean 

modeling is a popular technique for modeling gene regulatory networks [73,74], and has been 

expanded to add mechanistic detail, such as considering ligands and subsequent transcription 

factor activation [75]. Using these techniques to model signaling pathways has become common 

since they scale well, allowing for the modeling of crosstalk and signaling downstream of 

multiple of multiple receptors [76]. Signaling pathways influencing the differentiation of CD4 T 

cells have been modeled a number of times, including various levels of mechanistic detail, 

ranging from small models focused on identifying minimal mechanisms needed to recover the 

observed phenomenon [77] to larger models encompassing multiple receptors, signaling 

intermediates, and resulting gene products [78,79]. Additional work has focused on other effects 

downstream of the TCR, including activation in response to infection and cell survival decision 

making [80,81].  

 Rule-based modeling Rule-based modeling is a modeling approach where the model is 

specified in human-readable modeling languages such as the BioNetGen Language (BNGL) 

[82,83]. Model elements are specified as structured objects, allowing for the specification of site-

specific dynamics. In a cell signaling context these sites can represent binding sites, catalytic 

domains and sites for post-translational modifications. The dynamics of model behavior are 
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controlled by user-defined rules that most commonly represent biochemical events controlled by 

mass action kinetics.   

This method is well suited to modeling cell signaling systems due to its transparent 

fidelity to the biological system, as rules can be written to correspond directly to actual 

mechanisms. Additionally, it elegantly handles the problem of combinatorial complexity in 

model specification that arises in modeling signaling networks. The “don’t care, don’t write” 

convention [84] that allows for model components that do not impact a reaction to be omitted 

from a rule has the effect of greatly reducing the number of rules that need to be written in 

comparison to the number of equations required in an equivalent ODE model, particularly when 

accounting for the building of large complexes and oligomerization, which are common to 

signaling systems.   

BioNetGen models are also flexible in that they can be simulated using a variety of 

methods. They can be simulated deterministically as a set of ODEs using the CVODE solver 

[85], or stochastically using an iteration of Gillespie’s method for stochastic simulations of 

chemical kinetics [86]. These methods have been used to model immune signaling networks in a 

great deal of detail [30]. Important systems modeled in the past have been reexamined in more 

detail as rule-based models, such as negative feedback in TLR4 signaling [87], kinetic 

proofreading and bistability in TCR activation [88], and JAK-STAT signaling [89]. Additional 

modeling studies have added significant understanding into how positive negative feedback 

affect the activation of both T cells [90,91] and B cells [92].  

Rule-based models can also be simulated in a stochastic network-free framework using 

the NFsim software [93], which does not require the generation of the network of all possible 

reactions, making the simulation of models with a very large or even an infinite number of 
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species possible. This method has proved useful in simulating large signaling networks, such as 

that downstream of the T cell receptor [94], and in systems involving oligomerization reactions, 

such as in TNFR aggregation [95] and CaMKII activation [96]. 

 Parameter estimation The final necessary computational piece is parameter estimation. 

Using experimental data to estimate these values and calibrate the data to quantitative dynamics 

of the system allows us to make quantitative predictions with our model.  This requires carefully 

selected experimental data that captures the key dynamical features, such as complex but 

important dynamics like oscillations, and needs to be sufficient to constrain the model to realistic 

behavior. We use two methods for efficient parameter estimation. First, Bayesian parallel 

tempering, which utilizes traditional Markov Chain Monte Carlo (MCMC) methods to sample 

the Bayesian posterior distribution P(p|y), of each parameter efficiently. It is implemented in the 

software suite known as PTempEst (https://github.com/RuleWorld/ptempest). This method 

works efficiently with ODE models. Second, we utilize a genetic algorithm based approach 

implemented in the BioNetFit software [97], which works efficiently with models encoded in 

NFsim. 

This thesis presents a systems biology approach to modeling three separate immunological 

signaling systems, with a goal of gaining new understanding and making novel predictions. In 

Chapter 2 I will present an ODE model of neutrophil activation through two cell surface 

receptors, CXCR1 and CXCR2, and its implications in sepsis. Using this model, I will make 

predictions on the efficacy of a proposed sepsis treatment. In Chapter 3 I will present two models  

1.4 THESIS OUTLINE

https://github.com/RuleWorld/ptempest


15 

of T cell receptor signaling and its impact on CD4 T cell differentiation, one a Boolean model, and 

one a rule-based model. I will identify signaling mechanisms leading to a threshold separating Th and 

Treg differentiation and predict interventions to shift this threshold. In Chapter 4 I will present a rule-

based model of IL-17 receptor signaling leading to the activation of NF-κB and predict how the 

mechanisms of A20 affect ubiquitin scaffold formation and the dynamics of NF-κB 
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2.0  NEUTROPHIL ACTIVATION LEADING TO SEPSIS CAN POTENTIALLY BE 

TREATED USING AN EXTRACORPOREAL DEVICE TARGETING NEUTROPHIL 

SURFACE RECEPTORS  

Adapted from Malkin AD, Sheehan RP, Mathew S, Federspiel WF, Redl H, Clermont G. (2015) 

A neutrophil phenotype model for extracorporeal treatment of sepsis.  PLOS Comput BIol 

11(10): e1004314. doi:10.1371/journal.pcbi.1004314. A full description of my contributions to 

this work is given in Section 2.5. 

2.1 INTRODUCTION 

Sepsis, a systemic inflammatory response due to an infection, affects 900,000 Americans per 

year and its incidence is expected to increase over the next 10-20 years as the population ages 

[17]. While it is acknowledged that sepsis is a growing problem, its associated mortality rate has 

remained persistently high for the last 20 years and is currently near 20% [14–17]. Sepsis is now 

the leading cause of in-hospital death in the United States, yet there are no FDA approved 

specific treatments [98]. While understanding of the underlying mechanisms in sepsis has been 

rapidly improving, translation to clinically effective  treatments has proven very challenging 

[12,13]. Much of this difficulty translating treatments may be the diversity and complexity of 

individual immune response and patient population [99,100]. These complexities lend 
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themselves well to computational modeling, which can help integrate these complexities into a 

unified pathophysiological framework and optimize potential treatments [101]. 

Neutrophils are one of the first responders to sites of inflammation and play a critical role 

in the innate immune response. When effective, neutrophils migrate from the bloodstream 

through endothelial walls to the site of inflammation by sensing gradients of chemokines, which 

bind to neutrophil cell surface receptors. In early stages of sepsis neutrophils potentially play a 

duplicitous role, both actively fighting the invading pathogen but also contributing to undesirable 

systemic inflammation, which often leads to multiple organ dysfunction, immune paralysis, or 

death [102,103]. Neutrophils’ roles in sepsis are well recognized but the dynamics of multiple 

phenotypes and their impact on treatments is not fully understood. A key chemokine impacting 

neutrophil behavior and phenotype is interleukin-8 (IL-8). IL-8 signals through functionally 

distinct surface receptors CXCR-1/2, which are primarily expressed on neutrophils. CXCR-1 is 

primarily responsible for activating phospholipase D [104], which mediates respiratory burst and 

other pathogen killing functions. CXCR-2 has been shown to stimulate migratory functions such 

as chemotaxis and diapedesis [105,106]. 

The motivation of this work is to use computational modeling of CXCR-1/2 signaling, 

and the associated dynamics in neutrophil phenotype composition, to explore whether modifying 

this dynamic could be exploited to favorably impact outcome in sepsis. A population based 

mechanistic computational model, which incorporates both receptor level dynamics and 

neutrophil response to pathogen, was developed to explore the mechanisms involved in sepsis 

progression and calibrated in septic baboons. Furthermore, an experimental extracorporeal 

treatment which modulates CXCR-1/2 receptor levels was evaluated in silico using the model 

framework. The computational model described in this manuscript provides a physiologic 
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rationale for neutrophil’s CXCR-1/2 mediated activity in sepsis, delivers insight into the 

overriding mechanisms involved, and suggests that interventions aiming to modulate phenotypic 

composition are time sensitive. 

2.2 METHODS 

2.2.1 Experimental data set protocol 

After general anesthesia, instrumentation and a 30 minute stabilization period, sixteen baboons 

(Papio ursinus) weighing between 19 and 32 kg were infused with 2 x 109 CFU Escherichia coli 

per kg over a two-hour period as described previously [107]. Thereafter, antibiotic therapy was 

delivered (gentamycin 4mg/kg twice a day).  Eight animals were placed in an acute study lasting 

6 days, while another eight were placed in the chronic study intended to last 28 days. All animals 

were observed for a 4-hour period after bacteria infusion then 11, 23, 35, 47, 72 hour and 6 days 

after infusion. Pathogen counts in blood, IL-8, creatinine, white blood cell, neutrophil elastase / 

α1-PI complex, and other physiologic parameters and biomarkers were gathered at multiple time 

point. For animals in the chronic study an additional time point was collected at 28 days. At the 

end of the study period, the baboons were again anesthetized for measurements and thereafter 

sacrificed with an overdose of pentobarbital. This study was approved by the Institutional 

Animal Care and Use Committee at Biocon Research Institute and animals were treated 

according to NIH guidelines. 
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2.2.2 Model framework and description 

A simplified mechanistic model of IL-8 mediated activation of CXCR-1/2 receptors and 

neutrophil response to a pathogen was developed based on available literature information and 

general knowledge of acute inflammatory response. Receptor level dynamics and systemic 

parameters were coupled with multiple neutrophil phenotypes to generate dynamic populations 

of activated neutrophils which reduce pathogen load, and/or primed neutrophils which cause 

adverse tissue damage when misdirected. Mathematical representation of the interactions 

detailed in Fig 1. were generated using ordinary differential equation (ODE) framework with the 

rate of interactions described by mass action kinetics or Hill type kinetics [108,109]. The 

interactions included in the model gives rise to 16 ODE state variables and 43 rate parameters.    

In brief, the model is initiated by a pathogen load, which represents a bacterial 

inoculation. Presence of pathogen leads to continued growth as well as IL-8 and fMLP cytokine 

production. IL-8 is generated indirectly from pathogen generation from responding phagocytic 

mononuclear cells [110]. IL-8 initiates CXCR-1/2 activation in the receptor level, which in turn 

generates neutrophil phenotype change. Depending on phenotype, neutrophils may cause either 

pathogen elimination or misdirected tissue damage. A systemic damage indicator represents 

overall patient health. Increased systemic damage results in further IL-8 generation [111,112], 

resulting in a positive feedback loop. This simplified system captures the basic functionality of 

acute IL-8 mediated immune response to pathogen and is capable providing valuable feedback 

on potential therapeutic treatments modulating these mechanisms. A more detailed description of 

model equations follows. 
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Pathogen: Equation (1) describes the population of foreign pathogen. Base pathogen 

growth rate increases linearly with pathogen until approaching a carrying capacity at elevated 

pathogen loads. In addition to basal pathogen death, the Neutrophil kill/migrate phenotype is 

capable of decreasing pathogen population through diapedesis, followed by targeted 

phagocytosis [102,113,114]. 

  
Equation 1 
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Ligands: Interleukin-8 (IL-8) and fMLP: 

In the model, neutrophils progress through multiple phenotypes which dictate neutrophil 

migratory, phagocytic, and antibiotic activity. The association of chemokine IL-8 with the 

surface CXCR-1/2 triggers the transition of basal neutrophils to functional phenotypes. 

Previously characterized receptor surface activation, internalization, and recycling rates of 

CXCR-1/2 are utilized to predict receptor levels and neutrophil phenotypes in response to 

systemic IL-8 stimulation [105,115]. IL-8 production rate is a function of elevated pathogen and 

tissue damage [116,117]. Both terms are represented as Hill Equations in Equation (2). While IL-

8 is not directly linked to pathogen levels, this simplified representation captures IL-8 release 

from macrophages and endothelial cells in response to infection. 
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Equation (3) characterizes a general pro-inflammatory pathway, which is independent of 

CXCR-1/2 activation has been added to represent alternate means of neutrophil induced 

pathogen activation. This generic pathway is not modeled using receptor level dynamics and 

directly transitions the NBasal (NB) population to NKilling/Migratory (NK/M).The generic 

proinflammatory ligand growth is dictated by pathogen level. 

 

  
Equation 3 

fMLP fMLP
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Neutrophil Surface Receptors CXCR-1 & CXCR-2: 

Receptor level dynamics dictate neutrophils advancement into one of four phenotypes 

depending on CXCR-1/2 surface activation. Each receptor can occupy one of the three states, 

namely free surface receptor, surface receptor bound to IL-8 and internalized receptor bound to 

IL-8 [118]. Equation (4) and Equation (5) describe CXCR-1 surface and internalized 

populations, which have been non-dimensionalized to remove the free receptor state. Equivalent 

equations are present for CXCR-2. The active surface state was modeled as the dynamic 

condition which drives neutrophil population phenotype change [55]. This model makes the 

assumption that CXCR-1/2 receptors are conserved. 
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Equation 5 
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Neutrophil Phenotype: 

Equation (6) represents the resting state (NB) represents basal neutrophils which have not 

been stimulated by IL-8 or other proinflammatory stimuli. These neutrophils are mobile in blood, 

but not capable of causing systemic damage or utilizing their anti-pathogen capacity without 

transitioning to another phenotype. All neutrophils begin in this basal state prior to activation and 

priming. Without stimulation, neutrophil growth and death rates are in equilibrium, however 

growth rate increases with the introduction of pathogen, which has been expressed through a 

filter equation to produce a physiologic time delay [102,119]. CXCR-1/2 surface complex levels 

dictate the transition rates of NB to the NMigratory (NM) or Nkilling (NK) phenotypes. Additionally, 

there is a direct pathway to transition NB to NK/M. This mechanism represents a general 

proinflammatory process independent of CXCR-1/2 signaling. A filter equation was generated in 

Equation (7). This function fits the physiologic delay between pathogen generation and increased 

neutrophils entering circulation. 
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Equation 7 

_ _filter on filter off
dF k P k F
dt
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Equation (8) contains neutrophils which have been activated via IL-8 mediated CXCR-2 

stimulation. 

  
Equation 8 
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Equation (9) characterizes the killing phenotype (NK), representing neutrophils which 

have been activated via IL-8 mediated CXCR-1 stimulation. NK neutrophils are capable of 

untargeted cytotoxic activity, resulting in systemic organ damage. The CXCR-1/2 surface 

population dictates transition rates into phenotypes. Neutrophil elastase / α1-PI complex was 

utilized in the model to fit NK neutrophil population. As shown in Equation (10) levels of 

neutrophil elastase / α1-PI complex equate to levels of circulating NK phenotypes. 
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Both NM and NK phenotypes are capable of progressing to the NK/M phenotype through 

CXCR-1/2 surface receptor activation. This neutrophil state (NK/M), shown in Equation (11), 

represents neutrophils which have been activated through both CXCR-1 and CXCR-2 and are 

capable of target pathogen removal, effectively fighting infection. The pathogen equation 

(Equation (1)) contains a term which dictates pathogen death in response to NK/M levels. Once 

activated through CXCR-1/2 neutrophils are not capable of returning to the basal NB phenotype.  

  
Equation 11 
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Damage: 

A systemic damage indicator (Equation (12)) was developed to represent overall animal 

health. Damage is increased by the population of NK and decays gradually as tissue and organs 

recover. Creatinine, a biomarker for kidney function, was utilized in Equation (13) as an 

indicator for the damage term ensemble computation. Creatinine is maintained at a constant level 

in the absence of damage, but systemic levels increase with damage as body’s ability to clear 

creatinine decreases [120]. 

  
Equation 12 
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The model uses empirical time series of Pathogen (CFU), IL-8 (nM), creatinine (mM), 

White Blood Cell count (103 cells/µl), and neutrophil elastase / α1-PI complex (ng/ml) for 

computation of the ensemble. State variables and their initial conditions are listed in Table 1. 

2.2.3 Parameter estimation 

The model contains 38 parameters, 13 of which are fixed based on literature data (Table 1). 

Parameter values were inferred using a Bayesian parallel tempering approach [121,122], which 

utilizes traditional Markov Chain Monte Carlo (MCMC) methods to sample the Bayesian 

posterior distribution P(p|y), the probability of parameter set p given data y, given by the Bayes 

formula 

 ( ) ( )
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where L(y|p) is the likelihood of observing y for a model with parameters p, θ(p) is the prior 

distribution, and ( )( | )L Y θ∫ p p  is the normalizing constant. Additional sampling efficiency is 

gained by running multiple parallel chains evolving at different temperatures. Higher 

temperature increases the likelihood of acceptance of proposed steps. This allows the high 

temperature chains to move more freely through the parameter space, avoiding getting stuck in 

local minima. This results in more efficient exploration of parameter space [123,124] a method 

we have applied extensively in parameter estimation of practically unidentifiable complex non-

linear models [101,125,126]. This resulted in the creation of parameter ensembles, where each 
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parameter is represented by a posterior distribution, rather than a single value. Free parameters 

were fit separately to the survivor and non-survivor experimental data sets, resulting in two 

parameter ensembles representing surviving and non-surviving animals. 

 Bayesian priors Prior distributions were selected for each parameter. In each case 

uniform priors were used, with a suitably large range so as to encompass all reasonable 

parameter values. This was ideal due to the limited prior knowledge and phenomenological 

nature of many of the parameters. Tighter ranges were enforced on select parameters as required 

to avoid non-physiologic model behavior. All candidate parameter values were selected from 

these pre-defined priors. 

 Parameter set fitness Fitness (log likelihood) of candidate parameters sets was 

determined by the difference between model simulations and experimental data, as determined 

by the sum of squared residuals cost function, 
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Where i, j,kw  is a weighting function, i, j,ky  is the output for a simulation with a single set of 

parameters, i, j,kŷ  is the experimental mean, and i, j,kσ  σi,j,k is the experimental standard 

deviation at time point i, observable j, and data set k. No additional penalties or constraints were 

added to parameter selection. To ensure proper fitting of the pathogen observable a threshold 

was added to change all values below the experimental limit of detection (4.4 CFU) to 0. 
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 Parallel tempering To efficiently sample the posterior distribution, six separate Markov 

chains were run, initiated with parameter values randomly selected from the supplied prior 

distributions which met a maximum energy criterion. Each chain was initiated with a 

temperature and step size parameter which controlled the chain’s ability to fully explore the 

parameters space. Chains were allowed to swap from a higher temperature to a lower 

temperature every 25 steps to allow for local sampling of newly found local minima. Step size 

and temperature parameters dynamically changed every 6,250 and 2,500 steps respectively to 

attempt to reach an ideal step acceptance rate of 23% [127], and swap rates of 15%-30%. Once 

these targets were reached, the temperature schedule and step sizes were fixed. Parameter sets 

were saved every 25 steps. Full exploration of parameter space was confirmed by examining, for 

each parameter, the frequency histogram of its full marginal posterior distribution, confirming 

that it spanned the prior domain.  

We measured convergence and chain stationarity using the Gelman-Rubin criteria 

[128,129]. All parameters had converged with a potential scale reduction factor (PSRF) < 1.1 

following 200,000 (x25) MCMC steps. Another 100,000 steps were taken to build a posterior 

distribution for each parameter that would be used for all model analysis and simulation. This 

ensured that all samples from the burn-in time for each chain were discarded, and only samples 

from the correct stationary distribution were used. The ensemble of all parameter sets from the 

lowest chain comprised the computed ensemble (posterior distribution). 

2.2.4 Selection of key parameters 

In order to better capture the underlying biological differences between animals that survive and 

those that die following the same challenge we attempted to identify the most important 
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parameters in determining animal fate. After computing ensembles for survivors and non-

survivors, we performed regularized logistic regression, forward conditional stepwise logistic 

regression, and backward conditional logistic regression to identify a subset of parameters that 

are most indicative of outcome.  Predictors consisted of all estimated parameters of both 

ensembles, and the indicator variable was the source (survivor or non-survivor) of the ensemble. 

Parameters were selected that were considered significant by all three methods, leaving a set of 

seven key parameters. 

2.2.5 Model fitting 

A second round of model fitting was then performed. In this round, 18 of the 25 parameters were 

fit simultaneously to both data sets, resulting in identical parameter values in the two ensembles. 

The seven parameters identified as being significant were fit twice, once against the survivor 

data set and once against the non-survivor data set, resulting in different parameter values across 

the two ensembles. This resulted in a smaller and more focused difference between the final 

ensembles. 

2.2.6 Global sensitivity analysis 

Global Sensitivity analysis was done to determine the independent and correlated contributions 

of rate parameters on cumulative damage. Area under the damage curve was chosen as the 

system output. To reduce the computational cost of GSA, Random Sampling High Dimensional 

Model Representation (RS-HDMR) approach was used [130]. Here, a multivariate output 

function (eg. AUCD) was approximately represented by weighted optimal expansion functions 
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(called as component functions). The expansion coefficients of these functions were determined 

by least-squares regression simultaneously from one set of Monte Carlo samples. In general, for 

input vector,  of rate parameters, in an –dimensional space, a multivariate 

output function, , is approximated by a sum of terms including the mean ( ) and the 

component functions ( ). Mathematically, 

Here, the index  indicates all possible combinations of the input parameters. In practice, 

not all component functions are significant and an F-test can be used to determine which 

component function should be excluded from the expansion [131]. For our work, we evaluated 

the variance based Sobol’ indices using these component functions. The workflow adopted here 

starts with generation of Monte Carlo samples of the rate parameters from the ensembles 

obtained by the parallel tempering approach. Since they come from the ensemble, information on 

the covariance between the parameter distributions for the population of survivors and non-

survivors is retained. Next, a detailed procedure is followed which includes simultaneous 

construction of all the component functions, removal of non-significant component functions 

using an F-test ratio score, re-evaluation of component functions and finally evaluation of the 

Sobol’ sensitivity indices. The first order Sobol’ sensitivity indices which capture the influence 

of a single parameter (but averaged over the other parameters) are defined as: 

,  
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Here, is the total variance in the output and  is the covariance between the 

output function and each of the first order component functions. For clarity, the component 

function, , is written as a function of  but in reality it is only a function of the input 

parameter for which it is defined (for example, ) and not the entire vector. Further, this 

sensitivity index is a sum of two terms that capture independent ( ) and correlated 

contributions ( ) of the input, which are defined as: 

  

and 

. 

The inner products, , are defined as: 

 

 and  is the probability density function of the inputs informed by the parameter ensembles. 

Similar equations can be written for the higher order component functions and sensitivity 

indices. Further details on the evaluation of the component function for various types of models 

are given in [130,132,133]. To determine the importance of a given parameter, it is necessary to 
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combine all the important sensitivity indices (all orders) into a total sensitivity index, which for a 

parameter  can be defined as: 

. 

For most systems, very high order interactions are negligible and therefore, indices until 

the third order are sufficient, with most systems requiring only until the second order terms 

[130]. In this work, we constructed a third order RS-HDMR. All GSA computations were 

performed using the ExploreHD software (Aerodyne Research Inc., MA, USA). 

2.2.7 Treatment framework 

 Treatment implementation After model fitting and analysis, a potential extracorporeal 

treatment was introduced (See Fig 7.). The extracorporeal treatment directly modulates CXCR-

1/2 levels of circulating neutrophils, limiting passage of NB to NK and NM. This mechanism of 

limiting CXCR-1/2 surface levels is modeled solely in the receptor level equations of the model. 

A heaviside function is used to turn treatment on and off at various treatment times. The 𝑘𝑘𝑓𝑓𝑓𝑓1 

parameter represents treatment effectiveness, which combines device size, efficacy, efficiency 

and flow rate. Equation (14) is the modified CXCR-1 surface receptor equation which includes 

the Heaviside function. Equation (15) characterizes the trapped receptor state of CXCR-1. 

Similarly Equation (16) and Equation (17) are constructed for CXCR-2 and its associated 

trapped receptor state. 
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Equation 14 
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Equation 15 
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Equation 17 
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 Classification of patient outcome In order to implement and evaluate treatment 

frameworks, simulated patient survivorship needed to be explicitly labeled. This was 

accomplished using a logistic regression classifier as specified by the machine learning software 

Weka [134]. The estimated parameter ensemble was partitioned into a training set and test set to 



33 

build the classifier, using 20% of the ensemble as training data. Two features were used for 

training, total accumulated damage measured by area under the curve of the damage time course 

for each patient, as well as the peak damage experienced by the patient. Training with these 

features resulted in a classifier that could label a patient as surviving or dying after being 

exposed to a specific infection and possible treatment. 

2.3.1 Computation of parameter ensembles explaining survivor and non-survivor 

dynamics 

Of the 16 baboons subjected to bacterial infusion, 11 (69%) died and 5 (31%) survived, with 

death occurring within 6 days of bacterial infusion. Based on these two systemic outcomes, a 

thorough investigation of the model (see Methods section & Fig 2) was completed to identify 

parameter regimes that explain the dynamics of each group of the responders.

2.3 RESULTS 
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Figure 2 Model diagram detailing neutrophil phenotypes and critical feedback loops.  

The system is divided into modules based on the level at which the interactions occur. The systemic level includes 

the interactions between the pathogen (P), four neutrophil phenotypes (basal: NB, migratory: NM, killing: NK and 

killing and migratory: NK/M) and chemokine IL-8. The receptor level interactions include the intracellular dynamics 

of CXCR-1/2, namely activation, internalization and recycling. Two types of feedback occur between the two levels, 

active surface receptors can trigger the phenotype conversion of the neutrophils and IL-8 produced at the systemic 

level triggers the trafficking of the receptors. A CXCR-1/2 independent activation via fMLP is included to model 

general pro-inflammatory response. The systemic damage (D) indicates the overall damage (direct and indirect) 

caused by the action of the killer neutrophils. 

 

The initial conditions for the state variables of the ODE were fixed to simulate 

experimental stimulation (Table 1). Among the rate parameters, some were fixed to literature 

values. These included pathogen growth and decay rates, basal decay rates of naïve neutrophils, 
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CXCR-1/2 internalization and recycling rates and creatinine decay rate (See fixed parameters in 

Tables 2 and 3). Remaining parameters were estimated by generating parameter ensembles using 

a Bayesian parallel tempering approach that fit our model to the survivor and non-survivor 

experimental data sets (see Methods). We conducted the parameter estimation process in two 

rounds. In round one, the model was fitted to the two data sets separately. By fitting to the two 

data sets separately, we were able to effectively show that the model was capable of replicating 

both lethal and non-lethal outcomes through only a change in few parameters. In an attempt to 

classify the underlying differences, we identified the parameters that were most influential in 

determining the outcome (survivor or non-survivor) of an individual using stepwise logistic 

regression. This resulted in a list of seven key parameters. These parameters tend to control the 

rate at which neutrophils grow and how quickly they can change phenotypes, which play a 

critical role in determining how quickly and severely the animal will respond to the infection.  

 

Table 1 Initial Conditions 
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Table 2 Shared Parameter Values 

 

Table 3 Unique Parameter Vales 

 

 



 37  

Once these differentiating parameters were identified, we put the model through a second 

round of estimation. In the second round, the model was fit to both data sets simultaneously; 

allowing only the seven previously identified key parameters to vary between the survivor and 

non-survivor subpopulations (see Table 3). Additionally, two fixed parameters were allowed to 

take different values across the two populations to maintain the appropriate initial conditions in 

creatinine and white blood cell count. This step resulted in two new parameter ensembles that 

were identical in 28 parameters but varied in nine parameters. This second step enabled us to 

better crystallize the differences between animals that survived and those that died. These 

ensembles are biologically more relevant as we expect the animals’ immune responses to be 

highly similar, with small but important differences indicating susceptibility to a septic insult. 

Resulting full marginal distributions for each of the 7 parameters were statistically different 

across survivor and non-survivor populations (Fig 3). The final mean values and the standard 

deviation of all the estimated parameters are summarized in Tables 2 and 3. 
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Figure 3 Posterior distributions of parameters allowed to vary across ensembles. 

Each parameter was fit separately to data from surviving and non-surviving animals. Values for the mean, 25th-75th 

percentile, and 2.5th to 97.5th percentiles are shown. Parameters distributions were compared using a two-sample 

Kolmogorov-Smirnov test. *p<0.05, **p<0.01, ***p<0.001. 

2.3.2 Features of survivor and non-survivor dynamics 

 Trained model outcomes The two ensembles resulted in model fits that faithfully 

recreate the key features of the surviving and non-surviving data sets (Fig 4).  Pathogen 

dynamics showed a transient behavior, with the model predicting a slightly higher peak for non-

survivors. The ensembles captured the transient peak in IL-8 that occurs early after infection, 
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with the non-surviving population exhibiting a higher maximum peak. The predicted neutrophil 

populations also tracked well with the experimental results, with circulating basal neutrophils 

exhibiting a strong initial decline in abundance as the cells are activated and migrate to the site of 

infection, followed by a growth phase as the body compensates for the infection, and finally a 

return to baseline levels. While both surviving and non-surviving populations exhibited this 

trend, the surviving populations had a noticeably higher peak in basal neutrophils during the 

growth phase. Levels of neutrophil elastase / α1-PI complex in the blood, indicative of the killing 

and damage causing function of activated neutrophils, peaks around 15 hours post-infection. The 

non-surviving population showed a stronger and longer lasting peak, which is captured by the 

model. Creatinine, a measure of kidney health, increased to higher and more sustained levels in 

non-surviving animals, as kidney health decreases and creatinine was not as efficiently cleared.  

 Model predictions The model also made predictions in the absence of observable data 

on the dynamics of neutrophil phenotypes (Fig 5 & Fig 6). Although both populations had 

similar peaks in fully activated neutrophils, allowing them both to fight off the infection on 

similar time scales as predicted experimentally, they showed strong differences in other 

populations. Non-survivors showed a significantly stronger spike in damage-causing killer 

neutrophils, while survivors showed a stronger spike in migratory neutrophils. This can also be 

seen in the parameter ensembles, as neutrophils in non-survivors had an increased proclivity to 

activate their killing function in response to IL-8, while neutrophils in survivors were faster to 

activate their  
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Figure 4 Simulated model fits with their experimental training data. 

Mean (red), 25th-75th percentile (dark blue), and 5th-95th percentile trajectories of the simulated ensemble are 

shown. Experimental data points are shown in black with error bars representing one standard deviation above and 

below the mean. Results are shown for surviving (left) and non-surviving (right) animals for all observables with 

corresponding experimental data; (A) pathogen levels, (B) free IL-8 levels, (C) white blood cell counts, (D) 

neutrophil elastase / α1-PI complex levels, and (E) creatinine levels. 
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Figure 5 Model predictions for neutrophil phenotype dynamics following infection. 

Mean (red), 25th-75th percentile (dark blue), and 5th-95th percentile trajectories of the simulated ensemble are 

shown. Predictions are shown for surviving (left) and non-surviving (right) animals for the four neutrophil 

phenotypes considered in the model; (A) basal neutrophils, which were calibrated with white blood cell count data, 

as well as (B) migratory neutrophils, (C) killer neutrophils, and (D) killer/migratory neutrophils for which there is no 

experimental data. 
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migratory functions (Fig 3). Generating similar numbers of fully activated neutrophils, but 

through differing intermediate activation populations, could be an explanation for how these two 

animal populations controlled infection with similar dynamics, while still experiencing differing 

fates. 

At the receptor level, underlying activation of CXCR-1/2 was transient in both the 

survivors and non-survivors. Compared to the neutrophil dynamics which was slow and spread 

across few hours, receptor dynamics was very fast. Most of the receptors were in the free state, 

and internalized CXCR-1 is recycled faster than CXCR-2. Among the active receptors, there was 

one order of magnitude higher level of internalized CXCR-1 receptors than the surface bound 

CXCR-1 receptors, while this difference is two orders of magnitude for CXCR-2. Non-survivors 

had higher levels of the surface and internalized active receptors. This can be explained by the 

higher peak in IL-8 levels for the non-survivors than the survivors (Fig 3.). But, survivors had 

very close levels of CXCR-1 and -2 bound receptors and non-survivors had slightly higher levels 

of bound CXCR-1 than bound CXCR-2. These small differences in the peak levels of the 

receptors coupled with differences in the transition rates were sufficient to result in different 

neutrophil phenotype levels in the two populations, a key prediction from the ensemble modeling 

process.  



 43  

 

Figure 6 Model predictions for maximal levels of each neutrophil phenotype compared across ensembles. 

Maximal values for each neutrophil phenotype from each trajectory in both ensembles were recorded. Values for the 

mean, 25th-75th percentile, and 2.5th to 97.5th percentiles are shown. Distributions were compared using a two 

sample T-test. *p<0.05, **p<0.01, ***p<0.001. 

2.3.3 Factors modulating cumulative damage in the two populations 

Until now, the focus was on deriving parametric ensembles explaining the mechanism of sepsis 

progression in each population. In this section, the sensitivity of sepsis-mediated damage to 

different model parameters (and hence different processes in the network) was evaluated for each 

population. Area under the damage curve (AUCD) was used as an output metric of cumulative 

damage from sepsis. The analysis was done in two steps. First the sensitive parameters affecting 

damage in each population was identified to check if similar parameters were responsible for 

modulating damage within each population. Next, the two populations were combined to identify 



44 

the parameters primarily responsible a switch from a low to a high damage region. Since the 

model is highly nonlinear, a global sensitivity analysis (GSA) based on variance decomposition 

was chosen. This method decomposes the total variance in the output into variance and co-

variance contributions from each rate parameter and its higher order combinations. To reduce 

computational cost, a meta-model based approximation was done (See Materials and Methods). 

The meta-model method called Random Sampling High Dimensional Model Representation (or 

RS-HDMR), decomposes the output function (AUCD) into a set of component functions that 

includes the mean followed by first order effects of each parameter and other higher order effects 

resulting from parameter combinations. The degree of sensitivity of a parameter or its 

combination with other parameters (as a set) is captured by Sobol’ index which by definition is 

the fraction of the total output variance attributed to the selected parameter set. To perform GSA, 

4000 samples were generated from the parameter distributions of the two ensembles and the 

dynamics of the damage term was simulated for the survivors and the non-survivors. Fig. 7A 

shows the AUCD distributions for each ensemble. As expected, the survivors show lower levels 

of cumulative damage than the non-survivors. The coefficient of variation was higher for the 

non-survivors (CV = 1.98) as compared to the survivors (CV = 0.32). When GSA was performed 

on the survivor and non-survivor samples separately and in combination, it was found that a third 

order RS-HDMR contributed close to 95% of the variance for both the populations. However, 

most of the important contributions were from the parameters constituting highly ranked first 

order indices.  
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Figure 7  Factors affecting cumulative systemic damage. 

(A) Cumulative damage seen in survivors and non-survivors. The histograms show the area under the damage curve 

until 144 hr. The rate parameters were sampled from the generated ensemble for each population. The distribution 

used for GSA contains 4000 samples for each population. (B-C) Prime drivers of cumulative damage. First order 

and total effect Sobol’ indices which explained most of the variance are tabulated here for the survivor and non-

survivor population respectively. (D) Functional dependence of AUCD on killer cell decay rate for the survivors (S) 

and non-survivors (NS). The green line has been added for visual guidance of the trend and is based on the mean 

trend identified by the RS-HDMR component functions. For each population, damage decreases with increase in the 
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decay rate of the killer neutrophil. (E) Prime drivers of cumulative damage for the combined population. (F) 

Functional dependence of AUCD on CXCR1 induced naïve to killer neutrophil transition rate for the survivors and 

non-survivors. The green line shows that within the population, damage is not particularly sensitive to the transition 

rate, but increased transition rate could be responsible for higher damage levels seen in non-surviving population. 

 

For GSA conducted separately on the survivor and non-survivor ensembles, it is found 

that damage is mainly determined by the decay rate of the killer neutrophils,  (direction of 

influence shown in Fig 7D). The decay rate of the killer neutrophil controls the rate at which 

killer neutrophils are removed from the system, and the faster these neutrophils are removed, the 

lesser the damage. The next important term is the direct damaging effect of the killer neutrophils 

and this parameter has significant second order interactions with other parameters of the model 

as seen from the total sensitivity index. The next set of parameters has secondary importance and 

these parameters are different for the two populations (variance contributions of each parameter 

in this set is in the range, 1-10%). In survivors, damage is more influenced by the production rate 

of basal neutrophils and IL-8 in presence of the pathogen. In non-survivors, the effect is more 

pronounced for damage mediated IL-8 production (a positive feedback component), damage 

recovery term and killer neutrophil production rate. This indicates that overall damage in non-

survivors is more sensitive to the parameters associated with killer cells, IL-8 and damage. 

For GSA conducted on the combined population, the decay rate of killer neutrophils 

remains the most important parameter. Interestingly, the sensitivity value and ranking of three 

parameters increase relative to the case where the populations are analyzed separately. Among 

these, the transition rate of naïve neutrophils to the killer phenotype via CXCR1 ( ) is the 

most important parameter. The next two parameters include the decay rate in filter equation (7) 

(which determines the delay between pathogen generation and resulting neutrophil entry into 
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circulation during sepsis) followed by the parameter controlling transition rate of killer 

neutrophil to the dual phenotype by CXCR2. Functional dependence of damage on these three 

parameters shows that they could be responsible for shift in the population from a low to a high 

damage region. For example, Fig 7F shows the dependence of AUCD on parameter . 

Within each population, no particular trend is visible, but relative increase in the transition rate in 

the non-survivors correlates well with increased damage. Results in Fig 2 showed that the ranges 

of two of the parameters,  and  were significantly different for the survivors and 

non-survivors. Results from sensitivity analysis support this prediction and further show that the 

parameter values correlate well with the transition in observed damage. 

2.3.4 Treatment implementation 

Extracorporeal devices are emerging as promising therapies for treatment of sepsis[135–138]. In 

this instance we propose extracorporeal treatment which directly modulates CXCR-1/2 levels 

using a bioactive surface which interacts with unbound neutrophil surface receptors upon 

contact. Such a device, which is currently under development at the University of Pittsburgh, 

generates targeted and controlled downregulation of neutrophil surface receptors. The dynamics 

of this device can be analyzed within the framework of the generated computational model to 

determine its proof of principle in silico and help optimize treatment parameters. The proposed 

treatment implementation is shown in Fig 8. Specifically, the receptors are allowed to go to a 

trapped state and become unavailable for activation by IL-8 for the indicated time of treatment. 

To evaluate the potential of such an immunomodulatory treatment, we next performed an in 
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silico trial by varying (1) the time when the treatment is introduced and removed and (2) the 

strength of interaction between the trapping device and the unbound neutrophil surface receptors. 

 

Figure 8  Model diagram showing receptor level treatment implementation. 

The extracorporeal treatment introduces a trapped receptor state for CXCR-1/2. This state prevents IL-8 induced 

phenotype transition, which limits NK generation. The treatment is modeled entirely in the receptor level of model, 

leaving the systemic level (see Fig 1) unchanged. 

 Impact of treatment parameters For the analysis, the treatment initiation time was 

varied between 0 and 12 hours after the initial infection and the treatment discontinuation time 

was varied between 0 and 100 hours after infection. To modulate the treatment intensity, the 

device-receptor Kd was varied between the 1x10-2 M and 1x10-5 M, with 2.5e-3 M representing 

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004314#pcbi-1004314-g001
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the Kd of IL-8 and the receptors. The treatment was tested on a simulated population constructed 

by randomly selecting 69% of parameter sets from the non-survivor ensemble and 31% of 

parameter sets from the survivor ensemble, as observed in the experimental population. Survivor 

rate was measured for each set of proposed treatment parameters, as determined by the logistic 

regression classifier trained on the parameter ensembles with no treatment. A survivor rate above 

31% was considered an improvement over baseline, and below 31% indicated the treatment 

causing overall harm.  

Fig 9 shows the survival rate following different treatment strengths and start-end times. 

In general, the optimal time for beginning treatment was between 3 and 6 hours after the original 

infection, resulting 40-80% survival rates depending on treatment strength. Starting the treatment 

after six hours was typically too late to have a strong effect on survival. Starting treatment within 

3 hours of infection would often have neutral or deleterious effects, as it would dampen the 

initial inflammatory response that is critical to fighting off the infection. This led to an increase 

in pathogen growth and an increased late inflammatory response once treatment was removed. In 

the worst case scenarios following early treatment of a short duration, survival rates dipped as 

low as 13.2%, and this trend could be seen across all treatment strengths.  
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Figure 9 Effects of simulated treatment on animal survival rates. 

Survival rates of a simulated population of animals following treatment with the proposed extracorporeal device 

considering a device-receptor affinity of (A) 1x10-2 M, (B) 1x10-3 M, (C) 1x10-4 M, (D) 1x10-5 M. In all cases the 

time of treatment was varied between 0 and 12 hours post infection and ended between 0 and 100 hours post 

infection. 
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When treated at the optimal time, survival rates increased from the 31% baseline to 

greater than 80% with sufficient device-receptor affinity. Using a Kd of 1e-2 M results in a 

maximum survival rate of 47%, and decreasing the Kd to 1e-3 M further increases this rate to 

80.3%. Further decreases in the Kd to 1e-4 M and 1e-5 M results in increases in survival rate to 

83.1% and 84.4%, showing there is a diminishing return to continuously increasing the device 

affinity. As the affinity increases, we see a new trend emerge in the simulation results, where 

treatment that begins as early as the onset of infection and is significantly long lasting leads to 

increased survival rates, and a less strictly defined optimal treatment time (Fig 9(D)). In this 

case, the treatment is so strong and long-lasting that the inflammatory response is very strongly 

suppressed, implying that overwhelming pathogen growth leading to death cannot be reached 

within the bounds of this. However, this suppression of the immune system allows for significant 

pathogen growth and could leave the subject vulnerable to secondary infections which are not 

considered in this model. 

Trends in response to treatment also appear to be robust to individual parameter values. 

The two most sensitive parameters  and  were varied, increasing and decreasing each 

by 10% and 50% and recalculated the simulated population response to treatment. In general 

response trends remained the same, with a defined peak in survivorship when treatment is 

administered 2-4 hours after infection. The magnitude of responses varied predictably, as 

strongly increasing , the death rate of damage-causing neutrophils, resulted in a higher peak 

of survival. Conversely, increasing , which corresponds to a faster induction of 

damaging-causing cells, leads to a slight decrease in survivorship. Varying  had a larger 
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effect on these results, as expected following its identification as the model’s most sensitive 

parameter affecting damage (Fig 7).  

2.4 DISCUSSION 

This chapter discusses the development of a mechanistic computational model of IL-8 mediated 

activation of CXCR-1/2 receptors in baboons which were administered intravenous E. coli. 

Neutrophil phenotypes, which dictate neutrophil functional response, were generated in silico 

based on CXCR-1/2 surface receptor levels, linking receptor level dynamics with neutrophil 

functional response. Parameter ensembles were generated for survivor and non-survivor 

populations, allowing for in silico observation of sepsis progression. Additionally, an 

extracorporeal treatment which modulates CXCR-1/2 levels on neutrophils was introduced in 

silico. This proof of concept evaluation allowed for preliminary device evaluation and 

optimization of treatment parameters. 

To our knowledge, this is the first model describing dynamic interactions of neutrophils 

which specifically takes into account information sharing between the systemic variables and the 

receptor levels. The receptor level dynamics of the model function on a rapid time scale, 

adjusting to systemic IL-8 levels in a matter of minutes. These changes in receptor signaling 

dictate changes in neutrophil phenotype, which dictates neutrophil function and hence mortality. 

This link thus provides a valuable mechanistic framework that can be subjected to clinically 

relevant treatment scenarios. For example, the experimental treatment could be implemented 

purely on the receptor level. Alternatively, systemic variables such as IL-8 levels or neutrophil 
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phenotype could be modulated to evaluate performance of hemoadsorption or neutrophil 

sequestration extracorporeal devices.  

Application of parallel tempering approach for parameter estimation allowed for the 

efficient generation of ensembles of parameters and resulted in a model that could fit 

experimental data well [124], allowing reasonably accurate simulations of the system without 

making strong claims about the values of single parameters which are notoriously difficult to 

measure and are likely to vary between individuals. This allows for robust, population-level 

predictions rather than point predictions of model parameters and model behavior. However, the 

computed multi-dimensional posterior distribution in parameter space reflects constraints 

imposed by empirical data, as well as data sparsity and uncertainty. These constraints impose a 

covariance structure in the posterior distribution such that there is robustness in model behavior, 

despite large uncertainties in individual parameter values. Learning this structure is likely crucial 

in building predictive model [139,140]. Yet, the method is making no claim that individual 

parameter sets in the ensemble represent individuals in a population. At best, an individual could 

be represented by a smaller ensemble, reflecting uncertainty relating to this particular individual. 

Yet, it is fair to say that the ensemble is meant to represent uncertainly about a population of 

individuals, so that simulating the ensemble will provide expected behaviors across a population 

of individuals, as long as such behaviors are compatible with the empirical data used to generate 

the ensemble.  

One trend that arose in the estimated parameter ensembles was a large difference in the 

magnitudes of different rate constants, sometimes spanning many orders of magnitude. This is 

not surprising, due to the inclusion of biological events spanning many time scales, ranging from 

fast molecular events to cell phenotype transitions and finally to the full duration of infections 
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lasting for days. This suggests that future iterations of the model would benefit from a multiscale 

approach optimized towards handling these different time scales. Previous efforts [141–143] 

have worked out approaches that allow for efficient deterministic simulation of fast-scale 

molecular events, combined with more accurate stochastic simulation of slow-scale or rare 

events, and such techniques have resulted in impressive results [144,145].  

Sensitivity analysis on the parametric ensembles enabled identification of the relative 

importance of the model parameters to state variables of the model. In general, sensitivity 

analysis is an important step in systems biology workflows and provides valuable information on 

model characteristics [146,147]. Most models in the literature resort to a local analysis which is 

sufficient if the parameters are well defined. For nonlinear dynamic models based on sparse 

experimental data and for systems which have inherently high parametric uncertainty, a global 

analysis needs to be done. Global techniques perform combinatorial perturbations of the 

parameters utilizing samples from the high-dimensional space. Application of meta-modeling 

approximations via RS-HDMR as was done in this work can significantly reduce the 

computational cost of sampling requirements for global methods. Additionally, if the sampling 

process takes into account parameter covariance computed from an ensemble model, biologically 

relevant sensitivity indices can be obtained. The systematic integration of ensemble modeling 

and global sensitivity analysis in this work allowed for identification of the parameters that 

control biological outcomes like sepsis induced tissue damage. 

In addition to parameter fits, the behavior of the non-fitted state variables were inspected 

to check for features relevant to a clinical prognosis. Sepsis progression was analyzed by 

comparing differences between survivor and non-survivor populations. Neutrophil phenotypes in 

particular give insight into the differences between survivors and non-survivors. Of importance 
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is the killer neutrophil population, which is highly elevated in the non-survivor population (see 

Fig 5 & 6). This neutrophil phenotype is associated with neutrophil induced tissue damage in the 

model. With support from sensitivity analysis, killer neutrophil decay rate, which sets the levels 

and dynamics of NK, was found to be the most important contributor to total damage in both the 

populations. Multiple studies support this finding, indicating that non-survivors or those with 

more severe sepsis experience increased levels of neutrophil induced tissue damage and MPO 

generation [102,148–151] . Furthermore, the importance of this term is supported by studies on 

neutrophil apoptosis and lifespan. Research by Taneja [152] and Fialkow [153] determined that 

neutrophil apoptosis was reduced in cases of severe sepsis, leading to increased lifespan of 

primed and activated neutrophils. Damage caused by these neutrophils was partially responsible 

for the progression of sepsis in these severe cases. Upon completion of the combined GSA, 

was also found to be a significant contributor to total damage. Increase of this term leads 

to preferential generation of the NK neutrophil phenotype, which directly contributes to tissue 

damage. 

On the other hand neutrophils in the migratory phenotype were similar in survivor and 

non-survivor populations. These findings agree with the data from Cummings et al [150] which 

found neutrophil’s harvested from septic and non-septic patients migrated to IL-8 at similar 

levels. Interestingly, survivors and non-survivors had similar levels of neutrophil kill/migrate 

phenotype, indicating that both ensembles had adequate neutrophil populations to eliminate the 

source pathogen. Therefore, the additional damage in non-survivors was neutrophil induced 

resulting from elevated neutrophil killer phenotype levels. The IL-8 mediated killing functions of 

neutrophils are primarily triggered through CXCR-1 rather than CXCR-2. Modulation of CXCR-
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1 levels in particular may reduce the killing neutrophil phenotype and reduce neutrophil induced 

organ damage. 

A number of experimental treatments for sepsis and other acute inflammatory diseases 

have targeted the CXCR-1 receptor with success in animal models [154–156]. However, 

translation to humans has been difficult for two main reasons [12]. First are inherent species 

dependent differences between human and animal immune systems that must be recognized and 

accounted for in pre-clinical studies. Second is the misuse of animal models and 

misinterpretation of pre-clinical data [157]. The recent debate on the translational fidelity of 

critical disease mouse models is a prime example where two separate comparisons of the human 

versus mouse genomic leukocyte responses using the same database resulted in two 

contradictory conclusions [158,159]. In the case of IL-8 signaling, which is not present in murine 

models, homologous cytokines and their associated surface receptors must be examined in IL-8’s 

place [160]. In this context, in silico modeling is an attractive alternative given that it allows 

preliminary evaluation of experimental human treatments at minimal costs.  

Multiple extracorporeal sepsis treatments are currently under investigation with 

promising results. Blood purification techniques such as hemoadsorption [135,136,161–163]  

allow for cytokines and other detrimental proteins to be removed directly from the blood during 

the cytokine storm, curbing the patient’s immune response. Another approach called activated 

neutrophil sequestration [138,164], selectively removes harmful neutrophil phenotypes from 

circulation. In this instance we propose extracorporeal treatment which directly modulates 

CXCR-1/2 levels using a bioactive surface which interacts with unbound neutrophil surface 

receptors upon contact, resulting in CXCR-1/2 downregulation. This approach is advantageous 

because no components of blood are removed from circulation, allowing for a healthy immune 
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response after appropriate modulation of neutrophil surface receptors. In addition, all necessary 

cell-cell interactions are allowed to occur within well-controlled microcirculation of the device. 

Such a setup also allows treatment to be easily titrated or halted by adjusting blood flow through 

the device. The dynamics of such a device were analyzed within the framework of the generated 

ensemble model to determine its proof of principle in silico and to evaluate its benefits in 

rescuing individuals marked as non-survivors by the parameter ensembles. 

When evaluated in silico the proposed extracorporeal CXCR-1/2 modulation device 

improved mortality from 31% to above 80% when deployed under certain ranges of conditions. 

This substantial improvement in survival supports the hypothesis that a CXCR-1/2 modulatory 

device may improve patient outcomes. However, time and length of treatment implementation 

are critical parameters tied to this success. The importance of quickly beginning sepsis treatment 

has been well established [165], particularly for antibiotic administration. Our simulations 

showed a well-defined optimal time for the initiation of treatment, between 3 and 6 hours after 

the onset of severe infection. Treatment, if started within this time frame, had a high degree of 

success over a large range of treatment durations and strengths. This window is specific to the 

animal model under study and will not directly translate to a clinical setting for two main 

reasons. First, the model was calibrated with experimental data obtained from baboons, and 

differences between the baboon and human immune systems must be considered.  Second, the 

baboons were exposed to a well-controlled bacterial infusion at a known time point, followed by 

a predictably quick and strong immune response. In this instance the pathogen load is well 

controlled and a large portion of the ensemble can therefore be addressed by a single treatment 

setting. In clinical practice, patients present with varied pathogen loads and they may be in 

different stages of infection and immune response. So, future experiments will need to combine 
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clinical knowledge with additional data gathering and simulation to obtain treatment timing 

relevant for human patients.  

Clinicians are actively searching for biomarkers to track sepsis disease progression and 

prescribe treatment [166–168]. Neutrophil phenotype may be a valuable indicator of disease state 

and individual patient response, but this information is difficult to collect in the clinic. Currently 

neutrophil phenotype can be evaluated either through functional testing or flow cytometry 

analysis of critical neutrophil surface receptors. In addition to CXCR-1/2 which are the focus of 

this model, CD11b, CD88, and CD62L all have roles in dictating neutrophil phenotype [169] and 

surface receptor expressions vary depending on severity of the inflammatory response. To more 

readily exploit phenotype data it may be possible to map neutrophil function to easily measurable 

biomarkers. Using these indirect measures of neutrophil phenotype can guide clinicians to ideal 

treatment regimens.   

In conclusion, the ensemble model presented in this report provided key insights into the 

progression and mechanisms involved in progression of sepsis. We underline the role of relative 

abundance of killer, migratory and dual neutrophil phenotypes in deciding survivorship in an 

animal model. In addition, an in silico extracorporeal treatment which modulates CXCR-1/2 

neutrophil surface receptors showed promising results. Further study and collection of 

experimental data will help further refine both the model and experimental device. Incorporation 

of data from a diverse patient population and expansion of current ensembles would increase the 

model’s generalizability, improving the potential for translation. Additional model parameters 

related to the device such as flow rate, surface area, and form factor could be included, allowing 

the model to streamline device development. 
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3.0  TCR SIGNALING STRENGTH CONTROLS DIFFERENTIATION DECISIONS 

IN CD4+ T CELLS 

Sections 3.2.1-5 and 3.3.1 of this chapter were originally published in The Journal of 

Immunology. Hawse, WF, Sheehan, RP, Miskov-Zivanov, N, Menk, AV, Kane, LP, Faeder, JR, 

Morel, PA. 2015. Cutting edge: differential regulation of PTEN by TCR, Akt, and FoxO1 

controls CD4+ T cell fate decisions. J. Immunol. 194: 4615-4619. Copyright © [2015] The 

American Association of Immunologists, Inc. 

3.1 INTRODUCTION 

3.1.1 Role of T cell differentiation in the immune response 

Regulatory T (Treg) cells play a critical role in maintaining self-tolerance and in controlling the 

immune response to pathogens [170]. Thymic (t)Tregs arise in the thymus and are generally 

specific for self-antigens, whereas peripheral (p)Tregs arise when naïve T cells encounter either 

self or foreign antigens in the periphery. Proper differentiation and expansion of Tregs is critical, 

as insufficient expansion of Treg cells has been shown to cause type 1 diabetes[171]  and other 

autoimmune disorders [172]. Tregs can also play an important role in controlling the rejection of 

solid organ transplants and many therapeutic interventions are aimed at not only suppressing the 

rejection response but also to enhance the number and function of the necessary Treg 
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populations. Transplanted organs are highly immunogenic and they trigger strong immune 

responses that, if left unchecked, will reject the transplanted organ. Transplant rejection is 

mediated by helper T (Th) cells that respond to the foreign MHC molecules expressed by the 

transplanted organ. Alternatively, an overabundance of Tregs can make it difficult for the 

immune system to target tumors in cancer patients leading to a search for therapies that can titer 

Treg populations[173,174] 

3.1.2 Signaling through the T Cell Receptor controls the dynamics of Akt and influences 

differentiation decision making 

Th and pTreg cells are induced when naïve CD4 T cells recognize peptide antigens derived from 

external proteins that presented from antigen presenting cells (APC) by MHC molecules. The T 

cell receptor (TCR) is a unique receptor that recognizes peptide (p)MHC complexes presented on 

the surface of APC and which exhibits both exquisite sensitivity and specificity [175–177]. 

Activation of CD4 T cells via the TCR triggers a complex signaling cascade that results in the 

proliferation and differentiation of Th or pTreg cells, depending on the conditions. It has become 

clear that the strength of the TCR signal perceived by the naïve T cell is a critical factor that 

determines CD4 T cell fate. It has been shown that that low dose stimulation of naïve peripheral 

T cells results in Treg induction, whereas high doses are required to induce Th cells [178–180]. 

Analysis of the signaling pathways induced in conditions of high and low dose stimulation has 

revealed an important role for the Akt/mTOR pathway. High levels of Akt activation 

downstream of the TCR have previously been shown to correlate with the Th versus Treg 

decision [181,182], and high dose stimulation induces strong Akt activation. Despite this insight 

the precise mechanisms by which signaling pathways downstream of TCR activation determine 
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T cell fate remain obscure. We have found that mathematical modeling of this pathway has 

provided critical new insights into these mechanisms. 

3.1.3  Combined experimental and modeling approaches allow for novel predictions of 

signaling dynamics 

One way to handle the complexity of TCR signaling and its relationship with T cell activation 

and differentiation is through mathematical modeling. Mathematical modeling has previously 

been used to great effect to explore the effects of TCR signaling on T cell activation [183–185], 

antigen discrimination [186,187], and bistable responses to stimulation [88,57,188,189]. 

Previous Boolean modeling attempts explored the effects of dose on TCR signaling and 

subsequent T cell differentiation, as discussed in section 1.3.1.2, to study possible TCR signaling 

network architectures on a large, coarse-grained level [21,190]. The original model [21] 

produced a novel prediction that PTEN exhibited differential dynamics following stimulation by 

low and high doses of antigen. Following low dose stimulation, PTEN levels briefly dipped 

before returning to high levels, whereas following high dose stimulation PTEN levels dropped 

and were maintained at low levels [21]. This sparked additional model development and 

experimental work examining the regulation of PTEN, creating the need for a novel Boolean 

model with a more narrow focus on the regulation of PTEN and Akt, and allowing me to test out 

novel network architectures in an effort to better understand the dynamics of this protion of the 

pathway. 

This led to a new experimental focus on the regulation of PTEN. This included additional 

study of post-translational modifications (PTMs) on PTEN [191,192], showing that TCR 

activation leads to the ubiquitination of PTEN following high dose conditions and 
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phosphorylation of PTEN under both high and low dose conditions. Additionally, new 

experiments showed that PTEN transcription is regulated by FoxO1, which in turn is regulated 

by phosphorylation via Akt, induced downstream of TCR activation. This outlined a novel 

positive feedback loop involving PTEN, Akt, and FoxO1 [190].  

Further exploration of the details of this feedback loop and its role in differentiation were 

difficult to answer with a Boolean model, due to the coarse grained nature of all modeled 

elements, the lack of explicit time in the model, and the inability to directly calibrate the model 

to data. These details are more easily modeled using rule-based modeling. The rule-based 

modeling approach [82,84,193–195] is ideally suited to integrated modeling and experimental 

efforts being because it allows the direct translation of biochemical mechanisms into model 

elements. It is also robust to the combinatorial complexity that arises from multi-site 

phosphorylation and formation of protein complexes [82,84,195], which makes it possible to 

build models of increasing complexity without hitting overwhelming computational bottlenecks 

[93]. This approach has been previously been used to model immunological cell signaling 

systems [88,196,87,94] and is a convenient framework for this system due to the importance of 

site-specific phosphorylation events and protein trafficking, which are easily modeled. 

Here we use rule-based modeling to explore the relationship between PTEN and Akt 

activation in the differentiation of Treg versus Th cells. The model is based on the observation 

that Akt activity is differentially regulated by phosphorylation at two regulatory sites Serine 473 

(S473) and Threonine 308 (T308). Low dose stimulation induces phosphorylation at only the 

T308 site whereas high dose is required for both sites to be phosphorylated. This has 

consequences for T cells differentiation, as FoxO1 is itself phosphorylated by Akt following high 

dose stimulation, reducing transcription.  
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3.2 METHODS 

3.2.1 Mice 

C57BL/6 mice were obtained from Jackson Laboratories. All mice were housed in a specific 

pathogen-free facility at the University of Pittsburgh and treated under Institutional Animal Care 

and Use Committee-approved guidelines in accordance with approved protocols.  

3.2.2 CD4+ T cell isolation and activation 

CD4+ T cells were isolated from C57BL/6 spleens using a CD4+ negative selection kit (Miltenyi 

Biotech). In some experiments CD25+ T cells were removed using CD25 microbeads. T cell 

activation assays were performed with low (0.25 μg/mL) or high (1μg/mL) dose plate-bound 

anti-CD3 monoclonal antibody (mAb) in the presence of soluble anti-CD28 mAb (1μg/mL). For 

inhibition studies, T cells were treated for one hour with the following drugs prior to stimulation: 

caspase inhibitor (ZVAD, 80 μM), PTEN inhibitor (SF1670, 10 μM) and Akt inhibitor (Akti1/2, 

10 μM). 

3.2.3 Flow cytometry 

Activated CD4+ T cells were stained with the following mAb: anti-CD3-APC-eFluor780, anti-

CD4-APC, anti-CD25-PE, anti-Foxp3-Pac blue (eBioscience), and anti-pS6 (Ser235)-FITC (Cell 

Signaling Technology) using buffers from eBioscience. The stained cells were analyzed on a 

LSR II flow cytometer and data were analyzed with the Flowjo software package.  
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3.2.4 Western blotting 

Western blotting was performed using the following antibodies from Cell Signaling Technology: 

β-Actin, PTEN (138G6), Phospho-FoxO1 (Thr24), and Akt (Thr308 and Ser473). 

3.2.5 Boolean modeling 

The Boolean model was specified using the logical rules shown in Appendix A. These rules are 

used to determine the next state of each element in the system as a logical function of its inputs, 

which are binary variables that take the values 0, representing the inactive state, or 1, 

representing the active state. The logical functions used in the rules are constructed using 

standard operators such as AND, OR, and NOT. For example, mTORC2 activation is described 

by the following rule: MTORC2′ = (TCR_LOW or TCR_HIGH) and not AKT, meaning that 

mTORC2 is activated when either TCR_LOW or TCR_HIGH input is present and AKT is 

inactive. At the initial time of the simulation, all variables are set to inactive except PTEN_total, 

FoxO1, and either TCR_LOW or TCR_HIGH depending on the stimulation scenario. The 

system is then allowed to evolve in time according to the General Asynchronous update scheme 

[197]. For the simulations performed here, the logical rules were translated into the BioNetGen 

rule-based modeling language using an automated tool called Boolean2BNGL included in the 

BioNetGen package [82] (http://bionetgen.org). Both the Boolean model rules and the derived 

BioNetGen language file are available online at http://bionetgen.org/index.php/PTEN_model. The 

BioNetGen model was simulated using a modified version Gillespie’s Direct Stochastic 

Simulation Algorithm [198]. 

http://bionetgen.org/
http://bionetgen.org/index.php/PTEN_model
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3.2.6 Rule-based modeling 

The model was written and simulated using the BioNetGen software [82,199]. Model code is 

included in Appendix B. The model contains 15 molecule types, 78 parameters, and 60 rules, 

which are expanded into a network of 58 species and 115 reactions. The network is simulated as 

a set of ordinary differential equations. 

3.2.7 Parameter estimation 

The model contains 78 free parameters. Parameter values were inferred using a Bayesian parallel 

tempering approach as described on pp. 21-24 of Chapter 2. 

3.2.8 Simulation protocols 

 Bifurcation We systematically tested the effects of varying the antigen dose on the 

system. Starting from a low concentration of antigen, the concentration was increased in a 

stepwise manner, allowing the system to re-equilibrate at each step. The steady-state 

concentrations of PTEN, Akt phosphorylated at Ser473, nuclear FoxO1, and active NEDD4 were 

recorded at each step and normalized to a maximum value of one. The process was then 

reversed, decreasing the antigen and measuring the steady state concentration of each variable at 

each step.  

 Pulses The system was simulated with one, two, or three pulses of high dose antigen, 

separated by a rest period where antigen was entirely removed. The concentrations of PTEN and 
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doubly phosphorylated Akt were recorded for the entire time course and normalized to a 

maximum of value of one.   

 Phase Diagrams The antigen dose and length of stimulation were systematically varied. 

For every dose and time, the system was stimulated with the given dose maintained at a constant 

level for the given length of time. All antigen was then removed, and the system was allowed to 

reach steady state. Levels of PTEN and doubly phosphorylated Akt were measured at steady 

state and normalized to a maximum value of one.  

3.2.9 Population model 

A population of 50 naïve T cells was modeled as 50 iterations of our rule-based model with 

identical rules and kinetic parameters, but heterogeneity in initial conditions. Initial 

concentrations of molecules were taken from lognormal distributions, using our original 

parameter set as a mean and using a coefficient of variation of 0.11 for membrane bound 

elements and 0.41 for intracellular elements [200]. Each model is simulated independently for 30 

minutes. Then, IL-2 secreted by each cell during this 30 minute block is added to a pool of free 

IL-2 that is available to each cell. Simulation is then resumed for the next 30 minute block for 

each cell. This continues for a total of 28 simulated days.   

Cells are allowed to differentiate following 24 hours of exposure to antigen. A two-step 

threshold is set on the total activity of Akt over that time. A high level of Akt activity causes the 

cell to become a Th cell, a medium level of Akt activity causes the cell to become a Treg cell, 

and sub-threshold Akt activity allows the cell to remain naïve. The transition to the Th and Treg 

states is permanent and a cell cannot switch once it has committed to one state. Cells are allowed 

to divide following 12 hours of exposure to antigen, and sufficient IL-2 signaling. Cells can 
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divide symmetrically or asymmetrically. In symmetric division the two resulting daughter cells 

maintain the same phenotype as the original cell, and maintain identical protein concentrations. 

In asymmetric division, one daughter cell maintains the phenotype and protein concentrations of 

the parent cell, while the second daughter cell is initialized as a naïve cell with randomized initial 

conditions. Cells are allowed to die based on their lifetime following exposure to antigen, with 

an average lifetime of three days.  

3.3 RESULTS 

3.3.1 Boolean modeling reveals the multi-tiered regulation of PTEN as a critical control 

point in the signaling pathway 

Using components and interactions from our previous model of T cell differentiation [21], we 

developed a more limited model focusing on the regulation of PTEN, Akt, and FoxO1 (Fig. 10, 

left), with the goal of maintaining essential behaviors from both our previous model and new 

experiments while utilizing a minimal network size. Simpler architectures were tested, but were 

unable to recreate all experimental features.  
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Figure 10 Boolean model structure.  

A reduced logical model of PTEN and Akt dynamics was developed (left panel). Two key feedback loops can be 

identified: negative feedback, in which Akt inhibits mTORC2 activity, (top right panel) and positive feedback, in 

which Akt inactivates FoxO1 (bottom right panel). 

Simulations exhibited rapid and sustained loss of PTEN (Fig. 11 far left) at high antigen 

dose, as well as transient and incomplete loss of PTEN at low dose, in agreement with 

experimental findings. Under both conditions there was a rapid initial increase in Akt activity 

(Fig. 11 left), sustained by positive feedback involving the loss of nuclear FoxO1 (Fig. 10 bottom 

right bottom, Fig. 11 right). At high dose, the activation of CK2 blocked PTEN activity and 

sustained Akt activation. At low dose, PTEN activity rebounded as negative feedback through 

mTORC2 (Fig. 10, top right) decreased Akt activity, increasing nuclear FoxO1 and, 

consequently, PTEN transcription. PTEN activity then further suppressed Akt, permitting full 

restoration of PTEN expression. Insertion of our reduced model back into our previous model of 

T cell differentiation resulted in sustained induction of Foxp3 in about 70% of cells at low dose 

and only transient induction of Foxp3 at high dose, in agreement with results from the previous 

model and experiments (Fig. 11, far right). 
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Figure 11 Boolean model results. 

Average levels of total PTEN (far left panel), active Akt (left panel), and nuclear FoxO1 (right panel) from the 

reduced model, and average levels of Foxp3 (far right panel) from the full model with inclusion of new regulatory 

elements from the reduced model for no TCR stimulation (thick solid line), low TCR stimulation (thin solid line) 

and high stimulation (dashed line) as a function of simulated time computed from 10,000 simulated trajectories. 

 

Transient suppression of PTEN at low dose arises from the inclusion of two regulatory 

mechanisms in the model: the requirement for MEK1 to activate PTEN [201], and inhibition of 

mTORC2 by Akt [202]. Prior to MEK1 activation by TCR [203], PTEN is inactive, allowing the 

transient induction of Akt, even at low dose, which may be necessary for T cell activation and 

proliferation regardless of differentiation outcome. Subsequent activation of PTEN by MEK1 

then inhibits Akt in concert with the negative feedback provided by indirect Akt inhibition of 

mTORC2 [202].  

3.3.2 Positive feedback leads to a bistable switch resulting in two steady states 

 Rule-based model of antigen-induced T cell differentiation The Boolean model 

allowed for easy exploration of our proposed network and the potential dynamics resulting from 
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the PTEN-Akt-FoxO1 positive feedback loop; however, Boolean models are limited due to the 

fact that they are coarse-grained in both the description of the biochemical states of the system 

and with respect to time, which is roughly equated with the number of update rounds. In order to 

explore in detail the dynamic signals downstream of the TCR, we developed a novel rule-based 

model of the T cell differentiation pathway that is based on our Boolean model, but also 

considers concentrations of signaling elements and reaction rates that cannot easily be 

incorporated in the Boolean framework. Thus, rule-based simulations results reflect realistic time 

scales of protein interactions and enzyme kinetics, in addition to changes in protein and mRNA 

abundance, that allow tight integration between model predictions and experimental data. In 

addition to protein interactions, transcription, and translation, the rule-based model of T cell 

differentiation explicitly defines post-translational modifications central to the receptor activated 

signaling pathways (Fig 12, Appendix B).  
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Figure 12 T cell receptor signaling model diagram. 

(A) The cartoon abstraction shows all molecules considered in the model. Orange elements represent extracellular 

ligands. Pink elements represent membrane bound receptors. Blue elements indicate intracellular signaling 

intermediates. Green elements indicate transcription factors. Yellow elements indicate mRNA. (B)  The contact map 

specifies all signaling proteins considered in the model, as well as sites for post-translation modifications, 

localization signals, and additional activation sites. Sites colored red indicate an inhibitory modification and sites 

colored blue indicate an activating modification. 

Antibody ligation of TCR and CD28 induces a cascade of kinase, phosphatase, ubiquitin 

ligase, and transcriptional activity to coordinate the differentiation of naïve T cells. Of key 

importance is the regulation of PTEN through inhibitory phosphorylation by CK2 [204], K45 

ubiquitination by NEDD4 [205] and transcriptional control through FoxO1 [190]. Additionally, 

two feedback loops are critical in defining model behavior. Negative feedback, modeled as Akt 
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inhibiting mTORC2 and representing the inhibitory phosphorylation on mTORC2 by S6K1 

[202,206] can suppress phosphorylation of Akt on Ser473. Positive feedback controls the 

abundance and activation state of key players PTEN, PIP3, Akt, and FoxO1. This arises due to 

the opposing inputs on PIP3 through PI3K and PTEN. High levels of PTEN lead to an 

accumulation of PIP2, rather than PIP3 [207], limiting the activation of Akt downstream. 

Alternatively, strong PI3K signaling leads to an increase in PIP3 [208,209], and consequently 

phosphorylation and activation of Akt [202,206,210–212], phosphorylation and nuclear export of 

FoxO1 [213], and decreased transcription and translation of PTEN [190]. This allows for an 

increased accumulation of PIP3, followed by an increase in Akt and FoxO1 phosphorylation. 

 Model calibration reveals two steady states distinguished by levels of PTEN 

expression and Akt activity To calibrate our model, we used a replica exchange Markov chain 

Monte Carlo approach, also known as parallel tempering, to estimate the values of unmeasured 

kinetic rate constants. This approach results in the selection of a posterior distribution for each 

parameter in the model. This allows us to use an ensemble of values to represent each parameter, 

which can be used to simulate the system, generating an ensemble of results, which we use to 

compare to measured experimental data, or make new predictions. Using this framework we 

obtained model fits for five key observables in the system, PTEN protein abundance, PTEN 

mRNA abundance, Akt phosphorylation on its Threonine 308 and Serine 473 sites, and FoxO1 

phosphorylation on its Threonine 24 site under high and low dose conditions.   

Our model is successfully able to recreate key features of individual experimental 

trajectories and capture key differences in TCR response under high and low dose stimulation 

conditions.  The model recovers the transient dip and recovery PTEN abundance that correlates 

with Treg development following low dose TCR stimulation, as well as the sustained loss in 
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PTEN following high dose stimulation that correlates with Th development as observed in our 

Boolean model and experiments[190] (Fig 13A).  

Figure 13 Time course dynamics of TCR signaling differ following low and high dose stimulation. 

Mean (red), 25th-75th percentile (dark blue), and 5th-95th percentile trajectories of the simulated ensemble are 

shown. Experimental data points are shown in black with error bars representing one standard deviation above and 

below the mean averaged across the observable. The model was simulated for 4 hours under both low and high dose 

conditions. (A) Under low dose conditions PTEN transiently dips but then returns to high levels. Under high dose 

conditions PTEN dips to and remains at low levels. (B) Under both low and high dose conditions Akt Thr308 

exhibits high, fluctuating levels of phosphorylation. (C) Under low dose conditions Akt Ser 473 is not 

phosphorylated. Under high dose conditions it is phosphorylated at high levels. (D) Under low dose conditions 

FoxO1 is not phosphorylated. Under high dose conditions is phosphorylated at high levels. 
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Using the rule based model, we further examined how exposure to low or high 

concentrations of antigen affects the dynamics of Akt activation (Fig. 13C). The model assumes 

that Akt must be phosphorylated on Thr308 and Ser473 before it can phosphorylate FoxO1. 

Because our rule-based model specifies each of these residues on Akt, we followed the 

phosphorylation state of each residue over time. The model also captures early fluctuations in 

Akt Threonine 308 phosphorylation under both low and high dose antigen stimulation, but shows 

minimal phosphorylation of the Serine 473 residue under low dose, distinctly different from high 

dose stimulations which again show strong fluctuations in phosphorylation (Fig 13 C-D). This 

low dose behavior is due in part to the negative feedback present in the model leading to limited 

activation of mTORC2, which correlates with the induction of a Treg phenotype [214,215]. Due 

to the contrasting phosphorylation of the Serine 473 residue on Akt, the model also predicts little 

to no phosphorylation of FoxO1 following low dose stimulation, whereas high levels are seen 

following a high dose (Fig 13F). The model therefore predicts that phosphorylation of Akt at 

Ser473 is a limiting factor for phosphorylation of FoxO1, and therefore a mechanism for T cells 

to discriminate between exposure to low and high concentrations of antigen and influence 

differentiation. 

Simulations of TCR stimulation using our rule based model agree with experimental data, 

and illustrate important differences in signal transduction that depend on antigen concentration. 

These results suggest that a four-fold difference in antigen concentration can induce two distinct 

cellular states. The first state, for a cell exposed to a low concentration of antigen, has 

incomplete activation of Akt due to reduced phosphorylation of S473, in addition to a greater 

abundance of PTEN and active FoxO1 in the nucleus and correlates to Treg development. The 

second state, for a cell exposed to a high concentration of antigen, produces maximal S473-
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dependent Akt activity and lower abundances of PTEN and active FoxO1 and correlates with Th 

development. 

 Bistability in Akt activation gives rise to T cell memory of encounters with antigen 

and a threshold for Th differentiation  We identified two distinct T cell states when using the 

rule based model to simulate responses to low and high antigen concentrations, suggesting that 

the TCR-activated signaling network may be a bistable system. To test for bistability, we 

modeled the steady state response of simulated T cells exposed to a range of different antigen 

concentrations. This analysis identified a concentration threshold that separates the two cellular 

states (Fig 14). For cells in the first state, PTEN is predicted to remain at high abundance after 

exposure to increasing antigen concentrations below the threshold, after which the cell 

irreversibly switches to a second cell state with low PTEN abundance (Fig 14A). Conversely, 

phosphorylation of Akt on Ser473 switches from low to high abundance for antigen 

concentrations greater than the threshold (Fig 14B). The nuclear abundance of FoxO1, an Akt 

substrate, consequently shows a rapid decrease following phosphorylation-dependent nuclear 

export (Fig 14C).   

Levels of PTEN abundance, Akt phosphorylation, and FoxO1 nuclear localization all 

exhibit hysteresis. When antigen is removed from a cell that has already switched to the second 

state the cell will remain in that state, suggesting that conversion is irreversible. Our model 

further suggests a role for a positive feedback loop between PTEN, PIP3, Akt, and FoxO1 in the 

bistability of these variables (Fig 12). A cell in the state with low PTEN abundance will maintain 

high levels of PIP3 and Akt activity that promote nuclear export of FoxO1. These kinase 

activities indirectly prevent transcription of PTEN and therefore quench PTEN-mediated 

phosphatase activity that otherwise inactivates PIP3. Although signaling molecules within this 
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feedback loop all exhibit bistability and hysteresis, this is not true for other molecules in the 

TCR-induced signaling network. NEDD4 activity, for example, is regulated outside of this 

feedback and does not exhibit bistability or hysteresis (Fig 14D). NEDD4 does exhibit a dose-

response relationship where higher dose stimulation leads to increased production, however this 

effect is reversible, and decreasing antigen levels leads to decreasing activity. Overall, our 

simulations agree with experiments and provide mechanistic insight into how antigen dose shifts 

the balance of Treg and Th differentiation. Our results lead to the hypothesis that irreversibility 

of T cell lineages with distinct effector functions result from bistability in the TCR signaling 

network.  
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Figure 14 Bifurcations PTEN, Akt, and FoxO1 exhibit bistability. 

Mean (red), 25th-75th percentile (dark blue), and 5th-95th percentile trajectories of the simulated ensemble are 

shown. Antigen is increased in a stepwise fashion to a maximal high dose. Under low doses PTEN (A) and nuclear 

FoxO1 (C) levels remain high, while Akt activity (B) and NEDD4 activity (D) remain low. Antigen is then removed 

in a stepwise fashion. PTEN (A) and nuclear FoxO1(C) levels remain stably low in the absence of antigen, while 

Akt phosphorylation (B) remains high. Alternatively, Nedd4 activity (D) drops back down to baseline levels 

following antigen removal. 
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3.3.3 Pulsatile stimulation reveals the duration of antigen exposure influences cell fate 

decisions 

Model simulations revealed two distinct outcomes based on antigen dose; however, T cells may 

not be exposed to a static, sustained dose of antigen. So, we next investigated the effects of 

varying the length of time cells are exposed to a given dose of antigen. The system was 

simulated using pulses of high doses of antigen, allowing the simulated cells to experience the 

dose for a limited time before antigen was removed. When the full parameter ensemble is 

stimulated with a high dose pulse for 30 hours, all trajectories switch to their PTEN-low, Akt-

high state, and are able to maintain it after antigen is removed. However, when antigen is pulsed 

for only 12 hours, the cells experienced a transient dip and PTEN and rise in Akt activity, and 

once antigen was removed levels returned to baseline (Fig 15A-B).  Simulations were then run 

with two 12 hour pulses, with a two hour gap in between (Fig 15C-D). Once again, during the 

initial pulse levels of PTEN fell and Akt activity rose. During the two hour gap when antigen 

was removed, these trends began to reverse, but did not have time to recover all the way to 

baseline. The second pulse then resulted in another spike in Akt activity. Once antigen was 

removed, in a slight majority of simulated trajectories (51%), levels of PTEN and Akt activity 

were again able to return to their respective baselines in most simulations. However, the 

remaining 49% of trajectories received enough activation to trigger long term commitment to the 

active state. When simulations were run with three 12 hour pulses of antigen all PTEN was lost 

by the end of the third pulse, and Akt levels reached higher levels then seen in the previous 

simulation (Fig 15E-F). Once antigen was removed, Akt activity stayed high and PTEN levels 

stayed low. Sufficient stimulation had occurred to commit the system to the PTEN low, Akt high 

steady state we had seen previously.  
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Figure 15 Consecutive pulses of antigen can stably induce the PTEN high, Akt low state. 

Mean (red), 25th-75th percentile (dark blue), and 5th-95th percentile trajectories of the simulated ensemble are 

shown. One (A-B) and two (C-D) 12 hour pulses of high dose antigen transiently reduce PTEN levels and increase 

Akt activity, but the effect is lost following antigen removal. Three (E-F) pulses sufficiently activate the system to 

retain low levels of PTEN and high levels of Akt activity following antigen removal.  
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3.3.4 Model predicted thresholds are confirmed experimentally using Nur77 as a proxy 

for integrated dose and time 

Our model predicts that the total signal through the TCR, as a combination of dose and activation 

time, determines Akt activation and Th commitment. To test this, we stimulated T cells from 

Nur77-GFP transgenic mice. Nur77 is a transcription factor that is activated downstream of the 

TCR and independent of PI3K activation [216]. It has been previously used as indicator of TCR 

signal strength [179,189]. Here, we use it as representative of the combination of our two 

variables of dose and time. Our model predicts a sharp threshold in signal strength as captured by 

total Nur77 production, resulting in distinct populations with low or high levels of Akt activity.   

Further experimental efforts confirm this threshold. Following stimulation with a high 

dose of anti-CD3 antibody (1 ug/ml) for two hours, cells were sorted based on their amount of 

Nur77, based on GFP fluorescence levels. Cells exhibiting low levels of fluorescence uniformly 

show low levels of S6 phosphorylation, indicative of low levels of Akt activation. As 

fluorescence levels increase, there is a sudden and distinct shift to high levels of S6 

phosphorylation (Fig 16). This pattern is consistent across experiments, resulting in two 

populations of cells, Nur77-lo, pS6-lo cells and Nur77-hi, pS6-high cells. Moderate levels of 

Nur77 can produce some heterogeneity, showing a bimodal distribution of pS6, corresponding to 

cells that have activated Akt and those that have not.  
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Figure 16 A threshold in total TCR activation causes the activation of Akt in T cells. 

Integrated activation of the T cell receptor, indicated by the mean fluorescent intensity of cells expressing Nur77-

eGFP corresponds to the levels of phosphorylated S6. A transition between the pS6-lo and pS6-hi populations 

occurs sharply over a small range of MFI. 

3.3.5 A two-dimensional threshold dependent on antigen concentration and exposure time 

controls cell state transitions 

Our model predicts that both the dose of antigen and the duration of antigen exposure affect T 

cell responses. To test if these two variables act in concert both were systematically varied, to 

test a wide range of combinations. The resulting phase diagram reveals a two dimensional 

threshold between the two steady states of the system. A minimum dose and duration of 

stimulation are required to switch to the PTEN-low and Akt-high (Fig 17A) state. Higher antigen 
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doses require a shorter stimulation, as the two variables combine to determine the total signaling 

input. The exact threshold varies as a function of parameters, but is qualitatively consistent.  

We next wanted to test if it was possible to shift this threshold. We re-ran the simulations 

initializing the system with half of the baseline concentration of PTEN. Reducing PTEN levels is 

known to have physiological effects, as PTEN heterozygosity has been shown to induce tumor 

growth and hasten cancer progression, due to its role as a tumor-suppressor gene [217,218] and 

leads to autoimmunity and increased lymphoproliferation [219]. Additionally, PTEN inhibitors 

lead to an increased expansion of Th cells and reduced expansion of Treg cells [190]. Our model 

predicts that decreasing PTEN levels reduces the dose and duration of signal necessary to cross 

the threshold.  

We tested this prediction by activating T cells taken from wild type and PTEN 

heterozygous mice with various concentrations of anti-CD3 antibody for varying lengths of time, 

and measuring the amount of S6 phosphorylation, a marker for Akt activity, 44 hours following 

the initial activation (Fig 17B). Following stimulation with the lowest dose of antigen (0.625 

ug/ml), there was minimal Akt activity regardless of length of stimulation, as predicted by the 

model. Similar results were seen in the heterozygous cells. Successively increasing the dose wild 

type cells were exposed to led to increased activation, at increasingly earlier times. At the highest 

dose (2.5 ug/ml), most cells were activated following 28 hours of stimulation. PTEN 

heterozygous cells experienced activation more quickly. At 1.25 ug/ml up to 50% of cells started 

exhibiting activation following 24 hours of stimulation rather than 28 hours in the WT. At the 

highest dose most cells were active after 24 hours of stimulation and many were following 20 

hours. This agrees well with the model prediction, which showed that less time was required for 

commitment in cells with less PTEN, with the threshold shifting by 5-10 hours.   
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Figure 17 Signal dose and duration set a two dimensional threshold. 

(A) Model simulations predict that a minimum dose of antigen and time of exposure to antigen are required to 

transition between steady states from low to high levels of Akt activity. Increasing the antigen dose decreases the 

time needed for transition.  Reducing the basal concentrations of PTEN allows this transition to take place at lower 

doses and shorter times. (B) Stimulating WT T cells with varying doses of antigen and for varying lengths of time 

confirms the model prediction of a threshold. PTEN heterozygous cells exhibited a shifted threshold.  

3.3.6 Population modeling 

We next investigated the effects of imbedding our signaling model in a population of cells. This 

provided insight into the wider impact of the hypothesized network architecture and resulting 

bistability and how dynamic changes in antigen levels, such as in an infection, could affect the 

emergence of Th and Treg populations. T cells exist in a heterogeneous population, which can 

complicate their response to a stimulus and make it difficult to accurately capture their dynamics 



 85  

with a single ODE model with a single parameter set. To address this, we expanded our model of 

TCR signaling, adding the production of IL-2 and CD25, which and are critical to the survival 

and expansion of populations of T cells (Fig 18).  

 

Figure 18 Multiscale T cell population model signaling diagram. 

The previous rule-based model is expanded to include the transcription factors necessary to induce IL2 and CD25 

expression, as well as signaling through IL2R to STAT5. 

 

We then simulated a set of 50 cells, each containing an identical copy of our proposed 

signaling network (Fig 19A), but heterogeneity in their initial conditions, accomplished by 

selecting initial concentrations of model elements from lognormal distributions, using our 

original parameter set as a mean and using a coefficient of variation of 0.11 for membrane bound 

elements and 0.41 for intracellular elements[90]. In response to antigen, each cell can 

independently differentiate into Treg or Th cells as a function of total Akt activity, with high 

levels of Akt activity leading to Th cells and low levels of activity leading to Treg cells. Cells can 

also divide as a function of IL-2 signaling, or die based on the lifetime of the cell following 
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exposure to antigen. Cells interact through the secretion of IL2 into a shared pool that is 

available to all cells.   

To simulate the system, we vary the concentration of antigen to mimic the time course of 

an infection, examining how the T cells expand and differentiate in response to dynamic antigen. 

Cells can thus be exposed to a wide range of antigen doses, allowing us to see how this affects 

the emergence of Th and Treg populations. We first simulate the system forcing all cells to 

divide symmetrically (Fig 19B), forcing both daughter cells to have the same protein 

concentrations and differentiation state as the parent cell. Under this condition, following the 

user-defined increase in antigen, the T cell population expands and a population of Th cells 

grows. As the antigen is removed, the total population of T cells returns to its baseline and the Th 

population is lost. No Tregs appear in this simulation. We hypothesized that this was due to the 

uniform symmetric division of all cells. As naïve cells were exposed to sustained high doses of 

antigen, they experienced high levels of Akt activation and becoming Th cells, while also 

producing large amounts of IL-2 and dividing. When these cells divide, the daughter cells would 

also become Th cells. With no other influx of cells, there were no naïve cells available to 

respond to decreasing levels of antigen later in the simulation as possibly become Treg cells. 
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Figure 19 The induction of Tregs in a population can alter the clearance of infection.  

The rule-based signaling model was simulated as a population model (A) under varying conditions. When antigen 

levels are manually increased and decreased, and T cells are allowed to divide only symmetrically, the overall T cell 

population expands, and a Th population appears (B). When asymmetric division is allowed as well, a population of 

Treg cells also appears (C). When the T cells control antigen removal, with Th cells clearing antigen and Treg cells 

slowing clearance, three scenarios can arise depending on the balance of Th and Treg populations. Antigen can be 

maintained at low levels indefinitely (D), antigen can be cleared entirely (E), or antigen levels can fully rebound to 

high levels (F). 

 

To address this, we allowed the cells to divide asymmetrically a portion of the time. It has 

been shown that T cells can divide asymmetrically, producing non-identical daughter cells 

[220,221]. In particular, factors key to differentiation, such as Tbet, have been shown to strongly 

segregate to one daughter cell in certain circumstances[222]. So for the next round of 

stimulation, we allowed cells divide asymmetrically 20% of the time, with a differentiated parent 

cell producing one differentiated daughter cell and one non-differentiated daughter cell. When 

we repeat our simulation protocol, we again see a strong expansion of the T cell population, and 
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a large Th subpopulation. However, now we also see a small population of Treg cells, 

representing 15% of the total T cell population appear late in the simulation, as the antigen has 

been removed and the total population is returning to normal.  

Next, we wanted to see the effects of these emergent populations of Th and Treg cells 

could affect the clearance of an actual infection. To test this, we allow the antigen to be 

responsive to T cells instead of manually changing its degradation. We now allow three sources 

for antigen removal, a basal term for antigen death that is unchanged, killing facilitated by Th 

cells, and an additional term for generic immune involvement that turns on late. Additionally, we 

allow Treg cells to reduce the effectiveness of killing. This allows the antigen to grow initially, 

while the T cell population is small. As Th cells are made, the antigen can then be killed more 

effectively and decreases. The late growth of Treg cells also now has the potential to slow the 

killing and allow for antigen survival.  

Our simulations reveal three important scenarios. When the Treg population sufficiently 

balances out the killing of the antigen, it is possible to maintain a steady low level of antigen, and 

consequently retain a population of TRegs (Fig 19C). This can be important in the context of 

certain infections such as leishmaniasis, where long lasting Treg populations allow for 

concomitant immunity and prevent reinfection[223]. When there is reduced Treg function, they 

are not able to balance the killing of the Th cells and the antigen is completely eliminated (Fig 

19D). However, if there is too much Treg activity and the immune response is too suppressed, 

the antigen may not be killed sufficiently. This can lead to a reoccurring infection where the 

antigen is able to resume growing while the immune system is suppressed. 
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3.4 DISCUSSION 

We have demonstrated that differential regulation of PTEN determines CD4 T cell fate. In Th 

differentiation, stimulated by high TCR strength, multiple mechanisms suppress PTEN activity 

by lowering protein levels and enzymatic activity. Low TCR signal strength, resulting in Treg 

induction, also involves early downregulation of PTEN, but requires that PTEN activity is re-

established at longer times in order to suppress Akt activity and adopt a Treg fate. Additionally, 

we identified a critical feedback loop driven by Akt/mTOR signaling that regulates PTEN 

transcription via the FoxO1 transcription factor. By combining biochemical and computational 

modeling approaches, our work defined how differential regulation of PTEN can produce 

alternate CD4+ T cell fate outcomes. 

By building a novel rule based-model of TCR signaling we gained significant additional 

insight into the detailed mechanisms and of the signaling pathway, and how they are affected by 

exposure to varying antigen signals. We were able to improve on the results of our previous 

Boolean model by adding mechanistic detail to signaling events. By considering distinct 

phosphorylation sites on proteins, as well as their localization patterns, we were able to add 

considerable detail to a small number of considered proteins and better explain the differential 

effects induced by low and high doses of antigen stimulations. This is most clear in the Akt 

phosphorylation dynamics. We saw the Thr308 residue behaves similarly under low and high 

dose antigen stimulation. However, the Ser473 residue, which is influenced by a negative 

feedback loop between Akt and mTORC2 deactivation, exhibits minimal phosphorylation under 

low doses, while showing significant phosphorylation following high dose stimulation. Akt 

activation plays a key role, leading to the phosphorylation of FoxO1 and loss of PTEN 

transcription under high doses.  
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Additionally, we now have the ability to incorporate the effects of real time scales and 

protein concentrations. Calibration to experimental data allowed us to replicate dynamic time 

course experimental data and make more quantitative predictions, not only on network 

architecture as past model versions have provided, but also on the timing of key events, the 

effects of antigen doses, and the effects of perturbations of the pathway. This provided a 

framework that will allow us to systematically add new experimental data to improve model 

behavior, and to add new elements to the model itself.  

The predictions made by our model allowed us to explore how the magnitude and 

duration of stimulation combine to control the activation and differentiation of naïve T cells. The 

combination of these variables creates a threshold, below which Akt activity is low, PTEN levels 

are high, and the T cell is capable of committing to a Treg phenotype and above which Akt 

activity is high and the cell commits to a Th phenotype. The existence of this threshold was then 

confirmed experimentally, using Nur77 as an indicator of the combination of input variables, 

with stimulation leading to the growth of two distinct cell populations, Nur77-lo pS6-lo, and 

Nur77-hi, pS6-hi. Positive feedback downstream of the TCR maintains these two steady states, 

which could represent the first full step towards commitment to the Th phenotype. Our pulse 

simulations predicted that there needs to be a sufficient integration of the TCR signal as 

influenced by antigen dose and stimulation time to eliminate PTEN and commit to irreversibly 

high levels of Akt activity. Removing the signal for a period of time can partially or fully reset 

this response. This showed that the amount of exposure a cell has to antigen, as well as the 

contact duration of the TCR with the APC could have an impact on differentiation decisions the 

cell makes. Models of contact duration [187,224,225], synapse formation [226,227], and the 
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formation of multiple contacts, particularly in LN [228–230] have been studied and could make a 

substantial expansion of this signaling model. 

Our new model gave us the freedom to explore a number of hypotheses involving 

perturbations of the signaling pathway and how they might affect a cell’s response to antigen. 

Heterogeneity in initial conditions across the population of cell and differences in the local 

environment each cell experiences add an additional layer of complexity onto this problem and 

have significant implications on how a population of cells will respond to an infection that may 

be different from an average cell’s response.  By developing a multiscale population model we 

began to address these questions, while also leveraging our insights into the signaling pathway, 

and how perturbations in this pathway can alter differentiation. By utilizing a very basic 

preliminary model we have already raised new, experimentally testable questions regarding the 

mechanisms of asymmetric T cell division and its possible role in maintaining a pool of 

undifferentiated T cells that can respond to changes in antigen levels. It also predicts a late 

growing population of Treg cells that could play an important role in the clearance of infections 

and down regulation of the immune response, greatly altering the final outcome of an infection. 

Further expansion of this basic model will be critical to developing a better understanding of in 

vivo responses to infection. Extending it to consider spatial effects, the impact of other cell types, 

and the production of memory T cells would significantly enhance model predictions, as seen in 

previous multi-scale models [185,231,232]. It can also be specialized to model the time course of 

specific infections, taking into account their unique growth dynamics, type and amount of 

antigens they can present, and the potential perturbations they can induce on the immune system, 

including the cytokine environment and skewing the type of T cell response.  
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4.0  REGULATION OF NF-ΚB DOWNSTREAM OF IL-17 IS CONTROLLED BY 

THE FORMATION AND MAINTENANCE OF UBIQUITIN SCAFFOLDS 

4.1 INTRODUCTION 

4.1.1 IL-17 mediates the killing of fungal infections while also playing a role in 

inflammatory disorders   

Interleukin 17 (IL-17) is the signature cytokine produced by CD4+ TH17 cells [233]. It has been 

shown to lead to inflammation through the activation of NF-κB[234] primarily in epithelial, 

endothelial, and fibroblastic target cells [235] through the activation of the IL-17 receptor. The 

ligand and receptor can present in a variety of hetero- and homodimers, but the homodimer IL-

17A ligand, paired with the heterodimeric IL-17RA-IL-17RC receptor have come to prominence 

due to its strong signaling strength [236–238]. This signaling pathway is critical in immune 

defense against fungal pathogens, such as Candida albicans [239]. However it has also been 

linked to autoimmune disorders such as Psoriasis [22–24] and Rheumatoid Arthritis [240,241].  

To better understand how these disorders arise and how they can be effectively treated, it 

is important to understand the cellular machinery involved in processing the IL-17 signal. The 

activation of NF-κB involves intermediates TRAF6, TAK1, IKK, and IκB, which accounts for 

significant overlap with other signaling pathways downstream of the TLR4, IL-1β, and TNFα 

receptors [242]. Making the IL-17 pathway unique are its receptors, which contain the SEFIR  
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Figure 20 IL-17 signaling pathway. 

Activation of the IL-17 receptor leads to the activation of NF-κB through the TAK1 and IKK kinases. Negative 

feedback mediator A20 is induced by NF-κB 

 

domain allowing for binding E3 ubiquitin ligase Act1, which is also specific to the IL-17 

pathway, at the top of the cascade [243].  Act1, together with TRAF6, functions to build K63-

linked ubiquitin scaffolds that form a critical piece of the signaling cascade [15,16]. These 

scaffolds allow for the attraction and activation of key kinases TAK1 and IKK, a necessary step 

in the activation of NF-κB. They also serve as an fulcrum for negative feedback in the system, as 

NF-κB-induced ubiquitin-editing enzyme A20 can break these chains, dampening the signal 

[246,247]. A20 has previously been shown to be a key regulator in TLR4 and TNFR signaling 



 94  

through the deubiquitination of TRAF6 [247], IKK [248], and RIP1 [249]. Additionally it has 

been shown that defects in A20 can lead to autoimmune disorders such as rheumatoid arthritis 

[27]. Recently, A20 has been shown to play an important role in down-regulating the IL-17 

signal [26]. 

Feedback loops often play a significant role in determining the dynamics of a signaling 

system, adding complexity and leading to non-intuitive responses to the range of potential 

stimulations and perturbations of the system. These loops also serve as likely targets for failures 

in the system, as evidenced by A20’s ties to inflammatory disorders, and could serve as targets 

for intervention. Thus, better understanding and predicting the dynamics of this feedback 

represents an important area of study, which can most easily be tackled using computational 

modeling.  

4.1.2 Rule-based modeling allows for the modeling of ubiquitin oligomerization 

In order to efficiently study this complex signaling pathway, we incorporate computational 

modeling. Computational modeling has been shown to be an effective way to gain new 

understanding in similarly large and complex systems. Numerous models of signaling systems 

resulting in the activation of NF-κB have been developed, with varied purposes such as better 

understanding feedback controls and signaling network layouts [250–254], mapping complex 

dynamics such as oscillations and bistable responses to stimuli [255–258,35], understanding 

information processing by the network [259,260], and understanding single cell versus 

population effects [259,261]. These models allow for a deeper and more quantitative 

understanding of complex biological systems and offer a framework for making novel 

predictions. However, traditional modeling approaches also have their limitations when dealing 
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with the scale and complexity involved in cell signaling pathways. Specifically, modeling the 

formation of large oligomers, such as the K63-linked ubiquitin scaffolds in this system, presents 

a difficult problem both in terms of model specification and computation time using traditional 

methods, such as systems of ODEs. If we tried to specify this oligomerization in such a manner, 

it would require writing an equation for every possible oligomer size, and every possible 

combination of binding partners for each oligomer. If we do not place a strict limit on the 

oligomer size, the number of equations necessary would be infinite, making the model 

impossible to specify. Because of this, we instead use a rule-based modeling approach [82] 

combined with network-free simulation methods [93] to accurately capture the detail of IL-17 

induced activation of NF-κB. 

  Rule-based modeling allows us to model each signaling molecule of interest as a 

structured object, with rules describing their biochemical interactions.  This approach has 

previously been used to great effect in immune signaling systems [88,87], due to the ease with 

which it handles model specification for systems that have a large degree of combinatorial 

complexity, a common problem in signaling networks. Additionally, it allows us to simulate the 

modeling using the NFsim software [93], which elegantly handles the case of oligomerization, a 

problem that would choke traditional computational methods. Recent advances in parameter 

estimation, including the BioNetFit software [97], which directly interfaces with NFsim, allow 

us to calibrate this type of model to experimental data, making it possible to make quantitative 

predictions about the system. This set of software makes it possible for us to include the explicit 

modeling of ubiquitin oligomerization into a model of NF-κB activation for the first time, an 

aspect of the system that has long been neglected in the field despite playing a critical role as a 

fulcrum for negative feedback mediated by A20. This allows us to use a systems biology 
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approach to learn the mechanisms of A20 and its effect on the activity of NF-κB-activating 

kinases by making novel, falsifiable predictions with a model calibrated to experimental data. 

4.2 METHODS 

4.2.1 Modeling 

The model was written using the BioNetGen software [82] and simulated stochastically using 

NFsim [93]. Model code, including all model rules and parameters is included in Appendix C. 

The model contains 16 molecule types, 64 parameters, and 56 reaction rules.  

4.2.2 Parameter estimation 

The model was calibrated using BioNetFit [97], which utilizes a genetic algorithm compatible 

with rule-based models to identify best fit parameter values. Western blot data showing time 

course dynamics of A20 and IkBα protein levels following IL-17 stimulation and qRT-PCR data 

showing time course dynamics of Tnfaip3 and Nfkbia expression levels were used for calibration.  

4.2.3 Cell cultures and reagents 

ST2 stromal cells were cultured in α-MEM (minimum essential medium, Sigma) containing 10% 

fetal bovine serum (FBS) supplemented with L-glutamine and antibiotics (Invitrogen). 

Recombinant murine IL-17 protein was purchased from PeproTech and used at a final 

concentration of 200 ng/ml. 
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4.2.4 Western blotting 

Whole cell lysate was boiled in SDS sample buffer, resolved on 10% SDS-PAGE, transferred to 

nitrocellulose, and blotted with appropriate antibodies. Anti-A20 antibody was from Cell 

Signaling Technology; anti-IkBα antibody was from Santa Cruz Biotechnology; anti-tubulin 

antibody was obtained from Invitrogen. Bands on blots corresponding to proteins of interest were 

analyzed by ImageJ software. Western blots were developed with a FluorChem E imager 

(ProteinSimple). 

4.2.5 qRT-PCR 

Total RNA was isolated from cells with an RNeasy Mini Kit (Qiagen). Complementary DNA 

synthesis was performed with SuperScript III First-Strand (Invitrogen). The extent of expression 

of Tnfaip3 and Nfkbia was determined by qPCR analysis with PerfeCTa SYBR Green FastMix 

ROX (Quanta BioSciences). The PCRs were performed on a 7300 Real-Time PCR System 

(Applied Bio- systems). The abundances of the mRNAs of interest were normalized to that of 

Gapdh. Primers were purchased from Super Array Biosciences (Qiagen). 
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4.3 RESULTS 

4.3.1 Model description 

In this model we consider the downstream signaling events mediated by IL-17 receptor  

 

Figure 21 IL-17 signaling model diagram.  

(A) The cartoon abstraction shows all molecules considered in the model. Orange elements represent extracellular 

ligands. Pink elements represent membrane bound receptors. Blue elements indicate intracellular signaling 

intermediates. Green elements indicate transcription factors. Yellow elements indicate mRNA. Purple elements 

represent the ubiquitin scaffold. (B)  The contact map of the rule-based model specifies all signaling proteins 

considered in the model, as well as sites for post-translation modifications, localization signals, and additional 

activation sites. Sites colored pink indicate an inhibitory modification and sites colored blue indicate an activating 

modification. 
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after activation by its ligand, IL-17 (Fig 21). For simplicity, we consider only the receptor 

heterodimer composed of IL-17RA and IL-17RC, as well as the ligand homodimer composed of 

two IL-17a subunits [262]. Receptor activation is modeled by the single-step binding of the 

dimeric ligand to the dimeric receptor. This allows the adaptor and E3 ubiquitin ligase Act1 to 

bind to the active dimer through a SEFIR domain interaction [263]. TRAF6 binds to the TB2 

domain of receptor-bound Act1 [244]. Act1 then induces K63-linked polyubiquitination of 

TRAF6 on its K124 residue [244]. In our model, Act1-TRAF6 binding allows for the initiation 

and extension of ubiquitin oligomers on TRAF6. Both active ligases are required for chain 

elongation, the presences of multiple active copies of the ligases increases the rate of elongation. 

The complex containing TAK1 and TAB2 or TAB3, modeled as a preformed complex, can bind 

ubiquitin oligomers through TAB2/3’s zinc finger domain [264,265]. This binding leads to the 

activation of TAK1, through autophosphorylation of the threonine 178 and 184 residues in the 

activation loop [266,267]. The IKK complex, including IKKα, IKKβ, and IKKγ/NEMO, 

modeled here as a single entity, also binds to the K63-linked ubiquitin oligomers through its 

NEMO subunit [268,269]. Once bound, IKKβ is phosphorylated on serine 177 and 181 residues 

by activated TAK1 [265,270], rendering it catalytically active. Active IKK can then 

autophosphorylate on its helix-loop-helix (HLH) motif, inhibiting kinase activity [270], and 

phosphorylate IκBα on its serine 32 and 36 residues [271,272].  This phosphorylation targets IκB 

for K45-linked ubiquitination and proteosomal degradation [273,274]. This degradation is 

modeled as a deletion of the IκB molecule, releasing the bound NF-κB. Free NF-κB can then be 

transported to the nucleus. We do not explicitly model the nucleus as a separate compartment, 

but instead maintain a tag on the NF-κB molecule which indicates its location as being 

cytoplasmic or nuclear. Once NF-κB has reached the nucleus, it is responsible for the 
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transcription of IκB [275] and A20 [276] mRNA, leading to the translation of the appropriate 

protein. Both newly produced proteins act as negative feedback elements on the system. Nascent 

IκB can travel to the nucleus, again modeled as a change in its location tag, and is able to bind 

NF-κB, transporting it back to the cytoplasm where it is inactive [277]. A20 binds to adaptor 

AnapC5, which in turn binds to the IL-17 receptor [278]. A20 is then able to bind to K63-linked 

ubiquitin chains, breaking them to inhibit the signaling pathway [26]. The final model included 

16 molecule types, 64 parameters, and 56 reaction rules. 

4.3.2 Model behavior 

Using a genetic algorithm encoded in the BioNetFit software[97], the model was calibrated to 

experimental data illustrating the time course dynamics of A20 and IκB mRNA and protein 

abundance following stimulation of cells with IL-17. The calibrated model recovers the 

experimentally seen oscillations in these variables (Fig 22).  
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Figure 22 Model time course dynamics of A20 and IκB agree with experimental results. 

The NFsim model was fit to qRT-PCR and Western blot time course data for (A-B) A20 and (C-D) IκBα mRNA 

and protein dynamics for six hours following IL-17 stimulation.  

Additionally, NF-κB, responsible for the transcription of both genes, exhibits oscillatory 

behavior, as has been seen in previous literature studying stimulation by other cytokines 

[279,280]. Oscillations in the model arise at the level of ubiquitination of TRAF6, due to 

interactions with A20. Upstream of this ubiquitination, Act1 and TRAF6 are recruited to the 

receptor and maintained at high levels for the duration of the simulation, as the ligand is 

maintained in excess and these elements are unaffected by negative feedback (Fig 23A). The 

subsequent growth of ubiquitin oligomers following Act1-TRAF6 binding acts as a key step, 

allowing for the activation of TAK1, IKK, and NF-κB, resulting in A20 production, which 

tempers activation by breaking  ubiquitin oligomers. This negative feedback, with a delay 
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introduced by transcription and translation, results in oscillations in all of the elements involved 

(Fig 23B).  

Figure 23 IL-17 signaling dynamics.  

(A) Following ligand addition, ubiquitin ligases Act1 and TRAF6 form a complex with the IL-17 receptor. (B) A20-

mediated negative feedback causes oscillations in the activation of TAK1, IKK, and NF-κB.  

We can better understand the behavior of the system by tracking the formation of 

ubiquitin scaffolds. Ubiquitin quickly oligomerizes, forming scaffolds containing as many as 13 

monomers within 15 minutes. These large scaffolds are also quickly lost; by 30 minutes the 

largest oligomer size is 4 monomers, coinciding with the nascent production of A20. The growth 

of large scaffolds (>5 monomers) bears qualitative resemblance to A20 kinetics, showing three 

distinct peaks at 15 minutes, 2.5 hours, and 5 hours with these scaffolds dissipating each time 

A20 levels rise (Fig 24 A). Similarly, ubiquitin binding kinases TAK1 and IKK show oscillatory 

patterns of aggregation. This leads to oscillating levels of kinase activity, indicated by the 

phosphorylation of activating sites on each (Fig 24 B-C).   
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Figure 24 Dynamics of ubiquitin scaffold formation. 

(A) Ubiquitin scaffolds composed of up to 13 monomers exhibit oscillatory growth and decay, corresponding to the 

dynamics of A20 abundance. (B-C) Ubiquitin-binding kinases TAK1 and IKK also exhibit oscillatory behavior in 

cluster formation and activity. 
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4.3.3 A20 knockouts 

We can knockout A20 in our simulations by setting transcription and translation rate constants to 

zero. This has no effect on the upstream binding of Act1 and TRAF6 to the IL-17 receptor (Fig 

25A), which are not dependent on ubiquitin oligomerization. However, there is a significant 

effect on the activation of ubiquitin-dependent kinases TAK1 and IKK, and consequently the 

activation of NF-κB (Fig 25B). All three elements exhibit high levels of activation, increased 

over their activity levels in WT simulations. Additionally, the higher level of activity is sustained 

throughout the simulation, as the oscillations they previously exhibited are lost. This corresponds 

to a sustained increase in ubiquitin oligomerization (Fig 25C). Instead of the oscillations in 

ubiquitin oligomer size seen in WT simulations, we see the consistent presence of higher order 

ubiquitin oligomers consisting of 7-12 monomers. This pattern is also seen in TAK1 and IKK 

clustering (Fig 25D), resulting in the sustained levels of IKK activity. As a result, NF-κB is 

active throughout the length of the simulation. These simulations compare favorably with 

previously published experimental reports showing the increased degradation of IκBα in A20 

KO MEFs stimulated with IL-17 (Fig 25E-F) [26]. 
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Figure 25 A20 knockout behavior.   

(A-B) Despite no change in Act1- or TRAF6-receptor binding, knocking out A20 results in sustained levels of 

TAK1, IKK, and NF-κB activation. (C-D) Long lasting ubiquitin scaffold formation induces sustained IKK 

activation. (E-F) Experimental and simulation results agree that A20 knock outs exhibit reduced levels of IκBα 

following IL-17 stimulation. 
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4.3.4 Overexpression experiments 

By explicitly modeling the oligomerization of ubiquitin and subsequent binding of downstream 

signaling elements, additional questions are raised. One key consideration is the nature of 

competitive binding of the ubiquitin-dependent TAK1 and IKK complexes. In our model, these 

complexes can bind K63-linked ubiquitin chains interchangeably, with their binding affinities 

and concentrations determining the resulting stoichiometry and consequently their activity levels. 

As a result, the model predicts that overexpression or underexpression of either of these 

activators of NF-κB has the potential to lead to the preferential binding of one complex, 

saturating available ubiquitin scaffolds and squelching the activation of the other (Fig 26A-B). 

Since activity from both kinases is required to activate NF-κB, interfering with their balance can 

lead to a loss of activation. In fact, the model predicts that there is an optimal ratio of IKK:TAK1 

complexes to induce maximal NF-κB activation of 1:1 (Fig 26C). Increasing the levels of IKK 

leads to a decrease in TAK1 and IKK activity levels, leading to reduced NF-κB activity (Fig 

26D). This indicates that traditional experimental techniques relying on the overexpression or 

knockdown of members of these complexes could result in non-intuitive effects that are not 

reflective of the base state of the system, where too much of an inducer leads to repression.  
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Figure 26 Overexpression of NF-κB IKK and TAK1. 

(A-B) Overexpression of NF-κB activators IKK or TAK1 saturates ubiquitin scaffolds, causing reduced 

phosphorylation and kinase activity. (C) There exists an optimal ratio of TAK1 and IKK to induce maximal NF-κB 

activation. (D) Overexpression of IKK leads to minimal TAK1 and IKK activity and inhibition of NF-κB activation. 

4.4 DISCUSSION 

K63-linked ubiquitin scaffolds have long been known to play a key role in NF-κB activation; 

however, many of the details of their aggregation and dissipation remain unknown because they 

are difficult to study with traditional biochemical tools. These barriers can often be overcome 
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using computational modeling, where the costs of experiments are reduced and every species can 

be tracked without the need for an antibody. However this phenomenon tests even the limits of 

modeling, due to the theoretical and computational limits imposed by oligomerization. In this 

study, by using the cutting edge modeling tools now available to us, we can finally tackle this 

problem. This allows us to predict the size and persistence of ubiquitin scaffolds, as well as the 

stoichiometry of their binding partners, under various experimental scenarios. It helps us 

understand what happens when there are perturbations in terms of scaffold building, kinase 

abundance, and deubiquitinase abundance and effectiveness.  

 We have long known that A20 plays an important role in limiting the activation of NF-

κB. By modeling ubiquitin oligomerization we gain insight into the mechanisms of A20 action, 

in terms of how it affects scaffold size and persistence, as well as the activation states of 

ubiquitin binding partners TAK1 and IKK. This allows us to explore the potential effects of 

mutations in A20 and how they can lead to disease states. Here we see that A20 knockouts are 

predicted to have long, persistent ubiquitin chains, which lead to consistently high levels of IKK, 

and thus NF-κB, activity, as seen in previous experimental work [281]. Additionally, by 

scanning the potential values for A20-ubiquitin affinity we see a range of behaviors from 

oscillations to persistent activations. Examining these scenarios and their effects on NF-κB 

activity can provide insight into disorders such as rheumatoid arthritis and psoriasis that have 

been linked to mutations in A20 and exhibit sustained high levels of inflammation. With this 

framework we can predict the effects of various potential interventions, such as breaking 

ubiquitin chains, blocking ubiquitin-kinase interactions with small molecule inhibitors or 

inhibiting the kinases themselves. 
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 Additional insights can be gained by further extending this model. The current model 

considers A20’s deubiqutinase activity, but A20 is also a ubiquitin ligase, inducing K48-linked 

ubiquitination that leads to proteosomal degradation of signaling intermediates such as RIP1 and 

further suppressing NF-κB activity [246]. Expanding the model to include the full range of A20 

mechanisms is an important step in assessing it as a treatment target. Additionally, the modeling 

of ubiquitin oligomerization has been simplified in this model to only allow for K63-linkage and 

ignoring the effects of branching. In reality, a variety of linkages and structures are possible 

[282] and considering their impact will influence our understanding of the deubiquitinating and 

ubiquitin ligase actions of A20. Additionally, considering the spatial impact of branched 

ubiquitin chains, and the resulting effective proximity of TRAF6, TAK1, and IKK likely plays 

an important role in the expansion and maintenance of ubiquitin chains, as well as the activation 

of TAK1 and IKK. Recent advances in network-free spatial simulations should allow us to tackle 

this problem in the near future.  
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5.0  CONCLUSIONS 

Through the use of mathematical modeling I have identified key signaling features of three 

immune cell signaling networks that affect immune outcomes. Modeling provided a systematic 

framework for defining our current understanding of these systems, and to identify important 

gaps in this knowledge, and new questions that can be answered. A key feature of this study was 

the use of experimental data to both inform and follow up on all modeling efforts. By calibrating 

each of the three models to experimental data, I was able to reproduce known, key behaviors of 

each system, allowing the models to more reliably make new predictions. By using well 

calibrated models, I was able use model results to directly help define the next experimental 

steps. In this study I used this cyclic approach combining modeling and experimental efforts to 

provide insights into three immune cell signaling systems: the role of neutrophil activation in 

sepsis, the role of T cell receptor signaling in CD4 T cell differentiation, and the role of IL-17-

induced ubiquitin scaffold formation on NF-κB activation. 

In Chapter 2, I explored the role of neutrophil activation in sepsis. I constructed an ODE 

model that incorporated the activation of the migratory and killing functions of neutrophils 

through two surface receptors, CXCR1 and CXCR2. Additionally, the model incorporated the 

ability of fully activated neutrophils to kill a dynamic infection, and for improperly activated 

neutrophils to cause tissue damage and inflammation, leading to further neutrophil activation. I 

then calibrated the model to two data sets, one from animals that survived the infection, and one 
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from animals that succumbed to the infection. By calibrating the model to both data sets, I was 

able to show how one network architecture was able to capture a range of population behaviors, 

through a change in parameter values. Additionally, the model made predictions on non-fitted 

variables, and how they varied across our two populations. Notably, the model predicted that the 

killer neutrophil population would be elevated in the non-surviving population. This neutrophil 

phenotype is associated with neutrophil induced tissue damage in the model. Multiple studies 

support this finding, indicating that non-survivors or those with more severe sepsis experience 

increased levels of neutrophil induced tissue damage and myeloperoxidase (MPO)  generation, 

indicative of degranulation [102,148–151]. In an attempt to combat the induction of tissue 

damage, I modeled a treatment aimed at blocking the activation of CXCR1 and CXCR2, 

reducing neutrophil activation. The proposed treatment was successful in improving survival 

rates from 31% to above 80% under optimized treatment conditions. The most important 

treatment variable for optimization was the time following infection at which treatment was 

started. The model predicted a narrow band of time where treatment would be most effective, 

between 3 and 6 hours following infection. It also predicted that beginning treatment within the 

first two hours could be detrimental, increasing mortality. This shows that while the treatment 

can conceptually be quite effective, optimization of its delivery is critical, and this optimization 

can be most safely and efficiently done using a model calibrated to patient data.  

 In chapter 3 I used two modeling approaches to identify key features of T cell receptor 

signaling that affect CD4 T cell differentiation decision making. First, by using Boolean 

modeling, I identified a minimal network that could recover key experimental results regarding 

the dynamics of PTEN abundance and FoxO1 phosphorylation. This allowed us to narrow our 

focus onto a positive feedback loop containing these elements, directing further experimental 
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work and model construction. Additional experiments allowed us to calibrate a novel rule-based 

model, which allowed us to quantitatively model the dynamics of this signaling network. By 

calibrating the model to data gathered following two different doses of antigen, I was able to 

model how a small change in dose can lead to dramatically different signaling dynamics. This 

lead to the model prediction of a threshold in antigen dose separating two stable steady states, a 

PTENhi Aktlo state that corresponds to a Treg fate and a PTENlo Akthi state that corresponds to a 

Th fate. The model further predicted that commitment to these two states was also affected by 

the duration of antigen stimulation, thus creating a two-dimensional threshold on dose and time 

indicative of total activation of the T cell receptor. The presence of this threshold was confirmed 

experimentally, as was the model prediction that threshold could be shifted by reducing the 

expression level of PTEN in naïve cells. This detailed model of signaling downstream of the T 

cell receptor was then used to build a multi-scale cell population model. This model showed that 

the relative size and effectiveness of Treg and Th populations has a dramatic effect on the 

clearance of an infection, with different scenarios leading to a recurrence or clearance of the 

infection. This model also has the potential for significant expansion. By adding key signaling 

elements to the model, such as transcription factors Foxp3 ant T-bet, both of which act as 

differentiation markers and play important mechanistic roles in Treg and Th stability, the model 

will be significantly more accurate, by including the final steps necessary to lock in 

differentiation. Additionally, the model could be used to tackle more specific scenarios, such as 

individual infections with unique dynamics and responses, and the effects of relative Treg and 

Th populations size on transplant rejection and vaccine development.  

 In chapter 4, I examined the activation of NF-κB by the cytokine IL-17, one of the less 

studied activators of NF-κB. The interest in this system was sparked by the experimental finding 
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of ubiquitin-editing enzyme A20 as a negative feedback mediator in the pathway. This led to the 

development of a novel rule-based model focused on the formation of K63-linked ubiquitin 

scaffolds and the mechanisms of A20 involved in breaking these scaffolds. The model was 

simulated using NFsim, allowing for the explicit modeling of ubiquitin oligomerization, and 

resulting in a model larger in scope than previous models of NF-κB activation that simplified 

this process [69,250,255,283]. Following calibration to experimental data, the model predicted 

the formation of ubiquitin oligomers containing up to 12 monomers. These oligomers were 

disrupted following the A20 transcription and translation, induced by NF-κB, which in turn led 

to a decrease in NF-κB activity an A20 production. A20-mediated negative feedback resulted in 

oscillating formation of ubiquitin scaffolds and characteristic oscillations of NF-κB. 

Additionally, the oscillating nature of scaffold formation led to the transient formation of clusters 

of IKK and TAK1, as they bound to the scaffolds, which we hope to confirm experimentally. 

The model also predicts that knocking out A20 breaks the oscillations, leading to sustained high 

levels of NF-κB activity, which was confirmed by experiments showing sustained low levels of 

IκB in A20 KO cells stimulated with IL-17, indicating sustained high levels of NF-κB activity. 

Finally, the model predicts that the relative expression levels of IKK and TAK1 play a 

significant role in the potential of the system to activate NF-κB. Overexpressing one protein or 

the other could, counterintuitively, inhibit activation of NF-κB. This model prediction leads to 

the conclusion that overexpressing either of these proteins in an experiment could alter results in 

an unintended way, and further points to the need for technologies like CRIPSR/Cas9 that allow 

for the expression of modified proteins at an endogenous level [284,285].  

 These three studies applied mathematical modeling in varied immunological systems to 

advance the state of the field. I showed that modeling can be effectively used to attack a wide 
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range of problems in a biological discipline, immunology, which requires a significant 

commitment on the part of the modeler to learn and understand. Additionally, by heavily 

incorporating data and input from experimentalists, it was possible to efficiently build and 

calibrate models capable of making new predictions and designing new experiments, ranging 

from simulations of small scale in vitro systems to testing potential clinical treatments. By 

applying this methodology to three different systems, I demonstrated the flexibility models 

provide to give insight into a wide range of problems. When combined with an initial effort to 

understand the biological field of interest, in this case immunology, it is possible to work on a 

number of problems that, while quite different, may overlap in a number of key features. In this 

thesis I was able to study three systems in a coherent way due to their shared relation to 

important immune disorders, the shared concept of positive and negative feedback fine tuning 

immune activation, and recurring signaling motifs and dynamics. This shared conceptual 

backbone allowed my approach to lead to a number of novel results in three different systems, 

and allows it to have great potential to be used for a wide range of studies in the future, both 

within the field of immunology and the wider scope of biology.    
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APPENDIX A T CELL BOOLEAN MODEL 

# Translation of Boolean model in Reduced Boolean T-Cell model.txt to BNGL format within 
the GSP (Gillespie) update mode. 
begin model 
begin parameters 
end parameters 
begin molecule types 
   tcr(state~0~1) 
   tcr_low(state~0~1) 
   tcr_high(state~0~1) 
   mek1(state~0~1) 
   pip3(state~0~1) 
   pten_total(state~0~1) 
   pten_active(state~0~1) 
   akt(state~0~1) 
   foxo1(state~0~1) 
   ck2(state~0~1) 
   mtorc2(state~0~1) 
   nedd4(state~0~1) 
end molecule types 
begin seed species 
   tcr(state~0) 1 
   tcr_low(state~0) 1 
   tcr_high(state~1) 1 
   mek1(state~0) 1 
   pip3(state~0) 1 
   pten_total(state~1) 1 
   pten_active(state~0) 1 
   akt(state~0) 1 
   foxo1(state~1) 1 
   ck2(state~0) 1 
   mtorc2(state~0) 1 
   nedd4(state~0) 1 
end seed species 
begin observables 
   Molecules TCR tcr(state~1) 
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   Molecules TCR_LOW tcr_low(state~1) 
   Molecules TCR_HIGH tcr_high(state~1) 
   Molecules MEK1 mek1(state~1) 
   Molecules PIP3 pip3(state~1) 
   Molecules PTEN_TOTAL pten_total(state~1) 
   Molecules PTEN_ACTIVE pten_active(state~1) 
   Molecules AKT akt(state~1) 
   Molecules FOXO1 foxo1(state~1) 
   Molecules CK2 ck2(state~1) 
   Molecules MTORC2 mtorc2(state~1) 
   Molecules NEDD4 nedd4(state~1) 
end observables 
begin functions 
   tcr_func() if(TCR_LOW>0.5 || TCR_HIGH>0.5, 1, 0) 
   ck2_func() if(TCR_HIGH>0.5, 1, 0) 
   mek1_func() if(TCR>0.5, 1, 0) 
   pip3_func() if(TCR>0.5 && PTEN_ACTIVE<0.5, 1, 0) 
   mtorc2_func() if(TCR>0.5 && AKT<0.5, 1, 0) 
   akt_func() if(PIP3>0.5 && MTORC2>0.5, 1, 0) 
   pten_total_func() if(FOXO1>0.5 && NEDD4<0.5, 1, 0) 
   pten_active_func() if(PTEN_TOTAL>0.5 && MEK1>0.5 && CK2<0.5, 1, 0) 
   foxo1_func() if(AKT<0.5, 1, 0) 
   nedd4_func() if(TCR_HIGH>0.5, 1, 0) 
end functions 
begin reaction rules 
   R1: tcr(state) -> tcr(state~1) if(tcr_func()>0.5,1,0) 
   R2: tcr(state) -> tcr(state~0) if(tcr_func()<0.5,1,0) 
   R3: ck2(state) -> ck2(state~1) if(ck2_func()>0.5,1,0) 
   R4: ck2(state) -> ck2(state~0) if(ck2_func()<0.5,1,0) 
   R5: mek1(state) -> mek1(state~1) if(mek1_func()>0.5,1,0) 
   R6: mek1(state) -> mek1(state~0) if(mek1_func()<0.5,1,0) 
   R7: pip3(state) -> pip3(state~1) if(pip3_func()>0.5,1,0) 
   R8: pip3(state) -> pip3(state~0) if(pip3_func()<0.5,1,0) 
   R9: mtorc2(state) -> mtorc2(state~1) if(mtorc2_func()>0.5,1,0) 
   R10: mtorc2(state) -> mtorc2(state~0) if(mtorc2_func()<0.5,1,0) 
   R11: akt(state) -> akt(state~1) if(akt_func()>0.5,1,0) 
   R12: akt(state) -> akt(state~0) if(akt_func()<0.5,1,0) 
   R13: pten_total(state) -> pten_total(state~1) if(pten_total_func()>0.5,1,0) 
   R14: pten_total(state) -> pten_total(state~0) if(pten_total_func()<0.5,1,0) 
   R15: pten_active(state) -> pten_active(state~1) if(pten_active_func()>0.5,1,0) 
   R16: pten_active(state) -> pten_active(state~0) if(pten_active_func()<0.5,1,0) 
   R17: foxo1(state) -> foxo1(state~1) if(foxo1_func()>0.5,1,0) 
   R18: foxo1(state) -> foxo1(state~0) if(foxo1_func()<0.5,1,0) 
   R19: nedd4(state) -> nedd4(state~1) if(nedd4_func()>0.5,1,0) 
   R20: nedd4(state) -> nedd4(state~0) if(nedd4_func()<0.5,1,0) 
end reaction rules 
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end model 
 
 generate_network({overwrite=>1}) 
 
# Simulate for 30 time units, outputting every time unit. 
# simulate({method=>"ssa",t_end=>30,n_steps=>30,print_CDAT=>0,verbose=>1}) 
parameter_scan({parameter=>"x",par_min=>1,par_max=>1000,n_scan_pts=>10000,method=>"
ssa",t_end=>30,n_steps=>300,log_scale=>0}) 
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APPENDIX B T CELL RULE-BASED MODEL 

begin model 
 
begin molecule types 
 
Antigen(tcr)   
TCR(antigen,pi3k,mek1,ck2,nedd4,active~N~Y)  
Anti_CD28(cd28) 
CD28(anticd28,pi3k)  
PIP(site3~U~P,site4~U~P,site5~U~P)  
Akt(Thr308~U~P,Ser473~U~P,location~N~C)   
FoxO1(Thr24~U~P,location~N~C) 
PTEN(phosphotase,Cterminus~U~P,Lys289~N~U) 
mRNA_PTEN() 
mTORC2(active~Y~N) 
NEDD4(active~Y~N) 
CK2(active~Y~N) 
PDK1(Ser241~U~P) 
PI3K(kinase~U~P) 
DNA() 
 
end molecule types 
 
begin parameters 
#Initial Conditions 
ag_init   0#1e3 
anti_cd28_init 6423600 
tcr_init  222131.433804039 
pip_init  268676.057686858 
akt_init  13148.5790742440 
foxo1_init  70437.7136425992 
pten_init  0#102973.666291009 
mrna_init  0#227.243338808808 
mtorc2_init  369664.061790713 
nedd4_init  66604.7986196980 
ck2_init  252561.753786331 
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pdk1_init     89586.2452041245 
pi3k_init  37411.0689919672 
dna_init  2 
 
#Rate Parameters 
 
############################## 
##### Receptor Activation##### 
############################## 
 
ag_bind    1.93414932224711e-10 
ag_unbind   0.00421914124248945 
 
ag_degrade   0 
 
cd28_bind   1.01692303284445e-08 
cd28_unbind   0.0630312241578351 
  
########################### 
##### PI3K Regulation ##### 
########################### 
 
tcr_pi3k_bind  1.92290079749878e-09 
tcr_pi3k_unbind  0.0394594555725759 
pi3k_activate  2.30860757132927 
 
cd28_pi3k_bind  8.35061093754634e-09 
cd28_pi3k_unbind 0.0119394273501131 
cd28_pi3k_activate 0.000123356909024155 
 
pi3k_deactivate  0.0115752585350904 
 
########################### 
##### PIP3 Regulation ##### 
########################### 
 
pi3k_pip_bind    1.12900473659142e-06 
pi3k_pip_unbind    0.00604116094672570 
pip_phos     5.28207208698330 
 
pip_pten_bind    3.64067883116676e-06 
pip_pten_unbind    0.00332555476889872 
pip_dephos        0.0139164218145688 
pip_basal_dephos   5.18125668655747e-07 
 
############################# 
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##### mTORC2 Regulation ##### 
############################# 
 
pip_mtorc2_bind    6.88554978507705e-07 
pip_mtorc2_unbind   0.00755255942626148 
 
mtorc2_activate    0.208188395579049 
mtorc2_deactivate   0.000856554171559535 
mtorc2_deactivate_akt  0.126150879675625 
 
########################### 
##### PDK1 Regulation ##### 
########################### 
 
pdk1_pip_bind    5.43808753228395e-05 
pdk1_pip_unbind    0.000323284335250397 
 
pdk1_phos     0.0669279737743035 
pdk1_dephos     0.0117743994900832 
 
############################### 
##### Akt Phosphorylation ##### 
############################### 
 
pdk1_akt_bind   5.54716991168108e-06 
pdk1_akt_unbind    0.0928764331259890 
akt_308_phos    0.0554514172147590 
 
akt_mtorc2_bind    4.99637687099694e-05 
akt_mtorc2_unbind   0.0167431982343445 
akt_473_phos    0.222582339071364 
 
#k_akt_dephos_cyt   0.0453528916501944 
k_akt_dephos_cyt_308  0.000000272678140384009 
k_akt_dephos_cyt_473  0.00552041927637364 
k_akt_dephos_nuc   5.790165734953087 
 
########################### 
##### Akt Trafficking ##### 
########################### 
 
k_akt_to_nucleus      1.36668039145470 
k_akt_to_cytoplasm   0.0374287215769002 
 
################################ 
##### FoxO1 Regulation ######### 
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################################ 
 
akt_foxo_bind  1.37603684881592e-07 
akt_foxo_unbind  0.0240779171674433 
 
foxo_phos   3.01201504185128 
foxo_dephos   0.0109508938521131 
 
foxo_to_cytoplasm   0.0286091642780725 
foxo_to_nucleus  2.93549890502400 
 
#################################### 
##### PTEN Activity Regulation ##### 
#################################### 
 
tcr_ck2_bind  7.61843551839876e-06 
tcr_ck2_unbind  0.00351838946742571 
ck2_activate  0.00760125824376341 
ck2_deactivate 0.00218552424201488 
 
ck2_pten_bind  9.67845377018764e-06 
ck2_pten_unbind  0.000166980309081892 
pten_phos   0.0299758021287826 
pten_dephos   0.000980190236401325 
 
########################### 
##### mRNA Regulation ##### 
########################### 
 
pten_transcription 0.0418815630433629 
N     20.1167897537963 
KM_dna_foxo   41724.8865217653 
 
mrna_degrade  9.55128939409137e-05 
 
##################################### 
##### PTEN Abundance Regulation ##### 
##################################### 
 
pten_translation 0.190141311816498 
pten_degrade  0.00260604371372528 
pten_degrade_phos 1.25062440770540e-08 
 
tcr_nedd4_bind  1.28506698911784e-06 
tcr_nedd4_unbind 0.00483638634028418 
nedd4_activate  0.00383244995763267 
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nedd4_deactivate 0.479390168402672 
 
nedd4_pten_bind  1.13502110339800e-07 
nedd4_pten_unbind 0.00169391220994697 
pten_ubiq   0.317447278265800 
pten_debuiq   0.000151878745716983 
pten_ubiq_degrade 0.0698346102188455 
 
end parameters 
 
begin seed species 
 
Antigen(tcr)      ag_init 
Anti_CD28(cd28)     anti_cd28_init 
TCR(antigen,pi3k,mek1,ck2,nedd4,active~N) tcr_init 
CD28(anticd28,pi3k)     tcr_init 
PIP(site3~U,site4~P,site5~P)    pip_init 
Akt(Thr308~U,Ser473~U,location~C)  akt_init 
FoxO1(Thr24~U,location~N)    foxo1_init 
PTEN(phosphotase,Cterminus~U,Lys289~N) pten_init 
mRNA_PTEN()     mrna_init 
mTORC2(active~N)     mtorc2_init 
NEDD4(active~N)     nedd4_init 
CK2(active~N)     ck2_init 
PDK1(Ser241~U)     pdk1_init 
PI3K(kinase~U)     pi3k_init 
DNA()       dna_init 
 
end seed species 
 
begin observables 
 
Molecules pten   PTEN() 
Molecules pten_mrna  mRNA_PTEN() 
Molecules akt_p308  Akt(Thr308~P!?) 
Molecules akt_p473  Akt(Ser473~P!?) 
Molecules foxo_p   FoxO1(Thr24~P!?) 
Molecules total_foxo  FoxO1() 
Molecules active_foxo  FoxO1(Thr24~U,location~N) 
Molecules total_akt  Akt() 
Molecules active_akt  Akt(Thr308~P!?,Ser473~P!?) 
Molecules active_nedd4 NEDD4(active~Y!?) 
Molecules Bound_Ag  Antigen(tcr!+) 
 
end observables 
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begin functions 
 transcription() = pten_transcription*active_foxo^N/(KM_dna_foxo^N + active_foxo^N) 
end functions 
 
begin reaction rules 
 
############################## 
##### Receptor Activation##### 
############################## 
 
#Antigen-receptor binding 
Antigen(tcr) + TCR(antigen) <-> Antigen(tcr!1).TCR(antigen!1) ag_bind,ag_unbind 
#TCR(antigen) <-> Antigen(tcr!1).TCR(antigen!1) ag_init*ag_bind,ag_unbind 
  
#Receptor activation 
#Antigen(tcr!1).TCR(antigen!1,active~N) <-> Antigen(tcr!1).TCR(antigen!1,active~Y)
 ag_rec_activate,ag_rec_deactivate 
#TCR(antigen,active~N) <-> TCR(antigen,active~Y) rec_activate,rec_deactivate 
 
#antigen deg 
Antigen(tcr) -> 0 ag_degrade 
 
#CD28-anti_CD28 binding 
CD28(anticd28) + Anti_CD28(cd28) <-> CD28(anticd28!1).Anti_CD28(cd28!1)
 cd28_bind,cd28_unbind 
#CD28(anticd28) <-> CD28(anticd28!1).Anti_CD28(cd28!1)
 anti_cd28_init*cd28_bind,cd28_unbind 
########################### 
##### PI3K Regulation ##### 
########################### 
 
#Bound receptor activates PI3K 
TCR(antigen!+,pi3k,mek1,ck2,nedd4) + PI3K(kinase~U) <-> 
TCR(antigen!+,pi3k!1,mek1,ck2,nedd4).PI3K(kinase~U!1) tcr_pi3k_bind,tcr_pi3k_unbind 
TCR(pi3k!1).PI3K(kinase~U!1) -> TCR(pi3k) + PI3K(kinase~P)  pi3k_activate 
TCR(antigen,pi3k!1).PI3K(kinase~U!1) -> TCR(antigen,pi3k) + PI3K(kinase~U)
 tcr_pi3k_unbind 
 
#Bound receptor activates PI3K 
CD28(anticd28!+,pi3k) + PI3K(kinase~U) <-> CD28(anticd28!+,pi3k!1).PI3K(kinase~U!1)
 cd28_pi3k_bind,cd28_pi3k_unbind 
CD28(pi3k!1).PI3K(kinase~U!1) -> CD28(pi3k) + PI3K(kinase~P)  cd28_pi3k_activate 
CD28(anticd28,pi3k!1).PI3K(kinase~U!1) -> CD28(anticd28,pi3k) + PI3K(kinase~U)
 cd28_pi3k_unbind 
 
 



 124  

#PI3K deactiavtes when unbound 
PI3K(kinase~P) -> PI3K(kinase~U) pi3k_deactivate  
 
########################### 
##### PIP3 Regulation ##### 
########################### 
 
#PI3K converts PIP2 to PIP3 
PI3K(kinase~P) + PIP(site3~U,site4~P,site5~P) <-> 
PI3K(kinase~P!1).PIP(site3~U!1,site4~P,site5~P) pi3k_pip_bind,pi3k_pip_unbind 
PI3K(kinase~P!1).PIP(site3~U!1,site4~P,site5~P) -> PI3K(kinase~P) + 
PIP(site3~P,site4~P,site5~P) pip_phos 
 
#PTEN converts PIP3 back to PIP2 
PIP(site3~P,site4~P,site5~P) + PTEN(phosphotase,Cterminus~U,Lys289~N) <-> 
PIP(site3~P!1,site4~P,site5~P).PTEN(phosphotase!1,Cterminus~U,Lys289~N) 
pip_pten_bind,pip_pten_unbind 
PIP(site3~P!1,site4~P,site5~P).PTEN(phosphotase!1,Cterminus~U,Lys289~N) -> 
PIP(site3~U,site4~P,site5~P) + PTEN(phosphotase,Cterminus~U,Lys289~N) pip_dephos 
 
#Basal dephos 
PIP(site3~P,site4~P,site5~P) -> PIP(site3~U,site4~P,site5~P) pip_basal_dephos 
 
################################ 
##### mTORC2 Regulation ######## 
################################ 
 
PIP(site3~P) + mTORC2(active~N) <-> PIP(site3~P!1).mTORC2(active~N!1) 
pip_mtorc2_bind,pip_mtorc2_unbind 
PIP(site3~P!1).mTORC2(active~N!1) -> PIP(site3~P) + mTORC2(active~Y)
 mtorc2_activate 
mTORC2(active~Y) -> mTORC2(active~N) mtorc2_deactivate 
 
#Akt~p308 deactivates mTORC2 
mTORC2(active~Y) + Akt(Thr308~P,Ser473~?,location~C) <-> 
mTORC2(active~Y!1).Akt(Thr308~P!1,Ser473~?,location~C)
 akt_mtorc2_bind,akt_mtorc2_unbind 
mTORC2(active~Y!1).Akt(Thr308~P!1,location~C) -> mTORC2(active~N) + 
Akt(Thr308~P,location~C) mtorc2_deactivate_akt 
 
mTORC2(active~N!1).Akt(Thr308~?!1) -> mTORC2(active~N) + Akt(Thr308~?) 
akt_mtorc2_unbind 
mTORC2(active~N!1).Akt(Ser473~?!1) -> mTORC2(active~N) + Akt(Ser473~?) 
akt_mtorc2_unbind 
 
########################### 
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##### PDK1 Regulation ##### 
########################### 
 
PDK1(Ser241~U) + PIP(site3~P,site4~P,site5~P) <-> 
PDK1(Ser241~U!1).PIP(site3~P!1,site4~P,site5~P) pdk1_pip_bind,pdk1_pip_unbind 
PDK1(Ser241~U!1).PIP(site3~P!1,site4~P,site5~P) -> PDK1(Ser241~P) + 
PIP(site3~P,site4~P,site5~P) pdk1_phos 
 
PDK1(Ser241~P) -> PDK1(Ser241~U) pdk1_dephos  
 
############################### 
##### Akt Phosphorylation ##### 
############################### 
 
#PDK1 phosphorylates Akt thr308 
PDK1(Ser241~P) + Akt(Thr308~U,location~C) <-> 
PDK1(Ser241~P!1).Akt(Thr308~U!1,location~C) pdk1_akt_bind,pdk1_akt_unbind 
PDK1(Ser241~P!1).Akt(Thr308~U!1,location~C) -> PDK1(Ser241~P) + 
Akt(Thr308~P,location~C) akt_308_phos 
 
#mTORC2 phosphorylates Akt ser473 
mTORC2(active~Y) + Akt(Ser473~U,location~C) <-> 
mTORC2(active~Y!1).Akt(Ser473~U!1,location~C) akt_mtorc2_bind,akt_mtorc2_unbind 
mTORC2(active~Y!1).Akt(Ser473~U!1,location~C) -> mTORC2(active~Y) + 
Akt(Ser473~P,location~C) akt_473_phos 
 
#Akt deactivates in cytoplasm 
Akt(Thr308~P,location~C) -> Akt(Thr308~U,location~C) k_akt_dephos_cyt_308 #Implicit 
phosphotase 
Akt(Ser473~P,location~C) -> Akt(Ser473~U,location~C) k_akt_dephos_cyt_473 #Implicit 
phosphotase 
 
#Akt is deactivated in the nucleus 
Akt(Thr308~P,Ser473~P,location~N) -> Akt(Thr308~U,Ser473~U,location~N)
 k_akt_dephos_nuc #implicit phopsphotase 
 
########################### 
##### Akt Trafficking ##### 
########################### 
 
#Akt translocates to the nucleus when active 
Akt(Thr308~P,Ser473~P,location~C) -> Akt(Thr308~P,Ser473~P,location~N) 
 k_akt_to_nucleus 
 
#Akt goes back to cytoplasm when inactive 
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Akt(Thr308~U,Ser473~U,location~N) -> Akt(Thr308~U,Ser473~U,location~C) 
 k_akt_to_cytoplasm 
 
################################ 
##### FoxO1 Regulation ######### 
################################ 
 
#Active Akt in the nucleus leads to phosphorylation of FoxO1 
Akt(Thr308~P,Ser473~P,location~N) + FoxO1(Thr24~U,location~N) <-> 
Akt(Thr308~P!1,Ser473~P,location~N).FoxO1(Thr24~U!1,location~N)
 akt_foxo_bind,akt_foxo_unbind 
Akt(Thr308~P!1,Ser473~P,location~N).FoxO1(Thr24~U!1,location~N) -> 
Akt(Thr308~P,Ser473~P,location~N) + FoxO1(Thr24~P,location~N) foxo_phos 
 
#FoxO1 is dephosphorylated in the cytoplasm 
FoxO1(Thr24~P,location~C) -> FoxO1(Thr24~U,location~C) foxo_dephos 
 
#Phosphorylated FoxO1 moves to the cytoplasm 
FoxO1(Thr24~P,location~N) -> FoxO1(Thr24~P,location~C) foxo_to_cytoplasm 
 
#FoxO1 moves back to the nucleus once dephosphorylated 
FoxO1(Thr24~U,location~C) -> FoxO1(Thr24~U,location~N) foxo_to_nucleus 
 
#################################### 
##### PTEN Activity Regulation ##### 
#################################### 
#TCR activates CK2 
#CK2 phosphorylates PTEN 
TCR(antigen!+,ck2,pi3k,mek1,nedd4) + CK2(active~N) <-> 
TCR(antigen!+,ck2!1,pi3k,mek1,nedd4).CK2(active~N!1) tcr_ck2_bind,tcr_ck2_unbind 
TCR(ck2!1).CK2(active~N!1) -> TCR(ck2) + CK2(active~Y) ck2_activate 
TCR(antigen,ck2!1).CK2(active~N!1) -> TCR(antigen,ck2) + CK2(active~N)
 tcr_ck2_unbind 
CK2(active~Y!?) -> CK2(active~N!?) ck2_deactivate 
 
CK2(active~Y) + PTEN(phosphotase,Cterminus~U,Lys289~N) <-> 
CK2(active~Y!1).PTEN(phosphotase,Cterminus~U!1,Lys289~N)
 ck2_pten_bind,ck2_pten_unbind 
CK2(active~Y!1).PTEN(phosphotase,Cterminus~U!1,Lys289~N) -> CK2(active~Y) + 
PTEN(phosphotase,Cterminus~P,Lys289~N) pten_phos 
 
CK2(active~N!1).PTEN(Cterminus~?!1) -> CK2(active~N) + PTEN(Cterminus~?)
 ck2_pten_unbind 
 
PTEN(phosphotase,Cterminus~P,Lys289~?) -> PTEN(phosphotase,Cterminus~U,Lys289~?)
 pten_dephos 
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##################################### 
##### mRNA Regulation ##### 
##################################### 
 
#Transcription 
DNA() -> DNA() + mRNA_PTEN() transcription() 
#FoxO1(Thr24~U,location~N) -> FoxO1(Thr24~U,location~N) + mRNA_PTEN(stable~Y)
 pten_transcription 
 
#mRNA degradation 
mRNA_PTEN() -> 0 mrna_degrade 
 
##################################### 
##### PTEN Abundance Regulation ##### 
##################################### 
 
#Translation 
mRNA_PTEN() -> mRNA_PTEN() + PTEN(phosphotase,Cterminus~U,Lys289~N)
 pten_translation 
 
#PTEN degradation 
PTEN(Cterminus~U) -> 0 pten_degrade  DeleteMolecules 
PTEN(Cterminus~P) -> 0 pten_degrade_phos DeleteMolecules 
 
#TCR activates NEDD4 
#NEDD 4 ubiquitinates PTEN (K45) 
TCR(antigen!+,nedd4,pi3k,mek1,ck2) + NEDD4(active~N) <-> 
TCR(antigen!+,nedd4!1,pi3k,mek1,ck2).NEDD4(active~N!1)
 tcr_nedd4_bind,tcr_nedd4_unbind 
TCR(nedd4!1).NEDD4(active~N!1) -> TCR(nedd4) + NEDD4(active~Y) nedd4_activate 
TCR(antigen,nedd4!1).NEDD4(active~N!1) -> TCR(antigen,nedd4) + NEDD4(active~N)
 tcr_nedd4_unbind 
NEDD4(active~Y!?) -> NEDD4(active~N!?) ck2_deactivate 
 
NEDD4(active~Y) + PTEN(phosphotase,Cterminus~U,Lys289~N) <-> 
NEDD4(active~Y!1).PTEN(phosphotase,Cterminus~U,Lys289~N!1)
 nedd4_pten_bind,nedd4_pten_unbind 
NEDD4(active~Y!1).PTEN(phosphotase,Cterminus~U,Lys289~N!1) -> NEDD4(active~Y) + 
PTEN(phosphotase,Cterminus~U,Lys289~U) pten_ubiq 
PTEN(Lys289~U!?) -> 0 pten_ubiq_degrade DeleteMolecules 
NEDD4(active~?!1).PTEN(Cterminus~?!1) -> NEDD4(active~?).PTEN(Cterminus~?)
 nedd4_pten_unbind 
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end reaction rules 
end model 
 
generate_network({overwrite=>1}) 
writeMexfile() 
writeMfile() 
 
#Equil 
setConcentration("Antigen(tcr)",0) 
setConcentration("Anti_CD28(cd28)",0) 
simulate({method=>"ode",t_end=>1e7,n_steps=>250}) 
 
#Sim 
setConcentration("Anti_CD28(cd28)",6423600) 
##setParameter("ag_init",6423600) 
setConcentration("Antigen(tcr)",1605900) #1605900, 6423600 
simulate_ode({t_start=>0,t_end=>10*60*60,n_steps=>1000,atol=>1e-8,rtol=>1e-8}); 
 
 
######################## 
##### Bifurcations ##### 
######################## 
 
#setConcentration("Anti_CD28(cd28)","anti_cd28_init") 
#setConcentration("Antigen(tcr)","ag_init") 
#bifurcate({parameter=>"ag_init",par_min=>1e6,par_max=>1e7,n_scan_pts=>100,log_scale=>
0,method=>"ode",t_end=>1e7,n_steps=>1000}) 
 
################## 
##### Pulses ##### 
################## 
#setConcentration("Anti_CD28(cd28)","anti_cd28_init") 
#setConcentration("Antigen(tcr)",6423600);  
#simulate_ode({t_start=>0,t_end=>50000,n_steps=>100,atol=>1e-8,rtol=>1e-8}); 
 
#setConcentration("Antigen(tcr)",0);  
#setParameter("ag_degrade",1e8); 
#simulate_ode({continue=>1,t_start=>50000,t_end=>1000000,n_steps=>1e4,atol=>1e-
8,rtol=>1e-8}); 
 
#setParameter("ag_degrade",0); 
#setConcentration("Antigen(tcr)",1e2);  
#simulate_ode({continue=>1,t_start=>35000,t_end=>50000,n_steps=>100,atol=>1e-8,rtol=>1e-
8}); 
 
#setConcentration("Antigen(tcr)",0);  
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#setParameter("ag_degrade",1e8); 
#simulate_ode({continue=>1,t_start=>50000,t_end=>150000,n_steps=>100,atol=>1e-
8,rtol=>1e-8}); 
 
#setParameter("ag_degrade",0); 
#setConcentration("Antigen(tcr)",1e2);  
#simulate_ode({continue=>1,t_start=>70000,t_end=>85000,n_steps=>1000,atol=>1e-
8,rtol=>1e-8}); 
 
#setConcentration("Antigen(tcr)",0);  
#setParameter("ag_degrade",1e8); 
#simulate_ode({continue=>1,t_start=>85000,t_end=>150000,n_steps=>100,atol=>1e-
8,rtol=>1e-8}); 
 
#################### 
##### Duration ##### 
#################### 
#setConcentration("Anti_CD28(cd28)","anti_cd28_init") 
#setConcentration("Antigen(tcr)",1e1);  
#simulate_ode({t_start=>0,t_end=>40000,n_steps=>1000,atol=>1e-8,rtol=>1e-8}); 
# 
#setConcentration("Antigen(tcr)",0);  
#setParameter("ag_degrade",1e8); 
#simulate_ode({continue=>1,t_start=>40000,t_end=>200000,n_steps=>1000,atol=>1e-
8,rtol=>1e-8}); 
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APPENDIX C  IL-17 RULE BASED MODEL 

begin model 
 
begin parameters 
 
#Initial concentrations of species 
fraction = 1/10 
 
il17_0   9.296e7*fraction 
il17r_0  50000*fraction  
act_0  50000*fraction   
traf6_0  100000*fraction  
tak1_0  50000*fraction  
ikk_0  50000*fraction  
#ikb_init 50000*fraction  
nfkb_init 50000*fraction  
anapc5_init 50000*fraction 
ub_init  100000*fraction 
dna_0  2 
 
#rate constants 
 
########################################## 
#Receptor Activation 
########################################## 
 lig_bind   1e-8  
 lig_unbind   1e-2 
  
 lig_degradation 0  
   
######################################### 
#Act1 activity 
######################################### 
 
 act_bind   1e-6 
 act_unbind   1e-2 
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 act_bind_slow  2e-8 
  
######################################## 
#TRAF6 regulation 
####################################### 
  
 traf_bind   4e-7  
 traf_unbind  1e-2 
  
 traf6_ubiq   0.03    
 ub_olig   2.5e-8 
 ub_unbind_1  1e-3 
 ub_unbind_2  5e-3 
  
####################################### 
#TAK1/TAB2_3 regulation 
####################################### 
  
 tab_bind   8e-7 
 tak_phos   0.05 
 tak_dephos   1e-2 
  
  
############################################# 
#IKK Regulation 
############################################# 
  
 ikk_bind   4e-6 
   
 ikk_phos_act  5 
 ikk_dephos_act  5e-3 
 ikk_phos_inhib  1e-3 
 ikk_dephos_inhib 7e-2 
  
############################################# 
#IkB Regulation 
############################################# 
 
 ikb_to_nuc   5e-4 
 ikb_to_cyt   1e-3 
  
 ikb_bind   5e-6 
 ikb_unbind   1e-2 
  
 ikb_phos   1 
 #ikb_dephos  1e-4 
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############################################# 
#NFkB Regulation 
############################################# 
  
 nfkb_act    1e-1 
 nfkb_nuc_import  3e-1 
 nfkb_nuc_export_noikb 1e-4 
 
########################################### 
#Transcription/Translation control 
########################################### 
 
 a20_transcription 0.11 
 a20_translation 2.5e-2 
  
 ikb_transcription 0.2 
 ikb_translation 0.01 
  
 KM_dna_a20   16000*fraction 
 KM_dna_ikb   19000*fraction 
 N_a20    10 
 N_ikb    10 
  
  
 a20_degrade  7.5e-4 
 ikb_degrade  1e-5 
  
 a20_mrna_degrade 1e-3 
 ikb_mrna_degrade 1e-3 
  
##################################################### 
#A20 actions as negative regulator 
##################################################### 
 
rec_anapc5_bind  1e-5 
rec_anapc5_unbind 1e-3 
a20_anapc5_bind  1e-5 
a20_anapc5_unbind 1e-3 
 
a20_ub_bind   1e-2 
a20_ub_unbind  1e-3 
 
a20_ub_bind_slow 1e-7 
 
 a20_deubiq_1  25 #Traf 
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 a20_deubiq_2  10 #Tak 
 a20_deubiq_3  10 #IKK 
 a20_deubiq_4  10 #Ub-Ub 
   
###################################################### 
#IkB actions as negative regulator 
###################################################### 
 
 ikb_nfkb_bind   1e-3 
 ikb_nfkb_unbind  0 
 
 nfkb_nuc_export_ikb 5e-1 
 
  
end parameters 
 
begin molecule types 
IL17a(dimer,il17r)        
IL17Ra(il17,dimer,SEFIR,cbad) 
IL17Rc(il17,dimer,SEFIR)     
Act1(SEFIRb,tb2)        
TRAF6(act1,K124)        
TAK1(tab,Thr178_184~U~P)      
TAB2_3(tak1,ub)        
IKK(nemo,ikb,S177_181~U~P,HLH~U~P)    
Ub(ub,traf6,ile44,K63,a20) 
IkB(nfkb,ikk,S32_36~U~P,location~C~N)   
NFkB(ikb,location~C~N)       
A20(anapc5,ub)         
AnapC5(cbadb,a20) 
DNA()        
IkBmRNA()         
A20mRNA()          
 
end molecule types 
 
 
begin seed species 
 
#IL17a(dimer!1,il17r).IL17a(dimer!1,il17r)     il17_0    
IL17Ra(il17,dimer!1,SEFIR,cbad).IL17Rc(il17,dimer!1,SEFIR)  il17r_0   
Act1(SEFIRb,tb2)        act_0   
TRAF6(act1,K124)        traf6_0 
TAK1(tab!1,Thr178_184~U).TAB2_3(tak1!1,ub)     tak1_0   
IKK(nemo,ikb,S177_181~U,HLH~U)     ikk_0 
NFkB(ikb!1,location~C).IkB(nfkb!1,ikk,S32_36~U,location~C)  nfkb_init 
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AnapC5(cbadb,a20)        anapc5_init 
Ub(ub,traf6,ile44,K63,a20)       ub_init 
DNA()          dna_0 
 
end  seed species 
 
begin observables 
 
Molecules  A20_mrna   A20mRNA() 
Molecules  A20_protein   A20() 
Molecules  IkB_mrna   IkBmRNA() 
Molecules IkB_total  IkB() 
Molecules  TAK1_p  TAK1(Thr178_184~P) 
Molecules  NFkB_nucleus  NFkB(location~N) 
Molecules  NFkB_cytoplasm  NFkB(location~C) 
Molecules active_nfkb  NFkB(ikb,location~N) 
 
end observables 
 
begin functions 
 transcription_a20() = a20_transcription*active_nfkb^N_a20/(KM_dna_a20^N_a20 + 
active_nfkb^N_a20)+0.0001 
 transcription_ikb() = ikb_transcription*active_nfkb^N_ikb/(KM_dna_ikb^N_ikb + 
active_nfkb^N_ikb) 
end functions 
 
begin reaction rules 
 
########################################## 
#Receptor Activation 
########################################## 
 
#Homodimer ligand binds binds both monomers in one step 
#Ligand_receptor_binding:\ 
#IL17a(dimer!1,il17r).IL17a(dimer!1,il17r) + IL17Ra(il17,dimer!2).IL17Rc(il17,dimer!2) <->\ 
#IL17a(dimer!1,il17r!3).IL17a(dimer!1,il17r!4).IL17Ra(il17!3,dimer!2).IL17Rc(il17!4,dimer!2) 
lig_bind,lig_unbind 
 
#More efficient ligand binding for NFsim 
IL17Ra(il17,dimer!2).IL17Rc(il17,dimer!2) ->\ 
 IL17a(dimer!1,il17r!3).IL17a(dimer!1,il17r!4).IL17Ra(il17!3,dimer!2).IL17Rc(il17!4,dimer!2) 
lig_bind*il17_0 
 
IL17a(dimer!1,il17r!3).IL17a(dimer!1,il17r!4).IL17Ra(il17!3,dimer!2).IL17Rc(il17!4,dimer!2) -
>\ 



 135  

IL17a(dimer!1,il17r).IL17a(dimer!1,il17r) + IL17Ra(il17,dimer!2).IL17Rc(il17,dimer!2)
 lig_unbind 
 
IL17a(dimer!1,il17r).IL17a(dimer!1,il17r) -> 0 10 DeleteMolecules 
 
 
#Ligand removal 
IL17a(dimer!1,il17r!2).IL17a(dimer!1,il17r!3).IL17Ra(il17!2,dimer!4).IL17Rc(il17!3,dimer!4) -
>\ 
IL17Ra(il17,dimer!2).IL17Rc(il17,dimer!2) lig_degradation DeleteMolecules 
 
######################################### 
#Adatpter binding 
######################################### 
 
#Act1 binds both Ra and Rc in one step 
IL17Ra(il17!+,SEFIR) + Act1(SEFIRb) <->\ 
IL17Ra(il17!+,SEFIR!1).Act1(SEFIRb!1) act_bind,act_unbind  
 
#Act1 unbind with no ligand 
IL17Ra(il17,SEFIR!1).Act1(SEFIRb!1) -> IL17Ra(il17,SEFIR) + Act1(SEFIRb) act_unbind  
 
#Allow some binding without ligand 
IL17Ra(il17,SEFIR) + Act1(SEFIRb,tb2) -> IL17Ra(il17,SEFIR!1).Act1(SEFIRb!1,tb2) 
act_bind_slow 
 
####################################### 
#TRAF6 activity 
####################################### 
 
#Recteptor-Act1 binds TRAF6 
Act1(SEFIRb!+,tb2) + TRAF6(act1) <->\ 
Act1(SEFIRb!+,tb2!1).TRAF6(act1!1) traf_bind,traf_unbind 
 
#TRAF6 unbinds free Act1 
#Should rate be faster? 
Act1(SEFIRb,tb2!1).TRAF6(act1!1) -> Act1(SEFIRb,tb2) + TRAF6(act1) traf_unbind 
 
#Act1 Ubiquitnates bound TRAF6  
Act1(SEFIRb!+,tb2!1).TRAF6(act1!1,K124) + Ub(ub,traf6,ile44,K63,a20) ->\ 
 Act1(SEFIRb!+,tb2!1).TRAF6(act1!1,K124!2).Ub(ub,traf6!2,ile44,K63,a20) traf6_ubiq 
 
#Include this rule or not? Ub disassociating from TRAF6 
#Enforce (possibly fix) very slow rate? 
TRAF6(K124!1).Ub(traf6!1) -> TRAF6(K124) + Ub(traf6) ub_unbind_1 
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Act1().TRAF6() + Ub(traf6!+,K63) + Ub(ub,ile44,K63,a20) ->\ 
Act1().TRAF6() + Ub(traf6!+,K63!1).Ub(ub!1,ile44,K63,a20) ub_olig 
 
Act1().TRAF6() + TRAF6().Ub(ub!+,K63) + Ub(ub,ile44,K63,a20) ->\ 
Act1().TRAF6() + TRAF6().Ub(ub!+,K63!1).Ub(ub!1,ile44,K63,a20) ub_olig 
 
Ub(K63!1).Ub(ub!1) -> Ub(K63) + Ub(ub) ub_unbind_2 
 
####################################### 
#TAK1/TAB2_3 Regulation 
###################################### 
 
#Does not enforce chain be bound to traf/act1 
#Does enforce more than one ubiquitin monomer 
#Will result in some free floating small chains to bind TAB2_3/TAK 
Ub(ub!+,ile44,a20) + TAB2_3(tak1!1,ub).TAK1(tab!1,Thr178_184~U) ->\ 
Ub(ub!+,ile44!2,a20).TAB2_3(tak1!1,ub!2).TAK1(tab!1,Thr178_184~U) tab_bind 
 
#Need unbind rule, make rate slow 
Ub(ile44!2).TAB2_3(tak1!1,ub!2).TAK1(tab!1) -> Ub(ile44) + 
TAB2_3(tak1!1,ub).TAK1(tab!1) ub_unbind_1 
  
#TAK1 phosphorylates while bound to TRAF6~U, stays in complex 
TAK1(tab!1,Thr178_184~U).TAB2_3(tak1!1,ub!+) -> 
TAK1(tab!1,Thr178_184~P).TAB2_3(tak1!1,ub!+) tak_phos 
 
#Tak1 can dephosphorylate regardless of binding state 
TAK1(Thr178_184~P) -> TAK1(Thr178_184~U) tak_dephos 
 
############################################# 
#IKK Regulation 
############################################# 
 
#Same context as TAB2_3 binding rules 
Ub(ub!+,ile44,a20) + IKK(nemo,ikb,S177_181~U) ->\ 
Ub(ub!+,ile44!1,a20).IKK(nemo!1,ikb,S177_181~U) ikk_bind 
 
#Need unbind rule, make rate slow 
Ub(ile44!1).IKK(nemo!1) -> Ub(ile44) + IKK(nemo) ub_unbind_1 
 
#Phosphorylation of IKK by TAK1 
#Both need to be bound to Ubiquitin chain, and in the same complex 
#IKK must be unphosphorylated on inhibitory site 
TAB2_3(tak1!1,ub!+).TAK1(tab!1,Thr178_184~P).IKK(nemo!+,ikb,S177_181~U,HLH~U) ->\ 
TAB2_3(tak1!1,ub!+).TAK1(tab!1,Thr178_184~P) + IKK(nemo,ikb,S177_181~P,HLH~U)
 ikk_phos_act 
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#Inhibitory phosphorylation rules 
#Only phosphorylated when active site is already phosphoyrlated 
IKK(S177_181~P,HLH~U) -> IKK(S177_181~P,HLH~P) ikk_phos_inhib 
 
#Basal IKK dephosphorylation 
#Dephosphorylate both regardless of context 
#Allows three or four state model but doesn't enforce direction 
# (U,U) <-> (P,U) <-> (P,P) -> (U,P) 
IKK(S177_181~P) -> IKK(S177_181~U) ikk_dephos_act 
IKK(HLH~P) -> IKK(HLH~U) ikk_dephos_inhib 
 
 
############################################# 
#IkB Regulation 
############################################# 
 
#IKK~P binds cytoplasmic IkB bound to nfkb or not 
IkB(ikk,S32_36~U,location~C) + IKK(ikb,S177_181~P,HLH~U) <-> 
IkB(ikk!1,S32_36~U,location~C).IKK(ikb!1,S177_181~P,HLH~U) ikb_bind,ikb_unbind 
 
#IKK and IkB disassociate regardles of any other context, fixes complex accumulation due to 
phos changes on both 
IkB(ikk!1).IKK(ikb!1) -> IkB(ikk) + IKK(ikb) ikb_unbind 
 
#Phosphorylation of IkB bound to IKK 
IkB(ikk!1,S32_36~U).IKK(ikb!1,S177_181~P,HLH~U) -> IkB(ikk,S32_36~P) + 
IKK(ikb,S177_181~P,HLH~U) ikb_phos 
 
#Free IkB can traffic to the nucleus 
IkB(nfkb,ikk,S32_36~U,location~C) <-> IkB(nfkb,ikk,S32_36~U,location~N)
 ikb_to_nuc,ikb_to_cyt 
 
############################################# 
#IkB Regulation 
############################################# 
 
#Phosphorylated IkB deleted 
IkB(S32_36~P) -> 0 nfkb_act DeleteMolecules 
 
#Free NFkB transported to nucleus 
NFkB(ikb,location~C) <-> NFkB(ikb,location~N) nfkb_nuc_import,nfkb_nuc_export_noikb 
 
########################################### 
#Transcription/Translation control 
########################################### 
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DNA() -> DNA() + IkBmRNA() transcription_ikb() 
DNA() -> DNA() + A20mRNA() transcription_a20() 
 
 
#translation 
A20mRNA() ->  A20mRNA() + A20(anapc5,ub)  a20_translation 
IkBmRNA() -> IkBmRNA() + IkB(nfkb,ikk,S32_36~U,location~C)  ikb_translation 
 
#protein degradation 
A20(anapc5,ub) -> 0 a20_degrade DeleteMolecules 
IkB(nfkb,ikk) -> 0 ikb_degrade DeleteMolecules 
 
#mRNA degradation 
A20mRNA() -> 0 a20_mrna_degrade 
IkBmRNA() -> 0 ikb_mrna_degrade 
 
##################################################### 
# AnacpC7 binding the receptor 
##################################################### 
 
IL17Ra(SEFIR!+,cbad) + AnapC5(cbadb,a20) <-> 
IL17Ra(SEFIR!+,cbad!1).AnapC5(cbadb!1,a20) rec_anapc5_bind, rec_anapc5_unbind 
IL17Ra(SEFIR,cbad!1).AnapC5(cbadb!1,a20) -> IL17Ra(SEFIR,cbad) + AnapC5(cbadb,a20)
 rec_anapc5_unbind 
 
A20(anapc5,ub) + AnapC5(cbadb!+,a20) <-> A20(anapc5!1,ub).AnapC5(cbadb!+,a20!1) 
a20_anapc5_bind,a20_anapc5_unbind 
A20(anapc5!1,ub).AnapC5(cbadb,a20!1) -> A20(anapc5,ub) + AnapC5(cbadb,a20)
 a20_anapc5_unbind 
 
##################################################### 
#A20 actions as negative regulator 
##################################################### 
 
#A20 binds Ub, transfered from receptor 
#Only binds Ub in chains or bound to other proteins, avoids Ub monomers 
AnapC5(a20!1).A20(anapc5!1,ub) + Ub(a20,ile44!+) -> AnapC5(a20) + 
A20(anapc5,ub!1).Ub(a20!1,ile44!+)  a20_ub_bind 
AnapC5(a20!1).A20(anapc5!1,ub) + Ub(a20,traf6!+) -> AnapC5(a20) + 
A20(anapc5,ub!1).Ub(a20!1,traf6!+)  a20_ub_bind 
AnapC5(a20!1).A20(anapc5!1,ub) + Ub(a20,ub!+) -> AnapC5(a20) + 
A20(anapc5,ub!1).Ub(a20!1,ub!+)  a20_ub_bind 
A20(ub!1).Ub(a20!1) -> A20(ub) + Ub(a20) a20_ub_unbind 
 
A20(anapc5,ub) + Ub(a20,ile44!+) -> A20(anapc5,ub!1).Ub(a20!1,ile44!+)  a20_ub_bind_slow 
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A20(anapc5,ub) + Ub(a20,ub!+) -> A20(anapc5,ub!1).Ub(a20!1,ub!+)  a20_ub_bind_slow 
 
#A20 knocking enzymes off Ub 
#May not be a perfect mechanistic representation, but necessary without having A20 degrade Ub 
(and corresponding Ub production) 
TRAF6(K124!1).Ub(traf6!1,a20!2).A20(ub!2) -> TRAF6(K124) + Ub(traf6,a20) + A20(ub)
 a20_deubiq_1 
TAB2_3(tak1!1,ub!2).TAK1(tab!1).Ub(ile44!2,a20!3).A20(ub!3) -> 
TAB2_3(tak1!1,ub).TAK1(tab!1) + Ub(ile44,a20) + A20(ub) a20_deubiq_2 
IKK(nemo!1).Ub(ile44!1,a20!2).A20(ub!2) -> IKK(nemo) + Ub(ile44,a20) + A20(ub) 
a20_deubiq_3 
 
#A20 breaking Ub chains 
Ub(K63!1,a20!2).Ub(ub!1,a20).A20(ub!2) -> Ub(K63,a20) + Ub(ub,a20) + A20(ub) 
a20_deubiq_4 
Ub(K63!1,a20).Ub(ub!1,a20!2).A20(ub!2) -> Ub(K63,a20) + Ub(ub,a20) + A20(ub) 
a20_deubiq_4 
 
###################################################### 
#IkB actions as negative regulator 
###################################################### 
 
#IkB binds free NFkB in cytoplasm 
NFkB(ikb,location~C) + IkB(nfkb,ikk,S32_36~U,location~C) <-> 
NFkB(ikb!1,location~C).IkB(nfkb!1,ikk,S32_36~U,location~C) \ 
ikb_nfkb_bind,ikb_nfkb_unbind 
 
#IkB binds free NFkB in nucleus 
NFkB(ikb,location~N) + IkB(nfkb,ikk,S32_36~U,location~N) <-> 
NFkB(ikb!1,location~N).IkB(nfkb!1,ikk,S32_36~U,location~N) \ 
ikb_nfkb_bind,ikb_nfkb_unbind 
 
#IkB/NFkB complex translocates from nucleus to cytoplasm 
NFkB(ikb!1,location~N).IkB(nfkb!1,ikk,S32_36~U,location~N) -> 
NFkB(ikb!1,location~C).IkB(nfkb!1,ikk,S32_36~U,location~C) nfkb_nuc_export_ikb 
 
end reaction rules 
end model 
 
#ACTIONS 
 
visualize({type=>"contactmap"}) 
 
#equillibrate model 
#setConcentration("IL17a(dimer!1,il17r).IL17a(dimer!1,il17r)",0); 
setParameter("il17_0",0); 
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simulate_nf({suffix=>"equil",t_start=>0,t_end=>4e5,n_steps=>500,gml=>1e7});  
##,param=>"-dump [0:100:1e4]-
>/home/bobby/Dropbox/MATLAB/IL17/NFanalyzeDump/equil/" 
 
### begin simulation 
##setConcentration("IL17a(dimer!1,il17r).IL17a(dimer!1,il17r)","il17_0");  
setParameter("il17_0",9.296e6); 
##simulate_nf({suffix=>"first",t_start=>0,t_end=>21600,n_steps=>144,gml=>5e8,param=>"-
dump [0:100:21600]->/home/bobby/Dropbox/MATLAB/IL17/NFanalyzeDump/sim/"}); 
simulate_nf({suffix=>"first",t_start=>0,t_end=>21600,n_steps=>144,gml=>5e8}); 
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