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Abstract

Background: Reverse engineering gene networks and identifying regulatory interactions are integral to
understanding cellular decision making processes. Advancement in high throughput experimental techniques has
initiated innovative data driven analysis of gene regulatory networks. However, inherent noise associated with
biological systems requires numerous experimental replicates for reliable conclusions. Furthermore, evidence of
robust algorithms directly exploiting basic biological traits are few. Such algorithms are expected to be efficient in
their performance and robust in their prediction.

Results: We have developed a network identification algorithm to accurately infer both the topology and strength
of regulatory interactions from time series gene expression data in the presence of significant experimental noise
and non-linear behavior. In this novel formulism, we have addressed data variability in biological systems by
integrating network identification with the bootstrap resampling technique, hence predicting robust interactions
from limited experimental replicates subjected to noise. Furthermore, we have incorporated non-linearity in gene
dynamics using the S-system formulation. The basic network identification formulation exploits the trait of sparsity
of biological interactions. Towards that, the identification algorithm is formulated as an integer-programming
problem by introducing binary variables for each network component. The objective function is targeted to
minimize the network connections subjected to the constraint of maximal agreement between the experimental
and predicted gene dynamics. The developed algorithm is validated using both in silico and experimental data-sets.
These studies show that the algorithm can accurately predict the topology and connection strength of the in silico
networks, as quantified by high precision and recall, and small discrepancy between the actual and predicted
kinetic parameters. Furthermore, in both the in silico and experimental case studies, the predicted gene expression
profiles are in very close agreement with the dynamics of the input data.

Conclusions: Our integer programming algorithm effectively utilizes bootstrapping to identify robust gene
regulatory networks from noisy, non-linear time-series gene expression data. With significant noise and non-
linearities being inherent to biological systems, the present formulism, with the incorporation of network sparsity, is
extremely relevant to gene regulatory networks, and while the formulation has been validated against in silico and
E. Coli data, it can be applied to any biological system.
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Background
The progress in the field of experimental techniques in
systems biology in recent years has contributed signifi-
cantly to the analysis and understanding of gene regula-
tory networks [1]. The simultaneous measurement of the
expression levels of thousands of genes has become pos-
sible with these techniques. The time series data of gene
expression obtained from the high-throughput techni-
ques typically contain comprehensive information about
the structure of the system. However, reverse engineering
that data for identification of interactions between genes
and reconstruction of the regulatory network is still a
challenging problem.
A variety of modeling approaches have been developed

recently for inferring genetic networks from gene expres-
sion data. Identification algorithms are dependent on
how the network is modeled [2], and include Boolean
logic [3,4], Bayesian [5-7], and information-theoretic
approaches [8]. Several approaches use steady state infor-
mation, the data of which typically coming from “struc-
tural perturbations” (such as gene knockout studies) [9],
which might be difficult to obtain for some systems. Alter-
nate approaches using time series data include dynamic
Bayesian networks [10,11] and differential equation-based
models [12,13]. Of the latter, initial reports on reverse engin-
eering gene networks assumed linear model approximations
[13,14]. While such approximations retain simplicity in the
identification algorithm, it may be inadequate in predicting
strongly non-linear systems. One way of representing
non-linear gene dynamics is the S-system model, a
power-law formulation which incorporates both pro-
duction and degradation terms of the genes. Previous
studies have looked into network identification of non-
linear systems with the S-system [1,12,15-20], which pre-
sents a more challenging task than identification of linear
systems. In addition to non-linearities, gene regulatory
networks are highly noisy and stochastic [21] which can
lead to difficulties during network inference. Therefore, a
strong need exists for robust network identification of
non-linear systems in the presence of high system variabil-
ity, while also being able to incorporate relevant biological
information.

In the current report, we model the dynamics of gene
expression by S-system formulation. Upon doing so, we
formulate the network identification algorithm as a
bi-level optimization problem, governed by the hypoth-
esis of network sparsity. Network sparsity has been ex-
perimentally observed in various biological systems such
as the visual system of primates [22], auditory system of
rats [23], and olfactory system of insects, to name a few.
The sparsest gene network has also been eluded to be a
robust one [24]. Governed by the hypothesis of sparsity
of network connections, the target of our network identi-
fication algorithm is to find the network structure with
minimum number of connections that is in agreement
with the experimental data at an acceptable level of tol-
erance. We have earlier proposed an optimization for-
mulation to identify the regulatory network from time
profiles of gene expression data [25]. The previous algo-
rithm was based on the following approximations: (i)
gene expression dynamics were approximated by linear
ordinary differential equations (ode); and (ii) the system
was treated as deterministic by considering only the
mean experimental data for the analysis. In the present
algorithm, we developed a novel formulism which uti-
lizes bootstrapping to identify robust networks from
noisy data. The aforementioned approximations are
removed by (i) representing the gene expression profile
with an S-system model and (ii) directly accounting for
variability in experimental data. Our algorithm, as detailed
in the methods section and represented in Figure 1,
enables identification of robust networks from an inher-
ently non-linear and noisy system. We test the perform-
ance of our algorithm in various case studies including in
silico and experimental data sets.

Results
The performance of the developed bi-level integer pro-
gramming algorithm is demonstrated on three case stud-
ies. In the first case study, we consider in silico gene
expression data generated from a benchmark artificial
5-gene network model. In the second case study, the ap-
plicability of the algorithm on a larger network is tested
using an in silico 10-gene network. In the third case
study, the algorithm is applied to an experimental data
set of the SOS DNA repair system in E.coli.

I Case Study 1: Five gene network model
The purpose of this case study is to validate the algo-
rithm on a small network with and without experimental
noise. The chosen 5-gene network model [16] has been
used as a benchmark problem by different research
groups to test the validity of their algorithms [15,19].

IA Network identification without noise
Using the S-system formulation, the 5-gene network
model can be represented by the system of five coupled
nonlinear ode, shown in Additional file 1 as equation 1
[16]. In order to test our identification algorithm on this
model we first generate in silico data by integrating these
equations, which we use as experimental data for the
identification algorithm. To formulate the bi-level
optimization problem, n2= 25 binary variables are intro-
duced corresponding to each of the five connections.
Genetic Algorithm (GA), used to solve the upper level
integer programming problem, does not have a conver-
gence criterion. Standard practice is to evolve the popu-
lation for enough generations until no significant



Figure 1 Pseudo-code of the robust network identification algorithm implementation.
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improvement is observed. Figure 2(a) illustrates the con-
vergence characteristics of the GA for this example; at
over 103 generations, the optimal output remained in-
variant. The efficiency of the algorithm depends on ap-
propriate choice of starting population, as well as other
involved parameters, in addition to the number of
Figure 2 Identification of a 5-gene network without noise. (a) Converg
identified in each of the solutions generated by GA is plotted. No feasible s
network. Arrows represent positive regulation and the filled circles represen
are represented above the corresponding connecting lines and the rate co
parameters are consistent with the original differential equations used to g
generations. The initial population size plays an import-
ant role in the quality and efficiency of the algorithm. A
small population size may lead to local convergence or
extremely large number of generations. To avoid that a
population size of 20 was chosen and the algorithm
evolved for 150 generations. The crossover probability is
ence study of the genetic algorithm. The number of connections
olution was found with less than 65 generations. (b) Identified
t negative regulation of the genes. Kinetic orders of each connection
nstants for each gene are shown above the genes. All connections and
enerate the in silico data.



Chemmangattuvalappil et al. BMC Systems Biology 2012, 6:119 Page 4 of 14
http://www.biomedcentral.com/1752-0509/6/119
chosen to be at a standard value of 0.5, and the chosen
mutation probability of 0.02 was expected to maintain
diversity in population. Since the data contain no noise,
the tolerance in the lower level least square optimization
problem has been kept at a very low value (10-5). Typic-
ally least square optimization routines are very sensitive
to the user defined initial guess. To make sure that the
algorithm can identify the underlying network structure
even without any a priori information, we deliberately
assigned the initial guess values for the least square
optimization problem to be largely different from the ac-
tual values, and tested the algorithm for various combi-
nations of the initial guess.
Figure 2(b) illustrates the 5-gene network identified

using the above formulation. The kinetic orders (gij) are
depicted over the connection and the kinetic rate con-
stants (αij, βij) are depicted in brackets. The precision
and recall value were both a perfect 1.0, indicating the
accuracy with which the proposed algorithm predicted
the network structure from time profile gene expression
data. In addition, the identified kinetic orders and rate
constants are also in agreement with the actual network
model presented in Additional file 1 equation (1). These
results validate the performance of the algorithm for a
small network under deterministic conditions.

1B Network identification under data uncertainty
The performance of the algorithm is next analyzed in the
presence of experimental noise, generated by adding 5%
Gaussian noise to the time-course data generated from
equation (1) shown in Additional file 1. Three different
data sets are generated in this fashion to represent three
experimental replicates of the samples. These three data
sets are then resampled using bootstrapping to generate
1000 artificial data sets. The network identification algo-
rithm was then applied at each of the data sets to gener-
ate 1000 alternate networks. The presence of noise in
the data restricts the accuracy by which the predicted
profile can agree with the data. Hence, the tolerance was
relaxed to 0.12 and the GA code was evolved for 200
generations while retaining the population size of 20.The
ensemble of alternate networks thus generated was ana-
lyzed for frequency of appearance of each of the connec-
tions (Figure 3(a)) which was hypothesized to directly
correspond to its robustness against experimental noise.
Figure 3(b) further illustrates the identified robust net-

work connections screened for 45% occurrence, with fre-
quency of occurrence of network connections being
depicted over the connection. Quite encouragingly, the
algorithm correctly identified all the existing connections
in the actual network. However because of noise, the al-
gorithm also identifies two false interactions involving
gene 2, hence resulting in a recall and precision of 1 and
0.78, respectively.
The expected values of the S-system parameters esti-
mated at 90% confidence level are represented in Table 1
(gij) and Table 2 (αij, βij), which demonstrates the excel-
lent performance of the algorithm in identifying network
parameters even from noisy data. While the error of the
rate constants (compared to the actual values) is rela-
tively high, it should be noted that the results of the net-
work identification would not be as sensitive to these
parameters as to the connectivity values, and therefore
the rate constant values could vary significantly and not
affect the gene profiles or the recall/precision. Further-
more, the error on the reaction orders (gij) is very low,
further demonstrating the accuracy of the network iden-
tification. The heat map in Figure 3(c) further shows the
algorithm’s effectiveness in finding a tight range of reac-
tion orders of the robust connections in the network.
To evaluate the accuracy of the formulism under

increased uncertainty, the algorithm was tested under
various amounts of added noise. As one would ex-
pect, the accuracy of the algorithm depends on the
level of noise added to the in silico data. Table 3
shows this trend, with the precision and recall being
compared with 5, 7, and 10% noise. Increasing noise
increases the number of false negatives, thereby re-
ducing the recall. Interestingly, precision actually
improves with increasing noise, indicating less false
positives. This trend seems to converge, with both
the recall and precision holding constant at 7 and
10%. Figure 4(a) shows the identified network with a
data set incorporating 10% white Gaussian noise.
The algorithm does not identify any connection
which is not in the actual network (e.g. 0 false posi-
tives) and is therefore able to achieve a perfect pre-
cision. However because of noise, the algorithm also
fails to identify three of the actual connections (false
negatives), hence resulting in a recall of 0.57. It
should be noted that the frequency threshold affects
the results, and depending on the system, needs to
be tuned. Figure 4(b) shows the sensitivity of the re-
call and precision to this threshold value.

While the analysis is performed on 1000 bootstrap
samples, it is computationally expensive to solve 1000
network identification problems. Hence, we investigated
the sensitivity of the identified robust network on the
number of bootstrap samples by considering a broad
range of samples from 200 to 1000. Figure 5 illustrates
the percentage of total number of appearances of each
identified interaction in every 200 bootstrapped samples,
using 5% noise. The difference in the maximum and
minimum number of appearances is less than 8% for all
connections. The clearly shows that as little as 200 boot-
strap samples can be enough in drawing statistically sig-
nificant conclusions, which is in agreement with the
literature [26].



Figure 3 Results from 5-gene network identified under data uncertainty with 5% noise. (a) Number of bootstrap occurrences for each
connection (1000 bootstrap samples total). (b) Identified network structure. Numbers above each connection represent percent occurrence, with
the thick lines representing the number of connections appearing in more than 90% of the bootstrapped samples and the thin lines representing
the connections appearing in more than 45% of bootstrapped samples. (c) frequency of specific connection values shown as heat map.
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1C Deterministic network identification under data
uncertainty
To assess the necessity of this bootstrapping technique,
the aforementioned results were compared to a control
group which did not utilize bootstrapping. To do this, a
more deterministic approach was employed. Experimental
replicates were generated as detailed: 10% white Gaussian
noise was added to the 5-gene in silico network. Instead of
bootstrapping these replicates, the deterministic network
identification was performed on the mean of the replicates.
This was done for 3, 5, 7, 9, and 20 replicates with the
resulting precision and recall calculated for each case;
results are shown in Figure 6. As shown, when the input
data is generated from fewer than seven replicates, a solu-
tion is not found. Even with seven replicates, the results
are relatively poor. While the recall is comparable to that
generated from bootstrapping (~0.57), precision is much
worse (0.5). As the number of replicates is increased, this
precision increases; however, even at 20 replicates, preci-
sion is not perfect (0.8). Furthermore, in practice, generat-
ing this many experimental replicates is often not feasible.
This illustrates that the proposed bootstrapping technique



Table 1 Comparison of the identified S-system reaction
order values to actual values

Connection gactual gestimated

G1G3 1 1.2 ± 0.09

G1G5 -1 -1.0 ± 0.03

G2G1 2 2.4 ± 0.04

G2G3 NA -3.4 ± 0.06

G2G4 NA 3.9 ± 0.05

G3G2 -1 -1.1 ± 0.03

G4G3 2 1.9 ± 0.02

G4G5 -1 -1.0 ± 0.01

G5G4 2 2.0 ± 0.02

Table 3 Effect of added noise on the network
identification results

Percent noise Recall Precision

5 1 0.78

7 0.57 1

10 0.57 1

White Gaussian noise was added at different amounts to the five-gene
network in silico data. Each of these data sets was used in the network
identification algorithm, with their performance measured by the metrics of
recall and precision.
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offers an accurate way of determining robust connections
over a more traditional method, even with limited number
of experimental repeats.

II Case Study 2: Ten Gene Network Model
In this example we investigate the performance of the
developed algorithm in a larger network consisting of
ten genes, as depicted in equation (2) shown in
Additional file 1. For the deterministic case study the tol-
erance was specified at a low value of 10-5. Because the
10-gene network increases the number of binary vari-
ables in the upper level to 100, more GA generations are
needed to obtain a converged solution; therefore, the
number of generations was increased to 1000. The iden-
tified connections and kinetic parameters are shown in
Figure 7(a), with the kinetic orders (gij) depicted over the
connections and kinetic rate constants (αij, βij) in brack-
ets over the genes. The comparison of actual and identi-
fied time series profiles is shown in Figure 7(b). As
evident from the figures, the algorithm correctly identi-
fied all the connections, kinetic orders and rate constants
with a precision and recall of 1.0, thus verifying the satis-
factory performance of the algorithm in larger systems.

III Case Study 3: Experimental Data of E.Coli SOS DNA
repair
The proposed algorithm is next applied to the SOS DNA
repair system of E.Coli [27], based on the gene data
Table 2 Comparison of the identified S-system rate
constant values to actual values

Gene αi βi
actual estimated actual estimated

X1 5 3.8 ± 0.2 10 18.0 ± 0.8

X2 10 13.8 ± 0.9 10 16.2 ± 0.2

X3 10 13.8 ± 0.2 10 11.2 ± 0.23

X4 8 8.1 ± 0.1 10 11.8 ± 0.1

X5 10 10.3 ± 0.05 10 8.9 ± 0.03
measured by Ronen et al. [28] which is available online
[29]. In this model system, the response to DNA damage
is governed by a few key genes, which in turn regulate
the expression of more than 30 genes which have specific
roles in DNA repair. A proposed model is that the RecA
protein binds to single stranded DNA, and this nucleo-
protein is integral in LexA cleavage, a transcription
factor which is a major regulator of the DNA repair
genes [27]. The work of Ronen et al. investigates the
Michaelis-Menten kinetic parameters associated with
promoter activity for eight of the major genes in this sys-
tem. Experimental kinetics were measured by first in-
corporating a GFP reporter plasmid for each of the
gene’s promoter. DNA damage was induced, and the
resulting GFP intensities were measured. The number of
GFP molecules is proportional to the promoter activity,
and can be taken to be analogous to the rate of tran-
scription [28]. We therefore used this promoter activity
data [29] to represent gene expression (with the experi-
mental intensity data normalized by the mean column
intensity) and used it in our algorithm. Among the four
data sets provided by the authors, we chose the third
and fourth for this case study because these are mea-
sured at the same conditions. Our objective was to iden-
tify regulatory interactions between six genes: uvrD,
lexA, umuD, recA, uvrA and polB.
Identification of this 6 gene network will require 36

binary variables; hence the GA parameters were retained
similar to our first case study presented earlier: 20 popu-
lations evolved through 200 generations. The error toler-
ance, however, had to be relaxed to a higher value of .7
because of noise inherent in the experimental data set.
Figure 8(a) compares the actual experimental data with
the predicted profiles generated from the identified algo-
rithm, which shows excellent agreement.
In the next step the robust connections of the identi-

fied network are further analyzed by bootstrapping the
experimental data set. Since our previous analysis on the
first case study demonstrated 200 bootstrap samples to
be adequate, in this example we generated 300 artificial
data sets from the original experimental repeats. The
network identification algorithm was solved at each of
the data sets to generate 300 alternate networks. The



Figure 4 Results from 5-gene network identified under data uncertainty with 10% noise. (a) Identified network structure. Numbers above
each connection represent percent occurrence. (b) Sensitivity of recall and precision to bootstrap occurrence threshold.
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frequency of occurrence of each network connection is
analyzed over the array of alternate network and connec-
tions appearing with over 45% frequency are considered to
be robust. Figure 8(b) illustrates the predicted robust net-
work for the E. Coli data set along with the frequency of
repeat of each connection. The corresponding estimated
kinetic orders (gij) and rate constants (αij, βij) with 90%
confidence level are shown in Table 4 and Table 5, respect-
ively. The heat map in Figure 8(c) further shows how well
the algorithm identifies a robust network .

Discussion
In this work, we present an algorithm to identify robust
regulatory networks from time profiles of gene expres-
sion data. Our identification algorithm is primarily devel-
oped on the hypothesis of sparsity of biological network
connections. In our earlier work we established the
Figure 5 Convergence study on network identification results using b
validity of the hypothesis of sparsity using a simplified
linear ode representation of gene expression dynamics in
a deterministic system. Herein we further advance the al-
gorithm by incorporating more realistic non-linear repre-
sentation using an S-system formulation of gene
expression dynamics. The identification algorithm is for-
mulated as a bi-level optimization problem in which the
upper level solves an integer programming problem
while the lower level is a continuous parameter identifi-
cation problem. Furthermore, we propose a framework
to incorporate noisy experimental data towards identifi-
cation of a robust regulatory network. This is done by
first generating artificial experimental repeats using the
bootstrapping technique, followed by solving the identifi-
cation formulation at each of the bootstrap data sets.
From this library of identified prospective networks we
isolate the most-repeated network connections which we
ootstrapping with 5% noise.



Figure 6 Deterministic approach to network identification
under noisy data. Increasing number of replicates were generated
using 10% noise from the in silico results, averaged, and used in the
network identification algorithm, with their recall and precision
quantified. Although three and five replicates were also used, these
are not shown because no solution was found.
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hypothesize to be a robust connection, having low vari-
ability to experimental noise.
The upper level integer programming problem is

solved using GA. There are several advantages of using
GA to solve the above problem, the most important
being that it does not require gradient evaluation. This is
a significant advantage for the above problem with
non-linear ode as constraint function. In addition, GA
starts its search not from a single point in the feasible
parameter space, but from multiple locations specified in
the starting population. Hence, it holds the chance of
converging at global minima, although such convergence
cannot be guaranteed with GA. However, it also suffers
from the disadvantage of increased computational cost.
All the computations reported here have been carried
out on 2.66 Ghz processer and 16 GB RAM server. The
computational time for the five gene network without
noise was 1 hour and the same network with noise was
2.5 hours. The computational time for the experimental
data was 3 hours. For the 10 gene network, the genetic
algorithm needed more generations to converge, result-
ing in computational time of 11 hours. Hence, extension
of the current solution procedure to a much larger data
set will be expensive. While the same formulation will
still be applicable in a larger system, alternate solution
procedures are currently being investigated for its exten-
sion to larger networks.
In the formulation presented in equation (2), the only

user defined parameter is the value of the tolerance which
dictates how closely the model prediction must agree with
experimental dynamics in order for the network to be con-
sidered in the overall algorithm. While for an in silico case
study without noise the tolerance may not play a vital role,
it will be relevant when evaluating noisy scenarios. Specify-
ing a low tolerance value (10-3) in our algorithm under
noisy data failed to identify any network, as would be
expected. Moreover, using a low tolerance is not advisable
when using data sets with noisy replicates since we are not
targeting a profile which exactly fits the noisy data; the tar-
get is to identify network profiles which describe all the
noisy scenarios relatively well. On the other hand, a
relaxed tolerance runs the risk of compromised prediction
quality. In order to quantitatively evaluate the effect of
specified tolerance on the identified network structure, the
bootstrap/ bi-level optimization algorithm was repeated
on the same 5-gene dataset with different tolerance values.
Table 6 illustrates how the precision and recall of the iden-
tified network changes with altered tolerance values. Quite
interestingly it is observed that precision is relatively in-
sensitive to the network tolerance, while recall worsens
with increased tolerance. This is very encouraging since
this implies that even with relaxed tolerance the identified
network does not have false positive connections, although
false negative connections increase. Increase in false nega-
tives can be explained by the nature of the objective func-
tion which tries to minimize the number of connections.
Hence, relaxed tolerance will always lead to a
sparser network, as seen in Table 6. This analysis
indicates that even for a relaxed constraint the algo-
rithm may fail to identify all the connections but
the identified connections will always be accurate
with low probability of false positivity.
The performance of the developed robust identification

formulation is illustrated using three different systems.
The first two case studies are based on in silico data
which allows for detailed analysis of the performance of
the algorithm. Overall the algorithm was found to dem-
onstrate excellent predictive capability both in the small
5-gene network along with larger 10-gene network. The
proposed bootstrapping scheme was found to adequately
capture the precise network from the noisy data as well.
Encouraged by the in silico results, we applied our algo-
rithm to dynamic experimental data of a 6-gene network
responsible for DNA damage repair in E. Coli [28]. While
verification of the identified network will be difficult for
this system, the time profile of gene expression data pre-
dicted by the identified network is in good agreement with
the experimental data set. A thorough literature search for
existing knowledge of network interactions revealed that
quite a few of the predicted connections have been
reported in parallel studies. Our algorithm inferred the
regulation of recA, umuD and uvrA by lexA, which is con-
sistent with the findings reported earlier [12]. Another
interesting finding is that our results suggest that polB
does not influence any of the other genes in the system
(pol B does not up- or down-regulate any other gene), a
finding which was also reported by Kumura et al. Further-
more, our identified network shows the self-regulation of
recA. This protein is the main factor responsible for sens-
ing DNA damage, and has been reported to promote the



Figure 7 Results from the 10-gene network. (a) Identified network. Arrows represent positive regulation and the filled circles represent
negative regulation of the genes. The kinetic orders of each connection are represented above the corresponding connecting lines and the rate
constants for each gene are shown above the genes. (b) Time profile for the ten gene network. The triangles represent the profile generated
from the in silico data and the lines represent the predicted profile.
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transcription of itself, thereby promoting damage recogni-
tion, and other repair genes [27,28].
The current approach offers an improvement on existing

algorithms. Numerous studies have used the 5-gene net-
work (the current case study I) to test the accuracy and ef-
ficiency of their network identification methods. A
comparison between the methods is presented by Kimura
et al. [12] for the five gene network without noise. While
most studies do not report the metrics of precision and re-
call, the accuracy of the results is still commented on.
Most methods have a shorter computational time than the
proposed method. However, our algorithm is able to pre-
dict a perfect network (recall and precision of 1), while the
other algorithms deviate from this. Therefore, there is a
trade-off between computational time and accuracy, and
selection of the most appropriate method for the system of
interest should be chosen judiciously. Nevertheless, this
comparison shows that recall and precision are an im-
provement over many existing algorithms when analyzing
the 5-gene network. Additional improvements could be



Figure 8 Results from the 5-gene experimental E.Coli data. (a) Time profile for the gene network, based off of the mean experimental data.
The triangles represent the experimental data and the lines represent the predicted profile. (b) Identified network structure from experimental
data for six gene system. The percentage of connections in the bootstrapping samples are marked on the connections. (c) frequency of specific
connection values shown as heat map (connection coding: 1-uvrD, 2-lexA, 3-umuD, 4-recA, 5-uvrA, 6-polB).
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made on the current approach to decrease computation
time, such as parallel programming, or by altering the for-
mulism (e.g. avoiding direct integration of the system of ode).

Conclusions
These results show that our bi-level integer optimization
algorithm is able to effectively identify the topology and
connection strength of gene regulatory networks, even
when the gene dynamics are non-linear and noisy in na-
ture. By using the biological trait of sparsity, the algo-
rithm optimizes the number of connections in the
network while maintaining agreement in gene temporal
profiles with the experimental input data. Even with un-
certainty and noise in the data, something which is
unavoidable on an experimental level, our bootstrap-
ping/identification combination was able to identify a



Table 4 Estimated reaction order values of the E. Coli SOS
DNA repair network (connection coding: 1-uvrD, 2-lexA,
3-umuD, 4-recA, 5-uvrA, 6-polB)

Connection gestimated

G1G2 0.9 ± 0.04

G1G3 1.4 ± 0.03

G1G4 0.9 ± 0.04

G2G3 0.9 ± 0.04

G2G4 0.9 ± 0.07

G2G5 0.8 ± 0.08

G3G4 1.0 ± 0.03

G3G5 0.9 ± 0.03

G4G4 1.3 ± 0.07

G4G5 -0.7 ± 0.05

G5G1 1.0 ± 0.14

Table 6 Effect of error constraint on 5-gene network
identification, 5% noise

Error Precision Recall Number of connections

0.13 0.78 1.0 9

0.20 0.88 0.88 7

0.25 0.78 0.78 7

0.30 0.88 0.7 5

0.35 0.88 0.7 5
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robust network. While we have demonstrated the effect-
iveness of our algorithm on in silico and E. coli data, its
formulation, biological relevancy, and results are applic-
able to any gene regulatory network, as long as time-
series data is available.

Methods
S-system representation of gene expression dynamics
Identification of the regulatory network from time series
gene expression data first requires modeling the dynamic
evolution of the individual genes constituting the net-
work. Here we model gene dynamics as a set of coupled
non-linear ode following the S-system formulation,
which captures the non-linearity in gene expression pro-
files using a power-law kinetic representation.
For a system with N-genes, the S-system model can be

represented using equation (1):

X�i ¼ αi
Yn
j¼1

X
gij
j � βi

Yn
j¼1

X
hij
j ð1Þ

Where Xi is the concentration of the gene i, α and β
represent the kinetic rate constants, g and h represent
the kinetic orders for the production and degradation
Table 5 Estimated rate constant values of the E. Coli SOS
DNA repair network (connection coding: 1-uvrD, 2-lexA,
3-umuD, 4-recA, 5-uvrA, 6-polB)

Gene αi βi
X1 3.2 ± 0.28 8.4 ± 0.12

X2 1.5 ± 0.09 1.6 ± 0.19

X3 1.7 ± 0.21 1.5 ± 0.17

X4 5.3 ± 0.16 1.6 ± 0.07

X5 1.6 ± 0.16 2.0 ± 0.15

X6 4.3 ± 0.22 3.8 ± 0.12
terms, respectively, and n is the total number of species
in the system, in this case total number of genes in the
network. In this work, we are using a modification of the
above equation by assuming that species degradation fol-
lows a first order kinetics of the corresponding species
and independent of other species (hij= 1 for i = j; 0 other-
wise). While being relevant to biological systems [18],
this assumption also reduces the unknown parameters
from 2n(n + 1) to n(n + 2) [16].

Network Identification Algorithm
Our network identification algorithm is primarily based
on the hypothesis of sparsity of network connections
governing biological systems. Hence our overall objective
is to determine the sparsest network which can satisfac-
torily capture the observed network dynamics. Following
this idea, the network identification problem is formu-
lated as an optimization problem with the objective of
promoting sparsity given the constraint of maximizing
predictive capacity. Such problem definition results in a
bi-level optimization problem, where the constraint itself
is an unconstrained optimization problem. In the current
formulation using S-system to model the gene expres-
sion level (equation (1)), the kinetic orders (gij) are
decomposed into two parts: binary part, λij, which deter-
mines the existence of the connection; and continuous
part, ρij, representing the nature and strength of inter-
action for an existing connection. A value of 1 of the bin-
ary variable λij would indicate the presence of the
corresponding connection Xi  Xj, while value of 0 indi-
cates its absence. These binary variables are optimized in
the upper level which results in an integer programming
problem. For each chosen network in the upper level,
the connections are sent to the lower level, where corre-
sponding ρij are optimized to maximize network predic-
tion and hence minimize deviation of the network
predictions from the observables. The lower level essen-
tially optimizes both strength (magnitude) and nature
(sign) of the existing connections (ρij , reactions orders)
as well as the strengths of the production and degrad-
ation rate constants (αi, and βi respectively). Hence it
results in a continuous non-linear programming problem
where the objective is to minimize the deviation of the
predicted profiles from experimental data in a least
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square sense. A constraint of tolerance (tol) is imposed
on this minimized error which defines the maximum al-
lowable deviation in prediction. The mathematical for-
mulation of the network identification problem in its
entirety is shown in equation (2):

; ¼ min
Xn

i;j¼1λij

subjectto : argminχ λð Þ≤tol
where

χ ¼
Xnstep
t¼1

Xn
i¼1

x exp
t;i � xpredt;i

� �2
" #1

2

dxi
dt
¼ αi

Yn

j¼1x
gij
i;j � βi

Yn

j¼1x
hij
i;j

gij ¼ λij � ρij
hij ¼ 1; i ¼ j

0; otherwise

�

1≤
Xn
i;j¼1

λij < n� m� 3ð Þ

ð2Þ

λi j = binary variable
x exp
ij ; xpredij ¼experimental and predicted gene expression
levels, respectively
αi,, βi = kinetic rates constants of ith gene's production
and degradation, respectively
gij,hij = kinetic orders of production and degradation,
respectively
nstep = number of time points
n = number of genes constituting the network
m = number of experimental time points

In the above formulation
P

λ represents the total
number of network connections, minimizing which will
promote sparsity in the network. The upper level integer
programming is solved using combinatorial optimization
techniques since combinatorial approach is known to
handle L0 minimization problems more efficiently than
approximation algorithms [30]. Of them, evolutionary
algorithms are particularly efficient in finding a good ap-
proximate solution for combinatorial problems [31]. In
this work, we have used genetic algorithm (GA) for solv-
ing the integer programming problem, while the lower
level non-linear programming problem is solved using a
standard least square optimization routine.
GA is typically designed to handle unconstrained

optimization problems. One technique for constraint
handling in GA is by penalty function, where the constraint
is conditionally incorporated in the objective function. For
conditions violating the constraint the objective function is
penalized, and not so otherwise. In the current formulation
the constraint is incorporated in the objective function
using the following modification of the objective function:

φ ¼ min
Xn

i;j¼1λij þ penalty � max ζ; 0½ �
ζ

� �
ð3Þ

where ζ ¼ argminχ λð Þ
tol � 1

A significant advantage of the bi-level formulation is
that it allows optimum utilization of experimental data
by sequentially reducing the number of unknown para-
meters in the lower level. In a conventional least-square
parameter estimation problem, the connectivity is fixed
and includes all possible network connections. There-
fore, the size of the identifiable system is restricted, gov-
erned by the availability of experimental data points so
that number of unknown parameters is less than the
number of data points. For instance, a single level algo-
rithm, using the above S-System formulation, would be
restricted to less than m-3 genes. However, in the
current bi-level formulation, this restriction is relaxed.
Because the number of network connections are first
reduced in the upper level, the number of genes to be
analyzed is not so restricted, with the only constraint
coming from the connectivity:

Xn
i;j¼1

λij < n� m� 3ð Þ ð4Þ

Hence the constraint is imposed on the maximum num-
ber of binary variables assigned in the upper level, but does
not constrain the total size of the analyzed network. More-
over, our primary objective being sparsity of network con-
nections, the formulation essentially tries to minimize the
number of connections assigned to 1. Hence, except for
the very initial phase of GA evolution, the constraint
defined in equation (2) typically does not become active,
and never so in the final optimal solution.

Identification of Robust Networks
Real world data typically contains noise due to experi-
mental uncertainty and system stochasticity. Biological
data are particularly notorious for its inherent heterogen-
eity and stochasticity [32]. Hence it is important to expli-
citly account for data variability in order to increase
confidence in the predicted network. In the presence of
large experimental repeats it may be possible to deter-
mine robustness of identified network by repeatedly solv-
ing the network identification problem at each of the
experimental data sets and analyzing the connections
which are heavily repeated. However, drawing statistically
significant inference would necessitate a large data set
which is impractical and infeasible.
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An alternative to actual experimental repeats is to use
bootstrapping. The purpose of this statistical technique
is to estimate the distribution of the estimator around
the unknown true value θ. However, instead of achieving
this with a large number of individual replicates, boot-
strapping utilizes resampling of the data. In this way, a
large number artificial data sets can be generated from a
limited number of experimental repeats. For each boot-
strap run, data samples are randomly chosen, with re-
placement, from the empirical distribution, with the size
of each artificial set being the same as the experimental
set (e.g. if the experimental set has 20 data points, so
would the bootstrap set). For each bootstrap, the estima-
tors (e.g. mean, variance, or, as in the case of the current
work, regression parameters) are calculated, and with
sufficient number of resampled data sets, relevant statis-
tical information, including confidence intervals, can be
estimated [26,33].
In our algorithm, we are dealing with limited experimen-

tal data. Hence, following the above methodology, we gen-
erate a large artificial data set by repeated resampling of
the limited experimental repeats. Once the bootstrapped
samples are obtained, the network identification algorithm
previously described is applied to all bootstrap data sets to
identify a network corresponding to each. The network
sets thus obtained is further analyzed to determine the fre-
quency of occurrence of each connection in the entire set
of identified networks. We hypothesize that frequent oc-
currence of network connections in the bootstrap samples
indicate the insensitivity of the corresponding network to
experimental noise, and hence claim that connection to be
robust.
In order to quantify the quality of prediction of the

proposed algorithm the measures of recall and precision
are used, calculated as:

recall ¼ TP
TP þ FN

precision ¼ TP
TP þ FP

ð5Þ

Where: TP (True Positive) denotes the number of con-
nections correctly captured; FN (False Negative) denotes
existing connections which are not captured in the iden-
tified network; and FP (False Positive) denotes connec-
tions which are incorrectly captured in the identified
network. Following the above equation: a low value of re-
call would indicate a more conservative estimate which
is unable to capture many of the existing connections; a
low value of precision will indicate prediction of incor-
rect connections not appearing in the actual network;
and a value of 1 will indicate perfect network identifica-
tion. The flow diagram of the overall network identifica-
tion algorithm is shown in Figure 1.
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