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INTEGRATIVE ANALYSIS OF VARIATION STRUCTURE IN
HIGH-DIMENSIONAL MULTI-BLOCK DATA

Sungwon Lee, PhD

University of Pittsburgh, 2016

The multi-block data stand for the data situation where multiple data sets possibly from different
platforms are measured on common subjects. This data type is ubiquitous in modern sciences.
Moreover, data become increasingly high-dimensional. For example, in genetic studies, it is common
to evaluate gene expression, microRNA and DNA methylation levels on a single tissue sample and,
thanks to the advancing microarray technology, scientists examine thousands of genes in a single
experiment. Separate analyses of individual data sets will not capture critical association relations
among them that could encode valuable information for better understanding of the target subjects.
Currently, there is a strong need for new statistical methods of analyzing high-dimensional multi-
block data in an integrative and unified way.

This dissertation consists of three parts whose shared theme is to identify meaningful variations
in multi-block data that account for the complex associations between component data sets. The
found variations are then utilized for various statistical purposes: characterizing data in a precise
and interpretable way; estimating weights in calculating scores of data that give maximal correla-
tion; identifying the dynamics of how ancillary data affect variations over multi-block data; serving
as an effective dimension reduction for classification. In the first part, we propose a non-linear
extension of functional principal component analysis to effectively catch major variabilities in func-
tional data exhibiting both amplitude and phase variations by taking into account the associations
between those two variations. The second topic is an asymptotic study of the canonical correlation
analysis where dimension grows and sample size remains fixed. In the third part, we devise a super-
vised multi-block data factorization scheme that decomposes the primary data sets with guidance
from auxiliary data sets. Estimated layers of the resulting decomposition provide detailed infor-

mation on variation structures and supervision effects. The advantages of an integrative analysis
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of multi-block data will be demonstrated by simulation studies and real data applications such as

pediatric growth curve, lip motion and gene expression-microRNA data analyses.
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1.0 INTRODUCTION

1.1 BACKGROUND, MOTIVATION AND PROBLEMS

In this dissertation, we addresses development, theoretical study and implementation of statistical
methods for the integrated analysis of multi-block data. We refer to multi-block data as a collection
of multiple sets of variables measured on a same set of subjects where the different sets represent
different aspects of subject. The multi-block data are otherwise referred to as multi-view or multi-
source data. As prominent examples where multi-block data can arise, consider the following

multi-block data situations,

e High-throughput biomedical data: With recent proliferation of biomedical technologies, scien-
tists can now obtain diverse types of measurements on a given set of sample tissues such as
gene expression level, genotype information, DNA methylation rate and microRNA number.

e Financial data: Banks, in an effort to assess financial solvency of potential business debtors,
collect their revenue, profit and liability trend data of the past years.

e Weather data: To better predict local weather, weather stations in a region deploy equipments
that measure various atmospheric conditions such as temperature, humidity, barometric pres-

sure and wind speed over a certain time grid.

Multi-block data are increasingly emerging as more new technologies are introduced, and data
processing becomes steadily cheaper. The expanding amount of available multi-block data neces-
sitates the development of systematic statistical methodologies accommodating multi-block nature
of those data.

A distinctive feature of multi-block data is that there possibly exist dependencies among vari-
ables in constituent data sets as they belong to a same set of objects. The dependence structure
between multiple data sets can be utilized to infer interesting patterns of the population of sam-

ples that would not be found with separate analyses of individual data sets. On the other hand,



dependence structure within variables in a specific data set could impart unique and useful infor-
mation. In this case, removing the between-data-sets dependence structure and working with net
within-data-set dependency structure will lead to a more effective and clearer inference. These
considerations motivate us to set a broad goal of statistical research: Define, measure, validate and
utilize dependence structure between and within component sets of multi-block data.

Dependence among variables is often summarized by a direction along which data exhibit mean-
ingful variations. For example, if observations with three numeric variables show large variation
at the direction of [1, —2, O}T, then we can say that the first and second variables are associated in
a way that, as the first increases by 1, the second tends to decrease by -2. There are largely two
ways of defining directions in multi-block data which make sense of dependence structure between
multiple data sets. Let X;, for i = 1,2,...,m, be a n X p; matrix containing measurements for the
p; variables of the ith data sets on a common set of n objects. The first approach seeks a direction

vector £ in the p; + p2 + - - - + pm, dimensional row space of the concatenated matrix X,
X =[X1,Xog,..., Xl (1.1)

such that the variation of scores (of projection of X onto &) is maximized under a certain regularity.
Accordingly, the X1,Xs,...,X,, parts of the resulting direction £ can be viewed as associated
directions between the data sets, and variation of X along ¢ (e.g., variance of X7'¢) can be thought
of as a joint variation across the data sets. A commonly employed tool for the first approach is
singular value decomposition (SVD) or its variants applied to X. The second approach, handling
each data set X; seperately, seeks associated directions for each pair of (X;,X;), i # j. A direction
Yx, in the row space of X; and another direction 9x; in the row space of X; are found such
that a strength of association between two sets of scores (of projection of X; and X; onto vy,
and 1x,, respectively) measured by a certain quantity such as Pearson correlation coefficient is
maximized. Canonical correlation analysis (CCA) [20] and its variants are commonly used for the
second approach. The first is an extension of PCA for understanding the dependence of multivariate
data while the latter is an extension of the examination of correlation matrix. The latter can only
capture dependencies between pairs of data blocks. We will consider both approaches.

Challenges that make multi-block data analysis more complicated arise when i) one or more
data sets are high-dimensional (possibly higher dimension than a given sample size), ii) one or more
data sets are manifold-valued, and iii) one set assumes a distinct role among data sets. As we will

encounter some combinations of these situations, we briefly address the challenges associated with



these situations.

High-dimensional data are frequently encountered in modern scientific data, in which a large
number (hundreds or thousands) of variables are measured for each object. Furthermore, the
number of variables often exceeds the number of sample objects, resulting in High Dimension, Low
Sample Size (HDLSS or the large p, small n) situation [15]. For example, due to advances in modern
medical scanning technology, the resolution of obtained images becomes higher. However, the
sample size stays low because of the high cost in obtaining medical images such as MRI. Standard
statistical tools typically assume that the sample size is larger than the number of variables. When
applied to HDLSS data, many of them suffer from a “too lean information to infer” situation. For
example, when CCA is applied to HDLSS data, it is well-known that there exist infinitely many

pairs of empirical canonical weight vectors with a perfect canonical correlation coefficient of 1.

Non-standard data arise where the observations do not have natural vector representations (e.g.,
algebraic data), or the sample space naturally form a curved manifold (e.g., directional data). Many
of standard statistical methods that benefits from Euclidean geometry are not directly applicable
to manifold-valued data, and if so, they often fail to provide legitimate statistics. As a schematic
example, consider data on the unit sphere. Taking the arithmatic mean of two points a and b places
the resulting statistic inside the sphere. A legitimate “mean” would be a mid-point between a and
b on the sphere. Hence, when we have one or more non-standard data sets in multi-block data, a

special care needs to be called for in analyzing them.

An example where one of the data sets in multi-block data assumes a distinct role from those
of the rest is the case where one data set has a role of supervision over the joint variations of the
rest of data sets. To elaborate the supervision effect intuitively, consider a motivating example
of high-throughput biomedial data. Let X, Xy and X3 contain gene expression levels, genotype
information and DNA methylation rates, respectively. Oftentimes, we obtain an additional data
set Y on the same set of tissues that inherently relates to the underlying joint variations of the
multi-block data. Suppose that we have disease subtype information stored in Y for all samples.
Conceptually, different disease subtypes may explain a large portion of genetic variations in indi-
vidual data sets. In other words, the data set Y, here called supervision, potentially drives the
joint variations across data sets in the multi-block data. In this case, rather than looking for joint
variations of a concatenated matrix of X, X9, X3 and Y in (1.1), it is more natural and desirable
to treat the two sets of data, (X1, X, X3) and Y, separately and work with a concatenated matrix

of X1, X5 and X3 to look for joint variations driven by the subtype information of Y.



With background and motivations described so far, we propose to address the following three

specific research questions,

e When component data sets in multi-block data are functional (of uncountably infinite dimen-
sionality so automatically HDLSS data), and one of them form a sphere-valued data, how to

deal with the situation?
e What is the behavior of CCA in the HDLSS situation?

e When a supervision data set is available,, how to identify joint variations across data sets in

multi-block data driven by the supervision?

Chapter 2, 3, and 4 answer the first, second and third questions, respectively.

1.2 SUMMARY AND CONTRIBUTIONS

Chapter 2 proposes two exploratory data analysis techniques of probing the internal structure of
functional data containing amplitude and phase variations. A commonly-employed framework for
analyzing those data is to take away the phase variation by a function alignment method and
then to use the aligned functions for subsequent analysis. Accordingly, the resulting statistics
characterize the behaviors of the amplitude variation only. We propose two methods to bring all
of the amplitude variation, the phase variation and their association structures into account. The
first method effectively reveals major modes of variation in the original form of functions. In this
method, called functional combined principal component analysis (FCPCA), amplitude and phase
variations are joined into a single random function using the weight that provides the maximal
explaining power of observed functions. On the other hand, the second method, called functional
combined canonical correlation analysis (FCCCA) presents the combined effect of highly correlated
pairs of amplitude and phase variations, also in the original form. Appropriate statistical models
for these methods assume that the functional data are decomposed into two sets of functional data,
one for the amplitude and the other for the phase variation. This decomposition is a natural set
up for multi-block data analysis. It turns out that the phase part of the functional data naturally
sits on the unit sphere in function space. To deal with this non-standard situation, these manifold-
valued data are approximated by mapping to a linear space (tangent to the unit sphere) so that

functional PCA and CCA can be employed to extract joint variations and correlated directions. As



Angle
0=0° 0° < 6 <90° 0 =90°

a>1 Consistent Inconsistent Strongly inconsistent

a < 1 | Strongly inconsistent | Strongly inconsistent | Strongly inconsistent

Table 1. Summary on consistency of the first sample canonical weight vector.

we will see later in Chapter 2, our methods effectively capture interesting features of data structure
and visualize results in an interpretable manner.

In Chapter 3, an asymptotic behavior of CCA is studied when dimension d grows and the
sample size n is fixed (i.e., under the HDLSS situation). In particular, we are interested in the
conditions for which CCA works or fails in the HDLSS situation. Let X9 Y@ ~ N4(0,%) be two
normally distributed random vectors. To ease the interpretation, we consider a special case where

the population canonical weight vectors T/Jg?) and ¢§fl ) for X@ and Y@ are set to be,
Q,Z)g?) = cos foggq + sin Qxfg?%, wéd) = cos nyg/dl) + sin 9yf}(/d2),

where, for a > 0, 5&2 and 5&?% are the population principal component (PC) directions of X with
corresponding PC variances d* and 1, and 5%) and §§,d2) are population (PC) directions of Y with
their PC variances d* and 1. Note that the angle between wg?) and 5&2 is fx and that the angle
between 1/J§fl ) and £§/dl) is By. The success and failure of CCA can be described by the consistency of
the sample canonical weight vector @@&C—l) and 1[)& ) with their population counterpart @ZJE?) and ¢§fl )
under the limiting operation of d — oo and n fixed. Using the angle as a measure of consistency,
we say that 1/3&?) (similarly 1]);1 )) is,

e Consistent with T/Jg?) if angle(i/;g?), g?)) P0asd— 00,

e Inconsistent with @bg?) if angle( Ag?), g?)) £, a, for 0 <a<m/25 as d — oo,

e Strongly inconsistent with wg?) if angle(@@é?), g?)) il /2 as d — oo.

Strong inconsistency implies that the estimate &g?) and @gfl ) become completely oblivious of their
population counterparts and become arbitrary quantities, as indicated in the fact that 7/2 is indeed
the largest angle possible between two vectors. It turns out that the convergence of @Zg‘(j) and zﬁ&d )

depends heavily on the size of the variance d* of the population PC directions 5&2 and Eg/dl) . That



is, the estimates QZJE?) and @z}§f ) tend to converge to the PC population directions 5&2 and §§/d1) when
their PC variance d* is large enough (o > 1). The critical conditions governing the consistency
or inconsistency of empirical canonical weight vectors are summarized in Table 1. The sample
canonical weight vector 1&&?) (similarly 121§fl )) is,

e Consistent with @ZJE?) if  >1 and angle(wg?), 5&2) Pi0asd— o0,

e Inconsistent with ¢g?) if « > 1 and angle(@bg?), gf-?) -, Ox, for 0 < Ox < m/2, as d — oo,

e Strongly inconsistent with ¢§?) ifa<lorifa>1and angle(wg?), g?i) N /2 as d — oo.

The mathematical mechanism behind these statistical phenomena is the main topic of Chapter 3.

Chapter 4 proposes a framework for a systematic decomposition of variation in multi-block data
when supervision information is available. In particular, we aim to identify joint variations across
multiple data sets and individual variations specific to each data set that are partially or fully driven
by supervision effects. To achieve this aim, we first attempt to extend JIVE (Joint and Individual
Variation Explained) proposed in [35]. JIVE decomposes a multi-block data into the joint and
individual variations, but supervision effect was not considered. Formally, JIVE decomposes multi-
block data (Xi,Xas,...,X,,) into a sum of three components: a low-rank matrix J capturing the
joint structure across data sets, low-rank matrices A; capturing the individual structure specific to

each data set, and a noise matrix E,

X;=J;,+A,+E;, :=1,2,...,m,

J=[J1,d2,...,J] =UVT,

A, =U, V],
where columns of V and V;’s contain loading vectors, and U and U;’s contain scores. Note that
loading vectors in V contribute to variables across data sets X1, Xs,...,X,, and so, with their
scores in U, constitute the joint variation structure. Similarly UZ-VZT represents the individual
variation structure specific to the ith data set X;.

We extend the JIVE model by assuming that a supervision data set Y affects the joint variation

structure. By adopting the model proposed in [32], called Supervised Singular Value Decomposition

(SupSVD), we model J as,
J=UVT =(YB+F)VT,

where Y contains the supervision information, B is responsible for conversion of Y into scores with

respect to loading vectors in V, and F is a random matrix. Intuitively, the first part of J, YBVT,



captures the variation that is driven by supervision Y, and the second part FVT captures the
variation that is irrelevant of Y. We further extend the model by assuming that not only joint but
also individual variation structures A;’s are possibly driven by their own supervisions Y;’s, where

A, is expressed as,
A, =UV!I=(Y;B; +F)V!I i=1,2...,m.

Estimations of parameters for these two models can be performed efficiently by iteratively applying
the modified EM algorithm iteratively. Unfortunately, the naive combination of JIVE and SupSVD

exhibits several drawbacks. Among those, we point out the following.

e When we have more than two data sets, it may be reasonable to assume that every subset of
them has its own variation structure, which leads to three different types of variation structures:
the individual variation in a single data set, the full joint variation over whole data sets and the
partial joint variation over multiple data sets but whole. The previous methods are incapable
of modeling the partial joint variations.

e As the number of sets increases, the workload in estimating the ranks for individual and joint
variations increases substantially.

e Supervision sets Y and Y;’s need to be pre-selected.

To address these issues, we propose a fully automated data-driven framework for the inte-
grated analysis of multi-block data, termed Generalized Supervised Joint and Individual Variation

Explained (G-SupJIVE). This framework assumes the following model,

X = [X1,Xa, ..., Xm),
YY =[Y1,Y,,..., Y4, (1.2)
X=(YB+F)V' +E.

where Y€ is a matrix that collects candidate supervisions. Model (1.2), unlike the previous model,
does not separate joint and individual variations a priori but is flexible to model all three types of
variations including the partial joint variation. We desire estimates of variation directions (columns
of V) to be interpretable (either the individual, partial joint, or fully joint structure) and also desire
an adaptive selection of supervision from the candidate set YC. It turns out that imposing group-
wise sparsity condition on columns of B and V in its estimating procedure fulfills our aim. To
this end, we propose a sequential estimating procedure, where each step is a penalized likelihood

maximization problem, with the group lasso penalty [55].



The advantages of the proposed method over other competing ones,

e Does not need to sepatate individual, partial joint and full joint variations a priori: algorithm
sequentially estimates a variation direction without differentiating its type.

e Does not require pre-calculation of the rank for each variation; algorithm automatically stops
when the rank of the multi-block data set X is exhausted.

e Incorporates multiple supervision sets; algorithm automatically choose a supervision set that

drives a specific variation and estimates its supervision effect.

are demonstrated by a simulation study and a real-world application to Glioblastome Multiforme

(GBM) cancer tumor data.



2.0 COMBINED ANALYSIS OF AMPLITUDE AND PHASE VARIATIONS IN
FUNCTIONAL DATA.

2.1 INTRODUCTION

Functional data [44], observations measured over line and so best described as curve, known as
functional data, are frequently encountered in modern sciences. When functional data consist of
repeated measurements of some activity or development over time taken from a group of subjects,
they often show a similar pattern of progression with two major variations, one being the amplitude
variation and another the phase variation. As an example, human growth curves, which record
height measurements of subjects over ages, share common events such as pubertal growth spurt
and maturity. However, different curves develop those events with different magnitudes of height,
which represents the amplitude variation, and at different temporal paces, which stands for the

phase variation [10].

When the phase variation resides in functional data, a naive application of the functional ver-
sions of standard statistical tools such as pointwise mean/variance, functional principal component
analysis (FPCA) and functional canonical correlation analysis (FCCA) tend to yield misleading or
inadequate results [11]. For a motivating example, growth velocity curves of 39 boys from Berkeley
growth study [45] are plotted in Figure 1.(a). Visual inspection reveals a dominant trend where the
boys who reach the phase of pubertal growth spurt (corresponding to the main peaks of curves)
late have the tendency to show smaller maximum growth rate. In other words, there exists a clear
association between phase and growth rate. An application of FPCA does not fully capture the
important major association. This is exemplified in Figure 1.(b), illustrating the first mode of
variation resulting from FPCA. The resulting mode, which indicates the resurgence of peaks of the
boys with late pubertal growth spurt phase, is not capturing the dominant mode of variation in

this example.
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Figure 1. (a) 39 growth velocity curves. (b) Three functions describing a first mode of variation from FPCA
to the original 39 curves. (c) Three functions describing a first mode of variation from FPCA to the aligned
39 curves. (d) Three functions describing a first mode variation from FCPCA to the original 39 curves.

To alleviate the adverse effect of the phase variation on statistical analysis of functional data,
various methods of functional registration have been introduced. Landmark registration [25, 09,
03, 04] removes the phase variation by transforming the domain of each curve so that salient shape
features of curves such as peaks and valleys are synchronized. Since landmarks are not always
identifiable in all curves, flexible methods have been developed that find time-warping functions
~(t) based on minimizing the distances among aligned curves f(v(t)) in a suitable metric. Time
shift model [50] uses y(t) =t + s, where s is a random shift in time, and the studies [13, 21, 26, 34,
43, 52, 51] thereafter work with more general warping functions ~y(¢) assumed to be continuous and
non-linear. Most of the registration methods choose the usual Lo metric for comparing functions.
The unsatisfactory alignment results due to the asymmetry of the metric, i.e., [|(fi1(t) — f2)(t)|l2 #
|(f1(~(t)) = fa(y(t))]|2 for two function f; and fa, is discussed in [37]. Recently, registration by the
use of the Fisher-Rao metric [51] is proposed that attains symmetry. Performances of their method

are demonstrated in comparison study of [27].

A common practice in analyzing functional data is to first align curves to remove the phase
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variation and then carry out standard functional data analysis techniques to the aligned functions.
This practice is based on the belief that the phase variations are mostly immaterial. Accordingly,
the resulting statistics deliver little information on the phase variation as illustrated in Figure 1.(c)
while we see that the phase variation constitutes an integral part of variation in Figure 1.(a).
Recently, several research works start to incorporate the phase variation into their frameworks for
segmentation of periodic signals [27], clustering [49], functional regression [12, 14], classification of
functional data [53] and manifold learning [06]. Our work attempts to reveal how the amplitude
variation, the phase variation and their association structure combine to give rise to meaningful

variabilities in the original function space.

In this chapter, we propose two exploratory data analysis techniques for investigating char-
acteristics of the internal structure of functional data carrying amplitude and phase variations:
Functional Combined Principal Component Analysis (FCPCA) and Functional Combined Canon-
ical Correlation Analysis (FCCCA). FCPCA effectively reveals major modes of variation in the
original form of functions as in Figure 1.(a), where amplitude and phase variations are combined
to form the curves. The resulting first mode of variation of FCPCA plotted in Figure 1.(d) as
compared to those of FPCA on the original and aligned data (see Figure 1.(b) and Figure 1.(c), re-
spectively), clearly capture the dominant trend of the 39 growth velocity curves. FCCCA presents
the combined effect of highly correlated pairs of amplitude and phase variations found by FCCA

also in the original form of functions.

To this aim, we combine the aligned functions together with the warping functions used in
the registration. The aligned functions represent the amplitude variation and warping functions
represent the phase variation. Two major challenges need to be dealt with. First, the warping
functions constitute a non-linear manifold in a function space, which complicates the statistical
analysis of functional data. We circumvent the issue of non-linearity by borrowing a tool from
differential geometry; a linear subspace best approximating the space of warping functions will be
used. The second challenge is a need to address an association structure between amplitude and
phase variations. For FCPCA, we model a single random function that joins the aligned functions
and the warping functions. FPCA is then performed for the joined functions. The weights in
joining the two sets of functions are adaptively chosen so that the resulting principal components
(PCs) achieve the maximal explaining power of the observed functions in a suitable metric. On
the other hand, FCCCA handles the aligned and warping functions separately and uses FCCA
to deal with their associations. Subsequently, the resulting statistics from FCPCA and FCCCA

11



are transformed into a original form of functions that exhibits amplitude and phase variations for
interpretation and visualization.

The rest of this chapter is organized as follows. Section 2.2 formulates the underlying models
that generate the functional data based on which FCPCA and FCCCA are defined. Section 2.3
explains the estimation procedures of the parameters of FCPCA and FCCCA. The performance
of the estimators is shown in Section 2.4 via a simulation study. In Section 2.5, we apply FCPCA
and FCCCA to a synthetic data set, Berkeley growth data set [45] and a lip motion data set [42]

to explore their major data structures. Section 2.6 contains technical details 2.8.

2.2 MODEL

2.2.1 Decomposition into two variations

We consider a smooth random function f that inherently contains amplitude and phase variations.

The random function f is composed of two random functions y and ~,

f(t) =yonr(t) =y(r(t)), t €[0,1]. (2.1)

We restrict the domain of f to be exactly [0, 1] without losing generality. The random function y,

which accounts for the amplitude variation, is a smooth square-integrable function on [0, 1], i.e.,
y € Lof0,1]={h:[0,1]— R|E||h|*>=E (/01 hz(t)dt> < o0},
The random function « is a time-warping function that introduces the phase variation to y,
yel ={h:[0,1][0,1] ]| h(0) =0,h(1) = 1,h (t) >0V t € (0,1)} C Lz[0, 1],

where 1’ is a derivative of h. Each of the constraints on ~ has its due justification: 1) constraint
of v(0) = 0 and (1) = 1 implies that the phase variation of f only occurs over the open interval
(0,1) with starting and ending times remaining fixed, 2) constraint of 7/(¢) > 0 does not allow f to
travel back into the past, which, in turn, makes v invertible so that y = f(y~1). We assume that
mean of the random time-warping function 7 corresponds to an identity function ~;4(t) =t (i.e., no
phase variation) as in [34, 51]. This assumption rigorously defines the phase variation as deviation
of v from an identity. Note that I" is the set of cumulative distribution functions of absolutely

continuous random variables on [0, 1].
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2.2.2 Simplifying the geometry of I'

Working with ~ directly is not desirable due to the non-linearity of I'. Let 1,7 € I and a scaler
C € R. Then in general 71 +2 ¢ I' and Cy ¢ T'. To address this problem, we adopt the geometric
approach laid out [51, 36] by transforming I' to a linear space so that the standard statistical

operations such as cross-sectional mean and covariance can be used.

2.2.2.1 Mapping to unit sphere The level of difficulty in dealing with ~y is eased with trans-
forming + by the mapping,

/

O:ym —— =/, (2.2)

vikdl

where | o | stands for an absolute value. A significant benefit of taking the representation in (2.2)

is that the complicated structure of T" is simplified to a much simpler structure. Since v(0) = 0,

and v(1) =1,

%

where || ® ||2 is a usual Ly norm. This implies that, for any v € T', /9 lies in a unit sphere in

22/01[ ’Y/(t)rdt:/017’(t)dt:7(1)—7(0):1—0:1,

LQ[Oa 1]7

VA €8 = {h(t) € La[0, 1] | ]l = 1}.

Specifically, the image of ©(+) is the positive hyper-orthant of S.

2.2.2.2 Mapping to tangent space While the geometry of S is indeed simpler than I, it
still is a non-linear manifold. However, the unit sphere is now easier to approximate by a linear
subspace in Ly[0,1]. A tangent space of S at a point 1 € S, denoted by 7),5, is the collection of

functions in Ls[0, 1] orthogonal to u,
TS = {h(t) € L2[0,1] | (h, ) = 0},

where (e, @) is an usual inner product in L]0, 1]. Functions in S will be approximated by functions
in 7,,S. Figure 2.(b) schematically illustrates 7,5 and the approximation of S-valued functions
by functions in 7,S. Imagine the hyperplane 7" in L0, 1] tangent to S at u. The tangent space
T,,S is the parallel translation of the hyperplane 7" such that the tangent point ;1 meets the origin,
being a subspace in L]0, 1]. Points on the tangent space 7,5, when shifted back to 7', are used to

13



(a) (b)

Figure 2. (a) The pointwise mean ' of two functions a,b € S does not lie on S. (b) Mapping of v/7/ € S to
a tangent space T,S by the log map and its inverse mapping of exp,,(Log,(v/')) = v/7 by the exponential
map.

locally approximate functions in a subset S, C S near u, described in 2.(b). Specifically, we use
the log map Log, : S;, — TS,

. / dg(\/’?nu') !/ _ oS /
Logu . \/’>T = Sin(dg(ﬁ, U)) (ﬁ (dg(ﬁ7 M))/”')? (23)

where dg(v/+', ) = arccos({(v/7', u)). The dg(+/7, ) measures the distance between /4" and p by

the length of the shortest arc on S that joins v/9” and p. Compared to other possible mappings from
S to T),S, the log map has an appealing feature: preservation of the (geodesic) distance between p
and Log#(ﬁ ) and the direction in which Logu(ﬁ ) shoots from p. The log map provides a good
approximation especially for a manifold of a relatively simple structure like a unit sphere S.

A sensible choice is a point on S corresponding to the mean of v in the mapping (2.2). Since
the mean of vy is assumed to be an identity function v;4, a tangent space T}, is placed at a constant

function 1 = 1. The image of Log,, is denoted by B = {Log,(v/*") € T,.S | ||[Log,(vY')ll2 < 7}

2.2.3 Construction of f

The inverse of the log map defined on B is the exponential map, defined by,

sin(||Log, (v7')2)
[Log,, (v |2

Exp,, : Log, (v/7) = Log,(v/7) + cos([[Log,, (V7)) - (2.4)
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The exponential map, acting as the inverse of the log map as illustrated in Figure 2.(b), is useful
to construct y(t) from a function in 7),S. Let x = Log,(v/7") € Bx € T,S. Since 7(0)=0, v can be

uniquely constructed from x using the following,

[ i@ = [ [VaG] s = [ s)ds =20 -0 =20, v € 0.1}

Then, Equation (1) can be rewritten as,

F(t) = y(0" o Bapu()) =y ( / Exp,%<x><s>ds) Cte 0.1, (2.5)

which implies that the random function f is constructed from the two random functions y € Lo[0, 1]

and v € T,,S.

2.2.4 Models of FCPCA and FCCCA

FCPCA and FCCCA are defined with the two random functions y € L[0,1] and = € 7},S. Note
that both L[0,1] and 7),S are linear spaces. We assume E(z) = 0 so that E(z) is identified with
E(v) = %ig when mapped back into a warping function by ©7! o Exp,,(E(z)) (see (2.2) and (2.4)
for ©=! and Exp,,).

2.2.4.1 FCPCA model To capture the joint variability between y and z, we define a random

function g¢ on the extended domain [0,2] by,

gc(t) _ y(t) te|0,1), (26)
Cx(t—1) tel1,2],

where C' > 0. The exclusion of the end point {1} of the domain [0, 1] of ¥ in the construction of g¢
does not lose any information of y since a point is measure zero and, if necessary, y(1) can always
be recovered using lim;_,1 y(t) (since y is a smooth function). Note that ¢© € L»[0,2] since y and
Cz are defined on disjoint subintervals of [0,1], ¥ € L2[0,1] and z € T,,S C L»[0,1]. The scaling
parameter C' is introduced to adjust scaling imbalance between y and = due to a unit change in y.

The eigendecomposition of the covariance function ¥ ¢ of g% gives,

[e.e]

Seols,t) =Y AL ()EC (1), 5.t € (0,2,
=0
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where the superscript C' is used to make clear the dependency of A;’s and &;’s on C, )\Z»C’s denote
eigenvalues of ¥ ¢ with /\10 > )\g >---2>0, and fic ’s are their corresponding eigenfunctions with

1€9 |2 = 1 and (&€, ng> =0 for i # j. Then by the Karhunen-Loéve decomposition,
+Z 2C¢C(t),t € 0,2], (2.7)

where E(z¢) = 0, E((25)?) = A, E(zzczjc) =0 for i # j. Note that u = E(g®) does not depend

on C since y is irrelevant of C' and E(z) = 0. Equation (2.7) gives the representations of y and =z,

+chgc ),t €[0,1)

o o (2.8)
()= %‘g?(t +1),t€[0,1]
=1

In (2.8), the associated variations between y and x are paired in the eigenfunctions fic .

The role of the scaling parameter C' € R in (2.6) becomes clear from (2.7). As opposed to the
unit-less x, values of y depend on the unit in which measurements are made. The scaling parameter
C can depend on the change of the unit of Y. Since scaling y up/down by C'is equivalent to scaling
x down/up by C, the scaling parameter is introduced to the x part of g% to keep the original unit
of y. The eigenfunctions {¢€}2°, and their eigenvalues {\¢'}22, may vary for different choices of
C; for a small C, the first a few eigenfunctions fic are found to explain more of the variation of the
y part of the random function ¢¢ and, for a large C, the leading eigenfuncions reflect more of the

variation of the x part. In other word, there are infinite choices for a set of {50} ©, depending on
C, leading to an identifiability issue. To our aim of succinctly representing the combined variation
of y and z in the original function space, we define C to be dependent on the original random
function f in the following.

Let m be a positive integer. From (2.5) and (2.8), we define AS (f) as the approximation of f

by the first m eigenfunctions,

A1) = o ( / Exp,%uﬁ(s))ds) He0,1), (2.9)

where

Y ()t +Zz% te0,1),
(2.10)

8
30
=
=

I
NgE
Q‘NQ

LeCt 4 1),t € [0,1].
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The scaling parameter C' is chose so that, for m’ of one’s choice, the construction of f by the use

of the first m’ eigenfunctions {{f }f;ll best approximates f, i.e.,
C = argminge pB(d*(A7, (f), AS(S)))

= argminge r E(d*(AS, (f), f)),

where d is the usual distance function on L0, 1]. There are other choices for d such as L; and earth

(2.11)

mover’s distances [47]. We choose Ly distance for fast computations and mathematical convenience.

With C determined, the original random function f is constructed by plugging (2.8) into (2.5).
FCPCA reveals the ith mode of variation of f by setting zl-C =+c )\ic for ¢ € R and ch =0 for all
j # 4 in (2.8) and constructing a function using (2.5), where the proportion of the total variability

explained by the ith mode of variation is calculated by A{'/ > A¢.
j=1

2.2.4.2 FCCCA model InFCCCA, we are interested in pairs of correlated variations between
y and x. Denote by pp(ty,1,) the correlation coefficent between (¢, y) and (¢, x) as a function
of ¢, € L»[0,1] and 1, € T,,S,

pp(Yy, ) = Cov({Yy, y), (a, 7)), (2.12)

subject to Var((yy,y)) = Var((¢z,z)) = 1. We find a first pair of functions (1y1,%,1) that
maximizes p and subsequently look for pairs of functions {(ty;, ¥zi) }52, that maximize p under the

conditions:

Var({¢yi,y)) = Var((dei, ) = 1,
Cov((tyis y), (yjs y)) = Cov({Yui, ), (Yuj, )
= Cov((Yyi,y), (Yuj, ) (2.13)
= Cov((Yei; ), (ty;, y))

=0, for j=1,2,..,7— 1 for each 7
The ith component 1y, (or 1) is called the ith canonical weight function of y (respectively x) and
the correlation coefficient p; evaluated at the ith two weight functions is called the ith canonical
correlation coefficient.
Let p, = E(y). The effects on the means p, and p, = 0 of the ith canonical weight functions

y; and 1,; respectively are,

By(t) = py(t) + atyi, t € [0,1],

Pz(t) = bibm‘, t e [0, 1],

(2.14)
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where a,b € R are scalars of one’s choice (reasonable choice is a/b = 3, where [ is a slope from a
regression of (15, z) against (¢, y)). Then, the ith mode of variation by FCCCA is visualized by
choosing various values of (a, b) in (2.14) and by plugging P, and P, in place of y and x respectively
of (2.5).

2.3 ESTIMATION

The following parameters are needed to be estimated to carry out FCPCA and FCCCA: the
mean function pu, the pairs of eigenvalue and eigenfunction (/\Z»C,QC ) and the scaling parameter

C for FCPCA and the triples of canonical correlation coefficient and canonical weight function

(i, Yy, Vi) for FCCCA.

2.3.1 Obtaining functional realizations f,

Let f; for i = 1,2, ..,n be the i¢th realization of an underlying random function f from n independent
experiments. The realizations f;’s do not manifest themselves in a direct way. They are measured
and recorded at discrete time points and usually blurred with measurement errors. The available

data are written as,
fij = fz(tw) + €ij, 1=1,2,..,n, 3=1,2,..,n4, ti]‘ S [O, 1], (2.15)

where f;; is a measurement of the ith realization f; at the jth time point ¢;; contaminated by
a measurement error ¢;;. We assume ¢;; are i.i.d. with E(e;;) = 0 and Var(e;;) = o2, for each
(7,7). We also assume that the time points {t;; };L;l’s are placed dense enough so that smoothing
the observations { f;; };“:1 with a suitable basis function system gives a close approximation of f;.

Denote the approximations to {f;}; by { fz}?zl

2.3.2 Obtaining y; and z;

By (2.1), each function ﬁ is decomposed into amplitude and phase parts (called aligned and warping

functions respectively) by an application of function registration,

fi(t) = 0:(3:(t)), i=1,2,..,n, t €[0,1]. (2.16)
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We choose the alignment method using Fisher-Rao metric proposed in [51] for its good performance.
As explained in Section 2.2.2, the warping functions are transformed into the tangent space 7,5

by z; = Log,(©(4:)), where pn = 1.

2.3.3 Estimation of FCPCA

2.3.3.1 Estimation of y and (A, £Y) Let the scaling parameter C be given. Evaluate the
functions {g;}7_, and {Z;}}'; on a fine and evenly spaced grid {t1,%2,..,tx} of [0,1] to get their
vectorized versions {y;}I*; and {X;}I ;. For each ith pair of vectors (¥;,X;), stack them up to form
a single vector gl in such a way that (superscript C is attached for every quantity that depends

on C),

~C Vi

& = | |, vi=lwilt) vilta) - i),
CXZ‘
X; = [xi(tl) a}i<t2) - a;i(tk)]T.

Let p=>", gff /n. The eigendecomposition of the sample covariance matrix /X\Igc obtained from

< 2O
{&9}™| provides n — 1 pairs of eigenvalues and eigenvectors (AS, €, )’s

~ N ~C 2C .C 3
where AY > AS > ... >A¢ | >0, & |l2 =1 and (g, ,€;) =0 for i # j. Estimates of A are A

N ~C ~C
Estimates i and fic of pu and fic are obtained by interpolating fi and &, and normalizing &, .

2.3.3.2 Estimation of C' The estimates f, {(S\lc,fzc) ! and {g¢'}, are dependent on the
value of C. Our strategy in the estimation of C is to use an empirical minimizer of (2.11). For this,
interpolate g;"’s to get their functional versions {g * , and calculate the scores a (91 ,£C> for
i1=1,2,..,nand j =1,2,..,n — 1. Viewing {fz} ', as n realizations of f, the empirical version
AC () of AS(f) in (2.9), which approximates f;, is defined by replacing yC and zC in (2.10) with

§S and €, where

IS () = )+ aGéS (#), te0,1),
j=1
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m _C

alj
E— (t+1), t €0,1].
=i 0.1]

For some integer m’ and a suitable interval I¢,

. - 4G (i) — lelz

C = argmin

Celo i=1 n

(2.17)

which implies that the mean function fi and the first m’ eigenfunctions élc found at C' = C recon-

struct {f;}7_, the most faithfully.

The minimizer C' exists for most situations of our simulations and real data analyses, not
degenerating to 0 or oo. Heuristically, this is because, for C' > C' {50} ", more reflect the variation
of x than y’s so that the residuals from (2.17) start to increase due to the amplitude of fi’s not
being recovered from the approximation Anc;,( fi)’s and, for C' < C, temporal mismatching between

fi’s and An(’;,(fi)’s begin to raise the residuals.

2.3.4 Estimation of (p;, ¢y, 1) of FCCCA

It is well know that Naive maximization of the quantity p in (2.12) using the pairs of functions
{(9i, %)}, usually produces pairs of uninterpretable canonical weight functions whose canonical

correlation coefficients are very close to one.

Following [29], we regularize canonical weight functions by introducing a roughness penalty term
into the constraints of (2.12) and find estimates ﬁl,zﬁ%l and 1/33;71, which maximize the following

quantity,

pp(Dy1, Pa1) = argmaxy, . e 1,01 CoV((By, 51), (Ya, 31)) (2.18)

subject to ‘7(1\7’((1/@,@)) + A D%, |13 = @’(Wm,a}i» + A|D%,||3 = 1, where Cov and Var are
sample covariance and variance, D? is a second order differential operator and A is a smooth-
ing parameter. The p; is obtained by evaluating (2.18) at (1/A)y1,2/311). The subsequent triples
{pi, iyi, 1[1”}?:_21 are found as maximizers of (2.12) subject to the constraints (2.13) with a rough-

ness penalty. Refer to [44, Ch 11.] for the estimation algorithm and generalized cross-validation

(GCV) method for determining A.
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Figure 3. Parameter settings for £ ¢$, €5, ¢ and pu®

2.4 SIMULATION STUDY

In this section, we empirically observe the consistency of the estimators of FCPCA and FCCCA.
We have tried a range of parameter settings for each of FCPCA and FCCCA and the results are

concordant across settings. Below we only choose to present representative cases.

2.4.1 Simulation for estimators in FCPCA

2.4.1.1 Simulation configurations We generate n independent realizations {gzc », of g¢

using a finite version of (2.7),
4
gic(t) = Mo(t) + Z Zijfjc(t)v t€0,2],
j=1

where the four eigenfunctions {¢¢}?_; and the mean function ¢ are shown in Figure 3,

and {(zi1, zi2, zi3, zia) }1—; are sampled from the multivariate normal distribution Ny,

T
Zi = |zi1 Zi2 Zi3  Zi4 ,1=1,2,...,n,
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n=30 n=100
Parameter Estimate

Mean Std Mean Std

A0 =35 AC 412 0.26 3.81 0.21

AS = 2.6 A 2.98 0.37 2.74 0.18

cC=1 C 1.44 0.31 1.28 0.29

n=30 n=100
Parameter | Estimate
Lo Diff Mean | L, Diff Std | L, Diff Mean | Lo Diff Std

uC e 2.89 1.27 2.15 0.85
¢ £¢ 0.49 0.24 0.38 0.36
¢ £¢ 0.71 0.41 0.34 0.50

Table 2. Results of simulations for consistency of estimators in FCPCA.

z; ~ Ny < 0. B = diag( [3.5,2.6,0.3,0.1] ) ) ,

where, for a vector v, diag(v) denotes a square diagonal matrix with the elements of v on its
diagonal and 0 off of its diagonal. We found that it is almost intractable to track down the true
value of a scailing parameter C analytically. The set of parameter eigenfunctions given in 3 is
purposely selected so that the estimates C from 100 simulations with a sample size of 1000 is
distributed around 1 with a narrow spread of 0.031 when the first 2 sample eigenfunctions are
chosen to approximate the observed functions.

The functions {g¢'}?_, are transformed to {f;}?_; by (2.8) and (2.5). We observe f; at each
time point ¢; := (j — 1)/101, for j = 1,2,...,101 with measurement error ¢;; ~ N(0,0.1). As for a
smoothing step for f;;’s, the B-spline basis system of degree 4 with a roughness penalty on second

10

derivative is used. Following [08], knots are placed at evaluation points {t;}, ", and, following [07],

the value of the smoothing parameter A is determined by the generalized cross-validation method.

2.4.1.2 Simulation results For each sample size n = 30,100, we perform 100 runs of simula-
tions to collect 100 sets of the six estimates [p, (S\G,élé), (Xg,fg) and C. Tables 2 report means

and standard deviations of scaler estimates and means and standard deviations of Lo differences
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Figure 4. Parameter settings for {&,; 4, and {&.}1,, where &y1 and &;o are chosen as canonical weight
functions with p = 0.8.

between the functional estimates and their corresponding parameters.

We see that the estimates approach their population counterparts with narrower spreads as a
sample size n increases. One noticeable observation is that the estimate u© shows larger discrep-
ancy from the population mean and wider variability than other estimates. This may be because

estimation of the mean involves all the other sample eigenfunctions in addition to the first two.

2.4.2 Simulation for estimators in FCCCA

2.4.2.1 Simulation configurations We create n pairs of independent realizations {(y;, z;)}7;

of y and x using,
4
yilt) = py(t) + > wibyilt), t € [0, 1],
i=1

4
zi(t) =Y _vile;(t), t €[0,1],
j=1
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n=30 n=100

Parameter | Estimate
Mean Std Mean Std

p1=0.8 p1 0.67 0.21 0.76 0.18

n=30 n=100

Parameter | Estimate
Lo Diff Mean Lo Diff Std Lo Diff Mean Lo Diff Std

Py Uy 0.89 0.31 0.43 0.18
Va1 Va1 0.72 0.28 0.55 0.15

Table 3. Results of simulations for consistency of estimators in FCCCA.

where the four eigenfunctions {&,;}%,(respectively {&.;}% ;) chosen for y(or z) are depicted in
Figure 4 and the mean functions p, for y is the first half of uC of Figure 4. The first eigenfunction &yt
of y and the second one &5 of x are selected as a first pair of (normalized) canonical weight functions
(1y1,¢y1) with its canonical correlation coefficient of 0.8. The random variables {(u;,v;)}7; are

sampled from the multivariate normal distribution Ng,

- T - T
u; = |:ui1 U2 U3 Ui4} y  Vi= {%’1 Vig V53 Ui4] )
ﬁi 2]u 2]ufu 3
~ Ng 801’ , 1=1,2,....n,
= X T
V; Zm, EU

3, = diag( [5,3.5,0.8,0.7] ), %, = diag( [0.01,0.007,0.0016,0.0014] ),

where 3., is the 4 x 4 matrix whose elements are all zero except for the first row and second
column entry being 0.15 and, for a vector v, diag(v) denotes a square diagonal matrix with the
elements of v on its diagonal and 0 off of its diagonal. We have used Corollary 1 to construct the
cross-covariance matrix 3., from the given canonical correlation coefficient and canonical weight
vectors. The pairs {(y;,x;)};_, are transformed into {f;}"; using (2.5). Obtaining observations
fi;’s of the form of (2.15) and smoothing the observations follow the similar steps as explained in

Section 2.4.1.
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Figure 5. (a) 10 simulated functions. (b) Three functions describing a first mode of variation from FCPCA to
the 10 curves. (c) Three functions describing a second mode of variation from FCPCA. (d) Three functions
describing a combined effect of the most correlated directions from FCCCA.

2.4.2.2 Simulation results The same settings as those in Section 2.4.1 for sample sizes and
the number of runs for each sample size are used to obtain 100 sets of the estimates (1, ﬁyl, Qﬁm)
Tables 3 report means and variances of scaler estimates and means and variances of Lo differences
between functional estimates and their corresponding parameters.

As in the simulation results of FCPCA case, the estimates approach their population counter-
parts with narrower variabilities as a sample size n increases. However, we are not quite sure of

the effect of roughness penalty used in FCCCA on the consistency of the estimates.

2.5 DATA ANALYSIS

2.5.1 Synthetic data

2.5.1.1 Performance of FCPCA and FCCCA We start with a toy example where data
structure is made clearly visible to see if FCPCA and FCCCA are capable of capturing it. The 10
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Figure 6. Comparison of reconstruction efficiency of FCPCA with that of FPCA and Separate methods over
varying level of non-linearity between amplitude and phase variations.

functions shown in Figure 5.(a) display amplitude and phase variations such that, as a peak rises
at a constant rate, the timing of the peak lags with a farther gap in between. Figure 5.(b) describes
the first mode of variation obtained from FCPCA, which accounts for 95% of the total variability.
Specifically, the black, blue and red curves depict the mean behavior and +/- 2 standard deviations
along the direction of the largest variation from the mean. These three functions capture the general
trend of the data but only imply the proportionate relationship between the height and timing of
a peak; a peak’s occurrence is delayed approximately proportionate to its height increment. The
second mode of variation described in Figure 5.(c) explains just 4% of total variability yet delivers

substantial information on the data structure. That is, to achieve the non-proportionate height
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and timing relationship of a peak, the lags of a peak in Figure 5.(b) need to be adjusted by using
the type of variation as shown in Figure 5.(c), which shifts the timing of a peak without touching

its height.

The combined effect of the most correlated directions in amplitude and phase variations with
a magnitude of p = 0.79 resulting from FCCCA is shown in Figure 5.(d), whose interpretation is
similar to that of Figure 5.(b).

2.5.1.2 Reconstruction efficiency of FCPCA under non-linear association We briefly
discuss the sensitivity of the reconstruction efficiency of FCPCA to non-linearity between amplitude
and phase variations. Recall from (2.9) and (2.10) that the observed functions can be reconstructed
with a first m principal components (PCs) and their corresponding scores from FCPCA. Three sets
of functions f’s with varying degree of non-linearity between amplitude and phase variations are
shown in the first row of Figure 6. The second row of Figure 6 demonstrates degree of non-linearity
between amplitude and phase variations. Each graph in the row is a scatter plot of two sets of scores
obtained from the functions f’s above it, one for projections of aligned functions (y) onto the first
PC of y and the other for projections of phase functions (x) onto the first PC of z. Reconstruction
accuracy, measured by mean squared residuals (MSR) of reconstructed functions of FCPCA from
f, is compared to those of other two methods across m. The first, FPCA, uses the first m PCs from
FPCA to f’s for reconstruction. The second, second method, called “Separate”, applies FPCA to
each of amplitude (y) and phase (z) functions and uses the first m PCs in each group to reconstruct
f’s using (2.5). In the third row of Figure 6, these three MSRs are compared for increasing values

of m.

FCPCA best reconstructs f’s when the relationship between amplitude and phase variations
is almost linear as shown in the bottom left plot of Figure 6. However, it performs unfavorably
compared to FPCA and Separate methods as the non-linearity intensifies. It is due in large part
to the nature of FCPCA model that joins associated amplitude and phase variations by a linear
method (PCA): recall from (2.8) that if the y part of an eigenfunction ¢ is multiplied by a
constant, then so is the x part by the constant, limiting responsiveness of FCPCA to non-linearity.
Nonetheless, PCFCA effectively captures major modes of variation as one sees in the following real

data examples where data structure becomes complicated.
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Figure 7. (a) 39 growth velocity curves. (b) Three functions describing a first mode of variation from FCPCA.
(c) Three functions describing a second mode of variation from FCPCA. (d) Three functions describing a
combined effect of the most correlated directions from FCCCA.

2.5.2 Berkeley Growth data

The Berkeley growth data [45] consist of the height measurements of 39 boys and 54 girls from
age 1 to 18 at 31 age points, which are placed every three months until 2, every year until 8, and
every six months from 8 to 18 years. We present here the analysis results of boys’ data only as
those of girls’ are similar. To highlight periods of slower and faster growth, the growth velocity
curves are found by differentiating the smoothed growth curves of the 39 boys and are included in
Figure 7.(a).

It turns out that the first two components of FCPCA are interpretable. The growth type of the
largest variation obtained from FCPCA, which accounts for 65% of the total variability, is described
in Figure 7.(b), indicating that a boy who grows faster (slower) over the whole period tends to reach
his growth development phases such as a pubertal growth spurt earlier (later) than others. On the

other hand, the second mode of variation shown in Figure 7.(c), which accounts for 24% of the
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total variability, characterizes the growth type that a boy’s growth rate and development clock go

faster (slower) before around 10 years, and then they turn slower (faster) afterwards.

The FCCCA reveals combined effect of the most correlated directions in amplitude and phase
variations with a magnitude of p = 0.87. This finding is different from the associations in the
first two FCPCA components; a boy who grows faster (slower) before around 10 years and slower
(faster) afterwards is likely to undergo his growth development phases earlier (later) than others
over the entire period. The differences in patterns found by FCPCA and FCCCA should not be
surprising since FCPCA finds directions in amplitude and phase variations that explain as much
variability in the observed functions as possible in the squared Lo distance sense while FCCCA
aims at finding highly correlated directions after standardizing (therefore disregarding) variabilities

along those directions.

2.5.3 Lip motion data

The data to be analyzed here is a part of lip motion data used in [42]. The data consist of
measurements at 51 equally spaced points in the timeframe from 0 to 340 milliseconds of a vertical
position of infrared emitting diodes (ireds) attached at the center of lower lip of a male subject while
he speaks a syllable “bob” 20 times. The dynamics of lip motion is well captured by its acceleration.
These second derivatives plotted in Figure 8.(a) show a common pattern. Lip movement is first
accelerated negatively and then pass through a positive acceleration phase during which the descent
of the lower lip is stopped. This lip opening phase is followed by a short period of near zero
acceleration when pronunciation of a vowel “0” is at its full force, followed by another strong
acceleration upward initiating lip closure and then finally completed by a negative acceleration

episode as the lip returns to the closed position.

We used FCPCA and FCCCA to capture the major mode of variation in the data set. The
first mode of variation accounting for 78% of the total variability and the combined effect of the
most correlated directions with a strength of p = 0.83 obtained from FCPCA and FCCCA are
shown in Figure 8.(b) and (c) respectively. They both indicate a speech habit of the speaker. As
he articulates the word louder (softer), he tends to speak faster (slower); note that, when someone
speaks a word loud (soft), peaks and troughs in an acceleration curve of his lip movement become

evident (flattened) as he opens his mouth wide (narrow).
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Figure 8. (a) 20 acceleration curves of lip movement. (b) Three functions describing a first mode of variation
from FCPCA. (c¢) Three functions describing a combined effect of the most correlated directions from FCCCA.

2.6 CONCLUSION

This chapter presents a novel framework for exploring the internal structure of functional data
varying with amplitude and phase variations. Naive application of standard functional versions of
statistical tools such as FPCA to this type of data sometimes produces unsatisfactory results. The
commonly-employed framework of statistical analysis of aligned functions by the use of function
registration disregards the phase variation. To overcome the disadvantages, FCPCA and FCCCA
investigate main modes of variation and correlated directions of data in the underlying space,
where the association structure between amplitude and phase variations can be addressed, and
deliver their resulting variations in the original form of observed functions for clear visualization

and interpretation purposes.

2.7 DISCUSSION

We mentioned three different metrics Ly, Lo and earth mover’s distance (EMD) [47] in comparing
functions. The L; and Lo are among the most commonly-used metrics while EMD is less know
to statistics community. As a matter of fact, EMD becomes exactly the same as the Mallows

distance when applied to probability distributions [30]. EMD was first introduced as empirical
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ways to measure texture and color similarities in computer vision. Intuitively, if the two graphs
are interpreted as two different ways of piling up a certain amount of dirt over the region D, EMD
is the minimum cost of turning one pile into the other, where the cost is assumed to be amount
of dirt that need to be moved times the distance it has to be moved. EMD is known to measure

similarities between two graphs in a similar way as how human perception does.

To elaborate the advantages of EMD, take a simple example of three functions given in 9. All
of those have a same mass. The function H2 is a horizontal shift of the function H1 by 1.5 whereas
H3 is an almost flattened version of H1. To most of human eyes, H1 and H2 look much more similar
than H1 and H3 do. However, L; and Ly distances provide the opposite results that H1 and H3

are more similar that H1 and H2 are,

Ly(H1, H2) = 41.4351, L (H1, H3) = 33.4351,

Ly(H1, H2) = 5.3403, Lo(HI, H3) = 3.9477.

On the contrary, EMD measures the similarities among them as,

EMD(H1, H2) = 15.47, EMD(H1, H2) = 9.54.

The difference in their performances primarily lies in the fact that L1 and Ly metrics only consider
the vertical gap at each point of the domain while EMD takes into account horizontal distances
the masses need to travel from one point to the other for the two graphs to look similar. Although
powerful, EMD is only applicable to graphs with same mass and positive values and its calculation
is computationally expensive. We devised a new EMD applicable to positive graphs with different

masses,

HI  H2
EMD™" = L, (H1, H2) + EMD < ) .

[[HL[J2" [H2]2

In simulations using positive graphs with different masses, EMD"®" shows good performances in
assigning small distances for seemingly similar graphs, when L; and Lo do not. However, we need
more extensive simulations and theoretical ground before claiming that the metric indeed performs

favorably compared to popular L; and Lo distances.
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2.8 TECHNICAL DETAILS

Lemma 1 (Representation of cross-covariance matrix 1.). Suppose two random functions x,y €
L»[0,1] have respective covariance functions ¥, and 3. Let {(pi, Vui, ¥yi)}52, be a sequence of
triples of a canonical correlation coefficient and its corresponding canonical weight functions. Then

the cross-covariance function Xz, between x and y is found as follows,
Yay(st) = 225, 5 (s, 1), 8, € [0, 1],

where ¥y, = Y772 pitbeithyi and XY (s,t) = (X(s,a),X(a,1)) = f[ojl}Z(s,a)Z’(a,t)da for two
functions ¥ and X'.

Proof. Covariance and cross-covariance operators ®,, ®, and ®,, as,
By : Lo[0, 1] > Lof0, 1], B (w) = / S (s, Dw(t)dt, w € Lof0, 1],
(0,1]

By : L]0, 1] s Lo[0, 1], &, (w) / 5, (s, )w(t)dt, w € Lo[0, 1],
0.1

By ¢ La[0, 1] 5 La[0, 1], By (1) — / S0y (5, Dw(t)dt, w € La[0, 1],
0,1

Subsequently maximizing p in (15) under the constraints in (16) to find the sequence of canonical
triples {(pi, ¥ui, ¥yi) }52, is equivalent to the eigenanalysis of the cross-correlation operator R =

D, 1 2<I>xy(I>; 1 2 The covariance operators ®, and ®, are invertible under general conditions so
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that canonical correlation coefficients and weight functions for x and y are well defined(Theorem
4.8, He et al., 2003). Let Pm‘;lﬁi and wfi be the ith eigenvalue, its corresponding eigenfunction
of R*R and the 7 eigenfunction of RR* respectively, where R* denotes an adjoint operator of R.

Then, the ith canonical correlation coefficient and weight functions are found as,

pi = \Pris Vi = O (YY), by = 02 (F).

By Proposition 6.4 in [19], the kernel of R can be decomposed as,
1/2233112 1/2 S t Z mewm ¢7‘z( )

= sz ) ()72 (1) (1)
=xl2sx w1/2(5.1),s,t € [0,1].

YTy

Therefore we get,
Yoy = LaXy, Xy(s,1),s,t € [0,1].
O

Corollary 1 (Representation of cross-covariance matrix 2.). Consider the eigendecompositions of

the covariance functions ¥, and X, of x and y,

=3 ADei()¢i(t), 5.t € [0,1]
=1

= ADei(8)E0(t), 5,1 € [0,1].
i=1

Then the cross-covariance function Y., of x and y can be represented as follows,

Sayls,) = 3050 et (0 (0), 5.1 € [0,1],
i=1 j=1 k=1
where ¥, = (Vaj, o) oo VT = (Eyiy Vys) 6y and pl = A pi ).
Proof. Using Lemma 1,
Sy (5,1) = 2,55, 20 (5, 1)

= <Ey(s7 a), <sz(a, b)? Ew(bv t)>>
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where %D;k = (Vuj, Eok) ke

ZZZAW J xk fyz )wyy(a»fyZ(s)lﬁjk

=17
oo 00 00

pz]kwu (t)a S, te [07 1]

II
—

=1 j=1k

where ngk = Aéz)pj A(xk) and wz] <§yi7 1/Jyj>£yi-
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3.0 HDLSS ASYMPTOTIC ANALYSIS OF CCA

3.1 INTRODUCTION

Canonical correlation analysis (CCA) introduced in [20] is a standard statistical tool to explore
the relationship between two sets of random variables. Consider dx- and dy-dimensional random

vectors X (4x) and Y(dY),

(X(dX)>T:{X1, Xo, ..., de], <Y(dY)>T:[Y1, Yo, .., Ya -

CCA first seeks a pair of dx- and dy-dimensional weights vectors w(dx and 1y (@) Such that two

random variables, one being the linear combination of X1, Xo, ..., X4, weighted by the elements of
g?f ) and the other being that of Y1, Y, ..., Yy, weighted by the elements of @bgﬁily ), have a maximal
correlation,
d d (d d
Wi ) = argmax Cov((7), X)) Y. (3.1)

Var(( 7 X @0))=Var (@i y (@v)))=1
Requiring the norms of the weight vectors le and z/J(dY to be one, the equation (3.1) can be

written as an equivalent form of,

(dx) (dx) (dy) v (dy)

, X \0x Y

(¢X1 >¢dY)) argmax Cov((vy ) (¥y1 s ) .
195 2=y ll2= 1\/Var (93 X (dx)) \/Var () y(av)y)

For convenience, denote the objective function in the right hand side of (3.2) by pp(1(@x) (@),

(3.2)

p:R™ x R™ — R
Cov({plx), X(40)) (yp(dv) y(dr)))
VVar(((@x), X@x)))\/Var (@), y @)y

pp(1), ) =

Subsequent weights vectors wg?f) and ¢§fliY), fori=1,2,...,min(dy, dy), are found by maximizing
the objective function pp(1h(@x), (@),

( )?ZX), vi )) = argmax (wXZ , dey))’ i=1,2,...,min(dx, dy),

18X o=l =1
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under the constraint that,

Cov((pi¢x), X (), (), X)) = Cov((w), V™)), (i), v (@)
= Cov((), X dx>> <w<d¥>,Y<dY>>>

= COV(<¢YZ'Y ) > <¢X] X )>)
=0,i=1,2,...,min(dx,dy), j=1,2,..,i — 1 for each i.

The ith pair of weight vectors ng?ix ) and w%’/) are usually called the ith pair of canonical weight

vectors (or canonical loadings). The correlation p evaluated at the ith pair wg?'x ) and w&d ¥) denoted

by pgdx ’dY), is called the ith canonical correlation coefficient, that is, pgd)“dy = (w , YdZY)).

In practice, we collect two sets of observations of dx- and dy-dimensional random vectors
X @x) and Y(@) on a common set of samples in a dx x n matrix X(@X) and a dy x n matrix Y@),
respectively. We row-center X(@x) and X(@x) and let ﬁ)g?x ), ﬁ)gﬁlY) and ﬁ)g??dY) be a covariance

matrix of X(4x) a covariance matrix of Y(@) and a cross-covariance matrix of X(@x) and y(@v),

A T ~ T ~ T
0 _ %wa) (X(dx)) , 3l = %wa) (Y(dy)> | Sldxd) _ %X(dx) (wa))

For the case where the sample size n is greater than dx and dy, the estimation of sample canonical

weight vectors (1]}( ,111(dy ) and sample canonical correlation coefficients ﬁgdx )

are done through
singular value decomposition of the matrix R (dxdy)

1

Rdx.dy) — (25?)())_% Eg??dﬂ (Sg/qlY))_E ’

SVD(R(dx,dY)) _ Z )\( X5 Y)WE{))((Z) (ﬁ%;g) ’
i=1
where )\Sq) is a sample singular value with )\(d) > )\(d) > )\gr)mn(dx dy) = 0, and (ngl)’éz),ﬁgl;z))

is a pair of left and right sample singular vectors corresponding to /\g%i). Then, the ith sample

A(d) .

canonical correlation coefficient p, is found to be,

pi ) = A,

The ith pair of canonical weight vectors &g?f ) and @E%Y) are obtained by unscaling and normalizing

the ith pair of sample singular vectors ﬁg)’éi) and ﬁ%ﬁg,
1

1
S(dx)\ T2 A(d S(dy)) 2 a(d
Ndx) (E;X)> s “(dy) (2@”) i

Uy

(3.4)
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The projection of the data matrix X(4x) onto the ith sample canonical weight vector 1[)&?;‘ ) gives

the canonical scores (or canonical variables) of X (4x) with respect to 1[1%’( ) and similarly for X (4x)
Although powerful, CCA has several disadvantages. first, use of CCA is practically restricted to
the case of two sets of data even if there is an attempt to generalize it to more than two sets of
data [54]. Second, CCA components are estimable only if the sample size n is greater than dx and
dy . Tt is well know that, when n < max(dx,dy), one can construct an infinite number of sample
canonical weight vector pairs with their correlation of one. Moreover, overfitting is often a problem
even when n > dx and dy. Hence, CCA is often considered not reliable in high-dimensional data
sets. We, however, will show that, even in the case where sample size n is less than dx or dy, some
sample canonical weight vectors is estimable and furthermore consistent under a certain condition.

As high-dimensional data are increasingly common these days, where a large number of variables
are measured for each object, there is a strong need to investigate the behavior of estimates resulting
from the application of standard statistical tools such as CCA to a high-dimensional case (that is,
scalability of those tools). In studies in which dimension d is allowed to go to infinity, three scenarios

are typically considered [48],

e Low Dimension High Sample Size (LDHSS): Both dimension d and sample size n go to infinity
but n increases much faster than d, which can be summarized as d/n — 0. These problems are

similar to conventional asymptotics where n — oo with n being fixed.

e High Dimension High Sample Size (HDHSS): In this case, sample size and dimension grow
together in the sense that d/n — ¢ for some constant c. The behavior of eigenvalues of a sample
covariance matrix under this high-dimensional situation were studied in [02, 22, 40] primarily

using random matrix theories.

e High Dimension Low Sample Size (HDLSS): In this setting, the sample size is fixed and the
dimension grows in the sense that d/n — oco. An important finding in this high-dimensional
setting was studied in [01]. They showed that the first eigenvector of the sample covariance
matrix converges consistently to its population counterpart in the spiked model, where the lead-
ing eigenvalue is considerably larger than the remaining eigenvalues. An interesting geometric

structure of HDLSS data were revealed in [16].

In this chapter, we are going to study the asymptotic behavior of the sample canonical weight
vectors and canonical correlation coefficients of CCA under the HDLSS setting, where dimension

d is allowed to grow with sample size n being fixed.
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Literature in the HDLSS asymptotic study of CCA is very limited, while the behavior of PCA
components under the similar high-dimensional condition is well-studied in [23, 24]. This might
be in part because CCA is not as widely used as PCA, which is almost an indispensable tool
for dimension reduction of high-dimensional data prevalent these days, and in part due to the
complicated estimation steps involving an inverse operator as in (3.3), which makes the analysis
not straightforward. A relevant work is first addressed in [28], where the asymptotic behavior
of sample singular vectors and singular values are analyzed under a HDLSS setting. In [48], the
similar study of CCA is elaborated on, but their proof should have considered the fact that an
infinite sum of quantities converging to zero does not necessarily approach to zero. The HDLSS
asymptotic behavior of CCA components in this chapter will be studied in relatively a simple

population structure and serves as a groundwork for further analysis.

3.2 ASSUMPTIONS AND DEFINITIONS

Without loss of generality for the case where the dimensions of two random vectors X (4x) and
y (dy) grow in a sense that dy/dy — 1, we set dx = dy and consider two random vectors X (@) and
Y@ of a same dimension with mean zero. We assume that covariance structure of X@ and Y(?)
follows a simple spiked model as in [01], where the leading eigenvalues of their covariance matrix is
considerably larger than the rest. In specific, let Eg?) and Egii) be the covariance matrices of X (@)

and V(9. Then, a spiked model can be easily understood via eigendecomposition of EE?) and 2§f ),

=0 - ZA <d><XZ)T7 =0 — zdz)\ng (53(;1]?)T, (3.5)
j=1

where /\E(Z is an population eigenvalue (or population PC variance) with /\(d) > )\(d) cee > )&‘% >
0, f ; is an population eigenvector (or population PC direction) with ||§ Xi ||2 =1land ( E?,), gg{b -0
for i # j and similarly for A%ﬁ? and {gfdj? . Here, we set,
)‘g?izag(daand)\g?EZT)Q(fori:Q,B,...,d, 56
3.6
A(YC'? = oy-d* and A(Yd} =1 for j =2,3,...,d,

where one sees that the leading eigenvalues )\g()l and )\( ) become dominating the rest as d — oo.
We now set up the population canonical components. We assume that the two random vector is

related by a pair of canonical weight vectors with its canonical correlation coefficient of p. The
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population canonical weight vector ¢g?) in the X (4 part is a linear combination of two eigenvectors
an without loss of generality can be replaced wit . Tor any ¢) and similarly for
@) and £¢) without loss of lity (¢£'9) can be replaced with £ f /) and similarly f

the other population canonical weight vector w;d ) in the V(@ part,
zbg?) = cos 9X£§2 + sin nggg, @Z)&i) = coS eygﬁ) + sin 9y£)(,d2). (3.7)

Note that the angle between d&l) and 5&2 is fx and that the angle between wg,d ) and §§,d1) is Oy

as <¢g?),§§?%) = cosfx and <z/1§,d ), §,dl) ) = cosfly. At this point, we apply the change of basis to

the spaces of X(@ and Y@ so that the eigenvectors {{g?i) le and {5%) ;;:1 are represented by the
(d) ,(d)

standard basis {egd)}gzl. Then, the canonical weight vectors (1, 1y-’) given in (3.7) is rewritten

as,
Tbg?) = cos Gxegd) + sin eréd), Tb(y"i ) = cos 9Y€§d) + sin HYegd)’

and the covariance structures given in (3.5) and (3.6) are described as,

Eg?) :diag(ag(da, 7')2(, 7')2(, el 7')2(), Eg}i) :diag(o*}?/do‘, 732/, 7'32/, el 7‘}2/), (3.8)

dxd dxd
where diag(e) is a square matrix with entries of e in the main diagonal and 0 off of it. With
these population covariance structures and canonical components, the multivariate version of the

corallory 1 gives the cross-covariance structure of X(4 and Y@ as follows,

[ po% o2 d**cosxcosly  po%d*TZcosh xsinby 0 7]
AB AB 1x(d—2)
d) pT)Q(cr%,dasiHGXcosﬁy pTg(T%,sinGXsinQY
»d = 0 3.9
XY AB AB 1% (d—2) ) ( )
0 0 0
i (d—2)x1 (d—2)x1 (d—2)x (d—2) ]
where
A= \/Ug(dO‘COSZQX + T)Q(SiHQG)(, B = \/o%d*cos?0y + T)%sinzﬂy.

Then the covariance and cross-covariance structure of X (@ and Y@ is succinctly described by

the covariance structure of the concatenated random vector T4,

d (@) (d)
7(2d) _ X »2d) _ =x T =Xy (3.10)
v DT (58) =

To make the analysis a bit easy, we are going to work with a different representation of X (@ and

Y@, Let Z(4 be the 2d-dimensional standard normal random vector. Then, 729 can be expressed
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as,

(d) 1
T(Zd) _ X _ <Eg?d)> 2 Z(2d), Z(Qd) ~ N< 0

1 > (3.11)
y(d) 2dx1 2dx2d

We state some definitions used in the estimation. Since the dimensionality d is much larger
than the sample size n in the HDLSS setting, the estimation step (3.3) of canonical components is
problematic as the sample covariance matrices f]g?) and f]gfl ) are singular. There are two ways to
handle this singularity situation. The first one is to add a minute perturbation of €I for a small € > 0
to 2( ) and ﬁlgﬁj) and the second is to use a pseudoinverse such as Moore-Penrose pseudoinverse.
We use the pseudoinverse obtained from the eigendecomposition of the sample covariance matrices,

5@ = Z D (60)", B = Zijg (&) (3.12)

3

where )\g(z is an sample eigenvalue (or sample PC variance) with )\g?)l A4 )2 x 5\( c)l >0, §
is an sample eigenvector (or sample PC direction) with H{Xi |2 =1 and < sz (d)> 0 for i # j

and similarly for 5\%) and égﬁij) The pseudoinverse we employ is defined as,

(20) =3 (1)@ @) (=2 = (W) @ @) e

=1 j=1

(d)

Then, the sample canonical correlation coefficient p, is found as an 7th sample singular value from

the SVD of the matrix R(® defined in (3.4). The sample canonical weight vectors QZ)E?Z) and 1&% )
(d)

corresponding to p;

, are obtained from (3.4) using the pseudoinverses (3.13).

The success and failure of CCA can be described by the consistency of the sample canonical
weight vectors 1%?) and z/zg ) with their population counterpart @/}E?) and ¢§/€l ) under the limiting
operation of d — oo and n fixed. Using the angle as a measure of consistency, we say that @Z;g?)

(similarly 1/A1§,d )) is,

e Consistent with @Dg?) if angle(@&?), (d)) — 0 as d — oo,

e Inconsistent with @ZJE?) if angle( Ag?), (d)) —a, for 0 <a<7/2, as d — o0,

e Strongly inonsistent with @bg?) if angle(d)x , z/JX ) > /2 as d — 0.

Strong inconsistency implies that the estimate z[}g?) and 1/A1§,d ) become completely oblivious of its
population structure and reduce to arbitrary quantities, as indicated in the fact that pi/2 is indeed

a largest angle possible between two vectors.
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3.3 MAIN THEOREM AND INTERPRETATION

3.3.1 Main theorem

Let X and Y@ be the d-dimensional random vectors from the multivariate Gaussian distri-
butions with mean 0 and the simple spiked covariance matrices Eg?) and 2@ described in (3.5)
and (3.6). With the population canonical correlation coefficient p for 0 < p < 1, define the popu-

lation canonical weight vectors d)g?) and wgi ) as,
wgg) = cos foggg + sin fogg, wy) = cos Hyfi(/dl) + sin eyg%)

so that the angle between wgg) and fg?i is fx, and the angle between ng/d ) and §§,d1) is fy. Then,
the cross-covariance matrix ES?%, of X(@ and Y(? is found as in (3.9). The two random variables

X@ and Y@ can be written in a equivalent form,

d d
o [ =0 5] .,
=Nt | 2% (3.14)

Y@ (=%) =¥

where Z(29) is a 2d-dimensional standard normal random vector. The data matrix whose columns

consist of n i.i.d. samples from the distribution 3.14 is written as,

d d
xo] [ =0 s8] .,
= T A (3.15)
vo] (=) sy

where the columns of Z(2% consist of n i.i.d. samples from 2d-dimensional standard normal distri-
bution. Denote by z; and 2y the first and (d + 1)th rows of 729 corresponding to the first rows
of X(@ and Y@ respectively. Then, as d — oo with the sample size n being fixed, the limiting
(d)

behaviors of the sample canonical correlation coefficient p, ” and its corresponding sample canonical

weight vectors @g?z) and 1[1@ obtained from the data 3.15 are as follows,
Theorem 1 (Main result of the HDLSS asymptotic analysis of CCA.). (i) a > 1

e (3@ @Y P, le (3@ p@Y Py g Sd) P (m1,ma)
angle (9571, 087”) 2 0. amgle (4%, 087) 5 v, 6" 2 i

5 P - P (d) P .
angle (), ) =5 0, angle (¥, v{") >0, 5 50, i=23,....n,

7
d—o0

where
mip = (\/ ClA% + vV CQB%)Zl + (\/ C1A1Ag + / CQBlBQ)ZQ,
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my = (VCrA1 Az + VCrBiBa)ar + (VO A} + V/Ca B},

where
zl,zf”féd'N( 0, 1 )
nxl nxn
o Gkt (0R) - 20k0d +dokod e+ ()]
1 — 92 )
o Jg(—i—a%—\/(0§)2—20§(0%+40§(J}%p2+( 2)2
2 2
C C
A = A= “Y/\/< L ) +1, A2_1/\/ +1,
pPOXOY POXOTY PUXUY
Cy—0o C
By = =2 Y/\/< 2 Y> +1, 32_1/\/ +1.
POXOY pPOXOYy pUXUY
(i) a < 1

e (30,19) 2,0, o (349) £30. 49 1, 1= 180

d—00

3.3.2 Interpretation

Theorem 1 implies that where 1/3&2 and &gﬁ? converge to depend heavily on the size of the variance d
of the population eigenvector fg?i and 53(;[1) . That is, the estimates '@g?% and '@;dl) tend to converge to
the eigenvectors §§§q and fyl) when their eigenvalues Ug(da and U)Z/da become strong enough (a > 1)
as d — oo. Briefly, we summarize results. The sample canonical weight vector 7%2 (similarly @ZA)gl))
is,

e Consistent with wX if « > 1 and angle(z/JX , g?%) =0as d— oo,

e Inconsistent with ¢ if > 1 and angle(@b §X1) =0x, for 0 < Ox < 7/2, as d — o0,

e Strongly inconsistent with wX ifa<lorifa>1and angle(wX , XQ) =m/2 as d — 0.

The asymptotic behavior of the sample canonical correlation coefficient pAgd) is not straightfor-

ward to imagine. Let’s take a simple example where ag( = 1,(7%( = 1,7')2( =1 and 7')2, = 1 in the

spiked covariance structure in (3.5) and (3.6). In this case, referring to Theorem 1, the sample

A(d)

canonical correlation coefficient p;’ converges in probability to the following random quantity,

(d) P (mi,mg)
d—oo ||ma|l2llmal2’
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where

- <M+m>zﬁ(m—m>z%

T@(Jsz¢1p>a+<ﬂ+pZle>%

Note that z; and 2z are samples from n-dimensional multivariate standard normal distribution.
It can be easily verified that each element my; of m; (similarly for mg; of mg) follows a standard
normal distribution,

S (m; 1—p>zu+(mgm>

(LR (YR T

295 ™ N(O, 1),

) s VO,

which leads to,

[millz ~ VX2, [Imalla ~ VX3,

where x2 denotes the chi-square distribution with degree of freedom of n. Since the numerator

part (my,ms) is not a degenerate random quantity, one sees that [)gd) does not converge to a trivial

random variable such as 1.

Now increase the sample size n to see which value the sample canonical correlation coefficient
ﬁgd) converges to. By the law of large numbers and noting that the elements m1; and mo; are from
i.i.d. standard normal distribution,

n
lmall3 _ > mi; Py lmalll g™ Py
n i1 n n—oo n - n mn—oo

Furthermore, noting that m; and me are i.i.d. samples,

<m1;1m2> _<\/1+p-2h/1—p> (x/1+p;\/l—p>§"32i~

+<¢T+p+vT—p>(vT+p— 1—p)" i

2 2 pt
N <\/1+p+ \/1—p>2izliz2i
2 ; n
=1
n (\/1"‘[)_\/1_9)22":211'221'
2 n
i=1
Py (VitptVI=p\ (Vitp—V1-p) _
n—00 2 2 ’
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which confirms the conventional large sample asymptotic property of the statistic ﬁgd),

~(d P
i 2
d,n—o0
3.4 PROOF

We state here the theorem on the HDLSS asymptotic behavior of the sample eigenvalues and vectors

(or sample PC variances and directions) included in [24] as frequently referred in this chapter.

Theorem 2 (HDLSS asymptotic result of engenvalues and engenvectors.). Under the Gaussian
assumption and the one spike case of (3.5) and (3.6),
(i) the limit of the first sample eigenvalue S\S?Z (similarly for 5\%)) described in (3.12) depends on

«,

3 o

Ug(%, a>1,
A s 2
—_— — 2 Xn X —
max(d®, d) oxwta, a=l
Y
o a < 1,

as d — oo, where = denotes the convergence in distribution, and x? denotes the chi-square
distribution with degree of freedom n. The rest of eigenvalues converge to the same quantities when

scaled, that is, for any « € [0,00),1=2,3,...,n,

3(d) 2
A T
X, X s d — oo,
n n

in probability.
(ii) The limit of the first eigenvectors ég?Z) (similarly for égii)) described in (3.12) depends on «,

1, a>1,
2(d) (d 2\ 3
Eran=10+25) " a=1
OxXn
0, a <1,

as d — co. The rest of the eigenvectors are strongly inconsistent with their population counterpart,

for any a € [0,00),7 =2,3,...,n,
(€88 =0, as o,

in probability.
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3.4.1 Settings

Let X(@ and Y@ be d x n matrices that collect d-dimensional vector observations measured on
the common set of n samples. Following the representation (3.11) of the two random vectors X ()
and Y9 we, using covariance and cross-covariance structures given in (3.8), (3.9) and (3.10), write

X(@ and Y@ as,

1
2

(d) 1 (d) (d)
X _ <2(2d)> 2 y(2d) _ Yy vy 7,(2d) (3.16)
y (@) r (2<d> )T 5 (@) ’ '
XY Y

where Z(2% is a 2d x n matrix with columns of Z(2% being i.i.d. observations from an 2d-dimensional
standard normal distribution. We introduce notations for elements of the matrix Z2% for a later

use in the proof,

2ZX11 2X12 .-+ ZX1n ZX1e
7@
zCd _ |BX | _ |FXdt 2Xd2 oo Exan| | 2Xde (3.17)
@] T - ! ‘
A% 2y11 2Y12 .- ZYin 2Yle
2ydl 2Yd2 --- ZYdn ZY de

where Zg?) denotes the upper half of Z?%9 corresponding to X(® (similarly for Z@), Zxij, for
i=1,2,...,dand j =1,2,...,n, represents the ith element of the j observation in Zg?) (similarly
for zy;j), and zxke denotes the kth row of 7,(2d) (similarly for zyke. To investigate the asymptotic
behavior of the sample covariance and cross-covariance of X4 and Y@, we want to expand the
matrix in (3.16) to get an explicit expression elementwise. This can be down either by manual or
using symbolic operations in Matlab. The results, however, is too long to be included in this page,
so we are going to work with a big O, small o representation for the elements that have lengthy

expressions. The covariance matrix Eg,? ) takes the following eigendecompsition,

2d
d d) .(2d a\ T
=00 = SR (57) (3.18)
i—1
where

AZD = 0p(d), AZD = 0p(d), AE = 0p(1), AZ = 0p(1),

ARD — 22 i=56,...,d+2
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AP =12, j=d+3,d+4,...,2d,

62 = [0p(1) Op(-k) Op(1) .. Op(1) Op(1) Op() Op(1) ... Op(1)] |
&5 = 0p(1) Op(k) Op(1) Op(1) Op(1) Op(-k=) Op(1) ... OpuﬂT,
5?5)::01:(1) Op(1) ... Op(1) op(1)]T,

(2d) _ [ T

Sy = Op(1) Op(1) ... Op(1) OP(l)] ;

¢ — 2D i —56,....d+2,

el =PV j=d+3,d+4,...,2d.

Then, using (3.16), (3.17) and (3.18), the data matrix X(® and Y(? can be expressed as,

A1ZX1e T 022Xx2¢ + A32y1e T A42Y 20

aszx1e + A62x2e + a72y1e + a3(1)2y 26

TXZX3e
X (d) TXZX de
- A , (3.19)
Y@ bi1zx1e + b22x2e + 032y 10 + D12y 2e

bs2x1e + b62x2e + U72y 10 + b32y 20

TY ZY 3e

TY Y de

where a1, a3, by and b are random variable of magnitude of Op(v/d®), and the rest of a; and b; are

of magnitude of Op(1). Let c1,c2,dl and d2 denote the first, second, (d + 1)th and (d + 2)th row

of the matrix (3.19), respectively.

Cl = A1ZX1e T 022X 2e + A32Y 16 + G442V 20,

Co = A5ZX1e T A6ZX2e + A72y 16 + 82V 20,

(3.20)

di = b1zx1e + b22x2e + D32y 16 + bs2y2e,

do = bszx1e + bg2x2e + D72y 10 + D32y 20.

The sample covariance and cross-covariance matrices ﬁ]g?), ﬁ]gﬁi) and ﬁ]g?%, are found as blocks of

the following matrix,

nZS()

(53)’

5@ (d) @]"
nS¢ | |y@] [y@] '
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where elementwise-explicit matrices are given as,

& (d)
EX =
<01, 01> (01, C2> TX (01, ZX3.) TX(Cl, ZX4.) . TX<Cla ZXd.)
(€2, ¢1) (2, ¢2) Tx (€2, 2X30) Tx(C2, 2x40) ... Tx(C2,2Xde)
1 |7x(2x30,c1) Tx(2x30,C2) T2 (2X30,2X3e) To(ZX30;246) -+ To(ZX3e,2Xds)
- )
nlrx <ZX4.701> TX <ZX40702> 7')2(<ZX4072X30> 7')2(<ZX4072X40> T)2(<ZX4anXdo>
Tx(2xde, 1) Tx(2XdesC2) T3 (2Xdes230) To(2XdesZ16) -+ To(2XdesZXde)
S(d)
EY =
(dy,dy) (dy,d2) Ty (di,2y3e) Ty (di,2vae) ... Ty {di,2yde)
(da,dy) (da, da) Ty (d2,2y3e) Ty {d2,2vae) ... Ty (d2,2yde)
1 [Ty {(2vse.di) Ty (zvse.ds) TE(2v3e,2v3e) Ti(2v3e2vae) ... Ti(2v3e,2vde) (3.22)
- )
n TY<ZY4.,d1> TY<ZY4.,d2> T2 (2v a0, 2v3e)  Te(2vdes 2vde) - T (2v4e, 2yde)
v {(2vde,d1) Ty (2vdesd2) TE{(2vde,2v3e) To(2vde 2vae) --- Ti(2vde,2vde)
()
Xxy =
(c1,d1) (c1,d2) Ty (€1, 2y 3e) Ty (€1, 2y 4e) . Ty (€1, 2y de)
(c2,dy) (c2,d2) Ty (€2, 2y 3e) Ty (€2, 2y 40) Ty (C2, 2y de)
1 | 7x(2x3e,d1) Tx(2x3e,d2) TXTY(ZX3e;2v3e) TXTY(ZX30;2v4e) --- TXTy(ZX3e,2Yde)
M 7x(2x4e,d1) Tx <ZX4.,d2> TXTY<ZX40>ZY30> TXTY<ZX4072Y40> TXTY<ZX4.,ZYd.>
Tx (2xde;d1) Tx(2xde;d2) TXTy(2Xde;s2v3e) TXTY(ZXde,2vde) ... TXTY{ZXde>2Vde)

3.4.2 Notation

Here, we introduce notations to be used in the proof for HDLSS asymptotic behaviors of a random

variable.

e For a d-dimensional random variable X (4, we say that X (9 = op(d®), for a € R, if, Ve > 0,
x (d)

lim P ( ) =0.
d—00

a7
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e For a d-dimensional random variable X (@) we say that X (4 = Op(d®), for a € R, if, Ve > 0,

there exists a finite C' > 0 such that,

d

e For a d-dimensional random variable X (@ we say that X (9 =< d°, for o € R, if,

x (d)
da

>M|> <€ Vd.

XD = Op(d*) and XD #£ op(d®).

3.4.3 Caseof a>1

First, we prove Theorem 1 under the condition of o > 1 with the spiked model of the population

covariance structure of X(9 and Y@ described in (3.9).

3.4.3.1 Behavior of the sample cross-covariance matrix We now investigate the HDLSS

()

asymptotic behavior of the sample cross-covariance matrix X% given in (3.22), in specific, its

)

sample singular values and singular vectors. The singular value decomposition (SVD) of f]ggy

gives,
() a\T
2XY Z XY@ X1 < > ’ (323)
d d N ~(d ~(d . d) A(d
where )\g(.%,l > )\g(%Q S>> A %, >0, ||17g(2|]2 = ||17§,Z)H2 =1fori=1,2,...,n,and (n&i,n&?)

<77§/z)777§/0lj)> =0, for i # j.

Lemma 2 (CCA HDLSS Asymptotic Lemma 1.). Let Cxy and Mxy be,

Cxy 0
d _
Cxy = 11 <Clag 1>, Mxy = b=

(d-1)x1  (d—1)x(d—1)

where ¢1 and dy are defined in (3.20) and so Cxy is a non-degenerate random variable. Then, for

a>1,
N 2
)
IEXY _Myy| o,
d d—o0

where || ® | is the Frobenious norm of a matriz.
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Proof. Let Mg?%, be,
{e1,d1) 0
da
M@ 1x(d—1)
XY
0 0
(d-1)x1 (d—1)x(d—1)
It is obvious to see that,
2
MY — M H L, 0.
H XY XY p e
Using the Cauchy-Schwarz inequality,
o (d 2 d
”Zg& M@ || = (c1,d2)?  (co,d1)? | (ca,d2)? (c1, 2y ie)?
qo - XY - d2a dq2o d2a + 7 d2o
F =3
d 2 d 2
9 (€2, 2vie) 9 (2xie,d1)
+ Ty Z d2a + X Z d2a
i=3 i=3
d
2 <ZX107 d2 ZXzo) ZY].
TR e TR Z Z
=3 =3 j=3
(c1,d2)® (e, dn)? Czad2 2 Z lle1ll3]lzviell3
— d2a d2a d2a
d

2 ||C2H§||Zw-|!2
+TYZ d2a

N XZ l2xie[13 1213

an

2 N e 3llda 3
Z d2a

7)2(7_32/ Z Z |l 2xi0 |5 HdJLZYJ-Hz

i=3 j=3

Since {(c1,ds)?, (c2,d1)? are Op(v/d®), and (cz,ds)? is Op(1),

(c1,d2)? p (co,dq)?
2o i T e

It is not hard to see that ||zxie||3 ~ X2 and ||2ye]|3

BN 0’ <62)d2>2 p

d—o0

— 0.

d—o0

d2a

~ x2, since the elements of zx;e (respectively

Zyie) are the ith components of the i.i.d. multivariate standard normal samples of size n. Note that

the magnitudes of ||c1|3, ||le2||3, [|d1]|3 and ||d2||3 are of Op(d®). Applying the law of large numbers,

we have,

2
TY

2
2viell3

2 Z leill3ll2yiell3
d2c -

d—o0

OXOP()

") =0,

2
2viell3

2 Z ”02”2 |ZY2-||2 _
d2c -
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—>0><O><E(Xn)—0,

d—00

|ZXZ°H2

d
23 ldr[l3llzxiell3 7%
X ‘ d2e o do-1

=3
= 0% Op(1) x B(xp) =

d—o0 7

IZXz'-H%

d
=5y 2|3l 2xiell3 _
X . d2c -

Ly 0x0x E(x%) =0.

d—oo

Using o > 1 and the law of large numbers,

d d d d
2 2 ZZ ||ZXz'-||%HZon||% _ 7)2(712, Z HZXi-H% Z ||ZYj-||%
TXTy q2c T J2a—2 d d
i=3 j=3

i=3 j=3

— 0x E(x;) x E(x3) = 0.

d—o0
Therefore,
n¥yy (d) p
H do My e 0

O

Lemma 3 (CCA HDLSS Asymptotic Lemma 2.). Let Mxy be the matriz defined in Lemma 2.

Let )\g?%“, ﬁg& and néf be the first sample singular value and singular vectors from (3.23). Then,

fora>1,
DA (@) (@7 "
g b () - M| Do

Proof. Using Mg?%, defined in Lemma 2 and the triangle inequality,

5 (d)
n (d) [ (D\ T d
oy (i) - MG

doz
\(d \(d < (d
n2G @) (B A e ( +(d ))
Jo XY Jo Jo Mx1 |y

F
&(d &(d {(d
Yy M@ nSY AN (ﬁ(en)T
— da XY da da X1 Y1 F
By Lemma 2,
&\ (d) 2
n¥xy (d) P
de B MXY d—oo 0
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Write M(m)’ as,
d <Cl7 dl) d d
M()n)r - 76% ) <€§ ))

Since the first sample singular value ;\g?%/l and singular vectors ﬁg?i and ﬁ;ll) provide the best rank-1
approximation to 5‘&?%/1 /d*,

2

$@ 5@ 7|17 (@) ler, dy) T
XY XYl 4(d) (ﬁ(d)) < xy _ \C1,01) (d) (e(d))
do de X1 Y1 - = do nde 1 1 B
A d d 2
= M
de n
F
Ls0.
d—o00

O

Lemma 4 (CCA HDLSS Asymptotic Lemma 3.). For a > 1, the first singular value /A\g?%q and

stngular vectors ﬁg?% and ﬁgfll) converge in probability to the following quantities as d — oo,

nj\g?)n NN o (d) d)H N )H
d® d—oo XY 77X1 2 d—o0 0, nYl 2d%oo

where Cxy is defined in Lemma 2.

Proof. Let n(d) and ﬁgf be ﬁg?% and 77;1) where their first entries are set to 0. Let ng(i( ) and n(d)( /)
be the ith and jth entries of 77&(% and 77§,1) By Lemma 3,

N N 2
(50 el - (5) 5 (0)°S: (0

j=2
2 (d) 2.4 d
- (Ad) S (100) (126))°
i=2 j=2
Ls0.
d—o00

First, we show that ( XYl /d*)? > 0 in probablhty Suppose that ( XYl /d*)? converges in proba-
bility to 0. Then, noting that ||77 H2 =1 and ||77 H2 =1,

LB S ) 2 ()2
- (d) 33 (106) (196)
F i=1 j—1

AD N T
it (i)




i
2

il o

L (d
(38

da

@ \?2
_ XY1

L, 0,
d—o00

p

which contradicts to Lemma 3 (note that the limiting matrix M is not a degenerate matrix).

Therefore,

[, 2o or a2 2

2 d—o0

2 d—>oo

We want to show that both Hf]&?i”% and Hﬁ%)H% converge to 0 in probability. Suppose that Hﬁg?mg
converges to 0 and H77y)||2 > 0 in probability. Since the norm of ﬁg?% is 1, its first entry ﬁggi(l)
converges in probability to,

(#w) =1l 2

2 d—)oo

T
Then, the squared sum of the entries in the first row of ( XYl /d™) g(i ( y) with the first entry

excluded becomes,

AD
T (D

= (5 oy S 080y 20

Jj=2

which contradicts to Lemma 3, according to which the above quantity should converge to 0. Argu-
ment is similar for the case where H’7Y1 |2 converges to 0 and H77 H2 > 0 in probability. Hence we

have

2, 2 0.t 2, 22

2 d—oo 2 d%oo
Note that, since the norm of ﬁédl) is 1,
) =1- [, 2
(nYl( ) 1 2 dﬁoo

Therefore

i — e[ = (10 - 1) + |80 2o

2 d—o0
8 - 0] = () 1)+

)|, 2o

2 d—o0
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To calculate the limiting value of S\E?%,I /d* as d — oo, using the unitary invariance property of the

Frobenius norm and the previous result about the limiting vectors of ﬁgﬁq and ﬁg/dl) as d — oo,

2

J(d
A (@) (A<d>)T M@
do X1 Y1 XY

2

~

(d)
nA (c1,d1) (a@y [ @\7T
[ ey - e o]

[P ey ()" - ) ()T 0 (o) )

2

2

F

de de

(e d) V| nAG A T @) (@ T @
_< d <cl,d1>/da_<’7Y1) “l (61) Ix1

J(d
A tena (ﬁ%))Tegd) (e@)TﬁQ

2

F
B 2
LyA? (= -1
d—oo <C )
where,
5 (d)
(c1,dy) . NAYyq . (e1,dr)
dYoo d® Ao de » C= IS do
By Lemma 2,
nA . (d) A(d d p
i M| 2o

Since A < O,(1),

Therefore,

O]

Lemma 5 (CCA HDLSS Asymptotic Lemma 4.). The magnitudes of the entries ﬁg?i() and 17( )( ),
1 =2,3,..,d, of the first sample singular vectors 7]&% and n(d are of Op(1/vd®) as d — oo.

Proof. Let Eg?%/(z j) be the entry of the ith row and jth column of 2( ) Consider 2&?{,(1,3),
which is O,(v/d®). The contribution of )\g&,l, f]ggq and 77§/) to Eg(%,(l 3) is,



From Lemma 4,

d—o0
Therefore,
NG 1
ng/%(?’) =0p (@)
Argument is similar for the rest of entries. O

Lemma 6 (CCA HDLSS Asymptotic Lemma 5.). The magnitudes of the sample singular values
AQ; fori=2,3,..n are of O,(d).

Proof. Let E(d) be the (d — 1) x (d — 1) sample cross-covariance matrix ﬁ)g?%/ from which the first
~(d) ~(d)

row and column are set to 0. Let 7y; and 77§/) be ng() and 7)y-; where their first entries are set to

0. Then,

L () 3 () -

n_5(d) (d) (d)
Ay ~(d) (~(@\T _ anY nAxy1 -(d) (~(d)\T
Z d X (77Yi) =T 4 X1 (771/1) )

=2

n 1(d < (d J(d
Z m&&iﬁ(d) <ﬁ(d))T ”2%/ ”)\gc%qﬁ(d) <ﬁ(d)>T
P d X1 Yi B — d d X1 Y1

Note that ||ca||3 and ||d2 |2 are Op(1) and that ||zy;e||2 ~ X2 and | zxie||2 ~ Xx2. Using the Cauchy-

Schwarz inequality,

~(d 2 d
nEg(%, B <62,d2 0272Yzo

d - +T Z
F =3

d d d 2
da)

+7_)2( <ZXzCoZ>2 2 +TXTyZZ ZXzo;Zon
=3 =3 j=3
< ez, d2)” 027d2 2 Z eall3 ”ZYZ-H%

d
Z |ZX20H ||d2||2 2 QZ HZXZ-H HZYJ‘HZ
i=3

=3 j=3

_ {ca,dg)? 02 [2vie 13
- |l 5
}2/ Z HZYz-||2 Z ’ZX%OHQ Z HZYJ'HQ
=3 7=3
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o 040+ 0+ T B2 ()
d—o0

B

Using Lemma 4 and 5 on the magnitudes of ;\g?%q and the entries of ﬁg?i (1) and ﬁ;df( ),

ay () /. 1 )
A = 0,(d), () = 0p(—=),i =2,3,...d.

Vde
Then we have,
. 5 A )
A T /\(d) d d ) )
S (1) - () S5 (0)° (410)
F 1=2 j=2
2 2
o 2 (1610) L (A616)
:(gg)z( d)z( d)
=2 j=2
2 2
()5 (VIR0 o (Va0
de P d = d
= 0,(1).

Hence

= 0,(1). (3.24)
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<
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—
-
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i=2 J=2 k=2
() 3 dd
2y 22 SR (DG () () ik ()
i §=2 k=2
xy - ) V2N () )2
_Z ) Z(nXi(])) Z( Yi (k))
7j=2 k=2
XYz (d%fz' = ~(d) (d) z ~(d) (d)
+az ((Mmﬁ”S@(@n%)
z;ﬁz j=2 k=2
..(d 2

Yz
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A Mo (@) @)\ (@) ()
+2 Z 4 4 <nXi7nXi’> <77Yi?77Yz”> :
2<i,i' <n, ii!

We, to simplify the last part in the above equalities, show that ||17X) |2 and ||17Yd2 |2, fori =2,3,...,n,
approach to 1 and that <?7§?37 ngﬁ)) and <17§,2,77§f?> for i,7/ = 2,3,...,n and i # ¢, approach to 0

as d — oo. Consider HnX2H2 Since HnXl — e )”2 converges in probability to 0 by Lemma 4 and

1533 =1,

Jaft],=1- () 2o
which leads to,
(et )< [

Using the orthogonality of ﬁg‘(i} and f]g?%,

2
~(d
)H x1-"50.
2 d—oo

i), <

d) ~(d ~(d d d) -~
<’7§<i77§<%> 7O masda) + <n§<%n§<%> =0.

Since ﬁg?%(l) converges in probability to 1 by Lemma 4, we have,

(d) p
fxa(1) pd 0.

. ~(d
Since [[7\9)]3 = 1,

[, 2

2d%oo
Simiarly,
A1 251, 59" 251, i= 2,3, n.
X3 2d—oo i 2 d—oo

Now consider (ﬁ)?g, ﬁ)?3>. Since ﬁg?% and ﬁg?% are orthogonal,

d) A(d ~(d d d) ~
<’7§<%77§<3;> (A1) + <n§<%n§<%> =0.
We showed that Hn ||2 and ||77 HQ converge in probability to 0, which implies,

(#0.48) 250

Simiarly,

<77§?2,77§2/>di>00, <77§/di), ﬁ(d)>d—> 0, 4,7 =23,...,n, 1#7.
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Then, by (3.24),

2

n

> M )

1=2 F
1@ 1(d)
Axyi _(d)||2 Axvi Axyi [ ~(d) ~ _(d) A(d
Z XY H |7 > 2 G GO0 (i Al )
2 N o, d d
=2 2<4,i' <n,i#d!
b (A8
22 \5E) -ow
=2
Hence, the magnitudes of 5\&?%/1., i =2,3,..n are of Oy(d) as d — oo. O

Lemma 7 (CCA HDLSS Asymptotic Lemma 6.). This lemma improves Lemma 6 by providing a
1(d)

precise limiting value. The sample singular values Ay, scaled by 1/d, for i = 2,3,..,n, converge

in probability to the following quantity as d — oo,

5@
2XYi Pog i=2.3,...,n.
d d—oo

Proof. Let ig?%, be the (d — 1) x (d — 1) sample cross-covariance matrix f)g?%, from which the first

row and column are set to 0. We showed that,

& [ 2

~(d) (d) (d)

and 7)y,/ where their first entries are set to 0. Then,
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d - d) ~(d - 2
ray M0 (50 50) (i) + 3 (B ) u L

=2

2
N My (@) @)\ (@) (@)
v2 3o SO A ) ().
2<4,i' <n,iF#i
(4)
In the proof of Lemma 6, we showed that Hﬁg?g”% and Hﬁ@“%, for i = 2,3,...,n, converge in

probability to 1 and that <"7§?27"7§(2> and <ﬁ§;?,ﬁg?2,), for 4,7/ = 2,3,...,n and i # i, converge in

probability to 1 as d — co. Since )\XyZ-, for i = 2,3,...,n, is of magnitude of Op,(d) by Lemma 6,
we have for (3) and (4),

n 3 (d 2
3 A4 7@ 2
d

12 < A4 i P
2_,2; d d:oo’

Xi Hnw
1=2 2 =
1(d) ()
AXyi Axyi /~(d) ~(d) (@) ~(d)
22<,Z: L, 4 d <"XZ’”X%><”YZ’"YZ>d§20'

Since Hﬁg?Z)H% and ||ﬁ§;?”§, for i = 2,3,...,n, converge in probability to 1, the probability that an
infinite number of entries of ﬁg?i) and ﬁgi.) are of (< 1/d”), for 0 < a < 1/2, is 0. Suppose that an
infinite number of entries of ﬁg?g are of (< 1/d%), for 0 < a < 1/2. Then, the squared sum of its
entries blows up,

d d2aﬁ(d) ;

d 1 Xi(]) < 1
;(”X@) d2a—1j§ d djoooo t<3

Hence, only a finite number of entries of ﬁg?g and f]§,di) are of magnitude of (< 1/d%), for 0 < a < 1/2

and the rest of entries are of Op(1/v/d) as d — oo. Using this fact and Lemma 5,
d) ~(d N d
(i, 7)) = Zﬁﬁ&(j)ﬁ&f ()

_Z~<d G+ 790)

jel Jel
(ﬁﬁﬁ?ﬁ(j)) (Vi)

= Op(l/\/do‘_l), 1=2,3,...,n
where I is an index set denoting the entries of ﬁg?g of magnitude of (< 1/d%), for 0 < a < 1/2.

Similarly, the magnitude of <77§/1)’77§/1)> is Op(1/Vdo=1), for i = 2,3,...,n. Hence, by Lemma 4
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and 6,

3G @ @ @ @
2)—22 d d <77X1777Xz><77Y1777Yz>

e Aﬁ?% ST /) () T/ @)
o M (v 50, (V8 )
— 0p(1).

We prove that the term (2) above indeed converges to 0 as d — oco. With Lemma 5 and the fact
that (n&?i, ﬁg(b =0and IIﬁE?,) || converges in probability to 0, for i = 2,3, ..., n, the Cauchy-Schwarz

inequality implies,

2
d
(d) 1\~ (d 2 L (d) ;- A(d
(I Am) = =i ol
7j=2
d) ~(d
= (7] >
) ~(d
<
Jaf8], 821,
: (
=3 (o) [,
j=2
_ 1 (\ﬁ” iU )> @2
T do—1 d Mxi 9
j=2
1
= OP(W)
Since f]ggq(l) converges in probability to 1 by Lemma 4, we have,
(d) 1 )
fx; (1) = Op( ), 1=2,3,...,m. (3.26)

Similarly,

Vi
1

i (1) = Op(

\/F), 1=2,3,...,n.
Consider 2&?%/(3, 1), an entry in the third row and first column of the sample cross-covariance

matrix ﬁ)g?; given in (3.22). Then, we have,

2&?;(37 1) _ Tx (2x30, d1)
./da 1/dox

\/dia Z AXY?, A(dz )77(;?(1)
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which implies that,

da T <ZX3., d]_> n S\(d) . A(d A(d)
Vaei?(3) = (X - iy (3) (Ve (1)
A ~(d e — 11X Yi
)‘g(%q’?g/%(l) nvd o Vel ( )

In a similar argument as above, it can be shown that,

0% - rx(exjed) N~ A () |
Vi) (j) = 0 — (7) (Wnyi(1)> . j=4,5,....,d,

2(d)  A(d «a
MO nvd

~(d d® Ty (€1 2yke)
Vi (k) = @ @) < =
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Then, the term (2) goes as follows,

n 3(d)
=23 v A (00 50 () 7

(d) n /\(d) d 2
XYlZ AXYi Zﬁ . (Z”él nYz >
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1 (d) n_5(d)
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3@ d n 5@ d
+220050 ) " X0 @) | Yk
i=2 k=3
5@ J n_ 5@ d
PSP TR R) | 3 i 99 )
i=2
5@ 5@ d d d (d)
XYl Z XYi Z <Z A9 (k )
Using Lemma 4, 5 and the fact that only a finite number of entries of ﬁg?g and 77%), fori =2,3,...,n,

can be of magnitude (< 1/d?), for 0 < a < 1/2, the first three terms in the last part of the above

equalities becomes,

A (D) NG
A d d AXYi (d) jo A(d
22505 @) 2) Y XA @) 2)
=2

2\ . a v o)
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The fourth term expands as,

n d d
X“ Z s (Zﬁd%umﬁ??(j)) (Zﬁ&%(k)ﬁ@(k))

7j=3
G 1=, 2 () 1y (D)
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A L Ay
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Using the the Cauchy-Schwarz inequality on <77§?2, ﬁg}% fori,j =2,3,...,n, the law of large number

and the fact that « > 1 and only a finite number of entries of ﬁg?g and 77%), fori=2,3,...,n, can
be of magnitude (< 1/d%), for 0 < a < 1/2,, it is not hard to see that,

AXY1 i g?%’z ida _i 5\&?%/1 A(d ()(W d)( )> A(d)()
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x<zd‘“<— - A (VaTilw) n@(kz)) ﬁ&f?(k))]
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We now prove that the term (1) converges in probability to 7272 as d — oo,

o) S (400)° S (#009)° 2 k.

2(d 2 4
Jj=2 k=2

which implies that )\ Y /d, for i =2,3,...,n, are squeezed, by the condition of (3.25), to converge

in probability to 0 as d — co. The term (1) can be written as,

_ (A 2<A<d>2 20 (A1) (0SS (50 )
= ¥ fixi( )) <77Y1(2)> + d (77)(1(2)) Z(Uw(lﬂ))
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By the use of Lemma 4 and 5,
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Note that the magnitudes of Tx (zx3e,d1)/nVd® and 7y (c1, zy3e)/nVd® are of (< 1) from (3.20).
Using Lemma 4, 5 and (3.26),
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The second term in the last equality above converges in probability to 0. Using the fact that @ > 1

and only a finite number of entries of ﬁg?g and ﬁgfli), fori=2,3,...,n, can be of magnitude (< 1/d%),

for 0 <a<1/2,

1 Zn:ﬁg?%/vz (Wﬁgﬁl )Zd:T ZX]udl \f77 ( )
d z

d2a—2 . d
=2 7=3

n 1 (d) d ~(d)
)‘XYi /a—1.(d) TY<ClaZYk-> \/377“ (k) P
s (Zd( EE) S 4 )i’
i=2 k=3

The third term also converges in probability to 0. It easy to see the result with the following
equivalent form, noting that each inner product is bounded by 1 by the Cauchy-Schwarz inequality
and that a > 1,

2
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Now, look at the first term. Denote by d; (i) and c¢;(7) the ith entries of the vectors d; and ¢; given
n (3.20). Then, recalling that inj ~ x? (similarly z}%ij) and that zx; and zyy; are independent

(similarly for zy; and zyy;) and using the limiting quantity of the first sample singular value in

Lemma 4,
2 d 2 d 2
de 1 (zxje,d1) (€1, 2y'ke)
2 _2 Jj®s )
TxTy ( ROB ) 22<a Z o
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— TXTy 55—
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> 7%V

where the last inequality results from the Cauchy-Schwarz inequality of (c1,d1)? < |lc1|3]d1]|3.

Then, the condition of (3.25) completes the proof. O
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3.4.3.2 Behavior of the sample covariance matrices We investigate the HDLSS asymp-
totic behavior of the sample covariance matrices ﬁ]g?) and 2%;1 ) given in (3.22), in specific, its sample
eigenvalues and eigenvectors. Here, we only include the result of the analysis of ﬁ]g?) as that of

f)gf ) is similar. The eigendecomposition of f)g?) gives,

S(d) N () ) (g T
50 = 303080 (60)" 5o
i=1

where )\g()l S\(d) > > 5\( >0, H{XZ)HQ =1 and <§sz ) =0 for ¢ # j.

Lemma 8 (CCA HDLSS Asymptotic Lemma 7.). Let Cx and My be,
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Co = tim J0lB o _ 1x-1)
d—oo  d%

0 0
(d—1)x1  (d—1)x(d—1)

where ¢y is defined in (3.20) and so Cx is a non-degenerate random variable. Then, for a > 1,

. 2
nEg?) M 250,
de X d—00
F
Proof. Let Mg?) be,
Hfgi\% 0
M(d) _ 1x(d—1)
0 0
(d-1)x1 (d—1)x(d—1)

It is obvious to see that,

HM( MXH 2.

F d—oo
Using the Cauchy-Schwarz inequality,
& (d 2 d
”Eg() _ M9 _<Clvc2>2 4 (ca,c1)? i <C2762 Z (c1, 2xi0)?
do X T 2 d2o d2a
2 =3

d d d )2
Z CQ>ZX10 +T ZZ ZquZXg.
=3 =3 j=3

(c1,2)? | {ea,c1)? | (c2,c2)? 2 lleall3llzxis I3
S d2a d2a + 204 2 Z d2a

e Z 2|3 ”ZXz-Hz 4 ZZ [2xiell3]1 25015
d2a d2a

=3 j=3

65



Since {(c1, c2)?, {(ca,c1)? are Op(@), and (cz,c2)? is Op(1),

(e1,¢9)%  p (ca,c1)? p (ca,ca)? p
d2a djo()’ A2 deso T d2@ djoo'

Note that ||zxie[3 ~ X2 and that ||c1||3 and |cz||3 are of Op(d®). By the law of large numbers,

d
dq 22 | 2x0I3
o d

2 =3

25 0% 0p(1) x E(x%) =0,

d

23 3" leill3llzxiel 7%

X d2c T o1
=3

d—o0
2 d
02 Z leal3llzxiell3 _ 7% || do ZI!Z}@-II%
d2e da—l /do‘ 2= d

L, 0x0x E(x%) =0.

d—00

Using the fact that a > 1, ||zxe||3 ~ X2 and ||zyie||3 ~ X2 and applying the law of large numbers,

d d
4 ZZ HZXz‘oH%HZXj-HQ _ Z HZXonz Z HZXJ'HQ
TX d2a d20¢ 2

i=3 j=3

Pyoxnxn=0.

d—oo
Therefore,
A (d) 2
nXy (d) p
—= - M — 0
de X d—o00

O

Lemma 9 (CCA HDLSS Asymptotic Lemma 8.). Let My be the matrix defined in Lemma 8. Let
5\&?)1 and éggq be the first sample eigenvalue and eigenvectors from (3.27). Then, for a > 1,

2

2 (d)
nAX) 2d) s\ p
de E ( Xl) MX dﬁooo.

Proof. Using Mg?) defined in Lemma 8 and the triangle inequality,

3 (d)
nA @\ T d
e )" -

&(d (d {(d
_ <nz§() _ M<d>> _ <n2§<) _ A% (g(d))T>
- da X da da X1 X1

F
& (d &(d (d)
< ”zg() _MD| o ”Eg() n/\Xl £(d) (é(d))T
- da X da da X1 X1
F
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By Lemma 8,

”ﬁ]g?) (@) i p
M —
de X P d—o0 0

Write Mg?) as,

o el @/ @\T
M - lald o ()

NG

Since the first eigenvalue Ayj and eigenvector fg?i provide the best rank-1 approximation to the
matrix 5\&?)1 /d”,

~ ~ 2
R

- Zag en)”

N 2
S a2 T
< ||Zx _ 2,(d) ((d)

Sl ge T pge @ (el )

F

&(d) (d) ||?
< Xx _MX
|| d« n
F
Ls0.
d—oo

O]

Lemma 10 (CCA HDLSS Asymptotic Lemma 9.). For o« > 1, the first eigenvalue 5\&?)1 and

etgenvectors ég?i converge in probability to the following quantities as d — 0o,

1 (d)
n)\Xl p
4 doe ’5X1_61 HZd:)oo

where C'x is defined in Lemma 8.

Proof. Let § be 5X1 where their first entries are set to 0. Let 5 ( ) be the ith and jth entries

of le. By Lemma 9,

(Yl bl - (38) 5 (o)'s;
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First, we show that ( / d®)? > 0 in probability. Suppose that ( / d)? converges in probability
to 0. Then, noting that H§Xl||2 =1 and H§X1H2 =1,

2—(

d
A4 £ (wd))T
da X1 X1

d

>/>
\/
[\
[]=

(€80’ (E00)"
=1 j=1
d d 9
Z((d) S (E0)

i=1 j=1

I,

d—>oo

which contradicts to Lemma 8 (note that the limiting matrix M is not a degenerate matrix).

Therefore,

e, 0
Note that, since the norm of ég?% is 1,
) =1, 2
(gXl( 6 2 d—)oo

Therefore

00 = (e 1)+ |’ 2,

2 2 d—>oo

To find the limiting value of S\g?)l /d* as d — oo, using the unitary invariance property of the

Frobenius norm and the previous result about the limiting vectors of ég?i as d — oo,

nAx1 2@ (p@\T d
dflgg(i (5&(%) _Mg() .

- e () - Tl (o

=P () e ()" e - Lo ()" g0 (0 e

2

2

F

-5 e iy ()"

F
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2

nj\g?)l/da _ (”(d))T (d) (e@)TéCg?}

2
(el
da

el3/ae ~ \>x1) 4 .
B 2
p 2
A= -1
doe (C )’
where,
3 (@) 2
o lels oA g a3
A=l e B e O e
By Lemma 8,
nAx1 o) (p@\T @| »
() omy) o

and the fact that A < Op(1),

Therefore,

O]

Lemma 11 (CCA HDLSS Asymptotic Lemma 10.). The sample eigenvalue ;\g?Z and eigenvector

ég?g, 1=2,3,..,d, converge in probability to the following quantities as d — oo,

1(d)
nAyi P o 2(d) (dy\ P .
AT ] — =2,3,...
d d TX, <XZ>£ >d 072 a37 y 1,

where €9 is an any given vector in R

)

Proof. Recall that the underlying random variable X (%) of the sample covariance matrix ﬁ]g? has a
simple spiked covariance structure of (3.9). Then, the asymptotic behavior of a sample eigenvalue
is a direct consequence of Theorem 1 for o > 1. The result on the behavior of <£§?3 ,€@) is indicated
in the proof of Theorem 1 given in [24], even though & (@) is fixed at the population counterpart of
ég?z) in Theorem 1 for comparison purpose. Note that an inner product of two unit vectors measures
a cosine of the angle between the two. Lemma 11 implies that the sample eigenvector ég?z) becomes
completely random such that the probability of it being consistent with any given vector is 0 as

d — 00. O
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3.4.3.3 Behavior of the matrix R(Y The definition of the matrix R(% is given in (3.3)

with the inverse matrix we are going to use explained in (3.13). The sample canonical correlation

coefficients are found as the singular values of R@ and sample canonical weight vectors are obtained

via unscaling and normalizing the singular vectors of R(® shown in (3.4).
1

()

BAGIN Z&mﬁi

()5 gt )

Consider the two parts of the matrix R@ in the following,

ol " TE T TE T VG, o

O am o @) | e VA
oo gglle T L
I o 1) (&) b

0 DY 0 (ﬁgg) ! ( §fd2)> ! ;%)
|0 0 A%n (77%)1) (%) 0 0

The first part reduces to the following matrix (call it Rgd)),

Lt DBty . L)
A4 A4 VA4 "
V& a0 NEOH (6D @y P ) @y
- (d) o (Ex2 Xl @ ox25Tx2 @ \Sx1xn
R:(L == AXQ )\XZ X2
AO 0 2@ @y VI ) ) A 2d) ()
)((;1< Xn’nX1> f;2< Xns X2> )g) ( X1777Xn>
L >\X'n )\Xn )\Xn -

(d) (

We investigate which value each entry of Rl

(3.28)

(3.29)

i,7) converges in probability to as d — oo. Referring

to Lemma 4, 7, 10 and 11 on the magnitudes of the sample eigenvalues and singular values, it can

be easily noticed that,

RO FAYFT G
A)i;/)'l _ <Cl7 1>/da P(1)7 % — OP(l), 1, = 2,37 , M,
8~ Veae



3@ 1@

X 0p(1/Vde ), Mo = Op(Vdo 1), i =2,3,...,n.
%d) 5@
X1 X1

Then, Rgd) can be written as,

[\/{c1,d1) <£ (d)>
el SxUx1)
S a0, it
A $(d) ’ _
Rgd)— A%, 1x(d—1) P 0
. . d—o0
VAR, (@
LED ) 0
L /A " Ix(d=1)] ||,
Since ( )\E?YI/ Xj 5)?3,77)(1} for © = 2,3,...,n, appears to blow up, we further investigate

their magnitudes.

Lemma 12 (CCA HDLSS Asymptotic Lemma 11.). The inner product of the first sample singular
vector ﬁg?% and the ith eigenvector ég?g, i =2,3,..n, converges to 0 with the speed of op(1/vdo—1)

as d — 00.

Proof. Consider X(9) given in (3.16), which contains the observations of the random variable X (2.

The singular value decomposition of X (d) gives,

WRG 11(z@\"]
A9 0 o <ZéX1>T
N (d)
XD = [0 ¢ o). 0 MG 0 (22)

en X1 Sx2 0 SXn : : : : ’
@ (@ )"
L 0 O o AX”— —(ZEX'”) -

where E x; and A )) are eigenvectors and eigenvalues of the sample covariance matrix E ; ||Z§d) | =
X1

1 and (Zé ) Zg(d) ) = 0 for i # j. Note that Z (d ) is the standardized scores of the projections of
X1 Xy

the n observations in f Xi ) onto the elgenvectors f Xw

x (@)1 @)
Zéd) - ()(fX’ i=1,2,..n.
X1 2 (d
Axi
Define Zg)?l to be the standardized scores of the projections of the n observations in égi) onto the

first singular vector ﬁg?i obtained from the sample cross-covariance matrix Eg?%,,

A\ ~(d)
L@ _ (X9) i
ﬁXl A~ (d) '
Ax1



First we show that ng) converges in probability to Zéi)l

X1

as d — co. By the triangle inequality,

T 5d) . (d)
|29~ 2| - (X)) (XD i)
xi Tl @ @
X1 X1 2
T
(XD @) @ XD @ @
< _
< @ (Ex1—e )| + @ (Mx1 1)
X1 2 X1 2

The first term can be written as,

T 2 n 2
(X(d)) (Ag?i B egd)) _ Z <X( )(e,17) 2(d) e(d)>
\ =1
2

' 5X1 1
d /3 (d

where X(? (e, ) stands for the ith column of X(9. Note that the first component in each column

of X(@ is of Op(v/d®), which is that of 5\&?)1 by Lemma 10, and the rest of the elements are of
Op(1) by Lemma 11. Since ||§X1 — 61 H2 converge in probability to 0 by Lemma 10, using the

Cauchy-Schwarz inequality and the fact that a > 1,

<X(d)(o,z’) £ _e(d)>2 < @) (, )

S\(d) 15X1 1 \/>

X1
(d) P
X()(1,
(X)) s (X
N = )\(

() gt

ED _ @ H2

2

~(d d 2
@ -]

d)

X1

4]

d—00
Therefore,
2
T
(XD)" sy @] »
— 0.
5@ (&1 —a’) e
X1 9

Similarly, using the results given in Lemma 4, 10 and 11, we have,

2
T
(x() (GO _ oDy

— 2,0,
S\(d) Ix1 “ d—o00
X1 2
which leads to,
HZ@ —z@D | 2y
X1 NX11l2 d—oo
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Now we show that the inner product <Z§d) ,Zéi)l) for i = 2,3, ..,n, converges to 0 as d — co. Using
X1

(29, 2Dy =0 for i =2,3,..,n
Exit €x1

7@ () 7@ L@ D, @
(Zeer Zi) = 7))

£Xz nx1 £Xz X1 éXl £X1
_ (d) (d)  (d) (d) (d)
a <Z€Xi’ ZﬁXl Zéx1> <ZEXz ZEX >
_ (d) () _ (d)
o <Z€Xi’ ZﬁXl Zéx1> )

Using the Cauchy-Schwarz inequality and the fact that Zéd)

X1

for ¢ = 1,2,..,n, are standerdized

scores (of unit variance),

<Z(d) 7@ _ Z§d>> <HZX1

Ex;’ X1 €x1

2
_ @

H X1 éx1lla

—1x HZ - Zﬁd)

nx1 Ex1

2.0,i=1,2,..,n
d—o0

We now show that X(d)ngzi)l/ \/5\&?)1 converges in probability to ﬁg?% as d — oo. By the triangle

inequality,
d) 7(d) d) 7(d)
o XYZE N sy [ X%
Nx1 - Nx1 —Sx1 3 =
3@ 2@
X1 2 X1 2

X (@) 7@

S A(d §X1H + §X1 - X1

&

X1 2

As ||§X1 - 61 H2 and ||77X1 - 61 ||2 converge in probability to 0 by Lemma 4 and 11, so does

”77)(1 —¢ X1H2. By the triangle inequality, the second term becomes,

) (d) (d) (d) (d) (d) ) (d)
o X970 (é(d) X Zm) (X Ze, X )me)
X1

X1 T o T
d (d
G, VA VAT VAR
CIAC) X () (d) d) ()
< Ag?i X Z§X1 Z X( )Zﬁx1
a NG
VAR VAT VAR
The first term is 0 since X d)Z / fg?i in the singular decomposition of X(®. The second

term goes as follows,

(d) 7(@) & @ ||° 2
X Z£X1 X()ZﬁX1 X Z(d) _Z(d))

—_— = ( ~ ~
S (d :(d 2 (d le Nx1
VRS HNNRVES I M RVONG )
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T
_ Z < (X(d)(f;).)) ’Zéd) _z
< X1
i=1 \V Ax1

).

2

where X(@ (i, @) stands for the ith row of the d x n data matrix X(¥. Note that only the first row

of the data matrix X(9 has its components of magnitude of Op(v/d®), and the components of the

rest of the rows are all of Op(1). Since we showed that HZéd) - Z,gi)l |2 converges in probability to
X1

0 as d — oo,
T 2 T2
X(d)(l, o) ’ng) _ ng) < X(d)(l, o) HZEd) _ ng) 2
S\(d) Ex1 Nx1 S\(d) X1 |9
X1 X1 9
250
d—00
Similarly,
T 2 7|2
XOie) ) g _ g\ || X00.0) |72 - 24 i
X(d) Ex1 X1 S\(d) X1 X1 ||
X1 X1 9
L50,i=2,3,...d
d—o0
Therefore, we proved that,
d) 7(d)
D XDz v
X1 N d—00
Aa

Finally to determine the speed of <ﬁ§?i, ég?b converging to 0 as d — oo,

( 7@ )T (X)) D

Nx1

(ng> )T 7@ _

X1 €xi < (d)
)\Xi
(d) 7(d)
@ (XZ0) o)
X1 <(d) X1
A
— X1
3(d)
)‘Xi
S 4 2(d

i (x07, &)

Vde NC
e
= T , 1=2,3,.n

Vi 3
Vd

By Lemma 10 and 11, the magnitudes of \/Xg?)l/\/da and \/5\;?2/\/& are of Op(1). Recall that
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(Z (@) ,Zéd) ) converges in probability to 0 as d — co. Hence,
i

Nx1 i
X@ 7D
= ) i>0p< = ) i=2,3,..n.
S\(d) d—o0 do—1

X1
However, we know that,
d) (d) d) 7(d) d) 7(d)
X! )Zﬁx1 _ ﬁ(d) _ X! )Zﬁ)ﬂ _ X )Zﬁx1 Py
NT X <(d (d d—oo
A% , VAR VG,

(d) (d)

where the magnitude of the sample singular value A Yy is the same as that of A Y1 as shown in

Lemma 4. Therefore,

() Ay _ 1 o
<77X17 Xi>_0P <\/d047_1)7 1_2737..777/.

O
By Lemma 12, the matrix f{gd) in (3.29) has the following form as d — oo,
{c1,d1) 0
. lTeal] _
RO | T D L0, (3.30)

(@d-1)x1  (d-1)x(@-1)J I,

Similarly, the corresponding part of figd) on the right side of the matrix R(@ (call it f{gd)) reduces

to a similar form of (3.30),

{c1,d1) 0

R [lez]] _

Rgd) 2112 1x(d—1) dL 0
O — 00

Then, the matrix R@ is written as,

_(A%T_
R@ — [é(@ 2(d) A(d)}f{(ld)f{éd) (g)T

X1 X2 ¢ an :
(G’

(&)

and its limiting matrix is,

BaE 1. (é9)"
R N A A cilizlic d— Y2 P
RO — &8 &8 .. &Y . ”(0 Y . =0, (3.31)

(d—1)x1 (d—1)x(d—1)

(&2)"
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where &/ is a sample eigenvector obtained from the eigendecomposition of the sample covariance

matrix shown in (3.22) from the data matrix Y@ of (3.16)
Perform the SVD of R and denote its sample left and right singular vectors by ﬁgiid))(i and

fori =1,2,..,n. From (3.31), the sample singular vectors of R@ are linear combinations of

~(d

775%})/1‘

é’g?g’s or égﬁii)’s
(3.32)

~(d = (d .
n())(zzz nga RYz Zb )éYlw 1=1,2,...,n,

(b${”)2 = 1 to ensure that norms of

where (agd))2 + (agd))2 4t (a;d))Q _ (bgd))Q I (bgd))Q X

7@ are of unit length.

. (d)
Nrx; and Mgy

3.4.3.4 Behavior of the first sample canonical weight vector The sample canonical
Ag))(l and ﬁg@l as in (3.4)

weight vectors 1[1)?) and 1/3%) are found by unscaling and normalizing 7

using the pseudoinverse of (3.13),
1

1
&(d ~(d
= |,2,..,TL. (333)

) P

2

9 and wyl) given in (3.7),

To see if @E(d) and ﬁ(d) is consistent to their population counterparts Yyl
we investigate the limiting value of their inner products <1j} 1> @ 1) an <¢Y17¢Y1> which measure

the cosine of the angle formed by the two. Expanding (3.33)

@\ (w@\~
(%1, X> ( ) (AXX )_1 RX1
Hw H (=¥ )2ﬁ§$§<1 2

) (5 sz)T)Qﬁ%;l

M £ )

(cos@xel( )+SIH9X€2 (Z l(d (d)) )ﬁg))(l
-1 A

T

d

(5 ) )775{))(1

) Hcos@xeg)—l-&nHXeQ H H(ij \/)\T

2
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Let’s take a close look at the denominator term. It is easy to see that Hcos ergd) + sin GXegd) H2 =1.

Using (3.32),

~ 1 @ (2T . O
—&0 (&) ) | = (e
=1\ Ax; o Il=ti=l >‘Xz 9
n o »
= [ =4
e,

Now take a look at the numerator term,

(cos ergd) + sin HXegd))T (zn: ! ng <f ) ) (d))(l
_ @ | . T [ v~ v g‘d) £(d)y ()
= (cos Oxe;  +sinfxey ) > <§Xw EX

B - ) £ld)y £(d) by
= (cosexel > (;; )\ggz §Xi7§Xj>§Xi) +(Sln9X62 ) (Z 1;\/)\7

n (d) n (d)
d T al a d . d T a’b £ d
= (cosGXeg )> (Z 7@ gﬁ)) + (Sln9X€é )> (Z ng(z))
i=1 X =1 Xi
= a0 = a0
= cosfx Z i(d) <€1 , Xi> + sinfx Z i <€2 ) X2> .
=14/ Ay,

Xi» £X]>é(d)>

i=1 )\(d).

Hence, we have,

n (d) N n (d) ~
cos flx <Z1 a;(d) <€§d)7 ,()?7?>) +sinfy (Z aw) <€§d)a g?b)
~(d) (d i= i =1
@S = : " - (3:34)
oal 2(d)
PO S
=1 )‘2?2 2
Simiarly,
L G (! . b (@) pd
cos Oy (Z:l \/;W@g )7 §/3>> + sin Oy (21 A <e(2 );f;i»)
1= Yi = Ay
( Y17¢Y1> n (@ '
b /\
; A §YZ
2
Observe from (3.31) that, for ﬁgl))ﬂ, agd) converges to 1 and az(d) for i = 2,3,...,n, does to 0 as

d — oo, which implies,

\_/

2

n (d)

a; 1 d) 2(d P

> A(d (@760 - =" ) | o
Ax Ax1

77



= a; d) 2(d 1 d P
> el - =D ) o
=1 \/ Ax; Ax1
n () ?

4 d) L | »

—Cly; — —T—=¢x1|| —0
IR K

Then, (3.34) becomes,

2
cosHX< C;id) <e(1d)7 (d)>>—|—sm9 <\/>\7< ) 75 >>
) — X1 X1 L.
HW)“

d—o0
Recall from Lemma 10 and 11 that d*/ 1 is of (< Op(1)), <egd),é§?i> and <e§d),f§?i> converge

< X1’¢X1

in probability to 1 and 0, respectively. Therefore, we finally have,
(W) (@), _ COSQX)Q oo
X1 ¥YXx1 A
Similarly for 1/JY1,

G )2 P
, — cosf — 0.
<< Y1 Y1> V) o
3.4.3.5 Behavior of the first sample canonical correlation coefficient The limiting value
of first sample canonical correlation coefficients is found as the first singular value of the matrix
R@ in (3.31) under the limiting operation of d — oo, which turns out its (1,1)th entry,

(R L

lexll3/d*|lezl3/d> ) deo

Recall from Lemma 2 and 8 that (c1,d;)/d* is the limiting value of (1,1) entry of nﬁg?;/da as
d — oo and that ||c1||3/d® and ||c1||3/d® are the limiting values of the (1,1) entries of nﬁlg?)/da and
nflgfl)/do‘. That is, those values are found in the (d+1,d+1), (1,1) and (1,d+1) positions of the

matrix of (3.21) scaled by d* as d increases,

. T
1 nES() nEg?%; 1 [ X@] [x(@

de (nzg?;) nE@ |4 ly@ | |y@

Referring to (3.16) and (3.17), we switch the (1,2) and (1,d+1) entries, the (2,1) and (d+1,1) entries
and the (2,2) and (d41,d+1) entries of the matrix Eg? 9 and denote the resulting matrix by E(TZ 9,
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We, also, switch the second and (d 4 1)th rows of the matrix Z(>*? and denote the resulting matrix

by 724 Then, the two data matrices below,
(d) 1 1
B0 = (220) 220 ana (£09)7 209,

Y (d)

are the same only except that the (d + 1)th row of the first matrix is the second row of the second

one. Following the similar steps as done in the proof of Lemma 2, it can be shown that,

ZX1le
ZY le
_ 1
2 > [ 2x20
o POXOY 0
20 b X 1% (2d—2) :
T 70 _ | poxoy 0% 0 ' 0.
de 1x(2d—2) P d—o0
Xde
0 0 0
[ (2d—2)x1  (2d—2)x1 (2d—2)x(2d—2) | 2V %
_ZYdo_ 9

Then, the limiting values of (c1,d1)/d%, ||c1||3/d® and ||c1]|3/d® are found in the first 2 x 2 block of

the following matrix, as d — oo,

) ) (62 < () o oy ().

Therefore, the limiting values of {c1,d;)/d%, ||c1]/3/d® and ||c;||3/d* are identified as the (2,2), (1,1)

and (2,1) entries of the following matrix, respectively,

1 1
2 2 T 2 2
Ox pPOXOY ZX1le ZX1le Ox pPOXOY
2 2
POX0OY Ox ZYle ZY 1le POXOY Ox

3.4.3.6 Behavior of the rest of sample canonical weight vectors We use the equa-

tion (3.34) for the second canonical weight vector zﬁgg Recall from (3.31) that agd) of ﬁg%d))(i,for

i1=2,3,...,n, converges to 0, which implies,
L N LT o
i(d)<1 Exi) — {(d)<1 7§Xj> d—o>00a
i=1 /\Xz' j=2 )\Xj
O TR P N
7; <e2 ’ Xi) - JA <62 ) Xj> — 0,
(d) (d) d—o0
i=1 /\Xi j=2 >‘Xj



2

d) n (d)
) g0 S~ G gl e
i=1 Ag?g j=2 5\% ’ Qd_m

Then, (3.34) becomes,

2
" da\ (@) 2(d . " da\® (@) 2(d
cos fx (Z . (65 )’gg(;>> + sinfx (Z L <e§ %f&;)
(D Dy _ =2 V¥ =2 VA%
X2 VX1

We know fromll that d/ 5\2?2, for i = 2,3,...,n, is of (< Op(1)) and that <e§d),é§?3> and

<eéd), Ag?b, for i = 2,3,...,n, both converge in probability to 0. Therefore, we finally have,

2d) @)y )2 P -
<<¢X17 X1> 0 d;zo, 1=2,3,...,n.
Results are similar for 1%?2 for : = 3,4,...,n. By the similar argument,

. 2
<<w§i)’¢§fl1)> _O) L, 0, i=2,3,...,n.

d—o0

3.4.3.7 Behavior of the rest of sample canonical correlation coefficients The asymp-
totic ¢th sample canonical correlation coefficients, for ¢ = 2,3,...,n, is found as the ith singular

value of the matrix R(® in (3.31) under the limiting operation of d — oo,

~ p .
pidjo(), 1=1,2,...,n.

3.4.4 Caseofa<l1

We, now, prove Theorem 1 under the condition of o < 1 with the spiked model of the population

covariance structure of X and Y@ described in (3.9).

3.4.4.1 Behavior of the cross-covariance matrix

Lemma 13 (CCA HDLSS Asymptotic Lemma 12.). For a < 1, the magnitudes of the sample

singular values j\g?%q fori=1,2,...,n are of Op(d) as d — oo.
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Proof. Using the Cauchy-Schwarz inequality,

. 2
nZg?%,
d
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d d
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+ Ty deada

72

d d
ZXie,d 2 ZXies 2 )2
(de2 2) b2 Z<Xz Yje)
3

=3 3
(c1,dy) (c1,d2)? | (c2,d1)?  {co,da)?
—d272ad2a + d27o¢da d2 ada + d2
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(3.35)

N

Since (c1,d1)? is of Op(d®), (c1,d2)? and {(ca,d1)? are of Op(V/d®), and (c2,d2)? is of Op(1), using
a <1,

(e1,d1)? (c1,d2)? (co,dr)? (ca,d2)?
P2 0l T e T e e T @ i

It is not hard to see that ||zxe||3 ~ X2 and ||2yse||3 ~ X3. Note that |c1]|3 and ||d1||3 are of Op(d®)

and that ||c2[|2 and ||d2||3 are of Op(1). With the law of large numbers and the condition that

a<l1,

2 = Jlenl3lzviell2 Hm.uz
TYZ d2—ada - Z
1=3
—> 0x Op(1) x E(x2) =0,
— 00

d d
Z !@HQHZWIIQ _ Tyllealls 3 [2viell3
— d = d

L0 x E(Xn) =0,

d—oo
d
Z HZXZ°H2
=3

2,5 0% 0p(1) x B(62) =

d—oo

d
2y Idill3]l2xiell3 TX
X d2—ada -

2 Z [d2]13 ||ZXz-||2 _ Tde2H Z ||ZXzo||2
2. 0x E(x2) =0.
d—oo
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Using a > 1 and the law of large numbers,

d d
2 2 HZXZOHQHZY]'HZ 2.2 ||ZXi-||§ HZYJ’-H%
ZZ =YY )
i=3 =3

=3 j=3

—> TXTY X E(Xn) X E(Xn)

d—oo
= 7')2(732/712.
We have,
. R 2
=8 ayoNs )
d B Z d l djo ST
o =1
Therefore, the magnitudes of the sample singular values Xg?%h for i =1,2,..,n are of O,(d). O

Lemma 14 (CCA HDLSS Asymptotic Lemma 13.). This lemma improves Lemma 15. For a < 1,
the sample singular values nj\g?%/l for i =1,2,..,n are of (< Op(d)) with the following limiting

quantity as d — oo,

S\(d). P TXTY

e =1,2,.,n

d d- n
(e 9]

Proof. First we calculate the exact limiting value of the Frobenius norm of ﬁ]g?%/ /d as d — oc.

In (3.35), the first 8 terms converges in probability to 0 as d — oco. The last term of (3.35) expands

as,
d d 9 d d n 2
ZZ ZinZY]o> _ZZ ZXik?Y jk
s £ d
1=3 j=3 1=3 j=3 \k=1
n d 9 d 2
- (2 ) (27
; d , d
k=1 \1=3 i=3
d
n Z Z szksz Z X jkRY jk!
d
k#£k! \i= j=3

Since E(zyikzgir) = 0 for k # k', by the law of large numbers,

Z <i zyikj:pik’) i Zyjk;xjk’ i} 0.

‘ - d—o0
k#k' \1=3 7j=3

2

Since Zyik and zfmk follow a Chi-squared distribution with a degree of freedom of 1, by the law of

large numberss,

n d ZQ’k d 2:24]€ P
yi zj _
1<§ d)(g d)d—>—>oon><1><1_n'

k= =3 1=3
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Hence,

@ |2 P
. € | s T (3.36)
d d— oo

Now we set a bound for each sample singular value A XYZ /d for i = 1,2,..,n as d — oo. Consider

the data matrix X(@ and Y@ in (3.19). Write the singular vectors 17( ) and n(d) of the sample

X1
cross-covariance matrix ﬁ)g?; of (3.22) by the linear combinations of the sample eigenvectors ég?])

and fyj,

ZGJSXJ’ nYz Zbéyw 1=1,2,..,n,

where a? + a3+ -+ +a2 = b3 + b3 +--- + b2 = 1 to ensure a unit length. Using Cov?(X,Y) <
Var(X)Var(Y),

()" = 5 {(x0) ", (v )
n
< <(X(d)) i), (X<d>)Tﬁ§§’3> <(Y(d>)Tﬁgi>, <Y<d)>Tﬁ§gg> |
n

Using the fact that the covariance between two sets of scores of the projections of the observations

(0" (e =1 ((x) Sl (x7) o))
=30 1 (x) 0, (x0) 0y )
:jZi<<X(d)>T a;€$) (X<d) aj (d)>
() ot () )
SICOEAOE)

j=1
n
_ 23 (d)
= Z ajAx;
=1

Similarly,
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By Lemma 11,

R T . T . T . T .
(x&?@)id(ﬂ@) il (X)) (v @), (v ) i)

d n? d d

The constraints above and the proven fact of (3.36),

~(d) |2 no/50d) \ 2
2XY )\XY’i P 1 9 o
i I (d X

implies that,

3.4.4.2 Behavior of the sample covariance matrices Here, we only include the result about
the sample covariance matrix ﬁ)g?) . That of 2%;1) is similar.

Lemma 15 (CCA HDLSS Asymptotic Lemma 14.). The sample eigenvalue 5\2?2 and eigenvector
£(d)

1=2,3,..,d, converge in probability to the following quantities as d — oo,

Xi»
5\5?2 PoTR @ (d)y _P
— . — L =1,2,...
d d—soo Tl ’ <€X17‘£ >d~>000’ ¢ [l y 1,

where €9 is an any given vector in R%.

)

Proof. Recall that the underlying random variable X (9 of the sample covariance matrix f]g? has a
simple spiked covariance structure of (3.9). Then, the asymptotic behavior of a sample eigenvalue
is a direct consequence of Theorem 1 for o < 1. The result on the behavior of <é§?z) € (d)> is indicated

in the proof of Theorem 1 given in [24]. O
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3.4.4.3 Behavior of the matrix RY Lemma 14 states that the singular values of the sample
(d

cross-covariance matrix E ) become indistinguishable in the limit of d — oo, in which situation

there exist an infinite number of choices for a singular vector set. We choose its singular vectors
such that the sample eigenvectors of the sample covariance matrices Sg?) and f]g?) are their limiting

quantities,

(d)  2(
i) — €5) =1,2,...,n.

(AR
—>0
77 Qd%oo

2 d—00

Then, it is easily shown that the matrix R(? defined in (3.28), reduces to the following limiting

form, using the limiting values of the sample singular vectors and eigenvectors given in Lemma 14

and 15,
o o) [
O ] N | IO
oo ] ()" .

3.4.4.4 Behavior of sample canonical weight vectors Use the equation (3.34) for a sample
canonical weight vector 7,!3&?) represented as in (3.32) for a given i. We know from Lemma 15 that

the magnitude of d/ X ,fori=1,2,...,n,is of (< Op(1)) and that <e§d), A§(2> and <e§d),é§§?>,

for i =1,2,...,n, converge in probability to 0 as d — oo, which leads to,
- (@) ¢(d) nal® ) s\
cos bx Z ( ey, Ex;) | +sinfx ‘21 ;(d) (e17,¢x5)
~(d d : X Jj= X P
W) - 7 J = 0.

n (d) o d—ro0
da (d)

Z (d §XJ

]:1 X] 2

Hence, we have,

2
(<¢X17¢ )y — )d%OO,iZI,Q,...,n.
Similarly,
(2 —0)" Lo i=12.n

d—o0

3.4.4.5 Behavior of sample canonical correlation coefficients The asymptotic ith sample

canonical correlation coefficients is found as the ith singular value of the matrix (3.37) under the
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limiting operation of d — oo,

P .
pidjol, 1=1,2,...,n.

3.5 SIMULATION

Simulation study in this section aims at verifying the asymptotic behavior of sample canonical
correlation coefficients and their corresponding weight vectors given in Theorem 1 as dimension d
grows with sample size n fixed. We first state the parameter settings to be used. For the spiked

covariance structures of the random variables X(4 and Y(9) described in (3.5) and (3.6), we set

2 _ @) _ o @) _

0% =Ty =0y =Ty = The population canonical weight vectors described in (3.7) and

population canonical correlation coeflicient are set to be,
wgg) = (cos 0.757r)e§d) + (sin 0.757r)e§d), zp@ = (cos 0.7577)6&60 + (sin O.757r)eéd), p=0.17.

Note that wg?)? egd)> = §,d), egd)> = c0s0.75m = 0.7071, which implies that the angle between wg?)
and egd) is 135°. The population cross-covariance structure of X(¥ and Y@ can be accordingly
defined as in (3.9). We perform 100 runs of simulations for each combination of different values of

the following three sets,

e Sample size n € {20, 80},

e Dimension d € {200,500},

e Exponent o € {0.2,8}.

(d)

Each case, estimates of the first 5 canonical correlation coefficients p;” and their corresponding
canonical weight vectors 121&?2 and &gf? are obtained. The estimated vectors QZJE?Z) and 1[)&?, for
i = 1,2,...,5, are compared to the population canonical weight vector wgg) using their inner
product. Here, we do not include results of zﬂy} as they are similar as those of 1&&2 .

Figure 10 presents the simulation results for a small sample size of n = 20. For a = 0.2,
sample coefficients and vectors are almost of no use as the estimated vectors tend to be as far
away as possible from the population direction (implied in the inner products of 0) with always
perfect correlation. When « increases to a high strength of 8, the first sample coefficient ﬁgd)
approaches to the population direction whereas the rest degenerate to 0 as d — oo. The first left

(d)

sample canonical weight vector 1%2 converges to the direction ey’ (implied in the inner products
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Figure 10. Estimated sample canonical correlation coefficients p;”" and inner products of the sample left

canonical weight vectors 1/3%) and the population canonical weight vector wggg, for: = 1,2,...,5, obtained
from 100 repetitions of simulations for different settings of dimension d and exponent o with a sample size
of n = 20.

of cos0.75m) containing dominant variability as d — oo and the rest carry no information on the

population direction with tending to deviate from it by a highest degree of 90°. Figure 11 illustrates
(d)

the results for a larger sample size of n = 80. For the case of o = 0.2, the behavior of p;” and
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Figure 11. 100 estimated sample canonical correlation coefficients ﬁgd) and inner products of the sample left
canonical weight vectors @Zgﬁj and the population canonical weight vector wggg, for: = 1,2,...,5, obtained
from 100 repetitions of simulations for different settings of dimension d and exponent o with a sample size

of n = 80.

Ad) ... . . .
zﬁgﬁ) is similar as that in a small sample size case. However, for a = 8, we see a noticeable decrease

in variability of the first sample canonical correlation coefficient ﬁgd) around a true value of 0.7

(d)

, - around 0. This implies that the usual large sample theory works for ﬁ(d).

and of the rest of p 1
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Diminishing variability is also observed for the sample canonical weight vectors @@g?l?, where the
(d)

first sample vector @g?g becomes almost identical to the largest variance direction e; ’ and the rest

diverge from the population canonical direction wg?).

3.6 DISCUSSION

A natural question arises about what asymptotic behavior of sample canonical weight vectors we
can expect at the boundary case of @« = 1 as d — oo with a sample size fixed at n 7 When
a > 1, we saw that the angle between the first sample canonical weight vector and its population
counterpart degenerates to 0 and when a < 1, the angle between them diverges by as large as /2.
We conjecture that, with o = 1, the angle formed by the first sample canonical weight vector and
its population counterpart converges weakly to some random variable on the support of [0, 7/2].

We leave an investigation of this conjecture for future work.
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4.0 SUPERVISED JOINT AND INDIVIDUAL VARIATIONS EXPLAINED

4.1 INTRODUCTION

With a proliferation of technologies that can measure various aspects of a given sample in many
sciences, we now often collect multiple data sets of differing domains on a common set of samples.
We call those multiple data sets ‘multi-block data’. One important aspect we need to address in
analyzing multi-block data is to characterize associations among variables in different data sets. The
dependency structure between multiple data sets may be utilized to infer interesting patterns of a
population that would not be found with separate analyses from individual data sets. On the other
hand, dependency structure within variables in a specific data set could impart unique and useful
information. In this case, removing between-data-sets dependency structure and revealing the net
within-data-set dependency structure will lead to more effective and clearer inference results.
Dependency among variables is often reflected in a direction along which data exhibit meaningful
variations. For example, if 3-dimensional vector observations show large variation at the direction
of [1,—2,0]7, then we can say that the first and second variables are associated in a way that,
as the first increases by 1, the second tends to decrease by -2. Let X;, for i = 1,2,...,m, be a
n X p; matrix containing measurements for the p; variables of the ith data sets on a common set
of n objects. We can find a direction £ in the p; + p2 + - -+ + p,, dimensional row space of the

concatenated matrix X,
X = [X17X25 .. 'axm]v

such that the variation of scores (of projection of X onto &) is maximized under certain regulation
conditions. Accordingly, the X1, Xs,...,X,, parts of the resulting direction £ can be viewed as
associated directions between the data sets and the variation of X along ¢ can be thought of as

a joint variation across the data sets. At the same time, there could be a direction &; in the pq
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dimensional space along which only the data set X; shows large variation. This kind of variation
can be viewed as an individual variation.

Sometimes, one of data sets has supervision effect over the rest of data sets. To elaborate the case
intuitively, consider an illustrative example of high-throughput biomedical data. Let Xi, X9 and
X3 contain gene expression level, genotype information and DNA methylation rate, respectively.
We may obtain an additional data set Y on the same set of tissues that inherently relates to the
underlying joint variations of the multi-block data. Suppose that we may have disease subtype
information stored in Y for all samples. Conceptually, different disease subtypes may explain a
large portion of genetic variations in individual data sets. In other words, the data set Y, usually
called supervision, potentially drives the joint variations across data sets in the multi-block data.
This situation motivates investigations presented in this chapter.

We propose Supervised Joint and Individual Variations Explained (SupJIVE), a general frame-
work for a systematic decomposition of variation in multi-block data according to supervision
information available. SupJIVE aims to identify joint variations across multiple data sets and in-
dividual variations specific to each data set. It also aims to capture supervision effects that drive
those variations. To this end, we combine the two recently proposed methods, Joint and Individ-
ual Variation Explained (JIVE) [35] and Supervised Singular Value Decomposition (SupSVD) [32],
which are briefly described below.

The SupJIVE method, however, has two major issues: inability to capture partial joint variation
structure and rank estimation problem (see Section 4.2.4 for details). To remedy these problems, we
propose Generalized SupJIVE (G-SupJIVE). G-SupJIVE algorithm searches for variation structure
in each subset of the whole data sets and supervision effect sequentially until the concatenated
data matrix X exausts its rank or there is no supervision effect left in an automated fashion.
Therefore, it does not requires any ad-hoc rank estimations. Moreover, G-SupJIVE method allows
the supervision matrix Y to include multiple sets of supervision candidates that are thought of
as possible drivers of variations. Then, the method identifies parts of supervision data sets that

actually drive a specific variation and also reveals how they drive the variation.

4.1.1 JIVE

JIVE decomposes multi-block data (X1, Xa,...,X,,) into a sum of three components: a low rank

approximation J capturing joint structure across data sets, a low rank approximations A; capturing
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individual structure specific to each data set, and a residual noise E,

X, =J;,+A,+E, i=1,2,...,m,
J=[31,32,...,3] =UVT, (4.1)

A, =U, V7],

where columns of V and V;’s contain direction (or laoding) vectors, and U and U,’s contain scores.
Note that loading vectors in V contribute to variables across data sets X1, Xo, ..., X,, and so, with
their scores in U, constitute joint variation structure while UiVZ-T represents individual variation
stucture of X;. The paper [35] proposed to estimate the parameters V, V;, U and U, by iteratively
applying singular value decomposition (SVD) to the joint and individual parts of the data X. There

is no data set playing the role of supervisor.

4.1.2 SupSVD

When there are only two blocks of data X and Y, where X is the data set of main interest, and Y
is the supervision data, SupSVD [32] seeks an orthogonal basis of the underlying low rank structure
of the main data set X with respect to which X is decomposed into three components: one relevant
to the supervision information Y, another irrelevant of Y and the last one a residual noise part E

so that,
X =UV? = (YB+F)VT +E, (4.2)

where columns of V contain direction (or loading) vectors comprising an orthogonal basis of sample
space, B is responsible for conversion of Y into scores with respect to the loading vectors in V,
F is a random matrix with a certain distributional structure imposed and E is a random noise.
Intuitively, YBVT captures the variation that is driven by supervision Y, and FVT captures the
variation that is irrelevant of Y. If supervision has no effect on the variation structure of X, then
the matrix B degenerates and SupSVD becomes equivalent to the usual SVD. SupSVD is basically
an overparameterized model. In the paper [32], the parameters B,F and V are estimated by
modified EM algorithm under certain identifiability conditions and a Gaussian assumption on F

and E.
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4.1.3 Motivating real data set [35]

The Cancer Genome Atlas (TCGA) [39] is an ongoing research effort to characterize cancer on a
molecular level through the integrative analysis of multiple large scale genomic data sets, funded by
the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI).
Following the data analysis conducted in [35], we focus on a set of 234 Glioblastome Multiforme
(GBM) tumor samples. GBM is a common and fatal form of malignant brain tumor. GBM samples
are not homogeneous. Verhaak et al. [46] classified the GBM samples into four subtypes: Neural,
Mesenchymal, Proneural and Classical. These subtypes have distinct expression characteristics,
copy number alterations and gene mutations. In addition, there were clinical differences across

subtypes in response to chemical therapy.

While the relation of copy number aberrations and somatic mutations to gene expressions has
been established in [38, 05], the role of microRNA (miRNA) in GBM biology has not been well
understood [41]. Current biological ideas, however, suggest that miRNAs might function mainly
as negative regulators that decrease gene expression levels. We demonstrate our new methods on
the integrated analysis of miRNA and gene expression data. For each tumor sample, there are
measures of intensity for 534 miRNAs and 23,293 genes. These data are publicly available as a

supplemental materials of [35].

Given the biological relation between gene expression and miRNA, it is reasonable to expect
shared patterns in the two sets of measurements. we refer to such shared patterns as joint variation.
We also expect the gene expression data to have its own variation that is unrelated to the miRNA
and vice versa. This individual variation can be of biological interest. This individual patterns
can interfere with finding the important joint patterns, just as joint variations can obscure the
important signal specific to each data set. JIVE [35] is proposed to separate these joint and

individual variations.

Given each tumor cell subtype’s unique characteristics and different response to aggressive
therapy, it is reasonable to expect that subtypes are responsible for some of joint and individual
variations. We refer to the factors driving specific patterns as supervisions and the variations driven
by them as supervised variations. The variations unrelated to any of supervisions are referred to as
unsupervised variations. SupSVD [32] is a statistical framework proposed to separate supervised

and unsupervised variations given supervision information.

The major goal of the integrative analysis of the GBM data set is clear given its data structure:
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separate joint and individual variations and, for each of them, identify its driving subtypes. Note
that JIVE and SupSVD each address only one of those two tasks.

Each of our proposed methods can achieve both of the major goals of the integrative multi-block
analysis. As SupJIVE turns out to have a few issues, we analyze GBM data using G-SupJIVE.
The first new method, SupJIVE, is discussed in Section 4.2, and the Generalized Sup-JIVE is in
Section 4.3 and 4.4. The analysis of GBM data is presented in Section 4.5.

4.2 SUPJIVE

This section introduces a new model and estimation procedures to identify joint and individual
variations and supervision effects driving them. Since we are not going to use this algorithm in
practice due to the issues explained later in Section 4.2.4, we only demonstrate its performance
using simulated data in Section 4.2.2. Recently, an integrated approach, called Supervised Inte-
grated Factor Analysis for Multi-View Data (SIFA), to decompose multi-block data into joint and
individual variations is proposed by [31], which uses a similar model but with different estimation

approaches.

4.2.1 Population model

Adopting the SupSVD model (4.2) into the JIVE model (4.1), the formal model for SupJIVE is,

X =[X1,Xg,..., Xm],

X; =Ji+A;+E;

J =[3,32,..., T4, (4.3)
J =UVT=(YB+F)VT,

A; =U,V!I=(YV;B;+F,)V].

where UVT (or U;VY) is the rank r (or r;) decomposition of J (or A;); B (or B;) is a ¢ x r (or
gi X r;) conversion matrix; and F (or F;) is a n x r (or n x r;) random matrix. We here assume
that a joint variation J has its supervision Y (of dimension ¢) and further assume that individual

variations A; is possibly driven by their own supervisions Y; (of dimension ¢;). To fit the model
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Figure 12. Population structure of an illustrative example.
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into likelihood framework, we impose some distributional assumptions on the error matrices. We
assume entries of E; are i.i.d. from N (0, 021,). Moreover, we assume the random matrix F (or F;)
has i.i.d. rows from multivariate normal distribution N(0,Xf) (or N(0,3y,)). For identifiability
consideration in the SupJIVE part, we require columns of V (or V;) to be orthonormal and X;
(or Xy,) to be diagonal with positive distinct values. Furthermore, referring to the JIVE model,

we require the column space of J to be orthogonal with the column space of A;.

4.2.2 TIllustrative example
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Figure 13. Estimates for the illustrative example.

To illustrate the type of data analysis SupJIVE aims to conduct, we generate two matrices,

X and Xy, with patterns corresponding to joint and individual variations which are partially
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associated with different groupings. The simulated data are depicted in Figure 12. Both X; and
Xy are of dimension 120 x 50, that is, each has 50 variables measured for the same 120 objects.
Joint variation is two-fold. First, 120 independent standard normal variables are added to half of
the columns in X; and in Xs. The second joint variation is associated with two supervision groups.
Those rows corresponding to two different groups have respective -7 and 7 added to their columns
in a similar manner as for the first joint variation. Individual variation in X; is also two-fold. On
top of 120 independent standard normal variables added to the columns of X1, -3, 1, -2 and 2 are
added to the columns of the rows corresponding to 4 different groups, respectively. The second
data set Xo has three group effects but groups are shuffled in the repetitive manner as seen in
Figure 12. Finally, independent standard normal variables are added to elements of X; and Xas.
Both joint and individual variations are visually obscured.

Figure 13 shows SupJIVE estimates for joint and individual variations, each divided into su-
pervised and unsupervised parts. It clearly separates variations associated and unassociated with

corresponding groups in each of joint and individual structures.

4.2.3 Estimation

To estimate the SupJIVE model parameters, we adopt an iterative procedure similar with JIVE.
Assume the ranks for joint structure and individual structures are known. For fixed individual
structures A;, i = 1,--- ,m, we calculate X* = (X; — A1,Xy — Ag,--- , X, — A,;,) and apply
SupSVD algorithm to X* to get a prediction for J. Then, for the fixed joint structure J, we apply
SupSVD algorithm to the projection of X; — J; onto the orthogonal space of col(U) and find the
individual structure A; for i = 1,2,--- ,m. Iterate the two steps until convergence. For details
of SupSVD and JIVE algorithms, refer to their individual papers. We summarize the estimation
procedure in the next page. In practice, one needs to estimate the ranks for the joint structure and
all individual structures. We use the permutation-test based rank estimation method described in

JIVE [35].

4.2.4 Potential issues of SupJIVE

Before explaining potential issues of the algorithm, we classify joint variations into two types. First,
the full joint variation is referred to as a pattern shared in the whole data sets. Second, the partial

joint variation is a pattern shared in the more than one but not the whole data sets. Graphical
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1: Initial step;
(1) Apply SupSVD to X to get estimates VI, BIU Fl UM and JU.
(2) Apply SupSVD to Pém (X — JE”), where Pém =1-Uull ((U[I])TUU])_1 (UMHT to get
estimates VZ[-I], BE}, FEH and AEI] fori=1,2,---,m.
(3) Store XU = (3t 4 AN 0T 4 A0T 0 gHT L AT
2: sth step;
(1) Fix Al and caleulate X9 = [x; — Al x, — ALY 0 x, - ALY
(2) Apply SupSVD to X*[ to get VIs!|, BIsl, Fls] Ul and Jls).
(3) Fix JI and estimate Al through SupSVD of P (X; — J), where P, = I -
Ul ((U[S])TUM)_1 (UBNHT to get estimates VES], BES], FES} and AES} fori=1,2,---,m.
(4) Store XI5 = (30 4 Al g0 4 AL o gl Al

3: Repeat until | Xl — X[*=1| < ¢ for some predetermined tolerance e.

description for a 3-source data set is shown in Figure 14. Now we describe problems SupJIVE suffer

that render it rather impractical,

1. Need to estimate ranks for joint and individual variations prior to an analysis. There has been no
universally good answers to rank selection problem. There exist several methods to calculate
ranks for a given matrix such as a permutation-test based method used in JIVE [35] and a
simple scree-plot method commonly used in PCA, but these methods suffer from either heavy
computations or subjectivity. Failure in calculating ranks may lead to a lower performance of
the SupJIVE algorithm. For example, uncaught dimensions in joint variation may turn into an

individual variation component.

2. Need to select supervision specific to each of joint and individual variations. Sometimes we do

not know which supervision might drive variation across all data sets or in each of them.

3. Current SupJIVE model (4.3) considers a full joint variation but it not capable of correctly

modeling partial joint variations.

We could include all individual, partial and full joint variations in the SupJIVE model. However,
exponentially increasing workload of calculating rank and selecting supervisions for each variation

would make using this model algorithm rather impractical as the number of data sets increases.
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Full joint variation

Partial joint variation 1

Partial joint variation 2

Partial joint variation 3

Individual variation 1

Individual variation 2

Individual variation 3

Figure 14. Joint and individual variations for three data sets.

4.3 GENERALIZED SUPJIVE

In this section, we propose a new algorithm, called Generalized Supervised Joint and Individual
Variations Explained (G-SupJIVE), that overcomes the issues of SupJIVE described in the previous

section.

The G-SupJIVE model much more flexible than any of SupJIVE 4.2, JIVE [35], SupSVD [32]
or SIFA [31]. In particular, there is no restriction on the direction vectors of V so that any of

individual, partial or full joint variation components is freely modeled.

To estimate the parameters of G-SupJIVE model, we propose a layer-by-layer algorithm esti-
mating a pair of a variation direction and its supervision effect at a time until the multi-source

data set exhausts its rank. The main merit of this algorithm is that it automatically 1) chooses
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whether the variation estimated at each layer is full, partial or individual, 2) selects its supervision

from multiple supervision sets and 3) stops when rank is exhausted.

4.3.1 Population model

The G-SupJIVE model is a fully automated data-driven model for the integrated analysis of multi-
block data. Specifically, the population model is,

X = [X1,Xa,. .., X,
Y =[Y1,Ys,..., Y], (4.4)

X=(YB+F)VI +E.

Here X;,7=1,2,..,m, is a n X p; component data matrix collected from possibly a distinct source;
Y, j=1,2,..,k, is a n X ¢g; matrix that represents different possible supervision information; the
(p1 4+ p2 + -+ + pm) X r matrix, V, contains r directions of variations arranged column-wise; the
(g1 + g2 + -+ + qr) x r matrix, B, is a conversion matrix that translates supervision information
in Y into scores for column vectors in V; the n X (¢1 + g2 + - - - + @) matrix F contributes to the
variability unrelated to supervision. Finally, the n x (p1 +p2 + - - - + py,) matrix, E, includes noise.

Unlike the SupJIVE models (4.3), the G-SupJIVE model (4.4) does not separate joint and
individual variations a priori. We desire estimates of variation directions (columns of V) to au-
tomatically catch block-wise structures, i.e., full, partial or individual variations and also desire
supervision effects related to each variation direction to be selected from the candidate supervision
collection Y in a data-driven fashion. To this end, we impose the group-wise sparsity condition on
columns of B and V corresponding to the blocks given by Y;’s and X;’s, respectively. Without
loss of generality, we assume that both X and Y are column-centered so that the model does not
have intercepts. The random matrices E and F are assumed to be independent with each other.
Each entry of the error matrix E is independent and identically distributed (i.i.d.) with mean zero
and variance o?. Each row of F is i.i.d. with mean zero and covariance matrix X;.

For the model (4.4) to be identifiable in terms of parameters V,B, ¥ and o2, we adopt the
following constraints from the SupSVD model [32] as the model (4.4) generalizes SupSVD to multi-

source data,

1. The matrix V has orthonormal columns.

2. The matrix X, is diagonal with r distinct positive entries.
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3. The columns of V are sorted in the descending order in terms of the variances of YB + F and
the first entry of each column is positive.

4. The supervision data matrix Y has linearly independent columns.

Under these conditions, the G-SupJIVE is identifiable.

4.3.2 Illustrative example

First Variation
(individual)

Second Variation

(individual)

Third Variation
(partial joint)

0 10 20 30 40 50 60 70 80 90 100 0 5 10 15 20 25 30
|

Figure 15. Popuation V and B

To illustrate what G-SupJIVE does, we provide an intuitive example. The data we simulate

has the following structure,

T
- [ Xl B X2 5 X3 ) X4 ] — U Vv )
120x 100 120%25 120%25 120%25 120%25 120x3  3x100 120x 100
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Observations

Individual variation (X1)

Noise

Individual variation (X2)

Joint variation

Data type

|

+
—_——
— s 3 = E] =
— E 0
+ + + +

Figure 16. Heatmap of the simulate data.
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= [ Y Y, , Y3

b
120x30 120x10 120x10 120%10
U = Y B + F .
120%3 120x30 30x3 120%3

The multi-source data set X has 120 observations and consists of 4 subsets X1, Xo, X3, X4, each
having 25 measurements. The supervision set Y collects 3 supervision candidates Y1, Yo, Y3, where
each column of Y; is filled with 120-dimensional normal random vector with mean 0 and diagonal
covariance matrix 021 for 02 = 2,1.5,1. The rows of the matrix F, which stands for unsupervised
effects, are filled with 3-dimensional standard normal with mean 0 and diagonal covariance matrix

with entries of 6, 4 and 2. The noise E of element-wise independent standard normal is added.

V B

First Variation

(individual)

&

Second Variation

(individual)

Third Variation
(partial joint)

Figure 17. Estimation of the parameters.

The populations V and B are depicted in Figure 15, where each row represents a pair of columns
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of V and B. The matrix V provides three variation directions, resulting in the data set X’s intrinsic
rank being three. The first variation (first column of V) is an individual variation only specific to
the data set X1 and its supervision effect stems from the second supervision candidate set Yo as the
first column of B indicates. The second variation has a similar interpretation. The third variation
is a partial joint variation that covers the third and last data sets X3 and Xy4. Its supervision comes
from the third supervision candidate set Y3.

The heatmap of the simulated data and their decomposed variations are depicted in Figure 16.
The structure of the data is much more complicated than and not as visually clear as that in
Figure 12 since their supervisions are continuous variables on the contrary to categorical supervision
in Figure 12.

As a preprocessing, we column-center the data by subtracting the mean within each column
to remove baseline differences between data sets. To circumvent cases where ‘the largest data set
wins’, we scale each data set by its total variation, i.e., each data set’s Frobenius norm. The G-
SupJIVE model is then fit by the algorithm we discuss later in Section 4.3.3. Estimation results
are shown in Figure 17, where estimates in blue and parameters in red are overlaid. Overall, the

G-SupJIVE algorithm effectively captures the variation patterns and supervisions that drive them.

4.3.3 Estimation

We adopt a sequential approach that estimates parameters layer by layer. In specific, we estimate
the first column vy of V in the model (4.4) and then move to the subspace orthogonal to v; to
estimate the next column of V. In each layer, we obtain a penalized maximum likelihood using
a group Lasso penalty [55] in estimations of V and B. The groups for the penalty are naturally
defined from the structure of the multi-block data set and the supervision candidate data set.

A description of the G-SupJIVE estimation procedure is summarized in the next page. Here
included are the steps for the first layer. The prime advantages of the proposed algorithm are

two-fold,

1. Adaptively choose the individual, partial and full joint variations and corresponding supervision

effects: no need to specify the types of variation.

2. Automatically stops when the rank of X is exhausted: no pre-calculation of ranks.

Now we give a detailed explanation of the proposed algorithm. Consider the following rank 1
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:Repeat the following steps for ith layer to get estimates v;, Bi, (7]201_, 62 until v; = 0 or b; = 0.
Assume the data matrix X is of rank 1 and form a penalized likelihood @ as a function of
parameters vy, by, UJ2‘1 02,

1: Initial step;
(1) Apply rank-one SVD to X, i.e. X ~ Auv’ to get estimates V[lo].
(2) Get an estimate o2 from residuals of X — )\u(vgo])T.

(3) Get an estimate b[lo] from regression Au = Yb.

(4) Get an estimate 0’]240] from residuals of Au — Yb[lo].
(5) Calcualte QY with arguments v[10}7b[10]’ 0]201[0], o2 01,

2: sth step;
(1) Maximize Q=1 as a function of v with a group Lasso penalty to vq to get a maximizer
[s]
Vi
(2) Let Q,,Sl_l] be Q1 where v[ls_” is updated with v[ls]. Maximize Q5" as a function of
b, with a group Lasso penalty to by to get a maximizer b[ls}.
(3) Let QLS;bll] be QY where v[lsfl},b[lsfl] are updated with v[ls], b[ls]. Maximize QE;” as a
function of 0]2@1 ,02 to get a maximizer U%S], 052 ls],
(4) Let Q¥ be QB where all previous arguments are replaced with new updates
[s] 1 [s] 2[s] 2[s]
vlS ,bls ,afls Jo
3. Repeat until QI — Q[s — 1] < e for some predetermined tolerance e to get final estimates
V1,b1,6%.
4: For the next layer, find the projections onto the complement subspace X[ = X — X¥; and

apply the previous steps 1 - 3 to X to estimate vo, by, 0]202 and update the estimate of 2.

model for X,

X =(Y b+ 1f)vi+E.

nxXp  nXq gx1  nxl 1xp "XP

We assume that the matrix X consists of m data sets, each with dimensions p; (p1 + p2 +

oo+ pm = p). Accordingly, vI is partitioned with the corresponding blocks and we write
vi = [VTGNV?Gy . ,V?Gk} where v g, is a vector of variables belonging to the group i. We

slao assume that the matrix Y consists of k supervision candidate data sets, each with dimensions
¢ (1 +aq2+- - -+qx = q). Accordingly, blT is partitioned with the corresponding blocks and we write

bl = [bcﬂGl,bwa e bflp,Gm] where by ¢, is a vector of variables belonging to the group j. Then
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each observation row x; of X are i.i.d. from a multivariate normal with the following parameters,

where x; and y; are ¢ rows of X and Y respectively. Then the log likelihood function is,

logP(x1,X2,...,%Xp | bl,vl,ag,ajzcl)
n 1 ° _ T (45)
= —§log (2mdet(Xx,)) — B Z (x; — yiblv{) Exll (x; — yiblvlT) .
i=1

We state two lemmas that will be used to make the log likelihood function (4.5) more tractable for

optimization purpose.

Lemma 16 (Determinant identity.). [17] If A is an invertible square matriz and u and v are

column vectors, then,
Det(A 4+ uv!) = Det(A)(1 4+ vI A~ u).

Lemma 17 (Inverse matrix identity.). [17]. If A and A + B are invertible and B has a rank 1,
then let g = trace(BA™Y), then g # —1 and

1
(A+B)'=A"1-_—_A"'BA°L

1+yg
By Lemma 16,
det(Ey,) = det(o2T, + 0]2c1v1V1T)
= det(02T,) det(1 + V{(U%Ip)_lvl)
= (o) (o}, +0?).
By Lemma 17,

1 1 1
-1 _ T
i = gl t (02+02 - 02> Vivi

e fi e
2
1 oy
=—=I,— 71V1V1T
2°P 2(52 2 ’
O¢ O¢ (Ufl + 06)

So the summands in the summation part in the log likelihood function (4.5) become,

(xs —yibivi) B! (xi — yib1V1T)T
1 T T o7,
= — (xi —yib1vi) (xi —yib1vi ) — 5" (xiv1 — yib1) (xivi — yibs

)T
O¢ O¢ (Ufl + Ue)
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Hence the summation part in (4.5) becomes,

2

15— 5ot [Xvi — Yby 2.
ae(afl +Ge)

n
1

Z (s —yibivi) B! (% — yib1V1T)T =3 |X — Ybyv]
e

1
=1

Finally the log likelihood (4.5) becomes,

IOgP(XhXQ?"'aXn | bh"b”?aa}%l)
n 1 2 UJ2‘

= ——log(2m (62)"" o}, +02)) — = | X = Ybivi |, + =" [ Xvi — Yby|3.
o2 (02 (05 +02) = 5o X = Yoo 5 s 1 = Yo

Imposing group Lasso penalties to the likelihood function above, we maximize the following likeli-

hood function @ for some tuning parameters A > 0 and v > 0,
Q(Vl, bla 0]2”17 0-52‘)" ’Y)

m k
= logP(x1,X2,..., X | b1,v1,07,07) — Z)\Hvl,GiHQ - Z’YHbLG]-Hz
=1 =1

(4.6)

n _ 1 2
= ——log(27 (02)P 1(0?1 +02)) - — ||X- YblvirHF
2 20
0_2 m k
f1 2
+ [Xvi =Ybill; = Alviaillz = ) _7lPrgl2-
202, + o g 2

Since the maximizer of 4.6 has no closed form, we resort to an iterative algorithm described next.
The algorithm is presented in the following 4 steps (@ - @) that are consistent with steps in the
G-SupJIVE algorithm.

@ Initial estimates for by, vy, a]%l,ag

Find the rank-1 approximation of X via a singular value decomposition

X ~uv’,

where u is the vector of the product of the first left singular vector and the first singular value. We

[0]

set vi' = v. Treat X — uvl

as a random matrix with i.i.d. entries from normal distribution with
mean 0 and variance o2 and set the initial value ol O for o2 as the sample variance of the entries.
Then we regress u on Y by assuming that the residuals f; are i.i.d. normal random variables with

mean 0 and variance O'J%l.

u:Yb+f1.
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[0]

Then we set the initial values bj 2[0]

and oy as,

0] T 1T 20 _ Jlu— (YTY)""YTul3
bl = (YY) 'Y u, o e .

For reference, we compute the value of the penalized likelihood at the Oth iteration and denote it

by QL1

M g X WY, 029, 70 = 3o [l | -3 ol
=1

) .

@ The sth step

Let b[ls_l],v[ls_u,o%s_l] and ag[ U'he the updates from the previous iteration. To update b[s 1}
we maximize the penalized likelihood 4.6 as a function of b; given V[1 ], a§ 511 and J%S U we
show in Section 4.8.1 that this work is equivalent to minimizing the following,
2 k
Abl(by) = Hq / 22%5—1](131 — ®sby|| + Z’Y b1, ], (4.7)
Oe 2 j=1

where

Vi,l Y

X1 202s=1

X V[ISQ—I]
=—Y

o= [ X2]. el Vit
—1
X'p V[lsm ] Y
202[571]

Here X1 is the i¢th column of X. The form 4.7 is a regression problem with a group Lasso penalty.
The minimizer by of 4.7 becomes the next iterate b[ls]. There are a couple of group Lasso imple-

mentations available. We chose the SLEP package [33] for its extensive coverage of various other

penalties.
Now Vgsfu needs to be updated. We maximize the penalized likelihood 4.6 as a function of vy
given a new update b[1] and the previous updates 0’6[5 1] 1248 U We show in Section 4.8.2 that

this work is equivalent to minimizing the following under the condition that the supervision effect
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exists,

N

2[s—1]
1 g
Bv) = || — oTw, _ J1 xTx
(v1) g2l 22 ) (0_]201[5—1}4_0_3[5—1])
1 o 8
vy, — ! XTypt
X 9 25=1] 271 9 21s=1] (U%s 1]+Ug[s—1]> 1
) s 1] 2
T 9h T
o 21 ¥, 2[s—1] ( 2[s—1] 2[s—1] X X v +Z>\HV1G‘
207 2027 (o7 4 0207
where
X4 ybi? 0 ... 0
X, o Yb . 0
lIll — . ) ‘Il2 =
X, 0 0 ... Ybl

[s]

Similar as in the updating step 4.7, the estimate v;" is obtained by the above regression problem

with a group Lasso penalty.

From 4.6, it is natural to update crg[ sl and o [ ! for a and O‘J% by,
2
2 s s T
[xevt — xl HY — (wi) (v1)
2[8] 2 0_2[3] _ F
7h n oTe np '

For comparison, the penalized likelihood at the mth iterate is,

Q¥ =1ogP(X | by, v, o2, 07 ZAHWGH Zk:’YHb[ﬁ]Gj )
j=1

® Repeat until QB — QU < ¢ for a prescribed e to get final estimates 131, v1 and 6]201 for the

first layer.

@ To estimate by, va, 0]2@2 and to update 62 for the second layer, locate a subspace complement to

x - x XL Vi
= o2/ o2
allz /- [l

the plane spanned by V1,

and apply steps D - @.
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The above procedures @ - @ continues to be applied to Xi=1 to get estimates Bi, v; and [7]2@1_
for the ith layer and a update 2. The algorithm stops if ¥; = 0 or no supervision effect is

detected, i.e. b; = 0.

4.4 STOPPING RULE OF G-SUPJIVE ALGORITHM

One of the major edges of G-SupJIVE over other competing methods, JIVE [35], SupJIVE [32] and
SIFA [31], is that it does not require a pre-calculation of rank for each type of variation; individual,
partial joint and full joint variations. The algorithm sequentially estimates a direction of variation
at a time regardless of its type until the multi-block data set exhausts its rank related to the
supervision effect. This section explains our method’s stopping mechanism in detail. We describe

the criterion by which our proposed algorithm stops in Lemma 18.

Lemma 18 (G-SupJIVE algorithm stopping rule.). The sufficient condition that G-SupJIVE al-

gorithm stops for the ith layer is, for a given group Lasso penalty X > 0,
IYbilla < A, or |XU||F <A

We now interpret Lemma 18. G-SupJIVE employs a lay-by-layer estimation scheme. It esti-
mates the ith direction of variation ¥; and then moves to its complement data subspace X1 — X[,
to estimates the next one, ¥, 1. Note that the size of | X[!|| is necessarily decreasing as the number
of layer estimated increases. Therefore, for a sufficiently large A, the algorithm is guaranteed to stop
at the ith layer for some ¢. Moreover, the algorithm stops when the supervision effect, represented
by b;, becomes weak. For most cases of simulations and real data analyses, G-SupJIVE algorithm
stops due to the lack of supervision effect, which triggers a call for violation of the positive definite
constraint described in (4.17). A proof of Lemma 18 is provided in Section 4.8.3.

In practice, we choose the tuning parameters A using BIC (similarly for ~),
BIC = —2log (B[S_l] (V1)) + rlog(n),

where k is the number of non-zero components in the vector vi and n is the number of observations
in X. In all of our experiments, the number of layers estimated by the G-SupJIVE algorithm, if

not correct, exceeds the true rank of the concatenated data by no more than one or two.
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4.5 REAL DATA ANALYSIS

We apply G-SupJIVE to the GBM data described in Section 4.1.3. Since their dimensions (23,293
for gene expression and 534 for miRNA) are much larger than sample size of 234, we first reduce
their dimensions to 30 and 10 using scores from singular value decomposition (SVD) accounting
for over 70 percent of the total variation in each data set. The two component data matrices Xy

and Xy are each column-centered and scaled by their Frobenius norms. We model the data using

G-SupJIVE as follows,

= X, X = U vT E
234x40 234%30 234%10 234xr rx40 234 x40
- [ Yl ) Y2 5 Y3 ) Y4 ) Y5
234%5 234x1  234x1  234x1  234x1  234x1
= Y B + F
234xr 234x5 5Xxr 234 xr

Each component of supervision sets Y1,Ys,Ys,Yy, Y5 corresponds to the binary variable indicat-
ing whether observation belong to one of subtypes of Neural, Mesenchymal, Proneural, Classical
and Unclassified (1 if yes and 0 if no). Since each supervision candidate set is a column vector,
group Lasso penalty imposed on columns of B reduces to Lasso penalty. We fit the G-SupJIVE
model (4.4) using the algorithm discussed in Section 4.3.3. The algorithm stops at the 17th layer,
which means that the intrinsic rank of X is determined at r = 17.

Figure 18 shows parameter estimates for the first four layers in V and B and the jitter plots of
projection scores of the GBM data onto estimated variation directions, i.e. Xv; for i = 1,2, 3, 4.
Different colors in the estimates of B represents different cancer subtypes. Figure 18 suggests that
the first variation direction vi in 'V represents a joint variation defined over both miRNA and gene
expression level, where the variation is driven by red, green and cyan-colored subtypes as indicated
in the first supervision effect by in B. More specifically, red subtype makes negative contribution
and green and cyan subtypes make positive contribution to the variation. This estimated super-
vision effect indicates that the first estimated variation direction is well discriminating among red
and green/cyan subtypes, but not the other subtypes. As a matter of fact, red data points are well
separated from green and cyan ones in the jitter plot for the first layer. The second layer estimate
vg in 'V, on the other hand, represents an individual variation defined only on gene expression
level, which is supervised by a cyan-colored subtype with negative contribution and a black-colored

subtype with positive contribution as indicated in the second supervision effect b in B. The cor-
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Figure 18. Estimates of V and B and their discriminating ability.
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responding jitter plot clearly shows the second direction’s ability of discriminating cyan and black
data clusters. Components of the rest of the estimated layers have a similar interpretation.

The benefits of the G-SupJIVE method is clear in this example. It identifies the major joint or
individual variation directions in data automatically, reveals supervision that drives each of them,

and suggests how the supervision works in driving variations.

4.6 COMPARISON WITH OTHER METHODS

The purpose of this section is to show how G-SupJIVE generalizes existing methods in terms of
factorizing multi-block data. More specifically, we aim to demonstrate statistical capacity that our
proposed method possesses but other competing do not. First, it would be beneficial to conceptu-

ally compare the five competing models, SVD, JIVE [35], SupSVD [32], SIFA [31] and G-SupJIVE.

SVD | JIVE | SupSVD | SIFA | G-SupJIVE
Single Individual variation O O O 0) @)
Data sots Individual variation O 0) o
Multiple | Partial joint variation O
Full joint variation O 0] @)
Supervision Single O O O
sets Multiple O

Table 4. Comparison table indicating a set of functionalities each method is able to perform.

The comparison in Table 4 indicates a set of functionalities each method is able to perform.
SVD only factorizes a single data set into layers in the order of magnitude of variability. It is not
designed to incorporate multiple data sets or supervision information. JIVE generalizes SVD in
such a way that multiple data sets are decomposed into individual and joint variations. SupSVD, on
the other hand, can incorporate supervision information so that a single data set is decomposed into
supervised and unsupervised variations. SIFA is an effort to combine the advantages of SupSVD

and JIVE but is not able to handle partial joint variations or multiple supervision data sets. These
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generalization relations are summarized in Figure 19. The method located at the end of an arrow
generalizes the one at the start of the arrow. G-SupJIVE so far is the most generalized framework
for an integrative decomposition of a multi-block data set. We note that the proposed estimating

algorithm of G-SupJIVE is not simple extension of JIVE, SupJIVe or SIFA.

SE——
/ JIVE \
—
SVD \ SIFA ) (  G-SuplIVE
/
SupSVD
—

Figure 19. Conceptual diagram of the generalization relationship among different methods. The end point
of each arrow generalizes its starting point.

To compare these methods quantitatively, we here present an illustrative example, which is

more general than the previous example in Section 4.3.2. We use the following setting,

T
= [ X3, X0, X3, X4] = U \4
120x100 120%25 120%25 120x25  120x25 120x4  4x100 120x100
— [ Yl ) Y2 ) Y3 B Y4
120x40 12010  120x10  120x10  120x10
U = Y B + F
1204 120x40 40x4 120x4

The multi-source data set X has 120 observations and consists of 4 subsets X1, Xo, X3, Xy,
each with 25 measurements. We assumed four components in V' consisting of two individual, one
partial joint and one full joint variation direction as depicted in Figure 20. The intrinsic rank of
X is four. The supervision set Y now consists of 4 supervision candidates Y1,Y9o, Y3, Y, where
each column of Y; is filled with 120-dimensional normal random vector with mean 0 and diagonal
covariance matrix O'ZZI for 012 = 2.5,2,1.5,1. Each row of the maxtix F is independently generated
from 4-dimensional normal random vector with mean 0 and diagonal covariance structure with
entries of 8, 6, 4 and 2. As shown in the first row of Figure 20, the first column of B picks up
the second supervision candidate and provides variations in the direction represented by the first
column of V. The roles of the rest of columns of B are interpreted in a similar way. Each entry

of the noise matrix X is filled up with a value from i.i.d. standard normal random variable. The
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Figure 20. Parameters used in the comparison study.
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Figure 21. Heat map of the simulated data.
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Heat map of this simulated data is shown in Figure 21. For this data set, we fit G-SupJIVE, SVD,
JIVE SupSVD and SIFA. The estimation results are visually summarized in Figures 22, 23, 24, 25.

Estimation results for G-SupJIVE are shown in Figure 22, where estimates are represented by
blue curves and parameters are by red curves. G-SupJIVE algorithm stops at the fourth iteration,
which implies that it correctly estimates the intrinsic rank of X. Overall, G-SupJIVE effectively
captures the variation patterns and supervisions that drive them. Figure 23 shows variation direc-
tion estimates from SVD and JIVE. As expected, SVD is not able to correctly differentiate three
different types of variations. JIVE relatively performs well except that the partial joint variation
is estimated by two separate individual variations since JIVE decomposes variations into joint and
individual only. These two methods both do not provide any information on which supervision
drives which major variation. Estimates of variation directions and their corresponding supervision
effects from the application of SupSVD to the example are shown in Figure 24. SupSVD performs
poor since it is, like SVD, designed for a single data set, not for multiple data sets. SupSVD is not
able to correctly distinguish among three different types of variations but it provides supervision

effect information though not precise. To our surprise, SIFA performs not properly as observed in
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Figure 22. G-SupJIVE estimates overlaid with the parameters.
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Figure 25. This is because SIFA is not robust to the model misspecification.

4.7 SIMULATION

In this section, we conduct comprehensive simulation studies to demonstrate the advantage of the
proposed method over existing ones. We evaluate the accuracy of the parameter estimation to

compare G-SupJIVE with SVD, JIVE, SupSVD and SIFA.

4.7.1 Simulation eetting

The simulated multi-block data set consists of four primary data sets X1, X9, X3 and X4 on the
same set of subjects with sample size 120 and dimension 25 for each data set throughout all
simulation settings. We consider two different settings where, in Setting 1, the generative models
are G-SupJIVE including a partial joint variation and, in Setting 2, SIFA (or G-SupJIVE not

including a partial joint variation).

e Setting 1 (G-SupJIVE): 2 individual, 1 partial and 1 full joint variations

T
= [ X, X, X3, X4y = U V
120x 100 12025 120%25 120%25 12025 120x4  4x100 120x 100
- [ Yl ) Y2 ) Y3 5 Y4
120x40 120x10  120x10  120x10  120x10
U = Y B + F
120x4 120x40 40x4 120x4

This setting generates a multi-block data set of its intrinsic rank of 4. The supervision matrix
Y contains 4 candidate supervision sets Y1,Y2, Y3 Y, Each column of Y; is filled with
120-dimensional normal random vector with mean 0 and diagonal covariance matrix 01-21 for
a? = 2.5,2,1.5,1. Each row of the matrix F comes from i.i.d. 4-dimensional normal random
vector with mean 0 and diagonal covariance matrix with entries of 8, 6, 4 and 2. Entries of the
measurement error E is filled with i.i.d. standard normal random samples. Components of the
supervision effect matrix B and variation matrix V are chosen as in Figure 20.

e Setting 2 (SIFA): 4 individual and 1 full joint variations

T
= [ X3, X2, X3, X4] = U V ;
120x100 120%25 120%25 120x25  120x25 120x5  5x100 120x100
= [Yl, Y, |, Y; |, Y, |, Yg],
120x40 120x10 120x10 120x10 120x10 120x 10

121



First Variation
(individual)

Second Variation

(individual)

Third Variation
(individual)

Fourth Variation

(individual)

Fourth Variation

(full joint)

025k

0451
01t

0051

0,05
01}
EXES
02}

-02sf

-0z}

0251

025

n

&

5 10 5 20 5
| I Il I\ I |
%I_J \ Y J v y J

|

Y1 Y2 Y3 Y4 Y

Figure 26. Parameters for simulation setting 2
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U = Y B + F .
1205 120x40 405 120x5

This setting generates a multi-block data set of its intrinsic rank of 5 and differs from the setting
1 in that a partial joint variation is excluded. The supervision matrix Y contains 5 candidate
supervision sets Y1,Y2, Y3, Yy, Ys. Each column of Y; is filled with 120-dimensional normal
random vector with mean 0 and diagonal covariance matrix 02-21 for 01-2 = 3,2.5,2,1.5,1. Each
row of the matrix F comes from i.i.d. 4-dimensional normal random vector with mean 0 and
diagonal covariance matrix with entries of 8, 6.5, 5, 4.5 and 2. Entries of the measurement error
E is filled with i.i.d. standard normal random samples. Components of the supervision effect

matrix B and variation matrix V are displayed as in Figure 26.

4.7.2 Simulation results

We generate 100 simulated data sets from each setting and fit SVD, JIVE, SupSVD, SIFA and
G-SupJIVE to them. For SVD and SupSVD, the concatenated data set X is considered as a single
data set and, for SupSVD and SIFA, the concatenated supervision set Y is fed as if it is a single
supervision set. To avoid ambiguity, we fit each model with the true ranks. SVD and SupSVD are
fitted with rank 4 or 5 depending on setting. If a method (JIVE and SIFA) does not assume a partial
joint variation, the rank of a partial joint variation is assigned to the rank of each of individual sets
on which the partial joint variation is defined. To compare the quality of the estimated loading
vectors for B and V among the five methods, we evaluate the angle formed between each vector
estimate for B and V and its counterpart parameter measured by degree (°). Note that since JIVE
and SupSVD do not provide estimates related to a partial joint variation direction, corresponding
evaluation results are missing in Table 5.

The result of simulations is summarized in Table 5. Poor performance of SVD, either in Setting
1 or 2, is expected as it is not for multi-block data nor for data with supervision effect. JIVE, on the
other hand, exhibits a good performance in catching individual variations both in Setting 1 and 2.
However, it is not estimating well the full joint variation for either Setting 1 or 2. Intuitively, JIVE
conducts SVD within each of individual and joint data sets given its rank. It does not take any
distributional assumption and simply find strong variations. In our settings, individual variations
are relatively strong compared to the joint signal, which actually is the weakest. This may explain
the reason why JIVE is good in revealing individual variations even without supervision being taken

into account. SupSVD shows suboptimal performance in estimating variation directions. SupSVD
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improves upon SVD in a way that it provides supervision effects though not precise. Like SVD,
SupSVD cannot handle effectively the multi-block data. SIFA’s low performance in Setting 1 is due
to the model misspecification: SIFA is not capable of incorporating any partial joint distribution
and multiple supervision sets. However, SIFA is good at estimating both variations and supervision
effects for the data generated from SIFA model except for the full joint variation estimation. This
may be due to the smaller size of variation of the joint component. It is clear from Table 5 that G-
SupJIVE performs much better than other methods for both Setting 1 and 2. G-SupJIVE algorithm

stops at the 4th or 5th layer estimation for setting 1 and at the 5th or 6th for setting 2.

4.8 TECHNICAL DETAILS

4.8.1 Details of transformation of objective function of by

The minus log likelihood (4.6) as a function by given v, 02, and 0]201 modulo the constant terms

with respect to by (the index [s — 1] is omitted) is,

2

k
g
L IXvi = Ybi|3+ 3 7| big, |, - (4.8)

1 HQ %%
B 2020} +02)

507 [X = Ybyv{

=1

We show that minimizing the function (4.8) is equivalent to minimizing the following objective

function A(by),

A(by) = ||®, —<1>2b1\§+2k:ﬂ\b1,gj|2, (4.9)
j=1
where
507 X1 257 Y
& _ 2;2X2 e, %Y
éx.p ;}TgY
It is easy to see that.
IR G (4.10)

202 20@(012@1 +02)’
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Figure 27. Geometric relation between the two Frobenius norms, (4.11) and (4.12)

By separating each column of the matrix X — Yby (vi)? in the first term of the equation (4.8) and

stacking one on another, it can be shown that its Frobenius norm is equivalent to a vector norm,

X = YbivT |5 = |®1 — ®oby 2. (4.11)

By the Unitary invariant property of Frobenius norm,
2
IXvi — Ybi|5 = ||(Xvi — Yby)vi || (4.12)

The Figure 27 shows the geometric relation between the two Frobenius norms, (4.11) and (4.12).
Consider the ith rows of X and Y and denote them by X; and Y;. Note that the vector v
is fixed with a unit norm so that X;vy is a projection of X; onto vi. Then X; — Yiblv{ and
(Xvy— Yibl)v{, respectively, represent the hypothenus and the bottom of a right triangle formed
by X, (Y;b1)vy and (X;vi)vy. By the Pythogorean theorem,

X — Yiblfoi, > ||(Xivi — Yibl)vlTHfD, for each 1,

which leads to,
X = Yool |2 > [|(Xvi — Ybo)vT || (4.13)

A tedious calculation of partial derivatives of (4.11) and (4.12) with respect to each component by ;

of by using v; being of a unit length shows,

OX - Youvilly _ of|(Xvi— Yooy (oo (4.14)

Oby; Oby
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First term

\/Second term

Subtraction

(a) (b)

Figure 28. Description of changes of objective functions

In specific,

a|X - YbyvT |2 _0|(Xvi - Yby V7[5

Oby Oby

n p

m
= Z Z Xe,f — ZYe,gbLg vi,f | Ye,ivi,y, for each i.
e=1 f=1 g=1

The inequality (4.13) and the equality (4.14) imply that (4.12) is a vertical downward translation
of (4.11) and positive as shown in (a) of Figure 28. Moreover, (4.10) indicates that the first term
of (4.8) is a vertical downward translation of the second term of (4.11) with being flattened as
shown in (b) of Figure (28). As a result, as shown in (b) of Figure 28, the subtraction of the second
term from the first in (4.8) is still a positive quadratic form with its minimum being attained at

the same point where the first term does.

4.8.2 Details of transformation of objective function of v,

2

The minus log likelihood (4.6) as a function vy given by, o7,

and O']%l modulo the constant terms

with respect to vy (the index [s] and [s — 1] are omitted) is,
2
Ufl

m
— N 1Yb = X1+ Avial,, 4.15
202(0?1 _1_02) | 1 1”2 Z | 17Gz||2 ( )

=1

B(vi) = — [|X = YbivT % -

1
507 |
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We show that minimizing the function (4.15) is equivalent to minimizing the following objective

function B(vi) under the condition where there exists supervision effect,

1
2 -3 2
1 g 1 o
B*(vi) = ||| —9lw, - N xTx ol - N XxTyp
(v1) <20§ 272 203(0%—1—02) ) <20§ 271 20§(aj2cl+0§)
) (4.16)
I o7 JJQ” T : S
| —=vow,— — 41 XX A )
202 22 202(0%—5—03) v +; Iviglls,
2
where
X1 Yb; 0 0
X2 0 Yb; 0
‘Ill = P ‘IIQ -
X., 0 0 ... Yb

By seperating each column of the matrix X — Yb; (v1)” in the first term of the equation (4.15)
and stacking one on another, it can be shown that its Frobenius norm is equivalent to a vector

norm below,

X = Ybivi || = %1 — Tovy 3.

I
F
Expansion of each of the first two terms in (4.15) shows,

X = YbivT | = 1% — Bavi 3
= (U] —v{ W) (¥; — Wyvy)
=iy, — vl elw, +viIwlw,,
[Yby — Xvy |5 = (bTYT —vIXT)(Yb — Xvy)

=b YTYb — 2vIXTYb + vI X Xv;.

Now,
1 T2 U]% )
— |IX—Yb ———+———|Yb; - X
202 H 1V HF 203(0]201 +02) 'Yy vill;
2 2
T T f1 T T T f1 T
=v] | ¥ ¥ — ——— X' X | v —2v v, ¥, — ————X"Yb
! (202 272 2(73(0?1 + 02) > ! ! (203 271 203(0?1+03) 1)
2
1 o
—oTw, - S bTYTYD
A R i !
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1
2 ) 2
1 o 1 o
= (\115@2 — fl)XTX> <\I:2T\I:1 — leTYb1>

202 202 (JJ%1 + 02 202 203(0?1 +02)
L o7 oj T Ll
— | =P ¥y — —— 1 X*X | wvy|| + constant.
202 2 2 203(0?1 +02) !

2

Therefore minimizing the log likelihood (4.15) is equivalent to minimizing the function (4.16) under

the condition that,

1
Ay(T) = Ay (202\115\1:2 —

U—]%lXTX > 0, for all i (4.17)
202(0]201 + 02) ’ ’ ’

where A;(A) is the ith largest eigenvalue of a matrix A. Since ¥; is full rank, the matrix T is also
full rank. Eigenvalue analysis of T shows that T is not positive definite if there is no supervision

effect, i.e., by = 0.

4.8.3 Details of Stopping Rule Lemma

Since the rank of the multi-block data set X is directly related to the number of variation directions
v;, we focus on the estimation step of v; described in (4.16). According to [18], given a lasso penalty

parameter A, we must have vy g, = 0 if,
1Z7 xill2 < A, (4.18)

where Z; is a column slice of the matrix,

1
2 2
1 o
—yly, N XTx
(202 272 203(0]2@1—{—03) ’

corresponding the the ¢th group and r; is the ¢th partial residual defined as,

2 -3 2

1 ar 2 1 oy
ri=|-—vlw, - N XTx —wlw, - N __XTyp| - Z:vig..
! (202 272 202(0%, +02) ) <20§ 27 202(0%, +02) ; LG,

Since we are looking for the condition such that vi g, = 0 for all ¢ = 1,2,..,m, the previous

condition (4.18) becomes,
1Z7r||2 < A,

where,

1
2 3
1 o
Z=|—olw,- N xTx
(202 272 202(01%1 +02) ) '

€ €
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1
2 —3 2
1 o 1 o
= —olw,- N XxXTx — vyl - XTyp].
' (203 272 203(0'}201 +02) ) (202 271 20@(0]%1 + 02)

Noting that the square root term and the inverse square root term are canceled and that W1 ¥ =

XTYDb and using Cauchy-Schwarz inequality, we have vi = 0 if,

1
< 2

X"Yb ——
2(0%, +02)

1Xlo [Yb][y < A.

2(0]%1 + 02) )
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