

ADVANCED DISTRIBUTED DATA INTEGRATION INFRASTRUCTURE AND

RESEARCH DATA MANAGEMENT PORTAL

by

Evgeny Karataev

Dipl.-Ing., Tomsk State University of Control Systems and Radioelectronics, 2011

Submitted to the Graduate Faculty of

the School of Information Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2016

 ii

UNIVERSITY OF PITTSBURGH

SCHOOL OF INFORMATION SCIENCES

This dissertation was presented

by

Evgeny Karataev

It was defended on

May 6th, 2016

and approved by

Marek Druzdzel, Associate Professor, School of Information Sciences

Konstantinos Pelechrinis, Assistant Professor, School of Information Sciences

Nicholas Nystrom, Director, Strategic Applications, Pittsburgh Supercomputing Center

 Dissertation Advisor: Vladimir Zadorozhny, Associate Professor, School of Information

Sciences

 iii

Copyright © by Evgeny Karataev

2016

 iv

The amount of data available due to the rapid spread of advanced information technology is

exploding. At the same time, continued research on data integration systems aims to provide users

with uniform data access and efficient data sharing. The ability to share data is particularly

important for interdisciplinary research, where a comprehensive picture of the subject requires

large amounts of data from disparate data sources from a variety of disciplines. While there are

numerous data sets available from various groups worldwide, the existing data sources are

principally oriented toward regional comparative efforts rather than global applications. They vary

widely both in content and format. Such data sources cannot be easily integrated, and maintained

by small groups of developers.

I propose an advanced infrastructure for large-scale data integration based on

crowdsourcing. In particular, I propose a novel architecture and algorithms to efficiently store

dynamically incoming heterogeneous datasets enabling both data integration and data autonomy.

My proposed infrastructure combines machine learning algorithms and human expertise to

perform efficient schema alignment and maintain relationships between the datasets. It provides

efficient data exploration functionality without requiring users to write complex queries, as well

as performs approximate information fusion when exact match does not exist. Finally, I introduce

Col*Fusion system that implements the proposed advance data integration infrastructure.

ADVANCED DISTRIBUTED DATA INTEGRATION INFRASTRUCTURE AND
RESEARCH DATA MANAGEMENT PORTAL

Evgeny Karataev, PhD

University of Pittsburgh, 2016

 v

TABLE OF CONTENTS

PREFACE ... XVIII

1.0 INTRODUCTION .. 1

1.1 MOTIVATING EXAMPLE... 2

1.2 GRAND VISION ... 4

1.3 OBJECTIVE ... 6

1.4 ORGANIZATION OF THE DISSERTATION ... 7

2.0 BACKGROUND AND RELATED WORK ... 8

2.1 DATA INTEGRATION ... 8

2.1.1 Top-down approaches: Data Warehousing and Virtual Integration 9

2.1.1.1 Data Warehousing Approach .. 10

2.1.1.2 Virtual Integration Approach .. 11

2.1.2 Bottom-up approaches: Peer-to-peer, Pay-as-you-go, and Linked Data 14

2.1.2.1 Peer-to-peer approach ... 14

2.1.2.2 Pay-as-you-go approach ... 16

2.1.2.3 Linked Data approach ... 16

2.1.3 Schema Matching and Schema Mapping ... 18

2.2 KEYWORD SEARCH: INTEGRATION ON DEMAND .. 19

2.3 CROWDSOURCING IN DATABASES AND DATA INTEGRATION SYSTEMS 20

 vi

2.4 RELATED DATA INTEGRATION/CURATION SYSTEMS 21

2.5 DATA REPOSITORIES .. 22

3.0 ADVANCED DISTRIBUTED DATA INTEGRATION INFRASTRUCTURE UNDER

MAGNIFYING GLASS ... 23

3.1 STORING HETEROGENEOUS DYNAMICALLY INCOMING DATASETS........ 24

3.1.1 “One table” approach.. 25

3.1.2 “A database per dataset” approach ... 28

3.2 INTEGRATING DATASETS ... 31

3.2.1 Discovering relationships ... 31

3.2.2 Relationship model ... 36

3.2.2.1 Data Overlapping values ... 36

3.2.2.2 Relationship’s Data Overlapping value .. 38

3.2.3 Schema Graph .. 39

3.2.3.1 Conceptual Model ... 39

3.2.3.2 Physical Model ... 39

3.2.3.3 Edge Feature Vector based Cost Model ... 40

3.3 EXPLORING THE REPOSITORY ... 41

3.3.1 From Research Question to Keyword Search... 43

3.3.2 From Keywords to Trees .. 43

3.3.2.1 Finding Trees .. 45

3.3.3 From Trees to Relational algebra/SQL Queries ... 50

3.3.4 From Queries to Merged Data Tables .. 51

4.0 SYSTEM IMPLEMENTATION: COL*FUSION .. 53

 vii

4.1 ARCHITECTURE, IMPLEMENTATION, OPERATIONS 53

4.1.1 Data and Metadata Submission .. 55

4.1.2 Data Access and Export .. 57

4.1.3 Collaborative Metadata and Data Editing .. 59

4.1.4 Information Linkage ... 60

4.1.5 Search and Exploration ... 63

4.1.6 Descriptive Statistics and Data Analysis .. 65

4.2 ACTIVE AND FUTURE IMPLEMENTATION TASKS ... 65

4.3 REAL-LIFE DATA-INTENSIVE USAGE ... 68

4.3.1 Lessons Learned ... 76

5.0 FUSING DATASETS ... 78

5.1 PRELIMINARIES.. 79

5.2 STRING APPROXIMATE JOIN .. 84

5.2.1 Problem ... 84

5.2.2 Problem Solution: Approximate String Equality.. 85

5.3 SPATIAL (NAME-BASED) APPROXIMATE JOIN .. 87

5.3.1 Problem ... 88

5.3.2 Problem Solution: Named Subsumption Hierarchy Approach......................... 88

5.4 TEMPORAL APPROXIMATE JOIN ... 90

5.4.1 Preliminaries for Temporal Join ... 92

5.4.2 Problem ... 97

5.4.3 Taxonomy of Aggregate Time Relations and Reports Characteristics 102

5.4.4 Overview of Join Strategies of Aggregate Time Relations 104

 viii

5.4.5 Disaggregate Join of Aggregate Time Relations .. 107

5.4.5.1 Temporal Disaggregation ... 107

5.4.5.2 Polynomial or Spline Interpolation ... 110

5.4.5.3 Spread, Aggregate, Fill, Extend (SAFE) Heuristic 111

5.4.5.4 Empirical Evaluation .. 116

5.4.5.4.1 Scalability .. 121

5.4.5.4.2 Disaggregation Methods Quality Comparison 126

5.4.6 Aggregate Join of Valid and Aggregate Time Relations 135

5.4.6.1 The Goal of the Aggregate Join .. 136

5.4.6.2 Equi-join – The Baseline Method ... 137

5.4.6.3 Temporal Alignment Join – Joining VT with VT or AT Relation 139

5.4.6.4 Overlap Join – Joining Two AT Relations ... 152

5.4.6.4.1 Relative Overlap Join .. 154

5.4.6.4.2 Distance-based Join ... 156

5.4.6.5 Zoom Out Join – Joining Two AT Relations 161

5.4.6.6 Implementations of Temporal Alignment and Zoom Out Aggregate

Joins .. 166

5.4.6.7 Empirical Evaluation .. 174

5.4.7 Temporal Join Conclusion .. 184

5.5 FUSE JOIN... 186

5.5.1 Empirical Evaluation .. 186

6.0 DISSERTATION CONCLUSION AND FUTURE WORK... 190

BIBLIOGRAPHY ... 194

 ix

LIST OF TABLES

Table 1: Trees and their costs for the example datasets and keyword query 49

Table 2: Sample of the merged table for the tree 1 from Table 1 ... 51

Table 3: Col*Fusion Dataset Inventory from CHIA participants ... 69

Table 4: Temporal categorization criteria ... 103

Table 5: Parameters of the scalability scenarios ... 122

Table 6: Experiment Setup Parameter and Scenarios Description ... 127

Table 7: Predefined user functions to merge non trivial reports ... 149

Table 8: Non zero relative overlap values for the reports in Figure 87 155

Table 9: Non zero 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓𝑁 values for the reports in Figure 87 158

Table 10: Mapping table for coverage computation ... 174

Table 11: Mapping table for user defined function fusion cost .. 175

Table 12: Average number of reports in left and right relations for different lifespans 176

Table 13: Average execution time in seconds of each query on different relation lifespan 178

Table 14: Average fusion cost of each query on different relation lifespan 179

Table 15: Average coverage of each query on different relation lifespan 180

Table 16: Average cardinality of each query on different relation lifespan 181

Table 17: Average granularity of left and right relations for different lifespans 182

Table 18: Average granularity of each query on different relation lifespan 182

 x

Table 19: Overall comparison of the 12 join queries on all five metrics 184

Table 20: Queries for the experiment on fuse join ... 188

Table 21: Precision, Recall and F1 of the seven join queries ... 189

 xi

LIST OF FIGURES

Figure 1: Steps required to answer data-intensive interdisciplinary research questions 4

Figure 2: Data Warehousing Architecture .. 10

Figure 3: Simplified virtual data integration architecture ... 12

Figure 4: Simplified Peer-to-peer data integration architecture ... 15

Figure 5: Dataset D3 .. 25

Figure 6: Dataset D4 .. 25

Figure 7: Example of dataset D3 converted into one table format .. 27

Figure 8: Example of dataset D4 converted into one table format .. 27

Figure 9: “A database per dataset” architecture with one metadata node and many datanodes.

Metadata node stores connection information to the databases that store the data on datanodes 29

Figure 10: Automatically discovered relationships between two datasets 𝐷3 and 𝐷4 based on

same names of the two variables in both datasets ... 32

Figure 11: Example of synonyms transformation between 𝐷3. 𝑆𝑇𝐴𝑇𝐸 and 𝐷4. 𝑆𝑡𝑎𝑡𝑒 variables.

The transformation defines correspondence table between US state’s full name and its two letter

abbreviations ... 33

Figure 12: Example of dataset 𝐷2 .. 34

Figure 13: Example of the relationships between three datasets 𝐷2, 𝐷3 and 𝐷4 35

 xii

Figure 14: Generalized schematic example of the data integration based on relationships discovery

... 35

Figure 15: Excerpt of conceptual Schema graph for four datasets from Section 1.1 (variable are

represented with first letter) .. 39

Figure 16: Schematic illustration of Schema Graph physical model .. 40

Figure 17: Schema graph with costs; black nodes matches keywords ... 44

Figure 18: Col*Fusion Architecture (gray boxes represent unfinished modules/functionality) ... 54

Figure 19: Data submission page .. 56

Figure 20: Story page: Data Preview .. 58

Figure 21: Visualization .. 59

Figure 22: Interface to edit data table via OpenRefine ... 60

Figure 23: Relationship table .. 61

Figure 24: Add new relationship... 62

Figure 25: Keyword search interface .. 64

Figure 26: Descriptive statistics table that Col*Fusion automatically creates for each dataset ... 65

Figure 27: Provenance graph .. 67

Figure 28: Two sample relations 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 and 𝑀𝑎𝑛𝑎𝑔𝑒𝑠 ... 80

Figure 29: Result of the query 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 × 𝑀𝑎𝑛𝑎𝑔𝑒𝑠 ... 81

Figure 30: Result of the query 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 ⋈ 𝐷𝑒𝑝𝑡𝑀𝑎𝑛𝑎𝑔𝑒𝑠 ... 82

Figure 31: Result of the query 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒⟕𝐷𝑒𝑝𝑡𝑀𝑎𝑛𝑎𝑔𝑒𝑠 .. 83

Figure 32: Example tables A and B .. 84

Figure 33: Result of equi-join 𝐴 ⋈ 𝑁𝑎𝑚𝑒𝐵 ... 85

Figure 34: Similarity join result with string edit distance and threshold 3 86

 xiii

Figure 35: Example of datasets for spatial join .. 88

Figure 36: Modified tables 𝐴 and 𝐵 with hierarchical representation of the values in the location

attributes .. 89

Figure 37: Result of the query 𝐴 ⋈ 𝑡𝑒𝑑𝐶𝑖𝑡𝑦, 𝐴𝑟𝑒𝑎 ≤ 1𝐵 ... 90

Figure 38: Two sample temporal relations with interval temporal attributes 93

Figure 39: The result of the query 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑉𝑇 × 𝑇 𝑀𝑎𝑛𝑎𝑔𝑒𝑠𝑉𝑇 ... 96

Figure 40: The result of the query 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑉𝑇 ⋈ 𝐷𝑒𝑝𝑡𝑇𝑀𝑎𝑛𝑎𝑔𝑒𝑠𝑉𝑇 97

Figure 41: Excerpt of the valid time temporal relation 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑉𝑇 converted into non-temporal

relation 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 .. 98

Figure 42: Illustration of non-temporal relation Temperature and its aggregate time version

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝐴𝑇 .. 100

Figure 43: Sample data from two datasets describing two variables – average temperature and

average cloudiness. Observations are temporally overlapping both within and between datasets

... 101

Figure 44: Interval representation of time interval overlaps for 𝐴𝑣𝑔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 and

𝐴𝑣𝑔𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠 tables from Figure 43 .. 101

Figure 45: Example of a scenario with complete coverage, no intersection within relation, varying

interval length and mixed short and long reports.. 104

Figure 46: Example of a scenario with complete coverage, no intersection within relation, constant

interval length short reports .. 104

Figure 47: Illustration of high level strategies for temporal approximate join of two aggregate time

relations ... 106

 xiv

Figure 48: Schematic representation of high level view of the approaches for temporal approximate

join of two aggregate time relations.. 106

Figure 49: Example of applying BFL, Fernandez and Chow-Lin temporal disaggregation methods

to disaggregate annual series into quarterly .. 110

Figure 50: Example of applying the SAFE method .. 112

Figure 51: Comparison of two temporal disaggregation (BFL and Fernandez), polynomial (8th

degree) and SAFE methods to disaggregate annual (low frequency) series into quarterly (high

frequency) series ... 114

Figure 52: Comparison of two temporal disaggregation (BFL and Fernandez), polynomial (8th

degree) and SAFE methods to disaggregate triennial (low frequency) series into quarterly (high

frequency) series ... 115

Figure 53: Example of applying RS method to find values on each time unit 117

Figure 54: Sample ground truth and join tuples to illustrate tuple scale similarity score 118

Figure 55: Comparison of four similarity metrics .. 120

Figure 56: Behavior of the Canonical Cosine Similarity Norm Scaled metric for different weight

combinations ... 121

Figure 57: Execution time of each scenario .. 123

Figure 58: Relative distance quality measure versus number of parallel execution of multiple

pieces of one relation .. 124

Figure 59: Execution time versus number of parallel execution of multiple pieces of one relation

... 125

Figure 60: Relative distance quality measure versus number of parallel execution of multiple

pieces of one relation .. 126

 xv

Figure 61: Example of generated reports for the scenario 2 ... 127

Figure 62: Example of generated reports for the scenario 3 ... 128

Figure 63: RP curves for sigma 5 ... 130

Figure 64: PR curves for sigma 15 ... 131

Figure 65: Two variables at the time unit scale obtained from a Netlogo simulation 132

Figure 66: PR curves for the join of two variables obtained from Netlogo simulation 132

Figure 67: Example of generated reports for the variables obtained form Netlogo simulation with

report length 20 ... 132

Figure 68: Example of generated reports for the variables obtained form Netlogo simulation with

report length 100 ... 133

Figure 69: PR curves for the join of two variables obtained from Netlogo simulation in the case

when reports cover the whole relation lifespan without intersections for various report lengths

... 133

Figure 70: Example of disaggregation quality dependence on the nature of the data and the report

length (number of reports) .. 134

Figure 71: Example relations 𝑟 and 𝑠 for discussion of approaches for the aggregate join 137

Figure 72: The result of the equi-join, 𝑟 ⋈ 𝐹𝑟𝑜𝑚, 𝑇𝑜𝑠, of the two relations shown in Figure 71

... 137

Figure 73: The result of the left outer join, 𝑟⟕𝐹𝑟𝑜𝑚, 𝑇𝑜𝑠 , and right outer join, 𝑟⟖𝐹𝑟𝑜𝑚, 𝑇𝑜𝑠

... 138

Figure 74: The result of full outer equi-join, 𝑟⟗𝐹𝑟𝑜𝑚, 𝑇𝑜𝑠 ... 138

Figure 75: Example of normalization of the report 𝑠1𝑉𝑇 over the report 𝑟1𝑉𝑇 140

Figure 76: Example of normalization of a valid time report 𝑟 𝑉𝑇 over reports in 𝑠 141

 xvi

Figure 77: Normalized relation 𝑟𝑉𝑇 over 𝑠𝑉𝑇, 𝒩(𝑟𝑉𝑇, 𝑠𝑉𝑇), and 𝑠𝑉𝑇 over 𝑟𝑉𝑇, 𝒩(𝑠𝑉𝑇, 𝑟𝑉𝑇),

from Figure 71 .. 142

Figure 78: The result of the temporal alignment join, 𝑟𝑉𝑇 ⋈ 𝑇𝐴𝑠𝑉𝑇 , of the two valid time

relations shown in Figure 71 ... 143

Figure 79: Normalized relation 𝑟𝑉𝑇 over 𝑠𝐴𝑇, 𝒩(𝑟𝑉𝑇, 𝑠𝐴𝑇), from Figure 71 143

Figure 80: The result of stitching 𝑟𝑁𝑉𝑇 over 𝑠𝐴𝑇, 𝑠𝑡𝑖𝑡𝑐ℎ𝑟𝑁𝑉𝑇, 𝑠𝐴𝑇....................................... 145

Figure 81: The result of the temporal alignment join, rVT ⋈ TAsAT, of the valid time relation and

the aggregate time relation shown in Figure 71 .. 146

Figure 82: Illustration of types of user defined functions and their combinations to handle

difference cases of mutual position of several reports. The red reports are the ones whose time

interval we are interested to be unmodified. The blue reports are those for which the user functions

will be applied ... 148

Figure 83: The result of the left temporal alignment outer join, 𝑟𝑉𝑇⟕𝑇𝐴𝑠𝐴𝑇 , and right temporal

alignment outer join, 𝑟𝑉𝑇⟖𝑇𝐴𝑠𝐴𝑇, of the two relation shown in Figure 71 151

Figure 84: The result of the temporal alignment join, 𝑟𝑉𝑇⟗𝑇𝐴𝑠A𝑇, of the valid time relation and

the aggregate time relation shown in Figure 71 .. 152

Figure 85: The result of the intersect join, 𝑟𝐴𝑇 ⋈ 𝜃𝑠𝐴𝑇, of the two aggregate time relations shown

in Figure 71 ... 153

Figure 86: The result of applying 𝑡 user function to the inner join in Figure 85 153

Figure 87: A scenario of reports to illustrate the problem with intersect join 154

Figure 88: Illustration of relative overlap metric .. 155

Figure 89: Relative overlap join query with threshold 0.3 and the result of the query for the

aggregate time relations in Figure 87.. 156

 xvii

Figure 90: Illustration of 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓 metric ... 158

Figure 91: Hausdorff join query with threshold 0.2 and the result of the query for the aggregate

time relations in Figure 87 .. 159

Figure 92: The result of the left outer overlap join, 𝑟𝐴𝑇⟕𝑇𝑂𝑠𝐴𝑇 , and right outer overlap join,

𝑟𝐴𝑇⟖𝑇𝑂𝑠𝐴𝑇, of the two aggregate time relations shown in Figure 71 161

Figure 93: Example of two aggregate time relations for the illustration of the zoom out join

approach .. 163

Figure 94: “Zoomed out” version of the two relations from Figure 93 163

Figure 95: Inner zoom out join, 𝑟𝐴𝑇 ⋈ 𝑇𝑍𝑠𝐴𝑇, of the two aggregate relations from Figure 93

... 163

Figure 96: Example of an interesting scenario of two aggregate time relations for the zoom out

join .. 165

Figure 97: Result of the zoom out join of the two aggregate time relations from the Figure 96 166

Figure 98: Average execution time in seconds (log scale) versus the lifespan of relations in time

units ... 179

Figure 99: Average fusion cost (log scale) versus the lifespan of relations in time units 180

Figure 100: Average coverage rate versus the lifespan of relations in time units 181

Figure 101: Average cardinality versus the lifespan of relations in time units 182

Figure 102: Average granularity versus the lifespan of relations in time units 183

Figure 103: Illustration of join approaches. RO is the Relative Overlap method; HD is the

Hausdorff method, SAFE is the spread, aggregate, fill, extend method; Interpolation is the method

that is based on Polynomial interpolation or Spline; Ind-or means indicator 185

 xviii

PREFACE

During my PhD studies I have met many people who helped me along the way and I would

like to take this opportunity to thank some of them here.

First, and foremost, I would like to thank my advisor Dr. Vladimir Zadorozhny, for giving

me a chance to study and work under his supervision. For his patience, understanding and support.

For always believing in me even when I had doubts about myself. This dissertation would not be

possible without his guidance, encouragement and wisdom. I would like to thank Dr. Marek

Druzdzel, for many interesting classes that I enjoyed taking and for letting me have a workplace

in his DSL lab. I always felt at home and many people from the lab turned into my friends. I would

like to thank Dr. Konstantinos Pelechrinis and Dr. Nicholas Nystrom for taking time to be on my

PhD committee, and providing me with valuable feedback. I would like to thank Dr. Nystrom also

for his help and support with the Pittsburgh Supercomputer Center resources.

I am grateful to all the people that surrounded me in the School of Information Sciences.

The staff were always very helpful in answering any questions I had.

Last, but not least, I would like to thank my family. My parents, Galina and Pavel, my

sisters Tanya and Olga, and my wife Feng, for always being there for me, supporting me in

whatever I do and wherever it may take me. I dedicate this work to them.

1

1.0 INTRODUCTION

The amount of data available due to the rapid spread of advanced information technology is

exploding. At the same time, continued research on data integration systems aims to provide users

with uniform data access and efficient data sharing. The ability to share data is particularly

important for interdisciplinary research, where a comprehensive picture of the subject requires

large amounts of data from disparate data sources from a variety of disciplines. While there are

numerous data sets available from various groups worldwide, the existing data sources are

principally oriented toward regional comparative efforts rather than global applications. They vary

widely both in content and format. Such data sources cannot be easily integrated and maintained

by small groups of developers.

In this dissertation, I address the challenges in developing a large-scale information

integration infrastructure that can be utilized as an efficient tool to support a wide range of

interdisciplinary research. The solution that I propose is to engage a large community of researches

to share their data, collectively resolve the data heterogeneities, and harmonize their efforts in

data reliability assessment and data fusion. I introduce Col*Fusion (Collaborative data Fusion) –

an advanced infrastructure for systematic accumulation and utilization of global heterogeneous

datasets based on the collective intelligence of research communities. Col*Fusion efficiently

distributes the task of data integration among the data contributors and enables continuous growth

of integrated repository in a Wikipedia-like manner.

2

Over the last several decades there has been much research on the various components of

digital data curation infrastructure. However, there has been little work on collecting all of the

components into an integrated end-to-end system. This work constitutes the first attempt to

systematically utilize state of the art as well as to develop novel techniques to implement a global-

scale high-performance data integration infrastructure based on collective intelligence.

A major part of the research is focused on historical data integration, performed in

conjunction with the Collaborative for Historical Information and Analysis (CHIA)

(http://www.chia.pitt.edu/), to provide an immediately valuable test-bed for research in

crowdsourcing information integration. The impact on historical research will be significant both

nationally and internationally, because CHIA currently involves nine different research groups

throughout the U.S. and Europe. Historical data integration is an initial test-bed for Col*Fusion.

The proposed information integration infrastructure is general enough to apply to any fields

involving large bodies of structured and unstructured textual and numerical data.

1.1 MOTIVATING EXAMPLE

Interdisciplinary research requires data produced by different research group and stored in separate

datasets. Consider the following hypothetical question: “Is there a correlation between population

and number of disease cases in United States?”. Also consider four datasets that might be

collected/produced by several independent researchers:

x D1(State, Year, Month, Disease, Number of disease cases) – total number of disease

cases in USA aggregated by state, year and month; available as a database dump file.

3

x D2(State, Abbreviation) – mapping between USA state names and their abbreviations,

e.g. (PA, Pennsylvania); available as a CSV file.

x D3(State, Year, Month, Country, Precipitation) – precipitation amount in some USA

states aggregated by year and month; available as an SPSS file.

x D4(Population, Year, State*) – population in some USA states aggregated by year and

state; available as a STATA file.

The datasets are heterogeneous in many ways: file format, schema and values, e.g. even

though variable name is State in the last dataset, actual values are abbreviations of states.

Figure 1 shows a number of steps a researcher would need to do to answer the above

question. The required data are stored in D1 and D4, however they cannot be directly merged based

on State and Year variables, because State in D4 is represented as a state name abbreviation. In

general, some of the datasets might not even share any common variables. Meanwhile, they might

be related via other datasets. In the above example, the researcher would have to either edit State

variable in D1 or D4 or merge them via other dataset, e.g. D1-D2-D4.

 Most of the existing data repositories focus only on datasets level metadata (variables

metadata can be provided in form of codebook, that cannot be processed automatically). Therefore,

interoperability between repositories is reduced to only sharing datasets level metadata or

searching for datasets based on datasets level metadata with no support for search of specific

variables. In addition, when datasets are downloaded, without variable level metadata it can be

hard to know what exactly each variable measures, e.g. is it approximate, is it aggregate, what

measure units are, etc.

4

Figure 1: Steps required to answer data-intensive interdisciplinary research questions

1.2 GRAND VISION

We envision a world in which all datasets are publicly available (with appropriate permissions and

licensing) and access points to those datasets are not spread over hundreds of different digital

libraries and repositories, government and personal websites, etc. The process of data sharing

could be as simple as visiting a web site and doing a couple of mouse clicks with no time

consuming data preparation and transformation to fit strict format requirements. The data could

also be shared automatically from any data manipulation software.

Imagine being credited and recognized for the data you share and seeing your datasets used

and/or being evolved over time. The datasets you share are not getting lost among other datasets

but instead they are automatically linked with other datasets (even from other disciplines) while

preserving data autonomy. The data linkage could bring you new interdisciplinary research

questions and new collaboration that you did not realize at the time you created your data.

Instead of searching for locations of useful datasets you just look for the data you are

interested in, e.g. the variables that you want to analyze. Such search does not merely results in a

list of links to the locations of potentially relevant datasets, but instead the result includes the data

5

items that you are interested in. Moreover, if the data that you need originally located in a number

of distinct datasets, the resulting dataset will automatically integrate all those datasets.

Any dataset you look at will also include comprehensive metadata on both datasets level

(e.g., title, description, authors, etc.) and variable level (a short description explaining what it

stores, the data type, measuring unit, etc.). The dataset will also be provided with provenance

information that would include any actions performed on the dataset since it was created. In case

of integrated dataset, provenance information would describe how the integration was performed

(e.g. which datasets were used, which variables were used, any transformations that were applied,

etc.). If the datasets were used in any published work, you would be able to obtain and review a

list of relevant papers. You would be able to immediately explore and understand the dataset by

looking at data visualizations (graphs, maps, etc.) created and shared by other users. You could

also reuse the results of previous research, such as code to analyze the datasets, statistical model,

etc.

Imagine if you could join other researchers currently working on datasets that you are

interested in and directly communicate with them while working on those datasets. Moreover, you

could run complex data analysis algorithms and/or write your own data analysis/visualization

program collectively, without the need to download the datasets to your local machine and instead

be able to utilize the power of the high-performance cloud computing. After that you could easily

share your analysis with the research community. For complex tasks that are out of your

competence, you could also hire (for money or other rewards) domain experts, programmers, data

analysts, etc.

You could write papers in which all charts are interactive via simple user interfaces and

those papers would be published to journals allowing other researchers to try different parameters

6

to better understand your paper. In such papers, the data and analysis code become a major part of

the paper and not just something nice to have. This would allow other researchers to validate your

studies.

Imagine that all features explained above are implemented in a simple to use web

application that requires neither complicated installation nor considerable learning efforts. Below

I will elaborate on the approach and infrastructure that implement the above vision.

1.3 OBJECTIVE

In this dissertation, I present my work towards the grand vision that I explained above. I propose

novel advanced infrastructure for large-scale data integration based on crowdsourcing techniques.

In particular, I propose novel architecture and algorithms that answer the following questions:

x How to store dynamically incoming heterogeneous datasets efficiently to enable both

data integration and data autonomy.

x How to combine machine learning algorithms and human expertise to perform efficient

schema alignment and maintain relationships between the datasets.

x How to provide efficient data exploration functionality without requiring users to write

complex queries.

x How to perform approximate information fusion when exact match does not exist.

I design and develop Col*Fusion system that implements the proposed advance data

integration infrastructure as well as other functionality to realize the grand vision.

The proposed architecture is based on the crowdsourcing techniques and users of the

Col*Fusion play central role in the goal of creating high quality large scale integrated data

7

repository. Meanwhile, I am not focusing on specific crowdsourcing related issues, such as how

to provide incentive for people to contribute their datasets.

1.4 ORGANIZATION OF THE DISSERTATION

The reminder of this dissertation is structured as follows. Chapter 2.0 covers the necessary

background information and literature review. In Chapter 3.0 I describe proposed approaches and

algorithms to store, virtually integrate and explore heterogeneous datasets. Chapter 4.0 covers

implementation details, introduces Col*Fusion system and reports on its real life usage. Chapter

5.0 addresses the problem of fusing datasets during ad-hoc join queries. I summarize my work and

conclude with a discussion of possible future work in Chapter 6.0.

8

2.0 BACKGROUND AND RELATED WORK

In this chapter I describe main concepts that are relevant to the proposed work and that are either

used as building blocks of the proposed infrastructure or serve as motivation. For each concept I

also provide literature review and try to contrast related work to the proposed work.

2.1 DATA INTEGRATION

The main goal of data integration is to provide a user with unified view of a number of autonomous

and heterogeneous data sources [113]. The challenge of data integration has been actively explored

for more than 30 years beginning with the Multi-Base System [111]. Resolving data

heterogeneities has been the focus of active research and development [18][63][28][79]. Data

integration is a complex process consisting of several activities such as schema matching, record

linkage, querying and search over integrated sources, as well as keeping track of lineage and

provenance. There are numerous tools for efficient mapping of data sources in a homogenous

schema with proper data cleaning, standardization of names, conversion of data types, duplicate

elimination, etc.

There are many approaches to design and implement data integration system that address

some or all of the challenges mentioned above, but broadly speaking they can be split into two

groups:

9

x Top-down approach

� Data Warehousing (DW)

� Virtual Integration (VI), also called View-based Data Integration

x Bottom-up approach

� Peer-to-peer (P2P)

� Dataspaces and Pay-as-you-go data management

� Linked Data

2.1.1 Top-down approaches: Data Warehousing and Virtual Integration

A well-established top-down approach to data integration varies from data warehousing to virtual

databases architectures [55] and relies on designing a pre-defined global schema. The global

schema is the unified view that data integration system exposes to its users and based on which

users post queries to the system. Depending on how data integration system handles data sources

and execute queries, top-down approach can be divided into two approaches: Data Warehousing

and Virtual Integration.

The main limitation of top-down approaches is the global schema. It is problematic to

develop and maintain a predefined schema for many data integration scenarios, especially if the

data sources are added dynamically. Another limitation of the top-down approach is that it usually

requires a centralized management. When data from several domains need to be integrated, the

database administrator might need to have domain knowledge from all domains and/or it will be

impossible to define a global schema and the other parts of the data integration system.

10

2.1.1.1 Data Warehousing Approach Traditionally a data warehouse is defined as a tool for

decision support. For example, Inmon [92] defines data warehouse as “subject-oriented, integrated,

time-varying, non-volatile collection of data that is used primarily in organizational decision

making” and Chaudhuri and Dayal [37] define data warehouse as “a collection of decision support

technologies, aimed at enabling the knowledge worker (executive, manager, analyst) to make

better and faster decisions”.

Figure 2 shows typical data warehouse architecture (the figure is taken from [37]).

Figure 2: Data Warehousing Architecture

Defining a data warehouse involves two main tasks [55]:

x Performing target database schema and physical design,

x Defining a set of extract/transform/load (ETL) operations.

11

Data from all the data sources is loaded into the target database periodically (e.g. every

night) via the ETL process. Designing the ELT process might not be very straightforward as this

is the stage where data source heterogeneity has to be resolved.

DW approach has two main applicability limitations:

x Because the data are loaded into the target database periodically, at a time of the query,

DW might have obsolete data.

x Data warehouses usually store aggregated data, therefore some data are lost during

transformation process.

On the other hand, DW approach has several advantages:

x Queries over the warehouse don’t put any execution load on the data sources since all

the data reside in the DW.

x DW supports complex, interactive, exploratory analysis of very large data (OLAP [37])

A data warehouse approach can be easily implemented on top of any of the popular

database management systems (e.g. Oracle or Microsoft SQL Server). Examples of data

integration in WH in the literature include [33].

The data warehouse approach can be used when all data sources are known and integrated

dataset will be used mostly for archival purposes or complex queries for exploratory analysis over

[historical] records. It should not be used when integrated data need to be always up to date with

all data sources.

2.1.1.2 Virtual Integration Approach Virtual data integration approach is similar to the data

warehouse approach in that they both require a global schema. In the virtual data integration

approach, however, the global schema is usually called mediated schema and it is “not

12

materialized” (hence it is virtual). “Not materialized” means that data remain in the data sources

and accessed at the query time [55].

Simplified virtual integration architecture is presented on Figure 3 (the figure is taken from

[55]). When a user posts a query over the mediated schema, the virtual integration system translates

the query in terms of data sources and accesses those data sources that have required data. In order

to do that the system needs to have enough information about each data source. Thus the key

component of the virtual data integration approach is the source descriptions that specify the

properties of the sources that the system needs to know [115] (Schema mappings are the major

part of the source description, see more on Schema mappings in Section 2.1.3).

Figure 3: Simplified virtual data integration architecture

13

To address the source heterogeneity problem, each source is associated with a wrapper that

is responsible for communication with that data source. The communication includes posting

queries to the data source, receiving answers, and possible applying some basic transformation

[55]. A number of works has been done on Web data integration and wrapper/mediator

architectures to access heterogeneous Web data sources [194][192][193].

Virtual data integration has several major applicability limitations:

x Complex, data intensive queries cannot be executed efficiently:

� The data are not loaded into a central repository, but accessed at the query

execution time

� Data transformations happen at the query execution time

� Complex query plans – harder to optimize

x At any time, any data sources might become unreachable.

Virtual data integration approach has several advantages though:

x Result of a query posted over mediated schema will always have up-to-date data with

the data sources because data are pulled from sources during query execution.

x The relationships between mediated schema and data sources are explicitly stated and

not hidden inside a particular implementation (e.g. ETL operations).

x Depending on the schema mapping language, new resources can be added relatively

easily.

Examples of data integration systems that uses virtual data integration approach include

TSIMMIS [72], Garlic [34], Information Manifold [107].

Virtual data integration approach should be used when query results cannot have obsolete

data and when queries are not data intensive.

14

2.1.2 Bottom-up approaches: Peer-to-peer, Pay-as-you-go, and Linked Data

As shown above, constructing a queryable global schema is one of the major challenges in getting

a data integration system deployed. The bottom-up approach doesn’t require a global schema and,

by design, supports seamless integration of new data sources. Below I discuss three types of

bottom-up approaches: Peer-to-peer, Pay-as-you-go, and Linked Data.

2.1.2.1 Peer-to-peer approach Peer-to-peer integration systems [1][19][104][82] were inspired

by Peer-to-Peer file sharing systems. The main difference from previously reviewed approaches is

that they drop requirement for a single unified view, allowing queries to be posted over any sources

schema. P2P data integration can be understood as a generalization of view based data integration

with more than one global schema.

P2P architecture (Figure 4 is taken from [55]) consists of on a set of peers (data sources)

and two kinds of mappings: storage descriptions and peer mappings [55]. Each peer has a schema,

called peer schema, which is exposed to other peers. Peer schema is a logical schema; the data are

stored in a database, called stored relations. The storage descriptions specify how to map the data

from stored relations to peer schema. In fact, some peers can be complex data management systems

(e.g. can be a warehouse) themselves, while some peers might not have any stored relations and

act just as a mediated schema.

Peers specify peer mappings that relate their peer schemas. Every peer needs to provide

semantic mappings only to a set of neighbors and thus form a network of data sources. More

complex integrations emerge as the system follows semantic paths in the network [1]. The

transformation, schema mappings, record linkage and all other data integration challenges are

address at the peer’s level instead of a global level.

15

Examples of P2P integration systems include BestPeer++ [40], Piazza [81], PeerDB [137].

Figure 4: Simplified Peer-to-peer data integration architecture

The limitations and disadvantages of P2P and CDSS systems are similar to virtual data

integration approach:

x Because the data are not pulled into one repository, query processing is (a) more

completed and (b) slower to execute.

x Because there is no global schema, search need to be performed based on peer’s

schema. Some work has been done in the area of keyword and top-k search over

databases [88, 171, 182]. However, because of the high complexity heuristics are used

which might result in not complete data.

x Because there might be several ways to answer a query system need to deal with the

problem of data completeness and trust to peers.

16

2.1.2.2 Pay-as-you-go approach One of the major limitations for all the approaches reviewed so

far is long time to setup before any services can be provided. To address the problem, dataspace

systems with pay-as-you-go approach were proposed [83][69][125]. The main idea behind this

approach is stated by Halevy as “…offer some services immediately without any setup time, and

improve the services as more investment is made into creating semantic relationships” [84].

As this approach is relatively new, not many systems were developed yet. Google Fusion

tables [73] and OpenRefine [181] systems are examples of pay-as-you-go data integration. They

are cloud-based services for data management and integration thus require no installation. Users

starts to work with their data without prior configuration and can integrate their data with other

data available online on demand.

The disadvantages and limitation of this approach:

x If data integration happens on demand, then the issue of trust in data sources is more

challenging here because the system might not have enough information to assess it.

x End user might need to know how to integrate often unfamiliar to him or her resources.

2.1.2.3 Linked Data approach All of the approaches above are focused on data integration on a

small scale. For example, an enterprise that have a number of operational databases might have a

task to integrate them; or a group or researches want to integrate their datasets; etc. As the result

we have isolated clusters of integrated data sources. Much bigger goal is to create a global data

space where any data instance can be reached. Semantic Web with Linked Data principles has that

goal: “The Semantic Web isn’t just about putting data on the web. It is about making links, so that

a person or machine can explore the web of data. … With linked data, when you have some of it,

you can find other, related, data.” [120]

To manage globally distributed data, Semantic Web infrastructure uses Resource

17

Description Framework (RDF) as a data model [7]. The RDF data model is designed for the

integrated representation of information that originates from multiple sources, is heterogeneously

structured, and is represented using different schemata [86]. Every thing is called a resource in

RDF and represented as a number of triples. Each triple consists of subject (refer to the thing itself,

e.g. id of the row in the relational model), predicate (refer to the name of the property of the thing,

e.g. could be thought of as an attribute name of a record in relational model), object (refer to the

value of the property, e.g. the value of an attribute of a record in the relational model). Two types

of RDF triples can be distinguished:

x Literal Triples have a simple data type (e.g. string, number, etc.) as the object and they

describe properties of the resource.

x RDF Links describe the relationships between two resources and can be though of as

foreign keys in relational model.

It is convenient to view the triples as a directed graph in which each triple is an edge from

its subject to its object, with the predicate as the label on the edge.

In the past few years this approach has been used in publishing government data sets.

Examples include www.data.gov, linkeddata.org. However simply following the Linked Data

principles to publish research data would not ensure its reusability due to many reasons (data

provenance, quality, credit, attribution and reproducibility). For example, publishing data out of

context would fail to reflect the research methodology and respect the rights and reputation of the

researcher [65].

This approach might look similar to the Virtual Data integration approach with the

difference that the “mapping” is on the record level, instead of the schema level. Therefore, the

limitations are also similar:

18

x Complex query might be slow due to the fact the all data are distributed globally.

x At any time, any data source can go offline.

To conclude, I would like to state that each data integration approach has its pros and cons,

however all of them require some kind of data administrators either to design a target or mediated

schema, or create ETL pipeline or schema mappings, etc. With a number of available data sources

and the size of them constantly growing data integration cannot be manual, few humans’ effort.

Even though automated algorithms based on machine learning techniques are developed, as noted

by Halevy they are not foolproof [84]. Therefore, there is a need for a new approach.

2.1.3 Schema Matching and Schema Mapping

An important task in any data integration system (no matter what architecture is used) is to align

schemas of the data sources that need to be integrated. The schema alignment process is usually

done in two steps [1]:

x Schema matching step – identification of semantically related attributes from data

sources’ schemas. Examples include “attribute name in one source corresponds to

attribute title in another”, and “location is concatenation of city, state, and zip code”.

x Schema mapping step – derivation of rules that specify how to translate data across

schemas. Mappings are typically structured queries written in a language such as SQL.

In practice, creating the matches and mappings is not a trivial task because it requires

understanding of the semantics of the schemas of the data sources and thus consumes quite a bit

of the effort in setting up a data integration application. Schema matching and mapping is a well-

studied topic in the database, machine learning, and Semantic Web communities (see [149][56]

for surveys). Various solutions on semi-automatic schema mapping range from schema-only string

19

similarity techniques to rule-based methods to application of machine learning algorithms, which

also involve data instances (e.g. Label Propagation [172]). Modern schema matchers combine

output from multiple sub-matchers [172][130][150]. However, the task is inherently a heuristic

one and there is no algorithm that will take two arbitrary schemas and flawlessly produce correct

matches and mappings between them.

2.2 KEYWORD SEARCH: INTEGRATION ON DEMAND

Another group of related works involves keyword search in single-database (e.g., BANKS [21],

DBXplorer [5], Discover [88]) and peer-to-peer contexts (e.g., [131][197]).

Keyword search allows users to post a query as a set of keywords which match schema or

data values without specifying which sources to look at. Even though different approaches to

keyword search use different techniques, at the core they all deal with the problem of searching a

graph to find all sub-graphs that satisfy certain properties. The problem is NP-hard and known to

be exponential in the query size, thus making query execution prohibitively expensive [13]. To

improve query performance, different heuristics have been proposed. For example [95] proposes

to reuse and combine computation across queries.

A number of works are available on top-k query processing (e.g., [30][116][178][170]) that

returns only top-k result according to some scoring function. Another way is to produce answers

that can be generated quickly and then to provide users with query forms that characterize the

unexplored portion of the answer space [13].

20

2.3 CROWDSOURCING IN DATABASES AND DATA INTEGRATION SYSTEMS

An important component of the architecture that I propose exploits the advantages offered by

crowdsourcing applications and collective intelligence. Successes of crowdsourcing systems, for

example Wikipedia and Linux, inspired the idea to apply crowdsourcing for large-scale data

integration. So far in data integration systems, crowdsourcing was used mostly as external resource

to perform separate work for helping answering queries [169][70][140][141], checking schema

mapping [128][16][142], or for entity resolution [183][50]. However, to the best of my knowledge,

none of existing works make crowdsourcing techniques as a central and internal component for

the advanced data integration.

In any crowdsourcing environment quality verification and assurance operations are

required. The amount of research in the area of data conflict resolution and querying inconsistent

data is considerable. See [23][20] for a comprehensive review of the current state of the art.

Conflicts can be resolved using metadata about data source accuracy and freshness, or exploiting

dependencies between data sources, where information from one source can be re-used in another

source. Data inconsistency as a key integrity constraint violation was considered in [4]. Consistent

query answering that ignores inconsistent data, thereby violating integrity constraints, was

introduced in [31]. This approach is related to more recent research on query transformation for

consistent query answering [186]. An alternative approach is based on inconsistent database repair,

producing a minimally different – yet consistent – database that satisfies integrity constraints [25].

21

2.4 RELATED DATA INTEGRATION/CURATION SYSTEMS

While much research addresses different data integration subtasks, to the best of my knowledge,

no existing system implements all stages of data integration processes in an advanced

infrastructure based on collective intelligence. The closest related work is Orchestra with Q

systems [94][175][170][93][172][95]. Orchestra is a Collaborative Data Sharing Systems focused

mostly on data exchange and update reconciliation similar to version control systems. With Q

system users can post keyword queries to the system and as the result obtain “best” k records. To

find the best records, authors propose a machine-learning algorithm to incorporate users’ feedback

(in form of like and dislike votes) into computation of schema mapping confidence [170]. A

significant disadvantage of the Orchestra system is its long set-up time. Another system, Data

Tamer [166][77][173], showed that combination of machine learning techniques and

crowdsourcing allows to significantly reduce the amount of work and time needed to perform data

curation tasks. However, Data Tamer workflow assumes a specific customer with number of

datasets with a dedicated Data Tamer Administrator and crowdsourcing is limited to the set of

domain experts. Both Orchestra and DataTamer don’t have a goal to create a global-scale

interdisciplinary integrated repository and instead of supporting true crowdsourcing architecture

in a Wikipedia-like manner they utilize either domain experts or limit users to actions to only a

few functions.

22

2.5 DATA REPOSITORIES

A number of tools (e.g., DataUp [168]) and data repositories (e.g., ONEShare [168], Dataverse

Network [106], DataDryad [58], DSpace [165], Dash [46]) were developed to facilitate data

sharing and preservation processes. Usually a data repository is a cloud service with a web

interface that allows users to submit data via a web browser.

Advantages of data repositories include ease of use, persistent storage, public distribution

and recognition (through citation via unique dataset identifier), and search for datasets based on

metadata. Some repositories provide visualization and statistical analysis tools.

The disadvantages of current approaches include repository isolation and dataset isolation

within a repository. The former disadvantage is related to the fact that some repositories are created

only for specific research areas, journals or universities. Therefore, users would need to know

where to find the dataset they are interested in and where to submit their dataset. Dataverse

Network and Databib [48] attempt to solve the problem by allowing users to search within a set of

repositories but on dataset level metadata only: the first one does it automatically as all Dataverse

networks are connected, and the second one allows users to create and curate records that describe

data repositories that users can search. Also Open Archives Initiative [110][139] has developed

OAI-PMH [138] specification for repository metadata harvesting which provides low-barrier

mechanism for repository interoperability.

However, the latter disadvantage – dataset isolation – has not been resolved in any of the

existing data repositories. Most existing data repositories do not actually process the data files

submitted to them and thus cannot establish any relationships between datasets on a variable level.

To the best of my knowledge, the problem of efficient and reliable global-scale information

integration has not been systematically addressed.

23

3.0 ADVANCED DISTRIBUTED DATA INTEGRATION INFRASTRUCTURE UNDER

MAGNIFYING GLASS

In this chapter I describe in detail some of the most important components of the infrastructure

that addresses the research questions mentioned in Section 1.3. Development of each component

is based on the reviewed literate in Section 2.0. Where possible I explicitly state how my solutions

differ from existing approaches and provide reasons why I do it that way.

First of all, the infrastructure should allow users to submit their datasets with some dataset

level metadata. The dataset level metadata includes title and description of the dataset so that other

users can browse the repository. We store dataset level metadata in a source_info table. The

schema for the source_info table can be designed without knowing in advance what kind of data

users are going to submit, since it stores general information about the dataset. More interesting

question is how to ingest and store heterogeneous datasets, whose schema vary and is unknown in

advance. I developed two approaches for storing heterogeneous datasets, which I discuss in Section

3.1. Once the datasets are stored successfully, they need to be integrated. Section 3.2 discusses the

virtual integration model that I developed based on notion of discovering and maintaining

relationships between datasets (similar to P2P approach from Section 2.1.2.1) instead of actually

transforming and merging all datasets into one integrated dataset (e.g. Data Warehouse from

Section 2.1.1.1). Finally I discuss novel techniques to search throughout integrated datasets in

Section 3.3.

24

3.1 STORING HETEROGENEOUS DYNAMICALLY INCOMING DATASETS

Initially, my proposed infrastructure does not have any data and one of the functionality that it

provides to its users is the data ingest. Data ingest allows users to submit their datasets to the

system. The datasets that users have are heterogeneous with respect to the following three features:

x File format – different file types.

x Schema – attributes that refer to the same entity may have different names and types.

x Values – values that refer to the same entity have different representation.

In order to handle file format heterogeneity, we need to develop extractors that extract data

from different files to a common format. A separate challenge is how to store datasets with various

schemas.

Datasets are generated independently and the intent of data usage in various contexts is

unknown at the system development time. Designing strict target schema and requiring users to

transform their datasets to conform to that schema is not a feasible solution. Strict target schema

will inevitably result in data loss during transformation and inability to store some datasets.

Below I discuss two alternative approaches. For the explanation of the proposed

approaches I consider the two datasets D3 and D4 that were introduced in the Section 1.1 and are

shown on Figure 5 and Figure 6 respectively.

25

.

Figure 5: Dataset D3

Figure 6: Dataset D4

3.1.1 “One table” approach

One way to store the datasets without knowing their schemas in advance is by turning them into

key-value pairs and then storing those pairs in one table. A key is an attribute name and value is

the value of that attribute. Each key-value pair is annotated with a dataset identifier. To reconstruct

the original table, each pair is also annotated with tuple-id. Thus, each tuple in the resulting table

has four elements (id, i, key, value), where id is the dataset id, i is the tuple-id, key is the attribute

name and value is the attribute value of i-th tuple. The algorithm that converts input dataset to the

one table format is called CONVERTTOONETABLESTORAGE and is shown in Algorithm 1.

Name:�autogenerated Descrip on:�based�on�column�name Average�Confidence:�1

0.00 0.000.33 1.00

Name:�autogenerated Descrip on:�based�on�column�name Average�Confidence:�1

0.00 0.000.33 1.00

26

Algorithm 1: CONVERTTOONETABLESTORAGE(S, D, id). Input: Schema S, list of tuples D, id

of the datasets id. Output: List of tuples in one table format.

1: R ← empty list
2: for i = 0 to LENGTH(D) do
3: for j = 0 to LENGTH(S) do
4: key = S[j]
5: tuple = D.GET(i)
6: value = tuple[j]
7: R.APPEND((id, i, key, value))
8: end for
9: end for
10: return R

The examples of applying CONVERTTOONETABLESTORAGE to datasets D3 and D4 are

shown on Figure 7 and Figure 8 respectively. Both datasets after transformation have the same

schema and can be easily stored in one table.

The “one table” approach is simple and intuitive; however, it suffers from several

disadvantages. First disadvantage is that large number of duplicate values that need to be stored

results in storage overhead. Each attribute of the schema is stored repeatedly for each value of that

attribute. In addition, dataset id and tuple-id need to be stored with each key-value pair. As the

result, the required number of cells to store a table is four times larger that the original table (since

additional three pieces of information are stored for each value). We could decompose the table

and store attribute names in a separate table, but then it would not be a “one table” approach and

would require an expensive join operation.

27

Figure 7: Example of dataset D3 converted into one table format

Figure 8: Example of dataset D4 converted into one table format

The second disadvantage is that if we want to show the whole table back to the user, we

would need to convert the data from key-value pairs back to the original view. We found that this

operation introduces additional overhead. Algorithm 2 shows CONVERTFROMONETABLESTORAGE

algorithm that converts tuples from one table format to the original relational format.

28

Algorithm 2: CONVERTFROMONETABLESTORAGE(S, Rs). Input: Schema S, list of tuple in “one

table” format for one dataset sorted by tuple-id Rs. Output: List of tuples in one table format.

1: A ← empty list
2: numAtt = LENGTH(S)
3: j = -1
4: resTuple = () //empty tuple
5: for i = 0 to LENGTH(Rs) do
6: j = j + 1
7: tuple = Rs.GET(i)
8: resTuple[j] = tuple[3] //3 is the index of the value in the tuple
9: if j = numAtt – 1 then
10: A.APPEND(resTuple)
11: resTuple = ()
12: j = -1
13: end if
14: end for
15: return A

Third disadvantage of the “one table” approach is indexing. The index on that table will

grow fast, which will impact the lookup performance.

3.1.2 “A database per dataset” approach

Another way to store heterogeneous datasets is to store them separately and maintain system-wide

catalog with all the required metadata that will allow system to operate. “A database per dataset”

approach does exactly that - each dataset is stored in a separate database.

A dataset might actually be a collection of two or more data tables that are strongly related

to each other. For example, an excel file with several sheets or a relational database with several

tables, where some sheets/tables refer to other sheets/tables. “A database per dataset” approach

naturally supports this model and provides a way to keep the related data tables together and to

form a namespace.

29

This approach is intrinsically distributed since it allows us putting the data on different

machines. This architecture is similar to Hadoop Distributed File System [162] where one node,

called namenode, maintains all the metadata information and knows where a particular dataset is

stored. The nodes that store the actual data are called datanodes. In my proposed architecture the

namenode is called metadata node and the datanodes are also called datanodes.

The minimum metadata information that needs to be maintained for each datasets is the

connection information to the database that stores it. Additionally, storing variable-level metadata

(such as name, description, type, etc.) from all datasets in the metadata node will allows us to

establish relationships between datasets, as explained in Section 3.2.1.

Figure 9: “A database per dataset” architecture with one metadata node and many datanodes.

Metadata node stores connection information to the databases that store the data on datanodes

Figure 9 shows a simplified configuration of the “A database per dataset” approach for

storing the datasets from the motivation example in Section 1.1. The dataset D1 is stored in database

D1 and the dataset D2 is stored in database D2 on the datanode 1, whereas the dataset D3 is stored

in database D3 and dataset D4 is stored in database D4 on the datanode 2. The metadata node stores

30

only metadata for all datasets such as titles, descriptions, table names, variable names and

connection information for the databases on the datanodes.

Compared to “One table” approach, this approach does not require any transformation of

the dataset and has no storage overhead due to the repetition. The only overhead is the time to

create new databases and tables for new datasets, however this only needs to be done once and it

is relatively inexpensive operation. In addition, individual databases can be easily replicated on

several nodes to ensure high availability in case of node failures.

The metadata node is the single point of failure in this architecture. If the metadata node

goes down, the whole system cannot operate even though the data are available on the data nodes.

There are several ways to ensure high availability even in case of metadata node failures. For

example, a secondary metadata node can run on a different machine that will keep up with the

current state of the main metadata node and be ready to substitute it in case of failure.

Based on the advantages and disadvantages of the two approaches discussed above, I

selected the “A database per dataset” approach as the storage solution for the heterogeneous

datasets in the proposed infrastructure. The rest of the document assumes that we use the “A

database per dataset” approach.

The proposed solution for storing previously unknown heterogeneous datasets can be used

for archival purposes as a data repository similar to the existing ones reviewed in Section 2.5.

Since we are interested in creating an integrated repository, in the next section I elaborate on data

integration methods.

31

3.2 INTEGRATING DATASETS

As explained in the previous sections, the datasets are stored in separate databases and possibly

distributed among several machines. Such setup is similar to P2P system where each database is a

peer. In contrast to P2P systems, my infrastructure implements a metadata node that maintains

information about all datasets in the system. The next step is to integrate those datasets.

Note that since we do not know the context or all scenarios of how the datasets might be

used we would like to preserve datasets autonomy that would allow them to evolve independently

while maintaining connection to other datasets. In Section 3.2.1 I elaborate on the process of

discovering how datasets are related to each other. In Section 3.2.2 I describe how the information

about relationships between datasets is represented. In Section 3.2.2.2 I present conceptual and

physical models that reflect how relationships are maintained.

3.2.1 Discovering relationships

In order to integrate datasets, we need to apply schema matching and schema mapping algorithms

for all pairs of the datasets in our repository. I call processes of schema matching and schema

mapping as relationship discovery. The relationship discovery process between two datasets

results in the information that tells us how those two datasets are related to each other. I call that

information a relationship. I elaborate more on the relationship model in the Section 3.2.2.

Currently a relationship between datasets is established only based on linguistic similarity

between variables’ metadata (such as variable name or description). For example, Figure 10 shows

an example of a relationship between two datasets 𝐷ଷ and 𝐷ସ based on same names of the two

variables in both datasets. The schema matching occures between 𝐷ଷ. 𝑌𝐸𝐴𝑅 and 𝐷ସ. 𝑌𝑒𝑎𝑟, and

32

𝐷ଷ. 𝑆𝑇𝐴𝑇𝐸 and 𝐷ସ. 𝑆𝑡𝑎𝑡𝑒. The schema mapping results in an equality operation, i.e. 𝐷ଷ. 𝑌𝐸𝐴𝑅 =

𝐷ସ. 𝑌𝑒𝑎𝑟, and 𝐷ଷ. 𝑆𝑇𝐴𝑇𝐸 = 𝐷ସ. 𝑆𝑡𝑎𝑡𝑒. The values 0.33, 0.00 and 1.00 are the data overlapping

values that will be described in the next section together with more details on what metadata

constitutes a relationship model.

Figure 10: Automatically discovered relationships between two datasets 𝐷ଷ and 𝐷ସ based on

same names of the two variables in both datasets

As it was mentioned in the Section 2.1.3, many different schema matchers that incorporate

multiple features and use advanced machine learning algorithms have been developed in recent

years. Thus, I have developed an extendable architecture that enables easy way to utilize different

schema matching and schema mapping tools.

As noted in [83], automatic schema mapping is often not foolproof. Therefore, I propose a

novel approach combining automatic relationship discovery with crowdsourcing techniques. In

addition to submitting datasets, users can provide feedback on automatically discovered

relationships and/or create relationship manually. The feedback is provided in terms of confidence

values ranging from 0 to 1 that reflect users’ belief that relationships hold. When creating new

relationships, users have to identify schema matching and specify schema mapping manually.

33

Schema mappings can be more complex than simple equality operation and may involve

data transformation performed automatically or defined by users. An automatic transformation is

based on variable metadata or can be selected by users from predefined list of transformations. For

example, consider date conversion from DD-MM-YYYY to MM-DD-YYYY format, or

measurement unit transformation from miles to kilometers. A user-defined transformation is either

a mathematical or string manipulation expression on datasets variables, e.g. CONCAT(street, city,

state) to concatenate street, city and sate values into one value, or definition of correspondence

tables (I call them synonyms transformation). Figure 11 shows an example of the synonyms

transformation applied to the 𝐷ଷ. 𝑆𝑇𝐴𝑇𝐸 and 𝐷ସ. 𝑆𝑡𝑎𝑡𝑒 variables. The transformation defines

correspondence table between US state’s full name and its two letter abbreviations.

Figure 11: Example of synonyms transformation between 𝐷ଷ. 𝑆𝑇𝐴𝑇𝐸 and 𝐷ସ. 𝑆𝑡𝑎𝑡𝑒 variables.

The transformation defines correspondence table between US state’s full name and its two letter

abbreviations

One disadvantage of synonyms transformation appears when there is a large number of

distinct values that are not matching. Especially if those mappings are well known and might be

available (e.g., US full state names to two letter abbreviations mapping is well known information).

This situation is not an unusual case in the proposed infrastructure. Consider an example in Figure

34

12. Figure 12 shows a dataset 𝐷ଶ, from the motivation example in Section 1.1, that contains two

columns: State and Abbreviation, defining the mappings between full names of the US states and

their two letter abbreviations. When 𝐷ଶ is submitted to the repository, the relationships between

all three of the example datasets (𝐷ଶ, 𝐷ଷ and 𝐷ସ) will be discovered automatically as shown on the

Figure 13. The relationship between variables 𝐷ଶ. 𝐴𝑏𝑏𝑟𝑖𝑣𝑖𝑎𝑡𝑖𝑜𝑛 and 𝐷ସ. 𝑆𝑡𝑎𝑡𝑒 can be either

discovered automatically based on the similarity in variables’ descriptions and/or values, or can

be added manually by users. Now we do not need to define the correspondence table and the

datasets 𝐷ଷ and 𝐷ସ are related to each other via dataset 𝐷ଶ.

Figure 12: Example of dataset 𝐷ଶ

The origins of all three datasets can be completely independent, e.g. they may result from

research in remotely related disciplines and be submitted by users who are not aware of each other.

In general, two datasets can be related to each other via several other datasets. Figure 14 shows

generalized schematic example of relationships between 6 datasets (heterogeneity is shown by

different shapes and colors that represent difference in datasets file formats, or schema, or values).

If you simply look at the datasets 𝐷ହ and 𝐷ଵ଴ outside of the relationships context, you might first

think that they are not related to each other. However, they are related via other datasets, e.g. 𝐷ହ −

35

𝐷଻ − 𝐷ଽ − 𝐷ଵ଴, or 𝐷ହ − 𝐷଼ − 𝐷ଽ − 𝐷ଵ଴. Such transitive relationships will be utilized later when

we will consider the data exploration and keyword search in Section 3.3.

Next section describes relationship model in more details.

Figure 13: Example of the relationships between three datasets 𝐷ଶ, 𝐷ଷ and 𝐷ସ

Figure 14: Generalized schematic example of the data integration based on relationships

discovery

36

3.2.2 Relationship model

Each relationship consists of one or more links that represent an actual matching and mapping

between variables from two datasets. Conceptually, a link reminds a foreign key in relational data

model but with no strict referential integrity constraint. Since the link does not define which

datasets is referencing and which dataset is referenced, both datasets have equal roles. Thus, a

dataset on the left end of the link is called the left dataset and a dataset on the right end of the link

is the right dataset. In Figure 10, the example relationship consists of two links: one link is

𝐷ଷ. 𝑌𝐸𝐴𝑅 = 𝐷ସ. 𝑌𝑒𝑎𝑟, and the other link is 𝐷ଷ. 𝑆𝑇𝐴𝑇𝐸 = 𝐷ସ. 𝑆𝑡𝑎𝑡𝑒. 𝐷ଷ is the left dataset and 𝐷ସ

is the right dataset.

Each link is associated with two data overlapping values at its ends that are explained below

in subsection 3.2.2.1.

3.2.2.1 Data Overlapping values Data Overlapping (𝐷𝑂) value on each end of a relationship link

shows how many values from the dataset on that end were matched with values from the dataset

on the other end of the link.

In Figure 10, 𝐷𝑂஽ଷ.௒ா஺ோ = 0.33 and 𝐷𝑂஽ସ.௒௘௔௥ = 1 mean that only 33% of values in the

𝑌𝐸𝐴𝑅 column in the dataset 𝐷ଷ are matching values of the 𝑌𝑒𝑎𝑟 column in the dataset 𝐷ସ ,

whereas 100% of the values in the 𝑌𝑒𝑎𝑟 column in the dataset 𝐷ସ are matching the values in the

𝑌𝐸𝐴𝑅 column in the dataset 𝐷ସ. The explanation for that is that the dataset 𝐷ସ has records only

for 20th century, whereas 𝐷ଷ has records for 19th, 20th and 21st centuries. 𝐷𝑂஽ଷ.ௌ்஺்ா = 0 and

𝐷𝑂஽ସ.ௌ௧௔௧௘ = 0 simply mean that none of the values in 𝑆𝑇𝐴𝑇𝐸 column in dataset 𝐷ଷ are matching

values in 𝑆𝑡𝑎𝑡𝑒 column in dataset 𝐷ସ and vice versa because 𝐷ଷ. 𝑆𝑇𝐴𝑇𝐸 contains full names of

the states in US whereas 𝐷ସ. 𝑆𝑡𝑎𝑡𝑒 contains two letter abbreviations. When we defined the

37

synonyms transformation between 𝐷ଷ. 𝑆𝑇𝐴𝑇𝐸 and 𝐷ସ. 𝑆𝑡𝑎𝑡𝑒 variables in Figure 11, the DO

values are also recalculated automatically showing that all values in the 𝐷ଷ. 𝑆𝑇𝐴𝑇𝐸 match the

𝐷ସ. 𝑆𝑡𝑎𝑡𝑒 variable, whereas only 6% values were matched vice versa. The explanation is that the

𝐷ଷ. 𝑆𝑇𝐴𝑇𝐸 dataset has records only for 3 states, whereas 𝐷ସ. 𝑆𝑡𝑎𝑡𝑒 has records for all 50 states of

the US.

The 𝐷𝑂 value less than 1 means that not all values were matched and this might happen

due to two reasons. First, the other dataset does not contain some values or, second, those values

are represented in different way. In the former case there it nothing can be done to fix it, whereas

in the latter case record level linkage (synonyms transformation) need to be performed. Record

level linkage can be done either manually by creating a concordance table, or by using entity

reconciliation techniques [45][17][42][63][75].

DO values are calculated according to Algorithm 3. As an input, the algorithm accepts left

and right sides of the link’s schema mapping expression. First the left expression is decoded (line

1) into dataset’s identifier (𝐷), list of columns (𝐶𝑙) and the transformation expression (𝑇𝑟). Then

(line 2) the values of the columns 𝐶𝑙 are transformed according to the transformation expression

𝑇𝑟. Line 3 and 4 do the same operations for the right side of the schema mapping. To find matching

values, line 5 performs join between transformed left and right values. Any join technique can be

used here. Line 6 and 7 simply calculate 𝐷𝑂 values as the ratio of matched value in each side and

line 8 returns both 𝐷𝑂 values.

38

3.2.2.2 Relationship’s Data Overlapping value To describe the quality of a relationship in terms

of 𝐷𝑂 values of the links that constitute the relationship, a relationship 𝐷𝑂 value is calculated

using the equation (1).

 𝐷𝑂 = 𝑚𝑎𝑥 ቀ1
𝑛 ∑ ൫𝑙𝑖𝑛𝑘𝑖,𝑙𝐷𝑂൯𝑛

𝑖=1 , 1
𝑛 ∑ ൫𝑙𝑖𝑛𝑘𝑖,𝑟𝐷𝑂൯𝑛

𝑖=1 ቁ (1)

where 𝑛 is a number of links in the relationship for which 𝐷𝑂 value is being calculated; 𝑙𝑖𝑛𝑘𝑖,𝑙𝐷𝑂

is the 𝐷𝑂 value of the 𝑖-th link’s left side; 𝑙𝑖𝑛𝑘𝑖,𝑟𝐷𝑂 is the 𝐷𝑂 value of the 𝑖-th link’s right side.

To conclude on the Relationship Model, each relationship is associated with some static

and dynamic metadata. Static metadata includes name, description, creator of the relationship, and

time and date when it was created. Dynamic metadata includes average confidence value, the total

number of feedbacks, and relationship 𝐷𝑂 value.

Algorithm 3: DATAOVERLAP(left, right). Input: Left side of the schema mapping expression

left, right side of the schema mapping expression right. Output: DO values of left and right parts

of the schema mapping.

1: (D, Cl, Tr) = DECODE(left)
2: L = TRANSFORM(D, Cl, Tr)
3: (D, Cl, Tr) = DECODE(right)
4: R = TRANSFORM(D, Cl, Tr)
5: J = JOIN(L, R)
6: lDO = LENGTH(J) / LENGTH(L)
7: rDO = LENGTH(J) / LENGTH(R)
8: return (lDO, rDO)

39

3.2.3 Schema Graph

3.2.3.1 Conceptual Model Schemas of tables of data sources and discovered relationships

between them are represented as a global Schema Graph – an undirected multigraph where nodes

represent data tables and edges represent relationships between tables. When a new dataset is

added, Schema Graph is expanded to include the schemas of the data tables from the dataset as

new nodes in the graph and discovered relationships are added as edges. Figure 15 shows

conceptual Schema Graph for the four datasets from Section 1.1 (variable are represented with

first letter).

Figure 15: Excerpt of conceptual Schema graph for four datasets from Section 1.1 (variable are

represented with first letter)

3.2.3.2 Physical Model The physical model of the schema graph describes the way schema graph

is implemented in our infrastructure. Part of the schema graph is stored in a relational store as apart

40

of the metadata database and part of it is stored in a graph store located on the metadata node (but

technically can be run on a separate machine).

Figure 16 illustrates how the schema graph is separated between two stores. Relational

store contains all relationship metadata, foreign keys to the dataset metadata as well as information

about links that constitute the relationship. The graph store maintains the schema graph 𝐺 =

(𝑉, 𝐸). Set of nodes 𝑉(𝐺) = {𝑡ଵ, ⋯ , 𝑡௡} represent data tables where 𝑡௜ ∈ 𝑉(𝐺) is the id of the

table. Set of edges 𝐸(𝐺) = {𝑟ଵ, ⋯ , 𝑟௠} represent relationships between tables where 𝑟௜ ∈ 𝐸(𝐺) is

the id of the relationship.

Figure 16: Schematic illustration of Schema Graph physical model

3.2.3.3 Edge Feature Vector based Cost Model Each edge 𝑟௜ ∈ 𝐸(𝐺) of the schema graph is

associated with a feature vector 𝒇ത௜ that specifies the values of all the features of the edge. Features

encode the aspects of edges that are relevant to ranking of queries that will be discussed in Section

41

3.3. Essentially, they capture distinctions that may be relevant to a user’s preference for an edge

as part of the query. Currently, (1 - average confidence) and (1 – 𝐷𝑂) values are used as features.

However, other features can be easily added. For example, let average confidence value be 1 and

𝐷𝑂 equals 0.5 for relationship with id 𝑟ଷ , then 𝒇തଷ = [0, 0.5] . Each feature has a weight,

representing the relative contribution of that feature to the cost of the edge. Initially, the weights

are normally distributed between features. Later users may configure them depending on the task

at hand (more on this is in Section 3.3.4).

The costs associated with edges in the schema graph are simple weighted linear

combinations of edge feature vector calculated using equation (2).

 𝐶௜ = 𝒘ഥ ∙ 𝒇ത௜ (2)

where 𝐶௜ is the cost of the edge for the relation 𝑟௜, 𝒇ത௜ is the feature vector of the edge for the relation

𝑟௜, and 𝒘ഥ is the vector of weights for each feature.

3.3 EXPLORING THE REPOSITORY

So far we have covered how heterogeneous datasets are stored (Section 3.1) and how they are

integrated (Section 3.2). Next we discuss how the repository can be used, e.g. how can we find

relevant datasets and, more importantly, how can we find the data that we are interested in. Thus,

the next main functionality block is the repository exploration.

Even though the datasets can be stored on many different machines, all metadata is stored

in the single place on the metadata node. Thus, searching for datasets based on their metadata (such

as title, description, user who submitted, etc.) is a straightforward functionality to implement. In

fact, all data repositories provide such functionality. The result of such search is usually a list of

42

datasets that might have data that user is interested in. The user is then required to open each

dataset separately and try to integrate the data to perform any analysis. This is similar to a web

search engine that accepts as input several keywords and returns the list of links to the web sites

that contain those keywords, but the user is required to open each link and to find the information

he or she needs on each web page.

More useful functionality would be to allow users to search for particular variables

throughout the repository without specifying (and knowing in advance) which datasets those

variables come from. The result of such search would also be not just a list of datasets, but a table

with data integrated from the relevant datasets. The user would not need to worry how to integrate

the data and would be able to focus on the data analysis to answer his or her research questions.

As it was mentioned in the Section 2.2, several works considered keyword search in single

database, where the schema is known in advance. Some on them were focused on keyword search

in P2P environments, others on top-k keyword search. The closest system that implements similar

approach to keyword search is the Q system [170]. However, all previous approaches either

worked with existing schema and/or focused only on finding top-k records. In contrast, we do not

try to find only top-k highest-scoring answers. Instead, we find datasets and integrate them on the

fly.

Currently I focus only on keyword search where keywords are variable names. However,

the approach can be extended to include variables and dataset level metadata.

In this section, I explain how the keyword search over the variables throughout repository

works in the proposed infrastructure. I begin with formalizing the keyword search in Section 3.3.1.

In Section 3.3.2, I describe how keywords match against schema graph and how that results in

trees over graph. In Section 3.3.3, I show how trees over schema graph are converted into SQL

43

queries. Finally, in Section 3.3.4, I show how the queries are executed and what is returned as the

result of the keyword search.

3.3.1 From Research Question to Keyword Search

Let us go back to the research question from the motivation example (Section 1.1):

“Is there a correlation between population and number of disease cases in United States?”

To answer this question, we would need the data from two distinct datasets:

x A dataset that contains population numbers in US (a census data could be a good

source).

x A dataset that contains diseases information (number of cases) in US (historical

medical records could be a good source).

The research question can be formulated as the following keyword query:

population, “number of disease cases”

A user does not need to know and specify which datasets to look at, he or she simply poses

the keyword query and the system searches throughout the whole repository.

3.3.2 From Keywords to Trees

Given a set of keywords 𝑄 = {𝑞ଵ, ⋯ , 𝑞௞}, the goal is to find one or more sequences of tables that

can be merged together to answer the query. For that, two tasks need to be performed:

x identify the tables that contain the keywords;

x traverse existing relationships between those tables to find sequences of tables that need

to be integrated.

44

The first task is relatively easy since all metadata (including all variable names from all

datasets) is stored in one place – relational store on metadata node. Thus, we can find a set of

tables that contain the variables of interest by executing SQL equivalent of the relational algebra

expression (3).

 𝑇 = 𝜋ௗ௜ௗ ቀ𝑡𝑎𝑏𝑙𝑒𝑠 ⋈ 𝜎௡௔௠௘ୀ௤భ∨…∨௡௔௠௘ୀ௤ೖ
(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)ቁ (3)

where 𝜎௡௔௠௘ୀ௤భ∨…∨௡௔௠௘ୀ௤ೖ
(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) selects only those variable where variable name exactly

matches one of the keyword from the 𝑄; 𝑇 = {𝑡ଵ, ⋯ , 𝑡௟}, where 𝑡௜ – is the id of the table that

contains one or more 𝑞 ∈ 𝑄. The exact match condition can be relaxed by either looking for

substring or similarity match between variable name and keywords. For the population, “number

of disease cases” keyword search, 𝑇 = {𝑡ଵ, 𝑡ସ}.

Conceptually, 𝑇 represents a subset of nodes 𝑁 ⊆ 𝑉(𝐺) in the schema graph 𝐺 that

matched keywords (see Figure 17 for schema graph with nodes that matched keyword nodes in

black and calculated edge costs). Thus, the second task is to utilize schema graph, graph store and

graph algorithms to find subgraphs of 𝐺 that connect nodes from 𝑁. Formally, the problem of

determining the closest interconnections between two, three, or more nodes in a graph is the Steiner

tree problem [89].

Figure 17: Schema graph with costs; black nodes matches keywords

45

Prior related work focused on finding either a single tree or k lowest-cost trees that contain

all of the keyword nodes and only worked on connected graphs. Since in our case datasets and

relationships are added dynamically and datasets are from multiple domains, we cannot make an

assumption that schema graph is always (or ever) a connected graph. In addition, most of the

previous work focused on finding top-k answers to the query, whereas in Q [170] and our

infrastructure the goal is to find one or more trees that will then lead to the datasets that need to be

integrated. Steiner-tree problem is NP-hard [13], hence it is not feasible to use exact Steiner tree

algorithms over a large graph. Many approximation and heuristics-based algorithms to solve

Steiner tree problem were developed (e.g. [170][100][129][2][99][57][54][85][90][109]). The

most popular is backward expansion/distance network heuristic that in the first step builds

complete graph over the keyword nodes by either single-source shortest path or breadth-first

algorithms and then finds minimum spanning trees to find approximate Steiner tree.

3.3.2.1 Finding Trees Given schema graph 𝐺 and set of keyword nodes 𝑁 ⊆ 𝑉(𝐺), FINDTREES

algorithm (Algorithm 4) finds all trees that are possible answers to the keyword query in an

exhaustive fashion. Since 𝐺 might be a disconnected graph, keyword nodes might be located in

different connected components and thus not all trees contain all keyword nodes. In general,

𝑉(𝑅௜) ⊆ 𝑁, where 𝑅௜ is one of the resulting trees and 𝑉(𝑅௜) is the set of nodes in that tree.

The main idea behind FINDTREES algorithm is similar to backwards expansion/distance

network heuristics in that it starts to build complete graphs between keyword nodes. However,

instead of doing it for all keyword nodes, it iterates over the keyword nodes array (using recursive

FINDTREESBETWEENONEANDREST, (Algorithm 5)), and takes two nodes into consideration at a

time. The algorithm searches for all paths between two vertices from the keyword nodes 𝑁. If there

are no paths then one of the nodes is pushed into 𝑇 array, then next node from the 𝑁 is taken and

46

the search for all paths is repeated for the new pair of nodes. If there are any paths between the

pair of nodes, then those paths merge into resulting trees using MERGEPATHSTOTREES routing

(Algorithm 6) and next node is taken from the 𝑁 to repeat the search for all paths. When 𝑁 is

exhausted, then 𝑁 is assigned with the nodes from 𝑇 array (nodes that were not included in any

tree because they are in different connected component). The algorithm repeats until both 𝑁 and

𝑇 are exhausted. All found trees are then weighted and sorted based on their costs.

Algorithm 4: FINDTREES(G, N). Input: Schema graph G, list of keyword nodes N. Output: cost

based ranked list of trees.

1: R ← empty list
2: while LENGTH(N) > 0 do
3: h = N.POP()
4: (T, D) = FINDTREESBETWEENONEANDREST(G, h, N, [], [])
5: R.APPENDALL(D)
6: N = T
7: end while
8: R = CALCULATECOSTANDRANK(R)
9: return R

47

Algorithm 5: FINDTREESBETWEENONEANDREST(G, h, N, T, D). Input: Schema Graph G, one

keyword node h, list of keyword nodes N except node h, accumulating parameter T for keyword

nodes that were not included in any tree, accumulating parameter for found trees D. Output: T

and D.

1: if LENGTH(N) = 0 then
2: return (T, D)
3: end if
4: h2 = N.POP()
5: P = ALLPATHS(h, h2)
6: if LENGTH(P) = 0 then
7: T.APPENDIFNOTCONTAINED(h2)
8: return FINDTREESBETWEENONEANDREST(G, h, N, T, D)
9: end if
10: D = MERGEPATHSTOTREES(P, D)
11: return FINDTREESBETWEENONEANDREST(G, h2, N, T, D)

Algorithm 6: MERGEPATHSTOTREES(P, D). Input: Newly found paths P, paths found before D.

Output: list of trees created from pairwise merging paths in P with trees in D.

1: R ← empty list
2: if LENGTH(D) = 0 then
3: R = D
4: else
5: for ∀𝑃𝑖 ∈ 𝑃, ∀ 𝐷𝑖 ∈ 𝐷 do
6: R.APPENDIFNOTCONTAINED(𝑃𝑖 ∪ 𝐷𝑖)
7: end for
8: end if
9: return R

48

In other words, the FINDTREES algorithm implicitly looks for connected components of the

schema graph that contain keyword nodes and “grows” trees from all paths between every pair of

keyword nodes in each connected component.

For the example keywords from Section 3.3.1 and the schema graph from Section 3.3.2,

FINDTREES algorithm would find 6 trees (because of the example graph, all trees are actually paths,

but in general the result of the FINDTREES algorithm is a list of trees) shown in the Table 1 sorted

by the cost form lowest to highest. From the table we can see that the least-costly way to answer

the keyword query is not to merge 𝑡ଵ and 𝑡ସ directly, but to merge them via intermediate table 𝑡ଶ.

Since the schema graph can grow to a large size after many datasets are submitted,

heuristics similar to SPCSH in Q [170] and DNH in [188] can be used to scale the FINDTREES

algorithm. Instead of searching for all paths between pairs of nodes, we can search only 𝑚 shortest

(least costly) paths on line 5: in FINDTREESBETWEENONEANDREST (Algorithm 5). Efficient

algorithms to solve this problem are known [189].

49

Table 1: Trees and their costs for the example datasets and keyword query

Tree Cost
1

0

2

0.07

3

0.25

4

0.25

5

0.32

6

0.5

50

3.3.3 From Trees to Relational algebra/SQL Queries

Each tree is one item of the search result of the keyword search. However, simply returning the

trees to users would expect them to integrate the datasets manually. Meanwhile, if we explore a

tree more carefully, we observer that a tree can be transformed to relational algebra/SQL query.

Each node in the tree represents a data table from submitted datasets stored as a relation in

a relational database in one of the datanodes (see Section 3.1.2); each edge represents a

relationship between two tables and translates to a join operation with relationship’s links as join

conditions. Table ids associated with nodes and relationships ids associated with edges provide

appropriate dereferencing information to construct queries by searching for the required

information in the metadata tables on the metadata node.

For example, (4) shows relational algebra query constructed based on tree 1 from Table 1.

 𝑡ଵ ⋈௧భ.ௌ௧௔௧௘ୀ௧మ.ௌ௧௔௧௘ 𝑡ଶ ⋈௧మ.஺௕௕௥௘௩௜௔௧௜௢௡ୀ௧ర.ௌ௧௔௧௘ 𝑡ସ (4)

Relationship algebra expression (4) highlights one limitation of current approach to

keyword search: even though 𝑡ଵ and 𝑡ସ are related to each other via two variables (year and state),

only state variable is used to perform the merge. To solve the problem for this particular case, we

could apply selection operation (σ) as in (5), however in general additional joins need to be

performed that might include some other intermediate tables. The solution for this limitation is left

for future work.

 𝜎௧భ.௒௘௔௥ୀ௧ర.௒௘௔௥൫𝑡ଵ ⋈௧భ.ௌ௧௔௧௘ୀ௧మ.ௌ௧௔௧௘ 𝑡ଶ ⋈௧మ.஺௕௕௥௘௩௜௔௧௜௢௡ୀ௧ర.ௌ௧௔௧௘ 𝑡ସ൯ (5)

51

3.3.4 From Queries to Merged Data Tables

The final step in answering keyword search is to execute queries constructed in Section 3.3.3.

Since the data tables are stored on different datanodes, a distributed query engine is required. First

I used Linked Servers feature of Microsoft SQL Server [132] product, however it was not callable

enough. Currently, I am experimenting with PrestoDB [147] distributed query engine.

Table 2 shows sample of the result of query (4) as merged table that according to the tree

1 from Table 1 joins 𝑡ଵ and 𝑡ଶ on 𝑡ଵ. 𝑆𝑡𝑎𝑡𝑒 = 𝑡ଶ. 𝑆𝑡𝑎𝑡𝑒 and then with 𝑡ସ on 𝑡ଶ. 𝐴𝑏𝑏𝑟𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =

𝑡ସ. 𝑆𝑡𝑎𝑡𝑒. As explained above in Section 3.3.3, 𝑡ଵ and 𝑡ସ merged via 𝑡ଶ only using state variable.

Table 2: Sample of the merged table for the tree 1 from Table 1

Since datasets can be merged via one or more other datasets, search result should include

provenance information [32][91][135] of the merged table, so that user can fully understand how

the table was constructed. Thus, in addition to the merged data table, query result also includes

t1.S t1.Y t1.M t1.D t1.N t2.A t2.S t4.Po t4.Y t4.S*

Alabama 1888 8 enteric
fever

1 AL Alabama 1830 1900 AL

Alabama 1888 10 whooping
cough

1 AL Alabama 1830 1900 AL

Alabama 1888 10 enteric
fever

1 AL Alabama 1830 1900 AL

Alabama 1890 9 diphtheria 1 AL Alabama 1830 1900 AL

Alabama 1891 3 phthisis
pulmonalis

12 AL Alabama 1830 1900 AL

52

information on all relationships and intermediate datasets that were used to construct the merged

table.

Most of related works on keyword search assumed query-independent costs for query trees

such as number of edges, attribute similarity, etc., when users may need costs specific to the

context of the query. Preferences for sources may depend on whether users are posing “what-if”

types of exploratory queries or refining previous answers. I suggest to performs CPR-ranking: the

data merge trees are ranked based on their coverage, precision and reliability that are derived from

relationships confidence, data overlapping values, path length, data and user reliability. As it was

mentioned in Section 3.2.3.3, Schema graph cost model depends on the weight vector 𝒘ഥ . In

contrast to all the previous work, I propose this vector to be configured by users. By modifying

weights for specific features, user can control CPR ranking.

53

4.0 SYSTEM IMPLEMENTATION: COL*FUSION

For the last two years I have been working on the implementation of the infrastructure described

in Section 3.0in the Col*Fusion (Collaborative data Fusion) system. I have been also supervising

a group of master students who were helping me with the implementation.

Col*Fusion can be accessed via this URL: http://colfusion.exp.sis.pitt.edu/colfusion/,

however the registration is currently not open to the public and requires verification code that users

can get by invitation.

In this chapter I describe Col*Fusion architecture, current state of its implementation and

main functionality in Section 4.1. In Section 4.2 I enumerate current and/or future implementation

tasks to improve Col*Fusion. I then, in Section 4.3, show how Col*Fusion has been utilized in

Collaborative for Historical Information and Analysis (CHIA) and what lessons we learned from

it.

4.1 ARCHITECTURE, IMPLEMENTATION, OPERATIONS

Col*Fusion is in the active development (currently it is around 60K lines of code). Figure 18 shows

major components of the Col*Fusion architecture (gray boxes represent unfinished

modules/functionality). Col*Fusion is designed in the modular way such that it is easy to replace

specific modules if needed as well as to distribute Col*Fusion execution among cluster of

http://colfusion.exp.sis.pitt.edu/colfusion/

54

machines. The Col*Fusion hardware and software architecture is designed to enable effective data

integration and analysis through crowdsourcing at the interactive rates that people expect of web-

based resources. Achieving that level of performance for high-volume, high-variety data requires

coupling scalable clusters for relational and non-SQL databases, web interfaces, and many

software tools with high-performance, purpose-built computational resources for complex

analytics. Large-scale data must move between those resources efficiently, reliably, and

transparently, including optimizations to reduce or eliminate latency and to maximize use of finite

network bandwidth.

�

PSC SLASH2 Col*Fusion Lib

Figure 18: Col*Fusion Architecture (gray boxes represent unfinished modules/functionality)

55

Col*Fusion architecture consists of four internal components: (1) Access Layer component

that provides several interfaces so that users and third party tools can interact with Col*Fusion, (2)

Col*Fusion Core component that is responsible for the business logic and metadata management,

(3) Distributed Data Processing component that handles large scale data processing on distributed

set of commodity machines, (4) Replicated Distributed Data Storage component that is

responsible for storing all datasets; and two external components: (1) The Dataverse Network

[106][43] project developed at Harvard that is used as data archive, and (2) Pittsburgh

Supercomputing Center1 facilities used as the large scale high-performance computing resource. I

have successfully collaborated with PSC staff to bridge Col*Fusion and PSC resources. On

Col*Fusion site we have setup PSC SLASH 2 [164] distributed replicated storage system. On PSC

site we have setup all required data store systems (relational and graph) as well as agreed on

workflow for Col*Fusion Lib that will be running web server to accept Col*Fusion commands

and execute large-scale computations on PSC computing framework. In what follows, I briefly

describe Col*Fusion main functionality and refer to corresponding modules as well as present

screenshots of the user interface where appropriate.

4.1.1 Data and Metadata Submission

Col*Fusion system does not require either special software installation or prior knowledge of a

specific data management systems. It supports a simple data submission protocol implemented via

lightweight intuitive web interface shown on Figure 19. Col*Fusion also implements a RESTful

[67] API for direct access to Col*Fusion functionalities.

1 http://www.psc.edu/

56

Data submission module allows users to submit data from heterogeneous sources in various

formats such as Excel, CSV files, and database dump files, as well as remotely connected

databases. The number of file formats can be expanded by Col*Fusion users. Col*Fusion uses

Pentaho Data Integration [35] (aka Kettle) on the back end for extracting, transforming and loading

(ETL) data into Col*Fusion repository. Kettle is an open-source software that allows users to

specify ETL tasks via intuitive, graphical, drag and drop design environment and save it as a

transformation file. Kettle supports large number of data sources including leading Hadoop

distributions, NoSQL databases, and other big data stores. Col*Fusion users can create Kettle

transformations and share them with other users to handle particular file format. Therefore, most

users do not need to do any preparatory work to submit their datasets into Col*Fusion, which

makes it easy to use.

Figure 19: Data submission page

57

During data submission Col*Fusion tries to collect as much metadata as possible on both

dataset as well as variable levels. The metadata is either retrieved from the data file (e.g., variables

names, data types, etc.) or entered by the user (e.g., title, description, tags, category, variables

format and measuring units, etc.).

The System Catalog persistently stores the metadata and allocates a data storage server.

Col*Fusion then triggers a background ETL process to extract and transform data from user

provided source and load it into Col*Fusion datanode. To guarantee durable storage, I have started

to utilize distributed replicated storage system backed by Pittsburgh Super Computing (PSC)

center’s SLASH2 system [164]. SLASH2 supports automated file replication and migration

operations which Col*Fusion can leverage to maintain working copies of data near appropriate

computational resources.

4.1.2 Data Access and Export

For each submitted dataset, Col*Fusion creates a dedicated identifiable page (I call it a Story page)

on which users can view metadata and data in a tabular paged format (Figure 20); discuss the

dataset in form of dataset, row, column or cell level comments; visualize data with interactive pie,

column, map or motion charts (Figure 21); download data in Excel, CSV, JSON, HTML table

formats regardless of the original file format. As it was said above, Col*Fusion also provides

RESTful API that provide programmatic access to metadata and data.

58

Figure 20: Story page: Data Preview

59

Figure 21: Visualization

4.1.3 Collaborative Metadata and Data Editing

All metadata and data can be collectively edited by registered Col*Fusion users anytime after

submission. Data editing is supported by an integrated OpenRefine editor [181] that provides basic

and advanced cell and column edit and transformation functionalities (Figure 22). Provenance

Manager keeps track of all changes and performs automatic versioning that allows to rollback any

undesired changes.

60

Figure 22: Interface to edit data table via OpenRefine

4.1.4 Information Linkage

Once the user confirms data submission, Col*Fusion performs information linkage that includes

relationships discovery between the newly submitted dataset and existing datasets in the

Col*Fusion repository as it was described in Section 3.2. Currently Col*Fusion establishes a

relationship between datasets based on linguistic similarity over variables metadata in those

datasets. Many different schema matchers that incorporate multiple features and use advanced

machine learning algorithms have been proposed in recent years [149], with one of the most

sophisticated being COMA++ [150]. Extendable architecture of Col*Fusion allows to easily utilize

those tools.

61

Story page for each dataset includes Relationships section that is shown in Figure 23.

Relationships are listed in the table view and each row in the table can be expanded to see

relationship’s metadata (name, description, creator of the relationship, and time and date when it

was created) and links. Each link has two DO values at its ends.

Col*Fusion combines automatic relationship discovery with the power of crowdsourcing

techniques. Col*Fusion users can provide feedback on automatically generated relationships in

terms of confidence values that reflect users’ belief that relationships hold. Also Col*Fusion users

can manually create a relationship if Col*Fusion fails to identify one (Figure 24).

Figure 23: Relationship table

62

Figure 24: Add new relationship

Col*Fusion doesn’t have a predefined target schema where data from heterogeneous data

sources are supposed to be loaded to as in traditional data warehousing approach. Instead it

maintains a global Schema Graph – an undirected graph where nodes represent datasets and edges

represent relationships. Neo4j graph database [136] (the leading graph database) is utilized to store

and traverse Schema Graph.

Col*Fusion also provides interactive visualization of the Schema Graph on the Story page

that allows users to see how their (or any) dataset is connected to other datasets and provide a way

to discover new, possibly interesting, data that will lead to new hypothesis to test.

63

4.1.5 Search and Exploration

Col*Fusion provides full text search throughout datasets metadata such as title, description and

tags. It also provides keyword search that is quite different from the keyword search functionality

in all existing data repositories that only search through datasets metadata and return a list of

datasets that might contain data that user is interested in.

Figure 25 shows Col*Fusion interface and result of the keyword search. When user posts

a keyword query, Col*Fusion first finds all datasets (nodes in the Schema Graph) that contain the

keywords, then traverses the schema graph to find all trees between those nodes, passes each three

to the Query Formulator that converts trees to SQL queries, and then finally let Query Processor

to execute those queries. The result of the search is not just a list of datasets that might have data

that user is interested in, but rather a merged dataset or a list of merged datasets if there are several

possible paths to answer the query. Col*Fusion performs CPR-ranking: the data merge paths are

ranked based on their coverage, precision and reliability that are derived from relationships

confidence, data overlapping values, path length, data and user reliability.

The keyword search allows users to search for data transparently throughout all submitted

datasets without a prior knowledge of any query language or the relationships between the datasets.

64

Figure 25: Keyword search interface

�

65

4.1.6 Descriptive Statistics and Data Analysis

For each submitted dataset Col*Fusion automatically calculates some descriptive statistics, such

as min, max, mean, mode, median, count, standard deviation as well as correlation matrix that

contains pairwise correlation values between all variables (Figure 26). The descriptive statistics

can also be visualized on pie, bar, line and scatter plot charts.

Figure 26: Descriptive statistics table that Col*Fusion automatically creates for each dataset

4.2 ACTIVE AND FUTURE IMPLEMENTATION TASKS

The above mentioned functionality has been implemented and deployed. In addition to being a

challenging research project, Col*Fusion has also been used as a productive educational test-bed.

Over the course of the last two years about 60 master students have acquired hands-on practical

skills and knowledge in building complex large-scale data intensive system either in the form of

66

individual study or as a class term project. In this section I discuss a number of active and future

tasks that I plan to be implemented in Col*Fusion.

First of all, to utilize functionality of established data repository, such as data archival and

preservation, citation, and metadata export in Dublin Core [185][59] and DDI [155][47] formats,

I plan to integrate Col*Fusion with The Dataverse Network [106] over the Dataverse Sharing and

Deposit APIs.

As it was mentioned in Section 4.1.5, for each dataset Provenance Manager maintains

provenance information. Dataset’s provenance can be visualized as provenance graph in Open

Provenance Model (OPM) format [134] that can be either viewed as interactive graph (Figure 27)

visualization or downloaded in XML format.

Since Col*Fusion actually processes the submitted data files and extracts and loads data

into Col*Fusion data store, with the proper interface it is possible to utilize Col*Fusion as cloud

data analytical platform where researcher would be able to run complex data analysis tasks.

IPython Notebook [144] is a perfect tool for “… web-based interactive computational environment

where you can combine code execution, text, mathematics, plots and rich media into a single

document”.

I plan to integrate IPython Notebook into Col*Fusion. Thus in the future, in addition to the

integrated data repository, I envision Col*Fusion to be a virtual collaborative research environment

where researcher can communicate their ideas, run analysis on the integrated data, build and share

interactive visualizations, even write and publish online interactive research papers with data and

analysis code integrated into them.

Finally, to connect Col*Fusion integrated data to the Linked Data cloud [22], I plan to

implement Col*Fusion Linked Data endpoint that will allow Col*Fusion data to be presented and

67

queried according to linked data principles. For Linked Data endpoint I am planning to use Apache

Marmotta [9] with Linked Data Fragments [180] that are the state of the art technology to large

scale linked data querying.

Figure 27: Provenance graph

Even though Col*Fusion is still in development, we have opened it to a group of users for

real life use cases. This collaboration is explained in the next section.

68

4.3 REAL-LIFE DATA-INTENSIVE USAGE

To apply Col*Fusion in real-life settings, we worked together with the Collaborative for Historical

Information and Analysis (CHIA) (http://www.chia.pitt.edu/) that is headquartered at World

History Center, University of Pittsburgh. CHIA currently involves nine different research groups

throughout the U.S. and Europe; it aims to create a major repository of consolidated global

historical data from the past several centuries. CHIA mission includes following statement:

“The long-term purpose of CHIA—in the time frame of a decade or more—is to facilitate

the creation and maintenance of historical a world-historical archive including data from local to

global levels, from short term to long term, linking variables on many areas of human experience.

The resultant summation of human experience can reveal the varying patterns and dynamics of

social change. While past social, economic, and cultural dynamics may not carry automatically

into the future, they should not be neglected in our attempts to make plans and form policy.”

CHIA members have used Col*Fusion to contribute more than 70 datasets on various

topics and provided a constructive and positive feedback. Table 3 shows the inventory of the

datasets submitted by CHIA members.

Overall the collaboration with CHIA was successful and fruitful. Col*Fusion became

tightly integrated into CHIA infrastructure that was reflected in the book by CHIA director Dr.

Patrick Manning [126] as well as in [191]. We have presented Col*Fusion on the CHIA workshop

in May 2013 and World Historical Gazetteer workshop organized by CHIA in September 2014.

http://www.chia.pitt.edu/

69

Table 3: Col*Fusion Dataset Inventory from CHIA participants

File / Data Set Name Distr.
start
date

end
date

Spatial
continental

Spatial
national

spatial.3 Topic variables

Codebooks

Geo Names Pitt - - place names multi level spatial
labels

Data Sets
Deaths per thousand population in
Java, Indonesia between 1916 and
1920

MSU 1916 1920 Asia Indonesia Java Death and
Disease

Deaths, Disease,
Influenza, Pandemic

Hospital beds data of Punjab
between 1907 and 1919 MSU 1907 1919 Asia India Punjab Death and

Disease
Disease, Hospital
beds, gender

Labour Relations The Netherlands
1900 IISH 1900 1900 Europe Netherlands Demographic Labor

Age Structure of Population of
Punjab, 1901 to 1931 MSU 1901 1931 Asia India Punjab Demographic Age

Literacy in Punjab, 1901 to 1931 MSU 1901 1931 Asia India Punjab Demographic Literacy
Religion in Punjab, 1901 to 1931 MSU 1901 1931 Asia India Punjab Demographic Religion

Correlates of War data Pitt 1816 2010 Global Historical
War, Initiator,
Intervener,
Outcome, Deaths

Population / CLIO World Tables BU 1335 2006 Global Population Population

Government / CLIO World Tables
(Countries Only) BU 1826 2008 Global Other

Expenditure, Debt,
Military, Revenue,
Currency

African Population Totals, 1850-1960 Pitt 1850 1960 Africa Population Population
UN Department of Economic and
Social Affairs Population Data Pitt 1950 2010 Global Population Population

Global Historical Climatology
Network (GHCN-Monthly) historical
precipitation data

Pitt 1951 1975 Global Natural
Phenomena Precipitation

70

Table 3 (continued)

File / Data Set Name Distr.
start
date

end
date

Spatial
continental

Spatial
national

spatial.3 Topic variables

Population of Rajputana, 1891 to
1941 MSU 1891 1941 Asia India Rajputana Population Population

Population trajectory of India, 1891
to 1941 MSU 1891 1941 Asia India Population Population

Population trajectory of Japan, 1903
to 1929 MSU 1903 1929 Asia Japan Population Population

Population trajectory of Java,
Indonesia, 1880 to 1930 MSU 1880 1930 Asia Indonesia Population Population

Population trajectory of Srilanka
(Ceylon) from 1891 to 1946 MSU 1891 1946 Asia Srilanka Population Population

Monthly mortality data of Assam
from 1916 to 1921 MSU 1916 1921 Asia India Assam Death and

Disease

Deaths, Disease,
Influenza,
Pandemic, Fevers

Monthly mortality data of Bengal
from 1916 to 1921 MSU 1916 1921 Asia India Bengal Death and

Disease

Deaths, Disease,
Influenza,
Pandemic, Fevers

Monthly mortality data of Bihar from
1916 to 1921 MSU 1916 1921 Asia India Bihar Death and

Disease

Deaths, Disease,
Influenza,
Pandemic, Fevers

Monthly mortality data of Bombay
from 1916 to 1921 MSU 1916 1921 Asia India Bombay Death and

Disease

Deaths, Disease,
Influenza,
Pandemic, Fevers

Monthly mortality data of Central
Province from 1916 to 1921 MSU 1916 1921 Asia India Central

Province
Death and
Disease

Deaths, Disease,
Influenza,
Pandemic, Fevers

Monthly mortality data of Madras
from 1916 to 1921 MSU 1916 1921 Asia India Madras Death and

Disease

Deaths, Disease,
Influenza,
Pandemic, Fevers

71

Table 3 (continued)

File / Data Set Name Distr.
start
date

end
date

Spatial
continental

Spatial
national

spatial.3 Topic variables

Monthly mortality data of North-
West Frontier from 1916 to 1921 MSU 1916 1921 Asia India

North-
West
Frontier

Death and
Disease

Deaths, Disease,
Influenza,
Pandemic, Fevers

Monthly mortality data of United
Provinces from 1916 to 1921 MSU 1916 1921 Asia India Uttar

Pradesh
Death and
Disease

Deaths, Disease,
Influenza,
Pandemic, Fevers

Monthly mortality data of Punjab
from 1916 to 1921 MSU 1916 1921 Asia India Punjab Death and

Disease

Deaths, Disease,
Influenza,
Pandemic, Fevers

Weekly mortality data of Assam from
1916 to 1921 MSU 1916 1921 Asia India Assam Death and

Disease

Deaths, Disease,
Influenza,
Pandemic, Fevers

Weekly mortality data of Bengal from
1916 to 1921 MSU 1916 1921 Asia India Bengal Death and

Disease

Deaths, Disease,
Influenza,
Pandemic, Fevers

Weekly mortality data of Bihar from
1916 to 1921 MSU 1916 1921 Asia India Bihar Death and

Disease

Deaths, Disease,
Influenza,
Pandemic, Fevers

Weekly mortality data of Bombay
from 1916 to 1921 MSU 1916 1921 Asia India Bombay Death and

Disease

Deaths, Disease,
Influenza,
Pandemic, Fevers

Weekly mortality data of Central
Province from 1916 to 1921 MSU 1916 1921 Asia India Central

Province
Death and
Disease

Deaths, Disease,
Influenza,
Pandemic, Fevers

Weekly mortality data of Madras
from 1916 to 1921 MSU 1916 1921 Asia India Madras Death and

Disease

Deaths, Disease,
Influenza,
Pandemic, Fevers

Weekly mortality data of North-West
Frontier from 1916 to 1921 MSU 1916 1921 Asia India

North-
West
Frontier

Death and
Disease

Deaths, Disease,
Influenza,
Pandemic, Fevers

72

Table 3 (continued)

File / Data Set Name Distr.
start
date

end
date

Spatial
continental

Spatial
national

spatial.3 Topic variables

Weekly mortality data of Punjab from
1916 to 1921 MSU 1916 1921 Asia India Punjab Death and

Disease

Deaths, Disease,
Influenza,
Pandemic, Fevers

Weekly mortality data of United
Provinces from 1916 to 1921 MSU 1916 1921 Asia India Uttar

Pradesh
Death and
Disease

Deaths, Disease,
Influenza,
Pandemic, Fevers

Migration data of Punjab for 1911
and 1921 MSU 1911 1921 Asia India Punjab Population Population,

Migration, Birth

Drug shops in Bengal between 1910
and 1940 MSU 1910 1940 Asia India Bengal Commodities

Drugs, Opium,
Ganja, Charas,
Bhang, Majum,
Cocaine

Environmental Indicators Of Air
Pollution: Nox Emissions

UC-
Merc 1990 2010 Global Natural

Phenomena

Air Pollution, NOx
Emissions,
Environment

Consumption of Ozone Depleting
Substances and CFCs

UC-
Merc 2002 2008 Global Natural

Phenomena

Ozone, CFCs,
Pollution,
Environment

Occupational statistics for the local
government districts of England and
Wales in 1921

Ports
mout

h
1921 1921 Europe Great

Britian
England,
Wales Demographic Occupation

Redistricted age/gender structure
data for the modern local
government districts of Great Britian
1851 to 2001

Ports
mout

h
1851 2001 Europe Great

Britian Demographic Age, Gender

Opium Import, Export, and Price Data
for New York Chamber of Commerce
1870 - 1918

WHD 1870 1918 North
America USA New York Commodities Opium, Import,

Export, Price

73

Table 3 (continued)

File / Data Set Name Distr.
start
date

end
date

Spatial
continental

Spatial
national

spatial.3 Topic variables

Andes Termperate-Mediterranean
Transition 657 Year PDSI
Reconstruction

UC-
Merc 1350 2014 South

America Peru Natural
Phenomena

Tree ring, Drought,
Andes, Climate,
Temperature

Global Temperature, RSL, Ice Volume
1,000,000

UC-
Merc n/a n/a Global Natural

Phenomena
Temperature, Ice,
Climate

20,000 Year Borehole Surface
Temperature Reconstruction

UC-
Merc n/a n/a Global Natural

Phenomena
Temperature, Ice,
Climate

North Atlantic, European and
Mediterranean Gridded SLP
Reconstruction

UC-
Merc 1750 1850 Natural

Phenomena Climate

Longxi China 1000 Year Decadal
Hydrological Indices AD 960-1990

UC-
Merc 960 1990 Asia China Longxi Natural

Phenomena
Climate, Rainfall,
Drought

European Seasonal Temperature
Reconstruction 1500-2004

UC-
Merc 1500 2004 Europe Natural

Phenomena
Temperature,
Climate

Eastern China Snow Anomaly Events
and Arctic Oscillation Reconstruction

UC-
Merc 5 1895 Asia China Natural

Phenomena
Climate, Rainfall,
Snow

Opium Imports and Re-Exports from
Foreign Countries and British
Posessions 1850-93

WHD 1850 1893 Global Commodities Opium, Import,
Export

Import and Export of Opium Among
International Commission Members
1903-1907

WHD 1903 1907 Global Commodities Opium, Import,
Export

Opium Consumption Data for
Netherlands East Indies, 1925-1938 WHD 1925 1938 Asia Indonesia Commodities

Opium,
Consumption,
Revenue, Sales

Opium Production Data for
Netherlands East Indies, 1902-1938 WHD 1902 1938 Asia Indonesia Commodities Opium, Production,

Revenue, Sales

74

Table 3 (continued)

File / Data Set Name Distr.
start
date

end
date

Spatial
continental

Spatial
national

spatial.3 Topic variables

Silver Series from Mint and Other
Records WHD 1621 1821

North
America,
South
America

Chile,
Guatemala,
Mexico,
Granada,
Peru, Potosi

 Commodities Silver, Mint,

Annual Silver Registrations by Cajas:
Mexico WHD 1559 1821 North

America Mexico Commodities Silver, Registration,
Annual

Annual Silver Registrations by Cajas:
Peru WHD 1559 1821 South

America Peru Commodities Silver, Registration,
Annual

Decennial Gold & Silver Registrations WHD 1492 1810

North
America,
South
America

Mexico,
Granada,
Ecuador,
Peru, Chile,
Brazil,
Carribbean

 Commodities Gold, Silver,
Registration

Indices of trade partner
concentration for 183 countries,
1980-2008

JWSR 1980 2008 Global Commodities
Trade, Indices,
Partners,
Concentration

Trade Statistics for Dahomey, 1863-
1960 WHD 1863 1960 Africa Benin Commodities Trade, imports,

exports
Wage Data for Netherlands East
Indies, 1908-1924 WHD 1908 1924 Asia Demographic Wages, industry,

race, skill level

Diseases in Java, 1930-1937 WHD 1930 1937 Asia Indonesia Java Death and
Disease

Typhoid,
Paratyphoid,
Smallpox, Bacillary,
Diphtheria, Plague,
Meningitis

75

Table 3 (continued)

File / Data Set Name Distr.
start
date

end
date

Spatial
continental

Spatial
national

spatial.3 Topic variables

World Development Indicators, 1975-
2000 (portion) WHD 1975 2000 Global

Canada,
France,
Ghana,
Malaysia,
Paraguay

 Other Development
Indicators

Human Development Index 1975-
2000 (portion) WHD 1975 2000 Global Other Development Index

Trends

Tax Data (local) for Netherlands East
Indies, 1910-1921 WHD 1910 1921 Asia Demographic

Tax, Income
Distribution, Local
Earners

Tax Data (Dutch) for Netherlands East
Indies, 1915-1929 WHD 1915 1929 Asia Demographic

Tax, Income
Distribution,
European Earners

Railway Data for Netherlands East
Indies, 1921-1929 WHD 1921 1929 Asia Commodities Rail, Freight

Wage Data For Netherlands West
Indies (Suriname), 1915-1920 WHD 1915 1920 Asia Demographic Wages, Plantations,

Absenteesim
British Opium Imports and Re-
exports, 1890-1898 WHD 1890 1898 Europe Great

Britain Commodities Opium, Imports, Re-
exports

British Opium Imports and Re-
exports, 1880-1889 WHD 1880 1889 Europe Great

Britain Commodities Opium, Imports, Re-
exports

British Opium Imports and Re-
exports, 1869-1879 WHD 1869 1879 Europe Great

Britain Commodities Opium, Imports, Re-
exports

Opium Imports and Re-Exports
to/from British Possessions 1850-
1893

WHD 1850 1893 Global Commodities Opium, Imports, Re-
exports, Possessions

Rice Production and Price Data for
Java, Netherlands East Indies, 1856 &
1857

WHD 1856 1857 Asia Indonesia Java Commodities Rice, Price,
Production

 76

4.3.1 Lessons Learned

From the collaboration with CHIA, we have learned what functionality in Col*Fusion is missing

or need to be improved/changed.

In particular, we found that very often the 𝐷𝑂 values of many relationship’s links were

much lower than expected which meant that number of matching values in related columns in

linked datasets were small even though the columns were describing the same entity. Related to

the same issue, merged datasets had few tuples. The reason for above mentioned problem to exist

is the equi-join that we used to match values and its strict requirement to the values to match

exactly. For example, given two values “C.S. Lewis” and “C. S. Lewis” (notice the first string does

not have a space character after first dot character) that come from two related datasets, the equi-

join will be unable to identify that two values represent the same person and thus might be matched.

In general this problem is known as record linkage or entity reconciliation [45][17][42][63][75].

Various methods for such problem have been proposed, however most of the time the solution is

time and computationally expensive, based on heuristics and might require user involvement.

Depending on the task at hand (e.g. exploratory what-if analysis), approximate solutions might be

more efficient and appropriate.

The second lesson that we have learned is that users do not only want to search for specific

variables and see whole datasets as the result, but they also want to search for a specific value and

see the records that are only related to that value. For example, limit the search results for the

records related to a specific location (e.g. continent, county, or street name, etc.) or date and time,

etc.

 77

In the next chapter I describe the problem related to the first lesson in more detail and

provide solutions and algorithms for various domain types of the attributes which are used for the

join. Particularly, I focus on approximate string, spatial and temporal joins.

The solution to the second lesson is left to the future work. It does not require much

research effort and can be solved by indexing actual data values and extending schema graph to

store them.

 78

5.0 FUSING DATASETS

Combining data from two or more datasets is a complex procedure that usually requires high

expertise and involves sophisticated algorithms to deal with structural (e.g. incompatible schemas)

and semantic (data sources have different ways of referring to the same real-world entity)

heterogeneities. Numerous schema matching and schema mapping algorithms have been proposed

in the literature to resolve the structural heterogeneity. They range from graphical user interfaces

(e.g., [80][11]), and high-level declarative languages (e.g., [26][146]) to specify schema mappings,

and more recently, the use of data examples (e.g., [6][148]) to design and understand schema

mappings. In previous sections, I also showed how to resolve the structural heterogeneity by

developing methods to seamlessly store heterogeneous data without any limitation and loss

(Section 3.1), perform efficient virtual integration (Section 3.2) and exploration (Section 3.3)

thereof. However, the topic of semantic heterogeneity was not covered in details yet.

To resolve semantic heterogeneity, previous works mainly focus on detecting when records

from different sources refer to the same real-world entity. This problem, known as reference

reconciliation, has received significant attention in the literature, and its variations have been

referred to as record linkage [187], merge/purge [87], de-duplication [157], reference matching

[127], and object identification [176]. Despite the large number of works and long lasting interest

in both academic and industrial research on data integration, little effort has been put towards

merging data based on spatial and temporal dimension.

 79

In this chapter I focus on the problem of merging datasets ad-hoc during query execution,

i.e., join operations for which indexing or secondary access paths are not available or appropriate.

Particularly, I focus on various types of approximate join techniques and their applicability limits

depending on the type of data of the join attributes. While it might be impossible to find exact

correspondence of two records (i.e., to do the equi-join), depending on the task at hand, the

approximate join would suffice. Thus, the main goal of the approximate join is to provide the best

effort to match corresponding tuples.

The chapter is organized as follows. Section 5.1 covers preliminaries. In Section 5.2 I first

describe related similarity join techniques that are applicable when string and tree-like structures

are joined. Then in Section 5.3 I describe how the similarity join approach can be used to

approximately join spatial data based on the subsumption hierarchy. Finally, in Section 5.4 I

describe the problem and provide novel methods to fuse temporal datasets.

5.1 PRELIMINARIES

In this section, I define the terminology that is used later on. As described in Section 3.1

heterogeneous datasets submitted by users are stored without changes in a relational store

(MySQL). Thus, when operating on the datasets we can utilize terminology and operations from

relational database area.

A 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑐ℎ𝑒𝑚𝑎 is represented as 𝑅 = (𝐴ଵ, … , 𝐴௡), where 𝐴௜ is an attribute with a

domain Ω௜. A 𝑡𝑢𝑝𝑙𝑒 over schema 𝑅 is a finite sequence of values that for every 𝐴௜ contains a value

𝑣௜ ∈ Ω௜. An instance of the schema 𝑅 is called a 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑟, and is a finite set of tuples over 𝑅.

𝑟[𝐴௜] or 𝑟. 𝐴௜ denote attribute 𝐴௜ of the relation 𝑟. Consecutively, 𝑟[𝐴] = 𝑟. 𝐴 = {𝐴ଵ, … , 𝐴௡}. I

 80

sometimes use the term table for relation, row or record for tuple, and column or variable for

attribute. In what follows, I refer to two relations 𝑟 and 𝑠 defined over schemas 𝑅 = (𝐴ଵ, … , 𝐴௡)

and 𝑆 = (𝐵ଵ, … , 𝐵௠) respectively.

Figure 28 shows two sample relations 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 and 𝑀𝑎𝑛𝑎𝑔𝑒𝑠.

Employee

EmpName Dept
Ron Ship
George Ship
Ron Mail

Manages

Dept MgrName
Load Ed
Ship Jim

Figure 28: Two sample relations 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 and 𝑀𝑎𝑛𝑎𝑔𝑒𝑠

While the relational algebra defines a number of operators to manipulate data modeled as

a relation, for the task of fusing datasets I focus only on the join operator. The goal of the join is

to combine tuples form two relations. Below I provide definitions of most common types of join

operator: Cartesian product, inner equi- and theta-join, left-, right- and full-outer join.

Definition 1 – Cartesian Product: The Cartesian product (also known as cross join), 𝑟 ×

 𝑠, of two relations 𝑟 and 𝑠 is defined as follows.

 𝑟 × 𝑠 = {𝑧௡ା௠|∃𝑥 ∈ 𝑟 ∃𝑦 ∈ 𝑠 (

𝑧[𝐴] = 𝑥[𝐴] ∧ 𝑧[𝐵] = 𝑦[𝐵])}

The second line of the definition sets the attribute values of the result tuple 𝑧 to the

concatenation of the attribute values of 𝑥 and 𝑦.

 81

The schema of 𝑧 is 𝑍 = (𝐴ଵ, … , 𝐴௡, 𝐵ଵ, … , 𝐵௠) or as a shorthand 𝑍 = (𝐴, 𝐵).

In other words, Cartesian product of two relations will combine each tuple from the 𝑟

relation with each tuple from the 𝑠 relation by concatenating their attributes. Figure 29 shows the

result of Cartesian product of the relations 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 and 𝑀𝑎𝑛𝑎𝑔𝑒𝑠.

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 × 𝑀𝑎𝑛𝑎𝑔𝑒𝑠

EmpName Dept Dept MgrName
Ron Ship Load Ed
Ron Ship Ship Jim
George Ship Load Ed
George Ship Ship Jim
Ron Mail Load Ed
Ron Mail Ship Jim

Figure 29: Result of the query 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 × 𝑀𝑎𝑛𝑎𝑔𝑒𝑠

Definition 2 – Theta Join: The theta join (𝜃 − 𝑗𝑜𝑖𝑛) of two relations 𝑟 and 𝑠 on attributes

𝐴ᇱ ⊆ 𝐴 and 𝐵ᇱ ⊆ 𝐵 and predicate 𝜃 is defined as follows.

 𝑟 ⋈௥.஺ᇲఏ௦.஻ᇲ 𝑠 = {𝑧௡ା௠|∃𝑥 ∈ 𝑟 ∃𝑦 ∈ 𝑠 (

 𝑧[𝐴] = 𝑥[𝐴] ∧ 𝑧[𝐵] = 𝑦[𝐵] ∧

 𝑥[𝐴ᇱ] 𝜃 𝑦[𝐵ᇱ])}

The second line of the definition sets the attribute values of the result tuple 𝑧 to the

concatenation of the attribute values of 𝑥 and 𝑦. The third line ensures that only those tuples are

concatenated that satisfy the predicate 𝜃.

The definition of the theta join can also be expressed via the selection (𝜎) operation as

𝑟 ⋈ఏ 𝑠 = 𝜎ఏ(𝑟 × 𝑠).

 82

In other words, the result of the theta join operation consists of all the combination of tuples

from 𝑟 and 𝑠 relation that satisfy 𝜃. When the operator θ is the equality operator (=) then this join

is also called an equi-join.

Figure 30 shows the result of the equi-join of relations 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 and 𝑀𝑎𝑛𝑎𝑔𝑒𝑠 based on

the equality predicate of 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒. 𝐷𝑒𝑝𝑡 and 𝑀𝑎𝑛𝑎𝑔𝑒𝑠. 𝐷𝑒𝑝𝑡 attributes. When the names of the

attributes for the theta predicate are the same in both relation, the equi-join can be written as

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 ⋈஽௘௣௧ 𝑀𝑎𝑛𝑎𝑔𝑒𝑠.

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 ⋈஽௘௣௧ 𝑀𝑎𝑛𝑎𝑔𝑒𝑠

EmpName Dept Dept MgrName
Ron Ship Ship Jim
George Ship Ship Jim

Figure 30: Result of the query 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 ⋈஽௘௣௧ 𝑀𝑎𝑛𝑎𝑔𝑒𝑠

The result of the inner join (theta or equi-join) consists only of matching tuples: the tuples

that satisfy the 𝜃 predicate. An outer join contains the result of inner join plus not matched tuples

of one relations (or both) extended with the "fill" values for each of the attributes of the other

relation. The “fill” denotes the value that is not known, which in practice corresponds to

the NULL in SQL. I will use ω symbol to denote the “fill” value.

Three outer join operators are defined as left outer join, right outer join, and full outer join.

The left outer join preserves all tuples from the relation on the left of the join operator. The right

outer join is symmetric to the left outer join, the full outer join is defined as the union of the left

and the right outer joins (the union operator eliminates the duplicate tuples). Below only left outer

join definition is provided.

https://en.wikipedia.org/wiki/Null_(SQL)

 83

Definition 3 – Left Outer Join: The left outer join of two relations 𝑟 and 𝑠 on attributes

𝐴ᇱ ⊆ 𝐴 and 𝐵ᇱ ⊆ 𝐵 and a predicate 𝜃 is defined as follows.

 𝑟⟕௥.஺ᇲఏ௦.஻ᇲ𝑠 = {𝑧௡ା௠|∃𝑥 ∈ 𝑟 ∃𝑦 ∈ 𝑠 (

 𝑧[𝐴] = 𝑥[𝐴] ∧ 𝑧[𝐵] = 𝑦[𝐵] ∧

 𝑥[𝐴ᇱ] 𝜃 𝑦[𝐵ᇱ]) ∨

 ∃𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑠 (¬(𝑥[𝐴ᇱ] 𝜃 𝑦[𝐵ᇱ]) ⇒ 𝑧[𝐴] = 𝑥[𝐴] ∧ 𝑧[𝐵] = 𝜔)}

The first three lines of the definition correspond to the theta join on matching tuples. The

last line handles the case where no matching tuple 𝑦 is found and thus sets the attribute values of

the result tuple 𝑧 to the concatenation of the attribute values of 𝑥 and the null value 𝜔.

Figure 30 shows the result of the left outer joins of relations 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 and 𝑀𝑎𝑛𝑎𝑔𝑒𝑠

based on the equality predicate on 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒. 𝐷𝑒𝑝𝑡 and 𝑀𝑎𝑛𝑎𝑔𝑒𝑠. 𝐷𝑒𝑝𝑡 attributes,

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒⟕஽௘௣௧𝑀𝑎𝑛𝑎𝑔𝑒𝑠.

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒⟕஽௘௣௧𝑀𝑎𝑛𝑎𝑔𝑒𝑠

EmpName Dept Dept MgrName
Ron Ship Ship Jim
George Ship Ship Jim
Ron Mail 𝜔 𝜔

Figure 31: Result of the query 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒⟕஽௘௣௧𝑀𝑎𝑛𝑎𝑔𝑒𝑠

 In what follows I describe various approximate join techniques depending on the data type

of the attributes that are used for the theta predicate.

 84

5.2 STRING APPROXIMATE JOIN

Historically, approximate join techniques have been mostly focused on similarity based joins for

string values.

5.2.1 Problem

Very often the values that do not match may be simply spelled in slightly different ways or have

typos. Such situations can be quickly discovered and resolved by relaxing strict requirement of

equi-join for values to have exact match. Consider two tables 𝐴 and 𝐵 presented on Figure 32 (the

tables are taken from [10]). The numbers next to each name are the lengths of the strings. As

mentioned above, in Section 5.1, when we perform a regular (equi-) join in database management

system (DBMS), the tuples from the two joining tables match only if the values of attributes on

which join is based match exactly. For example, if we join 𝐴 and 𝐵 based on the 𝑛𝑎𝑚𝑒 attribute,

𝐴 ⋈ே௔௠௘ 𝐵, equi join will result in a table with only two tuples shown in the Figure 33.

A

ID Name
1023 Frodo Baggins13

21 J. R. R. Tolkien16
239 C.S. Lewis10
863 Bilbo Baggins13

B

ID Name
948483 John R. R. Tolkien18

153494 C. S. Lewis11
494392 Frodo Baggins13
799294 Bilbo Baggins13

Figure 32: Example tables A and B

 85

A.ID A.Name B.ID B.Name
1023 Frodo Baggins 494392 Frodo Baggins
863 Bilbo Baggins 799294 Bilbo Baggins

Figure 33: Result of equi-join 𝐴 ⋈ே௔௠௘ 𝐵

The two other tuples are not present in the result because the string “J. R. R. Tolkein” does

not exactly (character by character) match the string “John R. R. Tolkein” even though they might

refer to the same person, but spelled differently. As long as at least one character is not the same,

two strings are considered to be different, that is why “C.S. Lewis” does not match with “C. S.

Lewis” (notice the first string does not have a space character after first dot character).

5.2.2 Problem Solution: Approximate String Equality

In many cases it is possible to state with some level of confidence that two strings represent the

same entity. Similarity join is a join that performs matching based not on the exact equality of the

values of the matching attributing, but based on similarity or difference measure of comparing

values.

For example, string edit distance (sed) can be used to join the two tables from the example

above. One of the most commonly used string edit distance was introduced by Levenshtein [114]

and is defined as the minimum number of edit operations that transform one string into another.

For example, sed(“J. R. R. Tolkein”, “John R. R. Tolkein”) = 3 by replacing “o” with “.” and

deleting “hn” in second string. sed(“C.S. Lewis”, “C. S. Lewis”) = 1 by inserting space “ “

character in the first string after first “.”.

 86

Thus, the string similarity join can be represented as a theta join where theta predicate

operates on two strings and evaluates to true if and only if the similarity-based distance of the two

strings is below a given threshold. For example, to perform the similarity join of tables A and B

from Figure 32 on the 𝑛𝑎𝑚𝑒 attribute with string edit distance as defined above and a threshold

equals to 3, the query can be defined as a theta join with predicate 𝑎 𝜃 𝑏 ≡ 𝑠𝑒𝑑(𝑎, 𝑏) ≤ 3. The

result of such query, 𝐴 ⋈௦௘ௗ(஺.ே௔௠௘, ஻.ே௔௠௘)ஸଷ 𝐵, is presented in Figure 34.

𝐴 ⋈௦௘ௗ(஺.௡௔௠௘, ஻.௡௔௠௘)ஸଷ 𝐵

A.ID A.Name B.ID B.Name
1023 Frodo Baggins 494392 Frodo Baggins
21 J. R. R. Tolkien 948483 John R. R. Tolkien
239 C.S. Lewis 153494 C. S. Lewis
863 Bilbo Baggins 799294 Bilbo Baggins

Figure 34: Similarity join result with string edit distance and threshold 3

Another popular approach to perform string similarity join is to use token based techniques

(e.g., tokens are based on either individual words or phrases for long strings, or q-gram for short

strings) and set similarity metrics (e.g. Overlap similarity, Jaccard Similarity, or Dice Similarity).

[10] provides a good overview of the similarity join approaches and their possible implementations

in relational database management systems. Since computing similarity between two strings adds

additional execution cost, many works focus on techniques and algorithms for efficient similarity

join execution on large datasets. The most popular approaches use 1) blocking/filtering techniques

(e.g. [98][184]) to filter out not matching tuples before computing similarity metric; 2) distributed

join computation a cluster of machines (e.g. [3][108]). A recent paper [98] provides comprehensive

experimental evaluation of many string similarity join algorithms.

 87

In my work, I use threshold based string edit distance to compute similarity scores between

string values during the join execution. Since the threshold largely depends on the data and the

task at hand, I let user to interact with the join result by means of a threshold slider. In [166] authors

report using similarity join to find schema matching rules and duplicate values by learning

similarity threshold from training data.

5.3 SPATIAL (NAME-BASED) APPROXIMATE JOIN

Previous works on spatial join queries has been mostly focused on the spatial data that is

represented in geographic coordinates and regions. A number of index structures such as the R-

tree [78], R+-tree [161], R∗ -tree [15], Quad-tree [156], or seeded tree [122] has been developed

and utilized for efficient query answering. While some algorithms use preexisting indices, others

build the them on the fly.

String values can very often represent some geographic location however no geographic

coordinates might be available (especially in historical datasets the actual geographic coordinates

might be missing). Thus, existing spatial join techniques cannot be easily applied. String

approximate join methods cannot be applied either. Some recent works report on what’s called

spatial approximate string (SAS) query (e.g., [118]), however they don’t use location names and

hierarchies as the join attribute. Instead they combine spatial indices with text indices to perform

search for a location based on the string similarity in location’s tags.

In this section I describe how hierarchical representation of the location attribute and tree-

based similarity methods can be utilized to perform ad-hoc join queries.

 88

5.3.1 Problem

Consider two relations, 𝐴 and 𝐵, shown in Figure 35 and a query that aims to join these two

relations based on the match between City and Area columns. This query could be executed in

several ways. Using equi-join on both attributes would result in an empty table because we cannot

match exactly any value in the City column with any value in the Area column. Even if we try to

perform an approximate string join based on edit distance, the result will still be an empty table.

A

City Precipitation
Pittsburgh 700

Philadelphia 800

B

Area Pop. Temp.
Allegheny

County 306,211 60

Pennsylvania 1,548,000 70

Figure 35: Example of datasets for spatial join

5.3.2 Problem Solution: Named Subsumption Hierarchy Approach

The location values could be represented in a hierarchical form. For example, a simplified

hierarchy to illustrate the approach could be as USA subsumes Pennsylvania territorially, it

subsumes Philadelphia and Allegheny County and Allegheny County subsumes Pittsburgh. Figure

36 shows modified relations 𝐴 and 𝐵.

 89

A

Area Precipitation
USA
 |-Pennsylvania

|- Allegheny County
 |- Pittsburgh

700

USA
 |-Pennsylvania
 |- Philadelphia

800

B

City Pop. Temp.
USA
 |-Pennsylvania
 |- Allegheny County

306,211 60

USA
 |-Pennsylvania

1,548,000 70

Figure 36: Modified tables 𝐴 and 𝐵 with hierarchical representation of the values in the location

attributes

The 𝑡𝑟𝑒𝑒 𝑒𝑑𝑖𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑡𝑒𝑑), that is defined as the minimum cost of a sequence of edit

operations (delete, insert, rename) that transform one tree into another, can be used to calculate the

similarity between location hierarchies and then based on a similarity threshold, tuples from the

two relations can be joined. Let us assume that all operations have the same cost equal to 1. As an

example, given a distance threshold of 1, consider joining the first tuple from 𝐴 table with tuples

from 𝐵 table. The tree edit distance between Pittsburgh and Allegheny County is 1 since either

Pittsburgh node needs to be deleted in the 𝐴 table or added to the 𝐵 table. Thus two tuples can be

joined. However, since the difference between Pittsburgh and Philadelphia is 2, the tuples cannot

be joined.

 90

Figure 37 shows the result of the spatial approximate join between the 𝐴 and 𝐵 tables based

on the tree edit distance with threshold 1.

City Precipitation Area Pop. Temp.
Pittsburgh 700 Allegheny County 306,211 60

Philadelphia 800 Pennsylvania 1,548,000 70

Figure 37: Result of the query 𝐴 ⋈௧௘ௗ(஼௜௧௬,஺௥௘௔)ஸଵ 𝐵

Efficient algorithms that compute tree edit distance are known, e.g. [143].

5.4 TEMPORAL APPROXIMATE JOIN

Time is an attribute of all real-world phenomena, and thus very often the datasets than need to be

merged include a temporal dimension either explicitly or implicitly. However, most of the prior

techniques and systems for data integration are largely agnostic to time, and hence, they cannot be

immediately applied to fuse temporal datasets.

Zhu et. al [198] discuss three types of temporal heterogeneity that need to be resolved

when integrating data over time. To address the record linkage problem, several temporal models

(e.g., [41][119][117]) have been proposed. To resolve temporal conflicts and consistently integrate

temporal datasets, time-aware and preference-aware union operators have been proposed in

[12][154]. However, all previous work has been focused mostly on record linkage problem where

time dimension is used primarily to track the object evolution over time (e.g., to reconstruct

employment history of a specific person).

 91

Another area where a lot of effort to incorporate temporal domain have been ongoing for

several decade is the area of temporal databases ([97][96]). Each tuple in a temporal database

relation is annotated with time attributes, which are treated in a special way when a query is

executed. Temporal counterparts of the relational algebra operators have been developed. The

temporal Cartesian product and join operators (see [71] for review) are of the most related to us

since they allow to merge two temporal datasets into one. Temporal joins are arguably the most

important relational operators. This is so because efficient join processing is essential for the

overall efficiency of a query processor. Various algorithms (e.g.,

[38][52][53][71][101][102][103][64][145][151][174][196][199]) that use specialized temporal

indices and partition over a number of machines were introduced to efficiently execute temporal

join in temporal databases.

While both data integration and temporal database areas consider temporal dimension to

represent time when some fact is valid (e.g., a time when a person works in a company), they

didn’t consider the case when a relation contains aggregated values over some time intervals (e.g.,

average temperature over a course of a week), which is a common case in historical datasets. Thus,

to the best of my knowledge the problem of fusing aggregated temporal datasets was not address

in the context of approximate join.

In what follows, I first define the problem formally in Section 5.4.2, show the use cases

that I focus on in Section 5.4.3 and provide description of proposed methods to solve the problem

in Sections 5.4.4-5.4.7.

 92

5.4.1 Preliminaries for Temporal Join

In this section I provide definitions and notations of terms that will be used further in the text to

discuss the problem of temporal approximate join and the solutions that I developed. I reuse where

possible and extend where needed terminology defined in the temporal database area.

I assume discrete 𝑡𝑖𝑚𝑒 𝑑𝑜𝑚𝑎𝑖𝑛, Ω், where elements are linearly ordered. I mostly refer to

an element of the time domain as a 𝑡𝑖𝑚𝑒 𝑢𝑛𝑖𝑡 but also may use terms 𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡, 𝑡𝑖𝑚𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑡,

or 𝑐ℎ𝑟𝑜𝑛𝑜𝑛 [62] interchangeably. Depending on the granularity level, examples of time unit

include seconds, days, months, years, etc.

A 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 is a contiguous set of time units and is represented by two time units

[𝐹𝑟𝑜𝑚, 𝑇𝑜] which denote its inclusive 𝐹𝑟𝑜𝑚 (start) and 𝑇𝑜 (end) time points on the underlying

time axis respectively. As a shorthand, a time interval will be represented as 𝑇, and 𝑇. 𝐹𝑟𝑜𝑚 is the

𝐹𝑟𝑜𝑚 time unit of the interval and 𝑇. 𝑇𝑜 is the 𝑇𝑜 time unit. A time unit 𝑡 belongs to the time

interval 𝑇, 𝑡 ∈ 𝑇, iff 𝐹𝑟𝑜𝑚 ≤ 𝑡 ≤ 𝑇𝑜. Chronological relations between two time intervals can be

expressed using the Allen’s interval algebra [8], which defines a set of Boolean predicates,

composition table and converse operation. Here I define two operators on two intervals that will

be useful for further discussion.

 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑇ଵ, 𝑇ଶ) = ൜ 𝑡𝑟𝑢𝑒 𝑖𝑓 ∃𝑡 (𝑡 ∈ 𝑇ଵ ∧ 𝑡 ∈ 𝑇ଶ)
𝑓𝑎𝑙𝑠𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (6)

𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑇ଵ, 𝑇ଶ) =

 ቄ[max(𝑇ଵ. 𝐹𝑟𝑜𝑚, 𝑇ଶ. 𝐹𝑟𝑜𝑚) , min (𝑇ଵ. 𝑇𝑜, 𝑇ଶ. 𝑇𝑜)] 𝑖𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑇ଵ, 𝑇ଶ)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7)

 93

The 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑇ଵ, 𝑇ଶ) operator is true when two intervals has at least one time unit in

common and 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑇ଵ, 𝑇ଶ) returns the number of time units that are in common if two intervals

intersect and 0 if they don’t.

Relations in temporal databases are annotated with time dimension that usually record a

𝑣𝑎𝑙𝑖𝑑 𝑡𝑖𝑚𝑒 , 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒, or both (known as 𝑏𝑖𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 model). Valid time describes

when a tuple is true in the real world, and transaction time captures when a tuple was created or

altered. In what follows, I focus on relations that only record valid time. Thus, definition of

temporal relation schema extends the definition of the non-temporal relation given in Section 5.1

as follows. A 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑐ℎ𝑒𝑚𝑎 is represented as 𝑅் = (𝐴ଵ, … , 𝐴௡, 𝐹𝑟𝑜𝑚, 𝑇𝑜) ,

where 𝐴௜ is the non-temporal (also called explicit) attribute with domain Ω௜, and 𝐹𝑟𝑜𝑚 and 𝑇𝑜 are

temporal attributes with domain Ω். To distinguish relations with valid-time semantics from other

types that will be introduced later in the text, instances of valid-time relations are denoted as 𝑟௏்

and the schema as 𝑅௏்.

Consider as example two temporal relations (taken from [71]) in Figure 38 that are

representative of valid time relations. The tuples in both relations are annotated with time intervals

𝑇 that denote when each tuple is valid. For example, the tuple (Ron, Ship, [1, 5]) in the Employee

relation represents the fact that Ron worked for the Ship department from time 1 to time 5.

Figure 38: Two sample temporal relations with interval temporal attributes

 94

To distinguish between a tuple of a non-temporal relation and a tuple of a temporal relation,

I refer to the latter one as a 𝑟𝑒𝑝𝑜𝑟𝑡. The 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 or 𝑙𝑒𝑛𝑔𝑡ℎ of a report 𝑟௜ ∈ 𝑟் , |𝑟௜|, is the

number of time units in its time interval and is calculated as:

 |𝑟௜| = |𝑟௜. 𝑇| = 𝑟௜. 𝐹𝑟𝑜𝑚 − 𝑟௜. 𝑇𝑜 + 1 (8)

Since time intervals lack the total ordering, the next two definitions find the report that

covers the smallest (the earliest) or the largest (the latest) time unit respectively.

Definition 4 – First: Given a set of reports (or a temporal relation) 𝑟் , the 𝑓𝑖𝑟𝑠𝑡(𝑟்)

operator is defined as follows.

 𝑓𝑖𝑟𝑠𝑡(𝑟்) = 𝑟௙ ⟺ 𝑟௙ ∈ 𝑟் ∧ ∀𝑥 ∈ 𝑟்(𝑟௙. 𝐹𝑟𝑜𝑚 ≤ 𝑥. 𝐹𝑟𝑜𝑚)

The condition ensures that the first report is the one whose 𝐹𝑟𝑜𝑚 time unit is the smallest

(earliest).

Definition 5 – Last: Given a set of reports (or a temporal relation) 𝑟் , the 𝑙𝑎𝑠𝑡(𝑟்)

operator is defined as follows.

 𝑙𝑎𝑠𝑡(𝑟்) = 𝑟௟ ⟺ 𝑟௟ ∈ 𝑟் ∧ ∀𝑥 ∈ 𝑟்(𝑟௟. 𝑇𝑜 ≥ 𝑥. 𝑇𝑜)

The condition ensures that the last report is the one whose 𝑇𝑜 time unit is the largest

(latest).

The 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 of a relation 𝑟், |𝑟்|, is the number of time units between the 𝐹𝑟𝑜𝑚 time

unit of the earliest report and the 𝑇𝑜 time unit of the latest report and is calculated as:

 |𝑟்| = 𝑓𝑖𝑟𝑠𝑡(𝑟்). 𝐹𝑟𝑜𝑚 − 𝑙𝑎𝑠𝑡(𝑟்). 𝑇𝑜 + 1 (9)

Note that the lifespan of a relation can contain some time units that are not covered by any

reports. For example, if relation 𝑟௏் has two reports 𝑟ଵ = (𝑣ଵ, 1, 2) and 𝑟ଶ = (𝑣ଶ, 5, 8), where

 95

𝑣ଵand 𝑣ଶ are some explicit values, that cover time units [1, 2] and [5, 6, 7, 8], the lifespan would

be 8 time units, however time units [3, 4] are not covered. Such intervals of time units are called

𝑔𝑎𝑝𝑠. The Definition 6 defined the 𝑔𝑎𝑝𝑠 operator that returns true if there are time units that are

not covered by any report in the given set of reports.

Definition 6 – Gaps: Given a set of reports (or a temporal relation) 𝑟், the 𝑔𝑎𝑝𝑠(𝑟்)

operator is defined as follows.

 𝑔𝑎𝑝𝑠(𝑟்) = ൜ 𝑡𝑟𝑢𝑒 ∃𝑡 ∈ [𝑓𝑖𝑟𝑠𝑡(𝑟்). 𝐹𝑟𝑜𝑚, 𝑙𝑎𝑠𝑡(𝑟்). 𝑇𝑜]∀𝑥 ∈ 𝑟்(𝑡 ∉ 𝑥. 𝑇)
𝑓𝑎𝑙𝑠𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The condition to return true checks whether there exists a time unit in the lifespan of the

set of the reports that doesn’t no belong to all reports’ time intervals

As mentioned earlier, temporal relational algebra operations have been developed to

operate on temporal relations. Two most relevant operations to the discussion in this chapter are

the temporal Cartesian product (×்) and the temporal Theta-join (⋈ఏ
்). The two definitions below

are taken from [71] and are important because they allow to understand how valid-time semantics

treat the value of explicit attributes.

Definition 7 – Temporal Cartesian Product [71]: The temporal Cartesian product,

𝑟௏் ×் 𝑠௏் , of two valid time temporal relations 𝑟௏் and 𝑠௏் , defined over schemas 𝑅௏் =

(𝐴ଵ, … , 𝐴௡, 𝐹𝑟𝑜𝑚, 𝑇𝑜) and 𝑆௏் = (𝐵ଵ, … , 𝐵௡, 𝐹𝑟𝑜𝑚, 𝑇𝑜) respectively, is defined as follows.

 𝑟௏் ×் 𝑠௏் = ൛𝑧(௡ା௠ାଶ) ห ∃𝑥 ∈ 𝑟 ∃𝑦 ∈ 𝑠 (

 𝑧[𝐴] = 𝑥[𝐴] ∧ 𝑧[𝐵] = 𝑦[𝐵] ∧

 𝑧[𝑇] = 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑥[𝑇], 𝑦[𝑇]) ∧ 𝑧[𝑇] ≠ 0)}

 96

The second line of the definition sets the explicit attribute values of the result tuple 𝑧 to the

concatenation of the explicit attribute values of 𝑥 and 𝑦. The third line computes the timestamp of

𝑧 and ensures that it is nonempty.

Definition 8 – Temporal Theta Join [71]: The temporal theta join, 𝑟௏் ⋈ఏ
் 𝑠௏், of two

valid time temporal relations 𝑟௏் and 𝑠௏், defined as in Definition 7, is defined as follows.

𝑟௏் ⋈ఏ
் 𝑠௏் = 𝜎ఏ(𝑟௏் ×் 𝑠௏்)

For example, the result of the temporal Cartesian product (×்) of the Employee and

Manages relations from the Figure 38 is shown in Figure 39. The query

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒௏் ×் 𝑀𝑎𝑛𝑎𝑔𝑒𝑠௏்can be expressed in English as “Show the names of employees and

managers where the employee worked for the company while the manager managed some

department in the company” [71].

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒௏் ×் 𝑀𝑎𝑛𝑎𝑔𝑒𝑠௏்

EmpName Dept Dept MgrName T
Ron Ship Load Ed [3, 5]
George Ship Load Ed [5, 8]
George Ship Ship Jim [7, 9]
Ron Mail Load Ed [6, 8]
Ron Mail Ship Jim [7, 10]

Figure 39: The result of the query 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒௏் ×் 𝑀𝑎𝑛𝑎𝑔𝑒𝑠௏்

Note that the non-temporal Cartesian product would match every tuple from the Employee

relation with every tuple of the Manages relation and the result would have six tuples. The result

of the temporal Cartesian product, however, basically represents the join of the two relations based

on the intersections of the time intervals 𝑇. In fact, in the original work by Segev and Gunadhi

 97

[159][160] on the temporal Cartesian product, the operator was named 𝑡𝑖𝑚𝑒 𝑗𝑜𝑖𝑛 , and the

abbreviation 𝑇 − 𝑗𝑜𝑖𝑛 was used.

An example of a temporal equi-join of the 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒௏்and 𝑀𝑎𝑛𝑎𝑔𝑒𝑠௏் relations based

on the 𝐷𝑒𝑝𝑡 attributed, 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒௏் ⋈஽௘௣௧
் 𝑀𝑎𝑛𝑎𝑔𝑒𝑠௏் is shown in Figure 40.

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒௏் ⋈஽௘௣௧
் 𝑀𝑎𝑛𝑎𝑔𝑒𝑠௏்

EmpName Dept Dept MgrName T
George Ship Ship Jim [7, 9]

Figure 40: The result of the query 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒௏் ⋈஽௘௣௧
் 𝑀𝑎𝑛𝑎𝑔𝑒𝑠௏்

All temporal operators operate on explicit (non-temporal attributes) while taking into

account temporal dimension to produce only valid tuples. In the next section, I will describe when

the existing approaches to temporal data join do not solve the problem that we encounter while

building the advance historical data integration infrastructure.

5.4.2 Problem

The temporal join operators presented in the previous section (Section 5.4.1) work on temporal

data successfully because of the semantic of the 𝑣𝑎𝑙𝑖𝑑 𝑡𝑖𝑚𝑒 data model. The 𝑣𝑎𝑙𝑖𝑑 𝑡𝑖𝑚𝑒 temporal

relation contains facts that are 𝑣𝑎𝑙𝑖𝑑 (and are the same) at each time unit of the time interval. For

example, the 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒௏் relation from Figure 38 can be represented as a non-temporal relation

(see Figure 41 for the excerpt of the converted relation) where the 𝑇𝑈 attribute stands for time unit

and can be treated as a regular non-temporal attribute. Non-temporal relational algebra operators

 98

can be used to operate on such table. In fact, temporal operators act as though they are non-

temporal operators applied independently at each time unit.

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒

EmpName Dept TU
Ron Ship 1
Ron Ship 2
Ron Ship 3
Ron Ship 4
Ron Ship 5
George Ship 5
George Ship 6
… … …

Figure 41: Excerpt of the valid time temporal relation 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒௏் converted into non-temporal

relation 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒

Very often, however, we need to deal with another type of temporal data, which was not

considered previously in the temporal database area. Instead of reporting constant facts that are

valid during some time intervals, this type of relations reports aggregated value of some real life

phenomena over some period of time (time interval). I call such relations as 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑇𝑖𝑚𝑒

relations.

Definition 9 – Aggregate Time Relation: Given a non-temporal relation 𝑟 defined over

schema 𝑅 = (𝐶ଵ, … , 𝐶௡, 𝑉ଵ, … , 𝑉௠, 𝑇𝑈) where each tuple describes some object/entity by a set of

categorical attributes 𝐶ଵ, … , 𝐶௡ that do not change over time and a set of variable attributes

𝑉ଵ, … , 𝑉௠ values for each are recorded at each time unit 𝑇𝑈. Given a set of time intervals 𝑇𝐼 where

each interval is a defined over subset of time units from the lifespan of 𝑇𝑈 such that the values of

 99

𝐶ଵ, … , 𝐶௡ attributes are same for each time unit. And given an aggregate function 𝑓: ℝ௞ → ℝ, the

aggregate temporal relation, 𝑟஺், is defined as follows.

 𝑟஺் = ൛𝑧(௡ା௠ାଶ)ห ∀𝑡 ∈ 𝑇𝐼 ∃𝑟ᇱ ⊆ 𝑟 (∀𝑥 ∈ 𝑟ᇱ (𝑥. 𝑇𝑈 ∈ 𝑡) ∧

 ൫∃𝑦 ∈ 𝑟ᇱ (𝑧[𝐶] = 𝑦[𝐶])൯ ∧

 ൬∀𝑖 ∈ 1 … 𝑚 ቀ𝑧. 𝑉௜
௙ = 𝑓(𝑟ᇱ. 𝑉௜)ቁ൰ ∧

 𝑧. 𝑇 = 𝑡)}

In the first line, for every time interval 𝑡 a temporary relation 𝑟ᇱ is defined that contains a

subset of tuples of 𝑟 whose 𝑇𝑈 belongs to the interval 𝑡. The second line sets the values of the

constant categorical attributes 𝐶ଵ, … , 𝐶௡ of the result tuple 𝑧 as a copy of any tuple of the temporary

relation 𝑟ᇱ. The third line applies the aggregate function 𝑓 to each variable attribute 𝑉௜ of 𝑟ᇱ and

sets the result into corresponding attribute of the result tuple 𝑧. The last line sets the time interval

of the result tuple 𝑧 as the time interval 𝑡.

As it follows from the definition, the schema of the aggregate time relation is 𝑅஺் =

(𝐶ଵ, … , 𝐶௡, 𝑉ଵ
௙, … , 𝑉௠

௙, 𝐹𝑟𝑜𝑚, 𝑇𝑜).

As an illustration of the Definition 9 consider the example shown in Figure 42. The

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 relation, called original or ground truth relation, describes two stations St1 and St2

(we call them entities or objects) and the temperature values measured at each station at each time

unit. The 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒஺் relation is the aggregate time relation derived from 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 by

applying mean function over time intervals 𝑇𝐼 within each entity.

 100

Figure 42: Illustration of non-temporal relation Temperature and its aggregate time version

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒஺்

The first notable difference between aggregate time and valid time relations is that in the

case of aggregate relation, the values of the variable attributes (e.g. Temp୑ୣୟ୬ attribute) at each

time unit are unknown and thus we cannot split the time interval into time units and assign each

time unit the same value. For example, slicing the first report in the 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒஺் relation into

two tuples with the same Temp୑ୣୟ୬ value will produce the tuples (St1, 12.5, 1) and (St1, 12.5, 2)

which do not correctly describe the true values of the Temp attribute in the Temperature relation.

To simplify further discussions without the loss of generality, I focus on aggregate time

relation that describes only one object and one variable attribute of that object. Thus, a shortened

schema, 𝑆 = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉), will be used. We can do so, because joining on categorical attributes

is straightforward operation and standard join approaches can be used. The temporal fusion, that

will be discussed later, is only needed for relating variable attributes within each object. The

 101

superscripts will be omitted if it is clear from the context what type of relations is used. I call

variable attribute as a variable.

Consider two relations 𝐴𝑣𝑔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 and 𝐴𝑣𝑔𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠 (Figure 43) that hold

average temperature and average cloudiness values respectively from some time unit 𝐹𝑜𝑟𝑚 to

time unit 𝑇𝑜. Notice that the time intervals intersect both within one relation and between two

relations. The time intervals can also be represented graphically as shown in Figure 44.

Figure 43: Sample data from two datasets describing two variables – average temperature and

average cloudiness. Observations are temporally overlapping both within and between datasets

Figure 44: Interval representation of time interval overlaps for 𝐴𝑣𝑔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 and

𝐴𝑣𝑔𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠 tables from Figure 43

 102

Consider a research question that would require average temperature and average

cloudiness to be combined into one table: what temperature corresponds to what cloudiness value?

In database terms, such operation can be performed with a join query.

Using traditional equi-join on the 𝐹𝑜𝑟𝑚 and 𝑇𝑜 attributes of the 𝐴𝑣𝑔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 and

𝐴𝑣𝑔𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠 tables from Figure 43 would yield an empty table since there are no matching

time intervals in the two tables that match exactly on their ends. Other join predicate operators

would find matching tuples, but they will not recover the complete picture and it is not always

clear which combination of them to use. Moreover, the result still might be empty if there are gaps

in the data. As it was shown earlier, it is also not possible to use temporal join approaches from

the temporal database area since they require valid time semantics.

5.4.3 Taxonomy of Aggregate Time Relations and Reports Characteristics

As mentioned above, datasets that are developed independently come in different forms and

shapes. In this section I describe five main characteristics of aggregate time relations and reports

(see Table 4 for the summary):

x 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 – characteristic of a relation that describes whether the relation has gaps as

defined in Section 5.4.1 - time intervals that are not covered by any report in the relation.

x 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 – characteristic of a relation that describes whether the

relation has reports that intersect or not.

x 𝑇𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ – characteristic of a relation that describes whether the reports

in the relation are short (aggregation is performed over few time units) or long (aggregation

is performed over large number of time units).

 103

x 𝑉𝑎𝑟𝑦𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑣𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ – characteristic of a relation that describes whether all reports

in the relation have the same length or not.

x 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒 – the type of the aggregation function: average value (also called

index series), sum of the values (also called flow series, e.g., exports, production,

household consumption) or a particular point in time (e.g., the value of the first or last time

unit in the report time interval) (also called stock series, e.g., unemployment, money stock,

public sector debt).

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒, 𝑇𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ and 𝑉𝑎𝑟𝑦𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑣𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ characteristics are also

applicable to the valid-time relation type.

Combination of values of different characteristics is called a 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 . For example,

Figure 44 shows an instance of the scenario when reports have partial coverage (see gaps for time

unit 5 for 𝑇𝑒𝑚𝑝 variable and for 6 for 𝐶𝑙𝑜𝑢𝑑 variable), intersection within relation (two reports in

the 𝐴𝑣𝑔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 relation intersect), and varying time interval length. Figure 45 shows an

example of a scenario with complete coverage, no intersection within relation, varying interval

length and mixed short and long reports. Figure 46 shows example of a scenario with complete

coverage, no intersection within relation, and constant interval length short reports.

Table 4: Temporal categorization criteria

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 Full; Partial
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 Yes; No

𝑇𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ Small; Large
𝑉𝑎𝑟𝑦𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑣𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ Yes (varying); No (constant)

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒
Average (index); Sum (flow); First or Last

observation in time interval (stock)

 104

Figure 45: Example of a scenario with complete coverage, no intersection within relation,

varying interval length and mixed short and long reports

Figure 46: Example of a scenario with complete coverage, no intersection within relation,

constant interval length short reports

Note that even though Figure 46 shows ideal scenario within each relation, non-temporal

or temporal valid time equi-join approaches are still not applicable since there are no exact matches

on reported time intervals between two relations. In what follows I describe methods to perform

join for such scenarios.

5.4.4 Overview of Join Strategies of Aggregate Time Relations

As I mentioned earlier, performing the standard equi-join on temporal datasets, such as in Figure

44, would yield an empty table when time units don’t match exactly. While it is impossible to find

 105

exact correspondence for two aggregate time variables on each time unit in the same way how it

is done in case of valid time relation, depending on the task at hand, an approximate join would

suffice. Thus, the goal of approximate join of two aggregate time tables is to provide the best effort

to match corresponding tuples.

In general, we can apply two high level strategies to join two aggregate time relations 𝐴ଵ

and 𝐴ଶ that were derived from the original relations by applying some aggregation function:

1. Reports in each relation can be disaggregated to a common time scale and then the

standard non-temporal equi-join can be applied. We call such approach

𝐷𝑖𝑠𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝐽𝑜𝑖𝑛 (explained in more detail in Section 5.4.5).

2. Alternatively, join can be performed directly on the reports based on the temporal

distance between those reports. We call such approach 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝐽𝑜𝑖𝑛 (explained in

more detail in Section 5.4.6).

Both approaches are illustrated in Figure 47. The example shows (a) aggregate relation A1

with average life expectancy statistics reported every five years and aggregate relation A2 with

annual Top 1% income share statistic reported at different times; (b) graphical representation of

the aggregate relations A1 (green) and A2 (blue); (c) join result JA12 of the relations A1 and A2

based on Aggregated Join method; (d) disaggregated relations D1 and D2 as well as Disaggregated

Join result based on the exact match of time units (years). The process of merging aggregated data

streams is resource consuming and it involves trade-offs between accuracy of the produced results,

execution time, and consumed computational resources.

 106

Figure 47: Illustration of high level strategies for temporal approximate join of two aggregate

time relations

Figure 48 shows schematic representation of the problem setup and high level view of the

possible approaches to join aggregate time temporal relations.

Figure 48: Schematic representation of high level view of the approaches for temporal

approximate join of two aggregate time relations

 a) b) c) d)

 107

5.4.5 Disaggregate Join of Aggregate Time Relations

As it was mentioned earlier, under the disaggregate join strategy we first disaggregate each

aggregate time relation into a relation that contains estimated values for each time unit and then

use standard equi-join.

Given a disaggregation function, 𝑑𝑖𝑠(𝑟, 𝐼𝑟) → 𝑟′, that takes an aggregate time relation

with schema 𝑅஺் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉) and a set of items 𝐼𝑟 that represent external knowledge, and

produces a relation 𝑟′ with schema 𝑅′஺் = (𝑇𝑈, 𝑉′), we can define disaggregate join as follows.

Definition 10 – Disaggregate Join: The disaggregate join, 𝑟஺் ⋈்஽௃ 𝑠஺் | 𝐼𝑟, 𝐼𝑠, of two

aggregate time temporal relations 𝑟஺் and 𝑠஺் given two sets of external knowledge elements

{𝐼𝑟ଵ, … 𝐼𝑟௞} for 𝑟஺் and {𝐼𝑠ଵ, … 𝐼𝑠௟} for 𝑠஺் is defined as follows.

𝑟஺் ⋈்஽௃ 𝑠஺் | 𝐼𝑟, 𝐼𝑠 = 𝑑𝑖𝑠(𝑟, 𝐼𝑟) ⋈்௎ 𝑑𝑖𝑠(𝑠, 𝐼𝑠)

The external knowledge set can contain anything that a disaggregate function can use to do

better estimation. For example, it can be distribution of the variable, some context information,

etc. The quality of the disaggregate join solely depends on how accurate a disaggregation function

can estimate values for each time. Below I provide three disaggregation methods that can be used

as a disaggregation function in the disaggregate join approach.

5.4.5.1 Temporal Disaggregation The Temporal Disaggregation approach is based on the

temporal disaggregation methods that are used in the time series analysis of mostly economic data

(see [39], [29] and [158] for review). Briefly, given a low frequency time series (e.g. annual sales,

weekly stock market index, etc.) the goal of temporal disaggregation is to produce a high-

frequency series (e.g. quarterly sales, daily stock market index, etc.) while satisfying temporal

aggregation (additivity) constraint. Temporal aggregation constraint ensures that either the sum,

 108

the average, the first or the last value of the resulting high frequency series is consistent with the

low frequency series. If available, related series observed at the required high frequency can be

used to disaggregate the original observations. Such series are called indicators. However, care

must be taken when selecting indicators since two strongly correlated low frequency time series

may not be strongly correlated at a higher frequency [36]. Thus, choosing good indicator series is

not a very straightforward task.

Temporal disaggregation methods have been studied extensively in the area of

econometrics and statistics and many methods to perform the disaggregation have been proposed.

Smoothing, model based and statistical methods have been developed that can be organized into

three groups as follows (note, the list of methods is not exhaustive):

x Univariate Without Indicators: If no higher frequency indicator is available then a

smoothing or model based methods can be used, such as: low-pass interpolation

(interpolation followed by low-pass smoothing by means of a filter (e.g. Hodrick-Prescott

filter [152]); Boot-Feibes-Lisman (BFL) smoothing method [27]; Stram-Wei (an ARIMA

model-based method) [167]. 

x Univariate With Indicators: When a higher frequency indicator is available a range of

statistical methods can be used, such as: Denton [51]; Denton-Cholette [44]; Chow-Lin

[74]; Fernández [66]; Litterman [121]; Santos Silva-Cardoso (dynamic extension of

Chow-Lin) [163]; based on MIDAS regression [76].

x Multivariate With/Without Indicators: Multivariate models are used to model and

explain the interactions and comovements among a group of time series variables:

Multivariate Denton; Rossi [153]; Di Fonzo [68]; Polynomial method [195]; SUTSE [133].

 109

Methods without indicator series solely rely on the data points in the low-frequency series

while estimating missing values for higher frequencies; methods with indicators are primarily

concerned with movement preservation, generating a series that is similar to the indicator. While

univariate methods derive one high-frequency series from one low-frequency one, the multivariate

methods derive multiple high-frequency series from multiple low-frequency series. Thus, in the

multivariate case, the estimated high-frequency series must fulfill both temporal and

contemporaneous aggregation constraints.

Some of the most popular temporal disaggregation methods have been implemented in R

by Sax and Steiner [158], Ecotrim by Barcellan et al. [14] and as Matlab extension by Quilis [177].

Figure 49 shows an example of applying BFL, Fernandez and Chow-Lin temporal

disaggregation methods to disaggregate annual series into quarterly series. The top left plot

visualizes true quarterly sales that were recorded for each year from 1975 to 2010. The true sales

series is used as the ground truth to evaluate the performance of the three disaggregation methods.

The top middle plot visualizes the annual sales series (annual sale for one year is the sum of sales

of 4 quarters for that year). The top right plot visualizes quarterly exports series that will be used

as an indicator series since the sales and exports have similar behavior. The annual series and the

indicator series are what is available as input to the disaggregation method.

The bottom left plot shows the result of the BFL method that doesn’t use the indicator

series to perform disaggregation of the annual sales series into quarterly one. The bottom middle

and right plots visualizes the results of Fernandez and Chow-Lin methods respectively. Both

methods used the quarterly export series as an indicator series. All three bottom plots also report

root mean square error (RMSE) between the true quarterly sales series and the estimated quarterly

series produced by each method.

 110

As we can see from the Figure 49, the BFL method simply smoothens the annual series

while the other two methods rely on the dynamics of the indicator series and are able to recover

smaller fluctuations of the quarterly sales series that were not present in the annual series.

Hereafter, I am only going to use BLF and Fernandez method as two representative methods of

univariate temporal disaggregation without and with indicator series respectively.

Figure 49: Example of applying BFL, Fernandez and Chow-Lin temporal disaggregation

methods to disaggregate annual series into quarterly

5.4.5.2 Polynomial or Spline Interpolation Since the task of the disaggregate function is to

estimate values for unknown time units based on the values of the known time units, standard

1975 1980 1985 1990 1995 2000 2005 2010

An
nu

al
 S

al
es

100

200

300

400

500

600

700

800

900

1000

1100
Annual (Low Frequency)

1975 1980 1985 1990 1995 2000 2005 2010

Q
ua

rte
rly

 E
xp

or
ts

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
Quarterly Indicator (High Frequency)

1975 1980 1985 1990 1995 2000 2005 2010

Q
ua

rte
rly

 S
al

es

0

50

100

150

200

250

300
True Quarterly Sales (High Frequency)

1975 1980 1985 1990 1995 2000 2005 2010

Q
ua

rte
rly

 S
al

es

0

50

100

150

200

250

300

BFL method (Without Indicator)
RMSE: 7.14

1975 1980 1985 1990 1995 2000 2005 2010

Q
ua

rte
rly

 S
al

es

0

50

100

150

200

250

300

Fernandez method (With Indicator)
RMSE: 5.45

1975 1980 1985 1990 1995 2000 2005 2010

Q
ua

rte
rly

 S
al

es

0

50

100

150

200

250

300

Chow-Lin (With Indicator)
RMSE: 5.77

 111

mathematical interpolation methods, such as polynomial or spline interpolation methods, can be

used.

While this method is conceptually simple, it doesn’t satisfy the temporal additivity

constraint in the case when mean function is used to produce aggregated reports. It also cannot be

directly applied when there are intersections of reports within one relation. Finally, this method is

not applicable when sum aggregation function is used to produce aggregated reports.

5.4.5.3 Spread, Aggregate, Fill, Extend (SAFE) Heuristic I propose this method as a heuristic

that distributes the value of the report to each time unit in case of the index or stock aggregation

function or the value divided by the number of time units in the case of the flow aggregation

function (similar to the 1/n disaggregation method). Whenever there are intersecting reports it

calculates average value to resolve the conflict and propagate that value to the other time units.

Note that this method doesn’t not satisfy additivity constraint.

Figure 50 shows an example of the SAFE method applied to slightly modified 𝑇𝑒𝑚𝑝

variable from Figure 44.

 112

Figure 50: Example of applying the SAFE method

Figure 50(a) shows three reports that present average value of the Temp variable. Two

reports intersect, and there is a gap between second and the third report. Therefore, TD or

Polynomial disaggregation methods cannot be applied directly. Figure 50(b) shows that the value

on each time unit was estimated by dividing the reported values equally (the spread phase of the

method). Red dashed rectangle and oval shows the conflicting and gap time units. The aggregate

phase resolves the conflicting time units by computing average values and the fill phase resolves

the gap time unit by computing an average value of the adjacent not empty time units. The extend

phase is not shown in the figure but would propagate the values outside of the given time units is

needed. Figure 50, (c) shows the final outcome of the SAFE method.

Each of the three method is best applicable in different scenarios and have various

limitations going from the Temporal Disaggregation to Polynomial to SAFE method. The

univariate temporal disaggregation methods as the disaggregation functions for the temporal

approximate join have three main applicability limitations. First, they cannot be directly applied

 113

when relations have partial coverage (e.g., not applicable to the 𝐴𝑣𝑔𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠 relation in Figure

44). This limitation can be resolved by applying disaggregate function at complete sections of the

relation separately, however this increases join complexity since complete sections first need to be

identified. The second limitation requires all reports in a relation to have the same length (e.g., not

applicable to either of the relation in Figure 45). Third, they cannot be applied when there are

intersections of reports within a relation (e.g., not applicable to the 𝐴𝑣𝑔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 relation in

Figure 44). The multivariate methods are not applicable in general in our case since they require

contemporaneous aggregation constraints and thus can be only performed on homogeneous time

series that are not independent from each other, whereas in the case of a join operation the relations

to be joined are completely independent from each other.

The second method, Polynomial or Spline interpolation, has fewer restrictions, namely it

is not applicable when sum aggregation function was used to produce low frequency series and it

is applicable only when each relation doesn’t have intersecting reports. However, since the method

doesn’t preserve temporal additivity, the quality of the result might be lower.

The last method, SAFE, has no applicability restrictions, however the quality of the join

might be very low since the method is very simplistic.

Figure 51 and Figure 52 show comparison of two temporal disaggregation (BFL and

Fernandez), polynomial (8th degree) and SAFE methods to disaggregate low frequency series

(annual and triennial respectively) into quarterly (high frequency) series. Thus, the only difference

between input data in the two figures is the length of the aggregation. The annual series is produced

by averaging the sales of 4 quarters (i.e., one year), the triennial series is produced by averaging

the sales of 12 quarters (i.e., three years). Note the difference with the Figure 49 in which annual

 114

sales represented the sum of quarterly sales. I could not use the sum annual series, because the

polynomial interpolation method doesn’t work for the sum aggregation function.

The top left plot visualizes true quarterly sales that were recorded for each year from 1975

to 2010. The true sales series is used as the ground truth to evaluate the performance of the four

disaggregation methods. The top middle plot visualizes low frequency series (annual in Figure 51

and triennial in Figure 52). The top right plot and the bottom plots from left to right visualize

disaggregated series produced by BFL, Fernandez, 8th degree polynomial interpolation and SAFE

methods respectively.

Figure 51: Comparison of two temporal disaggregation (BFL and Fernandez), polynomial (8th

degree) and SAFE methods to disaggregate annual (low frequency) series into quarterly (high

frequency) series

1975 1980 1985 1990 1995 2000 2005 2010

Q
ua

rte
rly

 S
al

es

0

50

100

150

200

250

300
True Quarterly Sales (High Frequency)

1975 1980 1985 1990 1995 2000 2005 2010

Ag
gr

eg
at

ed
 S

al
es

0

50

100

150

200

250

300
Low Frequency

1975 1980 1985 1990 1995 2000 2005 2010

Q
ua

rte
rly

 S
al

es

0

50

100

150

200

250

300

BFL (Without Indicator)
RMSE: 7.14

1975 1980 1985 1990 1995 2000 2005 2010

Q
ua

rte
rly

 S
al

es

0

50

100

150

200

250

300

Fernandez (With Indicator)
RMSE: 5.45

1975 1980 1985 1990 1995 2000 2005 2010

Q
ua

rte
rly

 S
al

es

0

50

100

150

200

250

300

Polynomial Inter.
RMSE: 8.72

1975 1980 1985 1990 1995 2000 2005 2010

Q
ua

rte
rly

 S
al

es

0

50

100

150

200

250

300

SAFE
RMSE: 5.94

 115

As we can see from the figures, the BFL and Polynomial methods are trying to smoothen

the low frequency series by estimating unknown high frequency point between known low

frequency points and thus highly resemble the low frequency series. The Fernandez method relied

on the indicator series (it is not show in Figure 51 and Figure 52, but it is the same as the one

shown in top right plot in Figure 49). Quality of all methods decreases in Figure 52 because the

aggregation lengths is greater and thus more unknown high frequency points need to be estimated.

Most vividly the decrease in quality is shown by the SAFE method since this method doesn’t

perform any statistical computation and doesn’t rely on any information besides the value of the

current report that need to be disaggregated.

Figure 52: Comparison of two temporal disaggregation (BFL and Fernandez), polynomial (8th

degree) and SAFE methods to disaggregate triennial (low frequency) series into quarterly (high

frequency) series

1975 1980 1985 1990 1995 2000 2005 2010

Q
ua

rte
rly

 S
al

es

0

50

100

150

200

250

300
True Quarterly Sales (High Frequency)

1975 1980 1985 1990 1995 2000 2005 2010

Ag
gr

eg
at

ed
 S

al
es

0

50

100

150

200

250

300
Low Frequency

1975 1980 1985 1990 1995 2000 2005 2010

Q
ua

rte
rly

 S
al

es

0

50

100

150

200

250

300

BFL (Without Indicator)
RMSE: 8.80

1975 1980 1985 1990 1995 2000 2005 2010

Q
ua

rte
rly

 S
al

es

0

50

100

150

200

250

300

Fernandez (With Indicator)
RMSE: 9.80

1975 1980 1985 1990 1995 2000 2005 2010

Q
ua

rte
rly

 S
al

es

0

50

100

150

200

250

300

Polynomial Inter.
RMSE: 13.67

1975 1980 1985 1990 1995 2000 2005 2010

Q
ua

rte
rly

 S
al

es

0

50

100

150

200

250

300

SAFE
RMSE: 10.43

 116

Now it is time to put the temporal disaggregation methods into the context of the temporal

approximate join that we are trying to solve. The general idea is to represent aggregated reports

𝐴ଵand 𝐴ଶ (from Figure 48) as low-frequency time series and then to disaggregate them into high-

frequency series 𝐷ଵ and 𝐷ଶ by using most suitable disaggregation method. The result of the

disaggregation would be two time series with estimated values for matching time units. Standard

equi-join techniques then could be used to merge the two series to construct a joint table (𝐽𝐷ଵଶ) as

explained in Definition 10.

The temporal disaggregate join approach is conceptually similar to the unfold/fold operator

in IXSQL [123][49] language that first splits time intervals into time units, then applies the non-

temporal join operator and finally collapses the value-equivalent tuples over the consecutive time

units into time intervals. However, the fold/unfold method only works for valid-time relations.

5.4.5.4 Empirical Evaluation In this section I describe the experimental evaluation of the

disaggregate join methods explained in previous sections. If not said otherwise, the experiments

were run on the Mac Book with Processor 2.4 GHz Intel Core i7 and 8Gb 1600 MHz DDR3

memory.

In addition to comparing above methods with each other, I also compare them to the

Reverse Substitution (RS) method developed in [112] to fuse intersecting reports within one

relation. In a nutshell, the idea of the RS method is to represent intersecting reports’ intervals as

unknown values 𝑥 and find them by solving a linear system 𝐴𝑥 = 𝑏 where the rows of the

observation matrix 𝐴 correspond to reports covering time intervals of 𝑥 and 𝑏 is the vector of

values of the reports. To solve the system, author applied nonnegative least square method and

showed that the solution for the system can be found as 𝑥 = 𝐴்(𝐴𝐴்)ିଵ𝑏. Since my goal is to find

 117

values for each time unit, 𝑥 represents the unknown values of the variable on each time unit. For

example, for the first two intersecting reports of the 𝑇𝑒𝑚𝑝 variable in Figure 44, the

underdetermined linear system in the matrix form will be as in Figure 53.

Figure 53: Example of applying RS method to find values on each time unit

To evaluate the quality of disaggregation methods, e.g., how accurate can a disaggregation

method estimate the value on a higher frequency given the value on a low frequency, I use relative

distance measure that is defined as below:

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑅𝐷) = ଵ
௡

∑ |௘௦௧௜௠௔௧௘ௗ ௩௔௟௨௘೔ି௔௖௧௨௔௟ ௩௔௟௨௘೔|
୫ୟ୶ (௘௦௧௜௠௔௧௘ௗ ௩௔௟௨௘೔,௔௖௧௨௔௟ ௩௔௟௨௘೔)

௡
௜ୀଵ (10)

where 𝑛 is the number of value points on high frequency.

 The relative distance measure is mainly concerned with how close on average the estimated

value is to the actual value on each time unit. To estimate the quality of a join, we could also utilize

the relative distance and evaluate each variable separately. However, doing so doesn’t not capture

how the combination of the values of two variables in the join is close to the combination of values

in the ground truth. Additionally, depending on the task at hand, relaxed requirement on the time

component or on exact value correspondence might be acceptable. For example, given two ground

truth tuples as in Figure 54 left and a join tuple as in Figure 54 right, using value based quality

metrics, like relative distance, would result in a high error since the join tuple values are not very

 118

close to the ground truth tuple on the same time unit. However, if we relax the requirement on the

time component, the tuple on the right is “closer” to the second tuple on the left.

Figure 54: Sample ground truth and join tuples to illustrate tuple scale similarity score

 To find which tuples from the join result are “close” to which tuples in the ground truth, I

calculate similarity scores between a join tuple and all ground truth tuples and select the highest

one. Multiple similarity metrics have been developed in the literature. I evaluated two metrics,

namely Manhattan Distance and Cosine Similarity, and their modifications that I will describe

next. Each tuple can be considered as a three component vector. Remember, that we want the

metrics to be in the range from 0 to 1, where 0 is the least similar and 1 is identical, and take into

account weights for each component. Thus, the weighted Manhattan Similarity (MS) is calculated

as below.

 𝑀𝑆(𝑣̅ଵ, 𝑣̅ଶ, 𝑤ഥ) = 1 − ௔௕௦(௩തభି ௩തమ) ∙ ௪തതത
୫ୟ୶_ௗ

 (11)

where 𝑣̅ଵ, 𝑣̅ଶ are the vectors for which similarity score is calculated, 𝑤ഥ is the vector of weights (all

three vectors must have the same number of components), max_𝑑 is the maximum distance

between all vectors in a relation, 𝑎𝑏𝑠(𝑥̅) returns a vector with absolute values of each component

of the vector 𝑥̅.

 119

 Standard Cosine Similarity doesn’t consider components’ weights and is sensitive to the

vectors magnitude, e.g., 𝑐𝑜𝑠_𝑠𝑖𝑚([1, 1, 1], [1, 1, 2]) is different from 𝑐𝑜𝑠_𝑠𝑖𝑚([1, 1, 3], [1, 1, 2]),

but in our case the similarity value should be the same in those two cases since they only different

by 1 in the third component. Therefore, I introduce a modified version, that we call Canonical

Cosine Similarity (CCS), which is calculated as follows:

 𝐶𝐶𝑆(𝑣̅ଵ, 𝑣̅ଶ, 𝑤ഥ) = ప̂ ∙ ௩തభమ
‖ప̂‖ ‖௩തభమ‖ (12)

where 𝚤̂ is the unit vector, 𝑣̅ଵଶ = 𝚤̂ + 𝑎𝑏𝑠(𝑣̅ଵ − 𝑣̅ଶ) ∘ 𝑤ഥ , ∘ is the Hadamard product.

 While the Canonical Cosine Similarity improves on standard cosine similarity in terms of

our requirements, it has one problem. The vectors that are different in magnitude but have exactly

the same direction will have perfect similarity score of 1. For example,

𝐶𝐶𝑆([2, 2, 2], [3, 3, 3], [1, 1, 1]) = 1, which is not what we need. To fix that problem, I calculate

the final version of the similarity measure, called Canonical Cosine Similarity Norm Scaled

(CCSNS) that I use in my work as follows:

 𝐶𝐶𝑆𝑁𝑆(𝑣̅ଵ, 𝑣̅ଶ, 𝑤ഥ) = 𝐶𝐶𝑆(𝑣̅ଵ, 𝑣̅ଶ, 𝑤ഥ) ∗ ቀ1 − ‖ప̂ ି ௩തభమ‖భ
୫ୟ୶(‖ప̂ ‖భ,‖௩തభమ‖భ)ቁ (13)

where 𝐶𝐶𝑆 is defined in (12) and 𝚤̂ and 𝑣̅ଵଶ are defined as in (12).

 To illustrate the behavior of the four similarity metrics, Manhattan Similarity, Cosine

Similarity, Canonical Cosine Similarity and Canonical Cosine Similarity Norm Scaled, I have

generated all possible permutation of values between 1 and 10 with step 2 of three components of

two vectors and then calculated similarity scores between those vectors. Figure 55 shows the result

with weight vector as [1, 1, 1]. On the 𝑥 axis is the difference (–) between two vectors and on 𝑦

axis is the corresponding similarity score. For example, for two vectors [1, 1, 1] and [1, 1, 1], the

different is [0, 0, 0] and thus we can find it in the middle of the 𝑥 axis and then see that the

similarity score is 1 on the 𝑦 axis. The next to the right 𝑥 tick label is for the case when the

 120

difference between vector 1 and 2 on the second component is two, e.g., [1, 3, 1] and [1, 1, 1], or

[3, 7, 5] and [3, 5, 5], etc.

Figure 55: Comparison of four similarity metrics

The values of the weight vector change the behavior of the similarity metric. Figure 56

shows the differences in behavior for the Canonical Cosine Similarity Norm Scaled metric. The

first from the top plot – all components are weighted equally; second plot – the value of second

variable is not considered at all (the weight is 0); third plot – both variable are considered equally,

however the time component is completely ignored; the last plot – both time and the second

variable are not considered at all.

-8
 -8

 0
-8

 -6
 0

-8
 -4

 0
-8

 -2
 0

-8
 0

 0
-8

 2
 0

-8
 4

 0
-8

 6
 0

-8
 8

 0
-6

 -8
 0

-6
 -6

 0
-6

 -4
 0

-6
 -2

 0
-6

 0
 0

-6
 2

 0
-6

 4
 0

-6
 6

 0
-6

 8
 0

-4
 -8

 0
-4

 -6
 0

-4
 -4

 0
-4

 -2
 0

-4
 0

 0
-4

 2
 0

-4
 4

 0
-4

 6
 0

-4
 8

 0
-2

 -8
 0

-2
 -6

 0
-2

 -4
 0

-2
 -2

 0
-2

 0
 0

-2
 2

 0
-2

 4
 0

-2
 6

 0
-2

 8
 0

0
-8

 0
0

-6
 0

0
-4

 0
0

-2
 0

0
0

0
0

2
0

0
4

0
0

6
0

0
8

0
2

-8
 0

2
-6

 0
2

-4
 0

2
-2

 0
2

0
0

2
2

0
2

4
0

2
6

0
2

8
0

4
-8

 0
4

-6
 0

4
-4

 0
4

-2
 0

4
0

0
4

2
0

4
4

0
4

6
0

4
8

0
6

-8
 0

6
-6

 0
6

-4
 0

6
-2

 0
6

0
0

6
2

0
6

4
0

6
6

0
6

8
0

8
-8

 0
8

-6
 0

8
-4

 0
8

-2
 0

8
0

0
8

2
0

8
4

0
8

6
0

8
8

0

M
an

ha
tta

n

0

0.2

0.4

0.6

0.8

1
Comparison of similarity metrics

C
os

 S
im

0.2

0.4

0.6

0.8

1

-8
 -8

 0
-8

 -6
 0

-8
 -4

 0
-8

 -2
 0

-8
 0

 0
-8

 2
 0

-8
 4

 0
-8

 6
 0

-8
 8

 0
-6

 -8
 0

-6
 -6

 0
-6

 -4
 0

-6
 -2

 0
-6

 0
 0

-6
 2

 0
-6

 4
 0

-6
 6

 0
-6

 8
 0

-4
 -8

 0
-4

 -6
 0

-4
 -4

 0
-4

 -2
 0

-4
 0

 0
-4

 2
 0

-4
 4

 0
-4

 6
 0

-4
 8

 0
-2

 -8
 0

-2
 -6

 0
-2

 -4
 0

-2
 -2

 0
-2

 0
 0

-2
 2

 0
-2

 4
 0

-2
 6

 0
-2

 8
 0

0
-8

 0
0

-6
 0

0
-4

 0
0

-2
 0

0
0

0
0

2
0

0
4

0
0

6
0

0
8

0
2

-8
 0

2
-6

 0
2

-4
 0

2
-2

 0
2

0
0

2
2

0
2

4
0

2
6

0
2

8
0

4
-8

 0
4

-6
 0

4
-4

 0
4

-2
 0

4
0

0
4

2
0

4
4

0
4

6
0

4
8

0
6

-8
 0

6
-6

 0
6

-4
 0

6
-2

 0
6

0
0

6
2

0
6

4
0

6
6

0
6

8
0

8
-8

 0
8

-6
 0

8
-4

 0
8

-2
 0

8
0

0
8

2
0

8
4

0
8

6
0

8
8

0

C
an

 C
os

 S
im

0.6

0.7

0.8

0.9

1

Vector 1 - Vector 2
(vectors varied from [1, 1, 1] to [10, 10, 10] with step 2)

C
an

 C
os

 S
im

N
or

m
 s

ca
le

d

0

0.2

0.4

0.6

0.8

1

 121

Figure 56: Behavior of the Canonical Cosine Similarity Norm Scaled metric for different weight

combinations

Now, having a score for each join report, we can evaluate the whole join relation in a way

similar (but with some modifications) to the precision and recall metrics in the information

retrieval field. Particularly, the precision is equal to the score, and the recall is equal to the number

of reports in the join whose score is greater or equal to the given score over the size of the ground

truth relation. By varying a threshold of the acceptable score, the values of precision and recall

will change accordingly.

5.4.5.4.1 Scalability Besides the applicability limitations described in the previous sections, I

am interested to see how scalable the disaggregation methods are. I have run BFL, Fernandez,

Polynomial (8th degree), SAFE and RS methods on various scenarios by varying the number of

reports and report length values. Table 5 shows the combination of values for the scenarios.

-8
 -8

 0
-8

 -6
 0

-8
 -4

 0
-8

 -2
 0

-8
 0

 0
-8

 2
 0

-8
 4

 0
-8

 6
 0

-8
 8

 0
-6

 -8
 0

-6
 -6

 0
-6

 -4
 0

-6
 -2

 0
-6

 0
 0

-6
 2

 0
-6

 4
 0

-6
 6

 0
-6

 8
 0

-4
 -8

 0
-4

 -6
 0

-4
 -4

 0
-4

 -2
 0

-4
 0

 0
-4

 2
 0

-4
 4

 0
-4

 6
 0

-4
 8

 0
-2

 -8
 0

-2
 -6

 0
-2

 -4
 0

-2
 -2

 0
-2

 0
 0

-2
 2

 0
-2

 4
 0

-2
 6

 0
-2

 8
 0

0
-8

 0
0

-6
 0

0
-4

 0
0

-2
 0

0
0

0
0

2
0

0
4

0
0

6
0

0
8

0
2

-8
 0

2
-6

 0
2

-4
 0

2
-2

 0
2

0
0

2
2

0
2

4
0

2
6

0
2

8
0

4
-8

 0
4

-6
 0

4
-4

 0
4

-2
 0

4
0

0
4

2
0

4
4

0
4

6
0

4
8

0
6

-8
 0

6
-6

 0
6

-4
 0

6
-2

 0
6

0
0

6
2

0
6

4
0

6
6

0
6

8
0

8
-8

 0
8

-6
 0

8
-4

 0
8

-2
 0

8
0

0
8

2
0

8
4

0
8

6
0

8
8

0

C
an

 C
os

 S
im

N
or

m
 s

ca
le

d
0

0.2

0.4

0.6

0.8

1
[1, 1, 1]

C
an

 C
os

 S
im

N
or

m
 s

ca
le

d

0

0.2

0.4

0.6

0.8

1
[1, 1, 0]

-8
 -8

 0
-8

 -6
 0

-8
 -4

 0
-8

 -2
 0

-8
 0

 0
-8

 2
 0

-8
 4

 0
-8

 6
 0

-8
 8

 0
-6

 -8
 0

-6
 -6

 0
-6

 -4
 0

-6
 -2

 0
-6

 0
 0

-6
 2

 0
-6

 4
 0

-6
 6

 0
-6

 8
 0

-4
 -8

 0
-4

 -6
 0

-4
 -4

 0
-4

 -2
 0

-4
 0

 0
-4

 2
 0

-4
 4

 0
-4

 6
 0

-4
 8

 0
-2

 -8
 0

-2
 -6

 0
-2

 -4
 0

-2
 -2

 0
-2

 0
 0

-2
 2

 0
-2

 4
 0

-2
 6

 0
-2

 8
 0

0
-8

 0
0

-6
 0

0
-4

 0
0

-2
 0

0
0

0
0

2
0

0
4

0
0

6
0

0
8

0
2

-8
 0

2
-6

 0
2

-4
 0

2
-2

 0
2

0
0

2
2

0
2

4
0

2
6

0
2

8
0

4
-8

 0
4

-6
 0

4
-4

 0
4

-2
 0

4
0

0
4

2
0

4
4

0
4

6
0

4
8

0
6

-8
 0

6
-6

 0
6

-4
 0

6
-2

 0
6

0
0

6
2

0
6

4
0

6
6

0
6

8
0

8
-8

 0
8

-6
 0

8
-4

 0
8

-2
 0

8
0

0
8

2
0

8
4

0
8

6
0

8
8

0

C
an

 C
os

 S
im

N
or

m
 s

ca
le

d

0

0.2

0.4

0.6

0.8

1
[0, 1, 1]

Vector 1 - Vector 2
(vectors varied from [1, 1, 1] to [10, 10, 10] with step 2)

C
an

 C
os

 S
im

N
or

m
 s

ca
le

d

0

0.2

0.4

0.6

0.8

1
[0, 1, 0]

 122

Report values were drawn from the normal distribution ~𝑁(100, 5). The lifespan of the relation

(the total number of time units) was set equal to 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑜𝑟𝑡𝑠 ∗ 𝑟𝑒𝑝𝑜𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ. The

reports were generated without intersections, covering the whole lifespan of the relation except

for the RS method for which the lifespan of the relation was divided by two to generate some

intersecting reports.

Table 5: Parameters of the scalability scenarios

Number of
Reports

Report Length Number of
Reports

Report Length

10 3 100 12
10 4 100 24
10 12 100 48
10 24 100 100
10 48 1000 3
10 100 1000 4
100 3 1000 12
100 4 1000 24

Figure 57 shows the result of the experiment. 𝑌 axis shows the execution time in seconds

on a log scale, 𝑥 axis shows the scenarios. We can see from the figure that all methods take more

time to finish when the number of reports and their length increase. However, temporal

disaggregation methods, BFL and Fernandez, show considerable degradation and, for example in

the case when there are 1000 reports each 24 time units long, take about 104 seconds (~2.78 hours)

to disaggregate just one relations. I also ran the experiment on PSC computing cluster and got

similar results because inherently the TD algorithms are not parallelized. Remember that we need

to disaggregate two relations and then also concatenate values on corresponding time units to

perform the join operation. Of course, two relations can be disaggregated in parallel, but still the

 123

performance is not acceptable for the ad-hoc join queries. Figure 58 shows the relative distance

measure for the corresponding scenarios. As expected, Fernandez method showed lowest error in

all scenarios because of the presence of the good indicator series. The worst performance in terms

of relative distance measure was shown by the RS method due to the low number of overlapping

reports. In Section 5.4.5.4.2 I explore how quality of the disaggregation methods depend on the

nature of the underlying data and report scenarios.

Figure 57: Execution time of each scenario

Scenario

#r
ep

. =
 1

0,
 re

p
le

n
=

3

#r
ep

. =
 1

0,
 re

p
le

n
=

4

#r
ep

. =
 1

0,
 re

p
le

n
=

12

#r
ep

. =
 1

0,
 re

p
le

n
=

24

#r
ep

. =
 1

0,
 re

p
le

n
=

48

#r
ep

. =
 1

0,
 re

p
le

n
=

10
0

#r
ep

. =
 1

00
, r

ep
 le

n
=

3

#r
ep

. =
 1

00
, r

ep
 le

n
=

4

#r
ep

. =
 1

00
, r

ep
 le

n
=

12

#r
ep

. =
 1

00
, r

ep
 le

n
=

24

#r
ep

. =
 1

00
, r

ep
 le

n
=

48

#r
ep

. =
 1

00
, r

ep
 le

n
=

10
0

#r
ep

. =
 1

00
0,

 re
p

le
n

=
3

#r
ep

. =
 1

00
0,

 re
p

le
n

=
4

#r
ep

. =
 1

00
0,

 re
p

le
n

=
12

#r
ep

. =
 1

00
0,

 re
p

le
n

=
24

Ex
ec

ut
io

n
tim

e,
 s

ec
, l

og

10-2

10-1

100

101

102

103

104

105 Execution Time vs. Scenario

BFL
Fernandez
Polynom
SAFE
RS

 124

Figure 58: Relative distance quality measure versus number of parallel execution of multiple

pieces of one relation

To speed up temporal disaggregation of one relation, instead of disaggregating the whole

relation at once, I consider splitting the relation into shorter pieces so that each piece can be

disaggregated in parallel. Figure 59 shows the result executing BLF and Fernandez temporal

disaggregation methods on the scenario with 500 reports and each report of 12 time units length.

The 𝑦 axis shows the time it took to perform the disaggregation against the 𝑥 axis that shows how

many pieces were disaggregated. The time to disaggregated the whole relations was 804.87 and

124.66 seconds for BFL and Fernandez methods respectively. However, as the number of pieces

into which the relation was broken and which can be executed independently (in parallel)

increases, the execution time drops exponentially. For example, by breaking the relation into 10

Scenario

#r
ep

. =
 1

0,
 re

p
le

n
=

3

#r
ep

. =
 1

0,
 re

p
le

n
=

4

#r
ep

. =
 1

0,
 re

p
le

n
=

12

#r
ep

. =
 1

0,
 re

p
le

n
=

24

#r
ep

. =
 1

0,
 re

p
le

n
=

48

#r
ep

. =
 1

0,
 re

p
le

n
=

10
0

#r
ep

. =
 1

00
, r

ep
 le

n
=

3

#r
ep

. =
 1

00
, r

ep
 le

n
=

4

#r
ep

. =
 1

00
, r

ep
 le

n
=

12

#r
ep

. =
 1

00
, r

ep
 le

n
=

24

#r
ep

. =
 1

00
, r

ep
 le

n
=

48

#r
ep

. =
 1

00
, r

ep
 le

n
=

10
0

#r
ep

. =
 1

00
0,

 re
p

le
n

=
3

#r
ep

. =
 1

00
0,

 re
p

le
n

=
4

#r
ep

. =
 1

00
0,

 re
p

le
n

=
12

#r
ep

. =
 1

00
0,

 re
p

le
n

=
24

R
D

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
RD vs. Scenario

BFL Fernandez Polynom SAFE RS

 125

pieces each with 50 reports reduces the execution time to under 1 second which is over two

magnitude improvement compare to disaggregating the whole relation. And braking the relation

into 100 pieces each with 5 reports, allows to bring the execution time down to 0.0027 and 0.0019

seconds for BFL and Fernandez methods respectively. Of course, executing 100 parallel

computations might not be feasible in some cases, however even running 100 disaggregation

computations sequentially lowers the execution cost, e.g., 100 * 0.0027 = 0.27 seconds, which is

2981 times improvement in case of BFL method. The improvement is due to the fact that it is much

faster to deal with smaller matrices than with large ones during the disaggregation execution.

Figure 59: Execution time versus number of parallel execution of multiple pieces of one relation

The intriguing questions of course is whether breaking the relation into small pieces and

performing disaggregation on each piece independently influences the quality of the

disaggregation. Figure 60 shows that the quality of the BFL method didn’t change a lot, while the

error for the Fernandez method increased from 0.0343 for the whole relation to 0.0482 for the 100

of Pieces, log
1 2 4 5 10 20 25 50 100

Ex
ec

ut
io

n
Ti

m
e,

 s
ec

, l
og

10-4

10-2

100

102

104 Execution Time vs. number of pieces run in parallel

BFL
Fernandez

 126

pieces case. This is due to the the “end point” problem when forward looking observations are

required, but are not available towards the end of the piece [36].

Figure 60: Relative distance quality measure versus number of parallel execution of multiple

pieces of one relation

5.4.5.4.2 Disaggregation Methods Quality Comparison This simulation experiment is setup

similar to the ones in [190][112] where for a given number of time units (the maximum lifespan

of a relation) I vary number of measured events on each time unit (event density), number of

reports, and reports’ lengths. Table 6 summarizes all different scenarios that I run for lifespan of

1000 time units. All parameters are randomly generated from a normal distribution with expected

value shown in the Table 6 and standard deviation equals to 5. The start time unit of each report is

drawn from a uniform distribution. Each scenario is repeated 5 times and average values are

of Pieces, log
1 2 4 5 10 20 25 50 100

R
D

0.03

0.04

0.05

0.06

0.07

0.08
RD vs. number of pieces run in parallel

BFL
Fernandez

 127

reported. Figure 61 and Figure 62 show examples of generated reports for the scenario 2 and 3

respectively.

Table 6: Experiment Setup Parameter and Scenarios Description

Scenario Event
Density

Number of
Reports

Report
Length

Few short reports on sparse events 20 20 20
Few long reports on sparse events 20 20 100
Many short reports on sparse events 20 100 20
Many long reports on sparse events 20 100 100
Few short reports on dense events 100 20 20
Few long reports on dense events 100 20 100
Many short reports on dense events 100 100 20
Many long reports on dense events 100 100 100

Figure 61: Example of generated reports for the scenario 2

time unit
0 100 200 300 400 500 600 700 800 900 1000

va
lu

e

17

18

19

20

21

22

23
Reported values for scenario [20, 20, 100]

Variable #1
Variable #2

 128

Figure 62: Example of generated reports for the scenario 3

Since depending on the scenario the generated reports might either intersect or have gaps,

temporal disaggregation methods are not applicable directly. Thus I generate reports for TD

methods in a slightly different way. Particularly, when new report’s start and end time units

intersect with any already existing report, its position is regenerated to avoid intersection. If it is

impossible to generate new start and end time points so that there are no intersections (e.g. the

whole lifespan of the relation is covered or the gaps are shorter then the lengths of a new report),

then report generation phase is complete (even if the number of reports is less than given

parameter). Then I apply TD methods on all consecutive strips of reports on each relation

separately, and finally use equi join to combine reports from two relations that match on time unit

value. The RS and SAFE methods are applied directly, however in this case RS method will be

used to estimate values for each time unit.

Figure 63 shows the result of the experiment. Each subplot shows Precision/Recall curves

for the BFL, Fernandez, SAFE and RS methods as solid lines when scores were calculated with

𝑤ഥ = [1,1,1] and as dashed lines when scores were calculated regardless of time unit component,

i.e., 𝑤ഥ = [0,1,1]. The ideal performance would be a horizontal line at precision 1.

time unit
0 100 200 300 400 500 600 700 800 900 1000

va
lu

e

10

15

20

25

30
Reported values for scenario [20, 100, 20]

Variable #1
Variable #2

 129

There is no straightforward interpretation of the obtained results. As we can see, in general,

the performance of each method depends on the the nature of the data and the scenario of how

reports are obtained. All methods showed very low precision when taking time component into

consideration. The best performance is shown by the SAFE and BFL methods, while Fernandez

showed the worst performance. The reason for that might be the nature of the data. Since the data

is generated from a normal distribution with small deviation, all data points are centered around

the mean. The SAFE method performs the best because it averages the reports and thus gets closer

to the ground truth mean value. Fernandez on the other hand, uses the indicator series that might

add additional fluctuation which introduce higher error.

Going from the left to the right column we can see that all methods except the SAFE (which

has already had a good recall), improve in recall. This is due to the fact that number and length of

reports is increasing and thus more time units are covered by reports (and more reports intersect)

providing more information, particularly to the RS method, to estimate values for each time unit.

The SAFE method has good recall value regardless of the number of reports or report length

because of the Fill and Extend phases of its computation where the estimated value of a time unit

is propagated to the non-covered time units.

 130

Figure 63: RP curves for sigma 5

In previous work, [112], they didn’t consider other types of input data except normal

distribution with deviation equal to 5. In Figure 64, I run the above experiment but with the

standard deviation value set to 15 and therefore increasing the variability and spread of the ground

truth values on each time unit. As the result, we can see that the performance of each method has

decreased (all curves are now closer to the left bottom corner).

Recall
0 0.5 1

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1
[20, 20, 20]

BFL BFL NT Fernandez Fernandez NT SAFE SAFE NT RS RS NT

0 0.5 1
0

0.2

0.4

0.6

0.8

1
[20, 20, 100]

0 0.5 1
0

0.2

0.4

0.6

0.8

1
[20, 100, 20]

0 0.5 1
0

0.2

0.4

0.6

0.8

1
[20, 100, 100]

Recall
0 0.5 1

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1
[100, 20, 20]

0 0.5 1
0

0.2

0.4

0.6

0.8

1
[100, 20, 100]

0 0.5 1
0

0.2

0.4

0.6

0.8

1
[100, 100, 20]

0 0.5 1
0

0.2

0.4

0.6

0.8

1
[100, 100, 100]

 131

Figure 64: PR curves for sigma 15

As the last experiment, I ran the Netlogo traffic grid2 simulation and obtained two variables

changing over time by varying the available parameters of the simulation. The variables are shown

in Figure 65. Figure 66 shows the result of the experiment. The performance of all methods are

similar to the case with normal distribution with standard deviation set to 15 in Figure 64. I also

run the experiment with a different reporting strategy when for a given report length (10, 20, 50,

and 100), reports are generated without intersections covering the whole relation. Figure 67 and

Figure 68 show examples of obtained reports with report length 20 and 100 time units respectively.

The result is show in Figure 69.

2 Netlogo (ccl.northwestern.edu/netlogo) is multi-agent programmable modeling

environment. The traffic grid simulation is included sample model that can also be access via
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Mo
dels/Social%20Science/Traffic%20Grid.nlogo

Recall
0 0.5 1

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1
[20, 20, 20]

BFL BFL NT Fernandez Fernandez NT SAFE SAFE NT RS RS NT

0 0.5 1
0

0.2

0.4

0.6

0.8

1
[20, 20, 100]

0 0.5 1
0

0.2

0.4

0.6

0.8

1
[20, 100, 20]

0 0.5 1
0

0.2

0.4

0.6

0.8

1
[20, 100, 100]

Recall
0 0.5 1

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1
[100, 20, 20]

0 0.5 1
0

0.2

0.4

0.6

0.8

1
[100, 20, 100]

0 0.5 1
0

0.2

0.4

0.6

0.8

1
[100, 100, 20]

0 0.5 1
0

0.2

0.4

0.6

0.8

1
[100, 100, 100]

 132

Figure 65: Two variables at the time unit scale obtained from a Netlogo simulation

Figure 66: PR curves for the join of two variables obtained from Netlogo simulation

Figure 67: Example of generated reports for the variables obtained form Netlogo simulation with

report length 20

0 0.5 1
0

0.2

0.4

0.6

0.8

1
[20, 100]

0 0.5 1
0

0.2

0.4

0.6

0.8

1
[100, 20]

0 0.5 1
0

0.2

0.4

0.6

0.8

1
[100, 100]

Recall
0 0.5 1

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1
[20, 20]

BFL BFL NT Fernandez Fernandez NT SAFE SAFE NT RS RS NT

time unit
1 200 400 600 800 1000

va
lu

e

0

10

20

30

40

50
Reported values for scenario [rep. length = 20]

Variable #1
Variable #2

 133

Figure 68: Example of generated reports for the variables obtained form Netlogo simulation with

report length 100

Figure 69: PR curves for the join of two variables obtained from Netlogo simulation in the case

when reports cover the whole relation lifespan without intersections for various report lengths

This suggest one more time that applicability of disaggregation methods to perform join

on a time unit scale is dependent on the data and also on how reports were generated. For example,

Figure 70 shows result of applying disaggregation methods to a variable that have a notable value

transition (the left plot). As we can see from the right plot, if there is only one report that covers

all 50 time units, the difference between estimated values compared to the actual values measures

in terms of RMSE is high (above 8). This is due to the fact that generating one report over the 50

time units will average the values and thus will loose the information about the transition.

time unit
1 100 200 300 400 500 600 700 800 900 1000

va
lu

e

5

10

15

20

25

30

35

40

45
Reported values for scenario [rep. length = 100]

Variable #1
Variable #2

Recall
0 0.5 1

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1
[rep. length = 10]

BFL BFL NT Fernandez Fernandez NT SAFE SAFE NT RS RS NT

0 0.5 1
0

0.2

0.4

0.6

0.8

1
[rep. length = 20]

0 0.5 1
0

0.2

0.4

0.6

0.8

1
[rep. lenght = 50]

0 0.5 1
0

0.2

0.4

0.6

0.8

1
[rep. length = 100]

 134

However, as soon as there are two reports (or more) the error drops significantly for all methods,

because now the information about the transition is preserved in the reports. SAFE and RS methods

perform identically because there are no intersecting reports. Also notice that those two methods

have a slight increase in error when the number of reports was 3. This is because second report

covers the transition interval and its disaggregation is most inaccurate. The BFL or Fernandez

don’t have this problem, because BFL is based on the polynomial method and Fernandez uses

indicator series that shows the transition as well. More intersecting reports help both SAFE and

RS methods to produce better results.

Figure 70: Example of disaggregation quality dependence on the nature of the data and the report

length (number of reports)

Since in real life scenario we don’t have control how the reports are generated, it is hard to

suggest the best method to use or predict the quality of the join. In addition, it is not always the

goal to find corresponding values of two variables on each time unit, but instead a join on

aggregated reports is needed that doesn’t do any estimation and preserve the exact values. In the

next section, I will talk about an aggregate join approaches that do right that.

 135

5.4.6 Aggregate Join of Valid and Aggregate Time Relations

In previous sections the goal was to perform a join of two aggregate time relations by trying to

disaggregate each relation independently first and then do equi-join. Given two relations 𝑟஺் and

𝑠஺் that are defined over schemas 𝑅஺் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ) and 𝑆஺் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ)

respectively, the goal was to obtain a relation 𝑗 with schema 𝐺 = (𝑇𝑈, 𝑉ଵ, 𝑉ଶ). The task, as the

experiments in Section 5.4.5.4 show, turned out to be highly dependent on the nature of the input

data. The quality of one or the other join method depends on many parameters and there are no

obvious dominating values of those parameters that would guide the join algorithm to guarantee

certain level of accuracy of the join result. In addition, the join quality requirement depends on the

task at hand and for some tasks lower quality but faster execution is acceptable, whereas for other

task the quality is much more important. Finally, the goal to reach the 𝐺 = (𝑇𝑈, 𝑉ଵ, 𝑉ଶ) schema is

not what the actual goal of the database join is.

In this section, I introduce a different strategy, an aggregate join, its goals and approaches,

and how to implement it. Overall join strategy still falls into the schematic representation show in

Figure 48 and the taxonomy of datasets reports is still relevant, however now I consider cases

when joining valid time relation with valid time or with aggregate time relation, or joining two

aggregate time relations.

As it was mentioned earlier, in the aggregate join strategy reports from two relations are

joined directly based on their time intervals only. Thus, the temporal aggregate join is the theta

join where the theta condition is applied to the reports’ time intervals. In this section I focus on

scenarios with no intersecting reports within a relation. The extension of these approaches to

intersecting reports is left for future work. Nevertheless, these approaches can be used in case of

intersecting reports if we first apply the RS method developed in [112].

 136

5.4.6.1 The Goal of the Aggregate Join Given two relations 𝑟 and 𝑠 that are defined over

schemas 𝑅 = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ) and 𝑆 = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ) respectively and can be either valid-time

(VT) or aggregate-time (AT) relations, the goal is to obtain a relation 𝑗 with schema 𝐺 =

(𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ, 𝑉ଶ) by joining those tuples that can be joined directly based on the condition on

time intervals and relying on user to resolve all non trivial situations (we will see what those are

later in the text).

In some cases, one or the other variable is very important and the exact values of such

variable are required whereas estimated values of the other variable will suffice. To express such

cases when fusing two relations, left or right (or full if values of both variables are important) outer

versions of joins can be used. Thus, the inner, left, right and full outer join should conform to the

following properties:

x Inner Join – output only matching tuples without the use of any user functions.

x Left Outer Join – output matching tuples and also not matching tuples from the left

relation.

o Preserve the left variable (after normalization/zoom out) unmodified and only apply

user functions to the variables of the right relation.

x Right Outer Join – symmetrically opposite definition of the left outer join.

x Full Outer Join – Union (with duplication removal) of Left and Right Outer Joins.

Explanations of what normalization, zoom out and user defined functions will be provided

further in the text.

For the further discussion of the aggregate join methods, consider two relations 𝑟 and 𝑠 as

shown in Figure 71. Notice that I don’t specify what type (VT or AT) each relation is since it will

vary while explaining different methods.

 137

Figure 71: Example relations 𝑟 and 𝑠 for discussion of approaches for the aggregate join

5.4.6.2 Equi-join – The Baseline Method Regardless of the type of the relation, as the base

method, consider an equi-join, 𝑟 ⋈ி௥௢௠,்௢ 𝑠, of the two relations 𝑟 and 𝑠 shown in Figure 72. As

stated in Definition 2, the equi-join doesn’t take into consideration anything except the 𝐹𝑟𝑜𝑚 and

𝑇𝑜 time endpoints of the two relation and only joins those reports that have matching time

intervals.

𝑟 ⋈ி௥௢௠,்௢ 𝑠

From To V1 V2
23 24 V1_6 V2_6

Figure 72: The result of the equi-join, 𝑟 ⋈ி௥௢௠,்௢ 𝑠, of the two relations shown in Figure 71

The left/right and full outer joins are executed in a straightforward way according to

Definition 3 and their results are presented in Figure 73 and Figure 74 respectively.

 138

Figure 73: The result of the left outer join, 𝑟⟕ி௥௢௠,்௢𝑠 , and right outer join, 𝑟⟖ி௥௢௠,்௢𝑠

𝑟⟗ி௥௢௠,்௢𝑠

From To V1 V2
1 3 V1_1 𝜔
1 4 𝜔 V2_1
5 9 V1_2 𝜔
6 8 𝜔 V2_2
9 12 𝜔 V2_3
12 14 V1_3 𝜔
14 17 𝜔 V2_4
15 16 V1_4 𝜔
17 18 V1_5 𝜔
20 21 𝜔 V2_5
23 24 V1_6 V2_6
26 26 V1_7 𝜔

Figure 74: The result of full outer equi-join, 𝑟⟗ி௥௢௠,்௢𝑠

As you can see from Figure 72 the result of the inner join only covers small portion of time

units out of the lifespan of the two relations 𝑟 and 𝑠. Thus, while the result is accurate, the coverage

is very small. While left or right outer joins (Figure 73) preserve the complete coverage for 𝑟 or

 139

𝑠 relations respectively, most of the information of the other variable is not available and replaced

with unknown values (𝜔). The result of the full outer join (Figure 74) has many intersecting time

intervals making it hard to make any sense of the join result.

In what follows, I present several other approaches to perform aggregate join that behave

differently depending on the type of the relation. The approaches are also different from the ones

considered in the previous sections in that they don’t try to estimate values in an uncertain

situations and instead involve users to resolve them.

5.4.6.3 Temporal Alignment Join – Joining VT with VT or AT Relation In this section I focus

on joining a valid time relation with either another valid time or with an aggregate time relation.

The approach is similar to the Align join discussed in [53], however all the work in temporal

database area only consider joining valid time relations.

Let us start with the first case when both relations 𝑟 and 𝑠 are valid time relations, i.e., 𝑟௏்

and 𝑠௏். Recall from Section 5.4.1 that a valid time relation describes the time interval when a

tuple is true. Thus, the report 𝑠ଵ
௏் = (1, 4, 𝑉2_1) means that at each time unit from 1 to 4 the value

of 𝑉ଶ is 𝑉2_1. Therefore, we can split the report 𝑠ଵ
௏் into two reports: 𝑠ଵ_ଵ

௏் = (1, 3, 𝑉2_1) and

𝑠ଵ_ଶ
௏் = (4, 4, 𝑉2_1) without loss in accuracy of the reports. Notice that the original 𝑟ଵ

௏் =

(1, 3, 𝑉1_1) report was not matching with 𝑠ଵ
௏் on time interval (Figure 75 left plot), however now

𝑟ଵ
௏் can be joined with 𝑠ଵ_ଵ

௏் (Figure 75 right plot). The process of splitting valid time reports is

called 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 and it is defined similar to the one in [53]. Below I provide its definition

and explanation.

 140

Figure 75: Example of normalization of the report 𝑠ଵ
௏் over the report 𝑟ଵ

௏்

Before defining the 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 operator, I first define a helper operator,

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑠𝑝𝑙𝑖𝑡𝑡𝑒𝑟, similarly to [53] that splits time interval of one valid time report based on the

time interval endpoints of the other report (can either be valid time or aggregate time type report).

Definition 11 – Temporal Splitter: The temporal splitter, 𝑠𝑝𝑙𝑖𝑡(𝑟௏், 𝑠), of a valid time

report 𝑟௏் and a set of either valid time or aggregate time reports 𝑠 defined over schemas 𝑅௏் =

(𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ) and 𝑆 = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ) respectively, is defined as follows.

 𝑠𝑝𝑙𝑖𝑡(𝑟௏், 𝑠) = ൛𝑧(ଶ) ห

 𝑧[𝑇] ⊆ 𝑟௏்[𝑇] ∧ ∀𝑦 ∈ 𝑠(¬𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑧[𝑇], 𝑦[𝑇]) ∨ 𝑧[𝑇] ⊆ 𝑦[𝑇]) ∧

 ∀𝑇′ ⊃ 𝑧[𝑇](∃𝑦 ∈ 𝑠 (𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑇ᇱ, 𝑦[𝑇]) ∧ (Tᇱ ⊈ 𝑟௏்[𝑇] ∨ Tᇱ ⊈ 𝑦[𝑇]))

 ∨ Tᇱ ⊈ 𝑟௏்[𝑇])}

The second line of the definition requires that the new time interval, 𝑧[𝑇], is contained in

the time interval of the report that is being split, 𝑟௏்[𝑇], and it is either not intersecting with time

intervals of reports in 𝑠 or it is contained in one of them. The third and fourth lines ensure that the

time interval 𝑧[𝑇] is maximal.

 141

Figure 76 shows five examples of applying the 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑠𝑝𝑙𝑖𝑡𝑡𝑒𝑟 operator. The resulting

set 𝑧 contains new time intervals of split 𝑟
௏்.

Figure 76: Example of normalization of a valid time report 𝑟
௏் over reports in 𝑠

Definition 12 – Normalization of VT relation: The temporal 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ,

𝒩(𝑟௏், 𝑠), of a valid time relation over either a valid time or aggregate time relation defined over

schemas 𝑅௏் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ) and 𝑆 = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ) respectively, is defined as follows.

 𝒩(𝑟௏், 𝑠) = ൛𝑧൫หோೇ೅ห൯ ห ∃𝑥 ∈ 𝑟௏் (

 𝑧[𝑉ଵ] = 𝑥[𝑉ଵ] ∧ 𝑧[𝑇] ∈ 𝑠𝑝𝑙𝑖𝑡(𝑥, {𝑦 ∈ 𝑠|𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑥[𝑇], 𝑦[𝑇])}))}

The second line assigns the values of variables of the report that is being normalized and

ensures that the time interval of a new normalized report is one of time intervals resulting from

splitting the original report.

Note that our definition of normalization is slightly different from the temporal splitter

operator proposed in [53] and normalization function of Toman [179] in that it does not consider

any condition on explicit attributes and is extended to aggregate type relation. Figure 77 shows

normalized relation 𝑟௏் over 𝑠௏், 𝒩(𝑟௏், 𝑠௏்), and 𝑠௏் over 𝑟௏், 𝒩(𝑠௏், 𝑟௏்), from Figure 71.

 142

Figure 77: Normalized relation 𝑟௏் over 𝑠௏், 𝒩(𝑟௏், 𝑠௏்), and 𝑠௏் over 𝑟௏், 𝒩(𝑠௏், 𝑟௏்),

from Figure 71

Definition 13 – Inner Temporal Alignment (TA) Join of two VT relations: The inner

temporal alignment join, 𝑟௏் ⋈்஺ 𝑠௏், of two valid time relation 𝑟௏் and 𝑠௏் defined over

schemas 𝑅௏் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ) and 𝑆 = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ) respectively, is defined as follows.

 𝑟௏் ⋈்஺ 𝑠௏் = 𝒩(𝑟௏், 𝑠௏்) ⋈ி௥௢௠,்௢ 𝒩(𝑠௏், 𝑟௏்)

The left, right and full outer temporal alignment joins are defined similarly by first

normalizing both relations and then using the standard left, right, outer operators. Figure 78 shows

the result of the temporal alignment inner join on the two relations 𝑟௏் and 𝑠௏் shown in Figure

71. Note that the temporal alignment join of two VT relations is exactly equivalent to the temporal

Cartesian product defined in Definition 7. The difference of Temporal Alignment join compared

to temporal Cartesian product will be present in the case of joining VT and AT relations.

Now, consider the case when the 𝑠 relation is an aggregate time relation, 𝑠஺். In such case,

we cannot normalize 𝑠஺் over the 𝑟௏், however we still can normalize 𝑟௏் over 𝑠஺். Figure 79

shows the result of the normalization of 𝑟௏் over 𝑠஺், 𝒩(𝑟௏், 𝑠஺்).

 143

𝑟௏் ⋈்஺ 𝑠௏்

From To V1 V2
1 3 V1_1 V2_1
6 8 V1_2 V2_2
9 9 V1_2 V2_3
12 12 V1_3 V2_3
14 14 V1_3 V2_4
15 16 V1_4 V2_4
17 17 V1_5 V2_4
23 24 V1_6 V2_6

Figure 78: The result of the temporal alignment join, 𝑟௏் ⋈்஺ 𝑠௏், of the two valid time

relations shown in Figure 71

Figure 79: Normalized relation 𝑟௏் over 𝑠஺், 𝒩(𝑟௏், 𝑠஺்), from Figure 71

Note that if we perform the join of 𝑟௏் and 𝑠஺் as 𝑟௏் ⋈்஺ 𝑠஺் =

 𝒩(𝑟௏், 𝑠஺்) ⋈ி௥௢௠,்௢ 𝑠஺், the join result might not cover some time units for which the exact

value could be obtained. For example, consider time units from 14 to 17 on the Figure 79, the

report (14, 17, 𝑉2_4) from 𝑠஺் doesn’t match exactly with any of the reports (14, 14, 𝑉1_3) ,

(15, 16, 𝑉1_4) and (17,17, 𝑉1_5) from 𝑟௏் , however the values of the three reports could be

aggregated by applying a weighted mean (𝑤𝑚) (14) function where the weight for each report

value is the length of the report, i.e., we can create a new report

 144

(14, 17, 𝑚𝑒𝑎𝑛(𝑉1_3, 𝑉1_4, 𝑉1_4, 𝑉1_5)) that could be joined successfully with the report

(14, 17, 𝑉2_4). Note that for the illustration purposes the value 𝑉1_4 appears twice to show the

fact that it covers two time units and thus need to be counted twice. I call the operation of merging

several valid time reports as 𝑠𝑡𝑖𝑡𝑐ℎ𝑖𝑛𝑔 and I will define it below. On the other hand, notice that

reports (9, 9, 𝑉1_2) and (12, 12, 𝑉1_3) cannot be stitched together due to the presence of a gap

from time unit 10 to 11, and thus the report (9, 12, 𝑉2_3) cannot be joined with them. Note that in

the further text I will talk about user defined fusion functions that could be applied to reports

(9, 9, 𝑉1_2) and (12, 12, 𝑉1_3), however those functions are only applicable to the left, right and

outer joins because otherwise they violate the property of the inner join defined in Section 5.4.6.1.

Definition 14 – Stitching: Given a normalized valid time relation 𝑟ே௏் and an aggregate

time relation 𝑠஺் defined over schemas 𝑅௏் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ) and 𝑆 = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ)

respectively, the stitching of 𝑟ே௏் over 𝑠஺், 𝑠𝑡𝑖𝑡𝑐ℎ(𝑟ே௏், 𝑠஺்), is defined as follows.

 𝑠𝑡𝑖𝑡𝑐ℎ(𝑟ே௏், 𝑠஺்) = ൛𝑧൫หோೇ೅ห൯ห

∃𝑦 ∈ 𝑠஺்(ℬ = {𝑥|𝑥 ∈ 𝑟ே௏் ∧ 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑥[𝑇], 𝑦[𝑇])} ∧

ቀ൫𝑐𝑎𝑟𝑑(ℬ) = 1 ∨ 𝑔𝑎𝑝𝑠(ℬ)൯ ⟹ ∀𝑥 ∈ ℬ(𝑧 = 𝑥)ቁ ∨

(𝑧[𝑇] = 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛(ℬ) ∧ 𝑧[𝑉ଵ] = 𝑤𝑚(ℬ))) ∨

∃𝑥 ∈ 𝑟ே௏்∀𝑦 ∈ 𝑠஺்(¬𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑥[𝑇], 𝑦[𝑇]) ∧ 𝑧 = 𝑥)}

The lines two to four handle the case when a report from 𝑠஺் intersects with one or more

report from 𝑟ே௏் . If there is only one intersecting report or there are gaps between intersecting

report then those reports are unmodified (line 3), otherwise the new stitched report will have

lifespan of all the intersecting reports and the value will be equal to the result of applying the

weighted mean function (14). The fifth line handles the reports from 𝑟ே௏் that do no intersect with

any report from 𝑠஺் and simply copies to the result. 𝑐𝑎𝑟𝑑(ℬ) is the cardinality of the relation ℬ.

 145

The weighted mean function is defined as follows:

 𝑤𝑚(𝑟்) = ∑ (௥೔.௏∗|௥೔|)೙
೔సభ

∑ |௥೔|೙
೔సభ

, (14)

where 𝑛 is the number of reports in 𝑟்.

Figure 80 shows the result of stitching 𝑟ே௏் over 𝑠஺் . As explained above, the three

reports (14, 14, 𝑉1_3) , (15, 16, 𝑉1_4) and (17,17, 𝑉1_5) from 𝑟ே௏் relation were stitched

together into one (14, 17, 𝑤𝑚(𝑉1_3, 𝑉1_4, 𝑉1_5)).

Figure 80: The result of stitching 𝑟ே௏் over 𝑠஺், 𝑠𝑡𝑖𝑡𝑐ℎ(𝑟ே௏், 𝑠஺்)

Now, we are ready to define a temporal alignment join of a valid time relation with an

aggregate time relation.

Definition 15 – Inner Temporal Alignment (TA) Join of a VT and AT relations: The

inner temporal alignment join, 𝑟௏் ⋈்஺ 𝑠஺், of a valid time relation 𝑟௏் and an aggregate time

relation 𝑠஺் defined over schemas 𝑅௏் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ) and 𝑆஺் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ)

respectively, is defined as follows.

 𝑟௏் ⋈்஺ 𝑠஺் = 𝑠𝑡𝑖𝑡𝑐ℎ(𝒩(𝑟௏், 𝑠஺்), 𝑠஺்) ⋈ி௥௢௠,்௢ 𝑠஺்

 146

𝑟௏் ⋈்஺ 𝑠஺்

From To V1 V2
6 8 V1_2 V2_2
14 17 𝑤𝑚(𝑉1_3, 𝑉1_4, 𝑉1_5) V2_4
23 24 V1_6 V2_6

Figure 81: The result of the temporal alignment join, r୚୘ ⋈୘୅ s୅୘, of the valid time relation and

the aggregate time relation shown in Figure 71

As you can see the cardinality (and therefore coverage) of the join shown in Figure 81 is

smaller than in Figure 78, however it is better than blindly using standard equi join that would

return only one tuple in Figure 72.

While for the outer joins we can use the standard approach, where for the not matching

reports a null value is assigned, our goal when fusing datasets is to preserve as much information

as possible. At the same time, as the experiments in Section 5.4.5.4 show, the best technique to

fuse reports strongly depends on the nature of the data and the task at hand. Thus, instead of putting

null values for each non-matching report or guessing how to fuse non-matching reports, I involve

user in the loop by letting them to define what should be done in such non trivial situation by the

means of 𝑢𝑠𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠.

Let us look at an example of doing left outer temporal alignment join of a valid time relation

𝑟௏் and an aggregate time relation 𝑠஺், 𝑟௏்⟕்஺𝑠୅், shown in Figure 71. As with the inner join,

we first do the normalization and then the stitching of the valid time relation 𝑟௏் obtaining the

relations as in the Figure 80. Now, the goal of the left outer join is to preserve the left relation

without any changes while either merging matching report or assigning null for not matching

 147

tuples in the right relation. Since the very first report (1, 3, 𝑉1_1) in 𝑟௏் doesn’t match with any

report in 𝑠୅், we would normally output a report like this: (1, 3, 𝑉1_1, 𝜔). However, we do have

some information about 𝑠୅் over the time interval 1 to 3. We know the report (1, 4, 𝑉1_2), but

since it is an aggregate time report, we don’t know what are the actual values for each time unit or

what is the aggregated value from time unit 1 to 3. So, we don’t want to guess for the user what to

do with it and let user handle such uncertain and non-trivial situation.

There are three basic types of user defined functions – 𝑟𝑒𝑑𝑢𝑐𝑒 (𝑟), 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝑐𝑜) and

𝑒𝑥𝑡𝑒𝑛𝑑 (𝑒) – that aim to handle different scenarios. The illustrations of each function and their

combinations into more complex functions are shown in Figure 82. The 𝑟𝑒𝑑𝑢𝑐𝑒 function is used

when an aggregate time report has the time interval that extends the time interval of interest. The

time interval of value 𝑣21 is longer then the time interval of interest of the 𝑣11. The 𝑒𝑥𝑡𝑒𝑛𝑑

function is opposite from reduce and is used when the time interval needs to be extended. E.g., the

time interval of 𝑣21 is shorter than 𝑣11. The 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 function is used when two or more reports

need to be combined into one.

 148

Figure 82: Illustration of types of user defined functions and their combinations to handle

different cases of mutual position of several reports; red reports are the ones whose time interval

we are interested to be unmodified; blue reports are those for which the user functions will be

applied

The user functions can be either selected from a list of predefined general case functions

(Table 7) or be an arbitrarily complex one. In addition to the values of the reports in question, user

functions can take more information into account to compute the value. Such information can

include for example other reports in the relations and relations’ metadata. The concept of user

defined functions to handle the non trivial situations is similar to the concept of conflict resolution

functions in the work by Bleiholder and Neumann [24]. Table 7 shows a list of useful predefined

user functions to merge non trivial reports that are based on the conflict resolution functions in

Section 4 in [24] but are adapted to our use cases.

 149

Table 7: Predefined user functions to merge non trivial reports

Function Description
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Return the provided constant value regardless of the

values of the reports in question.
𝐶𝑜𝑢𝑛𝑡 Counts the number of distinct non-null values. The

actual data values are lost.
𝑀𝑖𝑛/𝑀𝑎𝑥 Returns the minimal/maximal input value with its

obvious meaning for numerical data. Lexicographical
(or other) order is needed for non numerical data.

𝑆𝑢𝑚/𝐴𝑣𝑔/𝑀𝑒𝑑𝑖𝑎𝑛 Computes sum, average and median of all present non-
null data values. Only applicable to numerical data.
Takes into account TU form of the VT relations.

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 / 𝑆𝑡𝑑𝑑𝑒𝑣 Returns variance and standard deviation of data values.
Only applicable to numerical data. Takes into account
TU form of the VT relations.

𝑅𝑎𝑛𝑑𝑜𝑚 Randomly chooses one data value among all non-null
data values.

𝐶ℎ𝑜𝑜𝑠𝑒 Returns the value which satisfies provided conditions,
e.g., min/max constraints, the report length, the source
where it comes, etc.

𝐶𝑜𝑎𝑙𝑒𝑠𝑐𝑒 Takes the first non-null value appearing.
𝐹𝑖𝑟𝑠𝑡/𝐿𝑎𝑠𝑡 Takes the first/last value of all values, even if it is a null

value.
𝑉𝑜𝑡𝑒 Returns the value that appears most often among the

present values. Ties can be broken by a variety of
strategies, e.g., choosing randomly.

𝐺𝑟𝑜𝑢𝑝 Returns a set of all the values without performing any
computation on them.

𝐶ℎ𝑜𝑜𝑠𝑒 𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 Chooses the value that belongs to the value chosen for
another column.

𝐷𝑖𝑠𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 Applies a specified disaggregation strategy to break
intersecting reports and then combines finer granular
values into one with the help of aggregate functions.

 150

Taking the above into consideration, we now can define the left/right outer temporal

alignment join. As the left and right outer joins are symmetric, we define only the left outer join.

Definition 16 – Left Temporal Alignment (TA) Join of a VT and AT relations: The left

temporal alignment join, 𝑟௏்⟕்஺𝑠஺், of a valid time relation 𝑟௏் and an aggregate time relation

𝑠஺் defined over schemas 𝑅௏் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ) and 𝑆஺் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ) respectively, is

defined as follows.

 𝑟ௌே௏் = 𝑠𝑡𝑖𝑡𝑐ℎ(𝒩(𝑟௏், 𝑠஺்), 𝑠஺்)

 𝑗 = 𝑟ௌே௏் ⋈ி௥௢௠,்௢ 𝑠஺்

 𝜃 = (𝑟ௌே௏். 𝐹𝑟𝑜𝑚 > 𝑠஺். 𝑇𝑜 ∧ 𝑟ௌே௏். 𝐹𝑟𝑜𝑚 < 𝑠஺். 𝐹𝑟𝑜𝑚) ∨

(𝑟ௌே௏். 𝑇𝑜 > 𝑠஺். 𝑇𝑜 ∧ 𝑟ௌே௏். 𝑇𝑜 < 𝑠஺். 𝐹𝑟𝑜𝑚)

 𝑖 = 𝐺௥ೄಿೇ೅.∗

௨௙(௏మ)(𝑟ௌே௏் ⋈ఏ 𝑠஺்)

 𝑟௏்⟕்஺𝑠஺் = 𝑗 ∪ 𝑖 ∪ 𝜋∗,ఠ(𝑟ௌே௏் − 𝜋௥ೄಿೇ೅.∗(𝑗) − 𝜋௥ೄಿೇ೅.∗(𝑖))

The first line derives stitched normalized relation of 𝑟௏் over 𝑠஺். The second line derives

the inner temporal alignment join. The third and fourth lines define the theta condition, which finds

intersecting (but not equal) reports between 𝑟ௌே௏் and 𝑠஺். The fifth line performs grouping of

the result of the theta join based on the all attributes of the 𝑟ௌே௏் relation by applying user

functions (𝑢𝑓, combined from the three base function according to the Figure 82) to the 𝑉ଶ values

of each group. The sixth line performs the union of the inner join (𝑗) with the reports that have

intersections (𝑖) with the reports form the left relation that were not matched during the inner or

intersect joins by also appending the null value (𝜔) to each such report.

Figure 83 shows the result of the left and right temporal alignment outer joins.

 151

Figure 83: The result of the left temporal alignment outer join, 𝑟௏்⟕்஺𝑠஺் , and right temporal

alignment outer join, 𝑟௏்⟖்஺𝑠஺், of the two relation shown in Figure 71

The full outer temporal alignment join is defined as the standard outer join which is the

union of the left and right temporal alignment joins. Figure 84 shows the result of the full outer

temporal alignment join, 𝑟௏்⟗்஺𝑠୅், of the valid time relation and the aggregate time relation

shown in Figure 71. Notice that the full outer join contains some reports that intersect in time (the

groups of intersecting report are highlighted in color). The resolution of such non-trivial situation

is not straightforward and is left to the user to decide, but some heuristics can be applied. For

example, the intersecting reports could be broken into finer granularity common time intervals,

e.g., leave the report (1, 3, 𝑉1_1, 𝑟(𝑉2_1)) without any changes, but change the second report to

(4, 4, 𝑒(𝑉1_1), 𝑟(𝑉2_1)). Another heuristic could accumulate reports into coarser granularity, e.g.,

merge first two reports into (1, 4, 𝑒(𝑉1ଵ), 𝑉2_1). Yet another heuristic could aim to minimize the

number of user defined function. The work to develop such heuristics is left for future research.

 152

𝑟௏்⟗்஺𝑠஺்

From To V1 V2
1 3 V1_1 𝑟(𝑉2_1)
1 4 𝑒(𝑉1_1) V2_1
5 5 V1_2 𝜔
6 8 V1_2 V2_2
9 9 V1_2 𝑟(𝑉2_3)
9 12 𝑒_𝑐𝑜(𝑉1_2, 𝑉1_3) V2_3
12 12 V1_3 𝑟(𝑉2_3)
13 13 V1_3 𝜔
14 17 𝑤𝑚(𝑉1_3, 𝑉1_4, 𝑉1_5) 𝜔
18 18 V1_5 𝜔
20 21 𝜔 V2_5
23 24 V1_6 V2_6
26 26 V1_7 𝜔

Figure 84: The result of the temporal alignment join, 𝑟௏்⟗்஺𝑠୅், of the valid time relation and

the aggregate time relation shown in Figure 71

5.4.6.4 Overlap Join – Joining Two AT Relations In the case of joining two aggregate time

relations, the normalization cannot be applied to any of them. Thus, the inner join of two aggregate

time relations is performed as the standard intersect join. The intersect join in the context of valid

time relations has been studied previously (e.g., in [52][64][124][103][102]) and efficient

distributed algorithms are know (e.g., [52][105]). Below I provide approaches to perform join in

the context of aggregate time relations. The result of the inner join of the two aggregate time

relations from Figure 71 is shown in Figure 85.

 153

𝜃 = (𝑟஺். 𝐹𝑟𝑜𝑚 ≥ 𝑠஺். 𝑇𝑜 ∧ 𝑟஺். 𝐹𝑟𝑜𝑚 ≤ 𝑠஺். 𝐹𝑟𝑜𝑚) ∨

(𝑟஺். 𝑇𝑜 ≥ 𝑠஺். 𝑇𝑜 ∧ 𝑟஺். 𝑇𝑜 ≤ 𝑠஺். 𝐹𝑟𝑜𝑚)

𝑟஺் ⋈ఏ 𝑠஺்

𝒓𝑨𝑻. 𝑭𝒓𝒐𝒎 𝒓𝑨𝑻. 𝑻𝒐 𝒔𝑨𝑻. 𝑭𝒓𝒐𝒎 𝒔𝑨𝑻. 𝑻𝒐 V1 V2
1 3 1 4 V1_1 V2_1
5 9 6 8 V1_2 V2_2
5 9 9 12 V1_2 V2_3
12 14 9 12 V1_3 V2_3
12 14 14 17 V1_3 V2_4
15 16 14 17 V1_4 V2_4
17 18 14 17 V1_5 V2_4
23 24 23 24 V1_6 V2_6

Figure 85: The result of the intersect join, 𝑟஺் ⋈ఏ 𝑠஺், of the two aggregate time relations

shown in Figure 71

While the result of the inner overlap join doesn’t directly return the required schema, i.e.,

(𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ, 𝑉ଶ), it can be converted into it with another user defined function 𝑡 that is applied

to overlapping time interval within one report (Figure 86).

From To V1 V2
1 𝑡(3, 4) V1_1 V2_1
𝑡(5,6) 𝑡(9,8) V1_2 V2_2
𝑡(5,9) 𝑡(9,12) V1_2 V2_3
𝑡(12,9) 𝑡(14,12) V1_3 V2_3
𝑡(12,14) 𝑡(14,17) V1_3 V2_4
𝑡(15,14) 𝑡(16,17) V1_4 V2_4
𝑡(17,14) 𝑡(18,17) V1_5 V2_4
23 24 V1_6 V2_6

Figure 86: The result of applying 𝑡 user function to the inner join in Figure 85

 154

The overlap join merges reports that intersect in their time intervals without taking into

consideration the length of the reports and their relative position and therefore the result of the join

might contain tuples that will introduce overestimation or underestimation. Notice, for example,

how in the Figure 71 the report (9, 12, 𝑉2_3) covers only 1 out of 5 time units of the report

(5, 9, 𝑉1_2) (which is 20%), thus joining those two reports and then somehow fusing the

(9, 12, 𝑉2_3) report with (6, 8, 𝑉2_2) may overestimate/underestimate the value of 𝑉ଶ that

corresponds to 𝑉ଵ on that time interval. On the other hand, the reports that do not intersect but are

very close to each other might provide good approximate join answer. For example, assume there

is another report (27, 27, 𝑉2_7). It doesn’t not intersect with (26, 26, 𝑉1_7), however since they

are both very short (each only cover one time unit) and are very close (they are adjacent), joining

them might provide good approximate for corresponding values of 𝑉ଵ and 𝑉ଶ on time interval 26

– 27. The intersect join will not identify such cases. To better illustrate the above problems,

consider a scenario of reports shown in Figure 87. In the next two subsections I will describe two

alternative techniques to perform intersect-like join.

Figure 87: A scenario of reports to illustrate the problem with intersect join

5.4.6.4.1 Relative Overlap Join To address the first problem with intersect join approach

identified above regarding joining the reports that have very short overlapping time intervals, a

 155

relative overlap metric, similarly to [190], can be used to judge whether the reports should be

merged or not. The relative overlap (16) of two reports is the ratio of their overlap (7) over their

combined lifespan which is the length of the union on their time intervals (15).

𝑢𝑛𝑖𝑜𝑛(𝑇ଵ, 𝑇ଶ) = [min(𝑇ଵ. 𝐹𝑟𝑜𝑚, 𝑇ଶ. 𝐹𝑟𝑜𝑚) , max(𝑇ଵ. 𝑇𝑜, 𝑇ଶ. 𝑇𝑜)] (15)

 𝑅𝑂(𝑇ଵ, 𝑇ଶ) = ௢௩௘௥௟௔௣(భ், మ்)
|௨௡௜௢௡(భ், మ்)| (16)

Figure 88 illustrates the relative overlap metric of two reports 𝑟ଵ and 𝑠ଵ.

Figure 88: Illustration of relative overlap metric

Table 8 shows the non zero relative overlap values for the reports shown in Figure 87. The

higher the value the better. As it can be seen from the figure, the reports that have longer

overlapping time intervals have higher relative overlap value. The reports that don’t intersect, have

zero relative overlapping value (not shown in the table).

Table 8: Non zero relative overlap values for the reports in Figure 87

r.From r.To s.From s.To RO
1 9 1 8 0.88
1 9 7 11 0.27
10 18 7 11 0.16

 156

Table 8 (continued)

10 18 18 19 0.1
24 25 25 26 0.33

Using the relative overlap metric and a given minimum relative overlap threshold, the

relative overlap join can be defined as a theta join with predicate 𝑎 𝜃 𝑏 ≡ 𝑅𝑂(𝑎, 𝑏) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.

A stricter version of the relative overlap join could be used to merge only those reports that have

maximum relative overlap, then 𝑎 𝜃 𝑏 ≡ 𝑅𝑂(𝑎, 𝑏) = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 . Figure 89 shows the result of

the relative overlap join with relative threshold 0.3 for the reports in Figure 87.

𝑟஺் ⋈ோை൫௥ಲ೅, ௦ಲ೅൯ஹ଴.ଷ 𝑠஺்

From To V1 From To V2
1 9 V1_1 1 8 V2_1
24 25 V1_3 25 26 V2_5

Figure 89: Relative overlap join query with threshold 0.3 and the result of the query for the

aggregate time relations in Figure 87

5.4.6.4.2 Distance-based Join While the relative overlap join filters out reports that don’t overlap

“enough” based on the overlap threshold, it doesn’t address the second issue identified with the

intersect join. Namely, sometimes joining adjacent (or close “enough”) reports might be useful to

answer a join query approximately. The distance-based join method is conceptually similar to the

idea of neighborhood based algorithms. Namely, this method matches a report of one relation with

reports from the other relation that are in the neighborhood proximity based on the interval’s start

and end time values. This approach is similar to some degree to the work done by Pilourdault et

 157

al. [145] and by Dubois et al. [60] in which they extended Allen’s algebra to account for

approximate temporal predicates and to assign a score of equality and inequality of two time

intervals’ endpoints.

To calculate report’s neighborhood, a distance measure is required. I use a distance

measure (17), called 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓, that measures the distance between two time intervals. The

measure is inspired by the Hausdorff distance that measures how far two sets are from each other.

 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓(𝑇ଵ, 𝑇ଶ) = max(𝑑ଵ, 𝑑ଶ), (17)

where

 𝑑ଵ(𝑇ଵ, 𝑇ଶ) = max (

 min൫𝑎𝑏𝑠(𝑇ଵ. 𝐹𝑟𝑜𝑚 − 𝑇ଶ. 𝐹𝑟𝑜𝑚), 𝑎𝑏𝑠(𝑇ଵ. 𝐹𝑟𝑜𝑚 − 𝑇ଶ. 𝑇𝑜)൯,

 min൫𝑎𝑏𝑠(𝑇ଵ. 𝑇𝑜 − 𝑇ଶ. 𝐹𝑟𝑜𝑚), 𝑎𝑏𝑠(𝑇ଵ. 𝑇𝑜 − 𝑇ଶ. 𝑇𝑜)൯

)

 𝑑ଶ(𝑇ଵ, 𝑇ଶ) = max (

 min൫𝑎𝑏𝑠(𝑇ଶ. 𝐹𝑟𝑜𝑚 − 𝑇ଵ. 𝐹𝑟𝑜𝑚), 𝑎𝑏𝑠(𝑇ଶ. 𝐹𝑟𝑜𝑚 − 𝑇ଵ. 𝑇𝑜)൯,

 min൫𝑎𝑏𝑠(𝑇ଶ. 𝑇𝑜 − 𝑇ଵ. 𝐹𝑟𝑜𝑚), 𝑎𝑏𝑠(𝑇ଶ. 𝑇𝑜 − 𝑇ଵ. 𝑇𝑜)൯

)

The 𝑎𝑏𝑠 function returns the absolute value of its argument.

Figure 90 illustrates the 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓 metric of two reports 𝑟ଵ and 𝑠ଵ.

The 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓 distance returns the number of time units between two reports’ time

intervals and, thus, the value is not normalized between 0 and 1. To use the same semantics of the

aggregate join as for the relative overlap, a normalized distance is used and it is calculated

according to the following equation 18.

 158

 𝑑ଵ = max (min൫4 − 1, 𝑎𝑏𝑠(4 − 5)൯ , min(10 − 1, 10 − 5)) = 5

 𝑑ଶ = max (min൫𝑎𝑏𝑠(1 − 4), 𝑎𝑏𝑠(1 − 10)൯ , min(5 − 4, 𝑎𝑏𝑠(5 − 10))) = 3

 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓 = 5

Figure 90: Illustration of 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓 metric

 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓𝑁(𝑇ଵ, 𝑇ଶ) = ௧௜_௛௔௨௦ௗ௢௥௙௙(భ், మ்)
௠௔௫_௧௜_௛௔௨௦ௗ௢௥௙௙(௥ಲ೅, ௦ಲ೅)

, (18)

where

 𝑚𝑎𝑥_𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓(𝑟஺், 𝑠஺்) = 𝑧 ⟺

 ∀𝑥 ∈ 𝑟஺்∀𝑦 ∈ 𝑠஺்(𝑧 ≥ 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓(𝑥. 𝑇, 𝑦. 𝑇))

Table 9 shows the 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓𝑁 values for the reports shown in Figure 87. The lower

the value the better. As it can be seen from the figure, the reports that are further from each other

have higher distance. The main difference with the relative overlap value is that 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓𝑁

is not zero for non overlapping reports.

Table 9: Non zero 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓𝑁 values for the reports in Figure 87

r.From r.To s.From s.To 𝒕𝒊_𝒉𝒂𝒖𝒔𝒅𝒐𝒓𝒇𝒇𝑵
1 9 1 8 0.04
1 9 7 11 0.25
1 9 18 19 0.71
1 9 22 23 0.87
1 9 25 26 1

10 18 1 8 0.42

 159

Table 9 (continued)

10 18 7 11 0.29
10 18 18 19 0.33
10 18 22 26 0.5
10 18 25 26 0.62
24 25 1 8 0.95
24 25 7 11 0.71
24 25 18 19 0.25
24 25 22 23 0.08
24 25 25 26 0.04

Using the 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓𝑁 metric and a given maximum 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓𝑁 threshold, the

distance-based join (I will refer to it also as hausdorff join) can be defined as a theta join with

predicate 𝑎 𝜃 𝑏 ≡ 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓𝑁(𝑎, 𝑏) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. A stricter version of the hausdorff join

could be used to merge only those reports that have minimum 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓𝑁 value, then

𝑎 𝜃 𝑏 ≡ 𝑡𝑖_ℎ𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓𝑁(𝑎, 𝑏) = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 . Figure 91 shows the result of the hausdorff join

with the threshold 0.2 for the reports in Figure 87. As you can see from the result of the join table,

the main difference with the relative overlap join is that hausdorff join method also merges those

tuples that don’t intersect but are close “enough” (i.e., the distance is within the given threshold

value).

𝑟஺் ⋈௧௜_௛௔௨௦ௗ௢௥௙௙ே൫௥ಲ೅, ௦ಲ೅൯ஸ଴.ଶ 𝑠஺்

From To V1 From To V2
1 9 V1_1 1 8 V2_1
24 25 V1_3 22 23 V2_4
24 25 V1_3 25 26 V2_5

Figure 91: Hausdorff join query with threshold 0.2 and the result of the query for the aggregate

time relations in Figure 87

 160

Since the result of the relative overlap or hausdorff join depends on the threshold value,

finding an optimal threshold value that maximizes the accuracy of the join is an interesting and

important research question. I ran multiple experiments trying to identify optimal thresholds for

different combination of values of many parameters (such as relation’s lifespans, reports’ lengths,

the degree of reports intersections, the degree of scarcity of the reports and their relative position,

noise and many other). The experiments showed that the threshold value is highly dependent on

the nature of the data and the task at hand. Thus, I consider the task of selecting the appropriate

threshold as resolving non trivial situations that should be implemented as user defined function.

In general, it is harder to answer inner query when both relations are of the aggregate time

type. Left and right outer queries are more useful since they preserve at least one variable and thus

can guarantee good performance for at least one variable.

The left outer overlap join is defined similarly to the left outer temporal alignment join in

Definition 16 except that the normalization and stitching functions are not applied.

Definition 17 – Left Overlap Join of two AT relations: The left overlap

join, 𝑟஺்⟕்ை𝑠஺், of two aggregate time relations 𝑟஺் and 𝑠஺் defined over schemas 𝑅஺் =

(𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ) and 𝑆஺் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ) respectively, is defined as follows.

 𝑗 = 𝑟஺் ⋈ி௥௢௠,்௢ 𝑠஺்

 𝜃 = (𝑟஺். 𝐹𝑟𝑜𝑚 > 𝑠஺். 𝑇𝑜 ∧ 𝑟஺். 𝐹𝑟𝑜𝑚 < 𝑠஺். 𝐹𝑟𝑜𝑚) ∨

(𝑟஺். 𝑇𝑜 > 𝑠஺். 𝑇𝑜 ∧ 𝑟஺். 𝑇𝑜 < 𝑠஺். 𝐹𝑟𝑜𝑚)

 𝑖 = 𝐺௥ಲ೅.∗

௨௙(௏మ)(𝑟஺் ⋈ఏ 𝑠஺்)

 𝑟஺்⟕்ை𝑠஺் = 𝑗 ∪ 𝑖 ∪ 𝜋∗,ఠ(𝑟஺் − 𝜋௥ಲ೅.∗(𝑗) − 𝜋௥ಲ೅.∗(𝑖))

The results of the left and right outer overlap joins are shown in Figure 92.

 161

Figure 92: The result of the left outer overlap join, 𝑟஺்⟕்ை𝑠஺் , and right outer overlap join,

𝑟஺்⟖்ை𝑠஺், of the two aggregate time relations shown in Figure 71

The full outer join is the standard union of the left and right joins. It has the same issue of

having intersecting reports in the resulting table as in the case with full outer temporal alignment

join of VT and AT relations. Same heuristics can be applied.

5.4.6.5 Zoom Out Join – Joining Two AT Relations Previous approach to join two aggregate

time relations resulted in the use of user functions that might produce inaccurate estimated value.

In this final method to perform aggregate join I focus on developing a method that can join two

aggregate time relations to produce accurate values without any use of user functions in case of

inner join.

In contrast to the temporal alignment join that breaks valid time reports into smaller pieces,

I develop a 𝑧𝑜𝑜𝑚 𝑜𝑢𝑡 join that combines several aggregate time reports together into one larger

report before performing equi join.

 162

Definition 18 – Inner Zoom Out Join of Two AT Relations: The 𝑧𝑜𝑜𝑚 𝑜𝑢𝑡

join, 𝑟஺் ⋈்௓ 𝑠஺், of two aggregate time relations 𝑟஺் and 𝑠஺் defined over schemas 𝑅஺் =

(𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ) and 𝑆஺் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ) respectively, is defined as follows.

 𝑐(𝑥, 𝑦) = (𝑓𝑖𝑟𝑠𝑡(𝑥). 𝐹𝑟𝑜𝑚 = 𝑓𝑖𝑟𝑠𝑡(𝑦). 𝐹𝑟𝑜𝑚 ∧ 𝑙𝑎𝑠𝑡(𝑥). 𝑇𝑜 = 𝑙𝑎𝑠𝑡(𝑦). 𝑇𝑜 ∧

¬𝑔𝑎𝑝𝑠(𝑥) ∧ ¬𝑔𝑎𝑝𝑠(𝑦))

 𝑟஺் ⋈்௓ 𝑠஺் = {𝑧|∃𝑥 ⊆ 𝑟஺்∃𝑦 ⊆ 𝑠஺்(

ቀ𝑐(𝑥, 𝑦) ∧ ∀𝑥ᇱ ⊇ 𝑥∀𝑦ᇱ ⊇ 𝑦൫¬𝑐(𝑥ᇱ, 𝑦ᇱ)൯ቁ ⟹

𝑧. 𝐹𝑟𝑜𝑚 = 𝑓𝑖𝑟𝑠𝑡(𝑥). 𝐹𝑟𝑜𝑚 ∧ 𝑧. 𝑇𝑜 = 𝑙𝑎𝑠𝑡(𝑥) ∧

𝑧. 𝑉ଵ = 𝑎𝑓(𝑥. 𝑉ଵ) ∧ 𝑧. 𝑉ଶ = 𝑎𝑓(𝑦. 𝑉ଶ))}

The first two lines define a helper operator that given two sets of reports returns true if both

sets match on their corner time endpoints and there are no gaps. The third and fourth lines find

subsets of 𝑟஺் and 𝑠஺் that satisfy the helper operator and ensures that those reports are minimal.

The last two lines generate a resulting tuple by setting the time interval equal to lifespan of the

satisfied subsets and aggregating each variable by using the aggregate function (𝑎𝑓) that was used

to derive the original reports. In the case when the mean function was used originally, the weighted

mean (𝑤𝑚) function (14) is used instead.

Performing zoom out join on the two aggregate time relations as in the Figure 71 would

yield an empty result because there are no subsets of 𝑟஺் and 𝑠஺் that satisfy the condition 𝑐.

Consider two aggregate time relations shown in Figure 93. Notice that a subset of 𝑟஺் that consists

of first two reports and a subset of 𝑠஺் that also consists of the first two reports satisfy the time

interval constrains for the condition 𝑐. However the subset of 𝑠஺் has a gap at time unit 5 and thus

these two subsets cannot be “zoomed out” and joined together. Another subset 𝑥 of 𝑟஺் that

consists of three reports with values 𝑉1_3, 𝑉1_4 and 𝑉1_5 and the subset 𝑦 of 𝑠஺் that consists of

 163

two reports with values 𝑉2_3 and 𝑉2_4 satisfy the 𝑐 constraint and also the zoom out join

condition and thus can be “zoomed out” and joined. Notice, that adding adjacent reports 𝑉1_6 and

𝑉2_5 to the 𝑥 and 𝑦 will still satisfy the 𝑐, but will violate the zoom out join constraint that requires

the subsets to be minimal. The “zoomed out” versions of the relations 𝑟஺் and 𝑠஺் are shown in

Figure 94 and the result of the inner zoom out join of them is shown in Figure 95.

Figure 93: Example of two aggregate time relations for the illustration of the zoom out join

approach

Figure 94: “Zoomed out” version of the two relations from Figure 93

𝑟஺் ⋈்௓ 𝑠஺்

From To V1 V2
12 18 𝑎𝑓(𝑉1_3, 𝑉1_4, 𝑉1_5) 𝑎𝑓(𝑉2_3, 𝑉2_4)
19 21 V1_6 V2_5

Figure 95: Inner zoom out join, 𝑟஺் ⋈்௓ 𝑠஺், of the two aggregate relations from Figure 93

 164

The semantics of the outer zoom out join method are the same as for the temporal alignment

method.

Definition 19 – Left Zoom Out Join of two AT relations: The left zoom out

join, 𝑟஺்⟕்௓𝑠஺், of two aggregate time relations 𝑟஺் and 𝑠஺் defined over schemas 𝑅஺் =

(𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଵ) and 𝑆஺் = (𝐹𝑟𝑜𝑚, 𝑇𝑜, 𝑉ଶ) respectively, is defined as follows.

 𝑗 = 𝑟஺் ⋈்௓ 𝑠஺்

 𝑙𝑛𝑗 = 𝑟஺் − 𝜋௥ಲ೅.∗(𝑗)

 𝜃 = (𝑙𝑛𝑗. 𝐹𝑟𝑜𝑚 > 𝑠஺். 𝑇𝑜 ∧ 𝑙𝑛𝑗. 𝐹𝑟𝑜𝑚 < 𝑠஺். 𝐹𝑟𝑜𝑚) ∨

(𝑙𝑛𝑗. 𝑇𝑜 > 𝑠஺். 𝑇𝑜 ∧ 𝑙𝑛𝑗. 𝑇𝑜 < 𝑠஺். 𝐹𝑟𝑜𝑚)

 𝑖 = 𝐺௟௡௝.∗

௨௙(௏మ)(𝑙𝑛𝑗 ⋈ఏ 𝑠஺்)

 𝑟஺்⟕்௓𝑠஺் = 𝑗 ∪ 𝑖 ∪ 𝜋∗,ఠ ቀ𝑙𝑛𝑗 − 𝜋௟௡௝.∗(𝑖)ቁ

The first line performs inner zoom out join of two relations of 𝑟஺் and 𝑠஺். The second

line find the reports from the 𝑟஺் relation that were not joined in the previous step and assigned

them to a temporary relation 𝑙𝑛𝑗. The third and fourth lines define the theta condition which finds

intersecting (but not equal) reports between 𝑙𝑛𝑗 and 𝑠஺். The fifth line performs grouping of the

result of the theta join based on the all attributes of the 𝑙𝑛𝑗 relation by applying user functions

(𝑢𝑓, combined from the three base function according to the Figure 82) to the 𝑉ଶ values of each

group. The sixth line performs the union of the inner join (𝑗) with the reports that have intersections

(𝑖) with the reports form the left relation that were not matched during the inner or intersect joins

by also appending the null value (𝜔) to each such report.

The results of the left, right and full outer zoom out join can be derived similarly to the

outer joins of the temporal alignment join.

 165

An interesting scenario for the zoom out join is when both relations 𝑟஺் and 𝑠஺் have no

gaps, no matching reports but have the same lifespan, e.g., as in Figure 96. After the zoom out

process each relation will be aggregated into just one report, as in Figure 97, and the result of the

inner and outer joins will be just one report (1, 26, 𝑎𝑓(𝑉1_1, 𝑉1_2, 𝑉1_3, 𝑉1_4, 𝑉1_5, 𝑉1_6,

𝑉1_7) , 𝑎𝑓(𝑉2_1, 𝑉2_2, 𝑉2_3, 𝑉2_4, 𝑉2_5, 𝑉2_6)). The result will be accurate and coverage

will be perfect, but the granularity of the result will be coarse. Other approaches to join the reports

in Figure 96 will do the following. The equi-join will not find any corresponding values between

the two relations – inner join will return empty table; outer joins will yield null values for all time

intervals for the other variable. While overlap join will preserve the original granularity, all reports

in the result will have user defined functions and thus the join will be more computationally

expensive and the accuracy can be low depending on the nature of the data and the choice of the

user functions. Polynomial or SAFE disaggregation based join method could be used instead.

However, since there are no overlapping reports the SAFE can have very high estimation error. If

all the reports in each relation are of the same length, then temporal disaggregation methods could

be applied and depending on the availability of good indicators, the join result could have the finest

granularity and the lowest estimation error.

Figure 96: Example of an interesting scenario of two aggregate time relations for the zoom out

join

 166

Figure 97: Result of the zoom out join of the two aggregate time relations from the Figure 96

5.4.6.6 Implementations of Temporal Alignment and Zoom Out Aggregate Joins I

implemented all join algorithms as sort-merge join. In fact, the relations are already sorted by time

when they are given as input to a join algorithm and thus the join only need to perform the merge

part by concatenating tuples that match. The implementations of the equi and overlap joins are

straightforward since they do not require any additional operation to be performed on the joining

relations. Below I provide algorithms to perform normalization (Algorithm 7), stitching

(Algorithm 8) and zoom out (Algorithm 10). For these algorithms, I assume one-based arrays

where first element has index 1 as opposite to the traditional zero-based array where first element

has index 0.

In NORMALIZE algorithm (Algorithm 7), line 1 initiates an array of zeroes (ZEROS) on

which lines 3 to 6 project the reports’ time intervals from the relation 𝑠 on the time axis 𝑡. Line 9

puts additional projects to the selected segment of 𝑡 to indicate current reports’ start (1) and end

(𝑒𝑛𝑑 - last element of the 𝑡 array) time points. Lines 7 to 17 break the relation that should be

normalized 𝑟௏் into pieces based on the time interval endpoints projected on 𝑡.

For each aggregate time report, the STITCH algorithm (Algorithm 8) finds normalized valid

time reports that are contained in it (line 14 to 22) and put those reports together by calling

STITCHBAG (Algorithm 9). If there is a gap between VT reports within AT report (Algorithm 9,

 167

line 11), the gap is not filled up, but reports that form continuous strip are aggregated (line 12 and

20) by weighted mean function (𝑤𝑚 (14)).

The ZOOMOUT algorithm (Algorithm 10) takes as input two aggregate time relations. It

then first projects indexes of all reports of one relation on the time unit axis that those reports cover

(line 1 to 4). The other report is then “zoomed out” by using ZOOMOUTONE algorithm (Algorithm

11) that takes into account both relations and the projects. The ZOOMOUTONE algorithm also

outputs the list of time intervals that were zoomed out (the zoom out regions) that are then used

by ZOOMOUTANOTHER algorithm (Algorithm 12) to zoom out the other relation.

Algorithm 7: NORMALIZE(𝒓𝑽𝑻, 𝒔). Input: Valid time relation 𝒓𝑽𝑻 that needs to be normalized, 𝒔

either valid time or aggregate time relation based on which to do the normalization. Output:

Normalized relation 𝒓𝑵𝑽𝑻.

16: 𝑡 ← ZEROS(1. . max(|𝑟௏்|, |𝑠|) + 1)
17: 𝑟ே௏் ← empty list
18: foreach report 𝑥 of 𝑠 do
19: 𝑡[𝑥. 𝐹𝑟𝑜𝑚] + +
20: 𝑡[𝑥. 𝑇𝑜 + 1] + +
21: end foreach
22: foreach report 𝑦 of 𝑟௏் do
23: 𝑏 = 𝑦. 𝐹𝑟𝑜𝑚; 𝑒 = 𝑦. 𝑇𝑜; 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑡[𝑏. . 𝑒]
24: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡[1] = 1; 𝑠𝑒𝑔𝑚𝑒𝑛𝑡[𝑒𝑛𝑑] = 1
25: 𝑚𝑎𝑟𝑘𝑠 = { 𝑖 | 𝑠𝑒𝑔𝑚𝑒𝑛𝑡[𝑖] > 0}
26: if |𝑚𝑎𝑟𝑘𝑠| > 2 then
27: for 𝑖 = 1; 𝑖 < |𝑚𝑎𝑟𝑘𝑠|; 𝑖 + + do
28: 𝑟ே௏்.APPEND((𝑏 + 𝑚𝑎𝑟𝑘𝑠[𝑖] − 1, 𝑏 + 𝑚𝑎𝑟𝑘𝑠[𝑖 + 1] − 2, 𝑦. 𝑉))
29: end for
30: else
31: 𝑟ே௏்.APPEND(𝑦)
32: end if
33: end foreach
34: return 𝑟ே௏்

 168

Algorithm 8: STITCH(𝒓𝑵𝑽𝑻, 𝒔). Input: Normalized valid time relation 𝒓𝑵𝑽𝑻 that needs to be

stitched, 𝒔 either valid time or aggregate time relation based on which to do the stitching.

Output: Normalized relation 𝒓𝑺𝑵𝑽𝑻.

1: 𝑟ௌே௏் ← empty list
2: 𝑖 = 1; 𝑦 = 𝑟ே௏்[𝑖]; 𝑟𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 = 𝑓𝑎𝑙𝑠𝑒
3: foreach report 𝑥 of 𝑠 do
4: 𝑏𝑎𝑔 ← empty list
5: while 𝑦. 𝐹𝑟𝑜𝑚 < 𝑥. 𝐹𝑟𝑜𝑚 do
6: 𝑟ௌே௏்.APPEND(𝑦)
7: 𝑖 + +
8: if 𝑖 > 𝑐𝑎𝑟𝑑(𝑟ே௏்) then
9: 𝑟𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 = 𝑡𝑟𝑢𝑒
10: break
11: end if
12: 𝑦 = 𝑟ே௏்[𝑖]
13: end while
14: while 𝑦. 𝐹𝑟𝑜𝑚 ≥ 𝑥. 𝐹𝑟𝑜𝑚 and 𝑦. 𝑇𝑜 ≤ 𝑥. 𝑇𝑜 do
15: 𝑏𝑎𝑔.APPEND(𝑦)
16: 𝑖 + +
17: if 𝑖 > 𝑐𝑎𝑟𝑑(𝑟ே௏்) then
18: 𝑟𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 = 𝑡𝑟𝑢𝑒
19: break
20: end if
21: 𝑦 = 𝑟ே௏்[𝑖]
22: end while
23: 𝑠𝑡𝑖𝑡𝑐ℎ𝑒𝑑𝐵𝑎𝑔 = STITCHBAG(𝑏𝑎𝑔) //Algorithm 9
24: 𝑟ௌே௏்.APPEND(𝑠𝑡𝑖𝑡𝑐ℎ𝑒𝑑𝐵𝑎𝑔)
25: if 𝑟𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 then
26: break
27: end if
28: end foreach
29: if 𝑖 ≤ 𝑐𝑎𝑟𝑑(𝑟ே௏்) then
30: 𝑟ௌே௏்.APPEND({𝑟ே௏்[𝑗]|𝑗 ∈ [𝑖. . 𝑐𝑎𝑟𝑑(𝑟ே௏்)]})
31: end if
32: return 𝑟ௌே௏்

 169

Algorithm 9: STITCHBAG(𝒃𝒂𝒈). Input: A list of valid time reports that need to be stitched.

Output: A list of stitched reports 𝒃𝒂𝒈𝑺.

1: 𝑏𝑎𝑔ௌ ← empty list
2: 𝑙 = LENGTH(𝑏𝑎𝑔)
3: if 𝑙 == 0 then
4: return 𝑏𝑎𝑔ௌ
5: end if
6: 𝑥 = 𝑏𝑎𝑔[1]
7: 𝑠𝐵𝑎𝑔 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡
8: 𝑠𝐵𝑎𝑔. APPEND(𝑥)
9: if 𝑙 > 1 then
10: for 𝑖 = 2; 𝑖 ≤ 𝑙 do
11: if 𝑥. 𝑇𝑜 + 1 ≠ 𝑏𝑎𝑔[𝑖]. 𝐹𝑟𝑜𝑚 then
12: 𝑏𝑎𝑔ௌ.APPEND((𝑠𝐵𝑎𝑔[1]. 𝐹𝑟𝑜𝑚, 𝑠𝐵𝑎𝑔[𝑒𝑛𝑑]. 𝑇𝑜, 𝑤𝑚(𝑠𝐵𝑎𝑔)))
13: 𝑠𝐵𝑎𝑔 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡
14: end if
15: 𝑠𝐵𝑎𝑔.APPEND(𝑏𝑎𝑔[𝑖])
16: 𝑥 = 𝑏𝑎𝑔[𝑖]
17: end for
18: end if
19: if LENGTH(𝑠𝐵𝑎𝑔) > 0 then
20: 𝑏𝑎𝑔ௌ.APPEND((𝑠𝐵𝑎𝑔[1]. 𝐹𝑟𝑜𝑚, 𝑠𝐵𝑎𝑔[𝑒𝑛𝑑]. 𝑇𝑜, 𝑤𝑚(𝑠𝐵𝑎𝑔)))
21: end if
22: return 𝑏𝑎𝑔ௌ

 170

The ZOOMOUTONE algorithm (Algorithm 11) finds the minimum length continuous

matching strips of reports in two relations and combines them together. Taking one report at a time

if finds indexes of the reports of the other relation that lie under it (line 3). If there are gaps in other

relation reports under current report (line 5), then the report is added to the output without any

changes (line 6). If there is only one report in the other relation under current report and their time

endpoints match (line 9), then the report is added to the output without any changes since this is

already minimal zoom out (line 10). Otherwise, there is more than one report in the relation under

the current report or those reports don't match and thus need to check for more conditions. If the

reports match on the start endpoint and the next report is immediately adjacent (line 11), then the

report is added to bag of potential candidates to be zoomed out (line 12). Otherwise, there is

nothing can be done with the report, so it is added to the output (line 14). Lines 18 to 29 handle

the case when the bag of potential candidates to zoom out is not empty and a decision for a new

report needs to be made. First, the report is always added to the bag (line 18). However, if there

are gaps in the other relation under current report, then the whole bag cannot be aggregated and

thus all reports form it are added to the out put without any changes (line 20) and the bug is emptied

(line 21). if current report matches the end time point of the underlying report in the other relation

Algorithm 10: ZOOMOUT(𝒓𝑨𝑻, 𝒔𝑨𝑻). Input: Two aggregate time relations. Output: Two zoomed

out aggregated relations 𝒓𝒁𝑨𝑻, 𝒔𝒁𝑨𝑻.

1: 𝑡 ← ZEROS(1. . max(|𝑟஺்|, |𝑠஺்|) + 1)
2: for 𝑖 = 1; 𝑖 < 𝑐𝑎𝑟𝑑(𝑠஺்) do
3: 𝑡[𝑠஺்[𝑖]. 𝐹𝑟𝑜𝑚. . 𝑠஺்[𝑖]. 𝑇𝑜] = 𝑖
4: end for
5: (𝑟௓஺், 𝑧𝑜𝑜𝑚𝑂𝑢𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠) = ZOOMOUTONE(𝑟஺், 𝑠஺், 𝑡) // Algorithm 11
6: 𝑠௓஺் = ZOOMOUTANOTHER (𝑠஺், 𝑧𝑜𝑜𝑚𝑂𝑢𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠) // Algorithm 12
7: return 𝑟௓஺், 𝑠௓஺்

 171

(line 22) then a minimum length continuous strip of reports in two relations is found and the bag

can be aggregated, result added to the output and the bag is emptied (lines 23 - 25). The “zoomed

out” time interval is also added to the zoomed out region list (line 24) that will be used by

ZOOMOUTANOTHER algorithm (Algorithm 12). However, if the report end time point doesn’t

match other relation and it is the last report or the next report is not adjacent (line 26), then nothing

can be done and the report is added to the output without any changes (line 27) and the bag is

emptied (line 28).

 172

Algorithm 11: ZOOMOUTONE (𝒓𝑨𝑻, 𝒔𝑨𝑻, 𝒕). Input: Two aggregate time relations and the

projections of the indexes of the reports of the 𝒓𝑨𝑻 relation on the time axis. Output:

Zoomed out aggregated relation 𝒓𝒁𝑨𝑻 and the time intervals that were zoomed out.

1: 𝑟𝒁஺், 𝑏𝑎𝑔, 𝑧𝑜𝑜𝑚𝑂𝑢𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡; 𝑙 = 𝑐𝑎𝑟𝑑(𝑟஺்)
2: for 𝑖 = 1; 𝑖 < 𝑙; 𝑖 + + do
3: 𝑥 = 𝑟஺்[𝑖]; 𝑏 = 𝑥. 𝐹𝑟𝑜𝑚; 𝑒 = 𝑥. 𝑇𝑜; 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑡[𝑏. . 𝑒]
4: if LENGTH(𝑠𝐵𝑎𝑔) == 0 then
5: if ∃𝑦 ∈ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡(𝑦 == 0) then
6: 𝑟𝒁஺்.APPEND(𝑥)
7: else
8: 𝑢𝑆𝑒𝑔 = UNIQUE(𝑠𝑒𝑔𝑚𝑒𝑛𝑡)
9: if LENGTH(𝑢𝑆𝑒𝑔) == 1 and 𝑏 == 𝑠஺்ൣ𝑢𝑆𝑒𝑔[1]൧. 𝐹𝑟𝑜𝑚 and 𝑒 ==

𝑠஺்ൣ𝑢𝑆𝑒𝑔[1]൧. 𝑇𝑜 then
10: 𝑟𝒁஺்.APPEND(𝑥)
11: elseif 𝑏 == 𝑠஺்ൣ𝑢𝑆𝑒𝑔[1]൧. 𝐹𝑟𝑜𝑚 and 𝑖 < 𝑙 and (𝑟஺்[𝑖 +

1]. 𝐹𝑟𝑜𝑚 − 𝑥. 𝑇𝑜 == 1) then
12: 𝑏𝑎𝑔.APPEND(𝑥)
13: else
14: 𝑟𝒁஺்.APPEND(𝑥)
15: end if
16: end if
17: else
18: 𝑏𝑎𝑔.APPEND(𝑥)
19: if ∃𝑦 ∈ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡(𝑦 == 0) then
20: 𝑟𝒁஺்.APPEND(𝑏𝑎𝑔)
21: 𝑏𝑎𝑔 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡
22: elseif 𝑒 == 𝑠஺்ൣ𝑠𝑒𝑔𝑚𝑒𝑛𝑡[𝑒𝑛𝑑]൧. 𝑇𝑜 then
23: 𝑟𝒁஺்.APPEND((𝑏𝑎𝑔[1]. 𝐹𝑟𝑜𝑚, 𝑏𝑎𝑔[𝑒𝑛𝑑]. 𝑇𝑜, 𝑎𝑓(𝑏𝑎𝑔)))
24: 𝑧𝑜𝑜𝑚𝑂𝑢𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠.APPEND(𝑏𝑎𝑔[1]. 𝐹𝑟𝑜𝑚, 𝑏𝑎𝑔[𝑒𝑛𝑑]. 𝑇𝑜)
25: 𝑏𝑎𝑔 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡
26: elseif 𝑖 == 𝑙 or (𝑖 < 𝑙 and (𝑟஺்[𝑖 + 1]. 𝐹𝑟𝑜𝑚 − 𝑥. 𝑇𝑜) > 1) then
27: 𝑟𝒁஺்.APPEND(𝑏𝑎𝑔)
28: 𝑏𝑎𝑔 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡
29: end if
30: end if
31: end for
32: return 𝑟௓஺், 𝑧𝑜𝑜𝑚𝑂𝑢𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠

 173

The ZOOMOUTANOTHER algorithm (Algorithm 12) takes in an aggregate time relation and

zoom out time intervals. It iterates over all reports in the relation (lines 2 to 20 and 21 to 24), and

the reports that fall in to the zoom out region are combined together (line 4 to 15) while other are

added to the output without any changes (line 17 and 22).

Algorithm 12: ZOOMOUTANOTHER (𝒔𝑨𝑻, 𝒛𝒐𝒐𝒎𝑶𝒖𝒕𝑹𝒆𝒈𝒊𝒐𝒏𝒔). Input: An aggregate time

relation and the zoom out time intervals. Output: Zoomed out aggregated relation 𝒔𝒁𝑨𝑻.

1: 𝑠𝒁஺், 𝑏𝑎𝑔 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡; 𝑖, 𝑗 = 1; 𝑙 = 𝑐𝑎𝑟𝑑(𝑠஺்)
2: while 𝑖 ≤ 𝑙 and 𝑗 ≤ LENGTH(𝑧𝑜𝑜𝑚𝑂𝑢𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠) do
3: 𝑥 = 𝑠஺்[𝑖]
4: if 𝑥. 𝐹𝑟𝑜𝑚 == 𝑧𝑜𝑜𝑚𝑂𝑢𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠[𝑗]. 𝐹𝑟𝑜𝑚 then
5: while 𝑥. 𝑇𝑜 ≤ 𝑧𝑜𝑜𝑚𝑂𝑢𝑡𝑅𝑒𝑔𝑖𝑜𝑛𝑠[𝑗]. 𝑇𝑜 do
6: 𝑏𝑎𝑔.APPEND(𝑥)
7: 𝑖 + +
8: if 𝑖 > 𝑙 then
9: break
10: end if
11: 𝑥 = 𝑠஺்[𝑖]
12: end while
13: 𝑠𝒁஺்.APPEND(𝑏𝑎𝑔[1]. 𝐹𝑟𝑜𝑚, 𝑏𝑎𝑔[𝑒𝑛𝑑]. 𝑇𝑜, 𝑎𝑓(𝑏𝑎𝑔))
14: 𝑏𝑎𝑔 ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡
15: 𝑗 + +
16: else
17: 𝑠𝒁஺்.APPEND(𝑥)
18: 𝑖 + +
19: end if
20: end while
21: while 𝑖 ≤ 𝑙 do
22: 𝑠𝒁஺்.APPEND(𝑠஺்[𝑖])
23: 𝑖 + +
24: end while
25: return 𝑠௓஺்

 174

5.4.6.7 Empirical Evaluation In this section I describe the experimental evaluation of the

aggregate join methods. If not said otherwise, the experiments were run on the Mac Book with

Processor 2.4 GHz Intel Core i7 and 8Gb 1600 MHz DDR3 memory.

Since these methods do not try to estimate values on each time unit, there is no need to

check for the accuracy of each method based on the errors between actual (ground truth) and

estimated values. Instead, I focus on evaluating how aggregate join methods perform compare to

the equi join method in terms of 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 of the joined table, its 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑒 ,

𝑔𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦 degree, 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 and 𝑓𝑢𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡.

The cardinality is the number of tuples (reports) in the join result. Since some of the tuples

might have null values (𝑤) or user defined functions, I calculate coverage of each time unit of a

time interval according to the Table 10. If the user defined function is a combination of the basic

functions, e.g. 𝑒_𝑐𝑜, then the coverage values is equal to the minimum coverage value associated

with each function, e.g., 0.4 because 𝑒 has lower coverage than 𝑐𝑜. Coverage is calculated for

each variable separately as the sum of each unit coverage. Coverage rate of one relation is the

coverage of the relation in the join over the coverage of that relation in ground truth (original

reports). Coverage rate of two relations is the average of coverage rates of two relations (19).

Table 10: Mapping table for coverage computation

Value Number 𝒘 𝒕, 𝒆 𝒓 𝒄𝒐
Coverage 1 0 0.4 0.5 0.6

 𝐶𝑅(𝑙, 𝑟, 𝑗) = ଵ
ଶ

൬∑ |௝೔|∗௖௢௩௘௥௔௚௘(௝೔.௏భ)೥
೔సభ

∑ |௟೔|∗௖௢௩௘௥௔௚௘(௟೔.௏భ)೘
೔సభ

+ ∑ |௝೔|∗௖௢௩௘௥௔௚௘(௝೔.௏మ)೥
೔సభ

∑ |௥೔|∗௖௢௩௘௥௔௚௘(௥೔.௏మ)೙
೔సభ

൰, (19)

 175

where 𝑙, 𝑟 are the left and right ground truth relations respectively, 𝑗 is the join relation, 𝑛, 𝑚, 𝑧 are

the number of reports in 𝑙, 𝑟, 𝑗, 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑥) is the coverage of the value x form Table 10.

The granularity metric is calculated as the average report length in the relation according

to the equation (20).

 𝐺𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑟) = ଵ
௡

∑ |𝑟௜|௡
௜ୀଵ , (20)

Since we don’t know how long each user defined function might take to compute, I

calculate execution time of a join method as the elapsed time of executing the method without

measuring time to also execute user functions. Thus, the execution time shows the time spent on

additional functions that each methods does, e.g. normalization, stitching, zoom out, etc. I

separately report what we call fusion cost that measures how much effort it would take the user to

make sense of the join result. Fusion cost is equal to the number of user functions in the join result

weighted by their corresponding cost according to Table 11. The value of the weight is not as

important as the difference between them. We just want to show that resolving one report (𝑒, 𝑟) is

cheaper than two reports (𝑐𝑜) which is itself cheaper than resolving time intervals (𝑡).

Table 11: Mapping table for user defined function fusion cost

Function 𝒆, 𝒓 𝒄𝒐 𝒕
Cost 5 10 15

In this experiment, I measure how join methods perform when the size of the relations

increases. Particularly, I vary the lifespan of each relation as 1000, 10000, 50000, 100000, 250000,

500000, and 1000000 time units. I repeat the experiment 5 times and report average values. For

 176

each lifespan case, I generate two relations each having number of reports up to the one tenth of

the relation lifespan, i.e., 100, 1000, 5000, 10000, 25000, 50000, and 100000 reports respectively.

Report lengths are drawn from a uniform distribution with minimum 10 and maximum 100 time

units with step 10. Reports positions are also randomly generated from uniform distribution

without intersections within one relation, but gaps are possible. Because of how the reports are

generated, the actual average number of reports in each relation is much smaller. Average number

of reports in left and right relations are shown in Table 12.

Table 12: Average number of reports in left and right relations for different lifespans

 1K 10K 50K 100K 250K 500K 1M
Left 22.0 200.4 943.4 1892.8 4633.4 9289.8 18413.2
Right 23.8 190.6 951.2 1863.6 4636.2 9253.4 18424.4

I execute the following queries:

x 𝑒𝑗𝐼, 𝑒𝑗𝐿, 𝑒𝑗𝑅 – inner, left and right joins respectively using equi-join method.

x 𝑡𝑎𝐼, 𝑡𝑎𝐿, 𝑡𝑎𝑅 – inner, left and right joins respectively using temporal alignment join

method.

x 𝑡𝑜𝐼, 𝑡𝑜𝐿, 𝑡𝑜𝑅 – inner, left and right joins respectively using overlap join method.

x 𝑡𝑧𝐼, 𝑡𝑧𝐿, 𝑡𝑧𝑅 – inner, left and right joins respectively using zoom out join method.

The results of the experiment are shown below on Table 13, Table 14, Table 15, Table 18,

Table 16 and Figure 98, Figure 99, Figure 100, Figure 102, Figure 101.

From the execution time perspective all methods show good scalability with largest joins

not exceeding 8.5 seconds on average. However, for many methods the trend is exponential. As

 177

expected, equi-join shows fastest performance in terms of execution time (Table 13, Figure 98)

and fusion cost (Table 14, Figure 99) (by definition equi join doesn’t apply any user function).

However as we can see from coverage (Table 15, Figure 100) or cardinality (Table 16, Figure 101)

data, inner equi-join is unable to join many reports together.

All other methods show quite similar performance in terms of execution time. However,

there is quite a big difference between them in terms of fusion cost (Table 14, Figure 99). As

expected, 𝑡𝑎𝐼 and 𝑡𝑧𝐼 have zero fusion cost since they do not apply any user functions, while the

fusion cost of the 𝑡𝑜𝐼 join spiked due to the large number of overlapping aggregate time reports

which cannot be fused automatically. The outer versions of joins show expected performance with

noticeable different in the 𝑡𝑎𝐿 and 𝑡𝑎𝑅 cases. Since in the case of temporal alignment one relation

is of valid time type, the algorithm knows how to reduce (by normalization) and then combine (by

stitching) valid time reports and does not require 𝑟 and 𝑐𝑜 user functions to perform fusion.

Generated reports aligned in such a way so that zoom out join could not find many

opportunities to perform the zoom out. In terms of coverage (Table 15, Figure 100) and cardinality

(Table 16, Figure 101) its performance is close to the equi-join. However, from execution time

perspective it is much slower than the equi-join since it tried to find potential reports to zoom out.

Two other methods, temporal alignment and overlap, are able to achieve high coverage and

cardinality, meaning that they were able to merge many tuples from the two relations. As expected,

cardinality (Table 16, Figure 101) of 𝑡𝑜𝐿, 𝑡𝑜𝑅 and 𝑡𝑎𝑅 are equal to their corresponding equi join

versions (𝑒𝑗𝐿, 𝑒𝑗𝑅) since these algorithms preserve left/right relations without any modifications.

The case of 𝑡𝑎𝐿 join is different because left relation is a valid time and thus is normalized based

on the right relation first. Therefore, the long original reports are split into several shorter reports

and thus increase the cardinality of the join result. The high cardinality of the 𝑡𝑜𝐼 join is due to the

 178

same reason why 𝑡𝑜𝐼 has very high fusion cost. An interesting comparison can be made about

cardinality of inner equi and zoom out joins and their left and right outer versions. Cardinality of

inner zoom out join is larger than the cardinality of inner equi join because zoom out join can

identify some reports that are not matching by themselves, but are matching if combined together

into longer reports. In case of outer joins, equi join preserve all reports from the original left and

right relations, whereas zoom out join combines some reports together and thus output smaller

number of joined reports.

Table 17 shows average granularity of original left and right relations, and Table 18 and

Figure 102 show the average granularity of the join results. Left and right outer joins for all

methods (except 𝑡𝑎𝐿) produce reports that are close in granularity to the original reports which is

the expected behavior. Because of the normalization, 𝑡𝑎𝐿 and 𝑡𝑎𝐼 produce shorter reports while

𝑡𝑜𝐼 and 𝑡𝑧𝐼 produce longer reports due to intersection and zoom out respectively.

Table 13: Average execution time in seconds of each query on different relation lifespan

 1K 10K 50K 100K 250K 500K 1M
ejI 0.0001 0.0005 0.0019 0.0037 0.0108 0.0184 0.0413
ejL 0.0002 0.0006 0.0022 0.0044 0.0097 0.0195 0.0462
ejR 0.0002 0.0006 0.0022 0.0044 0.0099 0.0196 0.0401
taI 0.0029 0.0206 0.0988 0.2040 0.5087 1.1847 3.0214
taL 0.0084 0.0757 0.3736 0.7673 1.8008 3.7895 8.3634
taR 0.0070 0.0581 0.2833 0.5757 1.3338 2.8967 6.2614
toI 0.0032 0.0304 0.1581 0.3865 0.8088 1.5203 2.7029
toL 0.0085 0.0757 0.3738 0.7442 1.6544 3.4666 6.8600
toR 0.0086 0.0758 0.3675 0.7244 1.6789 3.4076 6.7807
tzI 0.0018 0.0146 0.0658 0.1324 0.3054 0.6648 1.4793
tzL 0.0108 0.0893 0.4180 0.8517 1.9653 4.0915 8.0981
tzR 0.0100 0.0909 0.4247 0.8426 1.9562 4.0918 8.1929

 179

Figure 98: Average execution time in seconds (log scale) versus the lifespan of relations in time

units

Table 14: Average fusion cost of each query on different relation lifespan

Relation's lifespan, TU
1000 10000 50000 100000 250000 500000 1000000

Ex
ec

ut
io

n
Ti

m
e,

 s
ec

 (l
og

)

10-4

10-3

10-2

10-1

100

101

ejI
ejL
ejR
taI
taL
taR
toI
toL
toR
tzI
tzL
tzR

 1K 10K 50K 100K 250K 500K 1M
ejI 0 0 0 0 0 0 0
ejL 0 0 0 0 0 0 0
ejR 0 0 0 0 0 0 0
taI 0 0 0 0 0 0 0
taL 53 541 2680 5502 13603 27664 55281
taR 31 290 1444 2914 7220 14690 29291
toI 1281 11004 53790 107274 264255 528765 1050924
toL 165 1439 6839 13793 33995 68178 134557
toR 165 1379 6942 13709 33887 67924 134715
tzI 0 0 0 0 0 0 0
tzL 165 1422 6779 13741 33858 67794 133843
tzR 165 1362 6889 13659 33752 67574 134088

 180

Figure 99: Average fusion cost (log scale) versus the lifespan of relations in time units

Table 15: Average coverage of each query on different relation lifespan

Relation's lifespan, TU
1000 10000 50000 100000 250000 500000 1000000

Fu
si

on
 C

os
t (

lo
g)

101

102

103

104

105

106

ejI
ejL
ejR
taI
taL
taR
toI
toL
toR
tzI
tzL
tzR

 1K 10K 50K 100K 250K 500K 1M
ejI 0.0000 0.0045 0.0040 0.0018 0.0014 0.0017 0.0021
ejL 0.5000 0.5023 0.5020 0.5009 0.5007 0.5008 0.5010
ejR 0.5000 0.5023 0.5020 0.5009 0.5007 0.5008 0.5010
taI 0.6608 0.6113 0.6169 0.6028 0.6064 0.5993 0.5985
taL 0.9080 0.8956 0.8970 0.8933 0.8943 0.8923 0.8922
taR 0.8957 0.8831 0.8850 0.8807 0.8818 0.8799 0.8795
toI 0.4144 0.4101 0.4102 0.4112 0.4112 0.4113 0.4111
toL 0.7357 0.7439 0.7471 0.7457 0.7444 0.7442 0.7464
toR 0.7401 0.7467 0.7457 0.7440 0.7453 0.7451 0.7459
tzI 0.0000 0.0198 0.0136 0.0074 0.0071 0.0087 0.0087
tzL 0.7357 0.7481 0.7496 0.7471 0.7457 0.7460 0.7480
tzR 0.7401 0.7509 0.7482 0.7455 0.7468 0.7469 0.7477

 181

Figure 100: Average coverage rate versus the lifespan of relations in time units

 Table 16: Average cardinality of each query on different relation lifespan

Relation's lifespan, TU
1000 10000 50000 100000 250000 500000 1000000

C
ov

er
ag

e
R

at
e

(lo
g)

10-3

10-2

10-1

100
ejI
ejL
ejR
taI
taL
taR
toI
toL
toR
tzI
tzL
tzR

 1K 10K 50K 100K 250K 500K 1M
ejI 0.0 0.6 4.2 3.6 7.4 16.2 40.8
ejL 22.0 200.4 943.4 1892.8 4633.4 9289.8 18413.2
ejR 23.8 190.6 951.2 1863.6 4636.2 9253.4 18424.4
taI 17.6 132.6 662.4 1280.8 3192.2 6315.4 12566.2
taL 36.0 304.8 1512.6 3011.8 7481.0 14978.4 29908.6
taR 23.8 190.6 951.2 1863.6 4636.2 9253.4 18424.4
toI 43.4 371.6 1814.4 3607.6 8899.2 17803.4 35378.0
toL 22.0 200.4 943.4 1892.8 4633.4 9289.8 18413.2
toR 23.8 190.6 951.2 1863.6 4636.2 9253.4 18424.4
tzI 0.0 1.8 7.2 7.0 16.6 36.4 78.4
tzL 22.0 198.8 936.8 1887.0 4617.6 9247.6 18335.4
tzR 23.8 189.0 945.8 1858.4 4622.8 9216.2 18359.8

 182

Figure 101: Average cardinality versus the lifespan of relations in time units

Table 17: Average granularity of left and right relations for different lifespans

 1K 10K 50K 100K 250K 500K 1M
Left 44.31 48.45 51.48 51.27 52.38 52.20 52.69
Right 40.35 50.90 51.03 52.05 52.33 52.42 52.66

Table 18: Average granularity of each query on different relation lifespan

Relation's lifespan, TU
1000 10000 50000 100000 250000 500000 1000000

C
ar

di
na

lit
y

(lo
g)

10-1

100

101

102

103

104

105

ejI
ejL
ejR
taI
taL
taR
toI
toL
toR
tzI
tzL
tzR

 1K 10K 50K 100K 250K 500K 1M
ejI 0.00 44.00 43.06 41.50 46.98 49.70 48.53
ejL 44.31 48.45 51.48 51.27 52.38 52.20 52.69
ejR 40.35 50.90 51.03 52.05 52.33 52.42 52.66
taI 36.72 44.77 45.20 45.66 46.10 46.02 46.21
taL 26.93 31.89 32.12 32.22 32.44 32.37 32.44
taR 40.35 50.90 51.03 52.05 52.33 52.42 52.66
toI 80.81 92.32 93.25 93.87 94.66 94.47 94.91
toL 44.31 48.45 51.48 51.27 52.38 52.20 52.69
toR 40.35 50.90 51.03 52.05 52.33 52.42 52.66
tzI 0.00 91.67 76.65 98.67 100.55 116.55 107.13
tzL 44.31 48.84 51.84 51.43 52.56 52.44 52.91
tzR 40.35 51.34 51.33 52.20 52.48 52.64 52.84

 183

Figure 102: Average granularity versus the lifespan of relations in time units

Table 19 shows the overall comparison of the 12 join queries on all five metrics. The green

color represents good quality, red means bad quality. Note that sometimes the “Low” value is bad

(e.g., low coverage) and sometimes it is good (e.g., low execution time), the same for the “High”

value. In case of the cardinality metric, for the 𝑡𝑎𝐿 query the “High” value is good because the

temporal alignment method is able to find many matches without the use of many user functions

(fusion cost is “Medium”), but in case of 𝑡𝑜𝐼 the “Extra high” value is not good, because there are

many intersecting aggregate time reports that require “Extra high” fusion cost. For the granularity

metric, the "Alike" value means that the granularity of the join reports is similar to the granularity

of the original reports. The “Finer” value is better because then the join reports cover shorter time

intervals and thus provide more information about the behavior of the variable. The “Coarser” is

opposite, meaning that the join reports are longer than the original reports.

Relation's lifespan, TU
1000 10000 50000 100000 250000 500000 1000000

G
ra

nu
la

rit
y

0

20

40

60

80

100

120
ejI
ejL
ejR
taI
taL
taR
toI
toL
toR
tzI
tzL
tzR

 184

Table 19: Overall comparison of the 12 join queries on all five metrics

5.4.7 Temporal Join Conclusion

Figure 103 summarizes all the join approaches that I have explained in the previous sections. Given

two temporal relations we can perform join of them in many ways. We can ignore the relations

type (valid time or aggregate time) and blindly perform standard equi join or intersect join. While

the standard approaches are the most straightforward to implement and use, they might result in

lower cardinality and coverage of the join result or merge temporal intervals that are intersect only

on few time units (or fail to merge closely related time intervals). The aggregate join approaches

are suited for both valid time and aggregate time relations and depending on reports’ relative

position and lengths can produce the result with high cardinality and coverage while sometimes

can sacrifice the granularity. Moreover, the aggregate join methods always return exact values

except for the non trivial cases where user defined functions are applied. The disaggregate join

 Execution
time

Fusion
cost

Coverage Cardinality Granularity

ejI Low None Low Low Alike
ejL Low None Medium Expected Alike
ejR Low None Medium Expected Alike
taI Medium None Medium Medium Finer
taL High Medium High High Finer
taR High Medium High Expected Alike
toI Medium Extra High Medium Extra High Coarser
toL High High High Expected Alike
toR High High High Expected Alike
tzI Medium None Low Low Coarser
tzL High High High Expected Alike
tzR High High High Expected Alike

 185

approaches can be applied to the aggregate time relations to estimate values on finer granularity

(high frequency) based on the coarse granular reports. The quality of the estimation depends on

many parameters and thus accuracy of the join result cannot be guaranteed. In addition, these

methods have many applicability limitations. As it commonly happens, there is no single “silver

bullet” method that can be applied in any use case and show the best performance. Meanwhile,

they can be combined in efficient information fusion framework that takes into account their

complimentary applicability limitations.

Figure 103: Illustration of join approaches. RO is the Relative Overlap method; HD is the

Hausdorff method, SAFE is the spread, aggregate, fill, extend method; Interpolation is the

method that is based on Polynomial interpolation or Spline; Ind-or means indicator

 186

5.5 FUSE JOIN

Building on the information provided in previous sections we would like to have a join strategy

that would intelligently provide the best effort to fuse datasets by applying the appropriate join

methods. I call such join strategy a 𝑓𝑢𝑠𝑒 𝑗𝑜𝑖𝑛 . Consider, for example, two relations 𝑅 =

(𝑛𝑎𝑚𝑒, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑡𝑖𝑚𝑒, 𝑣𝑎𝑙𝑢𝑒1) and 𝑆 = (𝑛𝑎𝑚𝑒, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑡𝑖𝑚𝑒, 𝑣𝑎𝑙𝑢𝑒2). The name attribute

represents some attribute of string domain, location attribute represents spatial domain (in our case

it is also a string value, not geographic coordinates), time attribute represents temporal domain and

the value attribute represents some numeric value of interest. We want to know the corresponding

values from 𝑅 and 𝑆, in other words we want to join 𝑅 and 𝑆 relations. The fuse join of the two

relation can be written as in equation (21) and would be automatically translated into the join query

that uses appropriate join methods as in equation (22).

 𝑅 ⋈ி௃ 𝑆 (21)

 𝑅 ⋈௦௘ௗ(ோ೙ೌ೘೐,ௌ೙ೌ೘೐)ஸ௡௧௛ ∧ ௧௘ௗ (ோ೗೚೎ೌ೟೔೚೙,ௌ೗೚೎ೌ೟೔೚೙)ஸ௟௧௛
் 𝑆, (22)

where 𝑛𝑡ℎ is the threshold for the string edit distance and 𝑙𝑡ℎ is the threshold for the tree edit

distance.

5.5.1 Empirical Evaluation

To show that fuse join strategy performs better than standard join methods, i.e., the equi join on

all or some join attributes, I have conducted the following experiment (I repeated it for 5 times and

report average values). First, I generated two relations 𝑟௏் and 𝑠஺்
 defined over schemas 𝑅 and 𝑆

as above, both having exactly the same values for name and location attributes, but different time

intervals. The actual numeric value of the value attributes is not important at this moment. The

 187

location attribute has three levels with one distinct value on the first level, two distinct values on

the second level and three distinct values on the third level. For each combination of name and

location values a random number of time units between 3 and 20 was chosen from a uniform

distribution and a random value for each time unit was generated. The values were then aggregated

into reports with random lengths between 1 and half of the number of time units using ‘no overlaps

but gaps possible’ strategy. Then I distorted 50% of the name and location values in the 𝑠஺் by

introducing up to 3 random typos into name values and randomly removing up to 2 levels from

location attribute.

Table 20 shows the seven queries that I executed. 𝑄ଵ joins the two relations only based on

the equality of the values in the name attribute. Notice that due to the distortion that I performed

on the 𝑠஺்
 relation, this query will not be able to join some tuples that in fact represent the same

entity. Additionally, this query may introduce false positives by ignoring the location attribute

completely. 𝑄ଶ joins the two relations based on the approximate string join on the 𝑛𝑎𝑚𝑒 attribute.

While this query will be able to find more matching tuples that represent the same entity, it may

introduce false positive by joining tuples whose names distance is smaller than the threshold but

which represent different entities, and similarly to 𝑄ଵ it ignores the location attribute. 𝑄ଷ joins the

two relation based on the equality of 𝑛𝑎𝑚𝑒 and 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 values. While this query will find true

matching entities, it will fail to match those tuples which have typos in name and different

granularity level of location value. Since it does not take into account the time attribute, it may

also join values that were reported at disjoin time intervals. 𝑄ସ query uses string edit distance on

the location attribute which may not be helpful since the location value could be spelled in

completely different ways but still be close in the location hierarchy. 𝑄ହ uses the tree edit distance

on the location attribute, but still it ignores the time attribute and thus may have the same problems

 188

as the previous queries. 𝑄଺ differs from 𝑄ହ in the usage of the time attribute, but it joins only those

tuples where time intervals match exactly, and thus may miss information on overlapping intervals.

Finally, 𝑄଻ represents the most comprehensive fuse join query that applies appropriate methods

based on the type of the attribute. In particular, in contrast to 𝑄଺, it uses temporal alignment join

method to join valid time relation and aggregate time relation.

Table 20: Queries for the experiment on fuse join

To evaluate the result of each query, I use precision, recall and F1 metrics calculated

according to the equations (23), (24) and (25) respectively.

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) = |்ெ∩௃ெ|
|௃ெ| (23)

 𝑟𝑒𝑐𝑎𝑙𝑙 (𝑅) = |்ெ∩௃ெ|
|்ெ| (24)

where 𝑇𝑀 is the set of truly matching tuples and 𝐽𝑀 is the set of tuples matched by a query.

 𝐹ଵ = 2 ௣௥௘௖௜௦௜௢௡ ⋅ ௥௘௖௔௟௟
௣௥௘௖௜௦௜௢௡ା௥௘௖௔௟௟

 (25)

Table 21 shows the result of the experiment. We can see that 𝑄ଵ − 𝑄ହ have very low

precision because they do not consider all attributes and thus join result contains some matches

Query
Name

Query

𝑸𝟏 𝑅௏் ⋈௡௔௠௘ 𝑆஺்
𝑸𝟐 𝑅௏் ⋈௦௘ௗ(ோ೙ೌ೘೐,ௌ೙ೌ೘೐)ஸ௡௧௛ 𝑆஺்
𝑸𝟑 𝑅௏் ⋈௡௔௠௘,௟௢௖௔௧௜௢௡ 𝑆஺்
𝑸𝟒 𝑅௏் ⋈௦௘ௗ(ோ೙ೌ೘೐,ௌ೙ೌ೘೐)ஸ௡௧௛ ∧ ௦௘ௗ(ோ೗೚೎ೌ೟೔೚೙,ௌ೗೚೎ೌ೟೔೚೙)ஸ௡௧௛ 𝑆஺்
𝑸𝟓 𝑅௏் ⋈௦௘ௗ(ோ೙ೌ೘೐,ௌ೙ೌ೘೐)ஸ௡௧௛ ∧ ௧௘ௗ(ோ೗೚೎ೌ೟೔೚೙,ௌ೗೚೎ೌ೟೔೚೙)ஸ௟௧௛ 𝑆஺்
𝑸𝟔 𝑅௏் ⋈௦௘ௗ(ோ೙ೌ೘೐,ௌ೙ೌ೘೐)ஸ௡௧௛ ∧ ௧௘ௗ(ோ೗೚೎ೌ೟೔೚೙,ௌ೗೚೎ೌ೟೔೚೙)ஸ௟௧௛ ∧ ௧௜௠௘ 𝑆஺்
𝑸𝟕 𝑅௏் ⋈௦௘ௗ(ோ೙ೌ೘೐,ௌ೙ೌ೘೐)ஸ௡௧௛ ∧ ௧௘ௗ(ோ೗೚೎ೌ೟೔೚೙,ௌ೗೚೎ೌ೟೔೚೙)ஸ௟௧௛

்஺ 𝑆஺்

 189

that were produced as a Cartesian product. The recall is also very low because the queries ignore

the time component. Therefore, simply returning all possible combination of tuples will not give

perfect recall like in the information retrieval field. As soon as we take time into consideration, 𝑄଺

and 𝑄଻, the precision increases significantly. However, the recall of 𝑄଺ is very low, because it only

joins those tuples where time intervals match exactly (which turned out to be a very low number).

Since some queries use threshold for the string edit distance and/or for the tree edit distance, in

general the quality of the join will depend on the choice of the threshold. As the right part of the

table shows, if we increase the threshold values, the precision drops significantly due to the

increased number of the false positive matches.

Table 21: Precision, Recall and F1 of the seven join queries

 𝒏𝒕𝒉 = 𝟏, 𝒍𝒕𝒉 = 𝟏 𝒏𝒕𝒉 = 𝟑, 𝒍𝒕𝒉 = 𝟐
 P R F1 P R F1

𝑸𝟏 0.003 0.070 0.006 0.0034 0.0746 0.0066
𝑸𝟐 0.003 0.083 0.006 0.0004 0.0992 0.0009
𝑸𝟑 0.019 0.061 0.029 0.0212 0.0673 0.0322
𝑸𝟒 0.005 0.066 0.009 0.0004 0.0745 0.0009
𝑸𝟓 0.010 0.083 0.018 0.0006 0.0992 0.0013
𝑸𝟔 0.487 0.094 0.158 0.0354 0.1281 0.0554
𝑸𝟕 0.461 0.643 0.537 0.0364 1.0000 0.0702

 190

6.0 DISSERTATION CONCLUSION AND FUTURE WORK

This dissertation summarizes my work towards the grand vision described in Section 1.2,

particularly the part of the vision related to the data sharing/archiving, integration and fusion.

The task of data sharing and integration has been an active focus of research and

development work in both academia and industry. In Chapter 2.0 I provide comprehensive review

of existing approaches and point out their applicability limitations. I then, in Chapter 3.0, describe

in detail the infrastructure that I proposed and developed. Particularly, in the chapter, I answer the

question posed in Section 1.3. I developed distributed heterogeneous data storage and ingestion

process (Section 3.1) to store dynamically incoming heterogeneous datasets efficiently by also

enabling both data integration and data autonomy. Opposite to existing data repositories, the

datasets in my infrastructure are semantically integrated (Section 3.2) by combination of machine

learning algorithms and human expertise to perform efficient schema alignment and maintain

relationships between the datasets. The semantic relationship model that virtually integrates

distinct heterogeneous datasets turned out to be very useful for efficient data exploration without

requiring users to write complex queries. Section 3.3 explains in details the model and algorithms

that I developed to provide efficient key word functionality.

I have implemented the infrastructure in an easy to use rich web application (Section 4.0)

that was tested and used for the historical data in tight collaboration with CHIA. From the

experience of collaboration with CHIA and I’ve learned a number of lessons that needed to be

 191

addressed in order to make the infrastructure even more advanced. Particularly, the task of fusing

datasets was the most interesting and challenging.

Chapter 5.0, that answers the question how to perform approximate information fusion

when exact match does not exist, makes up a major chunk of my work and this document. I

consider the task of data fusion as the ad-hoc relational database join query. While many

algorithms were developed to perform string similarity joins and many specific index structures

were developed to perform spatial joins, no attention has been given to task for joining relations

that report aggregated values over some time intervals. The extensive and comprehensive studies

in the area of temporal database management systems only focused on modeling valid time

semantics in which temporal join algorithms can simply be rewritten as non temporal ones. In my

work I raise the problem of joining the relations where the values are aggregated over time intervals

and are not known at each time unit. I systemize the problem and provide high level framework to

address it at different levels. Particularly, one way to join two aggregate time relation is first to

estimate values for each time unit and then use standard join algorithm; while the other way is to

join aggregated reports directly. Multiple experiments showed that the quality of the disaggregate

join depends on the nature of the data and reports’ characterizes described in Section 5.4.3.

Therefore, I developed several algorithms to join aggregated reports. The algorithms do not

perform any estimation and instead rely on user involvement in the join task to resolve all non

trivial situations. Multiple experiments showed that the algorithms that I developed allow to

execute join efficiently while preserving low fusion cost and high coverage. Finally, I showed that

combination of approximate join techniques on string, spatial and temporal data allows to

significantly improve precision and recall of the join result over the standard equi join methods.

 192

There are several directions for the future work. On the storage level, similar to the

BigDAWG Polystore System [61], data stores that support various data models, besides the

relational one, need to developed and integrated into the infrastructure. More algorithms need to

implemented to integrate various data types and to allow for efficient visual exploration of large

datasets and relationships between them.

Particularly many research questions that need further investigation are related to the data

fusion:

x Are some operations on the aggregated values isomorphic to the operations on the fine

granular data and how do they depend on the nature of the data? For example, is the

data analysis on the aggregate join result will produce the same results as on the fine

granular (high frequency) data? If we must disaggregate the reports, should we

disaggregate all them and to which granularity level? How to identify the best indicator

series?

x If join algorithms depends on the nature of the data, then how can we keep and use

some kind of index/metadata/statistics on what the nature of the data is. How to learn

parameters to perform all the queries without user involvement (e.g. edit distance

threshold, hausdorff threshold, choose user defined function for the temporal join,

etc.)?

x Can we develop parametric characteristics (similar to statistics in database manage

systems that influence which algorithm to use during planning/optimization phase) of

dataset scenarios that would allows to quickly assess which join strategy to use.

 193

x How to implement the fuse join in distributed environment and to scale it to large

datasets? A special index might help speed up join process (e.g. like R trees for spatial

data).

Some currently active and future development tasks are also explained in Section 4.2.

 194

BIBLIOGRAPHY

[1] Aberer, K. 2011. Peer-to-Peer Data Data Management. Synthesis lectures on data

management. 3, 2 (2011), 1–150.

[2] Aditya, B. 2002. BANKS : Browsing and Keyword Searching in Relational Databases.

Proceedings of the 28th international conference on Very Large Data Bases (2002).

[3] Afrati, F.N., Sarma, A. Das, Menestrina, D., Parameswaran, A. and Ullman, J.D. 2012.

Fuzzy joins using MapReduce. Proceedings - International Conference on Data

Engineering. (2012), 498–509.

[4] Agarwal, S., Keller, A.M., Wiederhold, G. and Saraswat, K. 1995. Flexible relation: an

approach for integrating data from multiple,possibly inconsistent databases. Proceedings of

the Eleventh International Conference on Data Engineering. (1995).

[5] Agrawal, S., Chaudhuri, S. and Das, G. 2002. DBXplorer: a system for keyword-based

search over relationaldatabases. Proceedings 18th International Conference on Data

Engineering. (2002).

[6] Alexe, B., Cate, B. TEN, Kolaitis, P.G. and Tan, W.-C. 2011. Characterizing schema

mappings via data examples. ACM Transactions on Database Systems. 36, 4 (Dec. 2011),

1–48.

[7] Allemang, D. and Hendler, J. 2011. Semantic web for the working ontologist: effective

modeling in RDFS and OWL. Elsevier.

 195

[8] Allen, J.F. 1983. Maintaining knowledge about temporal intervals. Communications of the

ACM. 26, 11 (1983), 832–843.

[9] Apache Marmotta: http://marmotta.apache.org/. Accessed: 2015-03-28.

[10] Augsten, N. and Böhlen, M.H. 2013. Similarity Joins in Relational Database Systems.

Synthesis Lectures on Data Management. 5, 5 (Nov. 2013), 1–124.

[11] Aumueller, D., Do, H.-H., Massmann, S. and Rahm, E. 2005. Schema and ontology

matching with COMA++. Proceedings of the 2005 ACM SIGMOD international conference

on Management of data - SIGMOD ’05 (New York, New York, USA, 2005), 906.

[12] B., A., M., R. and W.-C., T. 2014. Preference-aware integration of temporal data.

Proceedings of the VLDB Endowment. 8, 4 (2014), 365–376.

[13] Baid, A., Rae, I., Li, J., Doan, A. and Naughton, J. 2010. Toward scalable keyword search

over relational data. Proceedings of the VLDB Endowment. (2010).

[14] Barcellan, R. 2003. ECOTRIM: a program for temporal disaggregation of time series.

Workshop on Quarterly National Accounts, Eurostat, Theme (2003), 79–95.

[15] Beckmann, N., Kriegel, H.-P., Schneider, R. and Seeger, B. 1990. The R*-tree: an efficient

and robust access method for points and rectangles. ACM.

[16] Belhajjame, K., Paton, N.W., Embury, S.M., Fernandes, A.A. and Hedeler, C. 2010.

Feedback-based annotation, selection and refinement of schema mappings for dataspaces.

EDBT ’10 Proceedings of the 13th International Conference on Extending Database

Technology. (2010), 573–584.

[17] Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S.E. and Widom, J.

2009. Swoosh: a generic approach to entity resolution. The VLDB Journal—The

International Journal on Very Large Data Bases. 18, 1 (2009), 255–276.

 196

[18] Bernstein, P. and Melnik, S. 2007. Model management 2.0: manipulating richer mappings.

In Proceedings of the 2007 ACM SIGMOD international conference on Management of

data. (2007), 1–12.

[19] Bernstein, P.A., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L. and

Zaihrayeu, L. 2002. Data Management for Peer-to-Peer Computing: A Vision. Proc. of the

5th Int. Workshop on the Web and Databases, WebDB (2002), 89–94.

[20] Bertossi, L. 2006. Consistent query answering in databases. ACM SIGMOD Record.

[21] Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S. and Sudarshan, S. 2002. Keyword

searching and browsing in databases using BANKS. Proceedings 18th International

Conference on Data Engineering. (2002).

[22] Bizer, C., Heath, T. and Berners-Lee, T. 2009. Linked data-the story so far. International

journal on Semantic Web and Information Systems. (2009).

[23] Bleiholder, J. and Naumann, F. 2008. Data fusion. ACM Computing Surveys.

[24] Bleiholder, J. and Naumann, F. 2005. Declarative data fusion - Syntax, semantics, and

implementation. Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics). 3631 LNCS, (2005), 58–73.

[25] Bohannon, P., Fan, W., Flaster, M. and Rastogi, R. 2005. A cost-based model and effective

heuristic for repairing constraints by value modification. Proceedings of the 2005 ACM

SIGMOD international conference on Management of data - SIGMOD ’05 (2005), 143.

[26] Bonifati, A., Chang, E.Q., Ho, T. and Lakshmanan, L.V.S. 2005. HepToX: Heterogeneous

Peer to Peer XML Databases. (May 2005).

[27] Boot, J.C.G., Feibes, W. and Lisman, J.H.C. 1967. Further methods of derivation of

quarterly figures from annual data. Applied Statistics. (1967), 65–75.

 197

[28] Brodie, M.L. 2010. Data Integration at Scale: From Relational Data Integration to

Information Ecosystems. Advanced Information Networking and Applications (AINA), 2010

24th IEEE International Conference on.

[29] Brown, I. 2012. An Empirical Comparison of Benchmarking Methods for Economic Stock

Time Series. US Census Bureau. (2012).

[30] Bruno, N., Gravano, L. and Marian, A. 2002. Evaluating top-k queries over Web-accessible

databases. Proceedings 18th International Conference on Data Engineering. (2002).

[31] Bry, F. 1997. Query answering in information systems with integrity constraints. Integrity

and Internal Control in Information Systems. Springer. 113–130.

[32] Buneman, P., Tan, W. and Khanna, S. 2001. Why and Where : A Characterization of Data

Provenance. Database Theory—ICDT. (2001), 316–330.

[33] Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D. and Rosati, R. 2001. Data

Integration in Data Warehousing. International Journal of Cooperative Information

Systems. 10, 03 (Sep. 2001), 237–271.

[34] Carey, M.J., Haas, L.M., Schwarz, P.M., Arya, M., Cody, W.F., Fagin, R., Flickner, M.,

Luniewski, a. W., Niblack, W., Petkovic, D., Thomas, J., Williams, J.H. and Wimmers,

E.L. 1995. Towards heterogeneous multimedia information systems: the Garlic approach.

Proceedings RIDE-DOM’95. Fifth International Workshop on Research Issues in Data

Engineering-Distributed Object Management. (1995), 124–131.

[35] Casters, M., Bouman, R. and Van Dongen, J. 2010. Pentaho Kettle solutions: building open

source ETL solutions with Pentaho Data Integration. John Wiley & Sons.

[36] Chamberlin, G. 2010. Temporal disaggregation. Economic & Labour Market Review.

(2010), 106–121.

 198

[37] Chaudhuri, S. and Dayal, U. 1997. An overview of data warehousing and OLAP technology.

ACM Sigmod record. 26, 1 (1997), 65–74.

[38] Chawda, B., Gupta, H. and Negi, S. 2014. Processing Interval Joins On Map-Reduce. Edbt.

(2014), 463–474.

[39] Chen, B. and others 2007. An empirical comparison of methods for temporal distribution

and interpolation at the national accounts. Bureau of Economic Analysis. (2007).

[40] Chen, G., Hu, T., Jiang, D., Lu, P., Tan, K.-L., Vo, H.T. and Wu, S. 2012. BestPeer++: A

Peer-to-Peer Based Large-Scale Data Processing Platform. Data Engineering (ICDE), 2012

IEEE 28th International Conference on. (Apr. 2012), 582–593.

[41] Chiang, Y.-H., Doan, A. and Naughton, J.F. 2014. Modeling entity evolution for temporal

record matching. Proceedings of the 2014 ACM SIGMOD international conference on

Management of data (2014), 1175–1186.

[42] Christen, P. 2012. A Survey of Indexing Techniques for Scalable Record Linkage and

Deduplication. IEEE Transactions on Knowledge and Data Engineering. 24, 9 (Sep. 2012),

1537–1555.

[43] Crosas, M. 2011. The dataverse network®: an open-source application for sharing,

discovering and preserving data. D-Lib Magazine. (2011).

[44] Dagum, E.B. and Cholette, P.A. 2006. Benchmarking, temporal distribution, and

reconciliation methods for time series. Springer Science & Business Media.

[45] Dallachiesa, M., Eldawy, A., Ilyas, I.F. and Tang, N. NADEEF : A Commodity Data

Cleaning System Categories and Subject Descriptors. Proceedings of the 2013 ACM

SIGMOD International Conference on Management of Data 541–552.

[46] Dash: https://dash.cdlib.org/. Accessed: 2015-05-04.

 199

[47] Data Documentation Initiative (DDI): http://www.ddialliance.org/. Accessed: 2015-03-29.

[48] Databib: http://databib.org/.

[49] Date, C.J., Darwen, H. and Lorentzos, N. 2002. Temporal data & the relational model.

Elsevier.

[50] Demartini, G., Difallah, D.E. and Cudré-Mauroux, P. 2013. Large-scale linked data

integration using probabilistic reasoning and crowdsourcing. The VLDB Journal. 22, 5 (Jul.

2013), 665–687.

[51] Denton, F.T. 1971. Adjustment of monthly or quarterly series to annual totals: an approach

based on quadratic minimization. Journal of the American Statistical Association. 66, 333

(1971), 99–102.

[52] Dignös, A., Böhlen, M.H. and Gamper, J. 2014. Overlap Interval Partition Join.

Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data.

(2014), 1459–1470.

[53] Dignös, A., Böhlen, M.H. and Gamper, J. 2012. Temporal Alignment. November (2012),

109–123.

[54] Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X. and Lin, X. 2007. Finding top-k min-cost

connected trees in databases. Proceedings - International Conference on Data Engineering.

(2007), 836–845.

[55] Doan, A., Halevy, A. and Ives, Z. 2012. Principles of Data Integration. Elsevier.

[56] Doan, A. and Halevy, A.Y. 2005. Semantic integration research in the database community:

A brief survey. AI magazine. 26, 1 (2005), 83.

[57] Dreyfus, S.E. and Wagner, R.A. 1971. The Steiner problem in graphs. Networks. 1, 3

(1971), 195–207.

 200

[58] Dryad: http://datadryad.org/.

[59] Dublin Core: http://dublincore.org/. Accessed: 2015-03-29.

[60] Dubois, D., HadjAli, A. and Prade, H. 2003. Fuzziness and uncertainty in temporal

reasoning. J. UCS. 9, 9 (2003), 1168.

[61] Duggan, J., Elmore, A.J., Stonebraker, M., Balazinska, M., Howe, B., Kepner, J., Madden,

S., Maier, D., Mattson, T. and Zdonik, S. 2015. The BigDAWG Polystore System. ACM

SIGMOD Record. 44, 2 (2015), 11–16.

[62] Dyreson, C., Grandi, F., Käfer, W., Kline, N., Lorentzos, N., Mitsopoulos, Y., Montanari,

A., Nonen, D., Peressi, E., Pernici, B. and others 1994. A consensus glossary of temporal

database concepts. ACM Sigmod Record. 23, 1 (1994), 52–64.

[63] Elmagarmid, A.K., Ipeirotis, P.G. and Verykios, V.S. 2007. Duplicate record detection: A

survey. IEEE Transactions on Knowledge and Data Engineering. 19, 1 (2007), 1–16.

[64] Enderle, J., Hampel, M. and Seidl, T. 2004. Joining interval data in relational databases.

Proceedings of the 2004 ACM SIGMOD international conference on Management of data

- SIGMOD ’04. Sigmod (2004), 683.

[65] Etal, B. et al. 2013. Why linked data is not enough for scientists. Future Generation

Computer Systems. 29, 2 (Feb. 2013), 599–611.

[66] Fernandez, R.B. 1981. A methodological note on the estimation of time series. The Review

of Economics and Statistics. 63, 3 (1981), 471–476.

[67] Fielding, R.T. 2000. Architectural styles and the design of network-based software

architectures. University of California, Irvine.

[68] Fonzo, T. Di 1990. The Estimation of M Disaggregate Time Series when Contemporaneous

and Temporal Aggregates are Known. The Review of Economics and Statistics. 72, 1 (1990),

 201

178–182.

[69] Franklin, M., Halevy, A. and Maier, D. 2005. From databases to dataspaces: a new

abstraction for information management. ACM Sigmod Record. December (2005), 1–7.

[70] Franklin, M., Kossmann, D., Kraska, T., Ramesh, S. and Xin, R. 2011. CrowdDB:

answering queries with crowdsourcing. SIGMOD ’11: Proceedings of the 2011 ACM

SIGMOD International Conference on Management of data. (2011).

[71] Gao, D., Jensen, C.S., Snodgrass, R.T. and Soo, M.D. 2005. Join operations in temporal

databases. The VLDB Journal. 14, 1 (2005), 2–29.

[72] Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y. and Ullman,

J. 1997. The TSIMMIS approach to mediation: Data models and languages. Journal of

intelligent information systems. 8, 2 (1997), 117–132.

[73] Gonzalez, H., Halevy, A. and Jensen, C. 2010. Google fusion tables: data management,

integration and collaboration in the cloud. Proceedings of the 1st ACM symposium on Cloud

computing (2010), 175–180.

[74] Gregory C. Chow, A.L. 1971. Best Linear Unbiased Interpolation, Distribution, and

Extrapolation of Time Series by Related Series. The Review of Economics and Statistics.

53, 4 (1971), 372–375.

[75] Gu, L., Baxter, R., Vickers, D. and Rainsford, C. 2003. Record linkage: Current practice

and future directions. CSIRO Mathematical and Information Sciences Technical Report. 3,

(2003), 83.

[76] Guay, A. and Maurin, A. 2015. Disaggregation methods based on MIDAS regression.

Economic Modelling. 50, (2015), 123–129.

[77] Gubanov, M., Stonebraker, M. and Bruckner, D. 2014. Text and structured data fusion in

 202

data tamer at scale. Data Engineering (ICDE), 2014 IEEE 30th International Conference

on (Mar. 2014), 1258–1261.

[78] Guttman, A. 1984. R-trees: a dynamic index structure for spatial searching. ACM.

[79] Haas, L. 2007. Beauty and the Beast : The Theory and Practice of Information Integration.

Database Theory - ICDT 2007: 11th International Conference, Barcelona, Spain, January

10-12, 2007. Proceedings. T. Schwentick and D. Suciu, eds. Springer-Verlag Berlin

Heidelberg. 28 – 43.

[80] Haas, L.M., Hernández, M.A., Ho, H., Popa, L. and Roth, M. 2005. Clio grows up: from

research prototype to industrial tool. Proceedings of the 2005 ACM SIGMOD international

conference on Management of data - SIGMOD ’05. (2005), 805.

[81] Halevy, a. Y., Ives, Z.G. and Madhavan, J. 2004. The piazza peer data management system.

Knowledge and Data Engineering, IEEE Transactions on. 16, 07 (Jul. 2004), 787–798.

[82] Halevy, a. Y., Ives, Z.G., Suciu, D. and Tatarinov, I. 2003. Schema mediation in peer data

management systems. Proceedings 19th International Conference on Data Engineering

(Cat. No.03CH37405). (2003), 505–516.

[83] Halevy, A., Franklin, M. and Maier, D. 2006. Principles of dataspace systems. Proceedings

of the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database

systems - PODS ’06 (New York, New York, USA, 2006), 1–9.

[84] Halevy, A., Rajaraman, A. and Ordille, J. 2006. Data integration: the teenage years.

Proceedings of the 32nd international conference on Very large data bases (2006), 9–16.

[85] He, H., Wang, H., Yang, J. and Yu, P.S. 2007. BLINKS: Ranked Keyword Searches on

Graphs∗. Proceedings of the 2007 ACM SIGMOD international conference on Management

of data (2007), 305–316.

 203

[86] Heath, T. and Bizer, C. 2011. Linked Data Evolving the Web into a Global Data Space.

Synthesis lectures on the semantic web: theory and technology. 1, 1 (Jun. 2011), 1–136.

[87] Hernández, M.A. and Stolfo, S.J. 1995. The merge/purge problem for large databases. ACM

SIGMOD Record (1995), 127–138.

[88] Hristidis, V. and Papakonstantinou, Y. 2002. Discover: Keyword search in relational

databases. Proceedings of the 28th international conference on Very Large Data Bases

(2002), 670–681.

[89] Hwang, F.K., Richards, D.S. and Winter, P. 1992. The Steiner tree problem. Elsevier.

[90] Ihler, E. 1991. Bounds on the quality of approximate solutions to the group Steiner problem.

Graph-theoretic concepts in computer science (1991), 109–118.

[91] Ikeda, R. and Widom, J. 2009. Data lineage: A survey. Technical Report. Stanford InfoLab

(2009).

[92] Inmon, W. 2005. Building the data warehouse. John wiley & sons.

[93] Ives, Z., Green, T. and Karvounarakis, G. 2008. The ORCHESTRA collaborative data

sharing system. ACM Sigmod Record. (2008).

[94] Ives, Z., Khandelwal, N., Kapur, A. and Cakir, M. 2005. ORCHESTRA: Rapid,

Collaborative Sharing of Dynamic Data. CIDR (2005), 107–118.

[95] Jacob, M. and Ives, Z. 2011. Sharing work in keyword search over databases. Proceedings

of the 2011 international conference on Management of data - SIGMOD ’11 (New York,

New York, USA, 2011), 577–588.

[96] Jensen, C.S. 2008. Temporal Database Entries for the Springer Encyclopedia of Database

Systems.

[97] Jensen, C.S. 2000. Temporal database management. Department of Computer Science,

 204

Aalborg Univerity, Denmark.

[98] Jiang, Y., Li, G., Feng, J. and Li, W. 2014. String Similarity Joins : An Experimental

Evaluation. Vldb. (2014), 625–636.

[99] Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R. and Karambelkar, H.

2005. Bidirectional expansion for keyword search on graph databases. VLDB ’05

Proceedings of the 31st international conference on Very large data bases (2005), 505–

516.

[100] Kasneci, G., Ramanath, M., Sozio, M., Suchanek, F.M. and Weikum, G. 2009. STAR:

Steiner-Tree approximation in relationship graphs. Proceedings - International Conference

on Data Engineering. (2009), 868–879.

[101] Kaufmann, M., Fischer, P.M., May, N., Ge, C., Goel, A.K. and Kossmann, D. 2015. Bi-

temporal Timeline Index: A data structure for Processing Queries on bi-temporal data.

Proceedings - International Conference on Data Engineering. 2015-May, (2015), 471–482.

[102] Kaufmann, M., Manjili, A. a, Vagenas, P., Fischer, P.M., Kossmann, D., Färber, F. and

May, N. 2013. Timeline Index: A Unified Data Structure for Processing Queries on

Temporal Data in SAP HANA. Proceedings of the 2013 ACM SIGMOD International

Conference on Management of Data. (2013), 1173–1184.

[103] Kaufmann, M., Vagenas, P., Fischer, P.M., Kossmann, D. and Färber, F. 2013.

Comprehensive and interactive temporal query processing with SAP HANA. Proceedings

of the VLDB Endowment. 6, 12 (2013), 1210–1213.

[104] Kementsietsidis, A. and Miller, J. 2003. Mapping Data in Peer-to-Peer Systems : Semantics

and Algorithmic Issues. Proceedings of the 2003 ACM SIGMOD international conference

on Management of data. (2003), 325–336.

 205

[105] Khayyat, Z., Lucia, W., Singh, M. and Ouzzani, M. 2016. Lightning Fast and Space

Efficient Inequality Joins. Vldb. 8, 13 (2016), 2074–2085.

[106] King, G. 2007. An Introduction to the Dataverse Network as an Infrastructure for Data

Sharing. Sociological Methods & Research. 36, 2 (Nov. 2007), 173–199.

[107] Kirk, T., Levy, A., Sagiv, Y. and Srivastava, D. 1995. The Information Manifold.

Proceedings of the AAAI 1995 Spring Symp. on Information Gathering from

Heterogeneous, Distributed Enviroments. (1995), 85–91.

[108] Kllapi, H., Harb, B. and Yu, C. 2014. Near neighbor join. 2014 IEEE 30th International

Conference on Data Engineering. (2014), 1120–1131.

[109] Kou, L., Markowsky, G. and Berman, L. 1981. A fast algorithm for Steiner trees. Acta

informatica. 15, 2 (1981), 141–145.

[110] Lagoze, C. and Sompel, H. Van De 2001. The Open Archives Initiative: Building a Low-

Barrier Interoperability Framework. First ACM/IEEE-CS Joint Conference on Digital

Libraries (JCDL’01). (2001), 54–62.

[111] Landers, T. and Rosenberg, R.L. 1986. An overview of MULTIBASE. Distributed systems.

2, (Jun. 1986), 391–421.

[112] Lee, P.-J.J. 2015. Efficient information integration system for temporal and spatial data.

University of Pittsburgh.

[113] Lenzerini, M. 2002. Data integration: A theoretical perspective. Proceedings of the twenty-

first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems

(2002), 233–246.

[114] Levenstein, V. 1965. Binary codes capable of correcting spurious insertions and deletions

of ones. Problems of Information Transmission. 1, 1 (1965), 8–17.

 206

[115] Levy, A., Rajaraman, A. and Ordille, J. 1996. Querying Heterogeneous Information Sources

Using Source Descriptions. Technical Report. Stanford InfoLab (1996).

[116] Li, C., Chang, K.C. and Ilyas, I.F. 2005. RankSQL : Query Algebra and Optimization for

Relational Top-k Queries. Proceedings of the 2005 ACM SIGMOD international

conference on Management of data (2005), 131–142.

[117] Li, F., Lee, M.L., Hsu, W. and Tan, W.-C. 2015. Linking Temporal Records for Profiling

Entities. Proceedings of the 2015 ACM SIGMOD International Conference on Management

of Data - SIGMOD ’15. (2015), 593–605.

[118] Li, F., Yao, B., Tang, M. and Hadjieleftheriou, M. 2013. Spatial Approximate String Search.

IEEE Transactions on Knowledge and Data Engineering. 25, 6 (Jun. 2013), 1394–1409.

[119] Li, P., Dong, X.L., Maurino, A. and Srivastava, D. 2012. Linking temporal records.

Frontiers of Computer Science in China. 6, 3 (2012), 293–312.

[120] Linked Data - Design Issues: http://www.w3.org/DesignIssues/LinkedData.html. Accessed:

2014-04-09.

[121] Litterman, R.B. 1983. A random walk, Markov model for the distribution of time series.

Journal of Business & Economic Statistics. 1, 2 (1983), 169–173.

[122] Lo, M.-L. and Ravishankar, C. V 1994. Spatial joins using seeded trees. ACM SIGMOD

Record (1994), 209–220.

[123] Lorentzos, N.A. and Mitsopoulos, Y.G. 1997. SQL extension for interval data. IEEE

Transactions on Knowledge & Data Engineering. 3 (1997), 480–499.

[124] Lu, H., Ooi, B.C. and Tan, K.L. 1994. On spatially partitioned temporal join. Proceedings

of the International Conference on Very Large Data Bases. (1994), 546–546.

[125] Madhavan, J., Jeffery, S., Cohen, S., Dong, X. and Ko, D. 2007. Web-scale data integration:

 207

You can only afford to pay as you go. CIDR (2007), 342–350.

[126] Manning, P. 2013. Big data in history. Palgrave Macmillan.

[127] McCallum, A., Nigam, K. and Ungar, L.H. 2000. Efficient clustering of high-dimensional

data sets with application to reference matching. Proceedings of the sixth ACM SIGKDD

international conference on Knowledge discovery and data mining (2000), 169–178.

[128] McCann, R., Shen, W. and Doan, A. 2008. Matching Schemas in Online Communities: A

Web 2.0 Approach. 2008 IEEE 24th International Conference on Data Engineering. (Apr.

2008), 110–119.

[129] Mehlhorn, K. 1988. A faster approximation algorithm for the Steiner problem in graphs.

Information Processing Letters. 27, 3 (1988), 125–128.

[130] Melnik, S., Garcia-Molina, H. and Rahm, E. 2002. Similarity flooding: a versatile graph

matching algorithm and itsapplication to schema matching. Proceedings 18th International

Conference on Data Engineering. (2002).

[131] Michel, S., Triantafillou, P. and Weikum, G. 2005. Minerva∞: A scalable efficient peer-to-

peer search engine. Proceedings of the ACM/IFIP/USENIX 2005 International Conference

on Middleware (2005), 60–81.

[132] Microsoft SQL Server Linked Servers: https://msdn.microsoft.com/en-

us/library/ms188279.aspx. Accessed: 2015-03-28.

[133] Moauro, F. and Savio, G. 2005. Temporal disaggregation using multivariate structural time

series models. The Econometrics Journal. 8, 2 (2005), 214–234.

[134] Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska, N., Miles,

S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E. and den Bussche, J. Van 2011.

The Open Provenance Model core specification (v1.1). Future Generation Computer

 208

Systems. 27, 6 (Jun. 2011), 743–756.

[135] Moreau, L., Miles, S., Missier, P., Simmhan, Y., Futrelle, J., Myers, J., Stephan, E.,

Kwasnikowska, N., Van den Bussche, J., Freire, J. and Others 2009. The Open Provenance

Model (v1. 1). Future Generation Computer Systems. 27, (2009), 1–30.

[136] Neo4j: http://neo4j.com/. Accessed: 2015-03-28.

[137] Ng, W.S., Ooi, B.C., Tan, K., Peerdb, A.Z. and a 2003. P2P-based System for Distributed

Data Sharing. In Proc. of the 19th International Conference on Data Engineering (ICDE),

Bangalore, India, March (2003), 633–644.

[138] Open Archives, I. 2007. Open Archives Initiative Protocol for Metadata Harvesting. Open

Archives Initiative. (2007).

[139] Open Archives Initiative: http://www.openarchives.org/.

[140] Parameswaran, A., Sarma, A. Das, Garcia-Molina, H., Polyzotis, N. and Widom, J. 2011.

Human-Assisted Graph Search : It ’ s Okay to Ask Questions. Proceedings of the VLDB

Endowment. 4, 5 (2011), 267–278.

[141] Parameswaran, A.P. 2011. Answering Queries using Humans , Algorithms and Databases.

Systems Research. (2011), 160–166.

[142] Paton, N. and Fernandes, A. 2013. Crowdsourcing Feedback for Pay-As-You-Go Data

Integration. DBCrowd 2013. i, (2013), 1–6.

[143] Pawlik, M. and Augsten, N. 2011. RTED: a robust algorithm for the tree edit distance.

Proceedings of the VLDB Endowment. 5, 4 (2011), 334–345.

[144] Perez, F. and Granger, B.E. 2007. IPython: a system for interactive scientific computing.

Computing in Science & Engineering. 9, 3 (2007), 21–29.

[145] Pilourdault, J., Leroy, V., Amer-yahia, S., Pilourdault, J., Leroy, V., Distributed, S.A.,

 209

Pilourdault, J., Leroy, V. and Amer-yahia, S. 2016. Distributed Evaluation of Top-k

Temporal Joins. (2016).

[146] Popa, L., Velegrakis, Y., Hernández, M.A., Miller, R.J. and Fagin, R. 2002. Translating

web data. Proceedings of the 28th international conference on Very Large Data Bases.

VLDB Endowment.

[147] PrestoDB: https://prestodb.io/. Accessed: 2015-03-28.

[148] Qian, L., Cafarella, M.J. and Jagadish, H. V. 2012. Sample-driven schema mapping.

Proceedings of the 2012 international conference on Management of Data - SIGMOD ’12.

(2012), 73.

[149] Rahm, E. and Bernstein, P. a. 2001. A survey of approaches to automatic schema matching.

The VLDB Journal. 10, 4 (Dec. 2001), 334–350.

[150] Rahm, E. and Do, H. 2002. COMA: a system for flexible combination of schema matching

approaches. Proceedings of the 28th international conference on Very Large Data Bases

(2002).

[151] Raigoza, J., Sun, J. and Lauderdale, F. 2014. Temporal Join Processing with Hilbert Curve

Space Mapping. (2014), 839–844.

[152] Robert J. Hodrick, E.C.P. 1997. Postwar U.S. Business Cycles: An Empirical Investigation.

Journal of Money, Credit and Banking. 29, 1 (1997), 1–16.

[153] Rossi, N. 1982. A Note on the Estimation of Disaggregate Time Series When The Aggregate

is Known. The Review of Economics and Statistics. 64, 4 (1982), 695–696.

[154] Roth, M. and Tan, W. 2013. Data Integration and Data Exchange : It ’ s Really About Time.

Proceedings of the Sixth Biennial Conference on Innovative Data Systems Research (CIDR

2013). (2013).

 210

[155] Ryssevik, J. 2001. The Data Documentation Initiative (DDI) metadata specification. Ann

Arbor, MI: Data Documentation Alliance. Retrieved from http://www. ddialliance.

org/sites/default/files/ryssevik_0. pdf. (2001).

[156] Samet, H. 1990. The design and analysis of spatial data structures. Addison-Wesley

Reading, MA.

[157] Sarawagi, S. and Bhamidipaty, A. 2002. Interactive deduplication using active learning.

Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery

and data mining (2002), 269–278.

[158] Sax, C. and Steiner, P. 2013. Temporal Disaggregation of Time Series. The R Journal. 5,

(2013), 80–87.

[159] Segev, A. 1991. Query processing algorithms for temporal intersection joins. Data

Engineering, 1991. Proceedings. Seventh International Conference on (1991), 336–344.

[160] Segev, A. and Gunadhi, H. 1989. Event-join optimization in temporal relational databases.

Proc. Int’l. Conf. on Very Large Data Bases (1989).

[161] Sellis, T., Roussopoulos, N. and Faloutsos, C. 1987. The R+-Tree: A Dynamic Index for

Multi-Dimensional Objects. (1987).

[162] Shvachko, K., Kuang, H., Radia, S. and Chansler, R. 2010. The Hadoop Distributed File

System. Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on

(May 2010), 1–10.

[163] Silva, J.M.C.S. and Cardoso, F.N. 2001. The Chow-Lin method using dynamic models.

Economic Modelling. 18, 2 (2001), 269–280.

[164] SLASH2: http://slash2.psc.edu/. Accessed: 2015-03-29.

[165] Smith, M., Barton, M., Bass, M., Branschofsky, M., McClellan, G., Stuve, D., Tansley, R.

 211

and Walker, J.H. 2003. DSpace: An open source dynamic digital repository. D-Lib

Magazine. 9, 1 (2003).

[166] Stonebraker, M., Ilyas, I.F., Zdonik, S., Beskales, G. and Pagan, A. 2013. Data Curation at

Scale : The Data Tamer System. CIDR (2013).

[167] Stram, D.O. and Wei, W.W.S. 1986. A methodological note on the disaggregation of time

series totals. Journal of Time Series Analysis. 7, 4 (1986), 293–302.

[168] Strasser, C. 2013. DataUp: Enabling data stewardship for researchers. IConference (2013),

657–658.

[169] Systems, D., Marcus, A., Wu, E., Karger, D.R., Madden, S. and Miller, R.C. 2011.

Crowdsourced Databases : Query Processing with People Accessed Citable Link Detailed

Terms Crowdsourced Databases : Query Processing with People. CIDR. (2011).

[170] Talukdar, P. and Jacob, M. 2008. Learning to create data-integrating queries. Proceedings

of the VLDB Endowment. 1, 1 (2008), 785–796.

[171] Talukdar, P.P., Ives, Z.G. and Pereira, F. 2010. Automatically incorporating new sources in

keyword search-based data integration. Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data (New York, New York, USA, 2010),

387–398.

[172] Talukdar, P.P., Ives, Z.G. and Pereira, F. 2010. Automatically incorporating new sources in

keyword search-based data integration. Proceedings of the 2010 international conference

on Management of data - SIGMOD ’10. (2010), 387.

[173] Tamr: http://www.tamr.com/.

[174] Tang, M., Yu, Y., Aref, W.G., Malluhi, Q.M. and Ouzzani, M. 2015. Efficient Processing

of Hamming-Distance-Based Similarity-Search Queries Over MapReduce. Edbt. (2015),

 212

361–372.

[175] Taylor, N.E. and Ives, Z.G. 2006. Reconciling while tolerating disagreement in

collaborative data sharing. Proceedings of the 2006 ACM SIGMOD international

conference on Management of data (New York, New York, USA, 2006), 13–24.

[176] Tejada, S., Knoblock, C.A. and Minton, S. 2002. Learning domain-independent string

transformation weights for high accuracy object identification. Proceedings of the eighth

ACM SIGKDD international conference on Knowledge discovery and data mining (2002),

350–359.

[177] Temporal Disaggregation Library: 2013.

http://www.mathworks.com/matlabcentral/fileexchange/39770-temporal-disaggregation-

library.

[178] Theobald, M., Schenkel, R. and Weikum, G. 2005. An efficient and versatile query engine

for TopX search. VLDB 05 Proceedings of the 31st international conference on Very large

data bases (2005), 625–636.

[179] Toman, D. 1998. Point-Based Temporal Extensions of SQL and Their Efficient

Implementation. International Conference on Deductive and Object-Oriented Databases.

(1998), 211–237.

[180] Verborgh, R., Vander Sande, M., Colpaert, P., Coppens, S., Mannens, E. and de Walle, R.

2014. Web-scale querying through linked data fragments. Proceedings of the 7th Workshop

on Linked Data on the Web (2014).

[181] Verborgh, R. and Wilde, M. De 2013. Using OpenRefine. Packt Publishing Ltd.

[182] Vlachou, A., Doulkeridis, C., Nørvåg, K. and Kotidis, Y. 2013. Branch-and-bound

algorithm for reverse top-k queries. Proceedings of the 2013 international conference on

 213

Management of data (New York, New York, USA, 2013), 481–492.

[183] Wang, J., Kraska, T., Franklin, M.J. and Feng, J. 2012. CrowdER: crowdsourcing entity

resolution. Proceedings of the VLDB Endowment. 5, 11 (Jul. 2012), 1483–1494.

[184] Wang, J., Li, G. and Feng, J. 2012. Can we beat the prefix filtering? An Adaptive

Framework for Similarity Join and Search. Proceedings of the 2012 international

conference on Management of Data - SIGMOD ’12. (2012), 85.

[185] Weibel, S., Kunze, J., Lagoze, C. and Wolf, M. 1998. Dublin core metadata for resource

discovery. Internet Engineering Task Force RFC. 2413, 222 (1998), 132.

[186] Wijsen, J. 2009. Consistent query answering under primary keys: a characterization of

tractable queries. Proceedings of the 12th International Conference on Database Theory

(2009), 42–52.

[187] Winkler, W.E. 2006. Overview of record linkage and current research directions. Bureau of

the Census (2006).

[188] Winter, P. and Smith, J.M. 1992. Path-distance heuristics for the Steiner problem in

undirected networks. Algorithmica. 7, 1-6 (1992), 309–327.

[189] Yen, J.Y. 1971. Finding the K Shortest Loopless Paths in a Network. Management Science.

17, 11 (1971), 712–716.

[190] Zadorozhny, V. and Hsu, Y.-F. 2011. Conflict-aware historical data fusion. Scalable

Uncertainty Management(SUM). (2011), 331–345.

[191] Zadorozhny, V., Manning, P., Bain, D.J. and Mostern, R. 2013. Collaborative for Historical

Information and Analysis: Vision and Work Plan. Journal of World-Historical Information.

1, 1 (2013), 1–14.

[192] Zadorozhny, V. and Raschid, L. 2002. Query optimization to meet performance targets for

 214

wide area applications. Proceedings 22nd International Conference on Distributed

Computing Systems. (2002).

[193] Zadorozhny, V., Raschid, L. and Gal, A. 2008. Scalable Catalog Infrastructure for

Managing Access Costs and Source Selection in Wide Area Networks. International

Journal of Cooperative Information Systems. 17, 01 (2008), 77–109.

[194] Zadorozhny, V., Raschid, L., Vidal, M.E., Urhan, T. and Bright, L. 2002. Efficient

evaluation of queries in a mediator for WebSources. ACM SIGMOD international

conference on Management of data (2002), 85–96.

[195] Zaier, L.H. and Trabelsi, A. 2007. A Polynomial Method for Temporal Disaggregation of

Multivariate Time Series. Communications in Statistics - Simulation and Computation. 36,

3 (2007), 741–759.

[196] Zhang, D.Z.D., Tsotras, V.J. and Seeger, B. 2002. Efficient temporal join processing using

indices. Proceedings 18th International Conference on Data Engineering. (2002).

[197] Zhong, M., Moore, J., Shen, K. and Murphy, A.L. 2005. An Evaluation and Comparison of

Current Peer-to-Peer Full-Text Keyword Search Techniques. WebDB (2005), 61–66.

[198] Zhu, H., Madnick, S.E. and Siegel, M.D. 2004. Effective data integration in the presence of

temporal semantic conflicts. Temporal Representation and Reasoning, 2004. TIME 2004.

Proceedings. 11th International Symposium on (2004), 109–114.

[199] Zurek, T. 1997. Optimisation of partitioned temporal joins. Advances in Databases. (1997),

101–115.

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Trees and their costs for the example datasets and keyword query
	2. Sample of the merged table for the tree 1 from Table 1
	3. Col*Fusion Dataset Inventory from CHIA participants
	4. Temporal categorization criteria
	5. Parameters of the scalability scenarios
	6. Experiment Setup Parameter and Scenarios Description
	7. Predefined user functions to merge non trivial reports
	8. Non zero relative overlap values for the reports in Figure 87
	9. Non zero 𝑡𝑖_h𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓𝑁 values for the reports in Figure 87
	10. Mapping table for coverage computation
	11. Mapping table for user defined function fusion cost
	12. Average number of reports in left and right relations for different lifespans
	13. Average execution time in seconds of each query on different relation lifespan
	14. Average fusion cost of each query on different relation lifespan
	15. Average coverage of each query on different relation lifespan
	16. Average cardinality of each query on different relation lifespan
	17. Average granularity of left and right relations for different lifespans
	18. Average granularity of each query on different relation lifespan
	19. Overall comparison of the 12 join queries on all five metrics
	20. Queries for the experiment on fuse join
	21. Precision, Recall and F1 of the seven join queries

	LIST OF FIGURES
	1. Steps required to answer data-intensive interdisciplinary research questions
	2. Data Warehousing Architecture
	3. Simplified virtual data integration architecture
	4. Simplified Peer-to-peer data integration architecture
	5. Dataset D3
	6. Dataset D4
	7. Example of dataset D3 converted into one table format
	8. Example of dataset D4 converted into one table format
	9. “A database per dataset” architecture with one metadata node and many datanodes. Metadata node stores connection information to the databases that store the data on datanodes
	10. Automatically discovered relationships between two datasets 𝐷3 and 𝐷4 based on same names of the two variables in both datasets
	11. Example of synonyms transformation between 𝐷3. 𝑆𝑇𝐴𝑇𝐸 and 𝐷4. 𝑆𝑡𝑎𝑡𝑒 variables. The transformation defines correspondence table between US state’s full name and its two letter abbreviations
	12. Example of dataset 𝐷2
	13. Example of the relationships between three datasets 𝐷2, 𝐷3 and 𝐷4
	14. Generalized schematic example of the data integration based on relationships discovery
	15. Excerpt of conceptual Schema graph for four datasets from Section 1.1 (variable are represented with first letter)
	16. Schematic illustration of Schema Graph physical model
	17. Schema graph with costs; black nodes matches keywords
	18. Col*Fusion Architecture (gray boxes represent unfinished modules/functionality)
	19. Data submission page
	20. Story page: Data Preview
	21. Visualization
	22. Interface to edit data table via OpenRefine
	23. Relationship table
	24. Add new relationship
	25. Keyword search interface
	26. Descriptive statistics table that Col*Fusion automatically creates for each dataset
	27. Provenance graph
	28. Two sample relations 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 and 𝑀𝑎𝑛𝑎𝑔𝑒𝑠
	29. Result of the query 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 × 𝑀𝑎𝑛𝑎𝑔𝑒𝑠
	30. Result of the query 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 ⋈𝐷𝑒𝑝𝑡 𝑀𝑎𝑛𝑎𝑔𝑒𝑠
	31. Result of the query 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒⟕𝐷𝑒𝑝𝑡𝑀𝑎𝑛𝑎𝑔𝑒𝑠
	32. Example tables A and B
	33. Result of equi-join 𝐴 ⋈𝑁𝑎𝑚𝑒 𝐵
	34. Similarity join result with string edit distance and threshold 3
	35. Example of datasets for spatial join
	36. Modified tables 𝐴 and 𝐵 with hierarchical representation of the values in the location attributes
	37. Result of the query 𝐴 ⋈𝑡𝑒𝑑(𝐶𝑖𝑡𝑦,𝐴𝑟𝑒𝑎)≤1 𝐵
	38. Two sample temporal relations with interval temporal attributes
	39. The result of the query 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑉𝑇 ×𝑇 𝑀𝑎𝑛𝑎𝑔𝑒𝑠𝑉𝑇
	40. The result of the query 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑉𝑇 ⋈𝑇 𝐷𝑒𝑝𝑡 𝑀𝑎𝑛𝑎𝑔𝑒𝑠𝑉𝑇
	41. Excerpt of the valid time temporal relation 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑉𝑇 converted into non-temporal relation 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒
	42. Illustration of non-temporal relation Temperature and its aggregate time version 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐴𝑇
	43. Sample data from two datasets describing two variables – average temperature and average cloudiness. Observations are temporally overlapping both within and between datasets
	44. Interval representation of time interval overlaps for 𝐴𝑣𝑔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 and 𝐴𝑣𝑔𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠 tables from Figure 43
	45. Example of a scenario with complete coverage, no intersection within relation, varying interval length and mixed short and long reports
	46. Example of a scenario with complete coverage, no intersection within relation, constant interval length short reports
	47. Illustration of high level strategies for temporal approximate join of two aggregate time relations
	48. Schematic representation of high level view of the approaches for temporal approximate join of two aggregate time relations
	49. Example of applying BFL, Fernandez and Chow-Lin temporal disaggregation methods to disaggregate annual series into quarterly
	50. Example of applying the SAFE method
	51. Comparison of two temporal disaggregation (BFL and Fernandez), polynomial (8th degree) and SAFE methods to disaggregate annual (low frequency) series into quarterly (high frequency) series
	52. Comparison of two temporal disaggregation (BFL and Fernandez), polynomial (8th degree) and SAFE methods to disaggregate triennial (low frequency) series into quarterly (high frequency) series
	53. Example of applying RS method to find values on each time unit
	54. Sample ground truth and join tuples to illustrate tuple scale similarity score
	55. Comparison of four similarity metrics
	56. Behavior of the Canonical Cosine Similarity Norm Scaled metric for different weight combinations
	57. Execution time of each scenario
	58. Relative distance quality measure versus number of parallel execution of multiple pieces of one relation
	59. Execution time versus number of parallel execution of multiple pieces of one relation
	60. Relative distance quality measure versus number of parallel execution of multiple pieces of one relation
	61. Example of generated reports for the scenario 2
	62. Example of generated reports for the scenario 3
	63. RP curves for sigma 5
	64. PR curves for sigma 15
	65. Two variables at the time unit scale obtained from a Netlogo simulation
	66. PR curves for the join of two variables obtained from Netlogo simulation
	67. Example of generated reports for the variables obtained form Netlogo simulation with report length 20
	68. Example of generated reports for the variables obtained form Netlogo simulation with report length 100
	69. PR curves for the join of two variables obtained from Netlogo simulation in the case when reports cover the whole relation lifespan without intersections for various report lengths
	70. Example of disaggregation quality dependence on the nature of the data and the report length (number of reports)
	71. Example relations 𝑟 and 𝑠 for discussion of approaches for the aggregate join
	72. The result of the equi-join, 𝑟 ⋈𝐹𝑟𝑜𝑚,𝑇𝑜 𝑠, of the two relations shown in Figure 71
	73. The result of the left outer join, 𝑟⟕𝐹𝑟𝑜𝑚,𝑇𝑜𝑠 , and right outer join, 𝑟⟖𝐹𝑟𝑜𝑚,𝑇𝑜𝑠
	74. The result of full outer equi-join, 𝑟⟗𝐹𝑟𝑜𝑚,𝑇𝑜𝑠
	75. Example of normalization of the report 𝑠𝑉𝑇 over the report 𝑟𝑉𝑇
	76. Example of normalization of a valid time report 𝑟𝑉𝑇 over reports in 𝑠
	77. Normalized relation 𝑟𝑉𝑇 over 𝑠𝑉𝑇, 𝒩(𝑟𝑉𝑇, 𝑠𝑉𝑇), and 𝑠𝑉𝑇 over 𝑟𝑉𝑇, 𝒩(𝑠𝑉𝑇, 𝑟𝑉𝑇), from Figure 71
	78. The result of the temporal alignment join, 𝑟𝑉𝑇 ⋈𝑇𝐴 𝑠𝑉𝑇, of the two valid time relations shown in Figure 71
	79. Normalized relation 𝑟𝑉𝑇 over 𝑠𝐴𝑇, 𝒩(𝑟𝑉𝑇, 𝑠𝐴𝑇), from Figure 71
	80. The result of stitching 𝑟𝑁𝑉𝑇 over 𝑠𝐴𝑇, 𝑠𝑡𝑖𝑡𝑐h(𝑟𝑁𝑉𝑇, 𝑠𝐴𝑇)
	81. The result of the temporal alignment join, rVT ⋈TA sAT, of the valid time relation and the aggregate time relation shown in Figure 71
	82. Illustration of types of user defined functions and their combinations to handle different cases of mutual position of several reports; red reports are the ones whose time interval we are interested to be unmodified; blue reports are those for which the user functions will be applied
	83. The result of the left temporal alignment outer join, 𝑟𝑉𝑇⟕𝑇𝐴𝑠𝐴𝑇 , and right temporal alignment outer join, 𝑟𝑉𝑇⟖𝑇𝐴𝑠𝐴𝑇, of the two relation shown in Figure 71
	84. The result of the temporal alignment join, 𝑟𝑉𝑇⟗𝑇𝐴𝑠A𝑇, of the valid time relation and the aggregate time relation shown in Figure 71
	85. The result of the intersect join, 𝑟𝐴𝑇 ⋈𝜃 𝑠𝐴𝑇, of the two aggregate time relations shown in Figure 71
	86. The result of applying 𝑡 user function to the inner join in Figure 85
	87. A scenario of reports to illustrate the problem with intersect join
	88. Illustration of relative overlap metric
	89. Relative overlap join query with threshold 0.3 and the result of the query for the aggregate time relations in Figure 87
	90. Illustration of 𝑡𝑖_h𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓 metric
	91. Hausdorff join query with threshold 0.2 and the result of the query for the aggregate time relations in Figure 87
	92. The result of the left outer overlap join, 𝑟𝐴𝑇⟕𝑇𝑂𝑠𝐴𝑇 , and right outer overlap join, 𝑟𝐴𝑇⟖𝑇𝑂𝑠𝐴𝑇, of the two aggregate time relations shown in Figure 71
	93. Example of two aggregate time relations for the illustration of the zoom out join approach
	94. “Zoomed out” version of the two relations from Figure 93
	95. Inner zoom out join, 𝑟𝐴𝑇 ⋈𝑇𝑍 𝑠𝐴𝑇, of the two aggregate relations from Figure 93
	96. Example of an interesting scenario of two aggregate time relations for the zoom out join
	97. Result of the zoom out join of the two aggregate time relations from the Figure 96
	98. Average execution time in seconds (log scale) versus the lifespan of relations in time units
	99. Average fusion cost (log scale) versus the lifespan of relations in time units
	100. Average coverage rate versus the lifespan of relations in time units
	101. Average cardinality versus the lifespan of relations in time units
	102. Average granularity versus the lifespan of relations in time units
	103. Illustration of join approaches. RO is the Relative Overlap method; HD is the Hausdorff method, SAFE is the spread, aggregate, fill, extend method; Interpolation is the method that is based on Polynomial interpolation or Spline; Ind-or means indicator

	PREFACE
	1.0 INTRODUCTION
	1.1 MOTIVATING EXAMPLE
	1.2 GRAND VISION
	1.3 OBJECTIVE
	1.4 ORGANIZATION OF THE DISSERTATION

	2.0 BACKGROUND AND RELATED WORK
	2.1 DATA INTEGRATION
	2.1.1 Top-down approaches: Data Warehousing and Virtual Integration
	2.1.1.1 Data Warehousing Approach
	2.1.1.2 Virtual Integration Approach

	2.1.2 Bottom-up approaches: Peer-to-peer, Pay-as-you-go, and Linked Data
	2.1.2.1 Peer-to-peer approach
	2.1.2.2 Pay-as-you-go approach
	2.1.2.3 Linked Data approach

	2.1.3 Schema Matching and Schema Mapping

	2.2 KEYWORD SEARCH: INTEGRATION ON DEMAND
	2.3 CROWDSOURCING IN DATABASES AND DATA INTEGRATION SYSTEMS
	2.4 RELATED DATA INTEGRATION/CURATION SYSTEMS
	2.5 DATA REPOSITORIES

	3.0 ADVANCED DISTRIBUTED DATA INTEGRATION INFRASTRUCTURE UNDER MAGNIFYING GLASS
	3.1 STORING HETEROGENEOUS DYNAMICALLY INCOMING DATASETS
	3.1.1 “One table” approach
	3.1.2 “A database per dataset” approach

	3.2 INTEGRATING DATASETS
	3.2.1 Discovering relationships
	3.2.2 Relationship model
	3.2.2.1 Data Overlapping values
	3.2.2.2 Relationship’s Data Overlapping value

	3.2.3 Schema Graph
	3.2.3.1 Conceptual Model
	3.2.3.2 Physical Model
	3.2.3.3 Edge Feature Vector based Cost Model

	3.3 EXPLORING THE REPOSITORY
	3.3.1 From Research Question to Keyword Search
	3.3.2 From Keywords to Trees
	3.3.2.1 Finding Trees

	3.3.3 From Trees to Relational algebra/SQL Queries
	3.3.4 From Queries to Merged Data Tables

	4.0 SYSTEM IMPLEMENTATION: COL*FUSION
	4.1 ARCHITECTURE, IMPLEMENTATION, OPERATIONS
	4.1.1 Data and Metadata Submission
	4.1.2 Data Access and Export
	4.1.3 Collaborative Metadata and Data Editing
	4.1.4 Information Linkage
	4.1.5 Search and Exploration
	4.1.6 Descriptive Statistics and Data Analysis

	4.2 ACTIVE AND FUTURE IMPLEMENTATION TASKS
	4.3 REAL-LIFE DATA-INTENSIVE USAGE
	4.3.1 Lessons Learned

	5.0 FUSING DATASETS
	5.1 PRELIMINARIES
	5.2 STRING APPROXIMATE JOIN
	5.2.1 Problem
	5.2.2 Problem Solution: Approximate String Equality

	5.3 SPATIAL (NAME-BASED) APPROXIMATE JOIN
	5.3.1 Problem
	5.3.2 Problem Solution: Named Subsumption Hierarchy Approach

	5.4 TEMPORAL APPROXIMATE JOIN
	5.4.1 Preliminaries for Temporal Join
	5.4.2 Problem
	5.4.3 Taxonomy of Aggregate Time Relations and Reports Characteristics
	5.4.4 Overview of Join Strategies of Aggregate Time Relations
	5.4.5 Disaggregate Join of Aggregate Time Relations
	5.4.5.1 Temporal Disaggregation
	5.4.5.2 Polynomial or Spline Interpolation
	5.4.5.3 Spread, Aggregate, Fill, Extend (SAFE) Heuristic
	5.4.5.4 Empirical Evaluation
	5.4.5.4.1 Scalability
	5.4.5.4.2 Disaggregation Methods Quality Comparison

	5.4.6 Aggregate Join of Valid and Aggregate Time Relations
	5.4.6.1 The Goal of the Aggregate Join
	5.4.6.2 Equi-join – The Baseline Method
	5.4.6.3 Temporal Alignment Join – Joining VT with VT or AT Relation
	5.4.6.4 Overlap Join – Joining Two AT Relations
	5.4.6.4.1 Relative Overlap Join
	5.4.6.4.2 Distance-based Join

	5.4.6.5 Zoom Out Join – Joining Two AT Relations
	5.4.6.6 Implementations of Temporal Alignment and Zoom Out Aggregate Joins
	5.4.6.7 Empirical Evaluation

	5.4.7 Temporal Join Conclusion

	5.5 FUSE JOIN
	5.5.1 Empirical Evaluation

	6.0 DISSERTATION CONCLUSION AND FUTURE WORK
	BIBLIOGRAPHY

