Link to the University of Pittsburgh Homepage
Link to the University Library System Homepage Link to the Contact Us Form

Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos

Murray, AR and Kisin, ER and Tkach, AV and Yanamala, N and Mercer, R and Young, SH and Fadeel, B and Kagan, VE and Shvedova, AA (2012) Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos. Particle and Fibre Toxicology, 9.

Published Version
Available under License : See the attached license file.

Download (5MB) | Preview
[img] Plain Text (licence)
Available under License : See the attached license file.

Download (1kB)


Background: Carbon nanotubes (CNT) and carbon nanofibers (CNF) are allotropes of carbon featuring fibrous morphology. The dimensions and high aspect ratio of CNT and CNF have prompted the comparison with naturally occurring asbestos fibers which are known to be extremely pathogenic. While the toxicity and hazardous outcomes elicited by airborne exposure to single-walled CNT or asbestos have been widely reported, very limited data are currently available describing adverse effects of respirable CNF.Results: Here, we assessed pulmonary inflammation, fibrosis, oxidative stress markers and systemic immune responses to respirable CNF in comparison to single-walled CNT (SWCNT) and asbestos. Pulmonary inflammatory and fibrogenic responses to CNF, SWCNT and asbestos varied depending upon the agglomeration state of the particles/fibers. Foci of granulomatous lesions and collagen deposition were associated with dense particle-like SWCNT agglomerates, while no granuloma formation was found following exposure to fiber-like CNF or asbestos. The average thickness of the alveolar connective tissue - a marker of interstitial fibrosis - was increased 28 days post SWCNT, CNF or asbestos exposure. Exposure to SWCNT, CNF or asbestos resulted in oxidative stress evidenced by accumulations of 4-HNE and carbonylated proteins in the lung tissues. Additionally, local inflammatory and fibrogenic responses were accompanied by modified systemic immunity, as documented by decreased proliferation of splenic T cells ex vivo on day 28 post exposure. The accuracies of assessments of effective surface area for asbestos, SWCNT and CNF (based on geometrical analysis of their agglomeration) versus estimates of mass dose and number of particles were compared as predictors of toxicological outcomes.Conclusions: We provide evidence that effective surface area along with mass dose rather than specific surface area or particle number are significantly correlated with toxicological responses to carbonaceous fibrous nanoparticles. Therefore, they could be useful dose metrics for risk assessment and management. © 2012 Murray et al; licensee BioMed Central Ltd.


Social Networking:
Share |


Item Type: Article
Status: Published
CreatorsEmailPitt UsernameORCID
Murray, AR
Kisin, ER
Tkach, AV
Yanamala, N
Mercer, R
Young, SH
Fadeel, B
Kagan, VEkagan@pitt.eduKAGAN
Shvedova, AA
Date: 10 April 2012
Date Type: Publication
Journal or Publication Title: Particle and Fibre Toxicology
Volume: 9
DOI or Unique Handle: 10.1186/1743-8977-9-10
Schools and Programs: School of Public Health > Environmental and Occupational Health
School of Medicine > Structural Biology
Refereed: Yes
Date Deposited: 19 Oct 2016 16:08
Last Modified: 02 Feb 2019 14:57


Monthly Views for the past 3 years

Plum Analytics

Actions (login required)

View Item View Item