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Brain-computer interfaces (BCIs) are proving to be viable clinical interventions for sufferers of 

amyotrophic lateral sclerosis, amputations, and spinal cord injuries. To improve the viability of 

BCIs, it will help to have a thorough understanding of how the brain controls them. Neural activity 

during usage of certain BCIs behaves in a surprising and seemingly counterintuitive manner – the 

preferred directions (PDs) of neurons cluster together. We trained monkeys to reach to targets in 

a center-out task either using their arm or a BCI. We found that neurons’ PDs cluster similarly 

during training of the BCI decoder and usage of the BCI, but remain relatively unclustered when 

the monkeys use their arms. Modulation depths increase upon usage of the BCI, and narrowness 

of tuning tends to either increase or decrease rather than staying the same. In addition, the cluster 

direction can be predicted from per-target performance. A model where two neurons’ PDs 

approach one another reveals how much modulation depths have to increase to maintain 

controllability. This thesis concludes with considerations of why this clustering might occur, and 

whether or not it benefits BCI control. 
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1.0  INTRODUCTION 

In 1969, Eberhard Fetz successfully trained monkeys to increase the firing rate of single neurons, 

based on visual feedback (Fetz, 1969). In hindsight, we recognize that this was the first brain-

computer interface (BCI), in that it provided the animals with direct feedback about the state of 

their own neural activity. Additional studies demonstrated accurate decoding of spike trains to 

estimate stimuli or motor output (Bialek et al., 1991; Humphrey et al., 1970). These studies and 

others anticipated the later development of BCIs (Fetz and Finocchio, 1971; Schmidt et al., 1977, 

1978). BCIs translate neural activity into control signals that can be used to control computer 

cursors, robotic arms, or other prostheses.  

The operation of a BCI involves two key steps. First, a decoder must be calibrated, during 

what we call a training period. This is done by relating the activity of a population of neurons to 

the intended or actual movements of the user. Second, once calibrated, the decoder is used in real-

time to allow the subject to control an external device, such as a computer cursor or a robotic limb. 

The population vector algorithm (PVA) is one such decoding algorithm (Georgopoulos et al., 

1986, 1988). The PVA exploits the classic observation that each individual neuron in the primary 

motor cortex (M1) has a preferred direction (PD). Preferred direction is a concept where the 

neuron, during certain types of motor tasks, fires at its highest rate for movements towards a 

specific direction. For directions away from the preferred direction, the neuron fires less. PDs can 

be estimated by fitting a tuning curve to the neural activity. For example, if the motor task requires 
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movements to targets along a circle, the PDs found from fitted tuning curves range from 0° to 

360°. A fundamental aspect of the PVA is that the PDs of the constituent neurons are uniformly 

distributed; indeed, without that, the algorithm is biased and inaccurate (Scott et al., 2001). 

We found that PDs cluster in our own data, which use a velocity Kalman filter for decoding. 

This was an unexpected discovery, and is rather remarkable, considering that PVA predicts exactly 

the opposite. The Kalman filter is a commonly used decoding algorithm for translating neural 

activity (Serruya et al., 2003; Wu et al., 2006). It is an optimal recursive filter that estimates the 

state (velocity), given measurements (neural activity) and a linear model of the state. The Kalman 

filter has advantages over other decoding algorithms, such as incorporating estimates of 

uncertainties and modeling kinematics. It is optimal under the conditions that the system can be 

described with a linear model and noise is white and Gaussian. 

 Intuitively, one might expect that PD clustering reduces controllability of a BCI, since the 

neurons would be providing overlapping information to drive the BCI (Tehovnik et al., 2013). 

However, PD clustering does occur, seemingly without reducing performance. The goal of this 

study is to characterize the phenomenon of PD clustering – the conditions under which it occurs 

and what it might be telling us about the neural strategies of BCI control. This work is part of a 

larger effort to understand what happens to neural signals during BCI usage, as compared to natural 

arm movements. 

How can good BCI performance result from a population of clustered neurons? Preferred 

directions are not perfectly clustered such that all PDs point in exactly the same direction. A neural 

mechanism such as modulation depth change may provide an avenue towards BCI controllability 

through amplification of signals. Notably, while decoding under a linear regression model, 

modulation depth tends to increase over time (Ganguly and Carmena, 2009). Under a PVA 
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decoder, perturbations to a subset of neurons results in those neurons reducing their modulation 

depth (Jarosiewicz et al., 2008). Modulation depth changes in neurons with PDs away from the 

population mean PD may partially compensate for clustering.  

Examination of other BCI studies reveal PD clustering during BCI usage (Carmena et al., 

2003; Lebedev et al., 2005; O’Doherty et al., 2011). However, rarely is the phenomenon even 

mentioned (Green and Kalaska, 2011; Tehovnik et al., 2013). Note that these animal studies did 

not use a PVA. Instead, they used linear filters or Kalman filters. We aim not only to show that 

PD clustering occurs, but to investigate how this effect arises. By doing so, we can better 

understand how the brain controls BCIs. 
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2.0  METHODS 

2.1 EXPERIMENTAL DETAILS 

Rhesus macaques (macaca mulatta) were trained on a center-out task. During experiments, 

monkeys wore gloves with LED markers attached. A Phasespace Impulse system with six cameras 

tracked the markers and translated the marker location to a cursor on the screen. The screen itself 

is a Wheatstone stereoscope capable of 3-D. However, we only used 2-D tasks.  

The center-out task occurred began with a start target appearing in the middle of the screen. 

Our analyses covered several datasets, so the timing of target presentation varied. For the most 

common task setup, however, after the monkey reached to the start target, the end target would 

appear almost immediately (25 ms). The monkey then had to reach to the end target, typically 

within 5 seconds. Upon reaching the end target, the monkey had to hold the cursor there for a short 

time (25 ms). If completed, the monkey would receive a water reward. Otherwise, if the monkey 

failed, a timeout penalty (a black screen) would be imposed for 4 to 9 seconds. 

The monkeys also performed reaches using a BCI. 96-channel Blackrock microarrays were 

implanted in primary motor cortex of three monkeys.  Neural signals were acquired through a TDT 

pipeline, and decoded into cursor movements using a decoding algorithm, such as a velocity 

Kalman filter, position-velocity Kalman filter, position-velocity-acceleration Kalman filter, and 

an Internal Model Estimation algorithm (Golub et al., 2013). We used threshold crossings instead 
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of sorted spikes for decoding. The in-house experimental software runs on Labview, and a 

Labview Realtime computer captures incoming non-neural signals.  

Our implementation of the Kalman filter (KF) uses discrete samples of spike counts 

(threshold crossings) taken in 45ms bins. The KF's predictions rely on a combination of the present 

state and the neural activity. A velocity KF (VKF) predicts velocity, measures neural activity, 

compares the prediction and measurements, and adjusts the velocity using the comparison. Two 

equations are of interest during calibration, or training of the decoder. 

z𝑘𝑘 = Hx𝑘𝑘 + q𝑘𝑘 

This equation is a generative model of the neurons’ spike counts z𝑘𝑘 ∈ ℜ𝐶𝐶  for every time bin 𝑘𝑘, 

with 𝐶𝐶 being the number of neurons. The state vector x𝑘𝑘 = �𝑣𝑣𝑥𝑥 , 𝑣𝑣𝑦𝑦�𝑘𝑘
𝑇𝑇

 contains the velocity in the x 

and y directions, and q𝑘𝑘~𝑁𝑁(0,Q), Q ∈ ℜ𝐶𝐶×𝐶𝐶represents the normally distributed, zero-mean noise. 

H ∈ ℜ𝐶𝐶×2 linearly relates the spike counts to the velocity. The second equation is a linear model 

of the system: 

x𝑘𝑘+1 = Ax𝑘𝑘 + w𝑘𝑘 

A ∈ ℜ2×2 contains coefficients that describe the evolution of velocity with every time bin, and 

w𝑘𝑘~𝑁𝑁(0,W), W ∈ ℜ2×2 represents the noise. During training of the decoder, parameters H, A, Q, 

and W are calculated using these equations: 

H = �� z𝑘𝑘x𝑘𝑘𝑇𝑇
𝐾𝐾

𝑘𝑘=1

��� x𝑘𝑘x𝑘𝑘𝑇𝑇
𝐾𝐾

𝑘𝑘=1

�

−1

 

A = �� x𝑘𝑘x𝑘𝑘−1𝑇𝑇
𝐾𝐾

𝑘𝑘=2

� �� x𝑘𝑘−1x𝑘𝑘−1𝑇𝑇
𝐾𝐾

𝑘𝑘=2

�

−1

 

Q =
1
𝐾𝐾�

(z𝑘𝑘 − Hx𝑘𝑘)(z𝑘𝑘 − Hx𝑘𝑘)𝑇𝑇
𝐾𝐾

𝑘𝑘=1
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W =
1

𝐾𝐾 − 1�
(x𝑘𝑘 − Ax𝑘𝑘−1)(x𝑘𝑘 − Ax𝑘𝑘−1)𝑇𝑇

𝐾𝐾

𝑘𝑘=2

 

 

During decoding, two sets of equations are used. The time update equations are as follows:  

x�𝑘𝑘− = Ax�𝑘𝑘−1−  

P�𝑘𝑘− =  AP�𝑘𝑘−1A𝑇𝑇 + W 

The time update, or prediction, equations are a priori estimates of the state and noise. The 

measurement update equations are as follows: 

x�𝑘𝑘 = x�𝑘𝑘− + K𝑘𝑘(z𝑘𝑘 − Hx�𝑘𝑘−) 

P�𝑘𝑘 = (I− K𝑘𝑘H)P�𝑘𝑘− 

Also known as the correction equations, they update the state and noise estimates. The Kalman 

gain K𝑘𝑘 is given by: 

K𝑘𝑘 = P�𝑘𝑘−H𝑇𝑇�HP�𝑘𝑘−H𝑇𝑇 + Q�
−1

 

The Kalman gain is a weighting factor taking into account the error in the estimate and the error 

in the measurement. Initial values of x�𝑘𝑘 and P�𝑘𝑘 are the sample mean and covariance of x1. To run 

the Kalman filter, initial values are fed into the measurement update equations. Then the time 

update and measurement update equations are alternately run until there is no more neural activity. 

Each experimental session consisted of blocks of trials. The most common block types 

included brain control, hand control, and observation training. Observation training refers to trials 

where the monkey watches a cursor move to the correct target. The decoder is then trained on the 

neural activity recorded during this time. For brain control trials, the monkey’s arms were 

restrained unless otherwise specified. 
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Data from monkey J came from prior experiments, including a visuomotor rotation task. 

In this task, the monkey performed center-out reaches using hand control or brain control. During 

certain blocks of trials, the workspace was rotated 45° or -45°. These blocks were excluded from 

analysis. However, the influence of the rotated block on non-rotated blocks may have affected the 

analyses performed for monkey J. Data from monkey N came from when monkey N was just 

learning to use a BCI. For monkeys L and J, training data came from observation training, where 

the monkey watched the cursor automatically move to the target. Training data from monkey N 

came from gradual training, where the monkey gradually gained control of the cursor over time. 

Due to the incongruence of task and situation for monkeys J and N, most of the analyses will focus 

on data from monkey L. 

2.2 ANALYSIS METHODS 

2.2.1 Tuning Curves 

For each block of trials, we fit cosine tuning curves and von Mises tuning curves to the neural 

activity. Firing rates were derived from spike counts between 200 ms and 550 ms after the go cue. 

Individual units were not spike sorted and spike counts were obtained from threshold crossings. 

Thus, units could be single units or multi-units. Only units with a firing rate greater than 1 spk/s 

were used. We fit cosine tuning curves of the form: 

𝑓𝑓(𝑥𝑥) = 𝑟𝑟0 + (𝑟𝑟𝑚𝑚𝑚𝑚𝑥𝑥 − r0)cos (𝜃𝜃 − 𝜃𝜃𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟) 



 8 

Here, 𝑓𝑓(𝑥𝑥) represents the firing rate, 𝑟𝑟0 is the baseline firing rate, (𝑟𝑟𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑟𝑟0) is the 

modulation depth, and 𝜃𝜃𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟is the preferred direction. We also fit von Mises tuning curves of the 

form: 

𝑓𝑓(𝑥𝑥) = 𝑟𝑟0 + (𝑟𝑟𝑚𝑚𝑚𝑚𝑥𝑥 − r0) exp�κ cos�𝜃𝜃 − 𝜃𝜃𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟�� 

Here, 𝜅𝜅 is a dimensionless parameter that varies with narrowness of tuning. If 𝜅𝜅 ≪ 1, the 

tuning function degenerates into the cosine tuning function. In general, the von Mises tuning curve 

has been found to provide better fits than the cosine tuning curve (Amirikian and Georgopulos, 

2000; Swindale, 1998). A previous study derived equations for the y half-height (baseline) and x 

half-height-width (another measure of narrowness of tuning) of a von Mises tuning curve 

(Taubman et al., 2013). The y half-height is as follows: 

𝑦𝑦ℎ𝑚𝑚𝑎𝑎𝑟𝑟 = 𝑟𝑟0 + (𝑟𝑟𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑟𝑟0)cosh (𝜅𝜅) 

 The x half-height-width is as follows: 

2 ∗ cos−1 �
ln(cosh(𝜅𝜅))

𝜅𝜅 � 

This is also known as the full width at half maximum. See Appendix A for the derivation of x half-

height width. 

2.2.2 Circular Statistics 

The mean resultant vector is calculated from the distribution of preferred directions. If each PD is 

a vector of length one, the mean resultant vector will be the vector sum of all PD vectors. The 

magnitude of the mean resultant vector is defined as: 

𝑅𝑅� = �𝑋𝑋�2 + 𝑌𝑌�2 
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Where 𝑋𝑋� =  ∑ cos𝑚𝑚𝑖𝑖𝑛𝑛
𝑖𝑖
𝑛𝑛

 and 𝑌𝑌� =  ∑ sin 𝑚𝑚𝑖𝑖𝑛𝑛
𝑖𝑖
𝑛𝑛

, with 𝑛𝑛 angles 𝑎𝑎.  

To quantify clustering, we used circular variance and Rao’s spacing test. Circular variance 

is defined as: 

𝑉𝑉� = 1− 𝑅𝑅� 

The circular variance ranges from zero to one, with lower values indicating greater 

clustering. Rao’s spacing test tests the null hypothesis that preferred directions are uniformly 

distributed. The test compares a distribution where sample angles are evenly spaced (Rao, 1969, 

1972, 1976). The Kuiper two-sample test compares two distributions and tests if they are different.  

We used the MATLAB toolbox CircStat to calculate circular statistics, perform Rao’s spacing test 

and perform the Kuiper two-sample test (Berens and others, 2009). 

2.2.3 Performance 

The center-out task is relatively easy for the monkey to perform, so success rates were not used to 

assess performance. Instead, we used time to target and a couple measures of trajectory 

straightness. Time to target, or duration, is simply the time the go cue appeared subtracted from 

the time the monkey reached the end target. We used the straightness index (Batschelet, 1981) and 

angular dispersion (Estevez and Christman, 2006; Fisher, 1995; Miller et al., 2011) to measure 

straightness of trajectory. The straightness index is defined as the ideal straightest distance (Δ𝐷𝐷) 

divided by the actual distance of the trajectory (𝐿𝐿).  

𝑆𝑆𝑆𝑆 =
Δ𝐷𝐷
𝐿𝐿  

 Angular dispersion is given by  
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𝐴𝐴𝐷𝐷 =
√𝐶𝐶2 + 𝑆𝑆2

𝑛𝑛  

Where 𝐶𝐶 = ∑cos (𝜃𝜃𝑖𝑖) and 𝑆𝑆 = ∑sin (𝜃𝜃𝑖𝑖). {𝜃𝜃𝑖𝑖}𝑖𝑖=1𝑛𝑛 is the set of successive turning angles for each 

position in the trajectory. Another way to interpret angular dispersion is as the mean resultant 

vector of the turning angles. Angular dispersion and straightness index vary from 0 to 1, with 

higher values indicating straighter trajectories. 

2.2.4 Circular-Linear Regression 

To find the relationship between cluster direction and target performance measures, we used 

circular-linear regression. Circular-linear regression fits a model: 

𝜃𝜃 =  𝜇𝜇 + 2 ∗ atan (𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯+ 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛) 

where 𝜃𝜃 is the circular response variable, 𝑥𝑥1 … 𝑥𝑥𝑛𝑛 are the linear predictor variables, 𝛽𝛽1 …𝛽𝛽𝑛𝑛 are the 

regression coefficients. Circular-linear regression assumes the circular response variable has a von 

Mises distribution with a mean 𝜇𝜇 (Fisher and Lee, 1992). 
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3.0  RESULTS 

3.1 CLUSTERING OCCURS DURING TRAINING AND BRAIN CONTROL 

Throughout this work, we will use tuning curve properties calculated from von Mises fits. Figure 

1 shows the tuning curve fits and properties of a single unit. The von Mises R2 is higher than the 

cosine R2, suggesting that a von Mises tuning curve better describes this unit’s behavior than a 

cosine tuning curve. Preferred direction is the peak of the tuning curve. The modulation depth and 

half-height width are calculated as specified in the Methods.  
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Figure 1. Tuning curve fits and properties of a single unit. Mean firing rates for each of 8 targets are shown as 

black dots. Von Mises (R2=0.707) and cosine tuning curves (R2=0.561) are fit to all data available using nonlinear 

least squares. Modulation depth (22.6 spk/s), full width at half maximum (half-height width, 45.5°), and preferred 

direction (229.6°) are indicated on the plot. 

 

We found that, across three different monkeys (J, L, and N), with few exceptions, a high 

degree of clustering occurs during both brain control and training blocks, but not during natural 

reaching. Note that training refers to the BCI calibration period. We used circular variance to 

quantify the amount of clustering and Rao’s spacing test to rule out the null hypothesis of 

uniformly distributed preferred directions. The percentage of datasets resulting in rejection of the 

null hypothesis is used to compare hand control, brain control, and training. Monkey N learned the 

BCI control task more slowly than did J and L, and the clustering during training was not as 
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apparent in early datasets. Monkey J did not show clustering during earlier datasets (mean circular 

variance = 0.801, SD = 0.090, Rao p-value <= 0.01 = 0%). However, the monkey’s arm was 

unrestrained, and position-velocity and position-velocity-acceleration KFs were used. These data 

were excluded from primary analyses due to the difference in decoding algorithm and lack of arm 

restraint.  

Figure 2 comes from an experimental session with monkey L. The angle distributions of 

individual blocks in Figure 2A show some notable trends. In brain control and training blocks, the 

neurons with preferred directions closest to the cluster center have lower modulation depths than 

the neurons further away from the cluster center. Furthermore, the angle distribution between brain 

control and training are similar. In this example dataset, as well as most others in monkeys J and 

L, training, brain control, and hand control all occurred during one experimental session. 
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Figure 2. Preferred direction distributions show clustering during BCI calibration and control, but not 

during hand control. Data come from a single experimental session. (A) Angle distributions with each unit’s 

preferred direction depicted by the blue arrow direction. The arrows are scaled in length by modulation depth. The 

red arrow shows the mean preferred direction, taking scaling into account. (B) Angle histograms with 20 bins each. 

The angle of the mean resultant vector is shown in red, 95% confidence intervals in green, and standard deviation in 
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light red. Preferred directions are determined from spike counts in a window between 200 ms and 550 ms after the 

go cue. Modulation depths are determined from von Mises fits. 

 

Figure 3. Circular variance is always lower during training and brain control, compared to hand control, 

across three monkeys.  “Train” indicates the period during which the decoder was calibrated. “BC” represents 

brain control and “HC” represents hand control. Across all three monkeys, hand control had significantly higher 

circular variance than brain control and training. Error bars depict standard deviation. Number of stars indicates 

degree of significance as determined by the Mann-Whitney U test. One star represents p <= 0.5. Two stars 

represents p <= 0.01. Three stars represents p <= 0.001. Each bar represents several blocks of experiments. For 

Monkey L, n = 24 for training, n = 21 for brain control, and n = 23 for hand control. For Monkey J, n = 14 for 

training, n = 14 for brain control, and n = 14 for hand control. For monkey N, n = 14 for training, n = 12 for brain 

control, and n = 5 for hand control. 

 



 16 

Figure 3 shows the mean circular variance across three different monkeys for different 

types of experimental blocks. For all monkeys, the training and brain control blocks were 

significantly lower than the hand control blocks, indicating increased clustering during training 

and brain control. In addition, the circular variance for training blocks was higher than that of brain 

control blocks, but not at a significant level. 

Rao’s spacing test revealed consistent results with circular variance (Figure 4). For all 

monkeys, the percentage of sessions with p-values <= 0.01 were lowest for hand control, indicating 

increased likelihood of a uniform PD spread. In contrast, training and brain control percentages 

were similarly high. 

In addition to testing the uniformity of the distributions, we wanted to see whether there 

were significant differences between distributions under the different block types. Figure 5 

compares the population mean PD, or cluster direction, between blocks. Brain control and training 

blocks had similar cluster directions (Figure 5A), while hand control cluster directions differed 

(Figure 5B, 5C). The Kuiper two-sample test tests the null hypothesis that two circular 

distributions are identical. We found that we could not reject the null hypothesis for the majority 

of brain control and training blocks at the 0.05 significance level (Figure 5D). Comparisons with 

hand control, however, lead us to reject the null hypothesis, indicating hand control distributions 

differ significantly from training and brain control distributions. Monkey N was excluded from 

this analysis because hand control blocks did not occur in the same session as brain control and 

training blocks. 
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Figure 4. Rao’s spacing test suggests hand control blocks have more uniform PD distributions than training 

or brain control blocks. The p-value threshold of 0.01 was chosen to reveal larger differences between blocks. 

“Train”, “BC”, and “HC” are the same as in Figure 3.  Hand control has lower percentages than training and brain 

control, indicating that one cannot reject the null hypothesis of uniform distributions for a larger proportion of 

sessions. Sample sizes are the same as for Figure 3. 
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Figure 5. Cluster direction and PD distributions are nearly identical between brain control and training, but 

different for hand control. A) The cluster direction, or population mean PD, is similar for brain control and 

training, for both monkeys. Most of the points lie near the unity line. B) Brain control and hand control have 

different cluster directions. Most of the points lie away from the unity line. C) Training and hand control have 

different cluster directions. D) “Train”, “BC”, and “HC” are the same as in Figure 3. Only units with a von Mises fit 

R2 >= 0.1 were included in the analysis. Hand control has lower percentages than training and brain control, 

indicating that one cannot reject the null hypothesis of uniform distributions for a larger proportion of sessions. 

Sample sizes are the same as for Figure 3.  
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3.2 MODULATION DEPTHS INCREASE FROM HAND TO BRAIN CONTROL 

Given that PDs are clustered, this raises the important question of how the animal can still control 

the cursor. Something else must compensate. One candidate would be modulation depths: by 

activating neurons with very different PDs more than those near the center of the cluster, the animal 

might be able to preserve control despite the clustering. Visual inspection of Figure 2 suggests this 

is occurring; here we examine the effect more closely. See section 3.7 and Figure 16 for more 

details about the theory behind modulation depth compensation. Prior studies have looked at 

modulation depth changes before, and our results are consistent with their findings (Ganguly and 

Carmena, 2009; Zacksenhouse et al., 2007) in that modulation depths are increased during brain 

control compared to during hand control (Figure 6C). Between training and brain control, 

modulation depth shows a slight trend towards increasing (Figure 6A). Like brain control, 

modulation depths increase during training compared to hand control (Figure 6D). Only units with 

a von Mises fit R2 value greater than 0.1 were plotted included in the analysis.  

To examine whether neurons far from the cluster center have higher modulation depths, 

we plotted modulation depth by distance from the cluster direction (Figure 7). We found that 

modulation depths near the center of the cluster tended to be reduced compared to modulation 

depths of units approximately 45° away from the cluster direction. The peak in the -45° direction 

is broader and weaker, however. In hand control, modulation depths tended to be fairly uniform 

about the cluster direction. 
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Figure 6. Modulation depths increase during brain control compared to hand control in monkey L. A) Each 

point represents a unit. Von Mises fits were used to determine modulation depths. Only units with R2 values greater 

than 0.1 were plotted (n = 1669). 64.5% of points lie below the unity line, indicating a slight trend towards 

increasing modulation depths for brain control. B) The tuning curves of the unit enclosed by a circle in A, C, and D 

are shown, comparing tuning during training, brain control and hand control. Points indicate mean firing rates for 

the target angle. C) The majority (80.9%) of points (n = 592) lie below the unity line, indicating a trend towards 

increased modulation depths during brain control. D) The majority (73.8%) of points (n = 579) lie below the unity 

line, indicating a trend towards increased modulation depths during training.  
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Figure 7. Modulation depth as a function of difference from population mean PD (cluster direction) in 

monkey L. For each session, each unit’s modulation depth was acquired and the PD distance from the cluster 

direction was calculated. Note the “peaks” in brain control around -45° and 45°. In contrast, units with PDs close to 

the cluster direction have lower modulation depths. In hand control, most modulation depths are low and the points 

near the cluster direction are more spread out than in brain control. 
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 We also wanted to investigate whether sessions with more clustered preferred directions 

had greater increases in modulation depths. To find out, we plotted the average proportional 

increase in modulation depth from hand control to brain control as a function of circular variance 

(Figure 8). Indeed, modulation depth shows greater increases as circular variance decreases. 

 

Figure 8. Modulation depths increase as preferred directions become more clustered in monkey L. For each 

session, each unit’s modulation depth during brain control and hand control was acquired. Brain control modulation 

depths were divided by hand control modulation depths for each unit. The mean proportion was calculated and 

plotted for each session. The plot shows a trend of increasing modulation depths as circular variance decreases. The 

regression line has R2 = 0.449 and p<0.001, and is defined by 𝒚𝒚 =  −𝟓𝟓.𝟕𝟕𝟓𝟓𝟕𝟕+ 𝟑𝟑.𝟎𝟎𝟑𝟑. 

 



 23 

3.3 NARROWNESS OF TUNING INCREASES OR DECREASES BETWEEN BRAIN 

AND HAND CONTROL 

Narrowness of tuning may also influence controllability of the decoder. A narrowly tuned neuron 

will be more of an all-or-none responder, firing at baseline most of the time until a movement 

towards the preferred direction is performed. However, most neurons in motor cortex have 

relatively broad tuning curves (Taubman et al., 2013). Broadly tuned neurons contribute to a wider 

range of movements than narrowly tuned neurons. Whether the narrower or broader tuning curves 

contribute more to decoding is difficult to tell (Pouget et al., 1999), but more broadly tuned neurons 

may be better for higher-dimensional tasks (Zhang and Sejnowski, 1999). Hand control is one such 

high-dimensional task, so we expected to see broadening of tuning curves from brain control to 

hand control. 

We calculated the full width half max for each unit and plotted the difference between 

blocks in Figure 9. There appears to be a difference between the comparison of observation training 

and brain control (Figure 9A) and the comparison of brain control and hand control (Figure 9C). 

From brain control to hand control, the narrowness of tuning appears to modulate to a greater 

degree than from brain control to observation training. Again, only units with a von Mises tuning 

curve fit R2 value greater than 0.1 were plotted. The cluster of points slightly above the unity line 

in the top right of Figure 9C suggest a subset of units become more broadly tuned when switching 

from brain to hand control. The same cluster exists in Figure 9D. However, the number of points 

above the unity line is approximately equal to the number of points below the unity line, indicating 

that several units also sharpened their tuning curves.  
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Figure 9. Narrowness of tuning increases or decreases between brain and hand control.  Narrowness of tuning 

is defined as the width of the tuning curve at half height, or the half-height width, as determined by von Mises fits. 

Units far from the unity line have greater shifts in their half-height widths. A) 52.9% of 1669 points lie below the 

unity line. Note the cluster of points along the unity line in the top right corner, indicating several units did not 

change their tuning. B) The tuning curves of the unit enclosed by a circle in A, C, and D are shown, comparing 

tuning during training, brain control, and hand control. Points indicate mean firing rates for the target angle. C) 

45.6% of 592 points lie below the unity line. D) 49.2% of 579 points lie below the unity line. 



 25 

3.4 PREFERRED DIRECTION SHIFT 

 

Figure 10. Angle histograms showing the shift in preferred direction for monkeys L and J.  “Train”, “BC”, and 

“HC” are the same as in Figure 3. Preferred directions for each unit during a block type were subtracted from 

preferred directions of the same units during another block type. Only units with a von Mises fit R2 > 0.1 were used. 
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Preferred directions shift little between brain control and training. Note the similarity between BC-HC and Train-HC 

histograms.  

 

We found that PDs change dramatically between brain control and hand control (Figure 1). To 

examine whether there was any consistency to that change, we looked at PD shifts. PD shifts were 

calculated by subtracting the PD of a unit during one block type from the PD of the same unit in a 

different block type (Figure 10). Only sessions where training, brain control, and hand control 

were conducted on the same day were included. Monkey N did not have results because hand 

control and brain control were conducted in separate experimental sessions. The PD shift between 

brain control and hand control was similar to the PD shift between training and hand control. 

Meanwhile, the distribution of PD shifts between brain control and training lay tightly centered 

around 0, suggesting minimal changes in PD. 

3.5 TIMESCALE OF CHANGES 

Figure 11 shows the timeline of experimental sessions and the overall mean PD, or the cluster 

direction, for each day and block type. For monkeys L and J, the cluster direction remains near the 

same value over time, suggesting a stable cortical representation (Ganguly and Carmena, 2009). 

On the other hand, hand control cluster direction appears to vary more greatly. For monkey N, who 

was learning how to use a BCI, training, brain control, and hand control all varied to a larger extent 

than in the other monkeys. It is worth noting that for hand control, hundreds of thousands of 

neurons contribute to behavior, so the neural code for hand movements might be relatively 

insensitive to the stability of tuning of individual neurons. For BCI control, only the 96 neural 
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channels being recorded control behavior, so there is less robustness inherent in the system. This 

might help explain why tuning appears more stable during BCI control than during hand control.  

Figure 12 shows various measures regarding the tuning of individual units over the course 

of a single block of trials. The preferred direction of a unit remains nearly constant. Modulation 

depth, narrowness of tuning, and baseline firing rate change minimally over time. The units chosen 

had the largest von Mises fit R2 values in the population. The results from Figure 12 suggest that 

the shift in neural tuning measures occurs abruptly from one block type to the next. This matches 

results from the literature (Zacksenhouse et al., 2007). The high baseline firing rate of unit 1 in 

Figure 12 suggests it may be a multi-unit. Even so, its tuning properties remain relatively stable. 
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Figure 11. Timelines of experimental sessions and the mean preferred direction for each block type.  For each 

day and block type, the mean PD, or cluster direction, was calculated. For monkey J, the large peak in hand control 

on day 25 is actually a small difference due to the representation of angles chosen.  
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Figure 12. Tuning properties over the course of a brain control block are relatively stable. The preferred 

direction, modulation depth, half-height width, and baseline firing rate for 4 units are shown over time. A moving 

window of 40 trials was used. Von Mises fits and tuning properties were calculated for each window location. 

Tuning properties are relatively stable over a single block of trials. 

3.6 PERFORMANCE AND CLUSTERING 

To quantify performance, we used the measures of reach duration, angular dispersion, and 

straightness index. For angular dispersion and straightness index, higher values indicate straighter 

trajectories, with 1 being a perfectly straight trajectory. Figure 13 shows two example trajectories. 
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The gray trajectory has a higher straightness index and angular dispersion, indicating a straighter 

trajectory overall. 
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Figure 13. Calculation of straightness index and angular dispersion for two example trajectories from a brain 

control session in monkey L. Colored circles represent targets in the workspace. The gray trajectory took 1.440 s to 

complete, while the purple trajectory took 1.888 s to complete. The gray trajectory had a straightness index of 0.922 

and an angular dispersion of 0.972. The purple trajectory had a straightness index of 0.372 and an angular dispersion 

of 0.111. A) Straightness index is the ideal length (magenta and black) divided by the actual length (purple and 

gray). B) Angular dispersion is the length of the mean resultant vector (red, in compass plots) of the turning angles 

(𝜽𝜽𝒊𝒊,𝜽𝜽𝒊𝒊+𝟏𝟏 …𝜽𝜽𝒏𝒏). Illustrative turning angles in magenta and black are not actual turning angles. Real turning angles 

are shown as blue arrows in the compass plot. 

 

 Figure 14 displays the results for a single brain control session in monkey L. Monkey L 

performs well at targets around 90°. However, across sessions, the relationship between 

performance and cluster direction is not readily apparent. To find if there was a relationship, we 

performed circular-linear regression. A few clues suggest a relationship exists. From observation 

during experiments, we know that some targets are more difficult to reach than others. In addition, 

when the monkey gives up, the cursor drifts off the screen. This drift direction is typically opposite 

of the cluster direction. 
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Figure 14. Performance relative to cluster direction for a monkey L brain control block.  Performance 

measures are plotted for each of 8 targets. Boxplots show the median, interquartile range (IQR), and outliers. 

Whisker lengths show the lowest and highest data within 1.5 times the IQR of the lower and upper quartile, 

respectively. Angle distribution shows unit PDs as arrows scaled by modulation depth. 

 

To measure the relationship between performance and mean cluster direction, we 

performed circular linear regression using mean performance per target as the predictors and mean 

cluster direction as the response variable. In other words, we asked whether the mean cluster 

direction was predictable from the performance measures. Significant relationships were 

discovered in monkey L (Figure 15), suggesting that clustering has some influence on 

performance.  
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Figure 15. Actual vs. predicted mean PDs from circular-linear regression in monkey L.  Top row is brain 

control and bottom row is hand control. From top-to-bottom, left-to-right, the p-values of the regressions are 0.022, 

0.043, 0.008, 0.040, 0.695, and 0.584. All brain control regressions are significant to the 0.05 level, while only the 

duration model is significant for hand control. The x- and y-axes for brain control are reduced to show the 

relationship more clearly. 

 

3.7 MODULATION DEPTH INCREASE REQUIRED 

Neurons further away from the cluster direction typically have greater modulation depth. How 

might this be related to controllability? To examine this, we looked at the generative model of 

neuron’s spike counts: 
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z𝑘𝑘 = Hx𝑘𝑘 + q𝑘𝑘 

Ignoring noise, the equation can become: 

H+z = x 

 Each neuron's spike count can be multiplied by numbers in the pseudoinverted H+ matrix to obtain 

its contribution to velocity. The sum of the contributions of all neurons produces a final velocity. 

Making a few assumptions, one can find the firing rates necessary for two neurons with different 

PDs to control a BCI in a center-out task. First, assume the neural contributions as represented by 

H+ are in the same direction as the neuron’s PD. Also assume all contributions have a vector length 

of 1. For example, a neuron with a 0° PD contributes 1 to velocity in the x direction and 0 to 

velocity in the y direction. Next, assume eight target velocities lie on the unit circle, i.e. the x vector 

may become [1,0]𝑇𝑇 , ��1
2

,�1
2
�
𝑇𝑇

, [0,1]𝑇𝑇…etc. Finally, assume the baseline (most controllable) 

neural PDs are at 0° and 90° (found by testing). 

With these assumptions in place, we can manipulate H+and x to find the maximum 

modulation depths required as one neuron changes its preferred direction to cluster more closely 

with the other neuron. The results are shown in Figure 16. 
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Figure 16. As 2 neurons’ preferred directions approach one another, the minimum firing rate required to 

reach all 8 targets increases.  Neuron 1’s preferred direction is fixed at 0°, while neuron 2’s preferred direction is 

swept from 0° to 180°. Proportional modulation depth increase required is calculated using the modulation depth 

required at 90° as a baseline. 

 

There are at least two strategies for good control when you have clustering. One is to use 

the neurons near the cluster direction. Those would need to have very large modulation depths 

(Figure 16). The other is to use neurons whose PDs are far from the cluster direction. The 

proportional firing rate increase required is lowest when neuron 2 is at 90°. In Figure 7, the 

modulation depths around -45° and 45°of the cluster direction show possible peaks. Most of the 

units with PDs close to the cluster direction have lower modulation depths. This seems to suggest 
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usage of the second strategy. The overall clustering effect is visible in Figure 7 when comparing 

brain control and hand control.  
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4.0  DISCUSSION 

Preferred directions cluster during BCI usage. Intuitively, one would expect that less clustering 

results in better control. In a BCI, if recordings were only available from one neuron, the user 

would be able to move along that neuron’s tuning axis. Having another neuron tuned to an 

orthogonal direction would enable movement in a 2-D plane. For 2-D velocity decoding, additional 

neurons may provide extra signal for the velocity to be decoded more accurately. If the neural PDs 

were unclustered, the brain would only have to modulate a few neurons to move the cursor in any 

direction. Instead, the neural PDs do cluster during BCI control.  

Conflicting results regarding clustering have been found in the literature. Inferring from 

the figures, one human study did not show PD clustering (Truccolo et al., 2008). Kim et al. found 

that for one human subject, most of the PDs remained the same between training and brain control 

while for another, most of the PDs changed (Kim et al., 2008). The modulation depths of the 

subject whose PDs changed were lower, however. Overall, the modulation depths of the human 

subjects increased between training and brain control. In posterior parietal cortex, PDs  became 

less clustered and modulation depth increased as the animal learned across sessions (Mulliken et 

al., 2008). They used a ridge regression decoding algorithm.  

On the other hand, figures from other studies are consistent with our results. Several show 

PD clustering during brain control (Carmena et al., 2003; Lebedev et al., 2005; O’Doherty et al., 

2011). Others found that mean preferred direction differences between brain control and hand 
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control increased across days (Taylor et al., 2002). Going from brain control with hand movements 

to brain control without hand movements, one study found that modulation increased abruptly 

(Zacksenhouse et al., 2007). Finally, others found that modulation depths either increased or 

remained the same, but did not decrease (Ganguly and Carmena, 2009). 

Methods to calibrate a BCI decoder differ between labs. A decoder can be trained on the 

neural activity that occurs as a monkey actively reaches to the target. Alternatively, the monkey 

may simply observe the cursor moving to a target. Clustering of preferred directions may occur 

due to decoder training and monkey behavior idiosyncrasies. Jarosiewicz et al. showed that when 

a subset of neurons has their preferred directions perturbed, the entire population compensates, 

with the subset changing more than the non-perturbed neurons (Jarosiewicz et al., 2008). It is 

conceivable that some neurons will be misinterpreted during training of a decoder, and the 

resulting compensation may result in clustering. Our results show clustering occurring during, but 

this may be due to the monkey having already learned how to use a BCI. 

One can propose hypotheses about PD clustering from a couple categories: why the 

clustering can occur (proximate) and why the clustering does occur (ultimate). From the proximate 

category, one hypothesis states that only a few neurons without clustered PDs are important for 

the decoding, and the tuning of the remaining neurons matters little. In this study, we found that 

many units increased their modulation depths abruptly going from hand control to brain control. 

One could test if the units with the greatest modulation depth changes are weighted highly in the 

decoding algorithm. These units tended to be further away from the cluster direction. The 

contribution of each unit to the decoder is in the rows of the H matrix. To test the hypothesis 

experimentally, one could remove these units’ contribution to decoding, simply by setting the 

decode weight to 0 for that unit. If the hypothesis is correct, either performance will decrease or 
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another subset of units will shift their tuning curves to an unclustered state. Alternatively, if the 

hypothesis is incorrect, the performance will stay the same and/or any tuning curve shifts do not 

show a clear trend towards an unclustered state. In addition, to test the hypothesis post-hoc without 

performing additional experiments, one could remove a sample of neurons with no clear cluster 

direction and observe the change in offline-decoded trajectories. 

An additional proximate hypothesis about why clustering can occur is that it depends on 

our choice of BCI decoding algorithm. It might be that the PVA specifically prevents clustering, 

but that other algorithms, such as the velocity Kalman filter we used, permit it. Other algorithms 

that might permit clustering include the Weiner filter (Carmena et al., 2003) and the unscented 

Kalman filter algorithm (O’Doherty et al., 2011). This can be tested by switching between several 

different decoding algorithms with the same animals, and observing whether clustering changes. 

If clustering does depend on the algorithm choice, the question is still open whether clustering is 

something the brain wants to do but is prevented from doing by some algorithms, or whether 

clustering somehow actually improves BCI performance under some decoding algorithms. As seen 

in Figure 16, it is hard to see how this could be true, but there could be some aspect of the decoding 

algorithm’s function we have not thought of yet. If the brain’s natural state is to cluster PDs during 

BCI control, then that interesting phenomenon will warrant explanation. That leads to our 

hypotheses about why clustering ultimately occurs. 

We propose three hypotheses about why clustering ultimately occurs. Hypothesis one 

states that the neural PDs cluster due to a tendency of the recorded population to modulate together. 

If this is true, the clustering represents a balance between controllability and ease of modulation. 

To test the hypothesis, consider hand control. Our results show that neural PDs during hand control 

are relatively unclustered. In hand control, there are many more intermediary dimensions to control 
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than two, which may include limb degrees of freedom or even muscles themselves (Kakei et al., 

1999). The additional dimensions may lead to a more uniform distribution of preferred directions. 

One could restrain the arm such that fewer muscles and/or degrees of freedom are required to 

perform the same task. For example, wrist movements could be used to control a cursor in a 2-D 

center-out task. This could be compared with using the whole arm to perform the same task. If the 

hypothesis is true, one would expect more clustering in the wrist control regime, due to having less 

dimensions to control.  

Hypothesis two states that clustering reflects a strategy the animal learned early. Monkeys 

take time learning to control a BCI, and may develop idiosyncrasies. During hand control, our 

setup is such that the monkey has to lift his arm upwards from the chair's armrest to the central 

position. During brain control, the arm is restrained to the chair's armrest. Perhaps our monkeys 

are straining against their arm restraints during brain control, attempting to reach upwards. This 

could result in clustered preferred directions, as each reach would be influenced by the upwards 

strain. One way to test this hypothesis is to perform electromyography of the monkey’s arm 

muscles, especially early on. In this new experiment, successful trials require minimal activation 

of the muscles. The monkey would be trained not to strain, and if the hypothesis is correct, the 

clustering seen during brain control would disappear. Another test of this hypothesis would be to 

specifically require the animal to touch a different onscreen target during BCI control. Touch 

targets could be up, left, and right of the BCI stimulus array. This might cause the PDs of the 

neurons to change under BCI control.  

The third ultimate hypothesis states that clustering reflects the native tuning of motor 

cortex. Perhaps upstream areas such as dorsal premotor cortex drive motor cortex in a simple 

manner, and the clustering we see comes from the lack of proprioceptive and somatosensory 
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feedback. One way to test this hypothesis is to train the monkey to perform hand control while a 

nerve block stops proprioceptive and somatosensory feedback. If the hypothesis is true, increased 

clustering should be seen. Studies have found that by reducing somatosensory feedback, motor 

cortex becomes disinhibited (Brasil-Neto et al., 1993; Kaelin-Lang et al., 2002). This may be 

related to the modulation depth increases we see during brain control. A second test of this 

hypothesis would be to record in PMd during BCI control from M1. Similarly clustered PDs in 

PMd during brain control and hand control would support the hypothesis. 

Our study confirms the appearance of PD clustering during brain control and training with 

a Kalman filter decoding algorithm. Although this effect is present in the publications of others, to 

our knowledge, it has rarely been noted (Green and Kalaska, 2011; Tehovnik et al., 2013), and 

never explained in the literature. We found that tuning changes occur abruptly and modulation 

depths increase from hand control to brain control. Narrowness of tuning can either increase or 

decrease, with a cluster of units becoming broader from brain control to hand control. Preferred 

directions shift little between training and brain control, but similar shifts occur when performing 

hand control. Overall, the characteristics of training and brain control are similar. This supports 

the view that the brain is in a comparable functional state during BCI calibration and use, and that 

those two states are very different from how the brain responds during arm movement control. 

This flexibility of M1 function is an important motif that is emerging from BCI studies. Next, we 

found that the mean cluster direction can be predicted from trajectory statistics, indicating some 

influence of clustering on performance. Finally, we found that the units with the highest 

modulation depths lie approximately 90° apart, which also happens to be the separation with the 

minimum modulation depth increase required for controllability.  
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APPENDIX A 

DERIVATION OF HALF-HEIGHT WIDTH 

𝑥𝑥h𝑚𝑚𝑎𝑎𝑟𝑟𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎h = 𝑥𝑥h𝑚𝑚𝑎𝑎𝑟𝑟 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 

f(x) = yhalf 

b + meκ cos(x−µ) =  b + m cosh(κ) 

eκ cos(x−µ) =  cosh(κ) 

κ cos(x − µ) = ln(cosh(κ)) 

cos(x − µ) =
ln(cosh(κ))

k  

x − µ = acos�
ln(cosh(κ))

k � 

xhalf =  acos�
ln(cosh(κ))

k � + µ 

f(x) = ymax 

b + meκ cos(x−µ) = b + meκ 

eκ cos(x−µ) = eκ 

κ cos(x − µ) = κ 

cos(x − µ) = 1 
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x − µ = acos(1) = 0 

xmax = µ 

xhalfwidth = xhalf − xmax = acos�
ln(cosh(κ))

k �+ µ − µ 

xhalfwidth = acos�
ln(cosh(κ))

k � 
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