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Human adult bone marrow-derived stem cells
decrease severity of lipopolysaccharide-induced
acute respiratory distress syndrome in sheep
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Abstract

Introduction: Acute respiratory distress syndrome (ARDS) is the most common cause of respiratory failure among
critically ill subjects, sepsis and severe bacterial pneumonia being its most common causes. The only interventions
that have proven beneficial are protective ventilation strategies and fluid conservation approaches. New therapies
are needed to address this common clinical problem. Others and we have previously shown the beneficial effect of
infusion of exogenous adult stem cells in different pre-clinical models of ARDS.

Methods: In the present study endotoxin was infused intravenously into 14 sheep from which 6 received different
doses of adult stem cells by intrabronchial delivery to evaluate the effect of stem cell therapy.

Results: After administration of endotoxin, there was a rapid decline in oxygenation to hypoxemic values,
indicative of severe-to-moderate ARDS. None of the animals treated with saline solution recovered to normal
baseline values during the 6 hours that the animals were followed. In contrast, sheep treated with a dose of 40
million adult stem cells returned their levels of oxygen in their blood to baseline two hours after the cells were
infused. Similarly, improvements in carbon dioxide (CO2) clearance, pulmonary vascular pressures and inflammation
were observed and confirmed by histology and by the decrease in lung edema.

Conclusions: We concluded that instillation of adult non-hematopoietic stem cells can diminish the impact of
endotoxin and accelerate recovery of oxygenation, CO2 removal and inflammation in the ovine model, making the
use of adult stem cells a real alternative for future therapies for ARDS.
Introduction
Acute respiratory distress syndrome (ARDS) is a com-
mon clinical entity and a major cause of morbidity and
mortality in the critical care setting [1]. The recent
Berlin definition classifies it in three different degrees of
severity according to the level of hypoxemia, calculated
as: mild, 300 to 201 mmHg partial pressure of oxygen
(PaO2)/fraction of inspired oxygen (FiO2); moderate, 200
to 101 mmHg PaO2/FIO2; and severe, PaO2/FIO2 ≤
100 mmHg [2,3].
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Although ARDS results from a wide variety of disor-
ders, sepsis is its main cause and the risk factor most
associated with high mortality [4-6]. Regardless of the
cause, the alveolar epithelium and capillary endothe-
lium are affected, leading to an increase in permeabil-
ity allowing protein-rich fluid to accumulate in the
alveolar space [7-9]. The loss of epithelial integrity dis-
rupts alveolar clearance and production of surfactant
[10-12]. In addition to the alveolar damage, there is an
influx of circulating inflammatory cells and formation
of hyaline membranes usually caused by the mechanical
ventilation. If the inflammatory process is severe enough,
there will be ensuing disorganized repair resulting in
fibrosis [13].
Existing therapy is currently limited to supportive care

[14,15]. A novel potential therapy for ARDS is the use of
bone marrow-derived mesenchymal stem cells (B-MSC)
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:rojasm@upmc.edu
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Rojas et al. Stem Cell Research & Therapy 2014, 5:42 Page 2 of 12
http://stemcellres.com/content/5/2/42
[16-20]. We have previously demonstrated that the infu-
sion of B-MSC isolated from mice and swine prevented
inflammation and aberrant repair of endotoxin-induced
lung injury in both species [19,21-23]. These effects, to-
gether with the restoration of fluid clearance and the de-
crease in bacterial growth, have also been shown in an
ex-vivo perfused human lung model of septic ARDS
[16]. There is strong evidence that in models of ARDS,
after infusion B-MSC are activated inducing secretion of
multiple soluble factors that results in significantly lower
levels of inflammatory cytokines in both plasma and
bronchoalveolar lavage (BAL) [19,20,24,25]. B-MSC are
also able to alter the systemic redox environment char-
acteristic of ARDS to a less oxidizing value [18,26-30]
and restore the alveolar epithelium and endothelium in-
tegrity and permeability, decreasing airspace neutrophils
[30,31]. The transfer of functional mitochondria from B-
MSC to the epithelium has been proven instrumental in
the repair process of the lung [32-34] and B-MSCs have
also been shown to have anti-bacterial effects that are
very beneficial in the septic environment [35-38].
We designed a preclinical large animal model of

endotoxin-induced ARDS in order to evaluate the safety
and efficacy of the use of adult bone marrow-derived
stem cells, named MultiStem (Athersys, Cleveland, OH) in
the treatment of moderate-to-severe ARDS. In the present
study, sheep with lipopolysaccharide (LPS)-induced
ARDS received Good Manufacturing Practice (GMP)-
MultiStem, which have been used in clinical trials for or-
gans other than the lung [39,40], with no toxicity reported.
Our results suggest that MultiStem have the ability to re-
duce the duration and severity of the injury, without de-
tected secondary toxic effects. This allows us to propose
the translation of bone marrow-derived stem cells into
clinical studies for the treatment of patients with ARDS.

Methods
Animal model
Fourteen adult Dorsett Cross sheep weighing 36.5 to
65 kg were used in the present study. All animals re-
ceived humane care in compliance with the ‘Principles
of Laboratory Animal Care’ formulated by the National
Society for Medical Research and the ‘Guide for the Care
and Use of Laboratory Animals’ prepared by the Institute
of Laboratory Animal Resources and published by the
National Institutes of Health (NIH) (NIH no. 86–23).
The Institutional Animal Care and Use Committee
(IACUC) for Animal Research of the University of
Pittsburgh approved all experimental procedures in ad-
vance. The use of human stem cells in animals was ap-
proved by the Human Stem Cell Research Oversight
(hSCRO) Office at the University of Pittsburgh.
A Swan-Ganz catheter was inserted through the jugu-

lar vein, after which open chest superior vena cava and
main pulmonary artery were cannulated. The sheep re-
ceived intravenously via the Swan-Ganz catheter 1 and
3.5 μg/kg E. coli endotoxin LPS from E. coli 055:B5
(Sigma, St. Louis, MO, USA) in normal saline (Baxter,
Deerfield, IL, USA) over 30 minutes at 0.7 mL/minute
to induce moderate-to-severe ARDS, as defined by the
ARDS Definition Task Force [2]. The experimental group
(stem cell) received 4, 10 or 40 million MultiStem cells
intrabronchially into the lower left lung 30 minutes
after the end of LPS infusion. The control group received
the same volume intrabronchially of saline (Figure S1 in
Additional file 1).

Adult stem cell isolation and administration
MultiStem were isolated from a human donor bone mar-
row aspirate. Bone marrow aspirates were acquired with
consent and in accordance with 21 CFR Part 1271 Human
Cells, Tissues, and Cellular and Tissue Based Products
and approved by the Institutional Review Board. Cell iso-
lation was processed according to previously described
methods [41]. Briefly, human MultiStem were isolated
from a single bone marrow aspirate, obtained with con-
sent from a healthy donor, and cultured in fibronectin-
coated plastic tissue culture flasks. Cell cultures were
maintained under low oxygen tension in a humidified at-
mosphere of 5% CO2. Cells were cultured in MultiStem
culture media: low-glucose (D)MEM (Life Technologies,
Grand Island, NY, USA) supplemented with FBS (fetal
bovine serum; Atlas, Fort Collins, CO, USA), ITS liquid
media supplement (Sigma), MCDB {AU Query: Please
spell out what ITS and MCDB stand for followed by (ITS)
and (MCBD), respectively.} (Sigma), platelet-derived growth
factor (R&D Systems, Minneapolis, MN, USA), epidermal
growth factor (R&D Systems), dexamethasone, penicillin/
streptomycin (Life Technologies), 2-phospho-L-ascorbic
acid and linoleic acid-albumin (Sigma). Cells were
passaged every three to four days and harvested using
trypsin/ethylenediaminetetraacetic acid (EDTA) (Life
Technologies). The cells were positive for CD49c and
CD90 and negative for MHC class II and CD45 (all
antibodies (Abs) were from BD Biosciences, San Jose,
CA, USA). Cells were cryopreserved in MultiStem
media and 10% dimethyl sulfoxide (DMSO). Before
administration cells were counted with trypan blue
exclusion and final concentration adjusted according
with the percentage of alive cells. Preparations in which
cell viability were lower that 90% were discarded.

Data acquisition and analysis
In all groups, blood gases and blood sampling were per-
formed in a Radiometer ABL 725 (Radiometer, Westlake,
OH, USA) before the endotoxin administration and
every 30 minutes for the duration of the study (Figure
S1 in Additional file 1). To have a better understanding
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of the lung function, open chest hemodynamic measure-
ments, aortic pressure (AoP), pulmonary artery pressure
(PAP), central venous pressure (CVP), and left atrial pres-
sure (LAP) were monitored with catheter-tip manometers
(Additional file 1 and Figure S2 in Additional file 1).
Cardiac output (CO) was monitored continuously. All
hemodynamic parameters were recorded electronically in
a secure access hard drive for further analysis.

Histopathologic evaluation
Lung biopsies of 1 to 2 cm3 were performed at the lower
lobes (left and right) before and after endotoxin and at
the end of the experiment (Figure 1A). A piece of each
biopsy was fixed with 10% non-buffered formalin for
24 hours, paraffinized and sectioned for subsequent
staining with hematoxylin and eosin for histological as-
sessment using light microscopy (Nikon Eclipse 55i,
Melville, NY, USA). The rest of the tissue was used for
wet-to-dry analysis.

Wet to dry ratio
Pieces of the biopsies from the lower lobes of the lungs
from each of the three time points described were divided
into five 2 to 3 mm2 fragments each for use as technical
replicates and flash frozen separately for later weighing.
The tissues were dried overnight in a Savant DNA120
Figure 1 Sheep lung diagram and pictures. (A) The blue line represents
The red circumferences show the areas where the lung tissues were sampled
endotoxin infusion. Pictures of the left lung of a sheep before (B) and one ho
SpeedVac Concentrator (ThermoFisher, Pittsburgh, PA,
USA) and reweighed, then the wet-to-dry ratio (W/D) was

determined as the percent change after injury,
W
Dð Þf
W
Dð Þt 100−100

(where W is the wet weight, D is the dry weight, f is the
final biopsy at the end of the study and i the biopsy one
hour after endotoxin).
Statistical analysis
Comparison between the control group and the groups
treated with MultiStem, as well as the comparison be-
tween baseline and the following time points within a
group were tested with independent student t-tests. The
differences in the results were considered to be statisti-
cally significant when the P-value was less than 0.05.
Results and discussion
We were able to demonstrate morphological and physio-
logical changes consistent with moderate-to-severe ARDS
as a consequence of systemic administration of a single
dose of endotoxin. After endotoxin infusion, lung conges-
tion and edema were visually apparent, where accumula-
tion of blood and fluid in the lungs is clearly recognized
(Figure 1B-C). The observed changes reached a peak one
hour after the end of the infusion of the endotoxin.
the path of the bronchoscope to deliver the adult stem cells or saline.
. Lung congestion and edema are visually apparent as a consequence of
ur after the end of the infusion of endotoxin (C).
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In the initial reports by our group, we delivered intra-
venously B-MSCs to mice and swine with LPS-induced
lung injury demonstrating protection with non- or min-
imal engraftment [19,25,30]. In the present work, we de-
cided to deliver a similar cell type intratracheally. The
rationale for the change in the route of delivery was
based on the possible clinical use of the cells by reducing
possible secondary effects. During ARDS, in addition to
the deteriorated pulmonary function, there is accumula-
tion of circulatory cells by an increase in the adherence
to the endothelium. Furthermore, the large size of the
mesenchymal stem cells (close to 100 μm in diameter)
that circulate in the 10 μm microvessels of the lung in-
creases the risk of pulmonary microemboli [42]. In
addition, we decided to deliver the cells into only one lung
leaving the other lung intact to reduce possible major
complications. However, it is important that several stud-
ies have demonstrated that during lung injury intravenous
and intratracheal administration of mesenchymal stem
cells can prompt lung protection [16,43].

Blood gas and hemodynamic data
Blood oxygenation and CO2 clearance are the primary
functions of the lung. One of the main characteristics
that defines ARDS is a deficit in these functions, where
oxygenation capacity is impaired and the hypoxemia
level falls below a PaO2/FiO2 ratio of 300 mmHg [2]. In
this animal model we reproduced the pathophysiology of
ARDS observed in humans by administering bacterial
endotoxin systemically in sheep. We first evaluated the
effect of endotoxin on changes in lung function; as we
show in Figure 2A, endotoxin was administered intra-
venously and blood gas analysis demonstrated an induc-
tion of moderate-to-severe ARDS by the PaO2/FiO2

levels. We evaluated the effect of two different doses
of endotoxin, 1 and 3.5 μg/ml intravenously. With both
concentrations we observed a rapid decrease in the PaO2,
reaching its minimum one hour after the end of endotoxin
infusion followed by steady recovery. PaO2/FiO2 values in
both groups dropped 77 ± 10% (standard error, SE) from
baseline level at its minimum (102 ± 10 mmHg). We de-
cided to use the higher dose because of the reproducibility
between experiments and because after five hours the re-
covery was only partial.
Similarly, multiple doses of MultiStem were used before

selecting the most appropriate. As shown in Figure 2B,
doses of 2 and 10 million cells failed to induce significant
protection. There was only a marginal effect, when a dose
of 10 million was used. In contrast, 40 million cells clearly
were able to accelerate the recovery. This group displayed
PaO2/FiO2 values significantly higher than the control
group throughout the experiment (P <0.02) and reached
baseline levels less than three hours after the endotoxin
infusion, whereas the control group only recovered to 80%
of baseline level by the end of the study while the stem cell
group’s lowest value was significantly higher (68 ± 12% SE
lower than baseline, 158 ± 19 mmHg; P <0.024). From this
point, the data presented in the experimental group will
be limited to the dose of 40 million.
Immediately after the drop in PaO2/FiO2, the partial

pressure of CO2 (PCO2) levels increased comparably in
both groups. Nevertheless, half an hour after maximum
lung injury (minimum PaO2/FiO2), the experimental group
reached the PCO2 baseline level, while the control group
stayed higher than the baseline throughout the study (P <
0.005) (Figure 2C). The stem cell treated animals were
followed for more than two hours after returning to base-
line, suggesting that there was no need for longer
monitoring.
After endotoxin infusion, most of the hemodynamic

values showed important changes, with the exception of
the heart rate which maintained baseline values in both
groups (data not shown). Mean arterial pressure decreased
significantly (P <0.025) and remained below baseline values
throughout the study duration in both groups (Figure 2D).
CVP was increased in the control group after endotoxin
without significant differences; however, the experimen-
tal group treated with stem cells maintained baseline
values throughout the study (data not shown). In the con-
trol group, PAP stayed significantly higher than baseline
(51 ± 2%) after the endotoxin infusion (P <0.02) through-
out the study, whereas two hours after endotoxin, the ex-
perimental group had recovered to 24 ± 2% higher than
baseline values (Figure 2E). CO showed a strong decreas-
ing tendency after endotoxin infusion, without reaching
the level of significance (data not shown).
In addition, a well-known complication in patients

who required assisted ventilation is ventilator-induced
lung injury. In our protocol we used protective ventila-
tion, but we cannot discount that some of the injury we
observed was induced during ventilation. However, it
has been documented that mesenchymal stem cells have
the ability to protect the lungs in rats with ventilator in-
duced lung injury [43]. This may suggest a double pro-
tective effect of the MultiStem.

Inflammatory data
ARDS is characterized by the sequestration of neutrophils
in the lung, which results in a low neutrophil count in the
circulation. As expected, significantly lower than baseline
values were recorded in plasma in both groups after the
endotoxin infusion (P <0.0003). The stem cell group re-
covered to baseline levels of neutrophil counts after the
infusion of cells while the control group did not recover
until the end of the study (Figure 3). This was consistent
with lower plasma levels of the pro-inflammatory cytokine
IL-8, in which plasma levels after injury were higher in the
control group compared to levels in the experimental
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Figure 2 Treatment with stem cells facilitate the return to arterial basal levels of blood gases and hemodynamics. (A) The most
appropriate dose of endotoxin for the control group (no treatment) was first determined; 1 (solid line) and 3.5 μg/kg (dotted line). (B) Similarly,
the dose of MultiStem for the experimental group was determined according to their ability to maintain the PO2 levels after instillation. Doses of
4 (solid line), 10 (dotted line) and 40 million (red line) MultiStem were delivered intrabronchially a half hour after the end of LPS injection. The
time of highest pulmonary injury (lowest arterial PO2) is expressed as time zero. (C) Measurement of the PCO2 levels similarly demonstrated a
protective effect in the experimental group (solid line) compared to the control (dotted line). Arterial (D) and pulmonary artery (E) pressures
stabilize earlier in animals treated with stem cells. The control group (no treatment) is represented with a dotted line. Forty million stem cells
were instilled intrabronchially in the experimental group (solid black) 30 minutes after the end of LPS injection. The time of highest PAP is
expressed as time zero. LPS, lipopolysaccharide; PAP, pulmonary artery pressure; PCO2, partial pressure of CO2.
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group (Figure 4). IL-6 cytokine was also measured in
plasma, but the values did not reach the detection range
(data not shown).
Lung edema
One of the hallmarks of ARDS is the accumulation of al-
veolar edema due to impaired alveolar fluid clearance
and increased microvascular permeability of the lung
endothelium, and it is often used as a prognostic tool for
morbidity and mortality [44,45]. It has been shown by
others and us that lung edema is significantly abrogated
in animals treated with MSC or leukocyte-depleted bone
marrow [19,20]. Here we also show an improvement in
lung edema upon administration of adult stem cells.
Lung edema was analyzed by W/D of lower lobe lung

biopsies. The control group showed an increase of rela-
tive water content after injury in both lungs, reaching
Figure 3 Neutrophils in plasma tend to increase more in
animals treated with stem cells after endotoxin injury.
The control group (no treatment) is represented with open circles
and the experimental group (receiving stem cells) is shown in black
circles. Values are shown as percent baseline.
significant differences in the right lung (P <0.001), while
treatment with stem cells prevented the increase in
edema in either lung (Figure 5A).
Bronchoalveolar lavage
Left lung data
Figure 5 (B,D) shows the series of BAL findings in the left
lung (site of cell instillation). Total cell count was ob-
served to be low in both groups after the endotoxin infu-
sion and showed a slight tendency to decrease throughout
the study duration. The percentage of neutrophil count
had a stable constant trend throughout the study and was
detected at lower than baseline values at the end of the
study in the control group. The percentage of lymphocytes
and monocytes was stable throughout the study (data not
shown). None of the changes in the left lung BAL findings
reached the level of statistical significance.
Figure 4 Data suggest a decrease in IL-8 at the end of the
experiment in animals that received adult stem cells one hour
after LPS. Detection of sheep IL-8 in serum was by ELISA. Values
from animals that received saline as control are depicted in open
circles, and values from animals that received stem cells are shown
in black circles. LPS, lipopolysaccharide.



Figure 5 Pulmonary edema is prevented in animals instilled with adult stem cells after endotoxin injury. (A) Tissue samples were
collected right before and after endotoxin infusion and at the end of the experiment from both lungs. Water content was measured by calculating the
weight before and after the tissue was dehydrated, and the ratio was then calculated. Each sample consisted of five replicates. The control group is
represented by open circles and the stem cell group by black circles. Total cell number and neutrophil concentration in bronchoalveolar lavage (BAL)
tend to be higher in control animals than in those treated with stem cells. Left (B,D) and right (C,E) lungs. The total cell count in BAL (B,C) and the
percent of neutrophils (D,E) are shown for time points before (Bf) and after endotoxin infusion and at the end of the study. The control group (no
treatment) is represented with open circles and the experimental group (receiving stem cells) is shown in black circles.
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Right lung data
Figure 5 (C,E) shows the series of BAL findings in the
right lung. Total cell count and neutrophil percentage
remained stable in both groups. Lymphocytes were stable
and monocytes showed a slight tendency to increase after
endotoxin and then came back to baseline in the control
group. None of the BAL findings in the right lung reached
the level of significance.
Histopathologic data
Left lung
Histopathologic evaluation revealed increased inflamma-
tory cellular infiltration in the control group after the
endotoxin infusion. Interstitial acute inflammation with
edema, and neutrophil infiltration was evident, while re-
duced inflammation was recorded before the end of the
study in the group treated with stem cells (Figure 6).



Figure 6 Histological sections of left and right lungs of sheep treated with bacterial endotoxin show less inflammation and congestion
in the lungs treated with stem cells. Lung biopsies were fixed in 10% formalin and stained with hematoxylin and eosin (H&E; magnification
10x). Sections are shown for left and right lungs before endotoxin infusion and at the end of the study of representative animals of each group
(control (LPS) and LPS + stem cells). LPS, lipopolysaccharide.
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Right lung
Histopathologic changes were noted to be severe in the
right lung in comparison to the left. As observed in the
left lung, reduced inflammation was recorded in the ex-
perimental group before the termination of the study
(Figure 6).
An interesting observation is the differences in the se-

verity of the injury in the right lung between animals
treated or not with MultiStem. The fact that the animals
are reposing on their right, under normal conditions dur-
ing this short period of time fluid accumulation is not
detected. However, in the case of LPS-induced ARDS
where there are hemodynamic and respiratory failures,
fluid cannot be removed which results in severe histo-
logical changes and an increase in water counted.

Safety of the intrabronchial delivery of MultiStem in the
sheep ARDS model
As part of this pre-clinical study, several markers of
organ function were measured, including in the liver
(Figure 7A), pancreas (Figure 7B) and kidney (Figure 7C).
Plasma levels of alanine aminotransferase, alkaline phos-
phatase and aspartate aminotransferase (ASAT) were
measured for evaluation of liver function. Plasma levels
of amylase, glucose and lipase were quantitated to evalu-
ate pancreatic function, and creatinine and blood urea
nitrogen for kidney function. Recorded values fell within
the normal ranges expected for sheep. We observed stat-
istical differences in ASAT levels. However, because they
were within normal values, these differences do not have
biological significance. These results indicate that there
was no organ-associated toxicity related to the adminis-
tration of the MultiStem.

Conclusions
In order to assess the effectiveness and safety of adult
stem cells for the treatment of ARDS, we developed a
short-term sheep preclinical model by systemic infusion
of endotoxin that resulted in a moderate-to-severe ARDS.
The considerable experimental literature demonstrating
the protective effects of adult stem cells (for example,
B-MSC) in models of ARDS [19,23,46-51], together with
the clinical safety experience of MultiStem in previous
trials, indicates that these cells will be well-tolerated in the
critically ill ARDS population.
The mechanisms by which adult stem cells participate

in the repair of the lung following injury have been
attributed to their different qualities [16,25,52,53]. The
ability of the cells to secrete paracrine factors, such as
growth factors and anti-inflammatory cytokines, and to
control oxidative damage, protect the endothelium and
epithelium, transfer functional mitochondria and secrete
antimicrobial peptides has been demonstrated to explain
some of the therapeutic effects in the treatment of
lung injury in animal in vivo and ex vivo models. Previ-
ous studies by our group and others have demonstrated
the beneficial effects of the administration of exogenous
B-MSC in endotoxemic mice. These studies repeatedly
showed a decrease in systemic and local lung inflamma-
tion and lung injury [19,20,23,24], demonstrating the
anti-inflammatory effect of these cells. Additionally, the
immunomodulatory effects and low immunogenicity
described for adult stem cells make them promising can-
didates for therapy. In this study, we show through
histologic staining, plasma neutrophil count and plasma
pro-inflammatory IL-8 cytokine levels that there was a
marked decrease in inflammation affected by the use of
adult stem cells. Is a single dose or multiple doses of
MultiStem the most appropriate to treat ARDS? We be-
lieve that will, in the future, be a particular decision for
each individual patient.
One of the most profound effects of endotoxemia is a

decrease in the levels of oxygen in circulation. In our
acute preparation, local instillation of stem cells was able



Figure 7 Liver, pancreas and kidney data show no organ toxicity after the intrabronchial infusion of adult stem cells during
endotoxin-induced ARDS. To measure liver function (A), protein levels of alanine aminotransferase, alkaline phosphatase and aspartate
aminotransferase were measured in plasma. Amylase, glucose and lipase plasma levels were quantitated to evaluate pancreatic function
(B) and creatinine and blood urea nitrogen for kidney function (C). All the values are within normal ranges. The control group (no treatment) is
represented by dotted lines and the experimental group (receiving stem cells) by solid black lines. ARDS, acute respiratory distress syndrome.
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to reduce the severity and decrease the duration of the
injury. Although the arterial blood pressure remained
low throughout the study in both groups, the infusion of
stem cells in ARDS-induced animals attenuated the
endotoxemia, as PAP was stabilized to within 20% of
baseline and the control only recovered to 50%.
An important observation was the dramatic distal ef-

fect that cells delivered into the left lung had on the
right lung. We have two possible explanations. First, be-
cause animals are on right lateral recumbency, this fa-
vors fluid accumulation. Under normal conditions water
accumulation cannot be detected. However, because organ
failure during the LPS-induced ARDS and by lost in endo-
thelial barrier there more fluids are produced and this associ-
ated with a decrease in normal hemodynamic function
results in a ‘perfect storm’ with a massive accumulation of
fluids and inflammatory cells. Second, distal effect can be ex-
plained by the secretion of soluble factors by the MultiStem,
this paracrine effect has been well documented. Cells injected
intravenously accumulate in the lung and have distal effects
on the heart and eye [54,55]. It is possible that the observed
results are the combination of these two mechanisms.
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Furthermore, we monitored organ function of the liver,
pancreas and kidney to evaluate the possible toxic effects
of the cells. Protein plasma levels fell within normal values
for sheep, suggesting no organ-associated toxicity related
to the intrabronchial administration of MultiStem during
ARDS. Therefore, the use of these cells is considered to be
safe in the ARDS model.
Overall, the local administration of adult stem cells to a

systemic endotoxemic insult in sheep appears, in the short
term, to improve lung function, inflammatory response
and hemodynamic changes produced by the bacterial
toxin without affecting other organs. Thus, we believe that
adult stem cells are a promising candidate for a novel
therapy that will help lower the mortality rate in ARDS
patients, reducing the associated complications and subse-
quent multi-organ failure characteristic of this syndrome.
Additional file

Additional file 1: Figure S1. Experimental model of lung injury in
sheep to assess the use of bone marrow derived stem cells. The control
and the stem cell groups consisted of six and four sheep, respectively.
The ARDS was induced by intravenous infusion of 3.5 μg/kg bacterial
endotoxin (LPS). Three bronchoalveolar lavages (BALs) and lung biopsies
were performed before endotoxin infusion (baseline), one hour after and
at the end of the study. Peripheral blood samples were collected before
the infusion and every hour after (time points illustrated with red
dots). The experimental group received a dose of 40 million bone
marrow-derived stem cells intrabronchially one hour after the start of
endotoxin infusion, the control group received a corresponding volume
of saline. Figure S2. Diagram of the cannulation in the open chest
preparation. The pulmonary artery, left atrium and pulmonary artery
are indicated.
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