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Abstract

Background: As high-throughput genomic technologies become accurate and affordable, an increasing number of
data sets have been accumulated in the public domain and genomic information integration and meta-analysis
have become routine in biomedical research. In this paper, we focus on microarray meta-analysis, where multiple
microarray studies with relevant biological hypotheses are combined in order to improve candidate marker
detection. Many methods have been developed and applied in the literature, but their performance and properties
have only been minimally investigated. There is currently no clear conclusion or guideline as to the proper choice
of a meta-analysis method given an application; the decision essentially requires both statistical and biological
considerations.

Results: We performed 12 microarray meta-analysis methods for combining multiple simulated expression profiles,
and such methods can be categorized for different hypothesis setting purposes: (1) HSA: DE genes with non-zero
effect sizes in all studies, (2) HSB: DE genes with non-zero effect sizes in one or more studies and (3) HSr: DE gene
with non-zero effect in “majority” of studies. We then performed a comprehensive comparative analysis through six
large-scale real applications using four quantitative statistical evaluation criteria: detection capability, biological
association, stability and robustness. We elucidated hypothesis settings behind the methods and further apply
multi-dimensional scaling (MDS) and an entropy measure to characterize the meta-analysis methods and data
structure, respectively.

Conclusions: The aggregated results from the simulation study categorized the 12 methods into three hypothesis
settings (HSA, HSB, and HSr). Evaluation in real data and results from MDS and entropy analyses provided an
insightful and practical guideline to the choice of the most suitable method in a given application. All source files
for simulation and real data are available on the author’s publication website.
Background
Microarray technology has been widely used to identify
differential expressed (DE) genes in biomedical research
in the past decade. Many transcriptomic microarray
studies have been generated and made available in public
domains such as the Gene Expression Omnibus (GEO)
from NCBI (http://www.ncbi.nlm.nih.gov/geo/) and Array
Express from EBI (http://www.ebi.ac.uk/arrayexpress/).
From the databases, one can easily obtain multiple
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reproduction in any medium, provided the or
studies of a relevant biological or disease hypothesis.
Since a single study often has small sample size and lim-
ited statistical power, combining information across
multiple studies is an intuitive way to increase sensitiv-
ity. Ramasamy, et al. proposed a seven-step practical
guidelines for conducting microarray meta-analysis [1]:
“(i) identify suitable microarray studies; (ii) extract the
data from studies; (iii) prepare the individual datasets;
(iv) annotate the individual datasets; (v) resolve the
many-to-many relationship between probes and genes;
(vi) combine the study-specific estimates; (vii) analyze,
present, and interpret results”. In the first step although
theoretically meta-analysis increases the statistical power
to detect DE genes, the performance can be deteriorated if
Ltd. This is an open access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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problematic or heterogeneous studies are combined. In
many applications, the data inclusion/exclusion criteria
are based on ad-hoc expert opinions, a naïve sample size
threshold or selection of platforms without an objective
quality control procedure. Kang et al. proposed six quanti-
tative quality control measures (MetaQC) for decision of
study inclusion [2]. Step (ii)-(v) are related to data prepro-
cessing. Finally, Step (vi) and (vii) involve the selection of
meta-analysis method and interpretation of the result and
are the foci of this paper.
Many microarray meta-analysis methods have been

developed and applied in the literature. According to a
recent review paper by Tseng et al. [3], popular methods
mainly combine three different types of statistics: com-
bine p-values, combine effect sizes and combine ranks.
In this paper, we include 12 popular as well as state-of-
the-art methods in the evaluation and comparison. Six
methods (Fisher, Stouffer, adaptively weighted Fisher,
minimum p-value, maximum p-value and rth ordered
p-value) belonged to the p-value combination category,
two methods (fixed effects model and random effects
model) belonged to the effect size combination category
and four methods (RankProd, RankSum, product of
ranks and sum of ranks) belonged to the rank combin-
ation category. Details of these methods and citations
will be provided in the Method section. Despite the
availability of many methods, pros and cons of these
methods and a comprehensive evaluation remain largely
missing in the literature. To our knowledge, Hong and
Breitling [4], Campain and Yang [5] are the only two
comparative studies that have systematically compared
multiple meta-analysis methods. The number of
methods compared (three and five methods, respect-
ively) and the number of real examples examined (two
and three examples respectively with each example cov-
ering 2–5 microarray studies) were, however, limited.
The conclusions of the two papers were suggestive with
limited insights to guide practitioners. In addition, as
we will discuss in the Method section, different meta-
analysis methods have different underlying hypothesis
setting targets. As a result, the selection of an adequate
(or optimal) meta-analysis method depends heavily on
the data structure and the hypothesis setting to achieve
the underlying biological goal.
In this paper, we compare 12 popular microarray meta-

analysis methods using simulation and six real applica-
tions to benchmark their performance by four statistical
criteria (detection capability, biological association, stabil-
ity and robustness). Using simulation, we will characterize
the strength of each method under three different hypoth-
esis settings (i.e. detect DE genes in “all studies”, “majority
of studies” or “one or more studies”; see Method section
for more details). We will compare the similarity and
grouping of the meta-analysis methods based on their
DE gene detection results (by using a similarity meas-
ure and multi-dimension scaling plot) and use an en-
tropy measure to characterize the data structure to
determine which hypothesis setting may be more ad-
equate in a given application. Finally, we give a guide-
line to help practitioners select the best meta-analysis
method under the choice of hypothesis setting in their
applications.

Methods
Real data sets
Six example data sets for microarray meta-analysis
were collected for evaluations in this paper. Each ex-
ample contained 4–8 microarray studies. Five of the
six examples were of the commonly seen two-group
comparison and the last breast cancer example con-
tained relapse-free survival outcome. We applied the
MetaQC package [2] to assess quality of the studies
for meta-analysis and determined the final inclusion/
exclusion criteria. The principal component analysis
(PCA) bi-plots and the six QC measures are summa-
rized in Additional file 1: Figure S1, Tables S2 and S3.
Details of the data sets are available in Additional file 1:
Table S1.

Underlying hypothesis settings
Following the classical convention of Brinbaum [6] and
Li and Tseng [7] (see also Tseng et al. [3]), meta-analysis
methods can be classified into two complementary hy-
pothesis settings. In the first hypothesis setting (denoted
as HSA), the goal is to detect DE genes that have non-
zero effect sizes in all studies:

H0: \K
k¼1 θk ¼ 0f g versus Ha: \K

k¼1 θk≠0f g HSAð Þ

where θk is the effect size of study k. The second
hypothesis setting (denoted as HSB), however, aims to
detect a DE gene if it has non-zero effect size in “one
or more” studies:

H0: \K
k¼1 θk ¼ 0f gversus Ha: ⋃K

k¼1 θk≠0f g HSBð Þ

In most applications, HSA is more appropriate to detect
conserved and consistent candidate markers across all
studies. However, different degrees of heterogeneity can
exist in the studies and HSB can be useful to detect study-
specific markers (e.g. studies from different tissues are
combined and tissue specific markers are expected and of
interest). Since HSA is often too conservative when many
studies are combined, Song and Tseng (2012) proposed
a more practical and robust hypothesis setting (namely
HSr) that targets on DE genes with non-zero effect sizes
in “majority” of studies, where majority of studies is
defined as, for example, more than 50% of combined
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studies (i.e. r ≥ 0.5⋅K). The robust hypothesis setting
considered was:

H0: \K
k¼1 θk ¼ 0f g versus Ha:

XK

k¼1
I θk≠0f g ≥r HSrð Þ

A major contribution of this paper is to characterize
meta-analysis methods suitable for different hypothesis
settings (HSA, HSB and HSr) using simulation and real
applications and to compare their performance with four
benchmarks to provide a practical guideline.

Microarray meta-analysis data pre-processing
Assume that we have K microarray studies to combine.
For study k (1 ≤ k ≤K), denote by xgsk the gene expression
intensity of gene g (1 ≤ g ≤G) and sample s (1 ≤ s ≤ Sk; Sk
the number of samples in study k), and ysk the disease/out-
come variable of sample s. The disease/outcome variable
can be of binary, multi-class, continuous or censored data,
representing the disease state, severity or prognosis out-
come (e.g. tumor versus normal or recurrence survival
time). The goal of microarray meta-analysis is to combine
information of K studies to detect differentially expressed
(DE) genes associated with the disease/outcome vari-
able. Such DE genes serve as candidate markers for dis-
ease classification, diagnosis or prognosis prediction
and help understand the genetic mechanisms under-
lying a disease. In this paper, before meta-analysis we
first applied penalized t-statistic to each individual study
to generate p-values or DE ranks [8] for a binary outcome.
In contrast to traditional t-statistic, penalized t-statistic
adds a fudge parameter s0 to stabilize the denominator
T ¼ �X−�Yð Þ= ŝ þ s0Þðð ; �X and �Y are means of case and
control groups) and to avoid a large t-statistic due to small
estimated variance ŝ . The p-values were calculated using
the null distributions derived from conventional non-
parametric permutation analysis by randomly permuting
the case and control labels for 10,000 times [9]. For cen-
sored outcome variables, Cox proportion hazard model
and log-rank test were used [10]. Meta-analysis methods
(described in the next subsection) were then used to
combine information across studies and generate meta-
analyzed p-values. To account for multiple comparison,
Benjamini and Hochberg procedure was used to control
false discovery rate (FDR) [11]. All methods were imple-
mented using the “MetaDE” package in R [12]. Data sets
and all programming codes are available at http://www.
biostat.pitt.edu/bioinfo/publication.htm.

Microarray meta-analysis methods
According to a recent review paper [3], microarray meta-
analysis methods can be categorized into three types: com-
bine p-values, combine effect sizes and combine ranks.
Below, we briefly describe 12 methods that were selected
for comparison.
Combine p-values
Fisher The Fisher’s method [13] sums up the log-
transformed p-values obtained from individual studies.

The combined Fisher’s statistic χ2Fisher ¼ −2
Xk

i¼1
log Pið Þ

follows a χ2 distribution with 2 k degrees of freedom
under the null hypothesis (assuming null p-values are
un;iformly distributed). Note that we perform permuta-
tion analysis instead of such parametric evaluation for
Fisher and other methods in this paper. Smaller p-values
contribute larger scores to the Fisher’s statistic.

Stouffer Stouffer’s method [14] sums the inverse normal
transformed p-values. Stouffer’s statistics TStouffer ¼Xk

i¼1
zi=

ffiffiffi
k

p
zi ¼ Φ−1 pið Þ;�

where Φ is standard normal

c.c.f ) follows a standard normal distribution under the
null hypothesis. Similar to Fisher’s method, smaller
p-values contribute more to the Stouffer’s score, but in a
smaller magnitude.

Adaptively weighted (AW) Fisher The AW Fisher’s
method [7] assigns different weights to each indivi-

dual study TAW ¼ −
XK

k¼1
wk⋅ log Pið Þ;wk ¼ 0 or1 and it

searches through all possible weights to find the best
adaptive weight with the smallest derived p-value. One sig-
nificant advantage of this method is its ability to indicate
which studies contribute to the evidence aggregation and
elucidates heterogeneity in the meta-analysis. Details can
be referred to the Additional file 1.

Minimum p-value (minP) The minP method takes the
minimum p-value among the K studies as the test statistic
[15]. It follows a beta distribution with degrees of freedom
α = 1 and β = k under the null hypothesis. This method
detects a DE gene whenever a small p-value exists in
any one of the K studies.

Maximum p-value (maxP) The maxP method takes
maximum p-value as the test statistic [16]. It follows a beta
distribution with degrees of freedom α =K and β = 1 under
the null hypothesis. This method targets on DE genes that
have small p-values in “all” studies.

r-th ordered p-value (rOP) The rOP method takes the
r-th order statistic among sorted p-values of K com-
bined studies. Under the null hypothesis, the statistic
follows a beta distribution with degrees of freedom α = r
and β = K – r + 1. The minP and maxP methods are spe-
cial cases of rOP. In Song and Tseng [17], rOP is con-
sidered a robust form of maxP (where r is set as greater
than 0.5∙K) to identify candidate markers differentially
expressed in “majority” of studies.

http://www.biostat.pitt.edu/bioinfo/publication.htm
http://www.biostat.pitt.edu/bioinfo/publication.htm
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Combine effect size
Fixed effects model (FEM) FEM combines the effect
size across K studies by assuming a simple linear model
with an underlying true effect size plus a random error in
each study.

Random effects model (REM) REM [18] extends FEM
by allowing random effects for the inter-study heterogen-
eity in the model. Detailed formulation and inference of
FEM and REM are available in the Additional file 1.

Combine rank statistics
RankProd (RP) and RankSum (RS) RankProd and
RankSum are based on the common biological belief
that if a gene is repeatedly at the top of the lists ordered
by up- or down-regulation fold change in replicate experi-
ments, the gene is more likely a DE gene [19]. Detailed
formulation and algorithms are available in the Additional
file 1.

Product of ranks (PR) and Sum of ranks (SR) These
two methods apply a naïve product or sum of the DE
evidence ranks across studies [20]. Suppose Rgk repre-
sents the rank of p-value of gene g among all genes in
study k. The test statistics of PR and SR methods are cal-

culated as PRg ¼
YK

k¼1
Rgk and SRg ¼

XK

k¼1
Rgk ; respect-

ively. P-values of the test statistics can be calculated
analytically or obtained from a permutation analysis. Note
that the ranks taken from the smallest to largest (the
choice in the method) are more sensitive than ranking
from largest to smallest in the PR method, while it makes
no difference to SR.

Characterization of meta-analysis methods
MDS plots to characterize the methods
The multi-dimensional scaling (MDS) plot is a useful
visualization tool for exploring high-dimensional data
in a low-dimensional space [21]. In the evaluation of 12
meta-analysis methods, we calculated the adjusted DE
similarity measure for every pair of methods to quantify
the similarity of their DE analysis results in a given
example. A dissimilarity measure is then defined as one
minus the adjusted DE similarity measure and the
dissimilarity measure is used to generate an MDS plot
of the 12 methods. In the MDS plot, methods that are
clustered in a neighborhood indicate that they produce
similar DE analysis results.

Entropy measure to characterize data sets
As indicated in the Section of “Underlying hypothesis
settings”, selection of the most suitable meta-analysis
method(s) largely depends on their underlying hypothesis
setting (HSA, HSB and HSr). The selection of a hypothesis
setting for a given application should be based on the
experimental design, biological knowledge and the
associated analytical objectives. There are, however,
occasions that little prior knowledge or preference is
available and an objective characterization of the data
structure is desired in a given application. For this pur-
pose, we developed a data-driven entropy measure to
characterize whether a given meta-analysis data set con-
tains more HSA-type markers or HSB-type markers [22].
The algorithm is described below:

1. Apply Fisher’s meta-analysis method to combine
p-values across studies to identify the top
H candidate markers. Here we used H = 1,000,
H represents the rough number of DE genes (in our
belief ) that are contained in the data.

2. For each selected marker, the standardized minus
p-value score for gene g in the k-th study is defined

as lgk ¼ −log pgk
� �

=−
XK

k¼1
log pgk

� �
: Note that

0 ≤ lgk ≤ 1, large lgk corresponds to more significant

p-value pgk, and
XK

k¼1
lgk ¼ 1:

3. The entropy of gene g is defined as eg ¼ −
XK

k¼1
lgk

log lgk
� �

. Box-plots of entropies of the top H genes
are generated for each meta-analysis application
(Figure 1(b)).

Intuitively, a high entropy value indicates that the gene
has small p-values in all or most studies and is of HSA
or HSr-type. Conversely, genes with small entropy have
small p-values in one or only few studies where HSB-type
methods are more adequate. When calculating lgk in
step 2, we capped –log(pgk) at 10 to avoid contributions
of close-to-zero p-values that can generate near-infinite
scores. The entropy box-plot helps determine an appropri-
ate meta-analysis hypothesis setting if no pre-set biological
objective exists.

Evaluation criteria
For objective quantitative evaluation, we developed the fol-
lowing four statistical criteria to benchmark performance
of the methods.

Detection capability
The first criterion considers the number of DE genes
detected by each meta-analysis method under the
same pre-set FDR threshold (e.g. FDR = 1%). Although
detecting more DE genes does not guarantee better
“statistical power”, this criterion has served as a surro-
gate of statistical power in previous comparative studies
[23]. Since we do not know the underlying true DE
genes, we refer to this evaluation as “detection capability”
in this paper. An implicit assumption underlying this



Figure 1 Characterization of methods and datasets. (a) Multi-dimensional scaling (MDS) plot of all 12 methods based on the average
dissimilarity matrix of six examples and (b) The box-plots of entropies in six data sets. Colors (red, green and blue) indicate clusters of methods
with similar DE detection ordering. High entropies indicate that high consistency of DE gene detection across studies (e.g. MDD). Low entropies
show greater heterogeneity in DE gene detection (e.g. prostate cancer).
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criterion is that the statistical procedure to detect DE
genes in each study and the FDR control in the meta-
analysis are accurate (or roughly accurate). To account
for data variability in the evaluation, we bootstrapped
(i.e. sampled with replacement to obtain the same num-
ber of samples in each bootstrapped dataset) the samples
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in each study for B = 50 times and show the plots of
ean with standard error bars. In the bootstrapping, the
entire sample is either selected or not so the gene
dependence structure is maintained. Denote by rmeb

the rank of detection capability performance (the
smaller the better) of method m (1 ≤m ≤ 12) in example
e (1 ≤ e ≤ 6) and in the bth (1 ≤ b ≤ 12) bootstrap
simulation. The mean standardized rank (MSR) for

method m and example e is calculated as MSRme ¼
XB

b¼1

rmeb=#of methods comparedð Þ=B and the aggregated

standardized rank (ASR) is calculated as ASRm ¼
X6

e¼1

MSRme=6; representing the overall performance of
method m across all six examples. Additional file 1: Table
S4 shows the MSR and ASR of all 12 methods and
Figure 2 (in the Result section) shows plot of mean
with standard error bars for each method ordered by
ASR. We note that MSR and ASR are both standard-
ized between 0 and 1. The standardization in MSR is
necessary because in the breast cancer survival example
Figure 2 The plot of mean numbers of detected DE genes with error
meta-analysis methods. Note that FEM, REM, RankProd and RankSum can
we cannot apply FEM, REM, RankSum and RankProd
as they are developed only for a two group comparison.

Biological association
The second criterion requires that a good meta-analysis
method should detect a DE gene list that has better associ-
ation with pre-defined “gold standard” pathways related to
the targeted disease. Such a “gold standard” pathway set
should be obtained from biological knowledge for a
given disease or biological mechanism under investigation.
However, since most disease or biological mechanisms are
not well-studied, obtaining such “gold standard” pathways
is either difficult or questionable. To facilitate this evalu-
ation without bias, we develop a computational and data-
driven approach to determine a set of surrogate disease-
related pathways out of a large collection of pathways by
combining pathway enrichment analysis results from each
single study. Specifically, we first collected 2,287 pathways
(gene sets) from MSigDB (http://www.broadinstitute.org/
gsea/msigdb/): 1,454 pathways from “GO", 186 pathways
bars of standard error from 50 bootstrapped data sets for the 12
not be applied to survival examples.

http://www.broadinstitute.org/gsea/msigdb/
http://www.broadinstitute.org/gsea/msigdb/
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from “KEGG”, 217 pathways from “BIOCARTA” and
430 pathways from “REACTOME”, respectively. We fil-
tered out pathways with less than 5 genes or more than
200 genes and 2,113 pathways were left for the analysis.
DE analysis was performed in each single study separ-
ately and pathway enrichment analysis was performed
for all the 2,113 pathways by the Kolmogorov-Smirnov
(KS) association test. Denote by puk the resulting path-
way enrichment p-value from KS test for pathway u
(1 ≤ u ≤ 2,113) and study k (1 ≤ k ≤ K). For a given study
k, enrichment ranks over pathways were calculated as
ruk = ranku(puk). A rank-sum score for a given pathway

u was then derived as Su ¼
XK

k¼1
ruk : Intuitively, path-

ways with small rank-sum scores indicate that they are
likely associated with the disease outcome by aggregated
evidence of the K individual study analyses. We choose
the top |D| pathways that had the smallest rank-sum
scores as the surrogate disease-related pathways and
used these to proceed with the biological association
evaluation of meta-analysis methods in the following.
Given the selected surrogate pathways D, the following

procedure was used to evaluate performance of the 12
meta-analysis methods for a given example e (1 ≤ e ≤ 6).
For each meta-analysis method m (1 ≤m ≤M= 12), the
DE analysis result was associated with pathway u and
the resulting enrichment p-value by KS-test was de-
noted by ~Pmed 1≤d≤ Dj jð Þ: The rank of ~Pmed for method
m among 12 methods was denoted by vmed ¼ rankm
~Pmed

� �
: Similar to the detection capability evaluation,

we calculated the mean standardized rank (MSR)

for method m and example e as MSRme ¼
XD

d¼1
vmed=ð #

of themethodscomparedÞ=D and the aggregated standard-

ized rank (ASR) as ASRm ¼
X6

e¼1
MSRme=6; representing

the overall performance of method m. To select the param-
eter |D| for surrogate disease-related pathways, Additional
file 1: Figure S4 shows the trend of MSRme (on the y-axis)
versus |D| (on the x-axis) as |D| increases. The result indi-
cated that the performance evaluation using different D
only minimally impacted the conclusion when D > 30. We
choose D = 100 throughout this paper.
Note that we used KS test, instead of the popular Fisher’s

exact test because each single study detected variable
number of DE genes under a given FDR cutoff and the
Fisher’s exact test is usually not powerful unless a few
hundred DE genes are detected. On the other hand, the
KS test does not require an arbitrary p-value cutoff to
determine the DE gene list for enrichment analysis.

Stability
The third criterion examines whether a meta-analysis
method generates stable DE analysis result. To achieve
this goal, we randomly split samples into half in each
study (so that cases and controls are as equally split as
possible). The first half of each study was taken to per-
form the first meta-analysis and generate a DE analysis
result. Similarly, the second half of each study was taken
to perform a second meta-analysis. The generated DE
analysis results from two separate meta-analyses were
compared by the adjusted DE similarity measure (to be
described in the next section). The procedure is repeated
for B = 50 times. Denote by Smeb the adjusted DE similarity
measure of method m of the bth simulation in example e.
Similar to the first two criteria, MSR and ASR were
calculated based on Smeb to evaluate the methods.

Robustness
The final criterion investigates the robustness of a meta-
analysis method when an outlying irrelevant study is mis-
takenly added to the meta-analysis. For each of the six real
examples, we randomly picked one irrelevant study from
the other five examples, added it to the specific example
for meta-analysis and evaluated the change from the ori-
ginal meta-analysis. The adjusted DE similarity measure
was calculated between the original meta-analysis and the
new meta-analysis with an added outlier. A high adjusted
DE similarity measure shows better robustness against in-
clusion of the outlying study. This procedure was repeated
until all irrelevant studies were used. The MSR and ASR
are then calculated based on the adjusted DE similarity
measures to evaluate the methods.

Similarity measure between two ordered DE gene lists
To compare results of two DE detection methods (from
single study analysis or meta-analysis), a commonly used
method in the literature is to take the DE genes under
certain p-value or FDR threshold, plot the Venn diagram
and compute the ratio of overlap. This method, however,
greatly depends on the selection of FDR threshold and is
unstable. Another approach is to take the generated DE
ordered gene lists from two methods and compute the
non-parametric Spearman rank correlation [24]. This
method avoids the arbitrary FDR cutoff but gives, say,
the top 100 important DE genes and the bottom 100
non-DE genes equal contribution. To circumvent this
pitfall, Li et al. proposed a parametric reproducibility
measure for ChIP-seq data in the ENCODE project [25].
Yang et al. introduced an OrderedList measure to quantify
similarity of two ordered DE gene lists [26]. For simplicity,
we extended the OrderedList measure into a standardized
similarity score for the evaluation purpose in this paper.
Specifically, suppose G1 and G2 are two ordered DE gene
lists (e.g. ordered by p-values) and small ranks represent
more significant DE genes. We denote by On(G1,G2) the
number of overlapped genes in the top n genes of G1 and
G2. As a result, 0 ≤On(G1,G2) ≤ n and a large On(G1,G2)
value indicates high similarity of the two ordered lists in



Table 1 The detected number of DE genes (at FDR = 5%),
the true FDR, AUC values under HSA and HSB and the
concluding characterization of targeted hypothesis
setting of each method

maxP rOP minP Fisher AW Stouffer

Detected # 321 522 1005 1000 1000 974

(se) (2.2) (2.35) (0.85) (1.06) (1.05) (1.5)

True FDR (HSA) .068 .018 .447 .444 .444 .43

(se) (.0008) (.0012) (.0006) (.0007) (.0008) (.0009)

True FDR (HSB) .007 .011 .016 .017 .016 .022

(se) (.0005) (.0004) (.0006) (.0006) (.0007) (.0006)

AUC (HSA) .996 .964 .8 .82 .79 .89

(se) (.0003) (.0014) (.0005) (.0005) (.0005) (.0006)

AUC (HSB) .75 .833 .99 .99 .99 .99

(se) (.0013) (.01) (.0001) (.0001) (.0001) (.0005)

Characterization HSA HSr HSB HSB HSB HSB

PR SR FEM REM RankProd RankSum

Detected # 136 186 948 411 391 105

(se) (2.51) (2.3) (1.75) (2.86) (3.31) (1.514)

True FDR (HSA) .008 .01 .415 .117 .13 .389

(se) (.0003) (.0004) (.0009) (.0015) (.0014) (.0008)

True FDR (HSB) 0 0 .022 .007 0 0

(se) (0) (0) (.0007) (.0004) (0) (0)

AUC (HSA) .986 .99 .917 .99 .916 .504

(se) (.0003) (.0002) (.0009) (.0002) (.0011) (.0046)

AUC (HSB) .981 .95 .984 .92 .934 .496

(se) (.0004) (.0008) (.0004) (.0011) (.0012) (.0025)

Characterization HSA HSA HSB HSr HSB HSB

Chang et al. BMC Bioinformatics 2013, 14:368 Page 8 of 15
http://www.biomedcentral.com/1471-2105/14/368
the top n genes. A weighted average similarity score is cal-

culated as S G1;G2ð Þ ¼
XG

n¼1
e−an: On G1;G2ð Þ; where G

is the total number of matched genes and the power α
controls the magnitude of weights emphasized on the
top ranked genes. When α is large, top ranked genes
are weighted higher in the similarity measure. The ex-
pected value (under the null hypothesis that the two
gene rankings are randomly generated) and maximum
value of S can be easily calculated: Enull S G1;G2ð Þð Þ ¼XG

n¼1
e−αn:n2=G and max S G1;G2ð Þð Þ ¼

XG

n¼1
e−an:n:

We apply an idea similar to adjusted Rand index [27] used
to measure similarity of two clustering results and define
the adjusted DE similarity measure as

S� G1;G2ð Þ ¼ S G1;G2ð Þ−Enull S G1;G2ð Þð Þ
Max S G1;G2ð Þð Þ−Enull S G1;G2ð Þð Þ

This measure ranges between −1 to 1 and gives an ex-
pected value of 0 if two ordered gene lists are obtained
by random chance. Yang et al. proposed a resampling-
based and ROC methods to estimate the best selection
of α. Since the number of DE genes in our examples are
generally high, we choose a relatively small α = 0.001
throughout this paper. We have tested different α and
found that the results were similar (Additional file 1:
Figure S7).

Results
Simulation setting
We conducted simulation studies to evaluate and char-
acterize the 12 meta-analysis methods for detecting bio-
markers in the underlying hypothesis settings of HSA,
HSB or HSr. The simulation algorithm is described below:

1. We simulated 800 genes with 40 gene clusters
(20 genes in each cluster) and other 1,200 genes
do not belong to any cluster. The cluster indexes Cg

for gene g (1 ≤ g ≤ 2, 000) were randomly sampled,
such that

P
I{Cg = 0} = 1, 200 and ∑ I{Cg = c} = 20,

1 ≤ c ≤ 40.
2. For genes in cluster c (1 ≤ c ≤ 40) and in study

k (1 ≤ k ≤ 5), we sampled
P0

ckeW −1 Ψ; 60ð Þ; where
Ψ = 0.5I20 × 20 + 0.5J20 × 20, W

− 1 denotes the inverse
Wishart distribution, I is the identity matrix and J
is the matrix with all elements equal 1. We then
standardized Σ

0
ck into Σck where the diagonal

elements are all 1’s.
3. 20 genes in cluster c was denoted by the index of

gc1,…, gc20, i.e. Cgcj ¼ c;where 1≤c≤40 and 1≤j≤20:
We sampled gene expression levels of genes in

cluster c for sample n as X
0
gc1nk

;…;X
0
gc20nk

� �TeMVN

0;
P

ck

� �
where 1 ≤ n ≤ 100 and 1 ≤ k ≤ 5, and sample
expression level for the gene geN 0; σ2k
� �

which is
not in any cluster for sample n, where 1 ≤ n ≤ 100,
1 ≤ k ≤ 5 and σ2k was uniformly distributed from
[0.8, 1.2], which indicates different variance for
study k.

4. For the first 1,000 genes (1 ≤ g ≤ 1, 000), kg (the
number of studies that are differentially expressed
for gene g) was generated by sampling kg = 1, 2,
3, 4 and 5, respectively. For the next 1,000 genes
(1, 001 ≤ g ≤ 2, 000), kg = 0 represents non-DE genes
in all five studies.

5. To simulate expression intensities for cases, we
randomly sampled δgk∈ {0, 1}, such that

P
kδgk = kg.

If δgk = 1, gene g in study k was a DE gene, otherwise
it was a non-DE gene. When δgk = 1, we sampled
expression intensities μgk from a uniform distribution
in the range of [0.5, 3], which means we considered
the concordance effect (up-regulated) among all
simulated studies. Hence, the expression for control
samples are Xgnk ¼ X

0
gnk ; and case samples are

Y gnk ¼ X
0
g nþ50ð Þk þ μgk :δgk ; for 1 ≤ g ≤ 2, 000, 1 ≤

n ≤ 50 and 1 ≤ k ≤ 5.
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In the simulation study, we had 1,000 non-DE genes
in all five studies (kg = 0), and 1,000 genes were differen-
tially expressed in 1 ~ 5 studies (kg = 1, 2, 3, 4, 5). On
average, we had roughly the same number (~200) of
genes in each group of kg = 1, 2, 3, 4, 5. See Additional
file 1: Figure S2 for the heatmap of a simulated example
(red colour represents up-regulated genes). We applied
the 12 meta-analysis method under FDR control at 5%.
With the knowledge of true kg, we were able to derive
the sensitivity and specificity for HSA and HSB, respect-
ively. In HSA, genes with kg = 5 were the underlying true
positives and genes with kg = 0 ~ 4 were the underlying
true negatives; in HSB, gene with kg = 1 ~ 5 were the
underlying true positives and genes with kg = 0 were the
true negatives. By adjusting the decision cut-off, the re-
ceiver operating characteristic (ROC) curves and the
resulting area under the curve (AUC) were used to evalu-
ate the performance. We simulated 50 data sets and re-
ported the means and standard errors of the AUC values.
AUC values range between 0 and 1. AUC= 50% represents
a random guess and AUC= 1 reaches the perfect predic-
tion. The above simulation scheme only considered the
concordance effect sizes (i.e. all with up-regulation when a
gene is DE in a study) among five simulated studies. In
many applications, some genes may have p-value statistical
significance in the meta-analysis but the effect sizes are
discordant (i.e. a gene is up-regulation in one study but
down-regulation in another study). To investigate that
Figure 3 The histograms of the true number of DE studies among de
effect, we performed a second simulation that considers
random discordant cases. In step 5, the μgk became a
mixture of two uniform distributions: πgk Unif ⋅[−3, -0.5]+
(1 − πgk)⋅ Unif[0.5, 3], where πgk is the probability of gene g
(1 ≤ g ≤ 2, 000) in study k(1 ≤ k ≤ 5) to have a discordant
effect size (down-regulated). We set πgk = 0.2 for the dis-
cordant simulation setting.

Simulation results to characterize the methods
The simulation study provided the underlying truth to
characterize the meta-analysis methods according to their
strengths and weaknesses for detecting DE genes of differ-
ent hypothesis settings. The performances of 12 methods
were evaluated by receiver operating characteristic (ROC)
curves, which is a visualization tool that illustrates the sen-
sitivity and specificity trade-off, and the resulting area
under the ROC curve (AUC) under two different hypoth-
esis settings of HSA and HSB. Table 1 shows the detected
number of DE genes under nominal FDR at 5%, the true
FDR and AUC values under HSA and HSB for all 12
methods. The values were averaged over 50 simulations
and the standard errors are shown in the parentheses.
Figure 3 shows the histogram of the true number of

DE studies (i.e. kg) among the detected DE genes under
FDR = 5% for each method. It is clearly seen that minP,
Fisher, AW, Stouffer and FEM detected HSB-type DE
genes and had high AUC values under HSB criterion
(0.98-0.99), compared to lower AUC values under HSA
tected DE genes under FDR = 5% in each method.
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criterion (0.79-0.9). For these methods, the true FDR for
HSA generally lost control (0.41- 0.44). On the other
hand, maxP, rOP and REM had high AUC under HSA
criterion (0.96-0.99) (true FDR = 0.068-0.117) compared
to HSB (0.75-0.92). maxP detected mostly HSA-type of
markers and rOP and REM detected mostly HSr-type
DE genes. PR and SR detected mostly HSA-type DE
genes but they surprisingly had very high AUC under
both HSA and HSB criteria. The RankProd method
detected DE genes between HSr and HSB types and had
a good AUC value under HSB. The RankSum detected
HSB-type DE genes but had poor AUC values (0.5) for
both HSA and HSB. Table 1 includes our concluding
characterization of the targeted hypothesis settings for
each meta-analysis method (see also Additional file 1:
Figure S5 of the ROC curve and AUC of HSA-type and
HSB-type in 12 meta-analysis methods). Additional file 1:
Figure S3 shows the result for the second discordant
simulation setting. The numbers of studies with opposite
effect size are represented by different colours in histo-
gram plot (green: all studies with concordance effect
Figure 4 Plots of mean values of –log10(p) with error bars of standard
Note that FEM, REM, RankProd and RankSum cannot be applied to survival
size; blue: one study has opposite effect size with the
remaining; red: two studies have opposite effect size with
the remaining). In summary, almost all meta-analysis
methods could not avoid inclusion of genes with opposite
effect sizes. Particularly, methods utilizing p-values from
two-sided tests (e.g. Fisher, AW, minP, maxP and rOP)
could not distinguish direction of effect sizes. Stouffer was
the only method that accommodated the effect size direc-
tion in its z-transformation formulation but its ability to
avoid DE genes with discordant effect sizes seemed still
limited. Owen (2009) proposed a one-sided correction pro-
cedure for Fisher’s method to avoid detection of discordant
effect sizes in meta-analysis [28]. The null distribution of
the new statistic, however, became difficult to derive. The
approach can potentially be extended to other methods
and more future research will be needed for this issue.

Results of the four evaluation criteria
Detection capability
Figure 2 shows the number of DE genes identified by each
of the 12 meta-analysis methods (FDR = 10% for MDD
error from KS-test based on the top 100 surrogate pathways.
examples.
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and breast cancer due to their weak signals and FDR = 1%
for all the others). Each plot shows mean with standard
error bars for 50 bootstrapped data sets. Additional file 1:
Table S4 shows the MSR and ASR for each method in the
six examples. The methods in Figure 2 are ordered ac-
cording to their ASR values. The top six methods with the
strongest detection capability were those that detected
HSB-type DE genes from the conclusion of Table 1: Fisher,
AW, Stouffer, minP, FEM and RankSum. The order of
performance of these six methods was pretty consistent
across all six examples. The next four methods were
rOP, RankProd, maxP and REM and they targeted on
either HSr or HSA. PR and SR had the weakest detection
capability, which was consistent with the simulation
result in Table 1.

Biological association
Figure 4 shows plots of mean with standard error
bars from the pathway association p-values (minus log-
transformed) of the top 100 surrogate disease-related path-
ways for the 12 methods. Additional file 1: Table S5 shows
Figure 5 Plots of mean with error bars of standard error of stability in
results of two randomly split data sets. Note that FEM, REM, RankProd a
the corresponding MSR and ASR. We found that Stouffer,
Fisher and AW had the best performance among the 12
methods. Surprisingly we found that although PR and SR
had low detection capability in simulation and real data,
they consistently had relatively high biological association
results. This may be due to the better DE gene ordering
results these two methods provide, as was also shown by
the high AUC values under both hypothesis settings in the
simulation.

Stability
Figure 5 shows the plots of mean with standard error
bars of stability calculated by adjusted DE similarity
measure. Additional file 1: Table S6 contains the corre-
sponding MSR and ASR. In summary, RankProd and
RankSum methods were the most stable meta-analysis
methods probably because these two nonparametric ap-
proaches take into account all possible fold change cal-
culations between cases and controls. They do not need
any distributional assumptions, which provided stability
even when sample sizes were small [29]. The maximum
six examples based on the adjusted similarity between DE
nd RankSum cannot be applied to survival examples.
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p-value method consistently had the lowest stability in
all data sets, which is somewhat expected. For a given
candidate marker with a small maximum p-value, the
chance that at least one study has significantly inflated
p-values is high when sample size is reduced by half.
The stability measures in the breast cancer example
were generally lower than other examples. This is
mainly due to the weak signals for survival outcome
association, which might be improved if larger sample
size is available.

Robustness
Figure 6 shows the plots of mean with standard error
bars of robustness calculated by adjusted DE similarity
measure between the original meta-analysis and the new
meta-analysis with an added outlier. Additional file 1:
Table S7 shows the corresponding MSR and ASR values.
In general, methods suitable for HSB (minP, AW, Fisher
and Stouffer) have better robustness than methods for
HSA or HSr (e.g. maxP and rOP). The trend is consistent
in the prostate cancer, brain cancer and IPF examples
Figure 6 Plots of mean with error bars of standard error of robustnes
results with/without adding one irrelevant noise study. Note that FEM
but is more variable in the weak-signal MDD and breast
cancer examples. RankSum was surprisingly the most
sensitive method to outliers, while RankProd performs
not bad.

Characterization of methods by MDS plots
We applied the adjusted DE similarity measure to quan-
tify the similarity of the DE gene orders from any two
meta-analysis methods. The resulting dissimilarity measure
(i.e. one minus adjusted similarity measure) was used to
construct the multidimensional scaling (MDS) plot,
showing the similarity/dissimilarity structure between
the 12 methods in a two-dimensional space. When two
methods were close to each other, they generated similar
DE gene ordering. The patterns of MDS plots from six
examples generated quite consistent results (Additional
file 1: Figure S6). Figure 1(a) shows an aggregated MDS
plot where the input dissimilarity matrix is averaged
from the six examples. We clearly observed that Fisher,
AW, Stouffer, minP, PR and SR were consistently clus-
tered together in all six individual and the aggregated
s in six examples based on the adjusted similarity between DE
, REM, RankProd and RankSum cannot be applied to survival examples.
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MDS plot (labeled in red). This is not surprising given
that these methods all sum transformed p-value evi-
dence across studies (except for minP). Two methods to
combine effect sizes and two methods to combine ranks
(FEM, REM, RankProd and RankSum labeled in blue)
are consistently clustered together. Finally, the maxP
and rOP methods seem to form a third loose cluster
(labeled in green).

Characterization of data sets by entropy measure
From the simulation study, selection of a most suitable
meta-analysis method depends on the hypothesis setting
behind the methods. The choice of a hypothesis setting
mostly depends on the biological purpose of the analysis;
that is, whether one aims to detect candidate markers
differentially expressed in “all” (HSA), “most” (HSr) or
“one or more” (HSB) studies. However, when no bio-
logical prior information or preference exists, the en-
tropy measure can be objectively used to determine the
choice of hypothesis setting. The analysis identifies the
top 1,000 genes from Fisher’s meta-analysis method and
the gene-specific entropy of each gene is calculated.
When the entropy is small, the p-values are small in only
one or very few studies. Conversely, when the entropy
is large, most or all of the studies have small p-values.
Figure 1(b) shows the box-plots of entropy of the top
1,000 candidate genes identified by Fisher’s method in
the six data sets. The result shows that prostate cancer
comparing primary and metastatic tumor samples had
the smallest entropy values, which indicated high hetero-
geneity across the three studies and that HSB should
be considered in the meta-analysis. On the other hand,
MDD had the highest entropy values. Although the sig-
nals of each MDD study were very weak, they were
rather consistent across studies and application of HSA
or HSr was adequate. For the other examples, we suggest
Table 2 Ranks of method performance in the four evaluation

Targeted HS Power detection Biological asso

PR HSA 12 4

SR HSA 11 6

maxP HSA 9 10

rOP HSr 7 5

REM HSr 10 11

Fisher HSB 1 2

AW HSB 2 3

Stouffer HSB 3 1

minP HSB 4 7

RankProd HSB 8 8

RankSum HSB 6 12

FEM HSB 5 9

*1Cluster number of methods in the MDS plot (Figure 1(a)).
using the robust HSr unless other prior biological pur-
pose is indicated.

Conclusions and discussions
An application guideline for practitioners
From the simulation study, the 12 meta-analysis methods
were categorized into three hypothesis settings (HSA, HSB
and HSr), showing their strengths for detecting different
types of DE genes in the meta-analysis (Figure 3 and the
second column of Table 2). For example, maxP is catego-
rized to HSA since it tends to detect only genes that are
differentially expressed in all studies. From the results
using four evaluation criteria, we summarized the rank of
ASR values (i.e. the order used in Figures 2 and 6) and cal-
culated the rank sum of each method in Table 2. The
methods were then sorted first by the hypothesis setting
categories and then by the rank sum. The clusters of
methods from the MDS plot were also displayed. For
methods in the HSA category, we surprisingly see that the
maxP method performed among the worst in all four
evaluation criteria and should be avoided. PR was a better
choice in this hypothesis setting although it provides a
rather weak detection capability. For HSB, Fisher, AW
and Stouffer performed very well in general. Among
these three methods, we note that AW has an additional
advantage to provide an adaptive weight index that indi-
cates the subset of studies contributing to the meta-
analysis and characterizes the heterogeneity (e.g. adaptive
weight (1,0,…) indicates that the marker is DE in study 1
but not in study 2, etc.). As a result, we recommend AW
over Fisher and Stouffer in the HSB category. For HSr, the
result was less conclusive. REM provided better stability
and robustness but sacrificed detection capability and
biological association. On the other hand, rOP obtained
better detection capability and biological association but
was neither stable nor robust. In general, since detection
criteria

ciation Stability Robustness Rank Sum MDS*1

4 6 26 1

9 7 33 1

12 11 42 2

10 10 32 2

5 8 34 3

3 3 9 1

6 2 13 1

8 4 16 1

7 1 19 1

1 5 22 3

2 12 32 3

11 9 34 3
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capability and biological association are of more import-
ance in the meta-analysis and rOP has the advantage to
link the choice of r in HSr with the rOP method (e.g. when
r = 0.7∙K, we identify genes that are DE in more than 70%
of studies), we recommend rOP over REM.
Below, we provide a general guideline for a practitioner

when applying microarray meta-analysis. Data sets of a
relevant biological or disease hypothesis are firstly
identified, preprocessed and annotated according to
Step (i) - (v) in Ramasamy et al. Proper quality assess-
ment should be performed to exclude studies with
problematic quality (e.g. with the aid of MetaQC as we
did in the six examples). Based on the experimental design
and biological objectives of collected data, one should
determine whether the meta-analysis aims to identify
biomarkers differentially expressed in all studies (HSA), in
one or more studies (HSB) or in majority of studies (HSr).
In general, if higher heterogeneity is expected from, say,
heterogeneous experimental protocol, cohort or tissues,
HSB should be considered. For example, if the combined
studies come from different tissues (e.g. the first study
uses peripheral blood, the second study uses muscle tissue
and so on), tissue-specific markers may be expected and
HSB should be applied. On the contrary, if the collected
studies are relatively homogeneous (e.g. use the same array
platform or from the same lab), HSr is generally recom-
mended, as it provides robustness and detects consistent
signals across the majority of studies. In the situation that
no prior knowledge is available to choose a desired hy-
pothesis setting or if the researcher is interested in a data-
driven decision, the entropy measure in Figure 1(b) can be
applied and the resulting box-plot can be compared to the
six examples in this paper to guide the decision. Once the
hypothesis setting is determined, the choice of a meta-
analysis method can be selected from the discussion above
and Table 2.

Conclusions
In this paper, we performed a comprehensive comparative
study to evaluate 12 microarray meta-analysis methods
using simulation and six real examples with four evalu-
ation criteria. We clarified three hypothesis settings that
were implicitly assumed behind the methods. The evalu-
ation results produced a practical guideline to inform biol-
ogists the best choice of method(s) in real applications.
With the reduced cost of high-throughput experi-

ments, data from microarray, new sequencing tech-
niques and mass spectrometry accumulate rapidly in
the public domain. Integration of multiple data sets has
become a routine approach to increase statistical power,
reduce false positives and provide more robust and vali-
dated conclusions. The evaluation in this paper fo-
cuses on microarray meta-analysis but the principles and
messages apply to other types of genomic meta-analysis
(e.g. GWAS, methylation, miRNA and eQTL). When
the next-generation sequencing technology becomes
more affordable in the future, sequencing data will be-
come more prevalent as well and similar meta-analysis
techniques will apply. For these different types of gen-
omic meta-analysis, similar comprehensive evaluation
could be performed and application guidelines should be
established as well.
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