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Abstract
Ingestion and digestion of food as well as expulsion of residual material from
our gastrointestinal tract requires normal propulsive, i.e. motor, function.
Hypomotility refers to inherited or acquired changes that come with decreased
contractile forces or slower transit. It not only often causes symptoms but also
may compromise nutritional status or lead to other complications. While severe
forms, such as pseudo-obstruction or ileus, may have a tremendous functional
impact, the less severe forms of hypomotility may well be more relevant, as
they contribute to common disorders, such as functional dyspepsia,
gastroparesis, chronic constipation, and irritable bowel syndrome (IBS). Clinical
testing can identify changes in contractile activity, defined by lower amplitudes
or abnormal patterns, and the related effects on transit. However, such
biomarkers show a limited correlation with overall symptom severity as
experienced by patients. Similarly, targeting hypomotility with pharmacological
interventions often alters gut motor function but does not consistently improve
symptoms. Novel diagnostic approaches may change this apparent paradox
and enable us to obtain more comprehensive information by integrating data on
electrical activity, mechanical forces, patterns, wall stiffness, and motions with
information of the flow of luminal contents. New drugs with more selective
effects or more specific delivery may improve benefits and limit adverse effects.
Lastly, the complex regulation of gastrointestinal motility involves the brain-gut
axis as a reciprocal pathway for afferent and efferent signaling. Considering the
role of visceral input in emotion and the effects of emotion on visceral activity,
understanding and managing hypomotility disorders requires an integrative
approach based on the mind-body continuum or biopsychosocial model of
diseases.
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Introduction
Normal gastrointestinal (GI) function requires a system capable 
of adjusting to, at times, rapidly or dramatically shifting volumes 
due to food intake, fragmentation of larger ingested particles, and 
mixing and movement of chyme to bring nutrients to the absorp-
tive sites and ultimately to expel residual materials from the gut. 
Many of these tasks depend on forces generated by the smooth 
muscle cells found in the mammalian gut. Abnormalities of GI 
motility, whether inherited, acquired, or induced by medications, 
may thus have significant implications on nutrient intake, transport, 
absorption, and fecal output. For this review, we will focus on one 
aspect of motor dysfunction: hypomotility. We will try to define  
underlying mechanisms, the consequences on the mammalian 
gut, and our ability to diagnose and treat it as a potential cause for 
disease. We will primarily use decreased contractile force as our 
operational definition of hypomotility, relate it to transit whenever 
possible, and focus on clinical aspects rather than the molecular or 
physiological mechanisms.

The mammalian, and thus also the human, gut has a basic structural 
organization that includes distinct muscle layers. The innermost 
muscularis mucosae separates the mucosa from the submucosa 
and likely contributes to the movement of chyme in the microen-
vironment close to the absorptive surfaces1. However, relatively 
little is known about its role in human disease. The more promi-
nent and better-studied muscularis externa layer contains fibers 
oriented in circular and longitudinal directions that form its inner 
and outer component, respectively. For the purpose of this review, 
we will discuss hypomotility largely based on the assumption that  
contractile forces and patterns generated by this external layer play 
a key role in the tasks outlined above2.

Mechanisms of hypomotility
Considering the role of muscle activity, disorders of smooth muscle 
function, such as inherited abnormalities of contractile proteins, by 
definition contribute to the development of hypomotility3,4. Recent 
studies suggest that other molecular defects may lead to subtle, but 
potentially more common, manifestations. For example, detailed 
molecular and physiologic investigations identified changes in a 
voltage-sensitive sodium channel in patients with irritable bowel 
syndrome (IBS)5,6. In addition to inherited abnormalities or sus-
ceptibility, patients may also acquire changes involving contractile 
proteins, ion channels, or other molecules, as has been shown for 
diabetic gastroparesis7,8.

Muscle cells ultimately generate forces and create the motor events 
we can observe, but they are regulated by several cell types, which 
may be responsible for disorders characterized by hypomotility. 
The interstitial cells of Cajal form a network of functionally cou-
pled cells within the muscle layer of the GI tract, where they gen-
erate and transmit electrical activity that controls smooth muscle 
function9. Animals with congenital absence of these cells do not 
display normal electrical activity and have significant abnormalities 
of motility and transit10. Consistent with experimental data, inher-
ited and acquired, potentially reversible changes have been identi-
fied in various motility disorders10–12. Recent studies raise questions 

about a potential role of macrophages as modulators of GI motility. 
These macrophages form a three-dimensional network within the 
muscle layers and produce a variety of mediators that can alter gut 
function13,14.

Innervation plays an important role in the regulation of GI motility. 
The intrinsic or enteric nervous system forms the myenteric plexus 
with ganglia being located between the circular and longitudinal 
portions of the muscular layer. Localized abnormalities, such as 
inherited aganglionosis of the rectum (Hirschsprung’s disease) or 
acquired loss of ganglion cells in achalasia, disrupt the normal pat-
tern of activity and, in the context of these disorders of sphincteric 
structures, delay or even block the passage of luminal contents15,16. 
Changes in enteric neurons or their function may also contribute 
to a variety of disorders characterized by abnormal motility, such 
as esophageal dysfunction in Sjögren’s syndrome, gastroparesis, 
pseudo-obstruction, or chronic constipation11,17–22. Extrinsic inner-
vation provides a link between the central nervous system and the 
GI tract, often referred to as the brain-gut axis. Based on anatomic 
and functional criteria, extrinsic innervation is typically divided 
into sympathetic and parasympathetic components, with the vagus 
nerve being the predominant component of the parasympathetic 
branch of the autonomic nervous system. Experimental approaches 
have defined its important modulatory influences in many differ-
ent areas, which range from motility and secretion to immune and 
endocrine function. The clinical impact can be seen in patients who 
have undergone a surgical vagotomy as a treatment of ulcer disease, 
which often leads to gastric atony, impaired opening of the pyloric 
channel, and prolonged retention of ingested material23. Vagoto-
mies are rarely performed nowadays, but unintentional vagal injury 
during foregut surgery or autonomic neuropathy may contribute to 
the development of motility disorders, such as dyspeptic symptoms 
after anti-reflux surgery or diabetic gastroparesis24–26.

Inherited or acquired connective tissue disorders may manifest 
with impaired GI motility. The network of connective tissue pro-
vides the scaffolding for muscle cells. Few mechanistic studies 
systematically examined the exact physiological role of this pas-
sive support, yet the consequences of systemic sclerosis or inher-
ited disorders, such as Marfan or Ehlers Danlos syndrome, clearly 
highlight its importance27–29. Other problems, such as vascular or 
joint manifestations, often predominate the classic manifestations 
of these rare diseases. However, less severe phenotypes, such as 
joint hypermobility syndrome, are more common and – as shown 
recently – seem to also be associated with a high prevalence of 
functional GI disorders30,31.

By far the most important, but not always fully appreciated, cause 
for changes in GI motility is the use of medications. A host of dif-
ferent agents can decrease contractile forces, change patterns of  
contractions, and/or delay transit of material throughout the gut. The 
list includes agents that are even available over the counter, such  
as anti-histamines or loperamide, but also prescription medications, 
such as opioids, calcium channel blockers, nitrates, anticholinergic 
substances, several antidepressants, antipsychotics, or anti-emetics, 
to mention just a few of the more common culprits.
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Consequences of hypomotility
Considering the important role of normal GI motility in assuring 
entry into and transit through the gut with mixing and fragmenta-
tion also facilitating absorption, hypomotility should compromise 
normal GI function and nutritional status and/or cause symptoms. 
Consistent with these theoretical considerations and the previously 
mentioned role of medications as a cause of motor dysfunction, 
blunting contractile amplitudes through antimuscarinics, opioids, 
and L-type calcium channel blockers delays orocecal transit and 
alters meal-induced changes in colonic activity, likely contrib-
uting to the development of constipation that is often seen with 
these agents32–36. Conversely, cholinergic agonists increase con-
tractile forces and improve esophageal clearance of swallowed 
fluids37,38. Independent of such pharmacologic investigations as 
proof of concept, detailed studies of esophageal motility clearly 
show the relevance of normal contractile function. A complete 
lack of normal peristaltic activity as an extreme case of hypo-
motility is very rare in asymptomatic individuals and is typically 
associated with dysphagia39. More limited changes with localized 
decrease in contractile amplitudes below 30 mmHg correlate with 
impaired bolus clearance if they involve a sufficiently long segment 
of the esophagus40,41 but may not necessarily trigger significant  
symptoms42–45.

This correlation between low contractile amplitudes as an opera-
tional definition of hypomotility and impaired transit or symptoms 
is even less consistent when we look at gastric function. While 
antimuscarinic agents slow gastric emptying in healthy volunteers46, 
the L-type calcium channel blockers nifedipine and verapamil have 
no effect47,48. Similarly, manipulation of transit with erythromycin 
or morphine in healthy persons does not correlate with consist-
ent and significant changes in contractile indices measured with a  
wireless capsule49. Conversely, activation of cholinergic pathways 
with bethanechol or neostigmine increases contractile activity but 
does not accelerate gastric emptying46,50. Perhaps most importantly, 
neither emptying nor an aggregate measure of contractile activity, 
the motility index (MI), correlates consistently with symptoms, 
which may in part be due to limited coordination of contractions 
within functional units of the GI tract51–56. Increased activity trig-
gered by a meal or pharmacologic stimulation is associated with 
higher ratings of dyspeptic symptoms50,51,57, pointing at the role of 
more complex motor patterns rather than measures of force gen-
eration only. Detailed physiological testing supports such a con-
clusion, as abnormal patterns are common in patients with severe  
GI dysfunction or functional dyspepsia58–60 and correlate with 
altered transit of ingested material through the GI tract61,62. While 
we have a more complex understanding of the many different  
factors controlling GI motility, the clinical manifestations and 
results of diagnostic testing still largely fit into the dichotomous 
concept of the previously proposed neurogenic or myogenic  
mechanism of dysmotility that separates abnormalities in patterns 
from those defined by abnormal amplitudes63.

Assessment of hypomotility
The very principles of functional GI testing were introduced more 
than 100 years ago, when gastric intubation with rubber tubes 
allowed the measurement of residual contents after a test meal, 
the first recordings of pressure changes, and – with the advent of 

radiography – the indirect visualization of contractions and empty-
ing64. While the techniques have been refined and advanced signifi-
cantly, they still focus on direct or indirect recording of contractions 
and the resulting movements of luminal contents (Figure 1). The 
direct assessment of contractile forces typically employs catheter- 
based systems and is thus invasive. Esophageal and anorectal man-
ometry have become routine diagnostic tools in modern medicine; 
antroduodenal and colonic manometry require more complex 
instrumentation and prolonged recordings and have unclear diag-
nostic utility, which have limited their application in clinical prac-
tice. The miniaturization and wireless signal transfer brought us a 
capsule-based system that measures pH and pressure as the capsule 
is propelled through the gut. The pH allows us to approximate its 
location (the stomach is highly acidic, and fermentation lowers the 
pH to about 5 in the proximal colon). This technique has opened 
up options to non-invasively assess motor activity and entry/exit  
rather than transit per se65,66. Yet it provides limited information 
about motility patterns, which would require prolonged recordings 
from multiple sites in stable and predefined locations.

Focusing on the movement of luminal content rather than contrac-
tions offers an alternative endpoint for clinical and scientific inves-
tigations of GI motility. The most commonly employed approaches 
largely rely on radioactive molecules that label physiologically rel-
evant substrates that can be followed with scintigraphic methods 
(Figure 1C&D)67,68. For slower phenomena, such as the determi-
nation of whole gut transit, intermittent X-rays suffice to deter-
mine the number and location of retained radio-opaque markers  
(Figure 1B), which allows us to calculate an approximate transit 
time69,70. While not used as often, we can exploit changes in the 
microenvironment of different compartments within the GI tract to 
determine transit times. Early studies relied on the urinary excretion 
of mostly colored labels that were absorbed after reaching the small 
bowel. As this approach has urine production and bladder emptying 
as confounders, the temporal resolution is quite limited. Nowadays, 
the same principle typically uses substrates that are absorbed or fer-
mented, diffuse across membranes, and ultimately reach the lungs 
where they are exhaled and can be easily captured in ‘real time’ to 
assess gastric emptying or orocecal transit71–73.

Conceptually, contractile activity and patterns will ultimately pro-
pel ingested material along the axis of the GI tract. Thus, both 
endpoints should relate to each other as shown for achalasia as an 
example in Figure 2. However, direct assessments suggest an, at 
times, poor correlation between overall test results of manometry 
and transit studies74. This led to the development of approaches 
that assess both parameters in parallel. The combination of pres-
sure measurements and impedance changes after the ingestion of 
typically a liquid, but at times viscous bolus, has now become a 
routine test in clinical practice (Figure 1A)43,75. Simple constraints 
due to more difficult access, more complex motor pattern, and the 
need for longer recording times require a different strategy for the 
assessment of gastric, small bowel, or colonic contractions and 
transit measurements. While these strategies are not yet ready for 
routine application, investigators combined assessments of lumi-
nal filling and wall motions of segments within the GI tract using 
computerized reconstructions of cross-sectional imaging, such as 
magnetic resonance imaging (MRI). In the colon, dynamic MRI 
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Figure 1. Examples of clinically used assessments of gastrointestinal (GI) motility. Panel A demonstrates a pseudocolor display of 
esophageal pressure changes in response to a swallow (upper panel). The associated changes in impedance, caused by the traversing 
fluid bolus, are superimposed in purple in the lower panel. In panel B, radio-opaque markers can be seen in the stool-filled colon (mostly 
accumulated on the left side) and allow an estimate of whole gut transit time. Gastric emptying of a radioactively labeled meal is documented 
with intermittent scintigraphic imaging (Panel C) and plotted as a function of time (Panel D).

shows a good correspondence between high amplitude propagating 
pressure waves assessed manometrically and luminal diameter 
changes with fluid propulsion, triggered by intracolonic infusion 
of the laxative bisacodyl76. While many reports still refer to ampli-
tudes of observed contractions, this analysis is based on wall motion 
or diameter changes with amplitudes being defined by geometric 
rather than pressure differences77–79. Parallel assessment at several 
points over time may enable the investigator to recognize patterns 
that can then be correlated with movement of luminal contents. 
Adding specifically designed magnetic markers may even allow 
us to directly measure transit or velocity of movement within the 
gut lumen80. While this is labor intensive and costly, initial results 
show promise in differentiating disease from health, separating 
between different disorders79,81, and identifying the effect of phar-
macological interventions on contractile activity and movement of 
luminal content78,82. Thus, we have a proof of concept demonstrat-
ing that assessment of complex structure-function relationships is 
possible and may provide more insight into disease mechanisms or  
treatment options.

Treatment of hypomotility
During the last two decades, physicians and scientists have tried 
to translate our better understanding of GI motor function into  
better treatment for GI motor dysfunction. While we did indeed 
make progress, a retrospective viewpoint gives the process the 
appearance of a rollercoaster ride. The discovery of erythromycin’s 
effects as a potent motilin agonist gave physicians a prokinetic 
with effects on gastric and small bowel motility83,84. However, the 
unwanted antibiotic effects, the potential for adverse effects, and 
drug-drug interactions as well as an apparent loss of efficacy due to 
tachyphylaxis led to the development of several alternatives. Before 
looking at some of these alternatives, clinicians experimented with 
another macrolide, azithromycin, which had similar effects when 
studied acutely but comes with fewer drug-drug interactions than 
erythromycin. Despite this conceptual advantage, evaluations do 
not allow conclusions, as they were limited to short-term assess-
ments with manometry85,86. More importantly, there are still the 
antibiotic properties as a major drawback. With the encouraging 
initial data, motilin agonists have surfaced and resurfaced since, 
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with ABT-22987, KC 1145888, and mitemcinal all improving 
symptoms but not demonstrating true benefits when compared to  
placebo89,90. After a brief hiatus, another agent, camicinal, has been 
shown to accelerate gastric emptying in healthy volunteers without 
affecting esophageal, small bowel, or colonic transit91. While the 
jury is still out on the utility of this most recent agent, new obser-
vations may rekindle interest in motilin agonists. We typically use 
these agents to stimulate gastric motility and emptying, yet studies 
in healthy volunteers point at another potential use. When asked 
to rate symptoms during recordings of normal gastric motor activ-
ity, participants reported higher hunger scores during phase III of 
the cyclical activity pattern, seen in the fasting state92. This period 
of clustered and propagating activity fronts is associated with an 
increase in motilin, prompting follow-up experiments with motilin 
agonists. Interestingly, these agonists triggered clustered contrac-
tile fronts that propagated distally and heightened hunger feelings, 
which was not seen after the administration of a cholinergic agonist 
that simply increased the frequency and amplitude of contractions 

without a phase III-like activity. Conversely, the investigators also 
noted that unexplained anorexia is associated with loss of phase 
III93. With nutritional problems, most importantly the obesity epi-
demic we are facing, such observations may translate into novel 
applications in the future.

An extensive body of research has established the role of serotonin 
(5-HT) with its many different receptor subtypes in regulating gut 
function, motivating clinicians and drug companies to explore the 
therapeutic potential of serotoninergic agents. The initial results 
were promising. Cisapride, with its mixed agonistic and antagonis-
tic properties, enhanced contractile forces and accelerated transit, 
even though symptomatic benefit was less consistent94–96. The agent 
was eventually withdrawn from the market, as interactions with 
an inwardly rectifying potassium channel prolonged the cardiac 
repolarization phase and led to torsade de pointes97. The convinc-
ing basic science and the observed effects of cisapride prompted 
the development of several other agents with more specific binding 

Figure 2. Different test results and their representation obtained in a patient with the esophageal motility disorder achalasia. Pressure 
recordings obtained at different levels can be displayed as line tracings, showing the typical manometric results in this disorder with aperistalsis 
in the tubular esophagus and incomplete relaxations of the lower esophageal sphincter (LES) (Panel A). The same findings are shown as high-
resolution esophageal pressure topography, with the results of many different recording sites being color-coded and with a seamless display 
of the entire esophageal length based on real and extrapolated data (Panel B). The corresponding contrast study (Panel C) shows a dilated 
esophagus with contrast retention and smooth tapering of the distal esophagus with a non-opening LES.
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to the 5-HT
4
 receptor. Activation of this pathway facilitates ace-

tylcholine release, which modifies intrinsic signaling and could 
potentially improve motor function and maintain physiologically 
relevant patterns98. While conceptually appealing and backed by 
strong preclinical studies, the track record of these agents is lit-
tered with problems. Alosetron, which did not target hypomotility 
but slowed down transit and was approved as a selective 5-HT

3
 

antagonist for the management of diarrhea-predominant IBS, was 
withdrawn owing to an increase in cases of ischemic colitis99,100. 
Tegaserod, the first and only selective 5-HT

4
 agonist approved in 

the US, accelerated transit101 and improved constipation in women 
with or without IBS symptoms but was linked to an unexpected 
rise in myocardial infarction, leading to its withdrawal from the 
market102. Interestingly, while studies and marketing emphasized 
the benefit on pain and discomfort in IBS103,104, the only compara-
tive effectiveness analysis studies did not show superiority over 
a simple osmotic laxative with a better risk profile105. Within the 
last few years, several newer agents have been tested in preclinical 
and clinical studies106–114. Concerns about side effects115,116, limited 
efficacy117–122, loss of efficacy over time123, and equivalence or even 
inferiority compared to cheaper and safer agents124–127 have contin-
ued to raise questions about the cost-benefit ratio and true utility 
of this class of agents. Given that abnormalities in 5-HT levels and 
release are linked to IBS, perhaps more direct targeting of 5-HT 
release is worthwhile.

Cholinergic agents have been available for a long time, with  
atropine and hyoscyamine being part of the ‘pharmacopoeia’ of 
physicians for centuries. Considering the role of acetylcholine in 
neuromuscular transmission, it makes intuitive sense to use ago-
nists as a treatment for hypomotility. For acute colonic pseudo-
obstruction, enhancing cholinergic signaling has indeed become 
the first-line therapy128. In the esophagus, contractile amplitudes 
increase37,38. However, despite these acute effects on esophageal 
physiology, there was no tangible benefit in terms of reflux symp-
toms or acid exposure129. Studies on dysphagia are largely restricted 
to the management of myasthenia gravis, which demonstrate a ben-
efit of cholinesterase inhibitors but obviously target neuromuscular 
transmission of skeletal muscle affected in this disorder. Similarly, 
gastric contractions increased after administration of choliner-
gic agonists46,130, yet emptying did not improve and symptoms 
may even worsen46. In diabetic patients, the cholinesterase inhibi-
tor pyridostigmine similarly did not alter gastric emptying but  
showed a benefit in patients with chronic constipation131,132. Thus, 
the picture is at best mixed and highlights that patterns rather  
than simple contractile forces generated play an important role in 
normal gut function.

In the last decade, observations related to the peptide hormone 
ghrelin have generated quite a bit of interest about its possible util-
ity in patients with impaired gastric function or dyspepsia. Levels 
rise prior to food intake, regulate appetite, and modulate gastric  
emptying133,134. Initial experiments were encouraging, as they 
showed that infusion of ghrelin or short-term use of ghrelin agonists 
improved dyspeptic symptoms and gastric emptying135–137. Effects 
seemed to go beyond the regulation of gastric motility, as the ghrelin 
agonist relamorelin increased meal-induced propagating contrac-
tions and accelerated colonic transit in small trials of patients with 

constipation138,139. Another ghrelin agonist, ulimorelin (TZP 101), 
shortened the time to first bowel movement after partial colectomy 
in an initial dose-finding study140 but was not superior to placebo in 
the larger trials on postoperative ileus141. Initial studies of this agent 
in gastroparesis were similarly promising137,142,143. However, further 
development of its oral analogue has been halted after larger trials 
did not show benefit over placebo in gastroparesis144,145. Dyspeptic 
symptoms, such as nausea, and impaired gastric emptying have been 
linked to changes in electrical activity that can be recorded from 
the human stomach60,146,147. These observations led to the idea that 
implantation of stimulation electrodes may entrain the basic electri-
cal rhythm, thereby indirectly improving coordination of contrac-
tile activity, emptying, and ultimately dyspeptic symptoms. Initial 
experiments with temporarily implanted electrodes demonstrated 
the feasibility in humans and motivated the development of systems 
that could be permanently implanted for gastric electrical stimula-
tion (‘gastric pacers’)148–150. Subsequent experiments optimized the 
stimulation parameters, which now employ a high frequency that 
does not target gastric muscles and motility, is not associated with 
consistent changes in emptying, and presumably works through 
modulation of afferent input151. While open label studies suggested 
significant benefit, controlled trials did not support superiority over 
sham stimulation152.

Questions and directions for future research
Using increasingly sophisticated techniques, we can now assess 
contractile forces, patterns, and transit in the various functionally 
distinct compartments of the GI tract. However, we are still lacking  
reliable diagnostic and predictive markers. In patients with dys-
peptic symptoms, delays in gastric emptying and their treatment- 
associated changes do not correlate with symptom improvement153. 
Considering the complex responses to food intake, we may need 
to shift from a focus on facilitating emptying and consider other 
mechanisms, such as impaired accommodation154. A more nuanced 
assessment of symptoms or mechanisms may enable us to target 
a subset of symptoms, as, for example, for postprandial bloating, 
which tends to respond better to prokinetics155,156. While antrodu-
odenal or colonic manometry may predict treatment responses 
in subsets of patients157,158, the true utility of these assessments 
has never been examined systematically, with conclusions being 
largely based on small cohort studies of skewed patient groups. As 
described in this article, we have focused on physiologic variables 
when approaching patients with symptoms and possible gut dys-
function. However, recent studies of functional illnesses defined by 
altered motility or transit show the impact of psychological factors 
as confounders, which may not only influence the perceived symp-
tom severity but also drive healthcare-seeking behavior159–163 or 
predict treatment outcomes164. Considering the conceptual impor-
tance of brain-gut interactions, future studies need to define to what 
extent these correlations are consequences of altered physiology or 
whether the GI manifestations are primarily somatic manifestations 
of emotional or other psychiatric problems.

Several decades after the introduction of functional testing into 
clinical practice, we still have limited options to assess small bowel 
and colonic function. The wireless motility capsule may well 
point in the right direction, but it still provides too little insight, 
considering the importance of motility patterns discussed above. 
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Nanoparticles, perhaps combined with specifically designed adhe-
sive gels, may allow non-invasive monitoring of motor activity, pat-
terns, and relevant changes in the local microenvironment165. Such 
approaches may prove useful beyond diagnostic strategies, as they 
could be combined with focused/localized drug delivery.

The last few years have clearly moved our attention to a previously 
often-neglected component of the luminal contents: microbial 
colonization. Several interesting studies have emerged and should 
attract our attention. Perhaps not surprisingly, changes in nutrient-
microbiome interactions altered GI transit in a mouse model, which 
is in part driven by poorly absorbed materials and thus confounded 
by fermentation and likely increases in the volume of colonic  
contents166,167. However, volume changes explain only a part of 
this complex interplay, as specific microbial species and their  
metabolites modulate serotonin content in enteroendocrine cells, 
which in turn affect gut function168,169. While probiotics have long 
been a part of medical management, their effects are still limited170, 
showing the need for a better understanding of the triad of food, 
gut, and microbes.

Electrical stimulation found its way into the medical management 
of GI disorders more than a century ago64. The results of gastric 
electrical stimulation described above show continued shortcom-
ings. Despite ongoing problems, similar approaches were recently 
tried in constipation. Early open label studies reported promising 

results171 but also raised concerns about long-term efficacy and 
safety with high rates of problems and reoperations, which have 
been shown in sacral neurostimulation for other indications172.

GI motility matters. It allows us to ingest and digest food and ulti-
mately expel the residue. Normal motor function relies on the com-
plex interplay of the central and peripheral nervous system, different 
cell types in the GI muscle wall, and the luminal contents. Decreas-
ing forces or altering patterns of normal contractions, the corre-
lates of ‘hypomotility’, can interfere with transit, lead to symptoms,  
and/or compromise nutritional status. New development may ena-
ble us to better measure and analyze contractile forces, patterns, 
and transit, use them more effectively as biomarkers of hypomotil-
ity, identify new targets for our interventions, and understand the  
complex relationship that emerges from the brain-gut axis and 
closely links emotion with gut function and symptoms that  
ultimately determine quality of life.
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