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The amount of data available due to the rapid spread of advanced information technology is 

exploding. At the same time, continued research on data integration systems aims to provide users 

with uniform data access and efficient data sharing. The ability to share data is particularly 

important for interdisciplinary research, where a comprehensive picture of the subject requires 

large amounts of data from disparate data sources from a variety of disciplines. While there are 

numerous data sets available from various groups worldwide, the existing data sources are 

principally oriented toward regional comparative efforts rather than global applications. They vary 

widely both in content and format. Such data sources cannot be easily integrated, and maintained 

by small groups of developers. 

I propose an advanced infrastructure for large-scale data integration based on 

crowdsourcing. In particular, I propose a novel architecture and algorithms to efficiently store 

dynamically incoming heterogeneous datasets enabling both data integration and data autonomy. 

My proposed infrastructure combines machine learning algorithms and human expertise to 

perform efficient schema alignment and maintain relationships between the datasets. It provides 

efficient data exploration functionality without requiring users to write complex queries, as well 

as performs approximate information fusion when exact match does not exist. Finally, I introduce 

Col*Fusion system that implements the proposed advance data integration infrastructure. 
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1 

1.0 INTRODUCTION 

The amount of data available due to the rapid spread of advanced information technology is 

exploding. At the same time, continued research on data integration systems aims to provide users 

with uniform data access and efficient data sharing. The ability to share data is particularly 

important for interdisciplinary research, where a comprehensive picture of the subject requires 

large amounts of data from disparate data sources from a variety of disciplines. While there are 

numerous data sets available from various groups worldwide, the existing data sources are 

principally oriented toward regional comparative efforts rather than global applications. They vary 

widely both in content and format. Such data sources cannot be easily integrated and maintained 

by small groups of developers. 

In this dissertation, I address the challenges in developing a large-scale information 

integration infrastructure that can be utilized as an efficient tool to support a wide range of 

interdisciplinary research. The solution that I propose is to engage a large community of researches 

to share their data, collectively resolve the data heterogeneities, and harmonize their efforts in 

data reliability assessment and data fusion. I introduce Col*Fusion (Collaborative data Fusion) – 

an advanced infrastructure for systematic accumulation and utilization of global heterogeneous 

datasets based on the collective intelligence of research communities. Col*Fusion efficiently 

distributes the task of data integration among the data contributors and enables continuous growth 

of integrated repository in a Wikipedia-like manner.  
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Over the last several decades there has been much research on the various components of 

digital data curation infrastructure. However, there has been little work on collecting all of the 

components into an integrated end-to-end system. This work constitutes the first attempt to 

systematically utilize state of the art as well as to develop novel techniques to implement a global-

scale high-performance data integration infrastructure based on collective intelligence.  

A major part of the research is focused on historical data integration, performed in 

conjunction with the Collaborative for Historical Information and Analysis (CHIA) 

(http://www.chia.pitt.edu/), to provide an immediately valuable test-bed for research in 

crowdsourcing information integration. The impact on historical research will be significant both 

nationally and internationally, because CHIA currently involves nine different research groups 

throughout the U.S. and Europe. Historical data integration is an initial test-bed for Col*Fusion. 

The proposed information integration infrastructure is general enough to apply to any fields 

involving large bodies of structured and unstructured textual and numerical data. 

1.1 MOTIVATING EXAMPLE 

Interdisciplinary research requires data produced by different research group and stored in separate 

datasets. Consider the following hypothetical question: “Is there a correlation between population 

and number of disease cases in United States?”. Also consider four datasets that might be 

collected/produced by several independent researchers:  

x D1(State, Year, Month, Disease, Number of disease cases) – total number of disease 

cases in USA aggregated by state, year and month; available as a database dump file. 
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x D2(State, Abbreviation) – mapping between USA state names and their abbreviations, 

e.g. (PA, Pennsylvania); available as a CSV file. 

x D3(State, Year, Month, Country, Precipitation) – precipitation amount in some USA 

states aggregated by year and month; available as an SPSS file. 

x D4(Population, Year, State*) – population in some USA states aggregated by year and 

state; available as a STATA file. 

The datasets are heterogeneous in many ways: file format, schema and values, e.g. even 

though variable name is State in the last dataset, actual values are abbreviations of states. 

Figure 1 shows a number of steps a researcher would need to do to answer the above 

question. The required data are stored in D1 and D4, however they cannot be directly merged based 

on State and Year variables, because State in D4 is represented as a state name abbreviation. In 

general, some of the datasets might not even share any common variables.  Meanwhile, they might 

be related via other datasets. In the above example, the researcher would have to either edit State 

variable in D1 or D4 or merge them via other dataset, e.g. D1-D2-D4. 

 Most of the existing data repositories focus only on datasets level metadata (variables 

metadata can be provided in form of codebook, that cannot be processed automatically). Therefore, 

interoperability between repositories is reduced to only sharing datasets level metadata or 

searching for datasets based on datasets level metadata with no support for search of specific 

variables. In addition, when datasets are downloaded, without variable level metadata it can be 

hard to know what exactly each variable measures, e.g. is it approximate, is it aggregate, what 

measure units are, etc. 
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Figure 1: Steps required to answer data-intensive interdisciplinary research questions 

1.2 GRAND VISION 

We envision a world in which all datasets are publicly available (with appropriate permissions and 

licensing) and access points to those datasets are not spread over hundreds of different digital 

libraries and repositories, government and personal websites, etc. The process of data sharing 

could be as simple as visiting a web site and doing a couple of mouse clicks with no time 

consuming data preparation and transformation to fit strict format requirements. The data could 

also be shared automatically from any data manipulation software.  

Imagine being credited and recognized for the data you share and seeing your datasets used 

and/or being evolved over time. The datasets you share are not getting lost among other datasets 

but instead they are automatically linked with other datasets (even from other disciplines) while 

preserving data autonomy. The data linkage could bring you new interdisciplinary research 

questions and new collaboration that you did not realize at the time you created your data. 

Instead of searching for locations of useful datasets you just look for the data you are 

interested in, e.g. the variables that you want to analyze. Such search does not merely results in a 

list of links to the locations of potentially relevant datasets, but instead the result includes the data 
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items that you are interested in. Moreover, if the data that you need originally located in a number 

of distinct datasets, the resulting dataset will automatically integrate all those datasets.   

Any dataset you look at will also include comprehensive metadata on both datasets level 

(e.g., title, description, authors, etc.) and variable level (a short description explaining what it 

stores, the data type, measuring unit, etc.). The dataset will also be provided with provenance 

information that would include any actions performed on the dataset since it was created.  In case 

of integrated dataset, provenance information would describe how the integration was performed 

(e.g. which datasets were used, which variables were used, any transformations that were applied, 

etc.). If the datasets were used in any published work, you would be able to obtain and review a 

list of relevant papers. You would be able to immediately explore and understand the dataset by 

looking at data visualizations (graphs, maps, etc.) created and shared by other users.  You could 

also reuse the results of previous research, such as code to analyze the datasets, statistical model, 

etc.  

Imagine if you could join other researchers currently working on datasets that you are 

interested in and directly communicate with them while working on those datasets. Moreover, you 

could run complex data analysis algorithms and/or write your own data analysis/visualization 

program collectively, without the need to download the datasets to your local machine and instead 

be able to utilize the power of the high-performance cloud computing. After that you could easily 

share your analysis with the research community. For complex tasks that are out of your 

competence, you could also hire (for money or other rewards) domain experts, programmers, data 

analysts, etc. 

You could write papers in which all charts are interactive via simple user interfaces and 

those papers would be published to journals allowing other researchers to try different parameters 
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to better understand your paper. In such papers, the data and analysis code become a major part of 

the paper and not just something nice to have. This would allow other researchers to validate your 

studies.  

Imagine that all features explained above are implemented in a simple to use web 

application that requires neither complicated installation nor considerable learning efforts. Below 

I will elaborate on the approach and infrastructure that implement the above vision. 

1.3 OBJECTIVE 

In this dissertation, I present my work towards the grand vision that I explained above. I propose 

novel advanced infrastructure for large-scale data integration based on crowdsourcing techniques. 

In particular, I propose novel architecture and algorithms that answer the following questions: 

x How to store dynamically incoming heterogeneous datasets efficiently to enable both 

data integration and data autonomy. 

x How to combine machine learning algorithms and human expertise to perform efficient 

schema alignment and maintain relationships between the datasets. 

x How to provide efficient data exploration functionality without requiring users to write 

complex queries. 

x How to perform approximate information fusion when exact match does not exist.  

I design and develop Col*Fusion system that implements the proposed advance data 

integration infrastructure as well as other functionality to realize the grand vision. 

The proposed architecture is based on the crowdsourcing techniques and users of the 

Col*Fusion play central role in the goal of creating high quality large scale integrated data 
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repository. Meanwhile, I am not focusing on specific crowdsourcing related issues, such as how 

to provide incentive for people to contribute their datasets.  

1.4 ORGANIZATION OF THE DISSERTATION 

The reminder of this dissertation is structured as follows. Chapter 2.0 covers the necessary 

background information and literature review. In Chapter 3.0 I describe proposed approaches and 

algorithms to store, virtually integrate and explore heterogeneous datasets. Chapter 4.0 covers 

implementation details, introduces Col*Fusion system and reports on its real life usage. Chapter 

5.0 addresses the problem of fusing datasets during ad-hoc join queries. I summarize my work and 

conclude with a discussion of possible future work in Chapter 6.0. 
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2.0 BACKGROUND AND RELATED WORK 

In this chapter I describe main concepts that are relevant to the proposed work and that are either 

used as building blocks of the proposed infrastructure or serve as motivation. For each concept I 

also provide literature review and try to contrast related work to the proposed work. 

2.1 DATA INTEGRATION 

The main goal of data integration is to provide a user with unified view of a number of autonomous 

and heterogeneous data sources [113]. The challenge of data integration has been actively explored 

for more than 30 years beginning with the Multi-Base System [111]. Resolving data 

heterogeneities has been the focus of active research and development [18][63][28][79]. Data 

integration is a complex process consisting of several activities such as schema matching, record 

linkage, querying and search over integrated sources, as well as keeping track of lineage and 

provenance. There are numerous tools for efficient mapping of data sources in a homogenous 

schema with proper data cleaning, standardization of names, conversion of data types, duplicate 

elimination, etc.  

There are many approaches to design and implement data integration system that address 

some or all of the challenges mentioned above, but broadly speaking they can be split into two 

groups: 
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x Top-down approach 

� Data Warehousing (DW) 

� Virtual Integration (VI), also called View-based Data Integration  

x Bottom-up approach  

� Peer-to-peer (P2P) 

� Dataspaces and Pay-as-you-go data management 

� Linked Data  

2.1.1 Top-down approaches: Data Warehousing and Virtual Integration 

A well-established top-down approach to data integration varies from data warehousing to virtual 

databases architectures [55] and relies on designing a pre-defined global schema. The global 

schema is the unified view that data integration system exposes to its users and based on which 

users post queries to the system. Depending on how data integration system handles data sources 

and execute queries, top-down approach can be divided into two approaches: Data Warehousing 

and Virtual Integration.  

The main limitation of top-down approaches is the global schema. It is problematic to 

develop and maintain a predefined schema for many data integration scenarios, especially if the 

data sources are added dynamically. Another limitation of the top-down approach is that it usually 

requires a centralized management. When data from several domains need to be integrated, the 

database administrator might need to have domain knowledge from all domains and/or it will be 

impossible to define a global schema and the other parts of the data integration system.  
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2.1.1.1 Data Warehousing Approach Traditionally a data warehouse is defined as a tool for 

decision support. For example, Inmon [92] defines data warehouse as “subject-oriented, integrated, 

time-varying, non-volatile collection of data that is used primarily in organizational decision 

making” and Chaudhuri and Dayal [37] define data warehouse as “a collection of decision support 

technologies, aimed at enabling the knowledge worker (executive, manager, analyst) to make 

better and faster decisions”. 

Figure 2 shows typical data warehouse architecture (the figure is taken from [37]). 

 

Figure 2: Data Warehousing Architecture 

Defining a data warehouse involves two main tasks [55]: 

x Performing target database schema and physical design, 

x Defining a set of extract/transform/load (ETL) operations. 



11 

Data from all the data sources is loaded into the target database periodically (e.g. every 

night) via the ETL process. Designing the ELT process might not be very straightforward as this 

is the stage where data source heterogeneity has to be resolved.  

DW approach has two main applicability limitations: 

x Because the data are loaded into the target database periodically, at a time of the query, 

DW might have obsolete data. 

x Data warehouses usually store aggregated data, therefore some data are lost during 

transformation process. 

On the other hand, DW approach has several advantages: 

x Queries over the warehouse don’t put any execution load on the data sources since all 

the data reside in the DW. 

x DW supports complex, interactive, exploratory analysis of very large data (OLAP [37]) 

A data warehouse approach can be easily implemented on top of any of the popular 

database management systems (e.g. Oracle or Microsoft SQL Server). Examples of data 

integration in WH in the literature include [33]. 

The data warehouse approach can be used when all data sources are known and integrated 

dataset will be used mostly for archival purposes or complex queries for exploratory analysis over 

[historical] records. It should not be used when integrated data need to be always up to date with 

all data sources. 

2.1.1.2 Virtual Integration Approach Virtual data integration approach is similar to the data 

warehouse approach in that they both require a global schema. In the virtual data integration 

approach, however, the global schema is usually called mediated schema and it is “not 
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materialized” (hence it is virtual). “Not materialized” means that data remain in the data sources 

and accessed at the query time [55]. 

Simplified virtual integration architecture is presented on Figure 3 (the figure is taken from 

[55]). When a user posts a query over the mediated schema, the virtual integration system translates 

the query in terms of data sources and accesses those data sources that have required data. In order 

to do that the system needs to have enough information about each data source. Thus the key 

component of the virtual data integration approach is the source descriptions that specify the 

properties of the sources that the system needs to know [115] (Schema mappings are the major 

part of the source description, see more on Schema mappings in Section 2.1.3).  

 

Figure 3: Simplified virtual data integration architecture 
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To address the source heterogeneity problem, each source is associated with a wrapper that 

is responsible for communication with that data source. The communication includes posting 

queries to the data source, receiving answers, and possible applying some basic transformation 

[55]. A number of works has been done on Web data integration and wrapper/mediator 

architectures to access heterogeneous Web data sources [194][192][193]. 

Virtual data integration has several major applicability limitations: 

x Complex, data intensive queries cannot be executed efficiently: 

� The data are not loaded into a central repository, but accessed at the query 

execution time 

� Data transformations happen at the query execution time 

� Complex query plans – harder to optimize 

x At any time, any data sources might become unreachable. 

Virtual data integration approach has several advantages though: 

x Result of a query posted over mediated schema will always have up-to-date data with 

the data sources because data are pulled from sources during query execution. 

x The relationships between mediated schema and data sources are explicitly stated and 

not hidden inside a particular implementation (e.g. ETL operations). 

x Depending on the schema mapping language, new resources can be added relatively 

easily. 

Examples of data integration systems that uses virtual data integration approach include 

TSIMMIS [72], Garlic [34], Information Manifold [107]. 

Virtual data integration approach should be used when query results cannot have obsolete 

data and when queries are not data intensive. 
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2.1.2 Bottom-up approaches: Peer-to-peer, Pay-as-you-go, and Linked Data 

As shown above, constructing a queryable global schema is one of the major challenges in getting 

a data integration system deployed. The bottom-up approach doesn’t require a global schema and, 

by design, supports seamless integration of new data sources. Below I discuss three types of 

bottom-up approaches: Peer-to-peer, Pay-as-you-go, and Linked Data.  

2.1.2.1 Peer-to-peer approach Peer-to-peer integration systems [1][19][104][82] were inspired 

by Peer-to-Peer file sharing systems. The main difference from previously reviewed approaches is 

that they drop requirement for a single unified view, allowing queries to be posted over any sources 

schema. P2P data integration can be understood as a generalization of view based data integration 

with more than one global schema. 

P2P architecture (Figure 4 is taken from [55]) consists of on a set of peers (data sources) 

and two kinds of mappings: storage descriptions and peer mappings [55]. Each peer has a schema, 

called peer schema, which is exposed to other peers. Peer schema is a logical schema; the data are 

stored in a database, called stored relations. The storage descriptions specify how to map the data 

from stored relations to peer schema. In fact, some peers can be complex data management systems 

(e.g. can be a warehouse) themselves, while some peers might not have any stored relations and 

act just as a mediated schema.  

Peers specify peer mappings that relate their peer schemas. Every peer needs to provide 

semantic mappings only to a set of neighbors and thus form a network of data sources. More 

complex integrations emerge as the system follows semantic paths in the network [1]. The 

transformation, schema mappings, record linkage and all other data integration challenges are 

address at the peer’s level instead of a global level.  
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Examples of P2P integration systems include BestPeer++ [40], Piazza [81], PeerDB [137]. 

 

Figure 4: Simplified Peer-to-peer data integration architecture 

The limitations and disadvantages of P2P and CDSS systems are similar to virtual data 

integration approach: 

x Because the data are not pulled into one repository, query processing is (a) more 

completed and (b) slower to execute. 

x Because there is no global schema, search need to be performed based on peer’s 

schema. Some work has been done in the area of keyword and top-k search over 

databases [88, 171, 182]. However, because of the high complexity heuristics are used 

which might result in not complete data. 

x Because there might be several ways to answer a query system need to deal with the 

problem of data completeness and trust to peers. 
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2.1.2.2 Pay-as-you-go approach One of the major limitations for all the approaches reviewed so 

far is long time to setup before any services can be provided. To address the problem, dataspace 

systems with pay-as-you-go approach were proposed [83][69][125]. The main idea behind this 

approach is stated by Halevy as “…offer some services immediately without any setup time, and 

improve the services as more investment is made into creating semantic relationships” [84]. 

As this approach is relatively new, not many systems were developed yet. Google Fusion 

tables [73] and OpenRefine [181] systems are examples of pay-as-you-go data integration. They 

are cloud-based services for data management and integration thus require no installation. Users 

starts to work with their data without prior configuration and can integrate their data with other 

data available online on demand. 

The disadvantages and limitation of this approach: 

x If data integration happens on demand, then the issue of trust in data sources is more 

challenging here because the system might not have enough information to assess it. 

x End user might need to know how to integrate often unfamiliar to him or her resources. 

2.1.2.3 Linked Data approach All of the approaches above are focused on data integration on a 

small scale. For example, an enterprise that have a number of operational databases might have a 

task to integrate them; or a group or researches want to integrate their datasets; etc. As the result 

we have isolated clusters of integrated data sources. Much bigger goal is to create a global data 

space where any data instance can be reached. Semantic Web with Linked Data principles has that 

goal: “The Semantic Web isn’t just about putting data on the web. It is about making links, so that 

a person or machine can explore the web of data. … With linked data, when you have some of it, 

you can find other, related, data.” [120] 

To manage globally distributed data, Semantic Web infrastructure uses Resource 
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Description Framework (RDF) as a data model [7]. The RDF data model is designed for the 

integrated representation of information that originates from multiple sources, is heterogeneously 

structured, and is represented using different schemata [86]. Every thing is called a resource in 

RDF and represented as a number of triples. Each triple consists of subject (refer to the thing itself, 

e.g. id of the row in the relational model), predicate (refer to the name of the property of the thing, 

e.g. could be thought of as an attribute name of a record in relational model), object (refer to the 

value of the property, e.g. the value of an attribute of a record in the relational model). Two types 

of RDF triples can be distinguished: 

x Literal Triples have a simple data type (e.g. string, number, etc.) as the object and they 

describe properties of the resource. 

x RDF Links describe the relationships between two resources and can be though of as 

foreign keys in relational model. 

It is convenient to view the triples as a directed graph in which each triple is an edge from 

its subject to its object, with the predicate as the label on the edge. 

In the past few years this approach has been used in publishing government data sets. 

Examples include www.data.gov, linkeddata.org. However simply following the Linked Data 

principles to publish research data would not ensure its reusability due to many reasons (data 

provenance, quality, credit, attribution and reproducibility). For example, publishing data out of 

context would fail to reflect the research methodology and respect the rights and reputation of the 

researcher [65]. 

This approach might look similar to the Virtual Data integration approach with the 

difference that the “mapping” is on the record level, instead of the schema level. Therefore, the 

limitations are also similar: 
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x Complex query might be slow due to the fact the all data are distributed globally. 

x At any time, any data source can go offline. 

To conclude, I would like to state that each data integration approach has its pros and cons, 

however all of them require some kind of data administrators either to design a target or mediated 

schema, or create ETL pipeline or schema mappings, etc. With a number of available data sources 

and the size of them constantly growing data integration cannot be manual, few humans’ effort. 

Even though automated algorithms based on machine learning techniques are developed, as noted 

by Halevy they are not foolproof [84]. Therefore, there is a need for a new approach. 

2.1.3 Schema Matching and Schema Mapping 

An important task in any data integration system (no matter what architecture is used) is to align 

schemas of the data sources that need to be integrated. The schema alignment process is usually 

done in two steps [1]: 

x Schema matching step – identification of semantically related attributes from data 

sources’ schemas. Examples include “attribute name in one source corresponds to 

attribute title in another”, and “location is concatenation of city, state, and zip code”. 

x Schema mapping step – derivation of rules that specify how to translate data across 

schemas. Mappings are typically structured queries written in a language such as SQL. 

In practice, creating the matches and mappings is not a trivial task because it requires 

understanding of the semantics of the schemas of the data sources and thus consumes quite a bit 

of the effort in setting up a data integration application. Schema matching and mapping is a well-

studied topic in the database, machine learning, and Semantic Web communities (see [149][56] 

for surveys). Various solutions on semi-automatic schema mapping range from schema-only string 
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similarity techniques to rule-based methods to application of machine learning algorithms, which 

also involve data instances (e.g. Label Propagation [172]). Modern schema matchers combine 

output from multiple sub-matchers [172][130][150]. However, the task is inherently a heuristic 

one and there is no algorithm that will take two arbitrary schemas and flawlessly produce correct 

matches and mappings between them. 

2.2 KEYWORD SEARCH: INTEGRATION ON DEMAND 

Another group of related works involves keyword search in single-database (e.g., BANKS [21], 

DBXplorer [5], Discover [88]) and peer-to-peer contexts (e.g., [131][197]).  

Keyword search allows users to post a query as a set of keywords which match schema or 

data values without specifying which sources to look at. Even though different approaches to 

keyword search use different techniques, at the core they all deal with the problem of searching a 

graph to find all sub-graphs that satisfy certain properties. The problem is NP-hard and known to 

be exponential in the query size, thus making query execution prohibitively expensive [13]. To 

improve query performance, different heuristics have been proposed. For example [95] proposes 

to reuse and combine computation across queries.  

A number of works are available on top-k query processing (e.g., [30][116][178][170]) that 

returns only top-k result according to some scoring function. Another way is to produce answers 

that can be generated quickly and then to provide users with query forms that characterize the 

unexplored portion of the answer space [13]. 
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2.3 CROWDSOURCING IN DATABASES AND DATA INTEGRATION SYSTEMS 

An important component of the architecture that I propose exploits the advantages offered by 

crowdsourcing applications and collective intelligence. Successes of crowdsourcing systems, for 

example Wikipedia and Linux, inspired the idea to apply crowdsourcing for large-scale data 

integration. So far in data integration systems, crowdsourcing was used mostly as external resource 

to perform separate work for helping answering queries [169][70][140][141], checking schema 

mapping [128][16][142], or for entity resolution [183][50]. However, to the best of my knowledge, 

none of existing works make crowdsourcing techniques as a central and internal component for 

the advanced data integration. 

In any crowdsourcing environment quality verification and assurance operations are 

required. The amount of research in the area of data conflict resolution and querying inconsistent 

data is considerable. See [23][20] for a comprehensive review of the current state of the art. 

Conflicts can be resolved using metadata about data source accuracy and freshness, or exploiting 

dependencies between data sources, where information from one source can be re-used in another 

source. Data inconsistency as a key integrity constraint violation was considered in [4]. Consistent 

query answering that ignores inconsistent data, thereby violating integrity constraints, was 

introduced in [31]. This approach is related to more recent research on query transformation for 

consistent query answering [186]. An alternative approach is based on inconsistent database repair, 

producing a minimally different – yet consistent – database that satisfies integrity constraints [25]. 
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2.4 RELATED DATA INTEGRATION/CURATION SYSTEMS 

While much research addresses different data integration subtasks, to the best of my knowledge, 

no existing system implements all stages of data integration processes in an advanced 

infrastructure based on collective intelligence. The closest related work is Orchestra with Q 

systems [94][175][170][93][172][95]. Orchestra is a Collaborative Data Sharing Systems focused 

mostly on data exchange and update reconciliation similar to version control systems. With Q 

system users can post keyword queries to the system and as the result obtain “best” k records. To 

find the best records, authors propose a machine-learning algorithm to incorporate users’ feedback 

(in form of like and dislike votes) into computation of schema mapping confidence [170]. A 

significant disadvantage of the Orchestra system is its long set-up time. Another system, Data 

Tamer [166][77][173], showed that combination of machine learning techniques and 

crowdsourcing allows to significantly reduce the amount of work and time needed to perform data 

curation tasks. However, Data Tamer workflow assumes a specific customer with number of 

datasets with a dedicated Data Tamer Administrator and crowdsourcing is limited to the set of 

domain experts. Both Orchestra and DataTamer don’t have a goal to create a global-scale 

interdisciplinary integrated repository and instead of supporting true crowdsourcing architecture 

in a Wikipedia-like manner they utilize either domain experts or limit users to actions to only a 

few functions. 
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2.5 DATA REPOSITORIES 

A number of tools (e.g., DataUp [168]) and data repositories (e.g., ONEShare [168], Dataverse 

Network [106], DataDryad [58], DSpace [165], Dash [46]) were developed to facilitate data 

sharing and preservation processes. Usually a data repository is a cloud service with a web 

interface that allows users to submit data via a web browser.  

Advantages of data repositories include ease of use, persistent storage, public distribution 

and recognition (through citation via unique dataset identifier), and search for datasets based on 

metadata. Some repositories provide visualization and statistical analysis tools.  

The disadvantages of current approaches include repository isolation and dataset isolation 

within a repository. The former disadvantage is related to the fact that some repositories are created 

only for specific research areas, journals or universities. Therefore, users would need to know 

where to find the dataset they are interested in and where to submit their dataset. Dataverse 

Network and Databib [48] attempt to solve the problem by allowing users to search within a set of 

repositories but on dataset level metadata only: the first one does it automatically as all Dataverse 

networks are connected, and the second one allows users to create and curate records that describe 

data repositories that users can search. Also Open Archives Initiative [110][139] has developed 

OAI-PMH [138] specification for repository metadata harvesting which provides low-barrier 

mechanism for repository interoperability.  

However, the latter disadvantage – dataset isolation – has not been resolved in any of the 

existing data repositories. Most existing data repositories do not actually process the data files 

submitted to them and thus cannot establish any relationships between datasets on a variable level.  

To the best of my knowledge, the problem of efficient and reliable global-scale information 

integration has not been systematically addressed.
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3.0 ADVANCED DISTRIBUTED DATA INTEGRATION INFRASTRUCTURE UNDER 

MAGNIFYING GLASS 

In this chapter I describe in detail some of the most important components of the infrastructure 

that addresses the research questions mentioned in Section 1.3. Development of each component 

is based on the reviewed literate in Section 2.0. Where possible I explicitly state how my solutions 

differ from existing approaches and provide reasons why I do it that way.  

First of all, the infrastructure should allow users to submit their datasets with some dataset 

level metadata. The dataset level metadata includes title and description of the dataset so that other 

users can browse the repository. We store dataset level metadata in a source_info table. The 

schema for the source_info table can be designed without knowing in advance what kind of data 

users are going to submit, since it stores general information about the dataset. More interesting 

question is how to ingest and store heterogeneous datasets, whose schema vary and is unknown in 

advance. I developed two approaches for storing heterogeneous datasets, which I discuss in Section 

3.1. Once the datasets are stored successfully, they need to be integrated. Section 3.2 discusses the 

virtual integration model that I developed based on notion of discovering and maintaining 

relationships between datasets (similar to P2P approach from Section 2.1.2.1) instead of actually 

transforming and merging all datasets into one integrated dataset (e.g. Data Warehouse from 

Section 2.1.1.1). Finally I discuss novel techniques to search throughout integrated datasets in 

Section 3.3. 
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3.1 STORING HETEROGENEOUS DYNAMICALLY INCOMING DATASETS 

Initially, my proposed infrastructure does not have any data and one of the functionality that it 

provides to its users is the data ingest. Data ingest allows users to submit their datasets to the 

system. The datasets that users have are heterogeneous with respect to the following three features: 

x File format – different file types. 

x Schema – attributes that refer to the same entity may have different names and types. 

x Values – values that refer to the same entity have different representation. 

In order to handle file format heterogeneity, we need to develop extractors that extract data 

from different files to a common format. A separate challenge is how to store datasets with various 

schemas.  

Datasets are generated independently and the intent of data usage in various contexts is 

unknown at the system development time. Designing strict target schema and requiring users to 

transform their datasets to conform to that schema is not a feasible solution. Strict target schema 

will inevitably result in data loss during transformation and inability to store some datasets.  

Below I discuss two alternative approaches. For the explanation of the proposed 

approaches I consider the two datasets D3 and D4 that were introduced in the Section 1.1 and are 

shown on Figure 5 and Figure 6 respectively.  
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.  

Figure 5: Dataset D3 

 

Figure 6: Dataset D4 

3.1.1 “One table” approach 

One way to store the datasets without knowing their schemas in advance is by turning them into 

key-value pairs and then storing those pairs in one table. A key is an attribute name and value is 

the value of that attribute. Each key-value pair is annotated with a dataset identifier. To reconstruct 

the original table, each pair is also annotated with tuple-id. Thus, each tuple in the resulting table 

has four elements (id, i, key, value), where id is the dataset id, i is the tuple-id, key is the attribute 

name and value is the attribute value of i-th tuple. The algorithm that converts input dataset to the 

one table format is called CONVERTTOONETABLESTORAGE and is shown in Algorithm 1. 

Name:�autogenerated Descrip on:�based�on�column�name Average�Confidence:�1

0.00 0.000.33 1.00

Name:�autogenerated Descrip on:�based�on�column�name Average�Confidence:�1

0.00 0.000.33 1.00
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Algorithm 1: CONVERTTOONETABLESTORAGE(S, D, id). Input: Schema S, list of tuples D, id 

of the datasets id. Output: List of tuples in one table format. 

1: R ← empty list 
2: for i = 0 to LENGTH(D) do 
3: for j = 0 to LENGTH(S) do 
4: key = S[j] 
5: tuple = D.GET(i) 
6: value = tuple[j] 
7: R.APPEND((id, i, key, value)) 
8: end for 
9: end for 
10: return R 

The examples of applying CONVERTTOONETABLESTORAGE to datasets D3 and D4 are 

shown on Figure 7 and Figure 8 respectively. Both datasets after transformation have the same 

schema and can be easily stored in one table. 

The “one table” approach is simple and intuitive; however, it suffers from several 

disadvantages. First disadvantage is that large number of duplicate values that need to be stored 

results in storage overhead. Each attribute of the schema is stored repeatedly for each value of that 

attribute. In addition, dataset id and tuple-id need to be stored with each key-value pair. As the 

result, the required number of cells to store a table is four times larger that the original table (since 

additional three pieces of information are stored for each value). We could decompose the table 

and store attribute names in a separate table, but then it would not be a “one table” approach and 

would require an expensive join operation. 
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Figure 7: Example of dataset D3 converted into one table format 

 

Figure 8: Example of dataset D4 converted into one table format 

The second disadvantage is that if we want to show the whole table back to the user, we 

would need to convert the data from key-value pairs back to the original view. We found that this 

operation introduces additional overhead. Algorithm 2 shows CONVERTFROMONETABLESTORAGE 

algorithm that converts tuples from one table format to the original relational format.  
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Algorithm 2: CONVERTFROMONETABLESTORAGE(S, Rs). Input: Schema S, list of tuple in “one 

table” format for one dataset sorted by tuple-id Rs. Output: List of tuples in one table format. 

1: A ← empty list 
2: numAtt = LENGTH(S) 
3: j = -1 
4: resTuple = () //empty tuple 
5: for i = 0 to LENGTH(Rs) do 
6: j = j + 1 
7: tuple = Rs.GET(i) 
8: resTuple[j] = tuple[3] //3 is the index of the value in the tuple 
9: if j = numAtt – 1 then 
10: A.APPEND(resTuple) 
11: resTuple = () 
12: j = -1 
13: end if 
14: end for 
15: return A 

 

Third disadvantage of the “one table” approach is indexing. The index on that table will 

grow fast, which will impact the lookup performance. 

3.1.2 “A database per dataset” approach 

Another way to store heterogeneous datasets is to store them separately and maintain system-wide 

catalog with all the required metadata that will allow system to operate. “A database per dataset” 

approach does exactly that - each dataset is stored in a separate database. 

A dataset might actually be a collection of two or more data tables that are strongly related 

to each other. For example, an excel file with several sheets or a relational database with several 

tables, where some sheets/tables refer to other sheets/tables. “A database per dataset” approach 

naturally supports this model and provides a way to keep the related data tables together and to 

form a namespace. 
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This approach is intrinsically distributed since it allows us putting the data on different 

machines. This architecture is similar to Hadoop Distributed File System [162] where one node, 

called namenode, maintains all the metadata information and knows where a particular dataset is 

stored. The nodes that store the actual data are called datanodes. In my proposed architecture the 

namenode is called metadata node and the datanodes are also called datanodes. 

The minimum metadata information that needs to be maintained for each datasets is the 

connection information to the database that stores it. Additionally, storing variable-level metadata 

(such as name, description, type, etc.) from all datasets in the metadata node will allows us to 

establish relationships between datasets, as explained in Section 3.2.1.  

 

Figure 9: “A database per dataset” architecture with one metadata node and many datanodes. 

Metadata node stores connection information to the databases that store the data on datanodes 

Figure 9 shows a simplified configuration of the “A database per dataset” approach for 

storing the datasets from the motivation example in Section 1.1. The dataset D1 is stored in database 

D1 and the dataset D2 is stored in database D2 on the datanode 1, whereas the dataset D3 is stored 

in database D3 and dataset D4 is stored in database D4 on the datanode 2. The metadata node stores 
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only metadata for all datasets such as titles, descriptions, table names, variable names and 

connection information for the databases on the datanodes. 

Compared to “One table” approach, this approach does not require any transformation of 

the dataset and has no storage overhead due to the repetition. The only overhead is the time to 

create new databases and tables for new datasets, however this only needs to be done once and it 

is relatively inexpensive operation. In addition, individual databases can be easily replicated on 

several nodes to ensure high availability in case of node failures. 

The metadata node is the single point of failure in this architecture. If the metadata node 

goes down, the whole system cannot operate even though the data are available on the data nodes. 

There are several ways to ensure high availability even in case of metadata node failures. For 

example, a secondary metadata node can run on a different machine that will keep up with the 

current state of the main metadata node and be ready to substitute it in case of failure. 

Based on the advantages and disadvantages of the two approaches discussed above, I 

selected the “A database per dataset” approach as the storage solution for the heterogeneous 

datasets in the proposed infrastructure. The rest of the document assumes that we use the “A 

database per dataset” approach.  

The proposed solution for storing previously unknown heterogeneous datasets can be used 

for archival purposes as a data repository similar to the existing ones reviewed in Section 2.5. 

Since we are interested in creating an integrated repository, in the next section I elaborate on data 

integration methods. 
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3.2 INTEGRATING DATASETS 

As explained in the previous sections, the datasets are stored in separate databases and possibly 

distributed among several machines. Such setup is similar to P2P system where each database is a 

peer. In contrast to P2P systems, my infrastructure implements a metadata node that maintains 

information about all datasets in the system. The next step is to integrate those datasets.  

Note that since we do not know the context or all scenarios of how the datasets might be 

used we would like to preserve datasets autonomy that would allow them to evolve independently 

while maintaining connection to other datasets. In Section 3.2.1 I elaborate on the process of 

discovering how datasets are related to each other. In Section 3.2.2 I describe how the information 

about relationships between datasets is represented. In Section 3.2.2.2 I present conceptual and 

physical models that reflect how relationships are maintained. 

3.2.1 Discovering relationships 

In order to integrate datasets, we need to apply schema matching and schema mapping algorithms 

for all pairs of the datasets in our repository. I call processes of schema matching and schema 

mapping as relationship discovery. The relationship discovery process between two datasets 

results in the information that tells us how those two datasets are related to each other. I call that 

information a relationship. I elaborate more on the relationship model in the Section 3.2.2.  

Currently a relationship between datasets is established only based on linguistic similarity 

between variables’ metadata (such as variable name or description). For example, Figure 10 shows 

an example of a relationship between two datasets 𝐷ଷ and 𝐷ସ based on same names of the two 

variables in both datasets. The schema matching occures between 𝐷ଷ. 𝑌𝐸𝐴𝑅 and 𝐷ସ. 𝑌𝑒𝑎𝑟, and 
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𝐷ଷ. 𝑆𝑇𝐴𝑇𝐸 and 𝐷ସ. 𝑆𝑡𝑎𝑡𝑒. The schema mapping results in an equality operation, i.e. 𝐷ଷ. 𝑌𝐸𝐴𝑅 =

𝐷ସ. 𝑌𝑒𝑎𝑟, and 𝐷ଷ. 𝑆𝑇𝐴𝑇𝐸 = 𝐷ସ. 𝑆𝑡𝑎𝑡𝑒. The values 0.33, 0.00 and 1.00 are the data overlapping 

values that will be described in the next section together with more details on what metadata 

constitutes a relationship model. 

 

Figure 10: Automatically discovered relationships between two datasets 𝐷ଷ and 𝐷ସ based on 

same names of the two variables in both datasets 

As it was mentioned in the Section 2.1.3, many different schema matchers that incorporate 

multiple features and use advanced machine learning algorithms have been developed in recent 

years. Thus, I have developed an extendable architecture that enables easy way to utilize different 

schema matching and schema mapping tools. 

As noted in [83], automatic schema mapping is often not foolproof. Therefore, I propose a 

novel approach combining automatic relationship discovery with crowdsourcing techniques. In 

addition to submitting datasets, users can provide feedback on automatically discovered 

relationships and/or create relationship manually. The feedback is provided in terms of confidence 

values ranging from 0 to 1 that reflect users’ belief that relationships hold. When creating new 

relationships, users have to identify schema matching and specify schema mapping manually. 
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Schema mappings can be more complex than simple equality operation and may involve 

data transformation performed automatically or defined by users. An automatic transformation is 

based on variable metadata or can be selected by users from predefined list of transformations. For 

example, consider date conversion from DD-MM-YYYY to MM-DD-YYYY format, or 

measurement unit transformation from miles to kilometers. A user-defined transformation is either 

a mathematical or string manipulation expression on datasets variables, e.g. CONCAT(street, city, 

state) to concatenate street, city and sate values into one value, or definition of correspondence 

tables (I call them synonyms transformation). Figure 11 shows an example of the synonyms 

transformation applied to the 𝐷ଷ. 𝑆𝑇𝐴𝑇𝐸  and 𝐷ସ. 𝑆𝑡𝑎𝑡𝑒  variables. The transformation defines 

correspondence table between US state’s full name and its two letter abbreviations.  

 

Figure 11: Example of synonyms transformation between 𝐷ଷ. 𝑆𝑇𝐴𝑇𝐸 and 𝐷ସ. 𝑆𝑡𝑎𝑡𝑒 variables. 

The transformation defines correspondence table between US state’s full name and its two letter 

abbreviations 

One disadvantage of synonyms transformation appears when there is a large number of 

distinct values that are not matching. Especially if those mappings are well known and might be 

available (e.g., US full state names to two letter abbreviations mapping is well known information). 

This situation is not an unusual case in the proposed infrastructure. Consider an example in Figure 
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12. Figure 12 shows a dataset 𝐷ଶ, from the motivation example in Section 1.1, that contains two 

columns: State and Abbreviation, defining the mappings between full names of the US states and 

their two letter abbreviations. When 𝐷ଶ is submitted to the repository, the relationships between 

all three of the example datasets (𝐷ଶ, 𝐷ଷ and 𝐷ସ) will be discovered automatically as shown on the 

Figure 13. The relationship between variables 𝐷ଶ. 𝐴𝑏𝑏𝑟𝑖𝑣𝑖𝑎𝑡𝑖𝑜𝑛  and 𝐷ସ. 𝑆𝑡𝑎𝑡𝑒  can be either 

discovered automatically based on the similarity in variables’ descriptions and/or values, or can 

be added manually by users. Now we do not need to define the correspondence table and the 

datasets 𝐷ଷ and 𝐷ସ are related to each other via dataset 𝐷ଶ. 

 

Figure 12: Example of dataset 𝐷ଶ 

The origins of all three datasets can be completely independent, e.g. they may result from 

research in remotely related disciplines and be submitted by users who are not aware of each other. 

In general, two datasets can be related to each other via several other datasets. Figure 14 shows 

generalized schematic example of relationships between 6 datasets (heterogeneity is shown by 

different shapes and colors that represent difference in datasets file formats, or schema, or values). 

If you simply look at the datasets 𝐷ହ and 𝐷ଵ଴ outside of the relationships context, you might first 

think that they are not related to each other. However, they are related via other datasets, e.g. 𝐷ହ −
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𝐷଻ − 𝐷ଽ − 𝐷ଵ଴, or 𝐷ହ − 𝐷଼ − 𝐷ଽ − 𝐷ଵ଴. Such transitive relationships will be utilized later when 

we will consider the data exploration and keyword search in Section 3.3. 

Next section describes relationship model in more details. 

 

Figure 13: Example of the relationships between three datasets 𝐷ଶ, 𝐷ଷ and 𝐷ସ 

 

Figure 14: Generalized schematic example of the data integration based on relationships 

discovery 
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3.2.2 Relationship model 

Each relationship consists of one or more links that represent an actual matching and mapping 

between variables from two datasets. Conceptually, a link reminds a foreign key in relational data 

model but with no strict referential integrity constraint. Since the link does not define which 

datasets is referencing and which dataset is referenced, both datasets have equal roles. Thus, a 

dataset on the left end of the link is called the left dataset and a dataset on the right end of the link 

is the right dataset. In Figure 10, the example relationship consists of two links: one link is 

𝐷ଷ. 𝑌𝐸𝐴𝑅 =  𝐷ସ. 𝑌𝑒𝑎𝑟, and the other link is 𝐷ଷ. 𝑆𝑇𝐴𝑇𝐸 =  𝐷ସ. 𝑆𝑡𝑎𝑡𝑒. 𝐷ଷ is the left dataset and 𝐷ସ 

is the right dataset. 

Each link is associated with two data overlapping values at its ends that are explained below 

in subsection 3.2.2.1. 

3.2.2.1 Data Overlapping values Data Overlapping (𝐷𝑂) value on each end of a relationship link 

shows how many values from the dataset on that end were matched with values from the dataset 

on the other end of the link.  

In Figure 10, 𝐷𝑂஽ଷ.௒ா஺ோ = 0.33 and 𝐷𝑂஽ସ.௒௘௔௥ = 1 mean that only 33% of values in the 

𝑌𝐸𝐴𝑅  column in the dataset 𝐷ଷ  are matching values of the 𝑌𝑒𝑎𝑟  column in the dataset 𝐷ସ , 

whereas 100% of the values in the 𝑌𝑒𝑎𝑟 column in the dataset 𝐷ସ are matching the values in the 

𝑌𝐸𝐴𝑅 column in the dataset 𝐷ସ. The explanation for that is that the dataset 𝐷ସ has records only 

for 20th century, whereas 𝐷ଷ has records for 19th, 20th and 21st centuries. 𝐷𝑂஽ଷ.ௌ்஺்ா = 0 and 

𝐷𝑂஽ସ.ௌ௧௔௧௘ = 0 simply mean that none of the values in 𝑆𝑇𝐴𝑇𝐸 column in dataset 𝐷ଷ are  matching 

values in 𝑆𝑡𝑎𝑡𝑒 column in dataset 𝐷ସ and vice versa because 𝐷ଷ. 𝑆𝑇𝐴𝑇𝐸 contains full names of 

the states in US whereas 𝐷ସ. 𝑆𝑡𝑎𝑡𝑒  contains two letter abbreviations. When we defined the 
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synonyms transformation between 𝐷ଷ. 𝑆𝑇𝐴𝑇𝐸  and 𝐷ସ. 𝑆𝑡𝑎𝑡𝑒  variables in Figure 11, the DO 

values are also recalculated automatically showing that all values in the 𝐷ଷ. 𝑆𝑇𝐴𝑇𝐸 match the 

𝐷ସ. 𝑆𝑡𝑎𝑡𝑒 variable, whereas only 6% values were matched vice versa. The explanation is that the 

𝐷ଷ. 𝑆𝑇𝐴𝑇𝐸 dataset has records only for 3 states, whereas 𝐷ସ. 𝑆𝑡𝑎𝑡𝑒 has records for all 50 states of 

the US. 

The 𝐷𝑂 value less than 1 means that not all values were matched and this might happen 

due to two reasons. First, the other dataset does not contain some values or, second, those values 

are represented in different way. In the former case there it nothing can be done to fix it, whereas 

in the latter case record level linkage (synonyms transformation) need to be performed. Record 

level linkage can be done either manually by creating a concordance table, or by using entity 

reconciliation techniques [45][17][42][63][75].  

DO values are calculated according to Algorithm 3. As an input, the algorithm accepts left 

and right sides of the link’s schema mapping expression. First the left expression is decoded (line 

1) into dataset’s identifier (𝐷), list of columns (𝐶𝑙) and the transformation expression (𝑇𝑟). Then 

(line 2) the values of the columns 𝐶𝑙 are transformed according to the transformation expression 

𝑇𝑟. Line 3 and 4 do the same operations for the right side of the schema mapping. To find matching 

values, line 5 performs join between transformed left and right values. Any join technique can be 

used here. Line 6 and 7 simply calculate 𝐷𝑂 values as the ratio of matched value in each side and 

line 8 returns both 𝐷𝑂 values. 
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3.2.2.2 Relationship’s Data Overlapping value To describe the quality of a relationship in terms 

of 𝐷𝑂 values of the links that constitute the relationship, a relationship 𝐷𝑂 value is calculated 

using the equation (1). 

 𝐷𝑂 = 𝑚𝑎𝑥 ቀ1
𝑛 ∑ ൫𝑙𝑖𝑛𝑘𝑖,𝑙𝐷𝑂൯𝑛

𝑖=1 , 1
𝑛 ∑ ൫𝑙𝑖𝑛𝑘𝑖,𝑟𝐷𝑂൯𝑛

𝑖=1 ቁ (1) 

where 𝑛 is a number of links in the relationship for which 𝐷𝑂 value is being calculated; 𝑙𝑖𝑛𝑘𝑖,𝑙𝐷𝑂 

is the 𝐷𝑂 value of the 𝑖-th link’s left side; 𝑙𝑖𝑛𝑘𝑖,𝑟𝐷𝑂 is the 𝐷𝑂 value of the 𝑖-th link’s right side.  

To conclude on the Relationship Model, each relationship is associated with some static 

and dynamic metadata. Static metadata includes name, description, creator of the relationship, and 

time and date when it was created. Dynamic metadata includes average confidence value, the total 

number of feedbacks, and relationship 𝐷𝑂 value. 

Algorithm 3: DATAOVERLAP(left, right). Input: Left side of the schema mapping expression 

left, right side of the schema mapping expression right. Output: DO values of left and right parts 

of the schema mapping. 

1: (D, Cl, Tr) = DECODE(left) 
2: L = TRANSFORM(D, Cl, Tr) 
3: (D, Cl, Tr) = DECODE(right) 
4: R = TRANSFORM(D, Cl, Tr) 
5: J = JOIN(L, R) 
6: lDO = LENGTH(J) / LENGTH(L) 
7: rDO = LENGTH(J) / LENGTH(R)  
8: return (lDO, rDO) 
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3.2.3 Schema Graph 

3.2.3.1 Conceptual Model Schemas of tables of data sources and discovered relationships 

between them are represented as a global Schema Graph – an undirected multigraph where nodes 

represent data tables and edges represent relationships between tables. When a new dataset is 

added, Schema Graph is expanded to include the schemas of the data tables from the dataset as 

new nodes in the graph and discovered relationships are added as edges. Figure 15 shows 

conceptual Schema Graph for the four datasets from Section 1.1 (variable are represented with 

first letter). 

 

Figure 15: Excerpt of conceptual Schema graph for four datasets from Section 1.1 (variable are 

represented with first letter) 

3.2.3.2 Physical Model The physical model of the schema graph describes the way schema graph 

is implemented in our infrastructure. Part of the schema graph is stored in a relational store as apart 
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of the metadata database and part of it is stored in a graph store located on the metadata node (but 

technically can be run on a separate machine). 

Figure 16 illustrates how the schema graph is separated between two stores. Relational 

store contains all relationship metadata, foreign keys to the dataset metadata as well as information 

about links that constitute the relationship. The graph store maintains the schema graph 𝐺 =

(𝑉, 𝐸). Set of nodes 𝑉(𝐺) = {𝑡ଵ, ⋯ , 𝑡௡} represent data tables where 𝑡௜ ∈ 𝑉(𝐺) is the id of the 

table. Set of edges 𝐸(𝐺) = {𝑟ଵ, ⋯ , 𝑟௠} represent relationships between tables where 𝑟௜ ∈ 𝐸(𝐺) is 

the id of the relationship.  

 

Figure 16: Schematic illustration of Schema Graph physical model 

3.2.3.3 Edge Feature Vector based Cost Model Each edge 𝑟௜ ∈ 𝐸(𝐺) of the schema graph is 

associated with a feature vector 𝒇ത௜ that specifies the values of all the features of the edge. Features 

encode the aspects of edges that are relevant to ranking of queries that will be discussed in Section 
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3.3. Essentially, they capture distinctions that may be relevant to a user’s preference for an edge 

as part of the query. Currently, (1 - average confidence) and (1 – 𝐷𝑂) values are used as features.  

However, other features can be easily added. For example, let average confidence value be 1 and 

𝐷𝑂  equals 0.5 for relationship with id 𝑟ଷ , then 𝒇തଷ = [0, 0.5] .  Each feature has a weight, 

representing the relative contribution of that feature to the cost of the edge. Initially, the weights 

are normally distributed between features. Later users may configure them depending on the task 

at hand (more on this is in Section 3.3.4). 

The costs associated with edges in the schema graph are simple weighted linear 

combinations of edge feature vector calculated using equation (2). 

 𝐶௜ = 𝒘ഥ ∙ 𝒇ത௜  (2) 

where 𝐶௜ is the cost of the edge for the relation 𝑟௜, 𝒇ത௜ is the feature vector of the edge for the relation 

𝑟௜, and 𝒘ഥ  is the vector of weights for each feature. 

3.3 EXPLORING THE REPOSITORY 

So far we have covered how heterogeneous datasets are stored (Section 3.1) and how they are 

integrated (Section 3.2). Next we discuss how the repository can be used, e.g. how can we find 

relevant datasets and, more importantly, how can we find the data that we are interested in. Thus, 

the next main functionality block is the repository exploration. 

Even though the datasets can be stored on many different machines, all metadata is stored 

in the single place on the metadata node. Thus, searching for datasets based on their metadata (such 

as title, description, user who submitted, etc.) is a straightforward functionality to implement. In 

fact, all data repositories provide such functionality. The result of such search is usually a list of 
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datasets that might have data that user is interested in. The user is then required to open each 

dataset separately and try to integrate the data to perform any analysis. This is similar to a web 

search engine that accepts as input several keywords and returns the list of links to the web sites 

that contain those keywords, but the user is required to open each link and to find the information 

he or she needs on each web page. 

More useful functionality would be to allow users to search for particular variables 

throughout the repository without specifying (and knowing in advance) which datasets those 

variables come from. The result of such search would also be not just a list of datasets, but a table 

with data integrated from the relevant datasets. The user would not need to worry how to integrate 

the data and would be able to focus on the data analysis to answer his or her research questions. 

As it was mentioned in the Section 2.2, several works considered keyword search in single 

database, where the schema is known in advance. Some on them were focused on keyword search 

in P2P environments, others on top-k keyword search. The closest system that implements similar 

approach to keyword search is the Q system [170]. However, all previous approaches either 

worked with existing schema and/or focused only on finding top-k records. In contrast, we do not 

try to find only top-k highest-scoring answers. Instead, we find datasets and integrate them on the 

fly.  

Currently I focus only on keyword search where keywords are variable names. However, 

the approach can be extended to include variables and dataset level metadata. 

In this section, I explain how the keyword search over the variables throughout repository 

works in the proposed infrastructure. I begin with formalizing the keyword search in Section 3.3.1. 

In Section 3.3.2, I describe how keywords match against schema graph and how that results in 

trees over graph. In Section 3.3.3, I show how trees over schema graph are converted into SQL 
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queries. Finally, in Section 3.3.4, I show how the queries are executed and what is returned as the 

result of the keyword search. 

3.3.1 From Research Question to Keyword Search 

Let us go back to the research question from the motivation example (Section 1.1): 

“Is there a correlation between population and number of disease cases in United States?” 

To answer this question, we would need the data from two distinct datasets: 

x  A dataset that contains population numbers in US (a census data could be a good 

source). 

x A dataset that contains diseases information (number of cases) in US (historical 

medical records could be a good source). 

The research question can be formulated as the following keyword query: 

population, “number of disease cases” 

A user does not need to know and specify which datasets to look at, he or she simply poses 

the keyword query and the system searches throughout the whole repository. 

3.3.2 From Keywords to Trees 

Given a set of keywords 𝑄 = {𝑞ଵ, ⋯ , 𝑞௞}, the goal is to find one or more sequences of tables that 

can be merged together to answer the query. For that, two tasks need to be performed:  

x identify the tables that contain the keywords; 

x traverse existing relationships between those tables to find sequences of tables that need 

to be integrated.  
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The first task is relatively easy since all metadata (including all variable names from all 

datasets) is stored in one place – relational store on metadata node. Thus, we can find a set of 

tables that contain the variables of interest by executing SQL equivalent of the relational algebra 

expression (3).  

 𝑇 = 𝜋ௗ௜ௗ ቀ𝑡𝑎𝑏𝑙𝑒𝑠 ⋈ 𝜎௡௔௠௘ୀ௤భ∨…∨௡௔௠௘ୀ௤ೖ
(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)ቁ  (3) 

where 𝜎௡௔௠௘ୀ௤భ∨…∨௡௔௠௘ୀ௤ೖ
(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) selects only those variable where variable name exactly 

matches one of the keyword from the 𝑄; 𝑇 = {𝑡ଵ, ⋯ , 𝑡௟}, where 𝑡௜  – is the id of the table that 

contains one or more 𝑞 ∈ 𝑄. The exact match condition can be relaxed by either looking for 

substring or similarity match between variable name and keywords. For the population, “number 

of disease cases” keyword search, 𝑇 = {𝑡ଵ, 𝑡ସ}. 

Conceptually, 𝑇  represents a subset of nodes 𝑁 ⊆ 𝑉(𝐺)  in the schema graph 𝐺  that 

matched keywords (see Figure 17 for schema graph with nodes that matched keyword nodes in 

black and calculated edge costs). Thus, the second task is to utilize schema graph, graph store and 

graph algorithms to find subgraphs of 𝐺 that connect nodes from 𝑁. Formally, the problem of 

determining the closest interconnections between two, three, or more nodes in a graph is the Steiner 

tree problem [89]. 

 

Figure 17: Schema graph with costs; black nodes matches keywords 
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Prior related work focused on finding either a single tree or k lowest-cost trees that contain 

all of the keyword nodes and only worked on connected graphs. Since in our case datasets and 

relationships are added dynamically and datasets are from multiple domains, we cannot make an 

assumption that schema graph is always (or ever) a connected graph. In addition, most of the 

previous work focused on finding top-k answers to the query, whereas in Q [170] and our 

infrastructure the goal is to find one or more trees that will then lead to the datasets that need to be 

integrated.  Steiner-tree problem is NP-hard [13], hence it is not feasible to use exact Steiner tree 

algorithms over a large graph. Many approximation and heuristics-based algorithms to solve 

Steiner tree problem were developed (e.g. [170][100][129][2][99][57][54][85][90][109]).  The 

most popular is backward expansion/distance network heuristic that in the first step builds 

complete graph over the keyword nodes by either single-source shortest path or breadth-first 

algorithms and then finds minimum spanning trees to find approximate Steiner tree. 

3.3.2.1 Finding Trees Given schema graph 𝐺 and set of keyword nodes 𝑁 ⊆ 𝑉(𝐺), FINDTREES 

algorithm (Algorithm 4) finds all trees that are possible answers to the keyword query in an 

exhaustive fashion. Since 𝐺 might be a disconnected graph, keyword nodes might be located in 

different connected components and thus not all trees contain all keyword nodes. In general, 

𝑉(𝑅௜) ⊆ 𝑁, where 𝑅௜ is one of the resulting trees and 𝑉(𝑅௜) is the set of nodes in that tree.  

The main idea behind FINDTREES algorithm is similar to backwards expansion/distance 

network heuristics in that it starts to build complete graphs between keyword nodes. However, 

instead of doing it for all keyword nodes, it iterates over the keyword nodes array (using recursive 

FINDTREESBETWEENONEANDREST, (Algorithm 5)), and takes two nodes into consideration at a 

time. The algorithm searches for all paths between two vertices from the keyword nodes 𝑁. If there 

are no paths then one of the nodes is pushed into 𝑇 array, then next node from the 𝑁 is taken and 
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the search for all paths is repeated for the new pair of nodes.  If there are any paths between the 

pair of nodes, then those paths merge into resulting trees using MERGEPATHSTOTREES routing 

(Algorithm 6) and next node is taken from the 𝑁 to repeat the search for all paths. When 𝑁 is 

exhausted, then 𝑁 is assigned with the nodes from 𝑇 array (nodes that were not included in any 

tree because they are in different connected component). The algorithm repeats until both 𝑁 and 

𝑇 are exhausted. All found trees are then weighted and sorted based on their costs. 

 

Algorithm 4: FINDTREES(G, N). Input: Schema graph G, list of keyword nodes N. Output: cost 

based ranked list of trees. 

1: R ← empty list 
2: while LENGTH(N) > 0 do 
3: h = N.POP() 
4: (T, D) = FINDTREESBETWEENONEANDREST(G, h, N, [], []) 
5: R.APPENDALL(D) 
6: N = T 
7: end while 
8: R = CALCULATECOSTANDRANK(R) 
9: return R 
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Algorithm 5: FINDTREESBETWEENONEANDREST(G, h, N, T, D). Input: Schema Graph G, one 

keyword node h, list of keyword nodes N except node h, accumulating parameter T for keyword 

nodes that were not included in any tree, accumulating parameter for found trees D. Output: T 

and D. 

1: if LENGTH(N) = 0 then 
2: return (T, D) 
3: end if 
4: h2 = N.POP() 
5: P = ALLPATHS(h, h2) 
6: if LENGTH(P) = 0 then 
7: T.APPENDIFNOTCONTAINED(h2) 
8: return FINDTREESBETWEENONEANDREST(G, h, N, T, D) 
9: end if 
10: D = MERGEPATHSTOTREES(P, D) 
11: return FINDTREESBETWEENONEANDREST(G, h2, N, T, D) 

Algorithm 6: MERGEPATHSTOTREES(P, D). Input: Newly found paths P, paths found before D. 

Output: list of trees created from pairwise merging paths in P with trees in D. 

1: R ← empty list 
2: if LENGTH(D) = 0 then 
3: R = D 
4: else 
5: for ∀𝑃𝑖 ∈ 𝑃, ∀ 𝐷𝑖 ∈ 𝐷 do 
6: R.APPENDIFNOTCONTAINED(𝑃𝑖 ∪  𝐷𝑖)  
7: end for 
8: end if 
9: return R 
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In other words, the FINDTREES algorithm implicitly looks for connected components of the 

schema graph that contain keyword nodes and “grows” trees from all paths between every pair of 

keyword nodes in each connected component. 

For the example keywords from Section 3.3.1 and the schema graph from Section 3.3.2, 

FINDTREES algorithm would find 6 trees (because of the example graph, all trees are actually paths, 

but in general the result of the FINDTREES algorithm is a list of trees) shown in the Table 1 sorted 

by the cost form lowest to highest. From the table we can see that the least-costly way to answer 

the keyword query is not to merge 𝑡ଵ and 𝑡ସ directly, but to merge them via intermediate table 𝑡ଶ. 

Since the schema graph can grow to a large size after many datasets are submitted, 

heuristics similar to SPCSH in Q [170] and DNH in [188] can be used to scale the FINDTREES 

algorithm. Instead of searching for all paths between pairs of nodes, we can search only 𝑚 shortest 

(least costly) paths on line 5: in FINDTREESBETWEENONEANDREST (Algorithm 5). Efficient 

algorithms to solve this problem are known [189]. 
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Table 1: Trees and their costs for the example datasets and keyword query 

# Tree Cost 
1 

 
 

0 

2 

 

0.07 

3 

 

0.25 

4 

 

0.25 

5 

 

0.32 

6 

 

0.5 
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3.3.3 From Trees to Relational algebra/SQL Queries 

Each tree is one item of the search result of the keyword search. However, simply returning the 

trees to users would expect them to integrate the datasets manually. Meanwhile, if we explore a 

tree more carefully, we observer that a tree can be transformed to relational algebra/SQL query. 

Each node in the tree represents a data table from submitted datasets stored as a relation in 

a relational database in one of the datanodes (see Section 3.1.2); each edge represents a 

relationship between two tables and translates to a join operation with relationship’s links as join 

conditions. Table ids associated with nodes and relationships ids associated with edges provide 

appropriate dereferencing information to construct queries by searching for the required 

information in the metadata tables on the metadata node. 

For example, (4) shows relational algebra query constructed based on tree 1 from Table 1.  

 𝑡ଵ ⋈௧భ.ௌ௧௔௧௘ୀ௧మ.ௌ௧௔௧௘ 𝑡ଶ ⋈௧మ.஺௕௕௥௘௩௜௔௧௜௢௡ୀ௧ర.ௌ௧௔௧௘ 𝑡ସ  (4) 

Relationship algebra expression (4) highlights one limitation of current approach to 

keyword search: even though 𝑡ଵ and 𝑡ସ are related to each other via two variables (year and state), 

only state variable is used to perform the merge. To solve the problem for this particular case, we 

could apply selection operation (σ) as in (5), however in general additional joins need to be 

performed that might include some other intermediate tables. The solution for this limitation is left 

for future work. 

 𝜎௧భ.௒௘௔௥ୀ௧ర.௒௘௔௥൫𝑡ଵ ⋈௧భ.ௌ௧௔௧௘ୀ௧మ.ௌ௧௔௧௘ 𝑡ଶ ⋈௧మ.஺௕௕௥௘௩௜௔௧௜௢௡ୀ௧ర.ௌ௧௔௧௘ 𝑡ସ൯  (5) 
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3.3.4 From Queries to Merged Data Tables 

The final step in answering keyword search is to execute queries constructed in Section 3.3.3. 

Since the data tables are stored on different datanodes, a distributed query engine is required. First 

I used Linked Servers feature of Microsoft SQL Server [132] product, however it was not callable 

enough. Currently, I am experimenting with PrestoDB [147] distributed query engine. 

Table 2 shows sample of the result of query (4) as merged table that according to the tree 

1 from Table 1 joins 𝑡ଵ and 𝑡ଶ on 𝑡ଵ. 𝑆𝑡𝑎𝑡𝑒 = 𝑡ଶ. 𝑆𝑡𝑎𝑡𝑒 and then with 𝑡ସ on 𝑡ଶ. 𝐴𝑏𝑏𝑟𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =

𝑡ସ. 𝑆𝑡𝑎𝑡𝑒. As explained above in Section 3.3.3, 𝑡ଵ and 𝑡ସ merged via 𝑡ଶ only using state variable.  

Table 2: Sample of the merged table for the tree 1 from Table 1 

Since datasets can be merged via one or more other datasets, search result should include 

provenance information [32][91][135] of the merged table, so that user can fully understand how 

the table was constructed. Thus, in addition to the merged data table, query result also includes 

t1.S t1.Y t1.M t1.D t1.N t2.A t2.S t4.Po t4.Y t4.S* 

Alabama 1888 8 enteric 
fever 

1 AL Alabama 1830 1900 AL 

Alabama 1888 10 whooping 
cough 

1 AL Alabama 1830 1900 AL 

Alabama 1888 10 enteric 
fever 

1 AL Alabama 1830 1900 AL 

Alabama 1890 9 diphtheria 1 AL Alabama 1830 1900 AL 

Alabama 1891 3 phthisis 
pulmonalis 

12 AL Alabama 1830 1900 AL 
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information on all relationships and intermediate datasets that were used to construct the merged 

table. 

Most of related works on keyword search assumed query-independent costs for query trees 

such as number of edges, attribute similarity, etc., when users may need costs specific to the 

context of the query. Preferences for sources may depend on whether users are posing “what-if” 

types of exploratory queries or refining previous answers. I suggest to performs CPR-ranking: the 

data merge trees are ranked based on their coverage, precision and reliability that are derived from 

relationships confidence, data overlapping values, path length, data and user reliability. As it was 

mentioned in Section 3.2.3.3, Schema graph cost model depends on the weight vector 𝒘ഥ . In 

contrast to all the previous work, I propose this vector to be configured by users. By modifying 

weights for specific features, user can control CPR ranking. 
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4.0 SYSTEM IMPLEMENTATION: COL*FUSION 

For the last two years I have been working on the implementation of the infrastructure described 

in Section 3.0in the Col*Fusion (Collaborative data Fusion) system. I have been also supervising 

a group of master students who were helping me with the implementation.  

Col*Fusion can be accessed via this URL: http://colfusion.exp.sis.pitt.edu/colfusion/, 

however the registration is currently not open to the public and requires verification code that users 

can get by invitation. 

In this chapter I describe Col*Fusion architecture, current state of its implementation and 

main functionality in Section 4.1. In Section 4.2 I enumerate current and/or future implementation 

tasks to improve Col*Fusion. I then, in Section 4.3, show how Col*Fusion has been utilized in 

Collaborative for Historical Information and Analysis (CHIA) and what lessons we learned from 

it. 

4.1 ARCHITECTURE, IMPLEMENTATION, OPERATIONS 

Col*Fusion is in the active development (currently it is around 60K lines of code). Figure 18 shows 

major components of the Col*Fusion architecture (gray boxes represent unfinished 

modules/functionality). Col*Fusion is designed in the modular way such that it is easy to replace 

specific modules if needed as well as to distribute Col*Fusion execution among cluster of 

http://colfusion.exp.sis.pitt.edu/colfusion/
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machines. The Col*Fusion hardware and software architecture is designed to enable effective data 

integration and analysis through crowdsourcing at the interactive rates that people expect of web-

based resources. Achieving that level of performance for high-volume, high-variety data requires 

coupling scalable clusters for relational and non-SQL databases, web interfaces, and many 

software tools with high-performance, purpose-built computational resources for complex 

analytics. Large-scale data must move between those resources efficiently, reliably, and 

transparently, including optimizations to reduce or eliminate latency and to maximize use of finite 

network bandwidth. 

�

PSC SLASH2 Col*Fusion Lib 

 

Figure 18: Col*Fusion Architecture (gray boxes represent unfinished modules/functionality) 
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Col*Fusion architecture consists of four internal components: (1) Access Layer component 

that provides several interfaces so that users and third party tools can interact with Col*Fusion, (2) 

Col*Fusion Core component that is responsible for the business logic and metadata management, 

(3) Distributed Data Processing component that handles large scale data processing on distributed 

set of commodity machines, (4) Replicated Distributed Data Storage component that is 

responsible for storing all datasets; and two external components: (1) The Dataverse Network 

[106][43] project developed at Harvard that is used as data archive, and (2) Pittsburgh 

Supercomputing Center1 facilities used as the large scale high-performance computing resource. I 

have successfully collaborated with PSC staff to bridge Col*Fusion and PSC resources. On 

Col*Fusion site we have setup PSC SLASH 2 [164] distributed replicated storage system. On PSC 

site we have setup all required data store systems (relational and graph) as well as agreed on 

workflow for Col*Fusion Lib that will be running web server to accept Col*Fusion commands 

and execute large-scale computations on PSC computing framework.  In what follows, I briefly 

describe Col*Fusion main functionality and refer to corresponding modules as well as present 

screenshots of the user interface where appropriate. 

4.1.1 Data and Metadata Submission 

Col*Fusion system does not require either special software installation or prior knowledge of a 

specific data management systems. It supports a simple data submission protocol implemented via 

lightweight intuitive web interface shown on Figure 19. Col*Fusion also implements a RESTful 

[67] API for direct access to Col*Fusion functionalities.  

                                                 
1 http://www.psc.edu/ 
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Data submission module allows users to submit data from heterogeneous sources in various 

formats such as Excel, CSV files, and database dump files, as well as remotely connected 

databases. The number of file formats can be expanded by Col*Fusion users. Col*Fusion uses 

Pentaho Data Integration [35] (aka Kettle) on the back end for extracting, transforming and loading 

(ETL) data into Col*Fusion repository. Kettle is an open-source software that allows users to 

specify ETL tasks via intuitive, graphical, drag and drop design environment and save it as a 

transformation file. Kettle supports large number of data sources including leading Hadoop 

distributions, NoSQL databases, and other big data stores. Col*Fusion users can create Kettle 

transformations and share them with other users to handle particular file format. Therefore, most 

users do not need to do any preparatory work to submit their datasets into Col*Fusion, which 

makes it easy to use.  

 

Figure 19: Data submission page 
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During data submission Col*Fusion tries to collect as much metadata as possible on both 

dataset as well as variable levels. The metadata is either retrieved from the data file (e.g., variables 

names, data types, etc.) or entered by the user (e.g., title, description, tags, category, variables 

format and measuring units, etc.).  

The System Catalog persistently stores the metadata and allocates a data storage server. 

Col*Fusion then triggers a background ETL process to extract and transform data from user 

provided source and load it into Col*Fusion datanode. To guarantee durable storage, I have started 

to utilize distributed replicated storage system backed by Pittsburgh Super Computing (PSC) 

center’s SLASH2 system [164]. SLASH2 supports automated file replication and migration 

operations which Col*Fusion can leverage to maintain working copies of data near appropriate 

computational resources. 

4.1.2 Data Access and Export 

For each submitted dataset, Col*Fusion creates a dedicated identifiable page (I call it a Story page) 

on which users can view metadata and data in a tabular paged format (Figure 20); discuss the 

dataset in form of dataset, row, column or cell level comments; visualize data with interactive pie, 

column, map or motion charts (Figure 21); download data in Excel, CSV, JSON, HTML table 

formats regardless of the original file format. As it was said above, Col*Fusion also provides 

RESTful API that provide programmatic access to metadata and data. 
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Figure 20: Story page: Data Preview 
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Figure 21: Visualization 

4.1.3 Collaborative Metadata and Data Editing 

All metadata and data can be collectively edited by registered Col*Fusion users anytime after 

submission. Data editing is supported by an integrated OpenRefine editor [181] that provides basic 

and advanced cell and column edit and transformation functionalities (Figure 22). Provenance 

Manager keeps track of all changes and performs automatic versioning that allows to rollback any 

undesired changes.  
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Figure 22: Interface to edit data table via OpenRefine 

4.1.4 Information Linkage   

Once the user confirms data submission, Col*Fusion performs information linkage that includes 

relationships discovery between the newly submitted dataset and existing datasets in the 

Col*Fusion repository as it was described in Section 3.2. Currently Col*Fusion establishes a 

relationship between datasets based on linguistic similarity over variables metadata in those 

datasets. Many different schema matchers that incorporate multiple features and use advanced 

machine learning algorithms have been proposed in recent years [149], with one of the most 

sophisticated being COMA++ [150]. Extendable architecture of Col*Fusion allows to easily utilize 

those tools. 



61 

Story page for each dataset includes Relationships section that is shown in Figure 23. 

Relationships are listed in the table view and each row in the table can be expanded to see 

relationship’s metadata (name, description, creator of the relationship, and time and date when it 

was created) and links. Each link has two DO values at its ends.  

Col*Fusion combines automatic relationship discovery with the power of crowdsourcing 

techniques. Col*Fusion users can provide feedback on automatically generated relationships in 

terms of confidence values that reflect users’ belief that relationships hold. Also Col*Fusion users 

can manually create a relationship if Col*Fusion fails to identify one (Figure 24). 

 

Figure 23: Relationship table 
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Figure 24: Add new relationship 

Col*Fusion doesn’t have a predefined target schema where data from heterogeneous data 

sources are supposed to be loaded to as in traditional data warehousing approach.  Instead it 

maintains a global Schema Graph – an undirected graph where nodes represent datasets and edges 

represent relationships. Neo4j graph database [136] (the leading graph database) is utilized to store 

and traverse Schema Graph. 

Col*Fusion also provides interactive visualization of the Schema Graph on the Story page 

that allows users to see how their (or any) dataset is connected to other datasets and provide a way 

to discover new, possibly interesting, data that will lead to new hypothesis to test. 
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4.1.5 Search and Exploration   

Col*Fusion provides full text search throughout datasets metadata such as title, description and 

tags. It also provides keyword search that is quite different from the keyword search functionality 

in all existing data repositories that only search through datasets metadata and return a list of 

datasets that might contain data that user is interested in. 

Figure 25 shows Col*Fusion interface and result of the keyword search. When user posts 

a keyword query, Col*Fusion first finds all datasets (nodes in the Schema Graph) that contain the 

keywords, then traverses the schema graph to find all trees between those nodes, passes each three 

to the Query Formulator that converts trees to SQL queries, and then finally let Query Processor 

to execute those queries. The result of the search is not just a list of datasets that might have data 

that user is interested in, but rather a merged dataset or a list of merged datasets if there are several 

possible paths to answer the query. Col*Fusion performs CPR-ranking: the data merge paths are 

ranked based on their coverage, precision and reliability that are derived from relationships 

confidence, data overlapping values, path length, data and user reliability.  

The keyword search allows users to search for data transparently throughout all submitted 

datasets without a prior knowledge of any query language or the relationships between the datasets. 
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Figure 25: Keyword search interface 

�
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4.1.6 Descriptive Statistics and Data Analysis   

For each submitted dataset Col*Fusion automatically calculates some descriptive statistics, such 

as min, max, mean, mode, median, count, standard deviation as well as correlation matrix that 

contains pairwise correlation values between all variables (Figure 26). The descriptive statistics 

can also be visualized on pie, bar, line and scatter plot charts. 

 

Figure 26: Descriptive statistics table that Col*Fusion automatically creates for each dataset 

4.2 ACTIVE AND FUTURE IMPLEMENTATION TASKS 

The above mentioned functionality has been implemented and deployed. In addition to being a 

challenging research project, Col*Fusion has also been used as a productive educational test-bed. 

Over the course of the last two years about 60 master students have acquired hands-on practical 

skills and knowledge in building complex large-scale data intensive system either in the form of 
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individual study or as a class term project. In this section I discuss a number of active and future 

tasks that I plan to be implemented in Col*Fusion.  

First of all, to utilize functionality of established data repository, such as data archival and 

preservation, citation, and metadata export in Dublin Core [185][59] and DDI [155][47] formats, 

I plan to integrate Col*Fusion with The Dataverse Network [106] over the Dataverse Sharing and 

Deposit APIs. 

As it was mentioned in Section 4.1.5, for each dataset Provenance Manager maintains 

provenance information. Dataset’s provenance can be visualized as provenance graph in Open 

Provenance Model (OPM) format [134] that can be either viewed as interactive graph (Figure 27) 

visualization or downloaded in XML format. 

Since Col*Fusion actually processes the submitted data files and extracts and loads data 

into Col*Fusion data store, with the proper interface it is possible to utilize Col*Fusion as cloud 

data analytical platform where researcher would be able to run complex data analysis tasks. 

IPython Notebook [144] is a perfect tool for “… web-based interactive computational environment 

where you can combine code execution, text, mathematics, plots and rich media into a single 

document”. 

I plan to integrate IPython Notebook into Col*Fusion. Thus in the future, in addition to the 

integrated data repository, I envision Col*Fusion to be a virtual collaborative research environment 

where researcher can communicate their ideas, run analysis on the integrated data, build and share 

interactive visualizations, even write and publish online interactive research papers with data and 

analysis code integrated into them. 

Finally, to connect Col*Fusion integrated data to the Linked Data cloud [22], I plan to 

implement Col*Fusion Linked Data endpoint that will allow Col*Fusion data to be presented and 
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queried according to linked data principles. For Linked Data endpoint I am planning to use Apache 

Marmotta [9] with Linked Data Fragments [180] that are the state of the art technology to large 

scale linked data querying. 

 

Figure 27: Provenance graph 

Even though Col*Fusion is still in development, we have opened it to a group of users for 

real life use cases. This collaboration is explained in the next section. 
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4.3 REAL-LIFE DATA-INTENSIVE USAGE 

To apply Col*Fusion in real-life settings, we worked together with the Collaborative for Historical 

Information and Analysis (CHIA) (http://www.chia.pitt.edu/) that is headquartered at World 

History Center, University of Pittsburgh. CHIA currently involves nine different research groups 

throughout the U.S. and Europe; it aims to create a major repository of consolidated global 

historical data from the past several centuries. CHIA mission includes following statement: 

“The long-term purpose of CHIA—in the time frame of a decade or more—is to facilitate 

the creation and maintenance of historical a world-historical archive including data from local to 

global levels, from short term to long term, linking variables on many areas of human experience. 

The resultant summation of human experience can reveal the varying patterns and dynamics of 

social change. While past social, economic, and cultural dynamics may not carry automatically 

into the future, they should not be neglected in our attempts to make plans and form policy.” 

CHIA members have used Col*Fusion to contribute more than 70 datasets on various 

topics and provided a constructive and positive feedback. Table 3 shows the inventory of the 

datasets submitted by CHIA members. 

Overall the collaboration with CHIA was successful and fruitful. Col*Fusion became 

tightly integrated into CHIA infrastructure that was reflected in the book by CHIA director Dr. 

Patrick Manning [126] as well as in [191]. We have presented Col*Fusion on the CHIA workshop 

in May 2013 and World Historical Gazetteer workshop organized by CHIA in September 2014. 

http://www.chia.pitt.edu/
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Table 3: Col*Fusion Dataset Inventory from CHIA participants 

File / Data Set Name Distr. 
start 
date 

end 
date 

Spatial 
continental 

Spatial 
national 

spatial.3 Topic variables 

Codebooks                 

Geo Names Pitt -   -     place names multi level spatial 
labels  

Data Sets                 
Deaths per thousand population in 
Java, Indonesia between 1916 and 
1920 

MSU 1916 1920 Asia Indonesia Java Death and 
Disease 

Deaths, Disease, 
Influenza, Pandemic 

Hospital beds data of Punjab 
between 1907 and 1919 MSU 1907 1919 Asia India Punjab Death and 

Disease 
Disease, Hospital 
beds, gender 

Labour Relations The Netherlands 
1900 IISH 1900 1900 Europe Netherlands   Demographic Labor 

Age Structure of Population of 
Punjab, 1901 to 1931 MSU 1901 1931 Asia India Punjab Demographic Age 

Literacy in Punjab, 1901 to 1931 MSU 1901 1931 Asia India Punjab Demographic Literacy 
Religion in Punjab, 1901 to 1931 MSU 1901 1931 Asia India Punjab Demographic Religion 

Correlates of War data Pitt 1816 2010 Global     Historical 
War, Initiator, 
Intervener, 
Outcome, Deaths  

Population / CLIO World Tables BU 1335 2006 Global     Population Population 

Government / CLIO World Tables 
(Countries Only) BU 1826 2008 Global     Other 

Expenditure, Debt, 
Military, Revenue, 
Currency  

African Population Totals, 1850-1960 Pitt 1850 1960 Africa     Population Population 
UN Department of Economic and 
Social Affairs Population Data Pitt 1950 2010 Global     Population Population 

Global Historical Climatology 
Network (GHCN-Monthly) historical 
precipitation data 

Pitt 1951 1975 Global     Natural 
Phenomena Precipitation 
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Table 3 (continued) 

File / Data Set Name Distr. 
start 
date 

end 
date 

Spatial 
continental 

Spatial 
national 

spatial.3 Topic variables 

Population of Rajputana, 1891 to 
1941  MSU 1891 1941 Asia  India Rajputana Population Population 

Population trajectory of India, 1891 
to 1941 MSU 1891 1941 Asia India   Population Population 

Population trajectory of Japan, 1903 
to 1929 MSU 1903 1929 Asia Japan   Population Population 

Population trajectory of Java, 
Indonesia, 1880 to 1930 MSU 1880 1930 Asia Indonesia   Population Population 

Population trajectory of Srilanka 
(Ceylon) from 1891 to 1946 MSU 1891 1946 Asia Srilanka   Population Population 

Monthly mortality data of Assam 
from 1916 to 1921 MSU 1916 1921 Asia India Assam Death and 

Disease 

Deaths, Disease, 
Influenza, 
Pandemic, Fevers 

Monthly mortality data of Bengal 
from 1916 to 1921 MSU 1916 1921 Asia India Bengal Death and 

Disease 

Deaths, Disease, 
Influenza, 
Pandemic, Fevers 

Monthly mortality data of Bihar from 
1916 to 1921 MSU 1916 1921 Asia India Bihar Death and 

Disease 

Deaths, Disease, 
Influenza, 
Pandemic, Fevers 

Monthly mortality data of Bombay 
from 1916 to 1921 MSU 1916 1921 Asia India Bombay Death and 

Disease 

Deaths, Disease, 
Influenza, 
Pandemic, Fevers 

Monthly mortality data of Central 
Province from 1916 to 1921 MSU 1916 1921 Asia India Central 

Province 
Death and 
Disease 

Deaths, Disease, 
Influenza, 
Pandemic, Fevers 

Monthly mortality data of Madras 
from 1916 to 1921 MSU 1916 1921 Asia India Madras Death and 

Disease 

Deaths, Disease, 
Influenza, 
Pandemic, Fevers 
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Table 3 (continued) 

File / Data Set Name Distr. 
start 
date 

end 
date 

Spatial 
continental 

Spatial 
national 

spatial.3 Topic variables 

Monthly mortality data of North-
West Frontier from 1916 to 1921 MSU 1916 1921 Asia India 

North-
West 
Frontier 

Death and 
Disease 

Deaths, Disease, 
Influenza, 
Pandemic, Fevers 

Monthly mortality data of United 
Provinces from 1916 to 1921 MSU 1916 1921 Asia India Uttar 

Pradesh 
Death and 
Disease 

Deaths, Disease, 
Influenza, 
Pandemic, Fevers 

Monthly mortality data of Punjab 
from 1916 to 1921 MSU 1916 1921 Asia India Punjab Death and 

Disease 

Deaths, Disease, 
Influenza, 
Pandemic, Fevers 

Weekly mortality data of Assam from 
1916 to 1921 MSU 1916 1921 Asia India Assam Death and 

Disease 

Deaths, Disease, 
Influenza, 
Pandemic, Fevers 

Weekly mortality data of Bengal from 
1916 to 1921 MSU 1916 1921 Asia India Bengal Death and 

Disease 

Deaths, Disease, 
Influenza, 
Pandemic, Fevers 

Weekly mortality data of Bihar from 
1916 to 1921 MSU 1916 1921 Asia India Bihar Death and 

Disease 

Deaths, Disease, 
Influenza, 
Pandemic, Fevers 

Weekly mortality data of Bombay 
from 1916 to 1921 MSU 1916 1921 Asia India Bombay Death and 

Disease 

Deaths, Disease, 
Influenza, 
Pandemic, Fevers 

Weekly mortality data of Central 
Province from 1916 to 1921 MSU 1916 1921 Asia India Central 

Province 
Death and 
Disease 

Deaths, Disease, 
Influenza, 
Pandemic, Fevers 

Weekly mortality data of Madras 
from 1916 to 1921 MSU 1916 1921 Asia India Madras Death and 

Disease 

Deaths, Disease, 
Influenza, 
Pandemic, Fevers 

Weekly mortality data of North-West 
Frontier from 1916 to 1921 MSU 1916 1921 Asia India 

North-
West 
Frontier 

Death and 
Disease 

Deaths, Disease, 
Influenza, 
Pandemic, Fevers 
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Table 3 (continued) 

File / Data Set Name Distr. 
start 
date 

end 
date 

Spatial 
continental 

Spatial 
national 

spatial.3 Topic variables 

Weekly mortality data of Punjab from 
1916 to 1921 MSU 1916 1921 Asia India Punjab Death and 

Disease 

Deaths, Disease, 
Influenza, 
Pandemic, Fevers 

Weekly mortality data of United 
Provinces from 1916 to 1921 MSU 1916 1921 Asia India Uttar 

Pradesh 
Death and 
Disease 

Deaths, Disease, 
Influenza, 
Pandemic, Fevers 

Migration data of Punjab for 1911 
and 1921 MSU 1911 1921 Asia India Punjab Population Population, 

Migration, Birth 

Drug shops in Bengal between 1910 
and 1940 MSU 1910 1940 Asia India Bengal Commodities 

Drugs, Opium, 
Ganja, Charas, 
Bhang, Majum, 
Cocaine 

Environmental Indicators Of Air 
Pollution: Nox Emissions 

UC-
Merc 1990 2010 Global     Natural 

Phenomena 

Air Pollution, NOx 
Emissions, 
Environment 

Consumption of Ozone Depleting 
Substances and CFCs 

UC-
Merc 2002 2008 Global     Natural 

Phenomena 

Ozone, CFCs, 
Pollution, 
Environment 

Occupational statistics for the local 
government districts of England and 
Wales in 1921 

Ports
mout

h 
1921 1921 Europe Great 

Britian 
England, 
Wales Demographic Occupation 

Redistricted age/gender structure 
data for the modern local 
government districts of Great Britian 
1851 to 2001 

Ports
mout

h 
1851 2001 Europe Great 

Britian   Demographic Age, Gender 

Opium Import, Export, and Price Data 
for New York Chamber of Commerce 
1870 - 1918 

WHD 1870 1918 North 
America USA New York Commodities Opium, Import, 

Export, Price 
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Table 3 (continued) 

File / Data Set Name Distr. 
start 
date 

end 
date 

Spatial 
continental 

Spatial 
national 

spatial.3 Topic variables 

Andes Termperate-Mediterranean 
Transition 657 Year PDSI 
Reconstruction 

UC-
Merc 1350 2014 South 

America Peru   Natural 
Phenomena 

Tree ring, Drought, 
Andes, Climate, 
Temperature 

Global Temperature, RSL, Ice Volume 
1,000,000 

UC-
Merc n/a n/a Global     Natural 

Phenomena 
Temperature, Ice, 
Climate 

20,000 Year Borehole Surface 
Temperature Reconstruction 

UC-
Merc n/a n/a Global     Natural 

Phenomena 
Temperature, Ice, 
Climate 

North Atlantic, European and 
Mediterranean Gridded SLP 
Reconstruction 

UC-
Merc 1750 1850       Natural 

Phenomena Climate 

Longxi China 1000 Year Decadal 
Hydrological Indices AD 960-1990 

UC-
Merc 960 1990 Asia China Longxi Natural 

Phenomena 
Climate, Rainfall, 
Drought 

European Seasonal Temperature 
Reconstruction 1500-2004 

UC-
Merc 1500 2004 Europe     Natural 

Phenomena 
Temperature, 
Climate 

Eastern China Snow Anomaly Events 
and Arctic Oscillation Reconstruction 

UC-
Merc 5 1895 Asia China   Natural 

Phenomena 
Climate, Rainfall, 
Snow 

Opium Imports and Re-Exports from 
Foreign Countries and British 
Posessions 1850-93 

WHD 1850 1893 Global     Commodities Opium, Import, 
Export 

Import and Export of Opium Among 
International Commission Members 
1903-1907 

WHD 1903 1907 Global     Commodities Opium, Import, 
Export 

Opium Consumption Data for 
Netherlands East Indies, 1925-1938 WHD 1925 1938 Asia Indonesia   Commodities 

Opium, 
Consumption, 
Revenue, Sales 

Opium Production Data for 
Netherlands East Indies, 1902-1938 WHD 1902 1938 Asia Indonesia   Commodities Opium, Production, 

Revenue, Sales 
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Table 3 (continued) 

File / Data Set Name Distr. 
start 
date 

end 
date 

Spatial 
continental 

Spatial 
national 

spatial.3 Topic variables 

Silver Series from Mint and Other 
Records WHD 1621 1821 

North 
America, 
South 
America 

Chile, 
Guatemala, 
Mexico, 
Granada, 
Peru, Potosi 

  Commodities Silver, Mint,  

Annual Silver Registrations by Cajas: 
Mexico WHD 1559 1821 North 

America Mexico   Commodities Silver, Registration, 
Annual 

Annual Silver Registrations by Cajas: 
Peru WHD 1559 1821 South 

America Peru   Commodities Silver, Registration, 
Annual 

Decennial Gold & Silver Registrations WHD 1492 1810 

North 
America, 
South 
America 

Mexico, 
Granada, 
Ecuador, 
Peru, Chile, 
Brazil, 
Carribbean 

  Commodities Gold, Silver, 
Registration 

Indices of trade partner 
concentration for 183 countries, 
1980-2008  

JWSR 1980 2008 Global     Commodities 
Trade, Indices, 
Partners, 
Concentration 

Trade Statistics for Dahomey, 1863-
1960 WHD 1863 1960 Africa Benin    Commodities Trade, imports, 

exports 
Wage Data for Netherlands East 
Indies, 1908-1924 WHD 1908 1924 Asia     Demographic Wages, industry, 

race, skill level 

Diseases in Java, 1930-1937 WHD 1930 1937 Asia Indonesia Java Death and 
Disease 

Typhoid, 
Paratyphoid, 
Smallpox, Bacillary, 
Diphtheria, Plague, 
Meningitis  
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Table 3 (continued) 

File / Data Set Name Distr. 
start 
date 

end 
date 

Spatial 
continental 

Spatial 
national 

spatial.3 Topic variables 

World Development Indicators, 1975-
2000 (portion) WHD 1975 2000 Global 

Canada, 
France, 
Ghana, 
Malaysia, 
Paraguay 

  Other Development 
Indicators 

Human Development Index 1975-
2000 (portion) WHD 1975 2000 Global     Other Development Index 

Trends 

Tax Data (local) for Netherlands East 
Indies, 1910-1921 WHD  1910 1921 Asia     Demographic 

Tax, Income 
Distribution, Local 
Earners 

Tax Data (Dutch) for Netherlands East 
Indies, 1915-1929 WHD  1915 1929 Asia     Demographic 

Tax, Income 
Distribution, 
European Earners 

Railway Data for Netherlands East 
Indies, 1921-1929 WHD 1921 1929 Asia     Commodities Rail, Freight 

Wage Data For Netherlands West 
Indies (Suriname), 1915-1920 WHD 1915 1920 Asia     Demographic Wages, Plantations, 

Absenteesim 
British Opium Imports and Re-
exports, 1890-1898 WHD 1890 1898 Europe Great 

Britain   Commodities Opium, Imports, Re-
exports 

British Opium Imports and Re-
exports, 1880-1889 WHD 1880 1889 Europe Great 

Britain   Commodities Opium, Imports, Re-
exports 

British Opium Imports and Re-
exports, 1869-1879 WHD 1869 1879 Europe Great 

Britain   Commodities Opium, Imports, Re-
exports 

Opium Imports and Re-Exports 
to/from British Possessions 1850-
1893 

WHD 1850 1893 Global     Commodities Opium, Imports, Re-
exports, Possessions 

Rice Production and Price Data for 
Java, Netherlands East Indies, 1856 & 
1857 

WHD 1856 1857 Asia  Indonesia Java Commodities Rice, Price, 
Production 
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4.3.1 Lessons Learned 

From the collaboration with CHIA, we have learned what functionality in Col*Fusion is missing 

or need to be improved/changed.  

In particular, we found that very often the 𝐷𝑂 values of many relationship’s links were 

much lower than expected which meant that number of matching values in related columns in 

linked datasets were small even though the columns were describing the same entity. Related to 

the same issue, merged datasets had few tuples. The reason for above mentioned problem to exist 

is the equi-join that we used to match values and its strict requirement to the values to match 

exactly. For example, given two values “C.S. Lewis” and “C. S. Lewis” (notice the first string does 

not have a space character after first dot character) that come from two related datasets, the equi-

join will be unable to identify that two values represent the same person and thus might be matched. 

In general this problem is known as record linkage or entity reconciliation [45][17][42][63][75]. 

Various methods for such problem have been proposed, however most of the time the solution is 

time and computationally expensive, based on heuristics and might require user involvement. 

Depending on the task at hand (e.g. exploratory what-if analysis), approximate solutions might be 

more efficient and appropriate. 

The second lesson that we have learned is that users do not only want to search for specific 

variables and see whole datasets as the result, but they also want to search for a specific value and 

see the records that are only related to that value. For example, limit the search results for the 

records related to a specific location (e.g. continent, county, or street name, etc.) or date and time, 

etc. 
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In the next chapter I describe the problem related to the first lesson in more detail and 

provide solutions and algorithms for various domain types of the attributes which are used for the 

join. Particularly, I focus on approximate string, spatial and temporal joins. 

The solution to the second lesson is left to the future work. It does not require much 

research effort and can be solved by indexing actual data values and extending schema graph to 

store them. 
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5.0 FUSING DATASETS 

Combining data from two or more datasets is a complex procedure that usually requires high 

expertise and involves sophisticated algorithms to deal with structural (e.g. incompatible schemas) 

and semantic (data sources have different ways of referring to the same real-world entity) 

heterogeneities. Numerous schema matching and schema mapping algorithms have been proposed 

in the literature to resolve the structural heterogeneity. They range from graphical user interfaces 

(e.g., [80][11]), and high-level declarative languages (e.g., [26][146]) to specify schema mappings, 

and more recently, the use of data examples (e.g., [6][148]) to design and understand schema 

mappings. In previous sections, I also showed how to resolve the structural heterogeneity by 

developing methods to seamlessly store heterogeneous data without any limitation and loss 

(Section 3.1), perform efficient virtual integration (Section 3.2) and exploration (Section 3.3) 

thereof. However, the topic of semantic heterogeneity was not covered in details yet. 

To resolve semantic heterogeneity, previous works mainly focus on detecting when records 

from different sources refer to the same real-world entity. This problem, known as reference 

reconciliation, has received significant attention in the literature, and its variations have been 

referred to as record linkage [187], merge/purge [87], de-duplication [157], reference matching 

[127], and object identification [176]. Despite the large number of works and long lasting interest 

in both academic and industrial research on data integration, little effort has been put towards 

merging data based on spatial and temporal dimension.  
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In this chapter I focus on the problem of merging datasets ad-hoc during query execution, 

i.e., join operations for which indexing or secondary access paths are not available or appropriate. 

Particularly, I focus on various types of approximate join techniques and their applicability limits 

depending on the type of data of the join attributes. While it might be impossible to find exact 

correspondence of two records (i.e., to do the equi-join), depending on the task at hand, the 

approximate join would suffice. Thus, the main goal of the approximate join is to provide the best 

effort to match corresponding tuples.  

The chapter is organized as follows. Section 5.1 covers preliminaries. In Section 5.2 I first 

describe related similarity join techniques that are applicable when string and tree-like structures 

are joined. Then in Section 5.3 I describe how the similarity join approach can be used to 

approximately join spatial data based on the subsumption hierarchy. Finally, in Section 5.4 I 

describe the problem and provide novel methods to fuse temporal datasets. 

5.1 PRELIMINARIES 

In this section, I define the terminology that is used later on. As described in Section 3.1 

heterogeneous datasets submitted by users are stored without changes in a relational store 

(MySQL). Thus, when operating on the datasets we can utilize terminology and operations from 

relational database area.  

A 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑐ℎ𝑒𝑚𝑎  is represented as 𝑅 = (𝐴ଵ, … , 𝐴௡), where 𝐴௜  is an attribute with a 

domain Ω௜. A 𝑡𝑢𝑝𝑙𝑒 over schema 𝑅 is a finite sequence of values that for every 𝐴௜ contains a value 

𝑣௜ ∈ Ω௜. An instance of the schema 𝑅 is called a 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑟, and is a finite set of tuples over 𝑅. 

𝑟[𝐴௜] or 𝑟. 𝐴௜  denote attribute 𝐴௜  of the relation 𝑟. Consecutively, 𝑟[𝐴] = 𝑟. 𝐴 = {𝐴ଵ, … , 𝐴௡}. I 
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sometimes use the term table for relation, row or record for tuple, and column or variable for 

attribute. In what follows, I refer to two relations 𝑟 and 𝑠 defined over schemas 𝑅 = (𝐴ଵ, … , 𝐴௡) 

and 𝑆 = (𝐵ଵ, … , 𝐵௠) respectively. 

Figure 28 shows two sample relations 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 and 𝑀𝑎𝑛𝑎𝑔𝑒𝑠. 

Employee 

EmpName Dept 
Ron Ship 
George Ship 
Ron Mail 

 

Manages 

Dept MgrName 
Load Ed 
Ship Jim 

 

 

Figure 28: Two sample relations 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 and 𝑀𝑎𝑛𝑎𝑔𝑒𝑠 

While the relational algebra defines a number of operators to manipulate data modeled as 

a relation, for the task of fusing datasets I focus only on the join operator. The goal of the join is 

to combine tuples form two relations. Below I provide definitions of most common types of join 

operator: Cartesian product, inner equi- and theta-join, left-, right- and full-outer join. 

Definition 1 – Cartesian Product: The Cartesian product (also known as cross join), 𝑟 ×

 𝑠, of two relations 𝑟 and 𝑠 is defined as follows. 

 𝑟 ×  𝑠 = {𝑧௡ା௠|∃𝑥 ∈ 𝑟 ∃𝑦 ∈ 𝑠 ( 

𝑧[𝐴] = 𝑥[𝐴] ∧ 𝑧[𝐵] = 𝑦[𝐵])} 

The second line of the definition sets the attribute values of the result tuple 𝑧  to the 

concatenation of the attribute values of 𝑥 and 𝑦.  

 
 



 81 

The schema of 𝑧 is 𝑍 = (𝐴ଵ, … , 𝐴௡, 𝐵ଵ, … , 𝐵௠) or as a shorthand 𝑍 = (𝐴, 𝐵). 

In other words, Cartesian product of two relations will combine each tuple from the 𝑟 

relation with each tuple from the 𝑠 relation by concatenating their attributes. Figure 29 shows the 

result of Cartesian product of the relations 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 and 𝑀𝑎𝑛𝑎𝑔𝑒𝑠. 

 

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 ×  𝑀𝑎𝑛𝑎𝑔𝑒𝑠 

EmpName Dept Dept MgrName 
Ron Ship Load Ed 
Ron Ship Ship Jim 
George Ship Load Ed 
George Ship Ship Jim 
Ron Mail Load Ed 
Ron Mail Ship Jim 

Figure 29: Result of the query 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 ×  𝑀𝑎𝑛𝑎𝑔𝑒𝑠 

Definition 2 – Theta Join: The theta join (𝜃 − 𝑗𝑜𝑖𝑛) of two relations 𝑟 and 𝑠 on attributes 

𝐴ᇱ ⊆ 𝐴 and 𝐵ᇱ ⊆ 𝐵  and predicate 𝜃 is defined as follows. 

 𝑟 ⋈௥.஺ᇲఏ௦.஻ᇲ 𝑠 = {𝑧௡ା௠|∃𝑥 ∈ 𝑟 ∃𝑦 ∈ 𝑠 ( 

      𝑧[𝐴] = 𝑥[𝐴] ∧ 𝑧[𝐵] = 𝑦[𝐵]  ∧ 

      𝑥[𝐴ᇱ] 𝜃 𝑦[𝐵ᇱ])} 

The second line of the definition sets the attribute values of the result tuple 𝑧  to the 

concatenation of the attribute values of 𝑥 and 𝑦. The third line ensures that only those tuples are 

concatenated that satisfy the predicate 𝜃.  

 
 

The definition of the theta join can also be expressed via the selection (𝜎) operation as 

𝑟 ⋈ఏ 𝑠 = 𝜎ఏ(𝑟 ×  𝑠). 
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In other words, the result of the theta join operation consists of all the combination of tuples 

from 𝑟 and 𝑠 relation that satisfy 𝜃. When the operator θ is the equality operator (=) then this join 

is also called an equi-join. 

Figure 30 shows the result of the equi-join of relations 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 and 𝑀𝑎𝑛𝑎𝑔𝑒𝑠 based on 

the equality predicate of 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒. 𝐷𝑒𝑝𝑡 and 𝑀𝑎𝑛𝑎𝑔𝑒𝑠. 𝐷𝑒𝑝𝑡 attributes. When the names of the 

attributes for the theta predicate are the same in both relation, the equi-join can be written as 

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 ⋈஽௘௣௧ 𝑀𝑎𝑛𝑎𝑔𝑒𝑠. 

 

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 ⋈஽௘௣௧ 𝑀𝑎𝑛𝑎𝑔𝑒𝑠 

EmpName Dept Dept MgrName 
Ron Ship Ship Jim 
George Ship Ship Jim 

Figure 30: Result of the query 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 ⋈஽௘௣௧ 𝑀𝑎𝑛𝑎𝑔𝑒𝑠 

The result of the inner join (theta or equi-join) consists only of matching tuples: the tuples 

that satisfy the 𝜃 predicate. An outer join contains the result of inner join plus not matched tuples 

of one relations (or both) extended with the "fill" values for each of the attributes of the other 

relation. The “fill” denotes the value that is not known, which in practice corresponds to 

the NULL in SQL. I will use ω symbol to denote the “fill” value.  

Three outer join operators are defined as left outer join, right outer join, and full outer join. 

The left outer join preserves all tuples from the relation on the left of the join operator. The right 

outer join is symmetric to the left outer join, the full outer join is defined as the union of the left 

and the right outer joins (the union operator eliminates the duplicate tuples). Below only left outer 

join definition is provided. 

https://en.wikipedia.org/wiki/Null_(SQL)
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Definition 3 – Left Outer Join: The left outer join of two relations 𝑟 and 𝑠 on attributes 

𝐴ᇱ ⊆ 𝐴 and 𝐵ᇱ ⊆ 𝐵  and a predicate 𝜃 is defined as follows.  

 𝑟⟕௥.஺ᇲఏ௦.஻ᇲ𝑠 = {𝑧௡ା௠|∃𝑥 ∈ 𝑟 ∃𝑦 ∈ 𝑠 ( 

      𝑧[𝐴] = 𝑥[𝐴] ∧ 𝑧[𝐵] = 𝑦[𝐵]  ∧ 

      𝑥[𝐴ᇱ] 𝜃 𝑦[𝐵ᇱ])  ∨ 

     ∃𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (¬(𝑥[𝐴ᇱ] 𝜃 𝑦[𝐵ᇱ]) ⇒ 𝑧[𝐴] = 𝑥[𝐴] ∧ 𝑧[𝐵] =  𝜔)} 

The first three lines of the definition correspond to the theta join on matching tuples. The 

last line handles the case where no matching tuple 𝑦 is found and thus sets the attribute values of 

the result tuple 𝑧 to the concatenation of the attribute values of 𝑥 and the null value 𝜔.  

 
 

Figure 30 shows the result of the left outer joins of relations 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 and 𝑀𝑎𝑛𝑎𝑔𝑒𝑠 

based on the equality predicate on 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒. 𝐷𝑒𝑝𝑡  and 𝑀𝑎𝑛𝑎𝑔𝑒𝑠. 𝐷𝑒𝑝𝑡  attributes, 

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒⟕஽௘௣௧𝑀𝑎𝑛𝑎𝑔𝑒𝑠. 

 

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒⟕஽௘௣௧𝑀𝑎𝑛𝑎𝑔𝑒𝑠 

EmpName Dept Dept MgrName 
Ron Ship Ship Jim 
George Ship Ship Jim 
Ron Mail 𝜔 𝜔 

Figure 31: Result of the query 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒⟕஽௘௣௧𝑀𝑎𝑛𝑎𝑔𝑒𝑠 

 In what follows I describe various approximate join techniques depending on the data type 

of the attributes that are used for the theta predicate. 
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5.2 STRING APPROXIMATE JOIN 

Historically, approximate join techniques have been mostly focused on similarity based joins for 

string values.  

5.2.1 Problem 

Very often the values that do not match may be simply spelled in slightly different ways or have 

typos. Such situations can be quickly discovered and resolved by relaxing strict requirement of 

equi-join for values to have exact match.  Consider two tables 𝐴 and 𝐵 presented on Figure 32 (the 

tables are taken from [10]). The numbers next to each name are the lengths of the strings. As 

mentioned above, in Section 5.1, when we perform a regular (equi-) join in database management 

system (DBMS), the tuples from the two joining tables match only if the values of attributes on 

which join is based match exactly. For example, if we join 𝐴 and 𝐵 based on the 𝑛𝑎𝑚𝑒 attribute, 

𝐴 ⋈ே௔௠௘ 𝐵, equi join will result in a table with only two tuples shown in the Figure 33. 

A 

ID Name 
1023 Frodo Baggins13 

21 J. R. R. Tolkien16 
239 C.S. Lewis10 
863 Bilbo Baggins13 

 

B 

ID Name 
948483 John R. R. Tolkien18 

153494 C. S. Lewis11 
494392 Frodo Baggins13 
799294 Bilbo Baggins13 

 

 

Figure 32: Example tables A and B 
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A.ID A.Name B.ID B.Name 
1023 Frodo Baggins 494392 Frodo Baggins 
863 Bilbo Baggins 799294 Bilbo Baggins 

Figure 33: Result of equi-join 𝐴 ⋈ே௔௠௘ 𝐵 

The two other tuples are not present in the result because the string “J. R. R. Tolkein” does 

not exactly (character by character) match the string “John R. R. Tolkein” even though they might 

refer to the same person, but spelled differently. As long as at least one character is not the same, 

two strings are considered to be different, that is why “C.S. Lewis” does not match with “C. S. 

Lewis” (notice the first string does not have a space character after first dot character). 

5.2.2 Problem Solution: Approximate String Equality 

In many cases it is possible to state with some level of confidence that two strings represent the 

same entity. Similarity join is a join that performs matching based not on the exact equality of the 

values of the matching attributing, but based on similarity or difference measure of comparing 

values. 

For example, string edit distance (sed) can be used to join the two tables from the example 

above. One of the most commonly used string edit distance was introduced by Levenshtein [114] 

and is defined as the minimum number of edit operations that transform one string into another. 

For example, sed(“J. R. R. Tolkein”, “John R. R. Tolkein”) = 3 by replacing “o” with “.” and 

deleting “hn” in second string. sed(“C.S. Lewis”, “C. S. Lewis”) = 1 by inserting space “ “ 

character in the first string after first “.”.  
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Thus, the string similarity join can be represented as a theta join where theta predicate 

operates on two strings and evaluates to true if and only if the similarity-based distance of the two 

strings is below a given threshold. For example, to perform the similarity join of tables A and B 

from Figure 32 on the 𝑛𝑎𝑚𝑒 attribute with string edit distance as defined above and a threshold 

equals to 3, the query can be defined as a theta join with predicate 𝑎 𝜃 𝑏 ≡ 𝑠𝑒𝑑(𝑎, 𝑏) ≤ 3. The 

result of such query, 𝐴 ⋈௦௘ௗ(஺.ே௔௠௘,   ஻.ே௔௠௘)ஸଷ 𝐵, is presented in Figure 34. 

 

𝐴 ⋈௦௘ௗ(஺.௡௔௠௘,   ஻.௡௔௠௘)ஸଷ 𝐵 

A.ID A.Name B.ID B.Name 
1023 Frodo Baggins 494392 Frodo Baggins 
21 J. R. R. Tolkien 948483 John R. R. Tolkien 
239 C.S. Lewis 153494 C. S. Lewis 
863 Bilbo Baggins 799294 Bilbo Baggins 

Figure 34: Similarity join result with string edit distance and threshold 3 

Another popular approach to perform string similarity join is to use token based techniques 

(e.g., tokens are based on either individual words or phrases for long strings, or q-gram for short 

strings) and set similarity metrics (e.g. Overlap similarity, Jaccard Similarity, or Dice Similarity). 

[10] provides a good overview of the similarity join approaches and their possible implementations 

in relational database management systems. Since computing similarity between two strings adds 

additional execution cost, many works focus on techniques and algorithms for efficient similarity 

join execution on large datasets. The most popular approaches use 1) blocking/filtering techniques 

(e.g. [98][184]) to filter out not matching tuples before computing similarity metric; 2) distributed 

join computation a cluster of machines (e.g. [3][108]). A recent paper [98] provides comprehensive 

experimental evaluation of many string similarity join algorithms.  
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In my work, I use threshold based string edit distance to compute similarity scores between 

string values during the join execution. Since the threshold largely depends on the data and the 

task at hand, I let user to interact with the join result by means of a threshold slider. In [166] authors 

report using similarity join to find schema matching rules and duplicate values by learning 

similarity threshold from training data.  

5.3 SPATIAL (NAME-BASED) APPROXIMATE JOIN 

Previous works on spatial join queries has been mostly focused on the spatial data that is 

represented in geographic coordinates and regions. A number of index structures such as the R-

tree [78], R+-tree [161], R∗ -tree [15], Quad-tree [156], or seeded tree [122] has been developed 

and utilized for efficient query answering. While some algorithms use preexisting indices, others 

build the them on the fly.  

String values can very often represent some geographic location however no geographic 

coordinates might be available (especially in historical datasets the actual geographic coordinates 

might be missing). Thus, existing spatial join techniques cannot be easily applied. String 

approximate join methods cannot be applied either. Some recent works report on what’s called 

spatial approximate string (SAS) query (e.g., [118]), however they don’t use location names and 

hierarchies as the join attribute. Instead they combine spatial indices with text indices to perform 

search for a location based on the string similarity in location’s tags.  

In this section I describe how hierarchical representation of the location attribute and tree-

based similarity methods can be utilized to perform ad-hoc join queries. 
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5.3.1 Problem 

Consider two relations, 𝐴 and 𝐵, shown in Figure 35 and a query that aims to join these two 

relations based on the match between City and Area columns. This query could be executed in 

several ways. Using equi-join on both attributes would result in an empty table because we cannot 

match exactly any value in the City column with any value in the Area column. Even if we try to 

perform an approximate string join based on edit distance, the result will still be an empty table. 

A 

City Precipitation 
Pittsburgh 700 

Philadelphia 800 
 

B 

Area Pop. Temp. 
Allegheny 

County 306,211 60 

Pennsylvania 1,548,000 70 
  

Figure 35: Example of datasets for spatial join 

5.3.2 Problem Solution: Named Subsumption Hierarchy Approach 

The location values could be represented in a hierarchical form. For example, a simplified 

hierarchy to illustrate the approach could be as USA subsumes Pennsylvania territorially, it 

subsumes Philadelphia and Allegheny County and Allegheny County subsumes Pittsburgh. Figure 

36 shows modified relations 𝐴 and 𝐵.  
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A 

Area Precipitation 
USA 
   |-Pennsylvania 

|- Allegheny County 
   |- Pittsburgh 

700 

USA 
   |-Pennsylvania 
      |- Philadelphia 

800 

 

B 

City Pop. Temp. 
USA 
   |-Pennsylvania 
      |- Allegheny County 

306,211 60 

USA 
   |-Pennsylvania 

1,548,000 70 

  

Figure 36: Modified tables 𝐴 and 𝐵 with hierarchical representation of the values in the location 

attributes 

The 𝑡𝑟𝑒𝑒 𝑒𝑑𝑖𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑡𝑒𝑑), that is defined as the minimum cost of a sequence of edit 

operations (delete, insert, rename) that transform one tree into another, can be used to calculate the 

similarity between location hierarchies and then based on a similarity threshold, tuples from the 

two relations can be joined. Let us assume that all operations have the same cost equal to 1. As an 

example, given a distance threshold of 1, consider joining the first tuple from 𝐴 table with tuples 

from 𝐵 table. The tree edit distance between Pittsburgh and Allegheny County is 1 since either 

Pittsburgh node needs to be deleted in the 𝐴 table or added to the 𝐵 table. Thus two tuples can be 

joined. However, since the difference between Pittsburgh and Philadelphia is 2, the tuples cannot 

be joined. 
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Figure 37 shows the result of the spatial approximate join between the 𝐴 and 𝐵 tables based 

on the tree edit distance with threshold 1.  

 

City Precipitation Area Pop. Temp. 
Pittsburgh 700 Allegheny County 306,211 60 

Philadelphia 800 Pennsylvania 1,548,000 70 

Figure 37: Result of the query 𝐴 ⋈௧௘ௗ(஼௜௧௬,஺௥௘௔)ஸଵ 𝐵 

Efficient algorithms that compute tree edit distance are known, e.g. [143]. 

5.4 TEMPORAL APPROXIMATE JOIN 

Time is an attribute of all real-world phenomena, and thus very often the datasets than need to be 

merged include a temporal dimension either explicitly or implicitly. However, most of the prior 

techniques and systems for data integration are largely agnostic to time, and hence, they cannot be 

immediately applied to fuse temporal datasets.  

Zhu et. al  [198] discuss three types of temporal heterogeneity that need to be resolved 

when integrating data over time. To address the record linkage problem, several temporal models 

(e.g., [41][119][117]) have been proposed. To resolve temporal conflicts and consistently integrate 

temporal datasets, time-aware and preference-aware union operators have been proposed in 

[12][154]. However, all previous work has been focused mostly on record linkage problem where 

time dimension is used primarily to track the object evolution over time (e.g., to reconstruct 

employment history of a specific person).  
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Another area where a lot of effort to incorporate temporal domain have been ongoing for 

several decade is the area of temporal databases ([97][96]). Each tuple in a temporal database 

relation is annotated with time attributes, which are treated in a special way when a query is 

executed. Temporal counterparts of the relational algebra operators have been developed. The 

temporal Cartesian product and join operators (see [71] for review) are of the most related to us 

since they allow to merge two temporal datasets into one. Temporal joins are arguably the most 

important relational operators. This is so because efficient join processing is essential for the 

overall efficiency of a query processor. Various algorithms (e.g., 

[38][52][53][71][101][102][103][64][145][151][174][196][199]) that use specialized temporal 

indices and partition over a number of machines were introduced to efficiently execute temporal 

join in temporal databases. 

While both data integration and temporal database areas consider temporal dimension to 

represent time when some fact is valid (e.g., a time when a person works in a company), they 

didn’t consider the case when a relation contains aggregated values over some time intervals (e.g., 

average temperature over a course of a week), which is a common case in historical datasets. Thus, 

to the best of my knowledge the problem of fusing aggregated temporal datasets was not address 

in the context of approximate join. 

In what follows, I first define the problem formally in Section 5.4.2, show the use cases 

that I focus on in Section 5.4.3 and provide description of proposed methods to solve the problem 

in Sections 5.4.4-5.4.7. 
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5.4.1 Preliminaries for Temporal Join 

In this section I provide definitions and notations of terms that will be used further in the text to 

discuss the problem of temporal approximate join and the solutions that I developed. I reuse where 

possible and extend where needed terminology defined in the temporal database area.  

I assume discrete 𝑡𝑖𝑚𝑒 𝑑𝑜𝑚𝑎𝑖𝑛, Ω், where elements are linearly ordered. I mostly refer to 

an element of the time domain as a 𝑡𝑖𝑚𝑒 𝑢𝑛𝑖𝑡 but also may use terms 𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡, 𝑡𝑖𝑚𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑡, 

or 𝑐ℎ𝑟𝑜𝑛𝑜𝑛  [62] interchangeably. Depending on the granularity level, examples of time unit 

include seconds, days, months, years, etc. 

A 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 is a contiguous set of time units and is represented by two time units 

[𝐹𝑟𝑜𝑚, 𝑇𝑜] which denote its inclusive 𝐹𝑟𝑜𝑚 (start) and 𝑇𝑜 (end) time points on the underlying 

time axis respectively. As a shorthand, a time interval will be represented as 𝑇, and 𝑇. 𝐹𝑟𝑜𝑚 is the 

𝐹𝑟𝑜𝑚 time unit of the interval and 𝑇. 𝑇𝑜 is the 𝑇𝑜 time unit. A time unit 𝑡 belongs to the time 

interval 𝑇, 𝑡 ∈ 𝑇, iff 𝐹𝑟𝑜𝑚 ≤ 𝑡 ≤ 𝑇𝑜. Chronological relations between two time intervals can be 

expressed using the Allen’s interval algebra [8], which defines a set of Boolean predicates, 

composition table and converse operation. Here I define two operators on two intervals that will 

be useful for further discussion. 

 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑇ଵ, 𝑇ଶ) =  ൜ 𝑡𝑟𝑢𝑒 𝑖𝑓 ∃𝑡 (𝑡 ∈ 𝑇ଵ ∧ 𝑡 ∈ 𝑇ଶ)
𝑓𝑎𝑙𝑠𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (6) 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑇ଵ, 𝑇ଶ) =

 ቄ[max(𝑇ଵ. 𝐹𝑟𝑜𝑚, 𝑇ଶ. 𝐹𝑟𝑜𝑚) , min (𝑇ଵ. 𝑇𝑜, 𝑇ଶ. 𝑇𝑜)] 𝑖𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑇ଵ, 𝑇ଶ)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 
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The 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑇ଵ, 𝑇ଶ) operator is true when two intervals has at least one time unit in 

common and 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑇ଵ, 𝑇ଶ) returns the number of time units that are in common if two intervals 

intersect and 0 if they don’t. 

Relations in temporal databases are annotated with time dimension that usually record a 

𝑣𝑎𝑙𝑖𝑑 𝑡𝑖𝑚𝑒 , 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒, or both (known as 𝑏𝑖𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙  model). Valid time describes 

when a tuple is true in the real world, and transaction time captures when a tuple was created or 

altered. In what follows, I focus on relations that only record valid time. Thus, definition of 

temporal relation schema extends the definition of the non-temporal relation given in Section 5.1 

as follows. A 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑐ℎ𝑒𝑚𝑎  is represented as 𝑅் = (𝐴ଵ, … , 𝐴௡, 𝐹𝑟𝑜𝑚, 𝑇𝑜) , 

where 𝐴௜ is the non-temporal (also called explicit) attribute with domain Ω௜, and 𝐹𝑟𝑜𝑚 and 𝑇𝑜 are 

temporal attributes with domain Ω். To distinguish relations with valid-time semantics from other 

types that will be introduced later in the text, instances of valid-time relations are denoted as 𝑟௏் 

and the schema as 𝑅௏். 

Consider as example two temporal relations (taken from [71]) in Figure 38 that are 

representative of valid time relations. The tuples in both relations are annotated with time intervals 

𝑇 that denote when each tuple is valid. For example, the tuple (Ron, Ship, [1, 5]) in the Employee 

relation represents the fact that Ron worked for the Ship department from time 1 to time 5.  

 

Figure 38: Two sample temporal relations with interval temporal attributes 
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To distinguish between a tuple of a non-temporal relation and a tuple of a temporal relation, 

I refer to the latter one as a 𝑟𝑒𝑝𝑜𝑟𝑡. The 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 or 𝑙𝑒𝑛𝑔𝑡ℎ of a report 𝑟௜  ∈ 𝑟் , |𝑟௜|, is the 

number of time units in its time interval and is calculated as: 

 |𝑟௜| = |𝑟௜. 𝑇| = 𝑟௜. 𝐹𝑟𝑜𝑚 − 𝑟௜. 𝑇𝑜 + 1 (8) 

Since time intervals lack the total ordering, the next two definitions find the report that 

covers the smallest (the earliest) or the largest (the latest) time unit respectively. 

Definition 4 – First: Given a set of reports (or a temporal relation) 𝑟் , the 𝑓𝑖𝑟𝑠𝑡(𝑟்) 

operator is defined as follows. 

 𝑓𝑖𝑟𝑠𝑡(𝑟்) = 𝑟௙  ⟺  𝑟௙ ∈ 𝑟் ∧ ∀𝑥 ∈ 𝑟்(𝑟௙. 𝐹𝑟𝑜𝑚 ≤ 𝑥. 𝐹𝑟𝑜𝑚) 

The condition ensures that the first report is the one whose 𝐹𝑟𝑜𝑚 time unit is the smallest 

(earliest). 

 
 

Definition 5 – Last: Given a set of reports (or a temporal relation) 𝑟் , the 𝑙𝑎𝑠𝑡(𝑟்) 

operator is defined as follows. 

 𝑙𝑎𝑠𝑡(𝑟்) = 𝑟௟  ⟺  𝑟௟ ∈ 𝑟் ∧ ∀𝑥 ∈ 𝑟்(𝑟௟. 𝑇𝑜 ≥ 𝑥. 𝑇𝑜) 

The condition ensures that the last report is the one whose 𝑇𝑜 time unit is the largest 

(latest). 

 
 

The 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 of a relation 𝑟், |𝑟்|, is the number of time units between the 𝐹𝑟𝑜𝑚 time 

unit of the earliest report and the 𝑇𝑜 time unit of the latest report and is calculated as: 

 |𝑟்| = 𝑓𝑖𝑟𝑠𝑡(𝑟்). 𝐹𝑟𝑜𝑚 − 𝑙𝑎𝑠𝑡(𝑟்). 𝑇𝑜 + 1   (9) 

Note that the lifespan of a relation can contain some time units that are not covered by any 

reports. For example, if relation 𝑟௏்  has two reports 𝑟ଵ = (𝑣ଵ, 1, 2) and 𝑟ଶ = (𝑣ଶ, 5, 8), where 
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𝑣ଵand 𝑣ଶ are some explicit values, that cover time units [1, 2] and [5, 6, 7, 8], the lifespan would 

be 8 time units, however time units [3, 4] are not covered. Such intervals of time units are called 

𝑔𝑎𝑝𝑠. The Definition 6 defined the 𝑔𝑎𝑝𝑠 operator that returns true if there are time units that are 

not covered by any report in the given set of reports. 

Definition 6 – Gaps: Given a set of reports (or a temporal relation) 𝑟், the 𝑔𝑎𝑝𝑠(𝑟்) 

operator is defined as follows. 

 𝑔𝑎𝑝𝑠(𝑟்) = ൜ 𝑡𝑟𝑢𝑒 ∃𝑡 ∈ [𝑓𝑖𝑟𝑠𝑡(𝑟்). 𝐹𝑟𝑜𝑚, 𝑙𝑎𝑠𝑡(𝑟்). 𝑇𝑜]∀𝑥 ∈ 𝑟்(𝑡 ∉ 𝑥. 𝑇)
𝑓𝑎𝑙𝑠𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

The condition to return true checks whether there exists a time unit in the lifespan of the 

set of the reports that doesn’t no belong to all reports’ time intervals 

 
 

As mentioned earlier, temporal relational algebra operations have been developed to 

operate on temporal relations. Two most relevant operations to the discussion in this chapter are 

the temporal Cartesian product (×்) and the temporal Theta-join (⋈ఏ
்). The two definitions below 

are taken from [71] and are important because they allow to understand how valid-time semantics 

treat the value of explicit attributes. 

Definition 7 – Temporal Cartesian Product [71]: The temporal Cartesian product, 

𝑟௏் ×் 𝑠௏் , of two valid time temporal relations 𝑟௏்  and 𝑠௏் , defined over schemas 𝑅௏் =

(𝐴ଵ, … , 𝐴௡, 𝐹𝑟𝑜𝑚, 𝑇𝑜) and 𝑆௏் = (𝐵ଵ, … , 𝐵௡, 𝐹𝑟𝑜𝑚, 𝑇𝑜) respectively, is defined as follows. 

 𝑟௏் ×் 𝑠௏் = ൛𝑧(௡ା௠ାଶ) ห ∃𝑥 ∈ 𝑟 ∃𝑦 ∈ 𝑠 ( 

  𝑧[𝐴] = 𝑥[𝐴] ∧ 𝑧[𝐵] = 𝑦[𝐵] ∧ 

   𝑧[𝑇] = 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑥[𝑇], 𝑦[𝑇]) ∧ 𝑧[𝑇] ≠ 0)} 
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The second line of the definition sets the explicit attribute values of the result tuple 𝑧 to the 

concatenation of the explicit attribute values of 𝑥 and 𝑦. The third line computes the timestamp of 

𝑧 and ensures that it is nonempty. 
 

Definition 8 – Temporal Theta Join [71]: The temporal theta join, 𝑟௏் ⋈ఏ
் 𝑠௏், of two 

valid time temporal relations 𝑟௏் and 𝑠௏், defined as in Definition 7, is defined as follows. 

𝑟௏் ⋈ఏ
் 𝑠௏் = 𝜎ఏ(𝑟௏்  ×்  𝑠௏்) 
 

For example, the result of the temporal Cartesian product (×் ) of the Employee and 

Manages relations from the Figure 38 is shown in Figure 39. The query 

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒௏்  ×்  𝑀𝑎𝑛𝑎𝑔𝑒𝑠௏்can be expressed in English as “Show the names of employees and 

managers where the employee worked for the company while the manager managed some 

department in the company” [71].  

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒௏்  ×்  𝑀𝑎𝑛𝑎𝑔𝑒𝑠௏் 

EmpName Dept Dept MgrName T 
Ron Ship Load Ed [3, 5] 
George Ship Load Ed [5, 8] 
George Ship Ship Jim [7, 9] 
Ron Mail Load Ed [6, 8] 
Ron Mail Ship Jim [7, 10] 

Figure 39: The result of the query 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒௏்  ×்  𝑀𝑎𝑛𝑎𝑔𝑒𝑠௏் 

Note that the non-temporal Cartesian product would match every tuple from the Employee 

relation with every tuple of the Manages relation and the result would have six tuples. The result 

of the temporal Cartesian product, however, basically represents the join of the two relations based 

on the intersections of the time intervals 𝑇. In fact, in the original work by Segev and Gunadhi 
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[159][160] on the temporal Cartesian product, the operator was named 𝑡𝑖𝑚𝑒 𝑗𝑜𝑖𝑛 , and the 

abbreviation 𝑇 − 𝑗𝑜𝑖𝑛 was used.  

An example of a temporal equi-join of the 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒௏்and 𝑀𝑎𝑛𝑎𝑔𝑒𝑠௏் relations based 

on the 𝐷𝑒𝑝𝑡 attributed, 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒௏் ⋈஽௘௣௧
் 𝑀𝑎𝑛𝑎𝑔𝑒𝑠௏் is shown in  Figure 40. 

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒௏் ⋈஽௘௣௧
் 𝑀𝑎𝑛𝑎𝑔𝑒𝑠௏் 

EmpName Dept Dept MgrName T 
George Ship Ship Jim [7, 9] 

Figure 40: The result of the query 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒௏் ⋈஽௘௣௧
் 𝑀𝑎𝑛𝑎𝑔𝑒𝑠௏் 

All temporal operators operate on explicit (non-temporal attributes) while taking into 

account temporal dimension to produce only valid tuples. In the next section, I will describe when 

the existing approaches to temporal data join do not solve the problem that we encounter while 

building the advance historical data integration infrastructure. 

5.4.2 Problem 

The temporal join operators presented in the previous section (Section 5.4.1) work on temporal 

data successfully because of the semantic of the 𝑣𝑎𝑙𝑖𝑑 𝑡𝑖𝑚𝑒 data model. The 𝑣𝑎𝑙𝑖𝑑 𝑡𝑖𝑚𝑒 temporal 

relation contains facts that are 𝑣𝑎𝑙𝑖𝑑 (and are the same) at each time unit of the time interval. For 

example, the 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒௏் relation from Figure 38 can be represented as a non-temporal relation 

(see Figure 41 for the excerpt of the converted relation) where the 𝑇𝑈 attribute stands for time unit 

and can be treated as a regular non-temporal attribute. Non-temporal relational algebra operators 



 98 

can be used to operate on such table. In fact, temporal operators act as though they are non-

temporal operators applied independently at each time unit. 

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 

EmpName Dept TU 
Ron Ship 1 
Ron Ship 2 
Ron Ship 3 
Ron Ship 4 
Ron Ship 5 
George Ship 5 
George Ship 6 
… … … 

Figure 41: Excerpt of the valid time temporal relation 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒௏் converted into non-temporal 

relation 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 

Very often, however, we need to deal with another type of temporal data, which was not 

considered previously in the temporal database area. Instead of reporting constant facts that are 

valid during some time intervals, this type of relations reports aggregated value of some real life 

phenomena over some period of time (time interval). I call such relations as 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑇𝑖𝑚𝑒 

relations. 

Definition 9 – Aggregate Time Relation: Given a non-temporal relation 𝑟 defined over 

schema 𝑅 = (𝐶ଵ, … , 𝐶௡, 𝑉ଵ, … , 𝑉௠, 𝑇𝑈) where each tuple describes some object/entity by a set of 

categorical attributes 𝐶ଵ, … , 𝐶௡  that do not change over time and a set of variable attributes 

𝑉ଵ, … , 𝑉௠ values for each are recorded at each time unit 𝑇𝑈. Given a set of time intervals 𝑇𝐼 where 

each interval is a defined over subset of time units from the lifespan of 𝑇𝑈 such that the values of  
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𝐶ଵ, … , 𝐶௡ attributes are same for each time unit. And given an aggregate function 𝑓: ℝ௞ → ℝ, the 

aggregate temporal relation, 𝑟஺், is defined as follows. 

 𝑟஺் = ൛𝑧(௡ା௠ାଶ)ห ∀𝑡 ∈ 𝑇𝐼 ∃𝑟ᇱ ⊆ 𝑟 (∀𝑥 ∈ 𝑟ᇱ (𝑥. 𝑇𝑈 ∈ 𝑡)  ∧  

  ൫∃𝑦 ∈ 𝑟ᇱ (𝑧[𝐶] = 𝑦[𝐶])൯  ∧ 

  ൬∀𝑖 ∈ 1 … 𝑚 ቀ𝑧. 𝑉௜
௙ = 𝑓(𝑟ᇱ. 𝑉௜)ቁ൰ ∧ 

  𝑧. 𝑇 = 𝑡)}  

In the first line, for every time interval 𝑡 a temporary relation 𝑟ᇱ is defined that contains a 

subset of tuples of 𝑟 whose 𝑇𝑈 belongs to the interval 𝑡. The second line sets the values of the 

constant categorical attributes 𝐶ଵ, … , 𝐶௡ of the result tuple 𝑧 as a copy of any tuple of the temporary 

relation  𝑟ᇱ. The third line applies the aggregate function 𝑓 to each variable attribute 𝑉௜ of 𝑟ᇱ and 

sets the result into corresponding attribute of the result tuple 𝑧. The last line sets the time interval 

of the result tuple 𝑧 as the time interval 𝑡. 

 
 

As it follows from the definition, the schema of the aggregate time relation is 𝑅஺் =

(𝐶ଵ, … , 𝐶௡, 𝑉ଵ
௙, … , 𝑉௠

௙, 𝐹𝑟𝑜𝑚, 𝑇𝑜). 

As an illustration of the Definition 9 consider the example shown in Figure 42. The 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 relation, called original or ground truth relation, describes two stations St1 and St2 

(we call them entities or objects) and the temperature values measured at each station at each time 

unit. The 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒஺் relation is the aggregate time relation derived from 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 by 

applying mean function over time intervals 𝑇𝐼 within each entity. 
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Figure 42: Illustration of non-temporal relation Temperature and its aggregate time version 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒஺் 

The first notable difference between aggregate time and valid time relations is that in the 

case of aggregate relation, the values of the variable attributes (e.g. Temp୑ୣୟ୬ attribute) at each 

time unit are unknown and thus we cannot split the time interval into time units and assign each 

time unit the same value. For example, slicing the first report in the  𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒஺் relation into 

two tuples with the same Temp୑ୣୟ୬ value will produce the tuples (St1, 12.5, 1) and (St1, 12.5, 2) 

which do not correctly describe the true values of the Temp attribute in the Temperature relation. 

To simplify further discussions without the loss of generality, I focus on aggregate time 

relation that describes only one object and one variable attribute of that object. Thus, a shortened 

schema, 𝑆 = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉), will be used. We can do so, because joining on categorical attributes 

is straightforward operation and standard join approaches can be used. The temporal fusion, that 

will be discussed later, is only needed for relating variable attributes within each object. The 
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superscripts will be omitted if it is clear from the context what type of relations is used. I call 

variable attribute as a variable. 

Consider two relations 𝐴𝑣𝑔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  and 𝐴𝑣𝑔𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠  (Figure 43) that hold 

average temperature and average cloudiness values respectively from some time unit 𝐹𝑜𝑟𝑚 to 

time unit 𝑇𝑜. Notice that the time intervals intersect both within one relation and between two 

relations. The time intervals can also be represented graphically as shown in Figure 44.  

 

Figure 43: Sample data from two datasets describing two variables – average temperature and 

average cloudiness. Observations are temporally overlapping both within and between datasets 

 

Figure 44: Interval representation of time interval overlaps for 𝐴𝑣𝑔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 and 

𝐴𝑣𝑔𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠 tables from Figure 43 
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Consider a research question that would require average temperature and average 

cloudiness to be combined into one table: what temperature corresponds to what cloudiness value? 

In database terms, such operation can be performed with a join query. 

Using traditional equi-join on the 𝐹𝑜𝑟𝑚 and 𝑇𝑜 attributes of the 𝐴𝑣𝑔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 and 

𝐴𝑣𝑔𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠 tables from Figure 43 would yield an empty table since there are no matching 

time intervals in the two tables that match exactly on their ends. Other join predicate operators 

would find matching tuples, but they will not recover the complete picture and it is not always 

clear which combination of them to use. Moreover, the result still might be empty if there are gaps 

in the data. As it was shown earlier, it is also not possible to use temporal join approaches from 

the temporal database area since they require valid time semantics. 

5.4.3 Taxonomy of Aggregate Time Relations and Reports Characteristics 

As mentioned above, datasets that are developed independently come in different forms and 

shapes. In this section I describe five main characteristics of aggregate time relations and reports 

(see Table 4 for the summary):  

x 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 – characteristic of a relation that describes whether the relation has gaps as 

defined in Section 5.4.1 - time intervals that are not covered by any report in the relation. 

x 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 – characteristic of a relation that describes whether the 

relation has reports that intersect or not. 

x 𝑇𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ  – characteristic of a relation that describes whether the reports 

in the relation are short (aggregation is performed over few time units) or long (aggregation 

is performed over large number of time units). 
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x 𝑉𝑎𝑟𝑦𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑣𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ – characteristic of a relation that describes whether all reports 

in the relation have the same length or not. 

x 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒 – the type of the aggregation function: average value (also called 

index series), sum of the values (also called flow series, e.g., exports, production, 

household consumption) or a particular point in time (e.g., the value of the first or last time 

unit in the report time interval) (also called stock series, e.g., unemployment, money stock, 

public sector debt).  

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒, 𝑇𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ and 𝑉𝑎𝑟𝑦𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑣𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ characteristics are also 

applicable to the valid-time relation type. 

Combination of values of different characteristics is called a 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 . For example, 

Figure 44 shows an instance of the scenario when reports have partial coverage (see gaps for time 

unit 5 for 𝑇𝑒𝑚𝑝 variable and for 6 for 𝐶𝑙𝑜𝑢𝑑 variable), intersection within relation (two reports in 

the 𝐴𝑣𝑔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 relation intersect), and varying time interval length. Figure 45 shows an 

example of a scenario with complete coverage, no intersection within relation, varying interval 

length and mixed short and long reports. Figure 46 shows example of a scenario with complete 

coverage, no intersection within relation, and constant interval length short reports. 

Table 4: Temporal categorization criteria 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 Full; Partial 
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 Yes; No 

𝑇𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ Small; Large 
𝑉𝑎𝑟𝑦𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑣𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ Yes (varying); No (constant) 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒 
Average (index); Sum (flow); First or Last 

observation in time interval (stock) 
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Figure 45: Example of a scenario with complete coverage, no intersection within relation, 

varying interval length and mixed short and long reports 

 

Figure 46: Example of a scenario with complete coverage, no intersection within relation, 

constant interval length short reports 

Note that even though Figure 46 shows ideal scenario within each relation, non-temporal 

or temporal valid time equi-join approaches are still not applicable since there are no exact matches 

on reported time intervals between two relations. In what follows I describe methods to perform 

join for such scenarios. 

5.4.4 Overview of Join Strategies of Aggregate Time Relations 

As I mentioned earlier, performing the standard equi-join on temporal datasets, such as in Figure 

44, would yield an empty table when time units don’t match exactly. While it is impossible to find 
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exact correspondence for two aggregate time variables on each time unit in the same way how it 

is done in case of valid time relation, depending on the task at hand, an approximate join would 

suffice. Thus, the goal of approximate join of two aggregate time tables is to provide the best effort 

to match corresponding tuples.  

In general, we can apply two high level strategies to join two aggregate time relations 𝐴ଵ 

and 𝐴ଶ that were derived from the original relations by applying some aggregation function: 

1. Reports in each relation can be disaggregated to a common time scale and then the 

standard non-temporal equi-join can be applied. We call such approach 

𝐷𝑖𝑠𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝐽𝑜𝑖𝑛 (explained in more detail in Section 5.4.5). 

2. Alternatively, join can be performed directly on the reports based on the temporal 

distance between those reports. We call such approach 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝐽𝑜𝑖𝑛  (explained in 

more detail in Section 5.4.6). 

Both approaches are illustrated in Figure 47. The example shows (a) aggregate relation A1 

with average life expectancy statistics reported every five years and aggregate relation A2 with 

annual Top 1% income share statistic reported at different times; (b) graphical representation of 

the aggregate relations A1 (green) and A2 (blue); (c) join result JA12 of the relations A1 and A2 

based on Aggregated Join method; (d) disaggregated relations D1 and D2 as well as Disaggregated 

Join result based on the exact match of time units (years). The process of merging aggregated data 

streams is resource consuming and it involves trade-offs between accuracy of the produced results, 

execution time, and consumed computational resources. 



 106 

 

Figure 47: Illustration of high level strategies for temporal approximate join of two aggregate 

time relations 

Figure 48 shows schematic representation of the problem setup and high level view of the 

possible approaches to join aggregate time temporal relations.   

 

Figure 48: Schematic representation of high level view of the approaches for temporal 

approximate join of two aggregate time relations 

 

                   
 

 a)  b) c)  d) 
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5.4.5 Disaggregate Join of Aggregate Time Relations 

As it was mentioned earlier, under the disaggregate join strategy we first disaggregate each 

aggregate time relation into a relation that contains estimated values for each time unit and then 

use standard equi-join.  

Given a disaggregation function, 𝑑𝑖𝑠(𝑟, 𝐼𝑟) → 𝑟′, that takes an aggregate time relation 

with schema 𝑅஺் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉) and a set of items  𝐼𝑟 that represent external knowledge, and 

produces a relation 𝑟′ with schema 𝑅′஺் = (𝑇𝑈, 𝑉′), we can define disaggregate join as follows. 

Definition 10 – Disaggregate Join: The disaggregate join, 𝑟஺் ⋈்஽௃ 𝑠஺் | 𝐼𝑟, 𝐼𝑠, of two 

aggregate time temporal relations 𝑟஺்  and 𝑠஺்  given two sets of external knowledge elements 

{𝐼𝑟ଵ, … 𝐼𝑟௞} for 𝑟஺் and  {𝐼𝑠ଵ, … 𝐼𝑠௟} for 𝑠஺் is defined as follows. 

𝑟஺் ⋈்஽௃ 𝑠஺் | 𝐼𝑟, 𝐼𝑠 = 𝑑𝑖𝑠(𝑟, 𝐼𝑟) ⋈்௎ 𝑑𝑖𝑠(𝑠, 𝐼𝑠) 
 

The external knowledge set can contain anything that a disaggregate function can use to do 

better estimation. For example, it can be distribution of the variable, some context information, 

etc. The quality of the disaggregate join solely depends on how accurate a disaggregation function 

can estimate values for each time. Below I provide three disaggregation methods that can be used 

as a disaggregation function in the disaggregate join approach. 

5.4.5.1 Temporal Disaggregation The Temporal Disaggregation approach is based on the 

temporal disaggregation methods that are used in the time series analysis of mostly economic data 

(see [39], [29] and [158] for review). Briefly, given a low frequency time series (e.g. annual sales, 

weekly stock market index, etc.) the goal of temporal disaggregation is to produce a high-

frequency series (e.g. quarterly sales, daily stock market index, etc.) while satisfying temporal 

aggregation (additivity) constraint. Temporal aggregation constraint ensures that either the sum, 
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the average, the first or the last value of the resulting high frequency series is consistent with the 

low frequency series. If available, related series observed at the required high frequency can be 

used to disaggregate the original observations. Such series are called indicators. However, care 

must be taken when selecting indicators since two strongly correlated low frequency time series 

may not be strongly correlated at a higher frequency [36]. Thus, choosing good indicator series is 

not a very straightforward task. 

Temporal disaggregation methods have been studied extensively in the area of 

econometrics and statistics and many methods to perform the disaggregation have been proposed. 

Smoothing, model based and statistical methods have been developed that can be organized into 

three groups as follows (note, the list of methods is not exhaustive):  

x Univariate Without Indicators: If no higher frequency indicator is available then a 

smoothing or model based methods can be used, such as: low-pass interpolation 

(interpolation followed by low-pass smoothing by means of a filter (e.g. Hodrick-Prescott 

filter [152]); Boot-Feibes-Lisman (BFL) smoothing method [27]; Stram-Wei (an ARIMA 

model-based method) [167].  

x Univariate With Indicators: When a higher frequency indicator is available a range of 

statistical methods can be used, such as: Denton [51]; Denton-Cholette [44]; Chow-Lin 

[74];  Fernández [66]; Litterman [121]; Santos Silva-Cardoso (dynamic extension of 

Chow-Lin) [163]; based on MIDAS regression [76]. 

x Multivariate With/Without Indicators: Multivariate models are used to model and 

explain the interactions and comovements among a group of time series variables: 

Multivariate Denton; Rossi [153]; Di Fonzo [68]; Polynomial method [195]; SUTSE [133]. 
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Methods without indicator series solely rely on the data points in the low-frequency series 

while estimating missing values for higher frequencies; methods with indicators are primarily 

concerned with movement preservation, generating a series that is similar to the indicator. While 

univariate methods derive one high-frequency series from one low-frequency one, the multivariate 

methods derive multiple high-frequency series from multiple low-frequency series. Thus, in the 

multivariate case, the estimated high-frequency series must fulfill both temporal and 

contemporaneous aggregation constraints.  

Some of the most popular temporal disaggregation methods have been implemented in R 

by Sax and Steiner [158], Ecotrim by Barcellan et al. [14] and as Matlab extension by Quilis [177]. 

Figure 49 shows an example of applying BFL, Fernandez and Chow-Lin temporal 

disaggregation methods to disaggregate annual series into quarterly series. The top left plot 

visualizes true quarterly sales that were recorded for each year from 1975 to 2010. The true sales 

series is used as the ground truth to evaluate the performance of the three disaggregation methods. 

The top middle plot visualizes the annual sales series (annual sale for one year is the sum of sales 

of 4 quarters for that year). The top right plot visualizes quarterly exports series that will be used 

as an indicator series since the sales and exports have similar behavior. The annual series and the 

indicator series are what is available as input to the disaggregation method.  

The bottom left plot shows the result of the BFL method that doesn’t use the indicator 

series to perform disaggregation of the annual sales series into quarterly one. The bottom middle 

and right plots visualizes the results of Fernandez and Chow-Lin methods respectively. Both 

methods used the quarterly export series as an indicator series. All three bottom plots also report 

root mean square error (RMSE) between the true quarterly sales series and the estimated quarterly 

series produced by each method. 
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As we can see from the Figure 49, the BFL method simply smoothens the annual series 

while the other two methods rely on the dynamics of the indicator series and are able to recover 

smaller fluctuations of the quarterly sales series that were not present in the annual series. 

Hereafter, I am only going to use BLF and Fernandez method as two representative methods of 

univariate temporal disaggregation without and with indicator series respectively. 

 

Figure 49: Example of applying BFL, Fernandez and Chow-Lin temporal disaggregation 

methods to disaggregate annual series into quarterly 

5.4.5.2 Polynomial or Spline Interpolation Since the task of the disaggregate function is to 

estimate values for unknown time units based on the values of the known time units, standard 
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mathematical interpolation methods, such as polynomial or spline interpolation methods, can be 

used.  

While this method is conceptually simple, it doesn’t satisfy the temporal additivity 

constraint in the case when mean function is used to produce aggregated reports. It also cannot be 

directly applied when there are intersections of reports within one relation. Finally, this method is 

not applicable when sum aggregation function is used to produce aggregated reports. 

5.4.5.3 Spread, Aggregate, Fill, Extend (SAFE) Heuristic I propose this method as a heuristic 

that distributes the value of the report to each time unit in case of the index or stock aggregation 

function or the value divided by the number of time units in the case of the flow aggregation 

function (similar to the 1/n disaggregation method). Whenever there are intersecting reports it 

calculates average value to resolve the conflict and propagate that value to the other time units. 

Note that this method doesn’t not satisfy additivity constraint. 

Figure 50 shows an example of the SAFE method applied to slightly modified 𝑇𝑒𝑚𝑝 

variable from Figure 44. 
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Figure 50: Example of applying the SAFE method  

Figure 50(a) shows three reports that present average value of the Temp variable. Two 

reports intersect, and there is a gap between second and the third report. Therefore, TD or 

Polynomial disaggregation methods cannot be applied directly. Figure 50(b) shows that the value 

on each time unit was estimated by dividing the reported values equally (the spread phase of the 

method). Red dashed rectangle and oval shows the conflicting and gap time units. The aggregate 

phase resolves the conflicting time units by computing average values and the fill phase resolves 

the gap time unit by computing an average value of the adjacent not empty time units. The extend 

phase is not shown in the figure but would propagate the values outside of the given time units is 

needed. Figure 50, (c) shows the final outcome of the SAFE method.  

Each of the three method is best applicable in different scenarios and have various 

limitations going from the Temporal Disaggregation to Polynomial to SAFE method. The 

univariate temporal disaggregation methods as the disaggregation functions for the temporal 

approximate join have three main applicability limitations. First, they cannot be directly applied 
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when relations have partial coverage (e.g., not applicable to the 𝐴𝑣𝑔𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠 relation in Figure 

44). This limitation can be resolved by applying disaggregate function at complete sections of the 

relation separately, however this increases join complexity since complete sections first need to be 

identified. The second limitation requires all reports in a relation to have the same length (e.g., not 

applicable to either of the relation in Figure 45). Third, they cannot be applied when there are 

intersections of reports within a relation (e.g., not applicable to the 𝐴𝑣𝑔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 relation in 

Figure 44). The multivariate methods are not applicable in general in our case since they require 

contemporaneous aggregation constraints and thus can be only performed on homogeneous time 

series that are not independent from each other, whereas in the case of a join operation the relations 

to be joined are completely independent from each other. 

The second method, Polynomial or Spline interpolation, has fewer restrictions, namely it 

is not applicable when sum aggregation function was used to produce low frequency series and it 

is applicable only when each relation doesn’t have intersecting reports. However, since the method 

doesn’t preserve temporal additivity, the quality of the result might be lower.  

The last method, SAFE, has no applicability restrictions, however the quality of the join 

might be very low since the method is very simplistic. 

Figure 51 and Figure 52 show comparison of two temporal disaggregation (BFL and 

Fernandez), polynomial (8th degree) and SAFE methods to disaggregate low frequency series 

(annual and triennial respectively) into quarterly (high frequency) series. Thus, the only difference 

between input data in the two figures is the length of the aggregation. The annual series is produced 

by averaging the sales of 4 quarters (i.e., one year), the triennial series is produced by averaging 

the sales of 12 quarters (i.e., three years). Note the difference with the Figure 49 in which annual 
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sales represented the sum of quarterly sales. I could not use the sum annual series, because the 

polynomial interpolation method doesn’t work for the sum aggregation function. 

The top left plot visualizes true quarterly sales that were recorded for each year from 1975 

to 2010. The true sales series is used as the ground truth to evaluate the performance of the four 

disaggregation methods. The top middle plot visualizes low frequency series (annual in Figure 51 

and triennial in Figure 52). The top right plot and the bottom plots from left to right visualize 

disaggregated series produced by BFL, Fernandez, 8th degree polynomial interpolation and SAFE 

methods respectively.  

 

Figure 51: Comparison of two temporal disaggregation (BFL and Fernandez), polynomial (8th 

degree) and SAFE methods to disaggregate annual (low frequency) series into quarterly (high 

frequency) series  
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As we can see from the figures, the BFL and Polynomial methods are trying to smoothen 

the low frequency series by estimating unknown high frequency point between known low 

frequency points and thus highly resemble the low frequency series. The Fernandez method relied 

on the indicator series (it is not show in Figure 51 and Figure 52, but it is the same as the one 

shown in top right plot in Figure 49). Quality of all methods decreases in Figure 52 because the 

aggregation lengths is greater and thus more unknown high frequency points need to be estimated. 

Most vividly the decrease in quality is shown by the SAFE method since this method doesn’t 

perform any statistical computation and doesn’t rely on any information besides the value of the 

current report that need to be disaggregated.  

 

Figure 52: Comparison of two temporal disaggregation (BFL and Fernandez), polynomial (8th 

degree) and SAFE methods to disaggregate triennial (low frequency) series into quarterly (high 

frequency) series  
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Now it is time to put the temporal disaggregation methods into the context of the temporal 

approximate join that we are trying to solve. The general idea is to represent aggregated reports 

𝐴ଵand 𝐴ଶ (from Figure 48) as low-frequency time series and then to disaggregate them into high-

frequency series 𝐷ଵ  and 𝐷ଶ  by using most suitable disaggregation method. The result of the 

disaggregation would be two time series with estimated values for matching time units. Standard 

equi-join techniques then could be used to merge the two series to construct a joint table (𝐽𝐷ଵଶ) as 

explained in Definition 10.  

The temporal disaggregate join approach is conceptually similar to the unfold/fold operator 

in IXSQL [123][49] language that first splits time intervals into time units, then applies the non-

temporal join operator and finally collapses the value-equivalent tuples over the consecutive time 

units into time intervals. However, the fold/unfold method only works for valid-time relations. 

5.4.5.4 Empirical Evaluation In this section I describe the experimental evaluation of the 

disaggregate join methods explained in previous sections. If not said otherwise, the experiments 

were run on the Mac Book with Processor 2.4 GHz Intel Core i7 and 8Gb 1600 MHz DDR3 

memory. 

In addition to comparing above methods with each other, I also compare them to the 

Reverse Substitution (RS) method developed in [112] to fuse intersecting reports within one 

relation. In a nutshell, the idea of the RS method is to represent intersecting reports’ intervals as 

unknown values 𝑥  and find them by solving a linear system 𝐴𝑥 = 𝑏  where the rows of the 

observation matrix 𝐴 correspond to reports covering time intervals of 𝑥 and 𝑏 is the vector of 

values of the reports. To solve the system, author applied nonnegative least square method and 

showed that the solution for the system can be found as 𝑥 = 𝐴்(𝐴𝐴்)ିଵ𝑏. Since my goal is to find 
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values for each time unit, 𝑥 represents the unknown values of the variable on each time unit. For 

example, for the first two intersecting reports of the 𝑇𝑒𝑚𝑝  variable in Figure 44, the 

underdetermined linear system in the matrix form will be as in Figure 53. 

 

Figure 53: Example of applying RS method to find values on each time unit 

To evaluate the quality of disaggregation methods, e.g., how accurate can a disaggregation 

method estimate the value on a higher frequency given the value on a low frequency, I use relative 

distance measure that is defined as below: 

               𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑅𝐷) = ଵ
௡

∑ |௘௦௧௜௠௔௧௘ௗ ௩௔௟௨௘೔ି௔௖௧௨௔௟ ௩௔௟௨௘೔|
୫ୟ୶ (௘௦௧௜௠௔௧௘ௗ ௩௔௟௨௘೔,௔௖௧௨௔௟ ௩௔௟௨௘೔)

௡
௜ୀଵ  (10) 

where 𝑛 is the number of value points on high frequency. 

 The relative distance measure is mainly concerned with how close on average the estimated 

value is to the actual value on each time unit. To estimate the quality of a join, we could also utilize 

the relative distance and evaluate each variable separately. However, doing so doesn’t not capture 

how the combination of the values of two variables in the join is close to the combination of values 

in the ground truth. Additionally, depending on the task at hand, relaxed requirement on the time 

component or on exact value correspondence might be acceptable. For example, given two ground 

truth tuples as in Figure 54 left and a join tuple as in Figure 54 right, using value based quality 

metrics, like relative distance, would result in a high error since the join tuple values are not very 
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close to the ground truth tuple on the same time unit. However, if we relax the requirement on the 

time component, the tuple on the right is “closer” to the second tuple on the left. 

 

Figure 54: Sample ground truth and join tuples to illustrate tuple scale similarity score 

 To find which tuples from the join result are “close” to which tuples in the ground truth, I 

calculate similarity scores between a join tuple and all ground truth tuples and select the highest 

one. Multiple similarity metrics have been developed in the literature. I evaluated two metrics, 

namely Manhattan Distance and Cosine Similarity, and their modifications that I will describe 

next. Each tuple can be considered as a three component vector. Remember, that we want the 

metrics to be in the range from 0 to 1, where 0 is the least similar and 1 is identical, and take into 

account weights for each component. Thus, the weighted Manhattan Similarity (MS) is calculated 

as below. 

 𝑀𝑆(𝑣̅ଵ, 𝑣̅ଶ, 𝑤ഥ) = 1 − ௔௕௦(௩തభି ௩തమ) ∙ ௪തതത
୫ୟ୶_ௗ

 (11) 

where 𝑣̅ଵ, 𝑣̅ଶ are the vectors for which similarity score is calculated, 𝑤ഥ  is the vector of weights (all 

three vectors must have the same number of components), max_𝑑  is the maximum distance 

between all vectors in a relation, 𝑎𝑏𝑠(𝑥̅) returns a vector with absolute values of each component 

of the vector 𝑥̅. 
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 Standard Cosine Similarity doesn’t consider components’ weights and is sensitive to the 

vectors magnitude, e.g., 𝑐𝑜𝑠_𝑠𝑖𝑚([1, 1, 1], [1, 1, 2]) is different from 𝑐𝑜𝑠_𝑠𝑖𝑚([1, 1, 3], [1, 1, 2]), 

but in our case the similarity value should be the same in those two cases since they only different 

by 1 in the third component. Therefore, I introduce a modified version, that we call Canonical 

Cosine Similarity (CCS), which is calculated as follows: 

 𝐶𝐶𝑆(𝑣̅ଵ, 𝑣̅ଶ, 𝑤ഥ) = ప̂ ∙ ௩തభమ
‖ప̂‖ ‖௩തభమ‖ (12) 

where 𝚤̂ is the unit vector, 𝑣̅ଵଶ = 𝚤̂  +  𝑎𝑏𝑠(𝑣̅ଵ − 𝑣̅ଶ)  ∘  𝑤ഥ , ∘ is the Hadamard product. 

 While the Canonical Cosine Similarity improves on standard cosine similarity in terms of 

our requirements, it has one problem. The vectors that are different in magnitude but have exactly 

the same direction will have perfect similarity score of 1. For example, 

𝐶𝐶𝑆([2, 2, 2], [3, 3, 3], [1, 1, 1]) = 1, which is not what we need. To fix that problem, I calculate 

the final version of the similarity measure, called Canonical Cosine Similarity Norm Scaled 

(CCSNS) that I use in my work as follows: 

 𝐶𝐶𝑆𝑁𝑆(𝑣̅ଵ, 𝑣̅ଶ, 𝑤ഥ) = 𝐶𝐶𝑆(𝑣̅ଵ, 𝑣̅ଶ, 𝑤ഥ) ∗ ቀ1 −  ‖ప̂ ି ௩തభమ‖భ
୫ୟ୶(‖ప̂ ‖భ,‖௩തభమ‖భ)ቁ (13) 

where 𝐶𝐶𝑆 is defined in (12) and 𝚤̂ and 𝑣̅ଵଶ are defined as in (12). 

 To illustrate the behavior of the four similarity metrics, Manhattan Similarity, Cosine 

Similarity, Canonical Cosine Similarity and Canonical Cosine Similarity Norm Scaled, I have 

generated all possible permutation of values between 1 and 10 with step 2 of three components of 

two vectors and then calculated similarity scores between those vectors. Figure 55 shows the result 

with weight vector as [1, 1, 1]. On the 𝑥 axis is the difference (–) between two vectors and on 𝑦 

axis is the corresponding similarity score. For example, for two vectors [1, 1, 1] and [1, 1, 1], the 

different is [0, 0, 0] and thus we can find it in the middle of the 𝑥 axis and then see that the 

similarity score is 1 on the 𝑦 axis. The next to the right 𝑥 tick label is for the case when the 
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difference between vector 1 and 2 on the second component is two, e.g., [1, 3, 1] and [1, 1, 1], or 

[3, 7, 5] and [3, 5, 5], etc. 

 

Figure 55: Comparison of four similarity metrics 

The values of the weight vector change the behavior of the similarity metric. Figure 56 

shows the differences in behavior for the Canonical Cosine Similarity Norm Scaled  metric. The 

first from the top plot – all components are weighted equally; second plot – the value of second 

variable is not considered at all (the weight is 0); third plot – both variable are considered equally, 

however the time component is completely ignored; the last plot – both time and the second 

variable are not considered at all. 
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Figure 56: Behavior of the Canonical Cosine Similarity Norm Scaled metric for different weight 

combinations  

Now, having a score for each join report, we can evaluate the whole join relation in a way 

similar (but with some modifications) to the precision and recall metrics in the information 

retrieval field. Particularly, the precision is equal to the score, and the recall is equal to the number 

of reports in the join whose score is greater or equal to the given score over the size of the ground 

truth relation. By varying a threshold of the acceptable score, the values of precision and recall 

will change accordingly. 

5.4.5.4.1 Scalability Besides the applicability limitations described in the previous sections, I 

am interested to see how scalable the disaggregation methods are. I have run BFL, Fernandez, 

Polynomial (8th degree), SAFE and RS methods on various scenarios by varying the number of 

reports and report length values. Table 5 shows the combination of values for the scenarios. 

-8
 -8

 0
-8

 -6
 0

-8
 -4

 0
-8

 -2
 0

-8
 0

 0
-8

 2
 0

-8
 4

 0
-8

 6
 0

-8
 8

 0
-6

 -8
 0

-6
 -6

 0
-6

 -4
 0

-6
 -2

 0
-6

 0
 0

-6
 2

 0
-6

 4
 0

-6
 6

 0
-6

 8
 0

-4
 -8

 0
-4

 -6
 0

-4
 -4

 0
-4

 -2
 0

-4
 0

 0
-4

 2
 0

-4
 4

 0
-4

 6
 0

-4
 8

 0
-2

 -8
 0

-2
 -6

 0
-2

 -4
 0

-2
 -2

 0
-2

 0
 0

-2
 2

 0
-2

 4
 0

-2
 6

 0
-2

 8
 0

0 
-8

 0
0 

-6
 0

0 
-4

 0
0 

-2
 0

0 
0 

0
0 

2 
0

0 
4 

0
0 

6 
0

0 
8 

0
2 

-8
 0

2 
-6

 0
2 

-4
 0

2 
-2

 0
2 

0 
0

2 
2 

0
2 

4 
0

2 
6 

0
2 

8 
0

4 
-8

 0
4 

-6
 0

4 
-4

 0
4 

-2
 0

4 
0 

0
4 

2 
0

4 
4 

0
4 

6 
0

4 
8 

0
6 

-8
 0

6 
-6

 0
6 

-4
 0

6 
-2

 0
6 

0 
0

6 
2 

0
6 

4 
0

6 
6 

0
6 

8 
0

8 
-8

 0
8 

-6
 0

8 
-4

 0
8 

-2
 0

8 
0 

0
8 

2 
0

8 
4 

0
8 

6 
0

8 
8 

0

C
an

 C
os

 S
im

N
or

m
 s

ca
le

d
0

0.2

0.4

0.6

0.8

1
[1, 1, 1]

C
an

 C
os

 S
im

N
or

m
 s

ca
le

d

0

0.2

0.4

0.6

0.8

1
[1, 1, 0]

-8
 -8

 0
-8

 -6
 0

-8
 -4

 0
-8

 -2
 0

-8
 0

 0
-8

 2
 0

-8
 4

 0
-8

 6
 0

-8
 8

 0
-6

 -8
 0

-6
 -6

 0
-6

 -4
 0

-6
 -2

 0
-6

 0
 0

-6
 2

 0
-6

 4
 0

-6
 6

 0
-6

 8
 0

-4
 -8

 0
-4

 -6
 0

-4
 -4

 0
-4

 -2
 0

-4
 0

 0
-4

 2
 0

-4
 4

 0
-4

 6
 0

-4
 8

 0
-2

 -8
 0

-2
 -6

 0
-2

 -4
 0

-2
 -2

 0
-2

 0
 0

-2
 2

 0
-2

 4
 0

-2
 6

 0
-2

 8
 0

0 
-8

 0
0 

-6
 0

0 
-4

 0
0 

-2
 0

0 
0 

0
0 

2 
0

0 
4 

0
0 

6 
0

0 
8 

0
2 

-8
 0

2 
-6

 0
2 

-4
 0

2 
-2

 0
2 

0 
0

2 
2 

0
2 

4 
0

2 
6 

0
2 

8 
0

4 
-8

 0
4 

-6
 0

4 
-4

 0
4 

-2
 0

4 
0 

0
4 

2 
0

4 
4 

0
4 

6 
0

4 
8 

0
6 

-8
 0

6 
-6

 0
6 

-4
 0

6 
-2

 0
6 

0 
0

6 
2 

0
6 

4 
0

6 
6 

0
6 

8 
0

8 
-8

 0
8 

-6
 0

8 
-4

 0
8 

-2
 0

8 
0 

0
8 

2 
0

8 
4 

0
8 

6 
0

8 
8 

0

C
an

 C
os

 S
im

N
or

m
 s

ca
le

d

0

0.2

0.4

0.6

0.8

1
[0, 1, 1]

Vector 1 - Vector 2
(vectors varied from [1, 1, 1] to [10, 10, 10] with step 2)

C
an

 C
os

 S
im

N
or

m
 s

ca
le

d

0

0.2

0.4

0.6

0.8

1
[0, 1, 0]



 122 

Report values were drawn from the normal distribution ~𝑁(100, 5). The lifespan of the relation 

(the total number of time units) was set equal to 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑜𝑟𝑡𝑠 ∗ 𝑟𝑒𝑝𝑜𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ. The 

reports were generated without intersections, covering the whole lifespan of the relation except 

for the RS method for which the lifespan of the relation was divided by two to generate some 

intersecting reports.  

Table 5: Parameters of the scalability scenarios 

Number of 
Reports 

Report Length  Number of 
Reports 

Report Length 

10 3  100 12 
10 4  100 24 
10 12  100 48 
10 24  100 100 
10 48  1000 3 
10 100  1000 4 
100 3  1000 12 
100 4  1000 24 

 

Figure 57 shows the result of the experiment. 𝑌 axis shows the execution time in seconds 

on a log scale, 𝑥 axis shows the scenarios. We can see from the figure that all methods take more 

time to finish when the number of reports and their length increase. However, temporal 

disaggregation methods, BFL and Fernandez, show considerable degradation and, for example in 

the case when there are 1000 reports each 24 time units long, take about 104 seconds (~2.78 hours) 

to disaggregate just one relations. I also ran the experiment on PSC computing cluster and got 

similar results because inherently the TD algorithms are not parallelized. Remember that we need 

to disaggregate two relations and then also concatenate values on corresponding time units to 

perform the join operation. Of course, two relations can be disaggregated in parallel, but still the 
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performance is not acceptable for the ad-hoc join queries. Figure 58 shows the relative distance 

measure for the corresponding scenarios. As expected, Fernandez method showed lowest error in 

all scenarios because of the presence of the good indicator series. The worst performance in terms 

of relative distance measure was shown by the RS method due to the low number of overlapping 

reports. In Section 5.4.5.4.2 I explore how quality of the disaggregation methods depend on the 

nature of the underlying data and report scenarios. 

   

Figure 57: Execution time of each scenario  
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Figure 58: Relative distance quality measure versus number of parallel execution of multiple 

pieces of one relation  

To speed up temporal disaggregation of one relation, instead of disaggregating the whole 

relation at once, I consider splitting the relation into shorter pieces so that each piece can be 

disaggregated in parallel. Figure 59 shows the result executing BLF and Fernandez temporal 

disaggregation methods on the scenario with 500 reports and each report of 12 time units length. 

The 𝑦 axis shows the time it took to perform the disaggregation against the 𝑥 axis that shows how 

many pieces were disaggregated. The time to disaggregated the whole relations was 804.87 and 

124.66 seconds for BFL and Fernandez methods respectively. However, as the number of pieces 

into which the relation was broken and which can be executed independently (in parallel) 

increases, the execution time drops exponentially. For example, by breaking the relation into 10 
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pieces each with 50 reports reduces the execution time to under 1 second which is over two 

magnitude improvement compare to disaggregating the whole relation. And braking the relation 

into 100 pieces each with 5 reports, allows to bring the execution time down to 0.0027 and 0.0019 

seconds for BFL and Fernandez methods respectively. Of course, executing 100 parallel 

computations might not be feasible in some cases, however even running 100 disaggregation 

computations sequentially lowers the execution cost, e.g., 100 * 0.0027 = 0.27 seconds, which is 

2981 times improvement in case of BFL method. The improvement is due to the fact that it is much 

faster to deal with smaller matrices than with large ones during the disaggregation execution. 

 

Figure 59: Execution time versus number of parallel execution of multiple pieces of one relation  
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pieces case. This is due to the the “end point” problem when forward looking observations are 

required, but are not available towards the end of the piece [36]. 

 

Figure 60: Relative distance quality measure versus number of parallel execution of multiple 

pieces of one relation  
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reported. Figure 61 and Figure 62 show examples of generated reports for the scenario 2 and 3 

respectively. 

Table 6: Experiment Setup Parameter and Scenarios Description 

Scenario Event 
Density 

Number of 
Reports 

Report 
Length 

Few short reports on sparse events 20 20 20 
Few long reports on sparse events 20 20 100 
Many short reports on sparse events 20 100 20 
Many long reports on sparse events 20 100 100 
Few short reports on dense events 100 20 20 
Few long reports on dense events 100 20 100 
Many short reports on dense events 100 100 20 
Many long reports on dense events 100 100 100 

 

Figure 61: Example of generated reports for the scenario 2 
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Figure 62: Example of generated reports for the scenario 3 

Since depending on the scenario the generated reports might either intersect or have gaps, 

temporal disaggregation methods are not applicable directly. Thus I generate reports for TD 

methods in a slightly different way. Particularly, when new report’s start and end time units 

intersect with any already existing report, its position is regenerated to avoid intersection. If it is 

impossible to generate new start and end time points so that there are no intersections (e.g. the 

whole lifespan of the relation is covered or the gaps are shorter then the lengths of a new report), 

then report generation phase is complete (even if the number of reports is less than given 

parameter). Then I apply TD methods on all consecutive strips of reports on each relation 

separately, and finally use equi join to combine reports from two relations that match on time unit 

value. The RS and SAFE methods are applied directly, however in this case RS method will be 

used to estimate values for each time unit. 

Figure 63 shows the result of the experiment. Each subplot shows Precision/Recall curves 

for the BFL, Fernandez, SAFE and RS methods as solid lines when scores were calculated with 

𝑤ഥ = [1,1,1] and as dashed lines when scores were calculated regardless of time unit component, 

i.e., 𝑤ഥ = [0,1,1]. The ideal performance would be a horizontal line at precision 1. 
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There is no straightforward interpretation of the obtained results. As we can see, in general, 

the performance of each method depends on the the nature of the data and the scenario of how 

reports are obtained. All methods showed very low precision when taking time component into 

consideration. The best performance is shown by the SAFE and BFL methods, while Fernandez 

showed the worst performance. The reason for that might be the nature of the data. Since the data 

is generated from a normal distribution with small deviation, all data points are centered around 

the mean. The SAFE method performs the best because it averages the reports and thus gets closer 

to the ground truth mean value.  Fernandez on the other hand, uses the indicator series that might 

add additional fluctuation which introduce higher error.  

Going from the left to the right column we can see that all methods except the SAFE (which 

has already had a good recall), improve in recall. This is due to the fact that number and length of 

reports is increasing and thus more time units are covered by reports (and more reports intersect) 

providing more information, particularly to the RS method, to estimate values for each time unit. 

The SAFE method has good recall value regardless of the number of reports or report length 

because of the Fill and Extend phases of its computation where the estimated value of a time unit 

is propagated to the non-covered time units.  
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Figure 63: RP curves for sigma 5 

In previous work, [112], they didn’t consider other types of input data except normal 

distribution with deviation equal to 5. In Figure 64, I run the above experiment but with the 

standard deviation value set to 15 and therefore increasing the variability and spread of the ground 

truth values on each time unit. As the result, we can see that the performance of each method has 

decreased (all curves are now closer to the left bottom corner).  
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Figure 64: PR curves for sigma 15 

As the last experiment, I ran the Netlogo traffic grid2 simulation and obtained two variables 

changing over time by varying the available parameters of the simulation. The variables are shown 

in Figure 65. Figure 66 shows the result of the experiment. The performance of all methods are 

similar to the case with normal distribution with standard deviation set to 15 in Figure 64. I also 

run the experiment with a different reporting strategy when for a given report length (10, 20, 50, 

and 100), reports are generated without intersections covering the whole relation. Figure 67 and 

Figure 68 show examples of obtained reports with report length 20 and 100 time units respectively. 

The result is show in Figure 69. 

                                                 
2  Netlogo (ccl.northwestern.edu/netlogo) is multi-agent programmable modeling 

environment. The traffic grid simulation is included sample model that can also be access via  
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Mo
dels/Social%20Science/Traffic%20Grid.nlogo  
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Figure 65: Two variables at the time unit scale obtained from a Netlogo simulation 

 

Figure 66: PR curves for the join of two variables obtained from Netlogo simulation 

 

Figure 67: Example of generated reports for the variables obtained form Netlogo simulation with 

report length 20 
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Figure 68: Example of generated reports for the variables obtained form Netlogo simulation with 

report length 100 

 

Figure 69: PR curves for the join of two variables obtained from Netlogo simulation in the case 

when reports cover the whole relation lifespan without intersections for various report lengths 
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However, as soon as there are two reports (or more) the error drops significantly for all methods, 

because now the information about the transition is preserved in the reports. SAFE and RS methods 

perform identically because there are no intersecting reports. Also notice that those two methods 

have a slight increase in error when the number of reports was 3. This is because second report 

covers the transition interval and its disaggregation is most inaccurate. The BFL or Fernandez 

don’t have this problem, because BFL is based on the polynomial method and Fernandez uses 

indicator series that shows the transition as well.  More intersecting reports help both SAFE and 

RS methods to produce better results.  

 

Figure 70: Example of disaggregation quality dependence on the nature of the data and the report 

length (number of reports) 

Since in real life scenario we don’t have control how the reports are generated, it is hard to 

suggest the best method to use or predict the quality of the join. In addition, it is not always the 

goal to find corresponding values of two variables on each time unit, but instead a join on 

aggregated reports is needed that doesn’t do any estimation and preserve the exact values. In the 

next section, I will talk about an aggregate join approaches that do right that.  
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5.4.6 Aggregate Join of Valid and Aggregate Time Relations 

In previous sections the goal was to perform a join of two aggregate time relations by trying to 

disaggregate each relation independently first and then do equi-join. Given two relations 𝑟஺் and 

𝑠஺்  that are defined over schemas 𝑅஺் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ)  and 𝑆஺் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ) 

respectively, the goal was to obtain a relation 𝑗 with schema 𝐺 = (𝑇𝑈, 𝑉ଵ, 𝑉ଶ). The task, as the 

experiments in Section 5.4.5.4 show, turned out to be highly dependent on the nature of the input 

data. The quality of one or the other join method depends on many parameters and there are no 

obvious dominating values of those parameters that would guide the join algorithm to guarantee 

certain level of accuracy of the join result. In addition, the join quality requirement depends on the 

task at hand and for some tasks lower quality but faster execution is acceptable, whereas for other 

task the quality is much more important. Finally, the goal to reach the 𝐺 = (𝑇𝑈, 𝑉ଵ, 𝑉ଶ) schema is 

not what the actual goal of the database join is. 

In this section, I introduce a different strategy, an aggregate join, its goals and approaches, 

and how to implement it. Overall join strategy still falls into the schematic representation show in 

Figure 48 and the taxonomy of datasets reports is still relevant, however now I consider cases 

when joining valid time relation with valid time or with aggregate time relation, or joining two 

aggregate time relations.  

As it was mentioned earlier, in the aggregate join strategy reports from two relations are 

joined directly based on their time intervals only. Thus, the temporal aggregate join is the theta 

join where the theta condition is applied to the reports’ time intervals. In this section I focus on 

scenarios with no intersecting reports within a relation. The extension of these approaches to 

intersecting reports is left for future work. Nevertheless, these approaches can be used in case of 

intersecting reports if we first apply the RS method developed in [112]. 
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5.4.6.1 The Goal of the Aggregate Join Given two relations 𝑟  and 𝑠  that are defined over 

schemas 𝑅 = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ) and 𝑆 = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ) respectively and can be either valid-time 

(VT) or aggregate-time (AT) relations, the goal is to obtain a relation 𝑗  with schema 𝐺 =

(𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ, 𝑉ଶ) by joining those tuples that can be joined directly based on the condition on 

time intervals and relying on user to resolve all non trivial situations (we will see what those are 

later in the text).  

In some cases, one or the other variable is very important and the exact values of such 

variable are required whereas estimated values of the other variable will suffice. To express such 

cases when fusing two relations, left or right (or full if values of both variables are important) outer 

versions of joins can be used. Thus, the inner, left, right and full outer join should conform to the 

following properties: 

x Inner Join – output only matching tuples without the use of any user functions. 

x Left Outer Join – output matching tuples and also not matching tuples from the left 

relation. 

o Preserve the left variable (after normalization/zoom out) unmodified and only apply 

user functions to the variables of the right relation. 

x Right Outer Join – symmetrically opposite definition of the left outer join. 

x Full Outer Join – Union (with duplication removal) of Left and Right Outer Joins. 

Explanations of what normalization, zoom out and user defined functions will be provided 

further in the text.  

For the further discussion of the aggregate join methods, consider two relations 𝑟 and 𝑠 as 

shown in Figure 71. Notice that I don’t specify what type (VT or AT) each relation is since it will 

vary while explaining different methods. 
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Figure 71: Example relations 𝑟 and 𝑠 for discussion of approaches for the aggregate join 

5.4.6.2 Equi-join – The Baseline Method Regardless of the type of the relation, as the base 

method, consider an equi-join, 𝑟 ⋈ி௥௢௠,்௢ 𝑠, of the two relations 𝑟 and 𝑠 shown in Figure 72. As 

stated in Definition 2, the equi-join doesn’t take into consideration anything except the 𝐹𝑟𝑜𝑚 and 

𝑇𝑜  time endpoints of the two relation and only joins those reports that have matching time 

intervals. 

𝑟 ⋈ி௥௢௠,்௢ 𝑠 

From To V1 V2 
23 24 V1_6 V2_6 

Figure 72: The result of the equi-join, 𝑟 ⋈ி௥௢௠,்௢ 𝑠, of the two relations shown in Figure 71  

The left/right and full outer joins are executed in a straightforward way according to 

Definition 3 and their results are presented in Figure 73 and Figure 74 respectively. 
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Figure 73: The result of the left outer join, 𝑟⟕ி௥௢௠,்௢𝑠 , and right outer join, 𝑟⟖ி௥௢௠,்௢𝑠 

𝑟⟗ி௥௢௠,்௢𝑠 

From To V1 V2 
1 3 V1_1 𝜔 
1 4 𝜔 V2_1 
5 9 V1_2 𝜔 
6 8 𝜔 V2_2 
9 12 𝜔 V2_3 
12 14 V1_3 𝜔 
14 17 𝜔 V2_4 
15 16 V1_4 𝜔 
17 18 V1_5 𝜔 
20 21 𝜔 V2_5 
23 24 V1_6 V2_6 
26 26 V1_7 𝜔 

Figure 74: The result of full outer equi-join, 𝑟⟗ி௥௢௠,்௢𝑠 

As you can see from Figure 72 the result of the inner join only covers small portion of time 

units out of the lifespan of the two relations 𝑟 and 𝑠. Thus, while the result is accurate, the coverage 

is very small. While left or right outer joins (Figure 73)  preserve the complete coverage for 𝑟 or 
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𝑠 relations respectively, most of the information of the other variable is not available and replaced 

with unknown values (𝜔).  The result of the full outer join (Figure 74)  has many intersecting time 

intervals making it hard to make any sense of the join result.  

In what follows, I present several other approaches to perform aggregate join that behave 

differently depending on the type of the relation. The approaches are also different from the ones 

considered in the previous sections in that they don’t try to estimate values in an uncertain 

situations and instead involve users to resolve them. 

5.4.6.3 Temporal Alignment Join – Joining VT with VT or AT Relation In this section I focus 

on joining a valid time relation with either another valid time or with an aggregate time relation. 

The approach is similar to the Align join discussed in [53], however all the work in temporal 

database area only consider joining valid time relations. 

Let us start with the first case when both relations 𝑟 and 𝑠 are valid time relations, i.e., 𝑟௏் 

and 𝑠௏். Recall from Section 5.4.1 that a valid time relation describes the time interval when a 

tuple is true. Thus, the report 𝑠ଵ
௏் = (1, 4, 𝑉2_1) means that at each time unit from 1 to 4 the value 

of 𝑉ଶ  is 𝑉2_1. Therefore, we can split the report 𝑠ଵ
௏்  into two reports: 𝑠ଵ_ଵ

௏் = (1, 3, 𝑉2_1) and 

𝑠ଵ_ଶ
௏் = (4, 4, 𝑉2_1)  without loss in accuracy of the reports. Notice that the original 𝑟ଵ

௏் =

(1, 3, 𝑉1_1) report was not matching with 𝑠ଵ
௏் on time interval (Figure 75 left plot), however now 

𝑟ଵ
௏் can be joined with 𝑠ଵ_ଵ

௏்  (Figure 75 right plot). The process of splitting valid time reports is 

called 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 and it is defined similar to the one in [53]. Below I provide its definition 

and explanation. 
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Figure 75: Example of normalization of the report 𝑠ଵ
௏் over the report 𝑟ଵ

௏் 

Before defining the 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  operator, I first define a helper operator, 

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑠𝑝𝑙𝑖𝑡𝑡𝑒𝑟, similarly to [53] that splits time interval of one valid time report based on the 

time interval endpoints of the other report (can either be valid time or aggregate time type report). 

Definition 11 – Temporal Splitter: The temporal splitter, 𝑠𝑝𝑙𝑖𝑡(𝑟௏், 𝑠), of a valid time 

report 𝑟௏் and a set of either valid time or aggregate time reports 𝑠 defined over schemas 𝑅௏் =

(𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ) and 𝑆 = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ) respectively, is defined as follows. 

 𝑠𝑝𝑙𝑖𝑡(𝑟௏், 𝑠) = ൛𝑧(ଶ) ห  

 𝑧[𝑇] ⊆ 𝑟௏்[𝑇] ∧ ∀𝑦 ∈ 𝑠(¬𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑧[𝑇], 𝑦[𝑇])  ∨  𝑧[𝑇]  ⊆  𝑦[𝑇]) ∧ 

  ∀𝑇′ ⊃ 𝑧[𝑇](∃𝑦 ∈ 𝑠 (𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑇ᇱ, 𝑦[𝑇]) ∧  (Tᇱ ⊈ 𝑟௏்[𝑇] ∨ Tᇱ ⊈ 𝑦[𝑇]))  

           ∨ Tᇱ ⊈ 𝑟௏்[𝑇])} 

The second line of the definition requires that the new time interval, 𝑧[𝑇], is contained in 

the time interval of the report that is being split, 𝑟௏்[𝑇], and it is either not intersecting with time 

intervals of reports in 𝑠 or it is contained in one of them. The third and fourth lines ensure that the 

time interval 𝑧[𝑇] is maximal. 
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Figure 76 shows five examples of applying the 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑠𝑝𝑙𝑖𝑡𝑡𝑒𝑟 operator. The resulting 

set 𝑧 contains new time intervals of split 𝑟 
௏். 

 

Figure 76: Example of normalization of a valid time report 𝑟 
௏் over reports in 𝑠 

Definition 12 – Normalization of VT relation: The temporal 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 , 

𝒩(𝑟௏், 𝑠), of a valid time relation over either a valid time or aggregate time relation defined over 

schemas 𝑅௏் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ) and 𝑆 = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ) respectively, is defined as follows. 

 𝒩(𝑟௏், 𝑠) = ൛𝑧൫หோೇ೅ห൯ ห ∃𝑥 ∈ 𝑟௏்  ( 

 𝑧[𝑉ଵ] = 𝑥[𝑉ଵ] ∧ 𝑧[𝑇] ∈ 𝑠𝑝𝑙𝑖𝑡(𝑥, {𝑦 ∈ 𝑠|𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑥[𝑇], 𝑦[𝑇])}))} 

The second line assigns the values of variables of the report that is being normalized and 

ensures that the time interval of a new normalized report is one of time intervals resulting from 

splitting the original report. 

 
 

Note that our definition of normalization is slightly different from the temporal splitter 

operator proposed in [53] and normalization function of Toman [179] in that it does not consider 

any condition on explicit attributes and is extended to aggregate type relation. Figure 77  shows 

normalized relation 𝑟௏் over 𝑠௏், 𝒩(𝑟௏், 𝑠௏்),  and 𝑠௏் over 𝑟௏், 𝒩(𝑠௏், 𝑟௏்), from Figure 71.  
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Figure 77: Normalized relation 𝑟௏் over 𝑠௏், 𝒩(𝑟௏், 𝑠௏்),  and 𝑠௏் over 𝑟௏், 𝒩(𝑠௏், 𝑟௏்), 

from Figure 71 

Definition 13 – Inner Temporal Alignment (TA) Join of two VT relations: The inner 

temporal alignment join,  𝑟௏் ⋈்஺ 𝑠௏்,  of two valid time relation 𝑟௏்  and 𝑠௏்  defined over 

schemas 𝑅௏் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ) and 𝑆 = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ) respectively, is defined as follows. 

  𝑟௏் ⋈்஺ 𝑠௏் =  𝒩(𝑟௏், 𝑠௏்) ⋈ி௥௢௠,்௢ 𝒩(𝑠௏், 𝑟௏்) 

 
 

The left, right and full outer temporal alignment joins are defined similarly by first 

normalizing both relations and then using the standard left, right, outer operators. Figure 78 shows 

the result of the temporal alignment inner join on the two relations 𝑟௏் and 𝑠௏் shown in Figure 

71. Note that the temporal alignment join of two VT relations is exactly equivalent to the temporal 

Cartesian product defined in Definition 7. The difference of Temporal Alignment join compared 

to temporal Cartesian product will be present in the case of joining VT and AT relations. 

Now, consider the case when the 𝑠 relation is an aggregate time relation, 𝑠஺். In such case, 

we cannot normalize 𝑠஺் over the 𝑟௏், however we still can normalize 𝑟௏் over 𝑠஺். Figure 79 

shows the result of the normalization of 𝑟௏் over 𝑠஺், 𝒩(𝑟௏், 𝑠஺்). 
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𝑟௏் ⋈்஺ 𝑠௏் 

From To V1 V2 
1 3 V1_1 V2_1 
6 8 V1_2 V2_2 
9 9 V1_2 V2_3 
12 12 V1_3 V2_3 
14 14 V1_3 V2_4 
15 16 V1_4 V2_4 
17 17 V1_5 V2_4 
23 24 V1_6 V2_6 

Figure 78: The result of the temporal alignment join, 𝑟௏் ⋈்஺ 𝑠௏், of the two valid time 

relations shown in Figure 71 

 

Figure 79: Normalized relation 𝑟௏் over 𝑠஺், 𝒩(𝑟௏், 𝑠஺்), from Figure 71 

Note that if we perform the join of 𝑟௏்  and 𝑠஺்  as 𝑟௏் ⋈்஺ 𝑠஺் =

 𝒩(𝑟௏், 𝑠஺்) ⋈ி௥௢௠,்௢ 𝑠஺், the join result might not cover some time units for which the exact 

value could be obtained. For example, consider time units from 14 to 17 on the Figure 79, the 

report (14, 17, 𝑉2_4)  from 𝑠஺்  doesn’t match exactly with any of the reports (14, 14, 𝑉1_3) , 

(15, 16, 𝑉1_4) and (17,17, 𝑉1_5) from 𝑟௏் , however the values of the three reports could be 

aggregated by applying a weighted mean (𝑤𝑚) (14) function where the weight for each report 

value is the length of the report, i.e., we can create a new report 
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(14, 17, 𝑚𝑒𝑎𝑛(𝑉1_3, 𝑉1_4, 𝑉1_4, 𝑉1_5))  that could be joined successfully with the report 

(14, 17, 𝑉2_4). Note that for the illustration purposes the value 𝑉1_4 appears twice to show the 

fact that it covers two time units and thus need to be counted twice. I call the operation of merging 

several valid time reports as 𝑠𝑡𝑖𝑡𝑐ℎ𝑖𝑛𝑔 and I will define it below. On the other hand, notice that 

reports (9, 9, 𝑉1_2) and (12, 12, 𝑉1_3) cannot be stitched together due to the presence of a gap 

from time unit 10 to 11, and thus the report (9, 12, 𝑉2_3) cannot be joined with them. Note that in 

the further text I will talk about user defined fusion functions that could be applied to reports 

(9, 9, 𝑉1_2) and (12, 12, 𝑉1_3), however those functions are only applicable to the left, right and 

outer joins because otherwise they violate the property of the inner join defined in Section 5.4.6.1.  

Definition 14 – Stitching: Given a normalized valid time relation 𝑟ே௏் and an aggregate 

time relation 𝑠஺்  defined over schemas 𝑅௏் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ)  and 𝑆 = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ) 

respectively, the stitching of 𝑟ே௏் over 𝑠஺், 𝑠𝑡𝑖𝑡𝑐ℎ(𝑟ே௏், 𝑠஺்), is defined as follows. 

  𝑠𝑡𝑖𝑡𝑐ℎ(𝑟ே௏், 𝑠஺்) = ൛𝑧൫หோೇ೅ห൯ห 

∃𝑦 ∈ 𝑠஺்(ℬ = {𝑥|𝑥 ∈ 𝑟ே௏் ∧ 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑥[𝑇], 𝑦[𝑇])} ∧ 

ቀ൫𝑐𝑎𝑟𝑑(ℬ) = 1 ∨ 𝑔𝑎𝑝𝑠(ℬ)൯ ⟹ ∀𝑥 ∈ ℬ(𝑧 = 𝑥)ቁ ∨ 

(𝑧[𝑇] = 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛(ℬ) ∧ 𝑧[𝑉ଵ] = 𝑤𝑚(ℬ))) ∨ 

∃𝑥 ∈ 𝑟ே௏்∀𝑦 ∈ 𝑠஺்(¬𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑥[𝑇], 𝑦[𝑇]) ∧ 𝑧 = 𝑥)} 

The lines two to four handle the case when a report from 𝑠஺் intersects with one or more 

report from 𝑟ே௏் . If there is only one intersecting report or there are gaps between intersecting 

report then those reports are unmodified (line 3), otherwise the new stitched report will have 

lifespan of all the intersecting reports and the value will be equal to the result of applying the 

weighted mean function (14). The fifth line handles the reports from 𝑟ே௏் that do no intersect with 

any report from 𝑠஺் and simply copies to the result. 𝑐𝑎𝑟𝑑(ℬ) is the cardinality of the relation ℬ.
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The weighted mean function is defined as follows: 

 𝑤𝑚(𝑟்) = ∑ (௥೔.௏∗|௥೔|)೙
೔సభ

∑ |௥೔|೙
೔సభ

, (14) 

where 𝑛 is the number of reports in 𝑟். 

Figure 80 shows the result of stitching 𝑟ே௏்  over 𝑠஺் . As explained above, the three 

reports (14, 14, 𝑉1_3) , (15, 16, 𝑉1_4)  and (17,17, 𝑉1_5)  from 𝑟ே௏்  relation were stitched 

together into one (14, 17, 𝑤𝑚(𝑉1_3, 𝑉1_4, 𝑉1_5)). 

 

Figure 80: The result of stitching 𝑟ே௏் over 𝑠஺், 𝑠𝑡𝑖𝑡𝑐ℎ(𝑟ே௏், 𝑠஺்) 

Now, we are ready to define a temporal alignment join of a valid time relation with an 

aggregate time relation.  

Definition 15 – Inner Temporal Alignment (TA) Join of a VT and AT relations: The 

inner temporal alignment join, 𝑟௏் ⋈்஺ 𝑠஺், of a valid time relation 𝑟௏் and an aggregate time 

relation 𝑠஺்  defined over schemas 𝑅௏் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ)  and 𝑆஺் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ) 

respectively, is defined as follows. 

  𝑟௏் ⋈்஺ 𝑠஺் =  𝑠𝑡𝑖𝑡𝑐ℎ(𝒩(𝑟௏், 𝑠஺்), 𝑠஺்) ⋈ி௥௢௠,்௢ 𝑠஺் 

 
 

 



 146 

𝑟௏் ⋈்஺ 𝑠஺் 

From To V1 V2 
6 8 V1_2 V2_2 
14 17 𝑤𝑚(𝑉1_3, 𝑉1_4, 𝑉1_5) V2_4 
23 24 V1_6 V2_6 

Figure 81: The result of the temporal alignment join, r୚୘ ⋈୘୅ s୅୘, of the valid time relation and 

the aggregate time relation shown in Figure 71 

As you can see the cardinality (and therefore coverage) of the join shown in Figure 81 is 

smaller than in Figure 78, however it is better than blindly using standard equi join that would 

return only one tuple in Figure 72. 

While for the outer joins we can use the standard approach, where for the not matching 

reports a null value is assigned, our goal when fusing datasets is to preserve as much information 

as possible. At the same time, as the experiments in Section 5.4.5.4 show, the best technique to 

fuse reports strongly depends on the nature of the data and the task at hand. Thus, instead of putting 

null values for each non-matching report or guessing how to fuse non-matching reports, I involve 

user in the loop by letting them to define what should be done in such non trivial situation by the 

means of 𝑢𝑠𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠. 

Let us look at an example of doing left outer temporal alignment join of a valid time relation 

𝑟௏் and an aggregate time relation 𝑠஺், 𝑟௏்⟕்஺𝑠୅், shown in Figure 71. As with the inner join, 

we first do the normalization and then the stitching of the valid time relation 𝑟௏் obtaining the 

relations as in the Figure 80. Now, the goal of the left outer join is to preserve the left relation 

without any changes while either merging matching report or assigning null for not matching 
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tuples in the right relation. Since the very first report (1, 3, 𝑉1_1) in 𝑟௏் doesn’t match with any 

report in 𝑠୅், we would normally output a report like this: (1, 3, 𝑉1_1, 𝜔). However, we do have 

some information about 𝑠୅் over the time interval 1 to 3. We know the report (1, 4, 𝑉1_2), but 

since it is an aggregate time report, we don’t know what are the actual values for each time unit or 

what is the aggregated value from time unit 1 to 3. So, we don’t want to guess for the user what to 

do with it and let user handle such uncertain and non-trivial situation. 

There are three basic types of user defined functions – 𝑟𝑒𝑑𝑢𝑐𝑒 (𝑟), 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝑐𝑜) and 

𝑒𝑥𝑡𝑒𝑛𝑑 (𝑒) – that aim to handle different scenarios. The illustrations of each function and their 

combinations into more complex functions are shown in Figure 82. The 𝑟𝑒𝑑𝑢𝑐𝑒 function is used 

when an aggregate time report has the time interval that extends the time interval of interest. The 

time interval of value 𝑣21 is longer then the time interval of interest of the 𝑣11. The 𝑒𝑥𝑡𝑒𝑛𝑑 

function is opposite from reduce and is used when the time interval needs to be extended. E.g., the 

time interval of 𝑣21 is shorter than 𝑣11. The 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 function is used when two or more reports 

need to be combined into one. 
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Figure 82: Illustration of types of user defined functions and their combinations to handle 

different cases of mutual position of several reports; red reports are the ones whose time interval 

we are interested to be unmodified; blue reports are those for which the user functions will be 

applied 

The user functions can be either selected from a list of predefined general case functions 

(Table 7) or be an arbitrarily complex one. In addition to the values of the reports in question, user 

functions can take more information into account to compute the value. Such information can 

include for example other reports in the relations and relations’ metadata. The concept of user 

defined functions to handle the non trivial situations is similar to the concept of conflict resolution 

functions in the work by Bleiholder and Neumann [24]. Table 7 shows a list of useful predefined 

user functions to merge non trivial reports that are based on the conflict resolution functions in 

Section 4 in [24] but are  adapted to our use cases. 
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Table 7: Predefined user functions to merge non trivial reports 

 

Function Description 
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Return the provided constant value regardless of the 

values of the reports in question. 
𝐶𝑜𝑢𝑛𝑡 Counts the number of distinct non-null values. The 

actual data values are lost. 
𝑀𝑖𝑛/𝑀𝑎𝑥 Returns the minimal/maximal input value with its 

obvious meaning for numerical data. Lexicographical 
(or other) order is needed for non numerical data. 

𝑆𝑢𝑚/𝐴𝑣𝑔/𝑀𝑒𝑑𝑖𝑎𝑛 Computes sum, average and median of all present non-
null data values. Only applicable to numerical data. 
Takes into account TU form of the VT relations. 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 / 𝑆𝑡𝑑𝑑𝑒𝑣 Returns variance and standard deviation of data values. 
Only applicable to numerical data. Takes into account 
TU form of the VT relations. 

𝑅𝑎𝑛𝑑𝑜𝑚 Randomly chooses one data value among all non-null 
data values. 

𝐶ℎ𝑜𝑜𝑠𝑒 Returns the value which satisfies provided conditions, 
e.g., min/max constraints, the report length, the source 
where it comes, etc. 

𝐶𝑜𝑎𝑙𝑒𝑠𝑐𝑒 Takes the first non-null value appearing. 
𝐹𝑖𝑟𝑠𝑡/𝐿𝑎𝑠𝑡 Takes the first/last value of all values, even if it is a null 

value. 
𝑉𝑜𝑡𝑒 Returns the value that appears most often among the 

present values. Ties can be broken by a variety of 
strategies, e.g., choosing randomly. 

𝐺𝑟𝑜𝑢𝑝 Returns a set of all the values without performing any 
computation on them. 

𝐶ℎ𝑜𝑜𝑠𝑒 𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 Chooses the value that belongs to the value chosen for 
another column. 

𝐷𝑖𝑠𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 Applies a specified disaggregation strategy to break 
intersecting reports and then combines finer granular 
values into one with the help of aggregate functions. 
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Taking the above into consideration, we now can define the left/right outer temporal 

alignment join. As the left and right outer joins are symmetric, we define only the left outer join. 

Definition 16 – Left Temporal Alignment (TA) Join of a VT and AT relations: The left 

temporal alignment join, 𝑟௏்⟕்஺𝑠஺், of a valid time relation 𝑟௏் and an aggregate time relation 

𝑠஺்  defined over schemas 𝑅௏் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ)  and 𝑆஺் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ)  respectively, is 

defined as follows. 

  𝑟ௌே௏் = 𝑠𝑡𝑖𝑡𝑐ℎ(𝒩(𝑟௏், 𝑠஺்), 𝑠஺்) 

 𝑗 = 𝑟ௌே௏் ⋈ி௥௢௠,்௢ 𝑠஺் 

 𝜃 = (𝑟ௌே௏். 𝐹𝑟𝑜𝑚 >  𝑠஺். 𝑇𝑜 ∧  𝑟ௌே௏். 𝐹𝑟𝑜𝑚 <  𝑠஺். 𝐹𝑟𝑜𝑚) ∨ 

(𝑟ௌே௏். 𝑇𝑜 >  𝑠஺். 𝑇𝑜 ∧  𝑟ௌே௏். 𝑇𝑜 <  𝑠஺். 𝐹𝑟𝑜𝑚) 

 𝑖 = 𝐺௥ೄಿೇ೅.∗
 

௨௙(௏మ)(𝑟ௌே௏் ⋈ఏ 𝑠஺்) 

 𝑟௏்⟕்஺𝑠஺் = 𝑗 ∪ 𝑖 ∪ 𝜋∗,ఠ(𝑟ௌே௏் − 𝜋௥ೄಿೇ೅.∗(𝑗) − 𝜋௥ೄಿೇ೅.∗(𝑖)) 

The first line derives stitched normalized relation of 𝑟௏் over 𝑠஺். The second line derives 

the inner temporal alignment join. The third and fourth lines define the theta condition, which finds 

intersecting (but not equal) reports between 𝑟ௌே௏் and 𝑠஺். The fifth line performs grouping of 

the result of the theta join based on the all attributes of the 𝑟ௌே௏்  relation by applying user 

functions (𝑢𝑓, combined from the three base function according to the Figure 82) to the 𝑉ଶ values 

of each group. The sixth line performs the union of the inner join (𝑗) with the reports that have 

intersections (𝑖) with the reports form the left relation that were not matched during the inner or 

intersect joins by also appending the null value (𝜔) to each such report. 

 
 

 

Figure 83 shows the result of the left and right temporal alignment outer joins. 
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Figure 83: The result of the left temporal alignment outer join, 𝑟௏்⟕்஺𝑠஺் , and right temporal 

alignment outer join, 𝑟௏்⟖்஺𝑠஺், of the two relation shown in Figure 71 

The full outer temporal alignment join is defined as the standard outer join which is the 

union of the left and right temporal alignment joins. Figure 84 shows the result of the full outer 

temporal alignment join, 𝑟௏்⟗்஺𝑠୅், of the valid time relation and the aggregate time relation 

shown in Figure 71. Notice that the full outer join contains some reports that intersect in time (the 

groups of intersecting report are highlighted in color). The resolution of such non-trivial situation 

is not straightforward and is left to the user to decide, but some heuristics can be applied. For 

example, the intersecting reports could be broken into finer granularity common time intervals, 

e.g., leave the report (1, 3, 𝑉1_1, 𝑟(𝑉2_1)) without any changes, but change the second report to 

(4, 4, 𝑒(𝑉1_1), 𝑟(𝑉2_1)). Another heuristic could accumulate reports into coarser granularity, e.g., 

merge first two reports into (1, 4, 𝑒(𝑉1ଵ), 𝑉2_1). Yet another heuristic could aim to minimize the 

number of user defined function. The work to develop such heuristics is left for future research. 
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𝑟௏்⟗்஺𝑠஺் 

From To V1 V2 
1 3 V1_1 𝑟(𝑉2_1) 
1 4 𝑒(𝑉1_1) V2_1 
5 5 V1_2 𝜔 
6 8 V1_2 V2_2 
9 9 V1_2 𝑟(𝑉2_3) 
9 12 𝑒_𝑐𝑜(𝑉1_2, 𝑉1_3) V2_3 
12 12 V1_3 𝑟(𝑉2_3) 
13 13 V1_3 𝜔 
14 17 𝑤𝑚(𝑉1_3, 𝑉1_4, 𝑉1_5) 𝜔 
18 18 V1_5 𝜔 
20 21 𝜔 V2_5 
23 24 V1_6 V2_6 
26 26 V1_7 𝜔 

Figure 84: The result of the temporal alignment join, 𝑟௏்⟗்஺𝑠୅், of the valid time relation and 

the aggregate time relation shown in Figure 71 

5.4.6.4 Overlap Join – Joining Two AT Relations In the case of joining two aggregate time 

relations, the normalization cannot be applied to any of them. Thus, the inner join of two aggregate 

time relations is performed as the standard intersect join. The intersect join in the context of valid 

time relations has been studied previously (e.g., in [52][64][124][103][102]) and efficient 

distributed algorithms are know (e.g., [52][105]). Below I provide approaches to perform join in 

the context of aggregate time relations. The result of the inner join of the two aggregate time 

relations from Figure 71 is shown in Figure 85. 
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𝜃 = (𝑟஺். 𝐹𝑟𝑜𝑚 ≥  𝑠஺். 𝑇𝑜 ∧  𝑟஺். 𝐹𝑟𝑜𝑚 ≤  𝑠஺். 𝐹𝑟𝑜𝑚) ∨ 

(𝑟஺். 𝑇𝑜 ≥  𝑠஺். 𝑇𝑜 ∧  𝑟஺். 𝑇𝑜 ≤  𝑠஺். 𝐹𝑟𝑜𝑚) 

𝑟஺் ⋈ఏ 𝑠஺் 

𝒓𝑨𝑻. 𝑭𝒓𝒐𝒎 𝒓𝑨𝑻. 𝑻𝒐 𝒔𝑨𝑻. 𝑭𝒓𝒐𝒎 𝒔𝑨𝑻. 𝑻𝒐 V1 V2 
1 3 1 4 V1_1 V2_1 
5 9 6 8 V1_2 V2_2 
5 9 9 12 V1_2 V2_3 
12 14 9 12 V1_3 V2_3 
12 14 14 17 V1_3 V2_4 
15 16 14 17 V1_4 V2_4 
17 18 14 17 V1_5 V2_4 
23 24 23 24 V1_6 V2_6 

Figure 85: The result of the intersect join, 𝑟஺் ⋈ఏ 𝑠஺், of the two aggregate time relations 

shown in Figure 71 

While the result of the inner overlap join doesn’t directly return the required schema, i.e., 

(𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ, 𝑉ଶ), it can be converted into it with another user defined function 𝑡 that is applied 

to overlapping time interval within one report (Figure 86).  

 

From To V1 V2 
1 𝑡(3, 4) V1_1 V2_1 
𝑡(5,6) 𝑡(9,8) V1_2 V2_2 
𝑡(5,9) 𝑡(9,12) V1_2 V2_3 
𝑡(12,9) 𝑡(14,12) V1_3 V2_3 
𝑡(12,14) 𝑡(14,17) V1_3 V2_4 
𝑡(15,14) 𝑡(16,17) V1_4 V2_4 
𝑡(17,14) 𝑡(18,17) V1_5 V2_4 
23 24 V1_6 V2_6 

Figure 86: The result of applying 𝑡 user function to the inner join in Figure 85 
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The overlap join merges reports that intersect in their time intervals without taking into 

consideration the length of the reports and their relative position and therefore the result of the join 

might contain tuples that will introduce overestimation or underestimation. Notice, for example, 

how in the Figure 71 the report (9, 12, 𝑉2_3) covers only 1 out of 5 time units of the report 

(5, 9, 𝑉1_2)  (which is 20%), thus  joining those two reports and then somehow fusing the 

(9, 12, 𝑉2_3)  report with (6, 8, 𝑉2_2)  may overestimate/underestimate the value of 𝑉ଶ  that 

corresponds to 𝑉ଵ on that time interval. On the other hand, the reports that do not intersect but are 

very close to each other might provide good approximate join answer. For example, assume there 

is another report (27, 27, 𝑉2_7). It doesn’t not intersect with (26, 26, 𝑉1_7), however since they 

are both very short (each only cover one time unit) and are very close (they are adjacent), joining 

them might provide good approximate for corresponding values of 𝑉ଵ and 𝑉ଶ on time interval 26 

– 27.  The intersect join will not identify such cases. To better illustrate the above problems, 

consider a scenario of reports shown in Figure 87. In the next two subsections I will describe two 

alternative techniques to perform intersect-like join.  

 

Figure 87: A scenario of reports to illustrate the problem with intersect join 

5.4.6.4.1 Relative Overlap Join To address the first problem with intersect join approach 

identified above regarding joining the reports that have very short overlapping time intervals, a 
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relative overlap metric, similarly to [190], can be used to judge whether the reports should be 

merged or not. The relative overlap (16) of two reports is the ratio of their overlap (7) over their 

combined lifespan which is the length of the union on their time intervals (15). 

𝑢𝑛𝑖𝑜𝑛(𝑇ଵ, 𝑇ଶ) = [min(𝑇ଵ. 𝐹𝑟𝑜𝑚, 𝑇ଶ. 𝐹𝑟𝑜𝑚) , max(𝑇ଵ. 𝑇𝑜, 𝑇ଶ. 𝑇𝑜)] (15) 

 𝑅𝑂(𝑇ଵ, 𝑇ଶ) = ௢௩௘௥௟௔௣( భ், మ்)
|௨௡௜௢௡( భ், మ்)|  (16) 

Figure 88 illustrates the relative overlap metric of two reports 𝑟ଵ and 𝑠ଵ. 

 

 

 

 
  

Figure 88: Illustration of relative overlap metric 

Table 8 shows the non zero relative overlap values for the reports shown in Figure 87. The 

higher the value the better. As it can be seen from the figure, the reports that have longer 

overlapping time intervals have higher relative overlap value. The reports that don’t intersect, have 

zero relative overlapping value (not shown in the table). 

Table 8: Non zero relative overlap values for the reports in Figure 87 

r.From r.To s.From s.To RO 
1 9 1 8 0.88 
1 9 7 11 0.27 
10 18 7 11 0.16 
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Table 8 (continued) 

10 18 18 19 0.1 
24 25 25 26 0.33 

Using the relative overlap metric and a given minimum relative overlap threshold, the 

relative overlap join can be defined as a theta join with predicate 𝑎 𝜃 𝑏 ≡ 𝑅𝑂(𝑎, 𝑏) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 

A stricter version of the relative overlap join could be used to merge only those reports that have 

maximum relative overlap, then 𝑎 𝜃 𝑏 ≡ 𝑅𝑂(𝑎, 𝑏) = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 . Figure 89 shows the result of 

the relative overlap join with relative threshold 0.3 for the reports in Figure 87. 

𝑟஺் ⋈ோை൫௥ಲ೅, ௦ಲ೅൯ஹ଴.ଷ 𝑠஺் 

From To V1 From To V2 
1 9 V1_1 1 8 V2_1 
24 25 V1_3 25 26 V2_5 

Figure 89: Relative overlap join query with threshold 0.3 and the result of the query for the 

aggregate time relations in Figure 87 

5.4.6.4.2 Distance-based Join While the relative overlap join filters out reports that don’t overlap 

“enough” based on the overlap threshold, it doesn’t address the second issue identified with the 

intersect join. Namely, sometimes joining adjacent (or close “enough”) reports might be useful to 

answer a join query approximately. The distance-based join method is conceptually similar to the 

idea of neighborhood based algorithms. Namely, this method matches a report of one relation with 

reports from the other relation that are in the neighborhood proximity based on the interval’s start 

and end time values. This approach is similar to some degree to the work done by Pilourdault et 
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al. [145] and by Dubois et al. [60] in which they extended Allen’s algebra to account for 

approximate temporal predicates and to assign a score of equality and inequality of two time 

intervals’ endpoints. 

To calculate report’s neighborhood, a distance measure is required. I use a distance 

measure (17), called 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓, that measures the distance between two time intervals. The 

measure is inspired by the Hausdorff distance that measures how far two sets are from each other. 

 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓(𝑇ଵ, 𝑇ଶ) = max(𝑑ଵ, 𝑑ଶ), (17) 

where  

 𝑑ଵ(𝑇ଵ, 𝑇ଶ) = max ( 

   min൫𝑎𝑏𝑠(𝑇ଵ. 𝐹𝑟𝑜𝑚 − 𝑇ଶ. 𝐹𝑟𝑜𝑚), 𝑎𝑏𝑠(𝑇ଵ. 𝐹𝑟𝑜𝑚 − 𝑇ଶ. 𝑇𝑜)൯, 

   min൫𝑎𝑏𝑠(𝑇ଵ. 𝑇𝑜 −  𝑇ଶ. 𝐹𝑟𝑜𝑚), 𝑎𝑏𝑠(𝑇ଵ. 𝑇𝑜 −  𝑇ଶ. 𝑇𝑜)൯ 

   ) 

 𝑑ଶ(𝑇ଵ, 𝑇ଶ) = max ( 

   min൫𝑎𝑏𝑠(𝑇ଶ. 𝐹𝑟𝑜𝑚 −  𝑇ଵ. 𝐹𝑟𝑜𝑚), 𝑎𝑏𝑠(𝑇ଶ. 𝐹𝑟𝑜𝑚 −  𝑇ଵ. 𝑇𝑜)൯, 

   min൫𝑎𝑏𝑠(𝑇ଶ. 𝑇𝑜 −  𝑇ଵ. 𝐹𝑟𝑜𝑚), 𝑎𝑏𝑠(𝑇ଶ. 𝑇𝑜 −  𝑇ଵ. 𝑇𝑜)൯ 

   ) 

The 𝑎𝑏𝑠 function returns the absolute value of its argument. 

Figure 90 illustrates the 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓 metric of two reports 𝑟ଵ and 𝑠ଵ. 

The 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓 distance returns the number of time units between two reports’ time 

intervals and, thus, the value is not normalized between 0 and 1. To use the same semantics of the 

aggregate join as for the relative overlap, a normalized distance is used and it is calculated 

according to the following equation 18. 
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 𝑑ଵ  =  max (min൫4 − 1, 𝑎𝑏𝑠(4 − 5)൯ , min(10 − 1, 10 − 5))  =  5 

 𝑑ଶ  =  max (min൫𝑎𝑏𝑠(1 − 4), 𝑎𝑏𝑠(1 − 10)൯ , min(5 − 4, 𝑎𝑏𝑠(5 − 10)))  =  3 

 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓 = 5 

Figure 90: Illustration of 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓 metric 

 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓𝑁(𝑇ଵ, 𝑇ଶ) = ௧௜_௛௔௨௦ௗ௢௥௙௙( భ், మ்)
௠௔௫_௧௜_௛௔௨௦ௗ௢௥௙௙(௥ಲ೅, ௦ಲ೅)

, (18) 

where  

 𝑚𝑎𝑥_𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓(𝑟஺்,  𝑠஺்) =  𝑧 ⟺ 

   ∀𝑥 ∈ 𝑟஺்∀𝑦 ∈  𝑠஺்(𝑧 ≥ 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓(𝑥. 𝑇, 𝑦. 𝑇)) 

Table 9 shows the  𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓𝑁 values for the reports shown in Figure 87. The lower 

the value the better. As it can be seen from the figure, the reports that are further from each other 

have higher distance. The main difference with the relative overlap value is that 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓𝑁 

is not zero for non overlapping reports. 

Table 9: Non zero 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓𝑁 values for the reports in Figure 87 

r.From r.To s.From s.To 𝒕𝒊_𝒉𝒂𝒖𝒔𝒅𝒐𝒓𝒇𝒇𝑵 
1 9 1 8 0.04 
1 9 7 11 0.25 
1 9 18 19 0.71 
1 9 22 23 0.87 
1 9 25 26 1 

10 18 1 8 0.42 
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Table 9 (continued) 

10 18 7 11 0.29 
10 18 18 19 0.33 
10 18 22 26 0.5 
10 18 25 26 0.62 
24 25 1 8 0.95 
24 25 7 11 0.71 
24 25 18 19 0.25 
24 25 22 23 0.08 
24 25 25 26 0.04 

Using the 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓𝑁 metric and a given maximum 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓𝑁 threshold, the 

distance-based join (I will refer to it also as hausdorff join) can be defined as a theta join with 

predicate 𝑎 𝜃 𝑏 ≡ 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓𝑁(𝑎, 𝑏) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. A stricter version of the hausdorff join 

could be used to merge only those reports that have minimum 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓𝑁  value, then 

𝑎 𝜃 𝑏 ≡ 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓𝑁(𝑎, 𝑏) = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 . Figure 91 shows the result of the hausdorff join 

with the threshold 0.2 for the reports in Figure 87. As you can see from the result of the join table, 

the main difference with the relative overlap join is that hausdorff join method also merges those 

tuples that don’t intersect but are close “enough” (i.e., the distance is within the given threshold 

value). 

𝑟஺் ⋈௧௜_௛௔௨௦ௗ௢௥௙௙ே൫௥ಲ೅, ௦ಲ೅൯ஸ଴.ଶ 𝑠஺் 

From To V1 From To V2 
1 9 V1_1 1 8 V2_1 
24 25 V1_3 22 23 V2_4 
24 25 V1_3 25 26 V2_5 

Figure 91: Hausdorff join query with threshold 0.2 and the result of the query for the aggregate 

time relations in Figure 87 
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Since the result of the relative overlap or hausdorff join depends on the threshold value, 

finding an optimal threshold value that maximizes the accuracy of the join is an interesting and 

important research question. I ran multiple experiments trying to identify optimal thresholds for 

different combination of values of many parameters (such as relation’s lifespans, reports’ lengths, 

the degree of reports intersections, the degree of scarcity of the reports and their relative position, 

noise and many other). The experiments showed that the threshold value is highly dependent on 

the nature of the data and the task at hand. Thus, I consider the task of selecting the appropriate 

threshold as resolving non trivial situations that should be implemented as user defined function.  

In general, it is harder to answer inner query when both relations are of the aggregate time 

type. Left and right outer queries are more useful since they preserve at least one variable and thus 

can guarantee good performance for at least one variable. 

The left outer overlap join is defined similarly to the left outer temporal alignment join in 

Definition 16 except that the normalization and stitching functions are not applied. 

Definition 17 – Left Overlap Join of two AT relations: The left overlap 

join,  𝑟஺்⟕்ை𝑠஺்,  of two aggregate time relations 𝑟஺்  and 𝑠஺்  defined over schemas 𝑅஺் =

(𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ) and 𝑆஺் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ) respectively, is defined as follows. 

 𝑗 = 𝑟஺் ⋈ி௥௢௠,்௢ 𝑠஺் 

 𝜃 = (𝑟஺். 𝐹𝑟𝑜𝑚 >  𝑠஺். 𝑇𝑜 ∧  𝑟஺். 𝐹𝑟𝑜𝑚 <  𝑠஺். 𝐹𝑟𝑜𝑚) ∨ 

(𝑟஺். 𝑇𝑜 >  𝑠஺். 𝑇𝑜 ∧  𝑟஺். 𝑇𝑜 <  𝑠஺். 𝐹𝑟𝑜𝑚) 

 𝑖 = 𝐺௥ಲ೅.∗
 

௨௙(௏మ)(𝑟஺் ⋈ఏ 𝑠஺்) 

 𝑟஺்⟕்ை𝑠஺் = 𝑗 ∪ 𝑖 ∪ 𝜋∗,ఠ(𝑟஺் − 𝜋௥ಲ೅.∗(𝑗) − 𝜋௥ಲ೅.∗(𝑖)) 

 
 

The results of the left and right outer overlap joins are shown in Figure 92. 
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Figure 92: The result of the left outer overlap join, 𝑟஺்⟕்ை𝑠஺் , and right outer overlap join, 

𝑟஺்⟖்ை𝑠஺், of the two aggregate time relations shown in Figure 71 

The full outer join is the standard union of the left and right joins. It has the same issue of 

having intersecting reports in the resulting table as in the case with full outer temporal alignment 

join of VT and AT relations. Same heuristics can be applied. 

5.4.6.5 Zoom Out Join – Joining Two AT Relations Previous approach to join two aggregate 

time relations resulted in the use of user functions that might produce inaccurate estimated value. 

In this final method to perform aggregate join I focus on developing a method that can join two 

aggregate time relations to produce accurate values without any use of user functions in case of 

inner join. 

In contrast to the temporal alignment join that breaks valid time reports into smaller pieces, 

I develop a 𝑧𝑜𝑜𝑚 𝑜𝑢𝑡 join that combines several aggregate time reports together into one larger 

report before performing equi join.  
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Definition 18 – Inner Zoom Out Join of Two AT Relations: The 𝑧𝑜𝑜𝑚 𝑜𝑢𝑡 

join,  𝑟஺் ⋈்௓ 𝑠஺், of two aggregate time relations 𝑟஺்  and 𝑠஺்  defined over schemas 𝑅஺் =

(𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ) and 𝑆஺் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ) respectively, is defined as follows. 

 𝑐(𝑥, 𝑦) = (𝑓𝑖𝑟𝑠𝑡(𝑥). 𝐹𝑟𝑜𝑚 = 𝑓𝑖𝑟𝑠𝑡(𝑦). 𝐹𝑟𝑜𝑚 ∧ 𝑙𝑎𝑠𝑡(𝑥). 𝑇𝑜 = 𝑙𝑎𝑠𝑡(𝑦). 𝑇𝑜 ∧ 

¬𝑔𝑎𝑝𝑠(𝑥) ∧ ¬𝑔𝑎𝑝𝑠(𝑦)) 

 𝑟஺் ⋈்௓ 𝑠஺் = {𝑧|∃𝑥 ⊆ 𝑟஺்∃𝑦 ⊆ 𝑠஺்( 

ቀ𝑐(𝑥, 𝑦) ∧ ∀𝑥ᇱ ⊇ 𝑥∀𝑦ᇱ ⊇ 𝑦൫¬𝑐(𝑥ᇱ, 𝑦ᇱ)൯ቁ ⟹ 

𝑧. 𝐹𝑟𝑜𝑚 =  𝑓𝑖𝑟𝑠𝑡(𝑥). 𝐹𝑟𝑜𝑚 ∧ 𝑧. 𝑇𝑜 = 𝑙𝑎𝑠𝑡(𝑥) ∧ 

𝑧. 𝑉ଵ = 𝑎𝑓(𝑥. 𝑉ଵ) ∧ 𝑧. 𝑉ଶ = 𝑎𝑓(𝑦. 𝑉ଶ))} 

The first two lines define a helper operator that given two sets of reports returns true if both 

sets match on their corner time endpoints and there are no gaps. The third and fourth lines find 

subsets of  𝑟஺் and 𝑠஺் that satisfy the helper operator and ensures that those reports are minimal. 

The last two lines generate a resulting tuple by setting the time interval equal to lifespan of the 

satisfied subsets and aggregating each variable by using the aggregate function (𝑎𝑓) that was used 

to derive the original reports. In the case when the mean function was used originally, the weighted 

mean (𝑤𝑚) function (14) is used instead. 
 

Performing zoom out join on the two aggregate time relations as in the Figure 71 would 

yield an empty result because there are no subsets of  𝑟஺் and 𝑠஺் that satisfy the condition 𝑐. 

Consider two aggregate time relations shown in Figure 93. Notice that a subset of 𝑟஺் that consists 

of first two reports and a subset of 𝑠஺் that also consists of the first two reports satisfy the time 

interval constrains for the condition 𝑐. However the subset of 𝑠஺் has a gap at time unit 5 and thus 

these two subsets cannot be “zoomed out” and joined together. Another subset 𝑥  of 𝑟஺்  that 

consists of three reports with values 𝑉1_3, 𝑉1_4 and 𝑉1_5 and the subset 𝑦 of 𝑠஺் that consists of 
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two reports with values 𝑉2_3  and 𝑉2_4  satisfy the 𝑐  constraint and also the zoom out join 

condition and thus can be “zoomed out” and joined. Notice, that adding adjacent reports 𝑉1_6 and 

𝑉2_5 to the 𝑥 and 𝑦 will still satisfy the 𝑐, but will violate the zoom out join constraint that requires 

the subsets to be minimal. The “zoomed out” versions of the relations 𝑟஺் and 𝑠஺் are shown in 

Figure 94 and the result of the inner zoom out join of them is shown in Figure 95. 

 

Figure 93: Example of two aggregate time relations for the illustration of the zoom out join 

approach 

 

Figure 94: “Zoomed out” version of the two relations from Figure 93 

𝑟஺் ⋈்௓ 𝑠஺் 

From To V1 V2 
12 18 𝑎𝑓(𝑉1_3, 𝑉1_4, 𝑉1_5) 𝑎𝑓(𝑉2_3, 𝑉2_4) 
19 21 V1_6 V2_5 

Figure 95: Inner zoom out join, 𝑟஺் ⋈்௓ 𝑠஺், of the two aggregate relations from Figure 93 
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The semantics of the outer zoom out join method are the same as for the temporal alignment 

method.  

Definition 19 – Left Zoom Out Join of two AT relations: The left zoom out 

join,  𝑟஺்⟕்௓𝑠஺்,  of two aggregate time relations 𝑟஺்  and 𝑠஺்  defined over schemas 𝑅஺் =

(𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ) and 𝑆஺் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ) respectively, is defined as follows. 

 𝑗 = 𝑟஺் ⋈்௓ 𝑠஺் 

 𝑙𝑛𝑗 = 𝑟஺் −  𝜋௥ಲ೅.∗(𝑗) 

 𝜃 = (𝑙𝑛𝑗. 𝐹𝑟𝑜𝑚 >  𝑠஺். 𝑇𝑜 ∧  𝑙𝑛𝑗. 𝐹𝑟𝑜𝑚 <  𝑠஺். 𝐹𝑟𝑜𝑚) ∨ 

(𝑙𝑛𝑗. 𝑇𝑜 >  𝑠஺். 𝑇𝑜 ∧  𝑙𝑛𝑗. 𝑇𝑜 <  𝑠஺். 𝐹𝑟𝑜𝑚) 

 𝑖 = 𝐺௟௡௝.∗
 

௨௙(௏మ)(𝑙𝑛𝑗 ⋈ఏ 𝑠஺்) 

 𝑟஺்⟕்௓𝑠஺் = 𝑗 ∪ 𝑖 ∪ 𝜋∗,ఠ ቀ𝑙𝑛𝑗 − 𝜋௟௡௝.∗(𝑖)ቁ 

The first line performs inner zoom out join of two relations of 𝑟஺் and 𝑠஺். The second 

line find the reports from the 𝑟஺் relation that were not joined in the previous step and assigned 

them to a temporary relation 𝑙𝑛𝑗. The third and fourth lines define the theta condition which finds 

intersecting (but not equal) reports between 𝑙𝑛𝑗 and 𝑠஺். The fifth line performs grouping of the 

result of the theta join based on the all attributes of the 𝑙𝑛𝑗  relation by applying user functions 

(𝑢𝑓, combined from the three base function according to the Figure 82) to the 𝑉ଶ values of each 

group. The sixth line performs the union of the inner join (𝑗) with the reports that have intersections 

(𝑖) with the reports form the left relation that were not matched during the inner or intersect joins 

by also appending the null value (𝜔) to each such report. 

 
 

The results of the left, right and full outer zoom out join can be derived similarly to the 

outer joins of the temporal alignment join.  
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An interesting scenario for the zoom out join is when both relations 𝑟஺் and 𝑠஺் have no 

gaps, no matching reports but have the same lifespan, e.g., as in Figure 96. After the zoom out 

process each relation will be aggregated into just one report, as in Figure 97, and the result of the 

inner and outer joins will be just one report (1, 26, 𝑎𝑓(𝑉1_1, 𝑉1_2, 𝑉1_3, 𝑉1_4, 𝑉1_5, 𝑉1_6,

𝑉1_7) , 𝑎𝑓(𝑉2_1, 𝑉2_2, 𝑉2_3, 𝑉2_4, 𝑉2_5, 𝑉2_6) ). The result will be accurate and coverage 

will be perfect, but the granularity of the result will be coarse. Other approaches to join the reports 

in Figure 96 will do the following. The equi-join will not find any corresponding values between 

the two relations – inner join will return empty table; outer joins will yield null values for all time 

intervals for the other variable. While overlap join will preserve the original granularity, all reports 

in the result will have user defined functions and thus the join will be more computationally 

expensive and the accuracy can be low depending on the nature of the data and the choice of the 

user functions. Polynomial or SAFE disaggregation based join method could be used instead. 

However, since there are no overlapping reports the SAFE can have very high estimation error. If 

all the reports in each relation are of the same length, then temporal disaggregation methods could 

be applied and depending on the availability of good indicators, the join result could have the finest 

granularity and the lowest estimation error. 

 

Figure 96: Example of an interesting scenario of two aggregate time relations for the zoom out 

join 
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Figure 97: Result of the zoom out join of the two aggregate time relations from the Figure 96 

5.4.6.6 Implementations of Temporal Alignment and Zoom Out Aggregate Joins I 

implemented all join algorithms as sort-merge join. In fact, the relations are already sorted by time 

when they are given as input to a join algorithm and thus the join only need to perform the merge 

part by concatenating tuples that match. The implementations of the equi and overlap joins are 

straightforward since they do not require any additional operation to be performed on the joining 

relations. Below I provide algorithms to perform normalization (Algorithm 7), stitching 

(Algorithm 8) and zoom out (Algorithm 10). For these algorithms, I assume one-based arrays 

where first element has index 1 as opposite to the traditional zero-based array where first element 

has index 0. 

In NORMALIZE algorithm (Algorithm 7), line 1 initiates an array of zeroes (ZEROS) on 

which lines 3 to 6 project the reports’ time intervals from the relation 𝑠 on the time axis 𝑡. Line 9 

puts additional projects to the selected segment of 𝑡 to indicate current reports’ start (1) and end 

(𝑒𝑛𝑑 - last element of the 𝑡 array) time points. Lines 7 to 17 break the relation that should be 

normalized 𝑟௏் into pieces based on the time interval endpoints projected on 𝑡. 

For each aggregate time report, the STITCH algorithm (Algorithm 8) finds normalized valid 

time reports that are contained in it (line 14 to 22) and put those reports together by calling 

STITCHBAG (Algorithm 9).  If there is a gap between VT reports within AT report (Algorithm 9, 
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line 11), the gap is not filled up, but reports that form continuous strip are aggregated (line 12 and 

20) by weighted mean function (𝑤𝑚 (14)). 

The ZOOMOUT algorithm (Algorithm 10) takes as input two aggregate time relations. It 

then first projects indexes of all reports of one relation on the time unit axis that those reports cover 

(line 1 to 4). The other report is then “zoomed out” by using ZOOMOUTONE algorithm (Algorithm 

11) that takes into account both relations and the projects. The ZOOMOUTONE algorithm also 

outputs the list of time intervals that were zoomed out (the zoom out regions) that are then used 

by ZOOMOUTANOTHER algorithm (Algorithm 12) to zoom out the other relation. 

 

Algorithm 7: NORMALIZE(𝒓𝑽𝑻, 𝒔). Input: Valid time relation 𝒓𝑽𝑻 that needs to be normalized, 𝒔 

either valid time or aggregate time relation based on which to do the normalization. Output: 

Normalized relation 𝒓𝑵𝑽𝑻. 

16: 𝑡 ← ZEROS(1. . max(|𝑟௏்|, |𝑠|) +  1)  
17: 𝑟ே௏் ← empty list  
18: foreach report 𝑥 of 𝑠 do 
19: 𝑡[𝑥. 𝐹𝑟𝑜𝑚] + + 
20: 𝑡[𝑥. 𝑇𝑜 +  1] + + 
21: end foreach 
22: foreach report 𝑦 of 𝑟௏் do 
23: 𝑏 = 𝑦. 𝐹𝑟𝑜𝑚; 𝑒 =  𝑦. 𝑇𝑜; 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =  𝑡[𝑏. . 𝑒] 
24: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡[1]  =  1; 𝑠𝑒𝑔𝑚𝑒𝑛𝑡[𝑒𝑛𝑑]  = 1 
25: 𝑚𝑎𝑟𝑘𝑠 = { 𝑖 | 𝑠𝑒𝑔𝑚𝑒𝑛𝑡[𝑖] > 0} 
26: if |𝑚𝑎𝑟𝑘𝑠|  >  2 then 
27: for 𝑖 =  1;  𝑖 < |𝑚𝑎𝑟𝑘𝑠|;  𝑖 + + do 
28: 𝑟ே௏்.APPEND((𝑏 + 𝑚𝑎𝑟𝑘𝑠[𝑖] − 1, 𝑏 + 𝑚𝑎𝑟𝑘𝑠[𝑖 + 1] − 2, 𝑦. 𝑉)) 
29: end for 
30: else 
31: 𝑟ே௏்.APPEND(𝑦) 
32: end if 
33: end foreach 
34: return 𝑟ே௏் 
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Algorithm 8: STITCH(𝒓𝑵𝑽𝑻, 𝒔). Input: Normalized valid time relation 𝒓𝑵𝑽𝑻 that needs to be 

stitched, 𝒔 either valid time or aggregate time relation based on which to do the stitching. 

Output: Normalized relation 𝒓𝑺𝑵𝑽𝑻. 

1: 𝑟ௌே௏் ← empty list  
2: 𝑖 = 1;  𝑦 = 𝑟ே௏்[𝑖];  𝑟𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 = 𝑓𝑎𝑙𝑠𝑒 
3: foreach report 𝑥 of 𝑠 do 
4: 𝑏𝑎𝑔 ← empty list 
5: while 𝑦. 𝐹𝑟𝑜𝑚 < 𝑥. 𝐹𝑟𝑜𝑚 do 
6: 𝑟ௌே௏்.APPEND(𝑦) 
7: 𝑖 + + 
8: if 𝑖 > 𝑐𝑎𝑟𝑑(𝑟ே௏்) then 
9: 𝑟𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 = 𝑡𝑟𝑢𝑒 
10: break 
11: end if 
12: 𝑦 = 𝑟ே௏்[𝑖] 
13: end while 
14: while 𝑦. 𝐹𝑟𝑜𝑚 ≥ 𝑥. 𝐹𝑟𝑜𝑚 and 𝑦. 𝑇𝑜 ≤ 𝑥. 𝑇𝑜 do 
15: 𝑏𝑎𝑔.APPEND(𝑦) 
16: 𝑖 + + 
17: if 𝑖 > 𝑐𝑎𝑟𝑑(𝑟ே௏்) then 
18: 𝑟𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 = 𝑡𝑟𝑢𝑒 
19: break 
20: end if 
21: 𝑦 = 𝑟ே௏்[𝑖] 
22: end while 
23: 𝑠𝑡𝑖𝑡𝑐ℎ𝑒𝑑𝐵𝑎𝑔 = STITCHBAG(𝑏𝑎𝑔) //Algorithm 9 
24: 𝑟ௌே௏்.APPEND(𝑠𝑡𝑖𝑡𝑐ℎ𝑒𝑑𝐵𝑎𝑔) 
25: if 𝑟𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 then 
26: break 
27: end if 
28: end foreach 
29: if 𝑖 ≤ 𝑐𝑎𝑟𝑑(𝑟ே௏்) then 
30: 𝑟ௌே௏்.APPEND({𝑟ே௏்[𝑗]|𝑗 ∈ [𝑖. . 𝑐𝑎𝑟𝑑(𝑟ே௏்)]}) 
31: end if 
32: return 𝑟ௌே௏் 
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Algorithm 9: STITCHBAG(𝒃𝒂𝒈). Input: A list of valid time reports that need to be stitched. 

Output: A list of stitched reports 𝒃𝒂𝒈𝑺. 

1: 𝑏𝑎𝑔ௌ ← empty list 
2: 𝑙 = LENGTH(𝑏𝑎𝑔) 
3: if 𝑙 == 0 then 
4: return 𝑏𝑎𝑔ௌ 
5: end if 
6: 𝑥 = 𝑏𝑎𝑔[1] 
7: 𝑠𝐵𝑎𝑔 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡 
8: 𝑠𝐵𝑎𝑔. APPEND(𝑥) 
9: if 𝑙 > 1 then 
10: for 𝑖 = 2; 𝑖 ≤ 𝑙 do 
11: if 𝑥. 𝑇𝑜 + 1 ≠ 𝑏𝑎𝑔[𝑖]. 𝐹𝑟𝑜𝑚 then 
12: 𝑏𝑎𝑔ௌ.APPEND((𝑠𝐵𝑎𝑔[1]. 𝐹𝑟𝑜𝑚, 𝑠𝐵𝑎𝑔[𝑒𝑛𝑑]. 𝑇𝑜, 𝑤𝑚(𝑠𝐵𝑎𝑔))) 
13: 𝑠𝐵𝑎𝑔 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡 
14: end if 
15: 𝑠𝐵𝑎𝑔.APPEND(𝑏𝑎𝑔[𝑖]) 
16: 𝑥 = 𝑏𝑎𝑔[𝑖] 
17: end for 
18: end if 
19: if LENGTH(𝑠𝐵𝑎𝑔) > 0 then 
20: 𝑏𝑎𝑔ௌ.APPEND((𝑠𝐵𝑎𝑔[1]. 𝐹𝑟𝑜𝑚, 𝑠𝐵𝑎𝑔[𝑒𝑛𝑑]. 𝑇𝑜, 𝑤𝑚(𝑠𝐵𝑎𝑔))) 
21: end if 
22: return 𝑏𝑎𝑔ௌ 
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The ZOOMOUTONE algorithm (Algorithm 11) finds the minimum length continuous 

matching strips of reports in two relations and combines them together. Taking one report at a time 

if finds indexes of the reports of the other relation that lie under it (line 3). If there are gaps in other 

relation reports under current report (line 5), then the report is added to the output without any 

changes (line 6). If there is only one report in the other relation under current report and their time 

endpoints match (line 9), then the report is added to the output without any changes since this is 

already minimal zoom out (line 10). Otherwise, there is more than one report in the relation under 

the current report or those reports don't match and thus need to check for more conditions. If the 

reports match on the start endpoint and the next report is immediately adjacent (line 11), then the 

report is added to bag of potential candidates to be zoomed out (line 12). Otherwise, there is 

nothing can be done with the report, so it is added to the output (line 14). Lines 18 to 29 handle 

the case when the bag of potential candidates to zoom out is not empty and a decision for a new 

report needs to be made. First, the report is always added to the bag (line 18). However, if there 

are gaps in the other relation under current report, then the whole bag cannot be aggregated and 

thus all reports form it are added to the out put without any changes (line 20) and the bug is emptied 

(line 21). if current report matches the end time point of the underlying report in the other relation 

Algorithm 10: ZOOMOUT(𝒓𝑨𝑻, 𝒔𝑨𝑻). Input: Two aggregate time relations. Output: Two zoomed 

out aggregated relations 𝒓𝒁𝑨𝑻, 𝒔𝒁𝑨𝑻. 

1: 𝑡 ← ZEROS(1. . max(|𝑟஺்|, |𝑠஺்|) +  1) 
2: for 𝑖 = 1; 𝑖 < 𝑐𝑎𝑟𝑑(𝑠஺்) do 
3: 𝑡[𝑠஺்[𝑖]. 𝐹𝑟𝑜𝑚. . 𝑠஺்[𝑖]. 𝑇𝑜] = 𝑖 
4: end  for 
5: (𝑟௓஺், 𝑧𝑜𝑜𝑚𝑂𝑢𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠) = ZOOMOUTONE(𝑟஺், 𝑠஺், 𝑡) // Algorithm 11 
6: 𝑠௓஺் = ZOOMOUTANOTHER (𝑠஺், 𝑧𝑜𝑜𝑚𝑂𝑢𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠)  // Algorithm 12 
7: return 𝑟௓஺், 𝑠௓஺் 
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(line 22) then a minimum length continuous strip of reports in two relations is found and the bag 

can be aggregated, result added to the output and the bag is emptied (lines 23 - 25). The “zoomed 

out” time interval is also added to the zoomed out region list (line 24) that will be used by 

ZOOMOUTANOTHER algorithm (Algorithm 12). However, if the report end time point doesn’t 

match other relation and it is the last report or the next report is not adjacent (line 26), then nothing 

can be done and the report is added to the output without any changes (line 27) and the bag is 

emptied (line 28).  
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Algorithm 11: ZOOMOUTONE (𝒓𝑨𝑻, 𝒔𝑨𝑻, 𝒕). Input: Two aggregate time relations and the 

projections of the indexes of the reports of the 𝒓𝑨𝑻 relation on the time axis. Output: 

Zoomed out aggregated relation 𝒓𝒁𝑨𝑻 and the time intervals that were zoomed out. 

1: 𝑟𝒁஺், 𝑏𝑎𝑔, 𝑧𝑜𝑜𝑚𝑂𝑢𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡;   𝑙 = 𝑐𝑎𝑟𝑑(𝑟஺்) 
2: for 𝑖 = 1; 𝑖 < 𝑙;  𝑖 + + do 
3: 𝑥 = 𝑟஺்[𝑖]; 𝑏 = 𝑥. 𝐹𝑟𝑜𝑚; 𝑒 =  𝑥. 𝑇𝑜; 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =  𝑡[𝑏. . 𝑒] 
4: if LENGTH(𝑠𝐵𝑎𝑔) == 0 then 
5: if ∃𝑦 ∈ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡(𝑦 == 0) then 
6: 𝑟𝒁஺்.APPEND(𝑥) 
7: else 
8: 𝑢𝑆𝑒𝑔 = UNIQUE(𝑠𝑒𝑔𝑚𝑒𝑛𝑡) 
9: if LENGTH(𝑢𝑆𝑒𝑔) == 1 and 𝑏 == 𝑠஺்ൣ𝑢𝑆𝑒𝑔[1]൧. 𝐹𝑟𝑜𝑚 and 𝑒 ==

𝑠஺்ൣ𝑢𝑆𝑒𝑔[1]൧. 𝑇𝑜 then 
10: 𝑟𝒁஺்.APPEND(𝑥) 
11: elseif 𝑏 == 𝑠஺்ൣ𝑢𝑆𝑒𝑔[1]൧. 𝐹𝑟𝑜𝑚  and 𝑖 < 𝑙  and (𝑟஺்[𝑖 +

1]. 𝐹𝑟𝑜𝑚 − 𝑥. 𝑇𝑜 == 1) then 
12: 𝑏𝑎𝑔.APPEND(𝑥) 
13: else 
14: 𝑟𝒁஺்.APPEND(𝑥) 
15: end if 
16: end if 
17: else 
18: 𝑏𝑎𝑔.APPEND(𝑥) 
19: if ∃𝑦 ∈ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡(𝑦 == 0) then 
20: 𝑟𝒁஺்.APPEND(𝑏𝑎𝑔) 
21: 𝑏𝑎𝑔 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡 
22: elseif 𝑒 == 𝑠஺்ൣ𝑠𝑒𝑔𝑚𝑒𝑛𝑡[𝑒𝑛𝑑]൧. 𝑇𝑜 then 
23: 𝑟𝒁஺்.APPEND((𝑏𝑎𝑔[1]. 𝐹𝑟𝑜𝑚, 𝑏𝑎𝑔[𝑒𝑛𝑑]. 𝑇𝑜, 𝑎𝑓(𝑏𝑎𝑔))) 
24: 𝑧𝑜𝑜𝑚𝑂𝑢𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠.APPEND(𝑏𝑎𝑔[1]. 𝐹𝑟𝑜𝑚, 𝑏𝑎𝑔[𝑒𝑛𝑑]. 𝑇𝑜) 
25: 𝑏𝑎𝑔 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡 
26: elseif 𝑖 == 𝑙 or (𝑖 < 𝑙 and (𝑟஺்[𝑖 + 1]. 𝐹𝑟𝑜𝑚 − 𝑥. 𝑇𝑜) > 1) then 
27: 𝑟𝒁஺்.APPEND(𝑏𝑎𝑔) 
28: 𝑏𝑎𝑔 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡 
29: end if 
30: end if 
31: end  for 
32: return 𝑟௓஺், 𝑧𝑜𝑜𝑚𝑂𝑢𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠 
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The ZOOMOUTANOTHER algorithm (Algorithm 12) takes in an aggregate time relation and 

zoom out time intervals. It iterates over all reports in the relation (lines 2 to 20 and 21 to 24), and 

the reports that fall in to the zoom out region are combined together (line 4 to 15) while other are 

added to the output without any changes (line 17 and 22). 

 

Algorithm 12: ZOOMOUTANOTHER  ( 𝒔𝑨𝑻, 𝒛𝒐𝒐𝒎𝑶𝒖𝒕𝑹𝒆𝒈𝒊𝒐𝒏𝒔 ). Input: An aggregate time 

relation and the zoom out time intervals. Output: Zoomed out aggregated relation 𝒔𝒁𝑨𝑻. 

1: 𝑠𝒁஺், 𝑏𝑎𝑔 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡;     𝑖, 𝑗 = 1;    𝑙 = 𝑐𝑎𝑟𝑑(𝑠஺்) 
2: while 𝑖 ≤ 𝑙 and 𝑗 ≤ LENGTH(𝑧𝑜𝑜𝑚𝑂𝑢𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠) do 
3: 𝑥 = 𝑠஺்[𝑖] 
4: if 𝑥. 𝐹𝑟𝑜𝑚 == 𝑧𝑜𝑜𝑚𝑂𝑢𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠[𝑗]. 𝐹𝑟𝑜𝑚 then 
5: while 𝑥. 𝑇𝑜 ≤ 𝑧𝑜𝑜𝑚𝑂𝑢𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠[𝑗]. 𝑇𝑜 do 
6: 𝑏𝑎𝑔.APPEND(𝑥) 
7: 𝑖 + + 
8: if 𝑖 > 𝑙 then 
9: break 
10: end if 
11: 𝑥 = 𝑠஺்[𝑖] 
12: end while 
13: 𝑠𝒁஺்.APPEND(𝑏𝑎𝑔[1]. 𝐹𝑟𝑜𝑚, 𝑏𝑎𝑔[𝑒𝑛𝑑]. 𝑇𝑜, 𝑎𝑓(𝑏𝑎𝑔)) 
14: 𝑏𝑎𝑔 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡 
15: 𝑗 + + 
16: else 
17: 𝑠𝒁஺்.APPEND(𝑥) 
18: 𝑖 + + 
19: end if 
20: end  while 
21: while 𝑖 ≤ 𝑙 do 
22: 𝑠𝒁஺்.APPEND(𝑠஺்[𝑖]) 
23: 𝑖 + + 
24: end while 
25: return 𝑠௓஺் 
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5.4.6.7 Empirical Evaluation In this section I describe the experimental evaluation of the 

aggregate join methods. If not said otherwise, the experiments were run on the Mac Book with 

Processor 2.4 GHz Intel Core i7 and 8Gb 1600 MHz DDR3 memory. 

Since these methods do not try to estimate values on each time unit, there is no need to 

check for the accuracy of each method based on the errors between actual (ground truth) and 

estimated values. Instead, I focus on evaluating how aggregate join methods perform compare to 

the equi join method in terms of 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦  of the joined table, its 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑒 , 

𝑔𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦 degree, 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 and 𝑓𝑢𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡. 

The cardinality is the number of tuples (reports) in the join result. Since some of the tuples 

might have null values (𝑤) or user defined functions, I calculate coverage of each time unit of a 

time interval according to the Table 10. If the user defined function is a combination of the basic 

functions, e.g. 𝑒_𝑐𝑜, then the coverage values is equal to the minimum coverage value associated 

with each function, e.g., 0.4 because 𝑒 has lower coverage than 𝑐𝑜.  Coverage is calculated for 

each variable separately as the sum of each unit coverage. Coverage rate of one relation is the 

coverage of the relation in the join over the coverage of that relation in ground truth (original 

reports). Coverage rate of two relations is the average of coverage rates of two relations (19).  

Table 10: Mapping table for coverage computation 

Value Number 𝒘 𝒕, 𝒆 𝒓 𝒄𝒐 
Coverage 1 0 0.4 0.5 0.6 

 

 𝐶𝑅(𝑙, 𝑟, 𝑗) = ଵ
ଶ

൬∑ |௝೔|∗௖௢௩௘௥௔௚௘(௝೔.௏భ)೥
೔సభ

∑ |௟೔|∗௖௢௩௘௥௔௚௘(௟೔.௏భ)೘
೔సభ

+  ∑ |௝೔|∗௖௢௩௘௥௔௚௘(௝೔.௏మ)೥
೔సభ

∑ |௥೔|∗௖௢௩௘௥௔௚௘(௥೔.௏మ)೙
೔సభ

൰, (19) 
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where 𝑙, 𝑟 are the left and right ground truth relations respectively, 𝑗 is the join relation, 𝑛, 𝑚, 𝑧 are 

the number of reports in 𝑙, 𝑟, 𝑗, 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑥) is the coverage of the value x form Table 10. 

The granularity metric is calculated as the average report length in the relation according 

to the equation (20).  

 𝐺𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑟) = ଵ
௡

∑ |𝑟௜|௡
௜ୀଵ , (20) 

Since we don’t know how long each user defined function might take to compute, I 

calculate execution time of a join method as the elapsed time of executing the method without 

measuring time to also execute user functions. Thus, the execution time shows the time spent on 

additional functions that each methods does, e.g. normalization, stitching, zoom out, etc. I 

separately report what we call fusion cost that measures how much effort it would take the user to 

make sense of the join result. Fusion cost is equal to the number of user functions in the join result 

weighted by their corresponding cost according to Table 11. The value of the weight is not as 

important as the difference between them. We just want to show that resolving one report (𝑒, 𝑟) is 

cheaper than two reports (𝑐𝑜) which is itself cheaper than resolving time intervals (𝑡). 

Table 11: Mapping table for user defined function fusion cost 

Function 𝒆, 𝒓 𝒄𝒐 𝒕 
Cost 5 10 15 

 

In this experiment, I measure how join methods perform when the size of the relations 

increases. Particularly, I vary the lifespan of each relation as 1000, 10000, 50000, 100000, 250000, 

500000, and 1000000 time units. I repeat the experiment 5 times and report average values. For 
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each lifespan case, I generate two relations each having number of reports up to the one tenth of 

the relation lifespan, i.e., 100, 1000, 5000, 10000, 25000, 50000, and 100000 reports respectively. 

Report lengths are drawn from a uniform distribution with minimum 10 and maximum 100 time 

units with step 10. Reports positions are also randomly generated from uniform distribution 

without intersections within one relation, but gaps are possible. Because of how the reports are 

generated, the actual average number of reports in each relation is much smaller. Average number 

of reports in left and right relations are shown in Table 12. 

Table 12: Average number of reports in left and right relations for different lifespans  

 1K 10K 50K 100K 250K 500K 1M 
Left 22.0 200.4 943.4 1892.8 4633.4 9289.8 18413.2 
Right 23.8 190.6 951.2 1863.6 4636.2 9253.4 18424.4 

 

I execute the following queries: 

x 𝑒𝑗𝐼, 𝑒𝑗𝐿, 𝑒𝑗𝑅 – inner, left and right joins respectively using equi-join method. 

x 𝑡𝑎𝐼, 𝑡𝑎𝐿, 𝑡𝑎𝑅 – inner, left and right joins respectively using temporal alignment join 

method. 

x 𝑡𝑜𝐼, 𝑡𝑜𝐿, 𝑡𝑜𝑅 – inner, left and right joins respectively using overlap join method. 

x 𝑡𝑧𝐼, 𝑡𝑧𝐿, 𝑡𝑧𝑅 – inner, left and right joins respectively using zoom out join method. 

The results of the experiment are shown below on Table 13, Table 14, Table 15, Table 18, 

Table 16 and Figure 98, Figure 99, Figure 100, Figure 102, Figure 101.  

From the execution time perspective all methods show good scalability with largest joins 

not exceeding 8.5 seconds on average. However, for many methods the trend is exponential. As 
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expected, equi-join shows fastest performance in terms of execution time (Table 13, Figure 98) 

and fusion cost (Table 14, Figure 99) (by definition equi join doesn’t apply any user function). 

However as we can see from coverage (Table 15, Figure 100) or cardinality (Table 16, Figure 101) 

data, inner equi-join is unable to join many reports together.  

All other methods show quite similar performance in terms of execution time. However, 

there is quite a big difference between them in terms of fusion cost (Table 14, Figure 99). As 

expected, 𝑡𝑎𝐼 and 𝑡𝑧𝐼 have zero fusion cost since they do not apply any user functions, while the 

fusion cost of the 𝑡𝑜𝐼 join spiked due to the large number of overlapping aggregate time reports 

which cannot be fused automatically. The outer versions of joins show expected performance with 

noticeable different in the 𝑡𝑎𝐿 and 𝑡𝑎𝑅 cases. Since in the case of temporal alignment one relation 

is of valid time type, the algorithm knows how to reduce (by normalization) and then combine (by 

stitching) valid time reports and does not require 𝑟 and 𝑐𝑜 user functions to perform fusion.  

Generated reports aligned in such a way so that zoom out join could not find many 

opportunities to perform the zoom out. In terms of coverage (Table 15, Figure 100) and cardinality 

(Table 16, Figure 101) its performance is close to the equi-join. However, from execution time 

perspective it is much slower than the equi-join since it tried to find potential reports to zoom out. 

Two other methods, temporal alignment and overlap, are able to achieve high coverage and 

cardinality, meaning that they were able to merge many tuples from the two relations. As expected, 

cardinality (Table 16, Figure 101) of 𝑡𝑜𝐿, 𝑡𝑜𝑅 and 𝑡𝑎𝑅 are equal to their corresponding equi join 

versions (𝑒𝑗𝐿, 𝑒𝑗𝑅) since these algorithms preserve left/right relations without any modifications. 

The case of 𝑡𝑎𝐿 join is different because left relation is a valid time and thus is normalized based 

on the right relation first. Therefore, the long original reports are split into several shorter reports 

and thus increase the cardinality of the join result. The high cardinality of the 𝑡𝑜𝐼 join is due to the 
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same reason why 𝑡𝑜𝐼 has very high fusion cost. An interesting comparison can be made about 

cardinality of inner equi and zoom out joins and their left and right outer versions. Cardinality of 

inner zoom out join is larger than the cardinality of inner equi join because zoom out join can 

identify some reports that are not matching by themselves, but are matching if combined together 

into longer reports. In case of outer joins, equi join preserve all reports from the original left and 

right relations, whereas zoom out join combines some reports together and thus output smaller 

number of joined reports. 

Table 17 shows average granularity of original left and right relations, and Table 18 and 

Figure 102 show the average granularity of the join results. Left and right outer joins for all 

methods (except 𝑡𝑎𝐿) produce reports that are close in granularity to the original reports which is 

the expected behavior. Because of the normalization, 𝑡𝑎𝐿 and 𝑡𝑎𝐼 produce shorter reports while 

𝑡𝑜𝐼 and 𝑡𝑧𝐼 produce longer reports due to intersection and zoom out respectively. 

Table 13: Average execution time in seconds of each query on different relation lifespan 

 1K 10K 50K 100K 250K 500K 1M 
ejI 0.0001 0.0005 0.0019 0.0037 0.0108 0.0184 0.0413 
ejL 0.0002 0.0006 0.0022 0.0044 0.0097 0.0195 0.0462 
ejR 0.0002 0.0006 0.0022 0.0044 0.0099 0.0196 0.0401 
taI 0.0029 0.0206 0.0988 0.2040 0.5087 1.1847 3.0214 
taL 0.0084 0.0757 0.3736 0.7673 1.8008 3.7895 8.3634 
taR 0.0070 0.0581 0.2833 0.5757 1.3338 2.8967 6.2614 
toI 0.0032 0.0304 0.1581 0.3865 0.8088 1.5203 2.7029 
toL 0.0085 0.0757 0.3738 0.7442 1.6544 3.4666 6.8600 
toR 0.0086 0.0758 0.3675 0.7244 1.6789 3.4076 6.7807 
tzI 0.0018 0.0146 0.0658 0.1324 0.3054 0.6648 1.4793 
tzL 0.0108 0.0893 0.4180 0.8517 1.9653 4.0915 8.0981 
tzR 0.0100 0.0909 0.4247 0.8426 1.9562 4.0918 8.1929 
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Figure 98: Average execution time in seconds (log scale) versus the lifespan of relations in time 

units 

Table 14: Average fusion cost of each query on different relation lifespan 
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 1K 10K 50K 100K 250K 500K 1M 
ejI 0 0 0 0 0 0 0 
ejL 0 0 0 0 0 0 0 
ejR 0 0 0 0 0 0 0 
taI 0 0 0 0 0 0 0 
taL 53 541 2680 5502 13603 27664 55281 
taR 31 290 1444 2914 7220 14690 29291 
toI 1281 11004 53790 107274 264255 528765 1050924 
toL 165 1439 6839 13793 33995 68178 134557 
toR 165 1379 6942 13709 33887 67924 134715 
tzI 0 0 0 0 0 0 0 
tzL 165 1422 6779 13741 33858 67794 133843 
tzR 165 1362 6889 13659 33752 67574 134088 
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Figure 99: Average fusion cost (log scale) versus the lifespan of relations in time units 

Table 15: Average coverage of each query on different relation lifespan 

Relation's lifespan, TU
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 1K 10K 50K 100K 250K 500K 1M 
ejI 0.0000 0.0045 0.0040 0.0018 0.0014 0.0017 0.0021 
ejL 0.5000 0.5023 0.5020 0.5009 0.5007 0.5008 0.5010 
ejR 0.5000 0.5023 0.5020 0.5009 0.5007 0.5008 0.5010 
taI 0.6608 0.6113 0.6169 0.6028 0.6064 0.5993 0.5985 
taL 0.9080 0.8956 0.8970 0.8933 0.8943 0.8923 0.8922 
taR 0.8957 0.8831 0.8850 0.8807 0.8818 0.8799 0.8795 
toI 0.4144 0.4101 0.4102 0.4112 0.4112 0.4113 0.4111 
toL 0.7357 0.7439 0.7471 0.7457 0.7444 0.7442 0.7464 
toR 0.7401 0.7467 0.7457 0.7440 0.7453 0.7451 0.7459 
tzI 0.0000 0.0198 0.0136 0.0074 0.0071 0.0087 0.0087 
tzL 0.7357 0.7481 0.7496 0.7471 0.7457 0.7460 0.7480 
tzR 0.7401 0.7509 0.7482 0.7455 0.7468 0.7469 0.7477 
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Figure 100: Average coverage rate versus the lifespan of relations in time units  

 Table 16: Average cardinality of each query on different relation lifespan 

Relation's lifespan, TU
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 1K 10K 50K 100K 250K 500K 1M 
ejI 0.0 0.6 4.2 3.6 7.4 16.2 40.8 
ejL 22.0 200.4 943.4 1892.8 4633.4 9289.8 18413.2 
ejR 23.8 190.6 951.2 1863.6 4636.2 9253.4 18424.4 
taI 17.6 132.6 662.4 1280.8 3192.2 6315.4 12566.2 
taL 36.0 304.8 1512.6 3011.8 7481.0 14978.4 29908.6 
taR 23.8 190.6 951.2 1863.6 4636.2 9253.4 18424.4 
toI 43.4 371.6 1814.4 3607.6 8899.2 17803.4 35378.0 
toL 22.0 200.4 943.4 1892.8 4633.4 9289.8 18413.2 
toR 23.8 190.6 951.2 1863.6 4636.2 9253.4 18424.4 
tzI 0.0 1.8 7.2 7.0 16.6 36.4 78.4 
tzL 22.0 198.8 936.8 1887.0 4617.6 9247.6 18335.4 
tzR 23.8 189.0 945.8 1858.4 4622.8 9216.2 18359.8 
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Figure 101: Average cardinality versus the lifespan of relations in time units  

Table 17: Average granularity of left and right relations for different lifespans  

 1K 10K 50K 100K 250K 500K 1M 
Left 44.31 48.45 51.48 51.27 52.38 52.20 52.69 
Right 40.35 50.90 51.03 52.05 52.33 52.42 52.66 

Table 18: Average granularity of each query on different relation lifespan 
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 1K 10K 50K 100K 250K 500K 1M 
ejI 0.00 44.00 43.06 41.50 46.98 49.70 48.53 
ejL 44.31 48.45 51.48 51.27 52.38 52.20 52.69 
ejR 40.35 50.90 51.03 52.05 52.33 52.42 52.66 
taI 36.72 44.77 45.20 45.66 46.10 46.02 46.21 
taL 26.93 31.89 32.12 32.22 32.44 32.37 32.44 
taR 40.35 50.90 51.03 52.05 52.33 52.42 52.66 
toI 80.81 92.32 93.25 93.87 94.66 94.47 94.91 
toL 44.31 48.45 51.48 51.27 52.38 52.20 52.69 
toR 40.35 50.90 51.03 52.05 52.33 52.42 52.66 
tzI 0.00 91.67 76.65 98.67 100.55 116.55 107.13 
tzL 44.31 48.84 51.84 51.43 52.56 52.44 52.91 
tzR 40.35 51.34 51.33 52.20 52.48 52.64 52.84 
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Figure 102: Average granularity versus the lifespan of relations in time units 

Table 19 shows the overall comparison of the 12 join queries on all five metrics. The green 

color represents good quality, red means bad quality. Note that sometimes the “Low” value is bad 

(e.g., low coverage) and sometimes it is good (e.g., low execution time), the same for the “High” 

value. In case of the cardinality metric, for the 𝑡𝑎𝐿 query the “High” value is good because the 

temporal alignment method is able to find many matches without the use of many user functions 

(fusion cost is “Medium”), but in case of 𝑡𝑜𝐼 the “Extra high” value is not good, because there are 

many intersecting aggregate time reports that require “Extra high” fusion cost. For the granularity 

metric, the "Alike" value means that the granularity of the join reports is similar to the granularity 

of the original reports. The “Finer” value is better because then the join reports cover shorter time 

intervals and thus provide more information about the behavior of the variable. The “Coarser” is 

opposite, meaning that the join reports are longer than the original reports. 
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Table 19: Overall comparison of the 12 join queries on all five metrics 

5.4.7 Temporal Join Conclusion 

Figure 103 summarizes all the join approaches that I have explained in the previous sections. Given 

two temporal relations we can perform join of them in many ways. We can ignore the relations 

type (valid time or aggregate time) and blindly perform standard equi join or intersect join. While 

the standard approaches are the most straightforward to implement and use, they might result in 

lower cardinality and coverage of the join result or merge temporal intervals that are intersect only 

on few time units (or fail to merge closely related time intervals). The aggregate join approaches 

are suited for both valid time and aggregate time relations and depending on reports’ relative 

position and lengths can produce the result with high cardinality and coverage while sometimes 

can sacrifice the granularity. Moreover, the aggregate join methods always return exact values 

except for the non trivial cases where user defined functions are applied. The disaggregate join 

 Execution 
time 

Fusion 
cost 

Coverage Cardinality Granularity 

ejI Low None Low Low Alike 
ejL Low None Medium Expected Alike 
ejR Low None Medium Expected Alike 
taI Medium None Medium Medium Finer 
taL High Medium High High Finer 
taR High Medium High Expected Alike 
toI Medium Extra High Medium Extra High Coarser 
toL High High High Expected Alike 
toR High High High Expected Alike 
tzI Medium None Low Low Coarser 
tzL High High High Expected Alike 
tzR High High High Expected Alike 
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approaches can be applied to the aggregate time relations to estimate values on finer granularity 

(high frequency) based on the coarse granular reports. The quality of the estimation depends on 

many parameters and thus accuracy of the join result cannot be guaranteed. In addition, these 

methods have many applicability limitations. As it commonly happens, there is no single “silver 

bullet” method that can be applied in any use case and show the best performance. Meanwhile, 

they can be combined in efficient information fusion framework that takes into account their 

complimentary applicability limitations. 

 

Figure 103: Illustration of join approaches. RO is the Relative Overlap method; HD is the 

Hausdorff method, SAFE is the spread, aggregate, fill, extend method; Interpolation is the 

method that is based on Polynomial interpolation or Spline; Ind-or means indicator 
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5.5 FUSE JOIN 

Building on the information provided in previous sections we would like to have a join strategy 

that would intelligently provide the best effort to fuse datasets by applying the appropriate join 

methods. I call such join strategy a 𝑓𝑢𝑠𝑒 𝑗𝑜𝑖𝑛 . Consider, for example, two relations 𝑅 =

(𝑛𝑎𝑚𝑒, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑡𝑖𝑚𝑒, 𝑣𝑎𝑙𝑢𝑒1) and 𝑆 = (𝑛𝑎𝑚𝑒, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑡𝑖𝑚𝑒, 𝑣𝑎𝑙𝑢𝑒2). The name attribute 

represents some attribute of string domain, location attribute represents spatial domain (in our case 

it is also a string value, not geographic coordinates), time attribute represents temporal domain and 

the value attribute represents some numeric value of interest. We want to know the corresponding 

values from 𝑅 and 𝑆, in other words we want to join 𝑅 and 𝑆 relations. The fuse join of the two 

relation can be written as in equation (21) and would be automatically translated into the join query 

that uses appropriate join methods as in equation (22). 

 𝑅 ⋈ி௃ 𝑆 (21) 

 𝑅 ⋈௦௘ௗ(ோ೙ೌ೘೐,ௌ೙ೌ೘೐)ஸ௡௧௛ ∧ ௧௘ௗ (ோ೗೚೎ೌ೟೔೚೙,ௌ೗೚೎ೌ೟೔೚೙)ஸ௟௧௛
் 𝑆, (22) 

where 𝑛𝑡ℎ is the threshold for the string edit distance and 𝑙𝑡ℎ is the threshold for the tree edit 

distance. 

5.5.1 Empirical Evaluation 

To show that fuse join strategy performs better than standard join methods, i.e., the equi join on 

all or some join attributes, I have conducted the following experiment (I repeated it for 5 times and 

report average values). First, I generated two relations 𝑟௏் and 𝑠஺்
  defined over schemas 𝑅 and 𝑆 

as above, both having exactly the same values for name and location attributes, but different time 

intervals. The actual numeric value of the value attributes is not important at this moment. The 
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location attribute has three levels with one distinct value on the first level, two distinct values on 

the second level and three distinct values on the third level. For each combination of name and 

location values a random number of time units between 3 and 20 was chosen from a uniform 

distribution and a random value for each time unit was generated. The values were then aggregated 

into reports with random lengths between 1 and half of the number of time units using ‘no overlaps 

but gaps possible’ strategy. Then I distorted 50% of the name and location values in the 𝑠஺் by 

introducing up to 3 random typos into name values and randomly removing up to 2 levels from 

location attribute. 

Table 20 shows the seven queries that I executed. 𝑄ଵ joins the two relations only based on 

the equality of the values in the name attribute. Notice that due to the distortion that I performed 

on the 𝑠஺்
 relation, this query will not be able to join some tuples that in fact represent the same 

entity. Additionally, this query may introduce false positives by ignoring the location attribute 

completely. 𝑄ଶ joins the two relations based on the approximate string join on the 𝑛𝑎𝑚𝑒 attribute. 

While this query will be able to find more matching tuples that represent the same entity, it may 

introduce false positive by joining tuples whose names distance is smaller than the threshold but 

which represent different entities, and similarly to 𝑄ଵ it ignores the location attribute. 𝑄ଷ joins the 

two relation based on the equality of 𝑛𝑎𝑚𝑒 and 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 values. While this query will find true 

matching entities, it will fail to match those tuples which have typos in name and different 

granularity level of location value. Since it does not take into account the time attribute, it may 

also join values that were reported at disjoin time intervals. 𝑄ସ query uses string edit distance on 

the location attribute which may not be helpful since the location value could be spelled in 

completely different ways but still be close in the location hierarchy. 𝑄ହ uses the tree edit distance 

on the location attribute, but still it ignores the time attribute and thus may have the same problems 



 188 

as the previous queries.  𝑄଺ differs from 𝑄ହ in the usage of the time attribute, but it joins only those 

tuples where time intervals match exactly, and thus may miss information on overlapping intervals. 

Finally, 𝑄଻ represents the most comprehensive fuse join query that applies appropriate methods 

based on the type of the attribute. In particular, in contrast to 𝑄଺, it uses temporal alignment join 

method to join valid time relation and aggregate time relation. 

Table 20: Queries for the experiment on fuse join 

 
  

To evaluate the result of each query, I use precision, recall and F1 metrics calculated 

according to the equations (23), (24) and (25) respectively. 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) = |்ெ∩௃ெ|
|௃ெ|  (23) 

 𝑟𝑒𝑐𝑎𝑙𝑙 (𝑅) = |்ெ∩௃ெ|
|்ெ|  (24) 

where 𝑇𝑀 is the set of truly matching tuples and 𝐽𝑀 is the set of tuples matched by a query. 

 𝐹ଵ = 2 ௣௥௘௖௜௦௜௢௡ ⋅ ௥௘௖௔௟௟
௣௥௘௖௜௦௜௢௡ା௥௘௖௔௟௟

 (25) 

Table 21 shows the result of the experiment. We can see that 𝑄ଵ − 𝑄ହ  have very low 

precision because they do not consider all attributes and thus join result contains some matches 

Query 
Name 

Query 

𝑸𝟏 𝑅௏் ⋈௡௔௠௘ 𝑆஺் 
𝑸𝟐 𝑅௏் ⋈௦௘ௗ(ோ೙ೌ೘೐,ௌ೙ೌ೘೐)ஸ௡௧௛ 𝑆஺் 
𝑸𝟑 𝑅௏் ⋈௡௔௠௘,௟௢௖௔௧௜௢௡ 𝑆஺் 
𝑸𝟒 𝑅௏் ⋈௦௘ௗ(ோ೙ೌ೘೐,ௌ೙ೌ೘೐)ஸ௡௧௛ ∧ ௦௘ௗ(ோ೗೚೎ೌ೟೔೚೙,ௌ೗೚೎ೌ೟೔೚೙)ஸ௡௧௛ 𝑆஺் 
𝑸𝟓 𝑅௏் ⋈௦௘ௗ(ோ೙ೌ೘೐,ௌ೙ೌ೘೐)ஸ௡௧௛ ∧ ௧௘ௗ(ோ೗೚೎ೌ೟೔೚೙,ௌ೗೚೎ೌ೟೔೚೙)ஸ௟௧௛ 𝑆஺் 
𝑸𝟔 𝑅௏் ⋈௦௘ௗ(ோ೙ೌ೘೐,ௌ೙ೌ೘೐)ஸ௡௧௛ ∧ ௧௘ௗ(ோ೗೚೎ೌ೟೔೚೙,ௌ೗೚೎ೌ೟೔೚೙)ஸ௟௧௛ ∧ ௧௜௠௘ 𝑆஺் 
𝑸𝟕 𝑅௏் ⋈௦௘ௗ(ோ೙ೌ೘೐,ௌ೙ೌ೘೐)ஸ௡௧௛ ∧ ௧௘ௗ(ோ೗೚೎ೌ೟೔೚೙,ௌ೗೚೎ೌ೟೔೚೙)ஸ௟௧௛

்஺ 𝑆஺் 
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that were produced as a Cartesian product. The recall is also very low because the queries ignore 

the time component. Therefore, simply returning all possible combination of tuples will not give 

perfect recall like in the information retrieval field. As soon as we take time into consideration, 𝑄଺ 

and 𝑄଻, the precision increases significantly. However, the recall of 𝑄଺ is very low, because it only 

joins those tuples where time intervals match exactly (which turned out to be a very low number). 

Since some queries use threshold for the string edit distance and/or for the tree edit distance, in 

general the quality of the join will depend on the choice of the threshold. As the right part of the 

table shows, if we increase the threshold values, the precision drops significantly due to the 

increased number of the false positive matches. 

Table 21: Precision, Recall and F1 of the seven join queries 

 𝒏𝒕𝒉 = 𝟏, 𝒍𝒕𝒉 = 𝟏 𝒏𝒕𝒉 = 𝟑, 𝒍𝒕𝒉 = 𝟐 
 P R F1 P R F1 

𝑸𝟏 0.003 0.070 0.006 0.0034 0.0746 0.0066 
𝑸𝟐 0.003 0.083 0.006 0.0004 0.0992 0.0009 
𝑸𝟑 0.019 0.061 0.029 0.0212 0.0673 0.0322 
𝑸𝟒 0.005 0.066 0.009 0.0004 0.0745 0.0009 
𝑸𝟓 0.010 0.083 0.018 0.0006 0.0992 0.0013 
𝑸𝟔 0.487 0.094 0.158 0.0354 0.1281 0.0554 
𝑸𝟕 0.461 0.643 0.537 0.0364 1.0000 0.0702 
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6.0 DISSERTATION CONCLUSION AND FUTURE WORK 

This dissertation summarizes my work towards the grand vision described in Section 1.2, 

particularly the part of the vision related to the data sharing/archiving, integration and fusion.  

The task of data sharing and integration has been an active focus of research and 

development work in both academia and industry. In Chapter 2.0 I provide comprehensive review 

of existing approaches and point out their applicability limitations. I then, in Chapter 3.0, describe 

in detail the infrastructure that I proposed and developed. Particularly, in the chapter, I answer the 

question posed in Section 1.3. I developed distributed heterogeneous data storage and ingestion 

process (Section 3.1) to store dynamically incoming heterogeneous datasets efficiently by also 

enabling both data integration and data autonomy. Opposite to existing data repositories, the 

datasets in my infrastructure are semantically integrated (Section 3.2) by combination of machine 

learning algorithms and human expertise to perform efficient schema alignment and maintain 

relationships between the datasets. The semantic relationship model that virtually integrates 

distinct heterogeneous datasets turned out to be very useful for efficient data exploration without 

requiring users to write complex queries. Section 3.3 explains in details the model and algorithms 

that I developed to provide efficient key word functionality. 

I have implemented the infrastructure in an easy to use rich web application (Section 4.0) 

that was tested and used for the historical data in tight collaboration with CHIA. From the 

experience of collaboration with CHIA and I’ve learned a number of lessons that needed to be 
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addressed in order to make the infrastructure even more advanced. Particularly, the task of fusing 

datasets was the most interesting and challenging.  

Chapter 5.0, that answers the question how to perform approximate information fusion 

when exact match does not exist, makes up a major chunk of my work and this document. I 

consider the task of data fusion as the ad-hoc relational database join query. While many 

algorithms were developed to perform string similarity joins and many specific index structures 

were developed to perform spatial joins, no attention has been given to task for joining relations 

that report aggregated values over some time intervals. The extensive and comprehensive studies 

in the area of temporal database management systems only focused on modeling valid time 

semantics in which temporal join algorithms can simply be rewritten as non temporal ones. In my 

work I raise the problem of joining the relations where the values are aggregated over time intervals 

and are not known at each time unit. I systemize the problem and provide high level framework to 

address it at different levels. Particularly, one way to join two aggregate time relation is first to 

estimate values for each time unit and then use standard join algorithm; while the other way is to 

join aggregated reports directly. Multiple experiments showed that the quality of the disaggregate 

join depends on the nature of the data and reports’ characterizes described in Section 5.4.3. 

Therefore, I developed several algorithms to join aggregated reports. The algorithms do not 

perform any estimation and instead rely on user involvement in the join task to resolve all non 

trivial situations. Multiple experiments showed that the algorithms that I developed allow to 

execute join efficiently while preserving low fusion cost and high coverage. Finally, I showed that 

combination of approximate join techniques on string, spatial and temporal data allows to 

significantly improve precision and recall of the join result over the standard equi join methods.  
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There are several directions for the future work. On the storage level, similar to the 

BigDAWG Polystore System [61], data stores that support various data models, besides the 

relational one, need to developed and integrated into the infrastructure. More algorithms need to 

implemented to integrate various data types and to allow for efficient visual exploration of large 

datasets and relationships between them.  

Particularly many research questions that need further investigation are related to the data 

fusion: 

x  Are some operations on the aggregated values isomorphic to the operations on the fine 

granular data and how do they depend on the nature of the data? For example, is the 

data analysis on the aggregate join result will produce the same results as on the fine 

granular (high frequency) data? If we must disaggregate the reports, should we 

disaggregate all them and to which granularity level? How to identify the best indicator 

series?  

x If join algorithms depends on the nature of the data, then how can we keep and use 

some kind of index/metadata/statistics on what the nature of the data is. How to learn 

parameters to perform all the queries without user involvement (e.g. edit distance 

threshold, hausdorff threshold, choose user defined function for the temporal join, 

etc.)?  

x Can we develop parametric characteristics (similar to statistics in database manage 

systems that influence which algorithm to use during planning/optimization phase) of 

dataset scenarios that would allows to quickly assess which join strategy to use.  
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x How to implement the fuse join in distributed environment and to scale it to large 

datasets? A special index might help speed up join process (e.g. like R trees for spatial 

data). 

Some currently active and future development tasks are also explained in Section 4.2. 
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