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Abstract

Background: Interactions between the epigenome and structural genomic variation are potentially bi-directional.
In one direction, structural variants may cause epigenomic changes in cis. In the other direction, specific local
epigenomic states such as DNA hypomethylation associate with local genomic instability.

Methods: To study these interactions, we have developed several tools and exposed them to the scientific
community using the Software-as-a-Service model via the Genboree Workbench. One key tool is Breakout, an
algorithm for fast and accurate detection of structural variants from mate pair sequencing data.

Results: By applying Breakout and other Genboree Workbench tools we map breakpoints in breast and prostate
cancer cell lines and tumors, discriminate between polymorphic breakpoints of germline origin and those of
somatic origin, and analyze both types of breakpoints in the context of the Human Epigenome Atlas, ENCODE
databases, and other sources of epigenomic profiles. We confirm previous findings that genomic instability in
human germline associates with hypomethylation of DNA, binding sites of Suz12, a key member of the PRC2
Polycomb complex, and with PRC2-associated histone marks H3K27me3 and H3K9me3. Breakpoints in germline
and in breast cancer associate with distal regulatory of active gene transcription. Breast cancer cell lines and
tumors show distinct patterns of structural mutability depending on their ER, PR, or HER2 status.

Conclusions: The patterns of association that we detected suggest that cell-type specific epigenomes may
determine cell-type specific patterns of selective structural mutability of the genome.

Background
Historically, the first link ever discovered between chroma-
tin structure and epigenetics was due to a structural geno-
mic variant - a breakpoint induced by a chromosomal
inversion on the × chromosome in Drosophila [1]. This
variant explained position-effect variegation of the Droso-
phila eye color by stochastic spreading of heterochromation

across an inversion-induced breakpoint and stochastic
silencing of the Drosophila eye color gene [1]. We now also
know that interactions between the genome and the epi-
genome may be bi-directional, one direction being exempli-
fied by position-effect variegation of Drosophila’s eye color,
and the other direction suggested by our recent discovery
that hypomethylation of genomic DNA in human germline
associates with local genomic instability [2].
The opportunity to gain insights into epigenome-

genome interactions is fast emerging. Structural genomic
variants, including inversions, duplications, deletions, and
translocations are being mapped on large scale in human
germline and in cancer using mate-pair sequencing. A
number of informatics challenges are yet to be addressed
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before this sequencing data becomes useful for analysis in
the context of the epigenome. The detection algorithms
must achieve sufficient accuracy to enable genome-scale
correlation of chromosomal breakpoints with epigenomic
features even without costly validation experiments. The
structural aberrations should be interpretable in the context
of rapidly growing public databases of transcription factor
binding sites and epigenomic profiles. One practical chal-
lenge is the deployment of multiple analysis tools and data-
bases with reproducible and transparent records of analyses.
To address these challenges we developed a structural

variant analysis toolset, the Structural Variants Analysis
Toolset, and deployed it using the Genboree Workbench,
a collaborative environment for integrative analysis of
genomic and epigenomic data. A key tool within the tool-
set is Breakout, a parallel algorithm for breakpoint calling
from mate-pair reads that, when compared to state-of-the-
art tools, achieves superior sensitivity and specificity.
Breakout retains sensitivity even for low read coverage and
is therefore suitable for profiling samples where only a
small fraction of cells carry specific aberrations such as
tumor samples with low tumor cell purity. Additional
tools within the toolset enable integrative analysis using
structural variation databases, such as the one generated
by the 1000 Genomes Project [3-5], and other genomic
and epigenomic databases required for integrative inter-
pretation of breakpoint data, including ENCODE [6,7] and
the Human Epigenome Atlas produced by the NIH Epige-
nomic Roadmap Project [8].
We herein apply the Genboree Workbench tools to

address a number of questions regarding the interactions
of the epigenome with structural variation of the genome.
We examine those interactions in both directions. In one
direction, we identify structural genomic variants in cancer
and their association with epigenomic changes in cis. In
the other direction, we validate and then extend our recent
discovery that hypomethylation of genomic DNA in
human germline associates with local genomic instability
[2]. We validate the association at high resolution, using
mate-pair sequencing data, by performing an extensive
meta-analysis using ChIP-Seq data and epigenomic marks
from ENCODE, Cistrome and other projects. Finally, we
expand our analysis beyond germline to genomic instabil-
ity in breast cancer and discover cell-type specific associa-
tions between the epigenome and selective structural
mutability.

Methods
Breakpoint calling using Breakout
To discover breakpoints in tumor samples using long
insert (4-6 Kbp) mate pairs, available widely on platforms
such as SOLiD, Illumina, or 454, we developed Breakout, a
novel chromosomal breakpoints detection algorithm and
software package. To harness the parallelism of multicore

processors, Breakout decomposes analysis steps into
balanced segments that can be processed independently.
The input consists of SAM/BAM [9] files containing the
uniquely mapped mate pairs, as produced by mapping
programs such as BFAST [10], bwa [11,12], or Pash [13].
Breakout calculates the distribution of insert sizes for all
mate pairs with both ends mapped on the same chromo-
some in expected strand orientation. The consistent mate
pair range Imin to Imax is calculated to capture the 0.5-99.5
percentile range of the distribution. A user can override
these bounds and select a custom range instead.
Breakout splits mappings of forward and reverse reads

into balanced groups. For each read group, it hashes for-
ward read mappings, and then streams over the reverse
read mappings. It separates the mate pairs into two
classes: consistent mate pairs, defined as those with read
mappings on the same chromosome, with the expected
relative strand orientation, and within the insert size
range (Imin, Imax), and inconsistent mate pairs.
The inconsistent mate pairs are then examined to

identify those arising from the same physical breakpoint,
by clustering them based on the proximity of their end-
reads. To take advantage of the parallelism inherent in
modern CPUs, Breakout applies a grid decomposition
iterative approach to mate pair clustering, presented in
Figure 1. First, it splits mate pairs by the pair of chro-
mosomes they connect (Figure 1A). For both inter- and
intra-chromosomal inconsistent mate pairs, Breakout
considers a chromosome-tiling fixed size sliding window
w, with w exceeding the insert size Imax. Mate pairs are
sorted in increasing order of the genomic window index
and are clustered using a greedy heuristic (Figure 1B). A
hierarchical clustering step processes mate pairs in hot-
spots of rearrangement and further refines the detected
breakpoints (Figure 1C). Breakout accounts for clonal
copies by keeping only one representative mate pair for
each set of identical copies. To account for sequencing
bias, Breakout requires that within each cluster read
ends be at least 50 bp apart.
Integrating breakpoint information from multiple sam-

ples in the context of known structural polymorphisms
and other genomic information.
When mapping breakpoints in cancer cells it is of

interest to identify the breakpoints that are likely of
germline origin by comparing against the breakpoints
detected using the mate-pairs from the 1000 Genomes
project and other databases of structural polymorph-
isms. Genboree Workbench enables such integration via
a collection of tools.
The Collect Insert Size tool quantifies the distribution

of the mate pair insert size, and suggests to the user a
range for lower and upper insert size bounds corre-
sponding to the 0.5-99.5 percentiles of the cumulative
insert size distribution.
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The Intersect SVs tool performs elementary set opera-
tions of intersection and difference on Breakout outputs.
Overlapping breakpoints are considered identical for the
purpose of these set operations and are defined as follows.
Let breakpoint B1 have the coordinates chrA:[b1,e1]-chrB
[b2,e2] and the breakpoint B2 have the coordinates chrA:

[b1’,e1’]-chrB:[b2’,e2’]. Let Imax be the maximum insert size
for the two experiments. Breakpoints B1 and B2 overlap if
min(|b1-b1’|,|e1-e1’|,|b1-e1’|,|e1-b1’|) <=Imax and min(|b2-
b2’|,|e2-e2’|,|b2-e2’|,|e2-b2’|) <=Imax.
The Report Multiple SVs tool calculates overlaps

among breakpoint sets from multiple samples or between
breakpoints and or other genomic features. For each input
set, the tool reports at breakpoint level overlaps with
breakpoints from other input sets, with RefSeq genes, and
even with custom genomic features uploaded by a user.
This is useful for distinguishing polymorphic germline
breakpoints from breakpoints detected in cancer genomes.
Whereas some tumor samples are sequenced in parallel
with normal controls, many patient samples and most cell
lines have no available germline reference. We computed
breakpoints based on long insert mate pairs datasets from
the 1000 Genomes project database [4], and by running
the Report Multiple SVs tool we could identify overlap-
ping breakpoints and thus separate the breakpoints
detected in cancer samples into two groups - the overlap-
ping ones that are likely of germline origin and the non-
overlapping ones that are putatively of somatic origin.
Integrative analysis of epigenomic features and breakpoints
The amount of epigenomic data that is becoming publicly
available is rapidly growing [14-18], making it possible to
explore epigenomic correlates of chromosomal aberrations
on a large scale. One specific epigenomic data set is the
Human Epigenome Atlas (http://www.epigenomeatlas.
org), generated by the NIH Epigenomic Roadmap
Initiative.
To enable a basic exploration of the epigenomic corre-

lates of breakpoints, we developed the Epigenomic
Enrichment tool, which determines enrichment of epige-
nomic features in the vicinity of breakpoints. In some use
cases, the enrichment may suggest that the epigenomic
features cause genomic instability. The inputs are struc-
tural variation tracks and the tracks containing discrete
epigenomic features such as histone modification peaks,
areas of low/intermediate/high methylation. Enrichment
values are calculated separately for each class of variant:
deletions, insertions, inversions, and translocations. In
the first step of the algorithm, epigenomic features within
a user-defined window (50,000 bp default) surrounding
the breakpoints are identified. Next, a permutation test
determines the number of features expected to occur by
chance around breakpoints and reports the average
enrichment and the associated p-value.
Integration of the tools within the Genboree Workbench
The tools described in the previous section are available
online within the Genboree Workbench (Figure 2). Gen-
boree provides web-based services for groups of research-
ers to share, visualize, and analyze genomic annotations
and raw data files. The Workbench is implemented using
Genboree REST APIs [19]which are used to retrieve

Figure 1 Breakout iterative grid clustering strategy. Breakout
employs iterative grid clustering of mate pairs in three steps: (A)
Identifies read pairs mapped on the same pair of chromosomes. (B)
For each chromosome pair, it performs coarse-level greedy
clustering. (C) It refines mate pair clusters. The example shows
detection of a breakpoint between chromosomes 2 and 3.
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appropriate tool configuration dialogs, transfer data, and
submit configured tool jobs. The Genboree API server
queues a job for execution on a compute cluster; following
execution, a notification email is sent to the researcher
containing success (or failure) information, a summary of
key results, and links to any additional information and
visualizations. The raw result files and visualization images
are available for download from the Workbench itself in
the “Files” area of the selected output database. Users can
configure and submit tools directly via the API, enabling a
scripted interaction or integration into local analysis
pipelines.
The Genboree Workbench was designed around a core

of robust principles. Tools are exposed to users via a uni-
form graphical interface: the user is presented with a data
tree, a data object details panel, an input panel, and an
output panel (Figure 2). Tools are available in the cascad-
ing menu at the top of the page. The data tree displays
the natural hierarchy of object within Genboree: user
groups have one or more databases for holding the data

and within a database are several types of entities–includ-
ing data files such as FASTA sequence files, SAM/BAM
files, Excel spreadsheets with clinical metadata, results of
previous tool runs, etc. When selected in the data selec-
tion tree, the details of the object are displayed in a dedi-
cated panel. The researcher drags-and-drops input data
from the tree into the Input Data panel, and drags a sui-
table database in which to store the tool results into the
Output Targets panel. Tools whose input and output cri-
teria have been met are highlighted in the tool menu
which, when clicked, cause the appropriate dialog to
appear for reviewing and customizing tool-specific para-
meters. Wherever possible, Workbench tool dialogs will
have sensible default parameters defined to handle the
most common scenarios. Each tool has a help dialog
describing each parameter, as well as the input and out-
put panel criteria for the tool.
Some tools operate on the result files or entire result

folders of other tools, and file format conversion are
handled automatically. In all cases, the user is informed

Figure 2 Genboree Workbench interface. A user can explore a data tree containing various data types: sequencing results, tool results, in
multiple formats, via a data selection panel. The user drags files to be used as tool inputs into the Input Data panel, and an output databases
into the Output Targets panel. Tools which can run on the types of inputs and outputs selected are highlighted in the menu and are ready for
launch using either default or user-specified parameters.
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whether the tool job has been accepted, rejected (and
why), or if they first need to confirm a warning condition.
Tools are queued for execution along with jobs submitted
by other users and generally run on a first-come, first-
serve basis. The Workbench is also the primary means for
sharing tool results with collaborators and downloading
the result file(s), which are generally compressed to save
storage space and network bandwidth. The Genboree
Workbench can be accessed at http://genboree.org/java-
bin/workbench.jsp, using browsers such as Internet
Explorer, version 8 and higher, and Mozilla Firefox, version
6 and higher. A tutorial and sample datasets are available at
http://genboree.org/breakpoints.
Breakout and the epigenome enrichment analysis tools

can be downloaded at http://www.brl.bcm.tmc.edu/
breakout/breakoutDownload.rhtml.

Results
Breakout exhibits superior performance on low-coverage
breakpoint detection
To compare Breakout with other structural variation ana-
lysis tools, we used as a benchmark structural variants in
the HCC1954 breast cancer cell line. HCC1954 was pre-
viously characterized using high-coverage mapping with
short insert size pairs and high stringency validation by
Stephens et al [20]. The set of 244 previously reported
somatic variants [20] were used as a positive control. An
HCC1954 dataset was sequenced using the SOLiD, yield-
ing 72 million mate pairs; the reads were mapped onto the
human genome, NCBI Build 36/UCSC hg18 using
bfast [10].
Breakout was compared with VariationHunter [21]

and GASV [22]. VariationHunter [21] models the struc-
tural variation discovery using the set cover problem, is
optimized for accurate detection of variants in normal
genomes, and performs rigorous filtering of false posi-
tives. GASV[22] models the structural variation as a
two-dimensional geometrical intersection of polygonal
areas. GASV has been used to analyze both normal and
cancer genomes. To facilitate comparison with Variation
Hunter, which detects only intra-chromosomal break-
points, we performed calling of structural variants twice,
once for the complete set of inter- and intra-chromoso-
mal events, and then second time for the subset of
intra-chromosomal events only. For all three callers the
minimum variant calling threshold was set to three
reads per reported structural variant. To evaluate the
sensitivity of the structural variation detectors, we first
determined the number of benchmark somatic variants
with at least one supporting read in the SOLID sequen-
cing set, effectively discovering an upper bound for the
overlap with the published set of somatic structural var-
iants. There were 124 intra-chromosomal variants with
one supporting read and 179 overall variants with one

supporting read, as shown in Table 1. At three reads per
variant, Breakout detects 75% of the intrachromosomal
events and 75% of the overall structural variants, Varia-
tionHunter detects 9% of the intra-chromosomal variants,
and GASV detects 66% of the intra-chromosomal somatic
variants but only 50% of the overall of somatic variants.
By varying the minimum number of supporting mate

pairs per structural variant, we derived Receiver Operator
Characteristic (ROC)-type curves for Breakout, Variation-
Hunter, and GASV, illustrated in Figure 3. This compari-
son methodology, used previously in other studies [21,23],
uses the total number of structural variant calls as a surro-
gate for the unknown false positive detection rate. Varia-
tion Hunter, being designed for normal genomes, is
extremely conservative and therefore not suitable for ana-
lysis of cancer genomes. Breakout and GASV achieve simi-
lar performance on somatic structural variants with high
read coverage. Breakout outperforms GASV with respect
to sensitivity and specificity for somatic structural variants
with low read coverage, particularly for inter-chromoso-
mal translocations. Sensitive detection at low physical
coverage of breakpoints is critical when analyzing hetero-
geneous samples where only a fraction of cells within the
sample may carry a breakpoint.
The Genboree Toolset accurately detects genes affected by
putatively somatic mutations in the PC-3 prostate cancer
cell line
To validate our integrative analysis toolset, we analyzed
structural variation in PC-3, a metastatic prostate cancer
cell line, and PrEC, a non-tumorigenic epithelial prostate
cell line. The two cell lines were sequenced using SOLiD
mate pair sequencing, at clone coverage of 8.5x for PC-3
and 10.1x for PrEC, and mapped to NCBI Build 37/hg19
using Bfast. Breakout identified a total of 382 breakpoints

Table 1 Overlap with previously published and validated
set of 244 somatic variants in HCC1954.

Experiment Events Somatic

Intra- chromosomal
breakpoints

1 read pair 395,290 124

VariationHunter, 3 read
pairs

508 11 (9%)

Breakout, 3 read pairs 1,184 93
(75%)

GASV, 3 read pairs 1,714 82
(66%)

All breakpoints 1 read pair 5,773,399 179

Breakout, 3 read pairs 1,377 135
(75%)

GASV, 3 read pairs 5,565 90
(50%)

The numbers in the parentheses indicate percentage of detected breakpoints
relative to the maximum number of detectable breakpoints (overlapping with
at least one read pair).
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in PC-3 and 1184 in PrEC, using a minimum threshold of
at least 3 mate pairs per breakpoint.
Some of the breakpoints detected in the cell lines were

not due to somatic mutations but due to structural
polymorphisms. In the absence of normal controls, we
employed as a surrogate the mate-pairs generated by the
1000 Genomes Project [4]. Breakout was applied to call
breakpoints for 50 samples in the 1000 Genomes Project
database sequenced using SOLiD mate pair technology
[4]. Breakout called a total of 279,256 breakpoints with
at least 3 read pairs spanning each breakpoint. Using
the Report Multiple SVs tool, these breakpoints were
then intersected with the two sets of breakpoints in the
cancer cell lines. As illustrated in Figure 4A, approxi-
mately 48% of the PC-3 breakpoints and 65% of the
PrEC breakpoint are present in the normal population;
25% of the PC-3 breakpoints are present in PrEC, most
of which (96%, 92 out of 96) are also present in the sub-
set of 1000 Genomes data. Circos plots of structural var-
iants in the PC-3 cell line are presented in Figures 4B
(all 382 breakpoints) and 4C (193 breakpoints unique to
PC-3 and thus putatively somatic).
We further determined breakpoints that might affect a

RefSeq gene by occurring within 2kb of a gene. A subset
of these breakpoints not present in PrEC or the 1000 gen-
omes dataset were validated using PCR sequencing. The
PCR primers for cross-breakpoint PCR were designed

using the basic pipeline described in our earlier breast can-
cer study [24]. The overall PCR validation rate for translo-
cations was 80% (8 out of 10). For a subset of structural
variants with potential gene fusions, PCR primers and
conditions were further optimized, leading to a validation
rate of 83% (5 out of 6). The set of 193 structural variants
unique to PC-3 was used to nominate 202 potentially
affected genes for further study, including known translo-
cated oncogenes MSI2 and RAD51L1(RAD51B) [25].
The Genboree Toolset detects epigenomically mediated
regulation of genes affected by somatic aberrations
The set of 193 putatively somatic structural variants
unique to PC-3 and the 202 potentially affected genes
were next analyzed for enrichment of TF binding sites
and other epigenomic features. Gene ontology and path-
way analysis (GSEA) [26,27] revealed a significant enrich-
ment in genes with promoter regions containing a
progesterone receptor motif (p = 5.95 × 10-5; GSEA
motif V$PR_01 [28]), as well as for homeobox gene
MEIS1 (p = 1.12 × 10-9), ESRRA (estrogen-related recep-
tor alpha, p = 3.47 × 10-4), and FOXA1 (p = 7.82 × 10-4).
Using the Epigenomic Enrichment tool, we quantified

the enrichments of a large set of epigenomic features
determined for the LnCAP prostate cancer cell line [29]
around the putative somatic breakpoints from our PC-3
dataset. Significant enrichment was discovered (p < 0.05)
for the active chromatin mark H3K4me3 and for PolII

Figure 3 ROC-type curves for Breakout, VariationHunter, and GASV on the HCC1954 benchmark. Variation Hunter, optimized for normal
genomes, lacks sensitivity for cancer genomes. For structural variants with high read coverage Breakout and GASV achieve similar performance.
Breakout outperforms GASV with respect to sensitivity and specificity for somatic structural variants with low read coverage
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Figure 4 Breakpoint analysis for the PC-3 prostate cancer cells. (A). Breakdown of the breakpoints detected for PC-3 and PrEC: 48% of the
PC-3 breakpoints and 65% of the PrEC breakpoints overlap with the breakpoints called in the 1000 Genomes Project data; 25% of the PC-3
breakpoints are common with the PrEC breakpoints. (B) Circos Plot of the PC-3 breakpoints before the subtraction of the PrEC and the 1000
Genomes Project breakpoints. (C) Circos Plot of the PC-3 breakpoints after the subtraction of the PrEC and the 1000 Genomes Project
breakpoints. (D) Enrichment of epigenomic features nearby PC-3 breakpoints.
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around insertions, for the transcription elongation mark
H3K36me3 around both insertions and translocations; loss
of the repressive marks H3K9me3 and H3K27me3 was
discovered around translocations, as shown in Figure 4D.

Breakpoints present in human germline strongly
associate with genomic hypomethylation
We have recently shown that hypomethylation of genomic
DNA in human germline marks unstable regions in the
human genome instability [2]. We set out to validate this
association at higher resolution using mate-pair sequen-
cing data. Because the epigenomes of breast cancer cells
differ from those in human germline [30,31], we also
asked if the pattern of structural mutability in breast can-
cer cells differ from the pattern of structural polymorph-
isms that arose in human germline. To answer these
questions, we used three sets of maps of chromosomal
breakpoints in breast cancer cell lines and tumors. The
first breast cancer set was a map of aberrations we
obtained from three breast cancer cell lines (HCC1954,
MDA-MB-231, and MDA-MB-361) and two breast
tumors. The tumor samples were obtained as anonymized
samples from the National Breast Cancer Tissue Resource
of NIH P50CA58183, maintained at the Baylor College of
Medicine. All five samples were sequenced using SOLiD
mate pair sequencing at a clone coverage of 9.7-13.5x.
Breakpoints for all five samples were computed and ana-
lyzed using the toolset, and separated into germline and
somatic enriched.
We imported additional breast cancer datasets from

large studies [20,32] of breast tumors; the breakpoints
were experimentally validated as being somatic. To ensure

sufficient coverage of each of sample, we focused our ana-
lysis on samples that contained at least ten translocations.
We next imported from our previous study [2] the 5%

subset of the 100 Kbp windows tiling the human genome
that show the lowest methylation levels in human sperm
samples (indicative of methylation levels in human germ-
line). We applied the Epigenomic Enrichment tool to analyze
the enrichment of these hypomethylated regions around
breakpoints detected in breast cancer samples, including
both germline breakpoints and putatively somatic ones. The
results, summarized in Figure 5, show striking enrichment
for hypomethylation around germline breakpoints and no
enrichment around putatively somatic breakpoints.
Distinct patterns of epigenomic associations for structural
mutability between germline and breast cancer
To further compare the pattern of structural mutability in
breast cancer with the pattern of structural polymorphisms
that arose in human germline, we analyzed enrichment
scores for transcription factor binding sites and other epige-
nomic features around putative somatic and polymorphic
breakpoints. We employed a total of 259 epigenomic fea-
ture tracks from the following sources: 148 transcription
factor binding tracks generated by the ENCODE project
[6,7]; 66 transcription factor binding tracks and 25 other
epigenomic marks in breast cancer from the Cistrome data-
base [33,34]; and 20 normal epigenomic tracks from the
Human Epigenome Atlas Release 2 [8].
Using the Epigenomic Enrichment tool, we computed

enrichment scores for each of the 259 epigenomic features
for both germline and putatively somatic breakpoints
using a 50,000 basepair radius around each breakpoint. A
total of 107 (out of 259) features showed significantly

Figure 5 Hierarchical clustering of breakpoint sets based on enrichment of germline methylation deserts. DNA methylation deserts were
defined as the 100 Kbp windows with the 5% lowest methylation in sperm. The two methylation desert tracks each corresponds to average
methylation in two sperm samples, as described in [2]. Note the strong association of germline hypomethylation with breakpoints in germline
but not with putatively somatic breakpoints.
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different patterns of enrichment (Mann-Whitney-Wilcoxon
test, p-value<0.05) between the two types of breakpoints.
The enrichment scores for discriminating features were
used to cluster the samples and the features (Figure 6). The
clustering pattern suggests distinctly separate distributions
of structural rearrangements in human germline and in
breast cancer.
The enrichment score for 74 discriminating features was

higher near somatic breakpoints, and for the remaining 33
discriminating epigenomic features it was higher near
germline breakpoints. Among the 74 features enriched
around somatic breakpoints were ESR1 (8 datasets, in
7 cases after treatment with estradiol), FoxA1 (2 datasets),
PGR, and SRC-3. We observed strong enrichment around
somatic translocations for 49 transcription factors profiled
by the ENCODE project, including GATA-1/2, c-Jun,
CEBPB, FoxA1, ERa, and p300. The enrichment patterns
support previous results suggesting the role of ER in geno-
mic instability. Specifically, we found strong and consistent
enrichment for the estrogen receptor binding around
somatic translocations. Patterns were similar for both
ER-positive and ER-negative breast cancers, consistent
with previous results [35-37]. To examine possible interac-
tions between ESR1 and other transcription factors, for
each of the ESR1 experiment, we identified somatic break-
points within 50 kb of an ESR1 binding site, and then
identified genes within 10 kb of such breakpoints. A total
of 40 genes were identified by this method in least three
cancer samples. Enrichment analysis of the 40 genes
by GSEA indicated enrichment for ETS1 (p-value = 3.23
× 10-4) and p53 (p-value = 3.71 × 10-4) binding in promo-
ter regions of these genes. The enrichment patterns sug-
gest that transcription factors either individually or as part
of larger complexes may promote genomic instability.
Enrichment analysis around germline breakpoints (illu-
strated in Figure 6) revealed striking enrichment for bind-
ing sites of Suz12, a key member of the PRC2 Polycomb
complex. This confirms our previous independent finding
that PRC2 strongly associates with genomic instability in
human germline [2]. Moreover, histone marks H3K27me3
and H3K9me3 show similar enrichment pattern, consis-
tent with the established role of EZH2 and Suz12, the two
constituent members of the PRC2 complex as respective
“writers” of H3K27me3 and H3K9me3.
Somatic breakpoints associate with distal regulatory sites
of active gene transcription
We examined enrichment patterns differences of the epi-
genomic marks from the Cistrome database mapped spe-
cifically in breast cancer cell lines. Within 50 Kbp of
somatic breakpoints we found enrichment of H3K4me1,
H3K9ac, and weak enhancers (defined according to [17])
and depletion of H3K27me3, H3K9me3, and H3K4me3.
In summary, somatic translocations tend to preferentially
occur at distal regulatory sites (enhancers) that carry open

chromatin marks associated with active gene transcription,
as opposed to promoters, gene bodies (actively transcribed
or not), or areas with inactive chromatin marks.
We next examined genes regulated by mutable enhan-

cers and, using gene set analysis, searched for other regu-
lators that may be indirectly associated with genomic
instability. For each of the enriched enhancer datasets, we
identified somatic breakpoints within 50 kb of an enhancer
site, then the genes within 10 kb of such translocations.
After limiting the genes to those nominated in at least

Figure 6 Hierarchical clustering of breakpoint sets based on
enrichment for transcription factor binding and epigenomic
features. Note the distinct patterns of enrichment for germline
breakpoints (columns to the left) and putatively somatic breakpoints
(columns to the right).

Coarfa et al. BMC Bioinformatics 2014, 15(Suppl 7):S2
http://www.biomedcentral.com/1471-2105/15/S7/S2

Page 9 of 12



2 somatic samples, we obtained a list of 127 individual
genes, including known oncogenes such as ERBB2, IGF1R,
and MYC. Using the ENCODE dataset, we found enrich-
ments for p300 binding in the vicinity of somatic transloca-
tions. Gene ontology and pathway analysis (GSEA) [26,27]
revealed a significant enrichment in genes with promoter
regions containing motifs bound by MEIS1 (p-value = 8.12
× 10-9.), MYOD1 (p-value = 5.18 × 10-6), ETS2 (p-value =
4.57 × 10-5), and P53 (p-value = 9.17 × 10-4).
Distinct patterns of structural mutability in breast cancer
cell lines and tumors
Breast cancer subtypes are defined using the expression
levels of key genes such as estrogen receptor (ER), proges-
terone receptor (PR), and erbB-2 (HER-2/neu). We
explored breakpoint patterns in cancer cell lines and
tumors annotated for ER, PR, or HER2 status. As before,
the breakpoint patterns were characterized by enrichment

of nearby transcription factor binding sites and epige-
nomic features. We determined distinct pattern of enrich-
ments (t-test, p < 0.05, enrichment fold change>1.25x) for
each of the three genes. ER- cell lines and tumors enrich
for RNA polymerase II (two datasets determined in MCF7
cells), and the ENCODE ChIP-Seq datasets of ZNF263,
Pbx3, ELF1, and HDAC2. This might indicate that genes
transcribed in MCF7, an ER+ cell line, are affected by
breakpoints significantly more in ER- cells compared to
ER+ cells. PR- cell lines and tumors enrich for RNA Poly-
merase II (two MCF7 datasets, either untreated or treated
with estradiol and tamoxifen). Since in many cells ER and
PR levels are correlated, genes transcribed in MCF7 have
higher association with breakpoints in PR- cells compared
to PR+ cells. Finally, HER2+ cell lines and tumors enrich
for c-Jun and ESR1.A summary of the distinct enrichment
patterns is presented in Figure 7.

Figure 7 Patterns of enrichment segregating breast cancer subtypes by estrogen receptor status (ER), progesterone receptor status
(PR), or HER2 status (ERBB2). (A) ER+ vs ER-; note that genes with the Pol2 mark and transcribed in MCF7, an ER+ cell line, are affected by
breakpoints in ER- cells but not in ER+ cells. (B) PR+ vs PR-. (C) HER2+ vs HER2-.
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Discussion
The challenges of identifying, integrating and interpreting
chromosomal aberrations in cancer in the context of the
epigenome can be effectively addressed using the Breakout
algorithm and related tools within the Genboree Work-
bench. Researchers are empowered to translate the results
of large genome-wide experiments into meaningful and
experimentally testable hypotheses. The Genboree Work-
bench framework allows integration of other breakpoint
callers, visualization packages, and additional integrative
analysis tools.
By applying Breakout and other Genboree Workbench

tools we mapped breakpoints in breast and prostate cancer
cell lines and tumors, discriminated between polymorphic
breakpoints of germline origin and those of somatic origin,
and analyze both types of breakpoints in the context of the
Human Epigenome Atlas, ENCODE and Cistrome data-
bases. Using the toolset we identified somatic structural
variants in prostate cancer, genes affected by the variants,
and detected epigenomic footprints of their regulation.
We confirm and extend our previous findings about the

association of the epigenome and selective structural mut-
ability of the human genome [2]. We validate the associa-
tion between hypomethylation and genomic instability in
germline at higher resolution using independent mate-pair
sequencing data from the 1000 Genomes Project. We also
show that only germline breakpoints show striking enrich-
ment for regions hypomethylated in germline but that
somatic breakpoints detected in breast cancer do not. The
original study established association between breakpoints
in human germline and the binding sites of the PRC2
polycomb complex only indirectly. We now validate this
association directly by performing an extensive meta-ana-
lysis using ChIP-seq data and epigenomic marks from
ENCODE, Cistrome and other projects. As anticipated by
the previously reported results, the breakpoints in germ-
line strongly associate with binding sites of Suz12, a key
member of the PRC2 Polycomb complex, and with PRC2-
associated histone marks H3K27me3 and H3K9me3. The
breakpoints in breast cancer associate with different sets
of transcription factor binding sites and epigenomic states,
such as distal regulatory sites associated with active gene
transcription. Finally, we identify distinct patterns of selec-
tive structural mutability in breast cancer cell lines that
associate with the status of key oncogenes such as ER, PR,
or HER2.
In summary, the results obtained using Breakout and

related tools in the Genboree Workbench suggest that
structural mutations are not randomly distributed relative
to the epigenome. Cell-type specific patterns of associa-
tions between epigenomic states and structural mutations
suggest that the epigenome and transcription factors play
roles in determining selective structural mutability of the
genome in both somatic cells and in germline.

Software availability and requirements
Breakout and the other tools presented are part of the
Genboree Workbench and can be accessed at the address
http://genboree.org/java-bin/workbench.jsp. Supported
browsers are Internet Explorer versions 8 and above,
Mozilla Firefox versions 7 and above. A tutorial and sam-
ple datasets are available at http://genboree.org/break
points. Breakout and the epigenome enrichment analysis
tools can be downloaded at http://www.brl.bcm.tmc.edu/
breakout/breakoutDownload.rhtml.
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