Link to the University of Pittsburgh Homepage
Link to the University Library System Homepage Link to the Contact Us Form

The application of network label propagation to rank biomarkers in genome-wide Alzheimer's data

Stokes, ME and Barmada, MM and Kamboh, MI and Visweswaran, S (2014) The application of network label propagation to rank biomarkers in genome-wide Alzheimer's data. BMC Genomics, 15 (1).

Published Version
Available under License : See the attached license file.

Download (1MB) | Preview
[img] Plain Text (licence)
Available under License : See the attached license file.

Download (1kB)


Background: Ranking and identifying biomarkers that are associated with disease from genome-wide measurements holds significant promise for understanding the genetic basis of common diseases. The large number of single nucleotide polymorphisms (SNPs) in genome-wide studies (GWAS), however, makes this task computationally challenging when the ranking is to be done in a multivariate fashion. This paper evaluates the performance of a multivariate graph-based method called label propagation (LP) that efficiently ranks SNPs in genome-wide data.Results: The performance of LP was evaluated on a synthetic dataset and two late onset Alzheimer's disease (LOAD) genome-wide datasets, and the performance was compared to that of three control methods. The control methods included chi squared, which is a commonly used univariate method, as well as a Relief method called SWRF and a sparse logistic regression (SLR) method, which are both multivariate ranking methods. Performance was measured by evaluating the top-ranked SNPs in terms of classification performance, reproducibility between the two datasets, and prior evidence of being associated with LOAD.On the synthetic data LP performed comparably to the control methods. On GWAS data, LP performed significantly better than chi squared and SWRF in classification performance in the range from 10 to 1000 top-ranked SNPs for both datasets, and not significantly different from SLR. LP also had greater ranking reproducibility than chi squared, SWRF, and SLR. Among the 25 top-ranked SNPs that were identified by LP, there were 14 SNPs in one dataset that had evidence in the literature of being associated with LOAD, and 10 SNPs in the other, which was higher than for the other methods.Conclusion: LP performed considerably better in ranking SNPs in two high-dimensional genome-wide datasets when compared to three control methods. It had better performance in the evaluation measures we used, and is computationally efficient to be applied practically to data from genome-wide studies. These results provide support for including LP in the methods that are used to rank SNPs in genome-wide datasets. © 2014 Stokes et al.; licensee BioMed Central Ltd.


Social Networking:
Share |


Item Type: Article
Status: Published
CreatorsEmailPitt UsernameORCID
Stokes, ME
Barmada, MMbarmada@pitt.eduBARMADA
Kamboh, MIkamboh@pitt.eduKAMBOH
Visweswaran, Sshv3@pitt.eduSHV3
Date: 14 April 2014
Date Type: Publication
Journal or Publication Title: BMC Genomics
Volume: 15
Number: 1
DOI or Unique Handle: 10.1186/1471-2164-15-282
Schools and Programs: School of Public Health > Human Genetics
School of Medicine > Biomedical Informatics
Refereed: Yes
Date Deposited: 05 Dec 2016 21:15
Last Modified: 02 Feb 2019 14:57


Monthly Views for the past 3 years

Plum Analytics

Actions (login required)

View Item View Item