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ABSTRACT 
 
The uncontrolled releases of blood gases have been to blame for historic public health catastrophes, 

but they also play vital roles in modern day industrial processes and within the body. Cyanide, 

specifically hydrogen cyanide (HCN), and hydrogen sulfide (H2S) are two such blood gases of 

interest. Accurate assessments of the risks each pose are essential to capitalizing on their positive 

contributions to society and preventing further incidents. While these two compounds have been 

studied for many years, new research is shedding light on their potential sources, emission rates, 

risks, and antidotal mechanisms; emerging science centered on the endogenous role of H2S has 

enthused many researchers regarding the potential application of this blood gas in preventing or 

treating maladies, yet caution must be exercised in such endeavors as we still do not fully 

understand the mechanisms by which H2S is toxic to humans. Recent studies have pointed to the 

risk of exposure to elevated levels of cyanide in foods, but also from anthropogenic sources such 

as fire smoke, marijuana smoke, and releases from mining sites. This study reviews recent 

literature surrounding H2S and cyanide sources and human health effects, including discussions 

on their sources, emission rates, and mechanisms of toxicity, in order to better understand their 

public health significance. Finally, recommendations for better management of these two blood 

gases to reduce risk are presented, including remarks on systematic air monitoring and antidote 

needs, public health preparedness considerations, and the potential risks that hydrogen sulfide and 

cyanide pose on a global scale. 
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1.0  INTRODUCTION 

Hydrogen sulfide (H2S) and cyanide - hydrogen cyanide (HCN) specifically - are toxic compounds 

that share many interesting qualities and are found readily in the environment and industrial 

settings. Given the widespread distribution of H2S and cyanide and/or their precursors, together 

with the highly toxic nature of the agents themselves, it is appropriate in the public health 

community to be proactive and continually diligent when characterizing and managing the hazards 

associated with their release and usage. The overall objective of this research is to review and 

compare the toxicity, effects, and scenarios where people may be exposed to dangerous levels of 

these two “blood gases” in order to help manage the risks they pose. Accordingly, this first chapter 

introduces the concept of blood gases and their public health relevance. Chapter 2 consists of an 

in-depth study of one particular blood gas, H2S, wherein sources, regulation, suspected effects, 

and conflicting chemical toxicity observations are summarized. A systematic review of H2S 

emissions and concentrations literature published from 2004 – 2014 is included in this chapter. A 

summary focusing primarily on emission sources and “normal” environmental levels of cyanide is 

presented in Chapter 3 up to the end of December 2012, as the chapter was then published by this 

author and colleagues in Toxicology of Cyanides and Cyanogens: Experimental, Applied and 

Clinical Aspects (Malone et al., 2015). Finally, Chapter 4 discusses overall gaps in the state of the 

science, where future research and public health endeavors should be aimed to prevent or mitigate 

potential adverse impacts from H2S and cyanide, and broader issues that could cause or be affected 

by the release of these two compounds on a global scale. As an introduction to these concepts, let 

us first review how cyanide and H2S are classified by the medical community. 
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1.1 BLOOD GASES 

Among professionals within clinical medicine, the term “blood gases” refers to a spectrum of 

measurements taken of dissolved gases in arterial blood used to determine how well the body is 

taking in oxygen, expiring carbon dioxide, and preserving the acid-base balance in extra-cellular 

fluid. This arterial blood gas (ABG) test helps to give medical personnel an idea of the overall 

health of a patient by determining the blood’s acid-base balance (pH), partial pressure of oxygen 

(PaO2), partial pressure of carbon dioxide (PaCO2), oxygen saturation (SaO2), concentration of 

bicarbonate (HCO3
—), and base excess and base deficit (CLSI, 2004). Beyond the indicators 

sought in the traditional ABG test, many other environmentally-relevant gases can be carried by 

the blood. Anesthesia, for example, relies heavily on the blood’s ability to transport inert gases 

such as nitrous oxide throughout the body (Baker and Farmery, 2011). Environmental agents found 

outside of anesthesia but historically encompassed by the same terminology – such as hydrogen 

cyanide (HCN) and hydrogen sulfide (H2S) – also play specific roles in the body, supporting or 

interfering with cellular respiration depending on their concentrations. HCN and H2S, ubiquitous 

and highly toxic blood gases that may also reasonably be described as “cellular toxicants” or 

“mitochondrial poisons,” are the foci of the following study.  

1.2 GASEOUS SIGNALING MOLECULES 

Blood gases suspected of playing role(s) in the body at low levels are referred to as gaseous 

signaling molecules, a category in which both HCN and H2S belong (Borowitz et al., 1997, Wang, 

2002). These gaseous molecules are used to transmit chemical signals at a cellular level or beyond, 
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and can be produced endogenously or brought in from external sources. Additional gaseous 

signaling molecules currently include ammonia (NH3), carbon dioxide (CO2), carbon monoxide 

(CO), carbon suboxide (C3O2), ethylene (C2H4) (in plants), methane (CH4), nitric oxide (NO), 

nitrous oxide (N2O), oxygen (O), and sulfur dioxide (SO2) (Cooper, 2000, Cummins et al., 2014, 

Heitman and Agre, 2000, Hogg et al., 1996, Kenney et al., 2015, Kerek, 2000, Levitt et al., Lin et 

al., 2009, Liu et al., 2010, NHLBI, 2012, Rennke and Denker, 2007, Stryer, 1995, Wu and Wang, 

2005). Within the category of gaseous signaling molecules is an even more specialized and 

emerging field called gasotransmitters. 

1.3 GASOTRANSMITTERS 

Only certain gaseous signaling molecules fall into the subcategory of gasotransmitters, although 

the distinction between the two terms has been blurred within the literature. For example, Mustafa 

et al. (2009) define a gasotransmitter as a “…gaseous messenger molecule involved in any 

signaling process.” Polhemus and Lefer (2014) describe NO, CO, and H2S as “endogenous 

gasotransmitters” or “signaling molecules,” or explain that they “are all produced endogenously 

via enzymes.” In contrast, Tinajero-Trejo et al. (2013) describe gasotransmitters more specifically, 

as “small gaseous molecules that play key roles in biology… All these gases penetrate membranes, 

are poisons in excess, are endogenously generated and have important biological targets, especially 

metalloproteins.” For the purpose of this study, let us define gaseous signaling molecules as any 

that can be produced within or outside of the body, while gasotransmitters are small molecules of 

gas produced endogenously that freely permeate membranes; they can evoke endocrine, paracrine, 

and autocrine effects; their production is regulated by the body; they have well defined functions 
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at physiologically relevant concentrations; when the body absorbs this gas from the environment, 

the functions can be mimicked; and they likely target specific cellular and molecular mechanisms 

(Wang, 2002).1 Gasotransmitters are distinct from more classic messenger molecules such as 

hormones and neurotransmitters in that gasotransmitters chemically modify intracellular proteins, 

thereby affecting cellular metabolism more directly and immediately (Mustafa et al., 2009). 

Understanding the core functioning differences between these molecules may not only help 

understand their benefits, but may also support antidote development to protect against 

overexposure (e.g. in the case of H2S). 

Originally, NO was the only known gasotransmitter, playing roles in the cardiovascular, 

immune, and nervous systems (Tinajero-Trejo et al., 2013). Recent research has since placed CO 

and H2S into that category, as well (Wang, 2002, Marks et al., 1991). CO serves as a 

neurotransmitter and helps to regulate certain cardiovascular and immune systems (Mann, 2010, 

Marks et al., 1991), while H2S is suspected to affect the cardiovascular system and to help regulate 

metabolism within cells and in the body more generally (Wang, 2002). Despite the fact that 

cyanide can be produced endogenously and activates several biological functions (Borowitz et al., 

1997), it is not considered a gasotransmitter by the larger scientific body or by some of the more 

specific definitions put forth in the literature – further supporting the need for more research into 

these compounds and how gasotransmitters are defined. 

The specialized roles that cyanide and H2S play as gaseous signaling molecules increase 

the risks they pose as environmental pollutants to humans. Put simply, the body is sensitive to low 

levels of these compounds, so higher levels produced exogenously may prove deadly. While 

                                                 

1 For more information, see the European Network on Gasotransmitters, which was formed in 2011 
to promote research around gasotransmitters (http://www.gasotransmitters.eu). 
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toxicity due to consumption or dermal absorption of cyanide or H2S can occur, inhalation is the 

most perilous exposure route for both of these agents in terms of efficacy. (Worldwide, however, 

cyanide exposure is more likely to occur through ingestion.) High levels of H2S and cyanide in the 

air can occur in a variety of situations, such as during mining operations, but fire smoke containing 

HCN is more of a concern in the case of cyanide. Two antidote kits are approved for use in the 

case of acute cyanide poisoning: CyanokitTM (hydroxocobalamin) and Nithiodote (containing the 

sodium salts of nitrite and thiosulfate). Concerns exist as to their efficacy, however (Cambal et al., 

2011, Cambal et al., 2013), and while research is ongoing, there is no approved antidote for H2S 

(Jiang et al., 2016, ATSDR, 2014a).  

Quantifying inhalation risks posed by cyanide and H2S is complicated by the fact that few 

recent studies have been conducted that wholly document emissions, and the levels that people 

may be exposed to these compounds in a variety of situations. These inhalation threats, along with 

additional information, are discussed separately for each compound in chapters 2 and 3. Chapter 

3 on cyanide also discusses risks due to ingestion from dietary sources. Finally, Chapter 4 brings 

together H2S and cyanide to discuss directions of future research, emergency response risks, 

education needs, and global issues that should be considered on a broader scale. 
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2.0  ENVIRONMENTAL TOXICOLOGY OF HYDROGEN SULFIDE 

2.1 INTRODUCTION 

In 1878, the passenger-carrying paddle steamer Princess Alice was sunk in a collision on the River 

Thames, with the loss of over 640 lives, and curiously, may actually represent one of the largest 

mass poisoning episodes in history (Thurston, 1965, Lock, 2013). Raw discharge from the London 

sewers had been released into the Thames (standard practice at the time), and some survivors 

reported the unusually foul nature of the water. The extraordinarily high death toll of the Princess 

Alice accident (> 80% of passengers and crew) is in stark contrast to the similarly violent sinking 

of the pleasure craft Marchioness on the Thames a century later in 1989, where only 51 of 130 

people on board were lost (< 40% fatalities) (DETR, 2001). The Board of Trade enquiry and 

Coroner’s inquest at the time of the Princess Alice disaster were primarily concerned with 

establishing blame for the collision and determining if there were any criminal charges to be filed; 

the investigation did not consider that there may have been significant deaths caused by hydrogen 

sulfide (H2S) inhalation, possibly accelerated by the victims thrashing at the surface (Thurston, 

1965, Lock, 2013). Nevertheless, it was only nine years after the Princess Alice disaster occurred 

that the necessary investment was made to treat and separate the sewage before releasing it into 

the Thames (Cooper, 2001) and, certainly, it is entrenched in sanitary engineering lore that many 

of the Princess Alice deaths were due to poisoning, probably by H2S (Dobraszczyk, 2014).  

Our understanding of H2S sources and effects have vastly improved since 1878. Within the 

body it is believed that H2S can be beneficial at very low levels (Dongó et al., 2011, Esechie et al., 

2009, Yang et al., 2008). Above endogenous levels, however, H2S can be harmful; to this day in 
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the U.S. and likely elsewhere, H2S remains one of the most common hazardous substances 

attributed to poisoning deaths on the job (Frame and Schandl, 2015). Although scientists of 

multiple disciplines have studied this ubiquitous compound for many years, there are still facets 

of H2S that remain elusive – including but not limited to a comprehensive estimate of the 

prevalence of this poisonous gas emitted into the environment and effects associated with such 

exposures, the mechanism(s) of its cellular toxicity, and effective antidote(s). The knowledge and 

research gaps associated with H2S in the environment and its subsequent effects on the human 

body (especially when inhaled) are discussed herein. 

2.2 PHYSICAL PROPERTIES OF HYDROGEN SULFIDE 

Hydrogen sulfide is known by many names: hydrosulfuric acid, hydrogen sulphide, sulfinated 

hydrogen, sewer gas, and stink damp, dihydrogen monosulfide, dihydrogen sulfide, sulfane, 

sulfurated hydrogen, sulfur hydride and hydrosulfuric acid. H2S is a colorless gas, slightly heavier 

than air, possessing the characteristic smell of rotten eggs. Among its many hazardous traits, H2S 

is corrosive, explosive, and flammable. Table 1 below further describes the various properties of 

hydrogen sulfide: 

Table 1. Physical properties of hydrogen sulfide 

Trait Propertiesa 
Chemical formula H2S 
CAS registry 7783-06-4 
Molecular weight 34.08 g/mol 
Odor Rotten eggsb 
Appearance Colorless 
Physical state (STP) Gas 
Melting point (°C) -85.49  
Boiling point (°C) -60.33 
Solubility (water) 3.98 – 4.1 g/L (20℃) 
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Table 1 Continued 

Solubility (organic 
solvents) 

Glycerol, gasoline, kerosene, carbon disulfide, crude oil; certain polar organic solvents 
(methanol, acetone, propylene carbonate, sulfolane, tributyl phosphate, various glycols, 
& glycol ethers) 

Log Kow Not applicable 
Log KOW Henry’s 
law constant (25℃) 

9.8  x 10-3 atm  m3/mol 

a. Reference: ATSDR (2014a) 
b. Detectable only at low levels 

 

Although not as polar as water, the molecular structure of H2S, is similar to that of water 

and is also moderately soluble (Oviedo, 2010). The pKa for the reaction H2S  H+ + HS– is 7.04, 

and the second pKa is unaccessible in water (Harris, 2010, Butcher, 2010, Housecroft and Sharpe, 

2012)2. Consequently, at pH 7.4 (and irrespective of the exposure route in vivo) hydrogen sulfide 

is ~30% H2S and ~70% HS— (hydrosulfide) prior to any biochemical modification. Where any 

greater precision is unnecessary and in keeping with common practice in the 

biochemical/toxicological literature, this mixture in aqueous media and the form bound to metal 

ions is referred to as “sulfide” throughout. 

If released as a gas, H2S remains in the atmosphere for approximately 1 day in the summer 

and 42 days in winter, becoming changed to sulfur dioxide (SO2) and sulfuric acid (H2SO4) during 

this process (Bottenheim and Strausz, 1980). Converting H2S to SO2 requires the introduction of 

a hydroxyl radical (Equation 1).  

Equation 1. Conversion of hydrogen sulfide to sulfur dioxide in the air by the hydroxyl radical 

H2S + HO•  HS+ – H2O 
HS + O2  HO• + SO 
SO + O2  SO2 + O 

                                                 

2 Except where otherwise stated, data in this text are provided for H2S in its standard state (at 25 
°C, 100 kPa). 
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H2S can also be intentionally removed from the air via combustion, producing elemental sulfur or 

SO2 through the following chemical reactions (Rayner-Canham and Overton, 2009): 

Equation 2. Conversion of hydrogen sulfide to elemental sulfur and sulfur dioxide in the air by combustion 

2 H2S(g) + O2(g)  2 H2O(l) + 2 S(s) 
2 H2S(g) + 3 O2(g)  2 H2O(l) + 2 SO2(g) 

 
In the presence of metal ions, hydrogen sulfide can react and form metal sulfides – or the salts of 

hydrogen sulfide (Pouliquen et al., 2000). This reaction allows lead(II) acetate paper to be used to 

detect H2S, as the moistened paper turns black in color due to a PbS precipitate when the gas is 

present (Rayner-Canham and Overton, 2009): 

Equation 3. Detection of hydrogen sulfide using lead acetate paper 

Pb(CH3CO2)2(s) + H2S(g)  PbS(s) + 2 CH3CO2H(g) 

H2S released into water it is referred to as hydrosulfuric acid or sulfhydric acid. If 

sufficiently aerated, H2S can be oxidized, forming elemental sulfur and water. Additional 

biological methods of H2S removal have been explored to manage large-scale anthropogenic 

sources of H2S in liquid form (Zhang et al., 2008). H2S can also enter soil when deposited from 

the air or due to surface spills or natural events (Pouliquen et al., 2000, Sittig, 2002). Air is the 

medium where most H2S is found, and where it is of most risk to people. Significant data gaps still 

exist when describing its particular fate and transport, however, as well as transformation rates 

within the broader sulfur cycle. 

2.3 EMISSIONS & ENVIRONMENTAL SOURCES 

Figure 1 is a simplified representation of the global sulfur cycle and where hydrogen sulfide is 

found therein.  
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Figure 1. Global sulfur cycle 

 
Hydrogen sulfide is a small part of the much larger cycle – so human activity is not likely to be 

able to significantly affect it. H2S can be produced naturally in the environment through the 

anaerobic breakdown of organic matter by sulfate-reducing bacteria, anthropogenically by various 

industrial practices, and by normal biological processes within the body (Sivert et al., 2007, 

ATSDR, 2014a, Ober, 2006). Although not the focus of this chapter, production of H2S in the body 

is a result of digesting protein-containing food. As previously discussed, H2S is also part of a group 

of currently recognized gasotransmitters (along with NO and CO) (Wang, 2002). Although 

concentrations in urban areas can be as high as 1 ppb based on data prior to 1993 (US EPA, 1993), 

background H2S air concentrations typically range between 0.11 ppb and 0.33 ppb. As to be 

expected, the closer a person lives to sources of H2S emissions, the higher the background levels 
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tend to be (and can exceed 90 ppb) (Fulton et al., 2003, Horton et al., 2009, Inserra et al., 2004, 

White et al., 1999). 

Current assessments on yearly H2S emissions are based on data collected several years ago; 

terrestrial sources are estimated to account for 53 to 100 million metric tons of sulfur, while ocean 

emission rates are between 27-150 million metric tons (Hill et al., 1972, WHO, 2003). Natural 

sources, such as geothermal activity, are estimated to contribute most (90-95%) of the worldwide 

H2S emissions (Beauchamp et al., 1984, US EPA, 1993). To provide a more a recent estimate of 

H2S releases into the environment and their sources, emissions and concentrations data in 

published literature were aggregated in the following study. 

2.3.1 Research Aggregation Methods 

To quantify hydrogen sulfide sources based on size and the breadth of recently published research, 

we catalogued original research published from 2004-2014 that reported on either emissions or 

concentrations of H2S from various sources under baseline (non-experimental) conditions. The 

search terms entered into both Google Scholar and the University of Pittsburgh’s journal database 

(PittCat) were as follows: allintitle: H2S OR "hydrogen sulfide" OR "hydrogen sulphide" AND 

concentration OR concentrations OR emission OR emissions. Most articles were in English 

(>95%) as a result of the search terms, an acknowledged limitation of the study design, but non-

English texts were reviewed where translation services permitted. 

In total, 217 studies were initially returned in the search. The following exclusions were then 

used to filter out non-valid studies:  
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• Review articles, so as to prevent counting data twice (n=5) 

• Studies that did not monitor natural or baseline H2S concentrations or emissions (e.g. they 

controlled all conditions) (n=114);  

• Non-peer-reviewed studies (unless official governmental/industry report/manual) (n=4); 

and 

• Monitoring data not supplied, e.g. Conference proceedings that did not list direct 

measurements, or articles where results were not listed in the abstract and where full text 

was not available either openly or through PittCat (University of Pittsburgh) interlibrary 

loan requests (n=18). 

After these exclusions, 76 valid studies remained. Most of these studies reported multiple results, 

and in those cases the peak, median, and/or average of concentrations and/or emissions were 

logged where available. We then grouped the monitoring results (n=130) by H2S source; converted 

fluxes (n=16), flux densities (37), and concentrations of H2S (n=77) into consistent units where 

possible3; and evaluated the aggregate trends. 

2.3.2 Results 

A systematic review of all valid studies that provided estimates for H2S releases recorded as 

concentrations, flux, and flux density in the academic literature from 2004-14 have been 

                                                 

3 Twenty (20) flux density results were reported in various animal units (AU) (e.g. mg of H2S emitted per 
pig per hour). Due to monitoring technique variability (passive vs. active) and the broad range of animals 
that were studied, no attempt was made to convert these 20 flux densities into units comparable to the other 
110 monitoring results reviewed. The Flux Density (AU) are all related to AFO emissions and reported as 
is in Appendix A, but they are not represented in the max emissions / concentrations summarized in Table 
2. 
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summarized by general emission source below (Table 2). The complete tabulated dataset is 

presented in the appendix. 

 

Figure 2. H2S study sources by year, 2004-14 

 
The years 2008 and 2014 saw the highest publishing rates on the topic of H2S emissions 

and concentrations among the studies reviewed (Figure 2). Out of the 76 studies included in the 

assessment, animal feeding operations (AFOs) were the most commonly studied sources (n=31). 

In decreasing order, the next most commonly monitored sources by study were industrial or 

residential wastewater (n=18), decomposition of organic material (n=9), natural geothermal 

sources (n=9), energy production (n=7), and “other” (n=2) (Figure 3).  
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Figure 3. Topics (percentage) of the H2S studies included in the study (n=76) 

 
The emission source for each study was defined using the following distinctions: 

AFOs – Animal Feeding Operations – Studies assessed H2S emissions from any type of 

agricultural enterprises where animals are kept and raised in confined situations. Most of these 

studies investigated collective manure releases of the gas, but animals’ H2S emissions directly 

were also included on occasion. Swine AFOs were the most commonly studied source in this 

category (n=23), much more so than poultry (n=4) or cattle (n=4). 

Decomposition – Studies (n=9) where the focus was on measuring H2S emissions from 

decomposing organic matter, such as in wetlands, sedimentary mud, compost piles, and landfills. 

Energy – Monitoring near intentional energy production activities (n=7), including oil and 

gas drilling and geothermal power plants. 

Geothermal – Measured naturally-occurring H2S geothermal activity (n=9) from 

volcanoes, geothermal fields, or marine environments. 
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Wastewater – H2S levels/emissions from wastewater treatment plants and/or sewer 

systems (n=18). 

Other – When studies fell outside of the other five categories listed above (n=2), they were 

classified as “Other.” The first of these studies monitored concentrations of H2S in water, as well 

as plant emissions, and the second looked at sulfur-bituminous concrete emissions. 

While AFOs were the most studied source, the concentration and flux measurements of 

AFO operations were not the highest among the studies reviewed (Table 2); natural geothermal 

activity and anthropogenic energy production were two to three orders of magnitude greater for 

those measurement categories, respectfully. The standings listed in the table below remain 

essentially the same when assessing only the air monitoring results - the only difference being that 

animal feeding operations would contribute to the highest concentrations by source. 

Table 2. Meta-analysis of hydrogen sulfide source categories with maximum measurements collected by 

studies conducted between 2004-14 

Source Categories  
(# of studies) 

Maximum Measurements Reported Within Each Categorya 

Concentration  
(mg/m3) 

Flux  
(mg/hour) 

Flux Density 
(mg/m2/hour) 

AFO (n=31) 8.66E+03b 6.30E+07 2.12E+04c 
Wastewater (n=18) 1.53E+03d 8.91E+06 1.07E+01 
Decomposition (n=9) 6.41E+05d 1.44E+05 8.97E-03 
Geothermal (n=9) 3.79E+06d 3.78E+08 9.95E+03 
Energy Production (n=7) 5.18E+02 2.57E+09 - 
Other (n=2) 4.50E+03e - - 
Shown in descending order by study incidence and broken down by maximum measurement types. Top two 
sources for each measurement classification are bolded. 
(-) no measurements reported in studies reviewed. 
a. For comparison in air (e.g. if concentrations of sulfide in water were excluded), AFOs presented the highest 
concentrations. 
b. Due to significant variance between data collection methods and data reported across the studies, only the 
maximum measurements are used for comparison purposes. 
c. Additional flux densities were reported on AFO sources using variable units (e.g. pigs or birds but not by area). 
Their measurements are not included in this comparison table, but they can be found in the appendix. 
d. The studies represented in these maximum concentrations reported total sulfur or dissolved sulfide, not H2S. 
e. The next highest maximum concentration in the Other category is significantly lower: 18.4 mg/m3. 
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Only 5 results out of 130 included in the study reported H2S levels/emissions directly in water (the 

rest monitored air). The search terms used to conduct the review could have favored studies that 

monitored air rather than water (e.g. “releases” was not a search term).  

2.3.3 H2S Produced Naturally in the Environment 

In the environment, H2S is often produced by sulfate-reducing bacteria through the anaerobic 

digestion of organic material. Additionally, some plants may use and emit H2S as part of their 

primary functionality and not as decaying biomass (Wickenhauser et al., 2005, Jin and Pei, 2015). 

Significant environmental sources of this potent gas into the air include places where the 

breakdown of organic matter coupled with a lack of oxygen occurs, including: swamps, 

hydrocarbon deposits, volcanoes, undersea vents, sulfur springs, and stagnant bodies of water. 

Small blooms of H2S have recently been detected in the Dead Sea (Oren et al., 2004) and off of 

the coast of Namibia in the Atlantic Ocean due to fertilizer runoff and the breakdown of organic 

matter (Ward, 2006, Brüchert et al., 2009). Monitoring results of this source resulted in the second 

highest concentration measurements in the study (and actually exceeded the original study’s 

monitoring equipment’s measurement capability) (Brüchert et al., 2009). H2S may also be present 

naturally in well water, often due to the activity of sulfate-reducing bacteria (Barton and Fauque, 

2009). Overwhelmingly, though, air is the medium where H2S is most likely to be present at levels 

that pose direct risks to public health. 

Geothermal activity causes H2S emissions to be released into the air, along with other toxic 

compounds, when the gases within magma (CO2, SO2, N, H, CO, S, Ar, Cl, and F) combine with 

hydrogen and water (Shinohara et al., 2002). While less studied than agricultural sources in recent 

years, naturally occurring geothermal activity did, in fact, register the highest concentrations of 
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H2S into ambient air, and the second highest fluxes and flux densities (Table 2). This finding is 

supported by observations from many other studies (ATSDR, 2014a). Interestingly, high levels of 

H2S in the atmosphere likely due to volcanic eruptions have been implicated in several mass 

extinction events throughout Earth’s history (Knoll et al., 2007, Kump et al., 2005). Because of 

the capacity for natural sources like geothermal activity to emit H2S at high rates, additional 

monitoring should be conducted to prevent accidental human overexposure and to help quantify 

worldwide yearly emissions more precisely, which would aid primary and secondary public health 

prevention efforts. 

2.3.4 Anthropogenic Sources of H2S 

In recent years, anthropogenic sources of H2S concentrations and emissions into the air have been 

studied significantly more often than natural sources (62 vs. 14 study topics), despite the 

propensity for natural sources to emit H2S at high rates (Table 2). Although speculation, this trend 

could likely be due to the higher cost and complexity associated with measuring certain natural 

sources, such as aboveground and undersea volcanic activity. Among anthropogenic sources, H2S 

can be found at elevated levels in or near sewage systems, and within animal containment buildings 

and slaughterhouses (generally categorized as AFOs). Industrial sources where H2S can be present 

include oil and gas processing sites, geothermal power plants, coke ovens, food processing 

facilities, tanneries, and pulp/paper mills (Skrtic, 2006, Burstyn et al., 2007, Peralta et al., 2014, 

Chénard et al., 2004, Colomer et al., 2012, Vasarevičius, 2011, Rimatori et al., 1996, Svendsen, 

2001). It is of note that H2S emissions can be abated by at least 99% from geothermal power plants 

using either the Stretford process or various incineration and injection methods (Reed and Renner, 

1995, Baldacci et al., 2005), but each plant’s compliance will differ. Distinguishable from this 
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study and highlighted by Table 2 is the lack of recent studies assessing H2S levels from a variety 

of known or potential H2S sources (such as fires and tanneries) and flux densities from energy 

production operations. While H2S is primarily released in gaseous form, it can also be found in 

liquid waste related to industrialization. Releases into water generally do not impact the waterway 

for very long, though, as H2S quickly evaporates from water (except for in undisturbed, anoxic 

conditions) (Patterson and Runnells, 1992, ATSDR, 2014a).  

The amount of H2S emitted into the atmosphere from human activity is difficult to quantify 

worldwide due to a lack of comprehensive data and/or reporting. For example, H2S emissions in 

the U.S. were exempt from reporting into the EPA’s Toxic Release Inventory (TRI) between 1991 

and 2011 (discussed further in Section 2.5). Additionally, the list of industries represented in the 

TRI is not exhaustive. According to the TRI, however, in 2012 most H2S air releases in the U.S. 

were the result of three industrial sectors: pulp and paper (64% by weight), chemical (17%), and 

petroleum refining (8%) (US EPA, 2014). Contrastingly, the most significant source of H2S 

emissions in western Canada is the oil and gas industry, due to geologic formations naturally high 

in H2S (also called sour gas) (Hessel et al., 1997). Overall, total known H2S releases in the U.S. 

(into air, water, and through underground injection) based on data from 2012-14 range between 26 

and 27 million pounds per year (Table 3).  
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Table 3. Yearly TRI On-site and Off-site Reported Disposed of or Otherwise Released (in pounds), for All 

industries, for Hydrogen Sulfide, U.S., 2012-14a 

 2014 Emissions  
(% of total)b 

2013 
(% of total) 

2012 
(% of total) 

Total On-site Disposal or Other Releases  25,965,719 
(99.8%) 

26,920,643 
(99.8%) 

26,175,250 
(99.96%) 

Fugitive Air Emissions 9,083,805  
(35%) 

9,958,673 
(37%) 

9,815,319 
(37%) 

Point Source Air Emissions 11,486,797  
(44%) 

11,931,036 
(44%) 

10,754,996 
(41%) 

Surface Water Discharges 543,028  
(2%) 

513,188 
(2%) 

497,709 
(2%) 

Underground Injection Class I Wells 4,490,400  
(17%) 

4,153,417 
(15%) 

4,700,126 
(18%) 

Total Off-site Disposal or Other Releases 54,339  
(0.2%) 

46,021 
(0.2%) 

11,631 
(0.04%) 

Off-site RCRA Subtitle C Landfills and 
Other Landfills 

9,078  
(0.03%) 

13,136  
(0.05%) 

3,834 
(0.01%) 

Total On- and Off-site Disposal or Other 
Releases 

26,020,057 
(100%) 

26,966,663 
(100%) 

26,186,881 
(100%) 

a. H2S emissions were not required to be reported to TRI from 1991-2011. Source: US EPA (2015) 
b. Sub-category emissions will not add up to 100% of total, as not all release categories captured in the TRI 
are included in this table. 

    

Animal feeding operations (AFOs) are agricultural enterprises where animals are kept, 

raised, and slaughtered in confined situations. Based on this study, AFOs are emitting relatively 

high quantities of H2S (peak 6.30E+07 mg/hr) and are areas where elevated concentrations of H2S 

can be found in the air at any given time (8.66E+03 mg/m3). This characteristic is especially so 

during summer months and when manure mixing occurs indoors. While AFOs do not emit H2S at 

rates (flux) on par with geothermal activity (3.78E+08 mg/hr) or energy production (2.57E+09 

mg/hr), with approximately 257,000 AFOs in the United States alone (US EPA, 2003b), their sheer 

numbers can still contribute significant amounts into the air and/or expose workers to unsafe levels 

of H2S. The substantial influx of AFO studies in recent years identified in this study may be due 

to a number of factors. Firstly, air and sludge monitoring at animal feeding operations may simply 
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be easier to conduct than other sources. The facilities are not mobile, and their emissions are fairly 

predictable – in stark contrast to volcanic eruptions, for example. Access to these sites may also 

be easier to obtain compared with oil and gas drilling sites or other industrial operations. 

Additionally, the quantification of air emissions from AFOs by the United States Department of 

Agriculture’s Initiative for Future Agriculture and Food System Program seems to have been 

prioritized lately and, consequently, there is funding from the National Research Initiative Program 

(Li et al., 2008). As stated previously, however, AFOs according to Toxic Release Inventory 

estimates are not the top contributors of H2S into the environment in the U.S., so it is possible that 

AFO monitoring priorities are askew compared with other sources. In order to accurately quantify 

total H2S contributions to the atmosphere from AFOs, all AFO operations and their H2S 

management methods should be tracked and monitored consistently over time. 

Energy production was another area within this study that may emit H2S at high rates, 

having recorded the highest flux measurement of all studies reviewed (2.57E+09 mg/hour). Energy 

production included two different types of studies – one on oil and gas extraction and processing, 

and the other focused on geothermal energy production. The highest flux measurement was cited 

from a geothermal power study (Peralta et al., 2014), however monitoring methods (active vs. 

passive) and results were highly variable within this little-studied category (n=7). More studies 

need to be conducted if one wanted to statistically compare H2S from these two energy-generation 

sources.  

An aspect of oil and gas drilling not adequately represented in the present studies reviewed 

is the issue of “sour gas” incidents. H2S forms naturally within geologic formations that support 

oil and gas production as high-sulfur kerogens decay. When sulfur (and H2S) content are high in 

wells, they are referred to as sour gas wells, and this situation can present serious consequences in 
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the event of a major uncontrolled release or blowout. In 2003 in Kaixian County, China, for 

example, 64,000 residents had to be evacuated and 243 died when an accidental sour gas well 

blowout occurred in 2003 (Yang et al., 2006). The Saskatchewan government recently tested 43 

facilities in southeast Saskatchewan, Canada that were leaking sour gas, finding average 

concentrations of 30,000 parts per million (ppm) (Leo, 2015), well above levels that can kill nearby 

livestock, wildlife and people (500 ppm – See Table 5). Wells and refineries where H2S may be 

present also exist in the U.S. Out of Michigan’s 10,652 producible oil wells, for example, 1,360 

saw H2S levels exceeding 300 ppm (Michigan DEQ, 2016). Data prior to 1993 indicate that there 

are at least 14 major areas in 20 different U.S. states where H2S is commonly found in natural gas 

deposits (US EPA, 1993). Sour gas must be processed before it can be shipped to market, 

presenting secondary exposures during transportation and processing. The hazards posed by high 

emission rates from oil and gas infrastructure are compounded by the fact that in the U.S. no 

Occupational Safety and Health Administration (OSHA) monitoring program exists at this time, 

though such systems have been proposed in the past. Skrtic (2006) discusses these regulatory gaps 

in much further detail. In addition to the recommendations presented by Skrtic, future research 

should also consider concomitant monitoring of other air pollutants that may be present with H2S 

– such as particulate matter, volatile organic compounds (VOCs), and various sulfur compounds 

– in order to understand risk factors more comprehensively and in the event of major sour gas 

incidents. 

2.3.5 Commercial Uses of H2S 

For commercial purposes, H2S is used to produce SO2 and then eventually sulfur, one of the most 

commercially important elements on the market today (King et al., 2013). The conversion is 
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accomplished using a modification of the Claus reaction, originally developed in 1883 (Equation 

4) (GPSA, 2004). The main use of sulfur is as a reactant in the production of sulfuric acid (H2SO4), 

and the process by which this occurs is called the Contact process (Equation 5) (Ryan and Norris, 

2014).  

Equation 4. Overall Claus reaction (industrial production of elemental sulfur from H2S) 

3H2S + 1 ½ O2 = 3/x Sx + 3H2O  (ΔH @ 77°F ≈ –264,400 Btu) 

Equation 5. Contact process (industrial production of sulfuric acid) 

S(s) + O2  SO2(g) 
2SO2(g) + O2(g) ⇌ 2SO3(g)   (ΔH = -196 kJ mol-1) 

H2SO4(l) + SO3(g)  H2S2O7(l) 
H2S2O7(l) + H2O(l)  2H2SO4(l) 

 
Sulfuric acid is one of the most highly traded chemical commodities in the world due to its 

role in producing phosphate fertilizer (60% of worldwide total consumption) and other types of 

fertilizers (10%) according to data from 2009 (King et al., 2013). H2S is beneficial in a variety of 

other sectors, such as the production of sodium sulfide and sodium hydrosulfide. These compounds 

are then used in the production of dyes, pesticides, and even pharmaceuticals. H2S also plays role 

in metallurgy, laboratory settings, and agriculture (Beck et al., 1981a, Grant and Schuman, 1993, 

Sittig, 2002). The nuclear energy sector utilizes H2S in large quantities to separate “heavy water,” 

which contains more of the hydrogen isotope deuterium, from regular water (Rayner-Canham and 

Overton, 2009).  

Since significant quantities of sulfur and by extension hydrogen sulfide are needed for all 

of the industries mentioned previously, one must wonder where such volumes originate. Natural 

gas purification and petroleum refining supply approximately 60% of the sulfur and SO2 used for 

the production of sulfuric acid (King et al., 2013). H2S is a result of the petroleum refining’s 

hydrotreating process, where sulfur compounds found in the crude oil are combined with hydrogen 
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gas (OSHA, 1999). The 2015 U.N. Paris Agreement on climate change calls for a reduction in 

global greenhouse gas emissions worldwide, and by extension a transition away from burning 

fossil fuels including petroleum products (UNFCCC, 2015). When it becomes legally binding in 

2017 and enters into force in 2020, the Agreement could have serious implications for commercial 

enterprises within the 195 member countries that rely on large quantities of H2S for their 

operations.  

2.4 EMERGING THREAT: DETERGENT SUICIDES 

An emerging arena where H2S exposures are becoming a risk, but for which the academic literature 

is still lacking, is in the case of “detergent suicides.” The process involves mixing hydrochloric 

acid (found in commercial pool cleaners and toilet bowl cleaners) with either lime sulfur (found in 

common pesticides) or bath sulfur (available in Japan) in an enclosed space to generate toxic levels 

of H2S gas (Adkins, 2010, Bott and Dodd, 2013, Morii et al., 2010).  

The detergent suicides trend started in Japan in 2007 and has since moved abroad, as 

methods for generating H2S from household chemicals were publicized on the Internet; in 2008 

alone, ~500 men, women, and children committed suicide in Japan using this method. Increasingly, 

more people in the U.S. have followed suit. Prior to 2008, there were no records of Americans 

committing suicide using intentionally-generated H2S gas. Between 2008-2010, however, 30 H2S 

suicides were identified. Due to the relative rarity of this issue, without being aware of or prepared 

for the toxic levels of H2S in the air near the victim, five emergency responders were injured during 

rescue efforts in that time period (Reedy et al., 2011). There have also been reports of suicide by 

H2S inhalation where residents and hotel guests not in the immediate vicinity of the release site 
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were affected (Reedy et al., 2011, Morii et al., 2010, Truscott, 2008). Such an increase in recent 

years of a previously rare inhalation hazard indicates a growing risk to the proximate populations 

and emergency responders from detergent suicides. Suicides by way of H2S gas have also led to a 

growing concern that H2S might find application as a terrorist weapon (Adkins, 2010). Despite 

such health risks to residents, workers, and emergency personnel, there is no FDA-approved 

antidote and/or reliable protocol for treating acute hydrogen sulfide poisoning in either H2S or 

HS— form on the market today. This issue is discussed in further detail in Section 4.2. 

2.5 H2S REGULATION IN THE U.S. 

In the United States, H2S is regulated in a variety of ways by the U.S. Environmental Protection 

Agency (EPA) and the Occupational Safety and Health Administration (OSHA) (for workplace-

specific exposures). Additional national organizations such as the Agency for Toxic Substances 

and Disease Registry (ATSDR), National Institute for Occupational Safety and Health (NIOSH), 

and the American Conference of Governmental Industrial Hygienists (ACGIH) also provide 

recommended exposure limits. These regulatory and recommended exposure limits are discussed 

in further detail below. 

While laboratory animal studies of hydrogen sulfide have aided in the development of 

regulatory exposure guidelines, occupational and ambient exposures are fraught with 

complications and contradictions. Detailed H2S emission quantities and the compound’s 

concentration within a mixture of sulfur-containing gases are often unknown (WHO, 2003, 

ATSDR, 2014a). Standards for exposure to hydrogen sulfide are primarily based on experimental 

animal studies, as exact concentrations can rarely be quantified in incidents involving humans. 
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This trend is backed by the case reports that are associated with the fatal and non-fatal occupational 

injuries listed in Table 6 through Table 9. Acute exposure guidelines, however, have been 

developed by several regulatory and non-governmental organizations (Table 4). These guidelines 

vary wildly, with recommended exposure limits ranging from 1 ppb – 100 ppm depending on the 

potential exposure duration. 

At a national level, H2S was originally (improperly) included on the proposed hazardous 

air pollutants (HAPs) list of the Clean Air Act Amendments of 1990 with 188 other pollutants that 

are known or suspected to cause serious adverse health and/or environmental effects. Instead of 

ambient air quality standards, HAPs are regulated at the source nationally by limiting industry 

emissions, and the levels permitted are driven by Maximum Achievable Control Technology 

standards. Successful petitioning resulted in the removal of H2S from the HAPs list in 1991 (Bell 

et al., 2013), and it is still absent from the HAPs list.  

H2S is, however, found on the U.S. EPA’s list of Extremely Hazardous Substances as 

determined by the Emergency Planning and Community Right-To-Know Act (EPCRA) in the 

event of accidental releases of 100 pounds or more (US EPA, 1986). OSHA sets limits in industries 

where H2S is found over the threshold quantity of 1,500 pounds (680.38 kg) (OSHA, 2013). 

Additionally, starting in 2011, U.S. companies were required to report their emissions of H2S to 

the Toxic Release Inventory (TRI), a system for tracking toxic chemicals that may pose 

environmental and health risks. There had previously been a TRI reporting stay (hold) for 

hydrogen sulfide enacted in 1994 that was then lifted in 2011. Starting in 2013, industries that 

exceed the yearly thresholds of 25,000 pounds of H2S for manufacturing (intentional or 

coincidental), 25,000 pounds for processing, or 10,000 pounds for “otherwise use” are required to 

report their emissions into TRI (for reporting years 2012 and beyond) (US EPA, 2011). 
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H2S does not fall under the regulatory authority of the U.S. EPA for National Ambient Air 

Quality Standards (NAAQS), but the EPA does have a reference concentration for chronic 

inhalation (RfC) at 2x10-3 mg/m3 (1.4 ppb). It is assumed that daily exposures of H2S above this 

level over a lifetime will have deleterious effects. No parallel reference dose for chronic oral 

exposure (RfD) exists at this time. (US EPA, 2003a). The EPA has the regulatory authority to 

institute regulations on specific H2S sources if it so chooses. In lieu of national limits on H2S, 

individual U.S. states can choose to limit exposures, although their standards vary significantly. 

See Appendix B in Skrtic (2006) for a table that covers state-based ambient hydrogen sulfide 

standards.  

Table 4. Airborne hydrogen sulfide exposure limits established by various U.S. and international public 

safety organizations (CAS 7783-06-4; UN 1053) 

Agency Exposure Level Types REL (ppm) Reference 

ACGIH TLV-TWA 1 OSHA (2012) 
TLV-STEL 5 

AIHA ERPG 1a 0.1 AIHA (2013) 
ERPG 2 30 
ERPG 3 100 

ATSDR MRL-Acute 0.07 ATSDR (2014a) 
MRL-Intermediate 0.02 

 MRL-Chronic n/a  
DOE PAC-1 0.51 DOE (2016) 

PAC-2 27 
PAC-3 50 

EPA RfC 0.001 US EPA (2003a) 
AEGL-1: 10 min 0.75 NRC (2010) 

30 min 0.60 
60 min 0.51 
4 hr 0.36 
8 hr 0.33 

AEGL-2: 10 min 41 
30 min 32 
60 min 27 
4 hr 20 
8 hr 17 

AEGL-3: 10 min 76 
30 min 59 
60 min 50 
4 hr 37 
8 hr 31 
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Table 4 Continued 

DFG MAK 5 DFG (2013) 
IARC Carcinogenicity classification n/a IARC (2013) 
NIOSH IDLH 100 NIOSH (2016) 

REL: 10-min  10 
OSHA PEL (8-hour TWA) – general industry n/a OSHA (2012) 

PEL Ceiling 20 
PEL Peak: 10 min 50 

WHO TWA: 24 hr 0.10 WHO (2000)b 
REL Range: 1 ppb – 100 ppm 
a. ERPGs estimate the concentrations at which most people will begin to experience health effects if they are 
exposed to a hazardous airborne chemical for 1 hour. (Sensitive members of the public are not covered by these 
guidelines; they may experience adverse effects at concentrations below the ERPG values.) A chemical may have 
up to three ERPG values, each of which corresponds to a specific tier of health effects: 
- ERPG-3 is the maximum airborne concentration below which it is believed that nearly all individuals could be 
exposed for up to 1 hour without experiencing or developing life-threatening health effects. 
- ERPG-2 is the maximum airborne concentration below which it is believed that nearly all individuals could be 
exposed for up to 1 hour without experiencing or developing irreversible or other serious health effects or symptoms 
which could impair an individual's ability to take protective action. 
- ERPG-1 is the maximum airborne concentration below which it is believed that nearly all individuals could be 
exposed for up to 1 hour without experiencing other than mild transient health effects or perceiving a clearly 
defined, objectionable odor. 
b. While not discussed in WHO’s 2010 report on select air pollutants, the World Health Organization did publish 
air quality guidelines on H2S in this report from 2000 – a guideline that was omitted from ATSDR (2014a). 
Abbreviations & definitions (alphabetical): ACGIH = American Conference of Governmental Industrial 
Hygienists; AEGL = acute exposure guideline level; AEGL-1 = nondisabling threshold limit; AEGL-2: disabling 
threshold limit; AEGL-3: lethality threshold limit; AIHA = American Industrial Hygiene Association; ATSDR = 
Agency for Toxic Substances and Disease Registry; DFG = Deutsche Forschungsgemeinschaft; DOE = U.S. 
Department of Energy; ERPG = emergency response planning guideline; IDLH = immediately dangerous to life 
and health; IARC = International Agency for Research on Cancer; MAK = maximum workplace concentration 
across an 8-hour day, 40-hour work week; MRL = minimum risk level (inhalation factors, not oral, have been 
derived); MRL-Acute = MRL for acute-duration inhalation exposure (≤14 days); MRL-Chronic = MRL for 
chronic-duration inhalation; MRL-Intermediate = MRL for intermediate-duration inhalation exposure (15-364 
days); NAS = National Academy of Sciences; NIOSH = National Institute for Occupational Safety and Health; 
NRC = National Research Council; OSHA = Occupational Safety and Health Administration; PAC-1 = All 
protective action criteria correspond to 60-minute AEGL values. PAC-1 is for mild, transient health effects; PAC-
2 = irreversible or other serious health effects that could impair the ability to take protective action; PAC-3 = life-
threatening health effects; PEL = permissible exposure limit; PEL Peak: 10 min = acceptable maximum peak 
above ceiling over an 8-hour shift for 10 minutes once only if no other measured exposure occurs; PPM = parts 
per million; REL = recommended exposure limit; RfC = daily inhalation exposure limit over a lifetime that does 
not present risk of deleterious effects; TLV-STEL = threshold limit value – short-term exposure limit; TLV-TWA 
= threshold limit value – time weighted average. 

2.6 EXPOSURE PATHWAYS 

Inhalation is the main route of exposure for H2S, although dermal/eye contact, injection, and 

ingestion are also plausible routes. As such, this section focuses on effects from inhaling H2S 
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unless otherwise noted. Humans can typically smell H2S at low concentrations in the air, between 

0.0005 and 0.3 ppm (Guidotti, 1994, Ruth, 1986), a range that pushes the limits of our most 

sensitive H2S monitoring equipment. Because H2S in gaseous form is heavier than air, the highest 

risk of exposure for people is in enclosed spaces and along the ground, such as near oil and gas 

wells, underground, near manure pits, and in sewage systems (Gregorakos et al., 1995, Praxair, 

2015). The elderly, asthma sufferers, and children with compromised respiratory systems are at 

higher risk of the compound’s negative effects since H2S targets the respiratory tract (ATSDR, 

2014a, Kilburn, 2012, Jäppinen et al., 1990, Campagna et al., 2004, Dorman et al., 2004, Lopez et 

al., 1988b).  

It is not known what ratio of H2S that a person is exposed to is actually absorbed into the 

body (Khan et al., 1990, Prior et al., 1990, Prior et al., 1988). Once H2S is brought into the body, 

however, it is absorbed by the blood and then distributed systemically. Bisulfide (HS—), an 

inorganic anion, is produced as molecular hydrogen sulfide dissociates. It is believed that H2S 

exerts its toxic effects on humans by inhibiting cytochrome c oxidase when the HS— anion binds 

to ferric heme (Dorman et al., 2002, Hill et al., 1984), possibly along with other currently-

undetermined mechanisms of toxicity subsidiary to cytochrome c oxidase inhibition (Cronican et 

al., 2015). In doing so, cellular respiration slows and eventually stops. 

H2S is primarily detoxified through oxidation in the liver, and also by methylation 

(Ammann, 1987). Bisulfide is excreted from the body within 30 minutes, having converted to SX 

species, although the specific type is not yet known. “Post-acute” effects (i.e. anything occurring 

more than about 10-15 minutes after exposure) are probably not due to HS—, but perhaps a 

subsidiary reacting with oxygen (L.L. Pearce & J. Peterson, unpublished observations). Urinary 
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thiosulfate is the most commonly used biomarker for H2S exposure, however (Milby and Baselt, 

1999). 

Effects of H2S can vary greatly based on the level and speed of the exposure. In the 

following sections and figure we have broken down exposure types in to three main categories: 

acute (>100 ppm), post-acute (1-100 ppm), and chronic (<1 ppm) (Figure 4). Exposure ranges 

listed in this figure are based on levels reported in the literature and lower-range regulatory limits 

in Table 4. However, these values should not be considered absolute. There is still much unknown 

about the effects of post-acute and chronic exposures and their cutoff values. The consequences of 

these types of exposure are further discussed in the following section, categorized where possible 

as effects from acute, post-acute, and chronic exposures.  

 

Figure 4. Types of lethal and sub-lethal H2S poisonings 
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2.7 HUMAN HEALTH EFFECTS 

While the adverse effects and emissions of hydrogen sulfide are the foci of this chapter, it is 

interesting to note that at low levels H2S may serve as a modulator in the body (Abe and Kimura, 

1996, Nicholls et al., 2013, WHO, 2003). H2S is suspected to help regulate blood pressure, 

neurotransmission, inflammation reduction, and aiding digestion, among others (Dongó et al., 

2011, Yang et al., 2008, ATSDR, 2014a, Szabo, 2007). There are also some studies that examined 

the role that H2S may play in suspended animation (Blackstone et al., 2005, Volpato et al., 2008), 

but the effects are generally found to subside in studies investigating the possible link between 

suspended animation and H2S in larger animals (Asfar et al., 2014). 

To date, the majority of documented health effects from exposure to hydrogen sulfide are 

negative, especially at levels above 1 ppb in the air. Over time, the health effects due to acute H2S 

exposures have become better understood, while the concentrations considered to be neurotoxic 

have changed. At the beginning of the 19th century, for example, concentrations of 700–1000 ppm 

in the air were considered to be dangerous (Ramazzini, 1713). More recently, this understanding 

changed to 0.6 ppm in 1987 (Gaitonde et al., 1987), and damaging to the brain at concentrations 

of 30–80 ppm (CIIT, 1983). However, most human hydrogen sulfide toxicity studies have involved 

acute, uncontrolled incidents where the exact concentration and any pre-existing conditions are 

not known. (Refer to the many data gaps presented in Table 6 through Table 9.) Controlled research 

studies almost always involve animals, whose results were then extrapolated to humans, but 

extrapolating toxicity carries uncertainty factors in assessing risk. The general consensus is that 

the respiratory track and nervous system are especially sensitive to the effects of H2S exposure 

(Arnold et al., 1985, Beauchamp et al., 1984, ATSDR, 2014a, Guidotti, 2010, Kilburn et al., 2010). 

Duration of exposure and the level of H2S in the environment both play important roles in resulting 
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health effects. Despite these unknowns, in Table 5 we have attempted to aggregate the expected 

symptoms – from offensive odors to death – of exposure to various levels of airborne H2S.  

Table 5. Conditions and physiological responses to hydrogen sulfide at various concentrations in the air 

Concentrations 
(ppm) 

Expected Effects / Symptoms 

0.00011-0.00033 Typical background concentrations (OSHA) 
0.0005 Lowest concentration detectable by human olfactory senses (ATSDR) 
0.01-1.5 Odor threshold (when rotten egg smell is first noticeable to some). Odor becomes more 

offensive at 3-5 ppm. Above 30 ppm, odor described as sweet or sickeningly sweet (OSHA) 
2-5 Prolonged exposure may cause nausea, tearing of the eyes, headaches or loss of sleep. Airway 

problems (bronchial constriction) in some asthma patients (OSHA) 
20 Possible fatigue, loss of appetite, headache, irritability, poor memory, dizziness (OSHA) 
50 – 100  Slight conjunctivitis (“gas eye”) and respiratory tract irritation after 1-hour exposure. May 

cause digestive upset and loss of appetite (ANSI and OSHA) 
100  Coughing, eye irritation, loss of sense of smell after 2-15 minutes. Altered respiration, pain in 

the eyes and drowsiness after 15-30 minutes followed by throat irritation after 1 hour. Several 
hours of exposure results in gradual increase in severity of these symptoms and death may 
occur within the next 48 hours (ANSI and OSHA) 

100 – 150  Loss of smell (olfactory fatigue or paralysis) (OSHA) 
200 – 300  Marked conjunctivitis and respiratory tract irritation after 1 hour of exposure (ANSI and 

OSHA). Pulmonary edema may occur from prolonged exposure (OSHA) 
500 – 700  Staggering, collapse in 5 minutes (OSHA). Serious damage to the eyes. Loss of consciousness 

and possibly death in 30 minutes - 1 hour (ANSI and OSHA) 
700 – 1000  Rapid unconsciousness, “knockdown” or immediate collapse within 1 to 2 breaths, cessation 

of respiration and death within minutes (ANSI, ATSDR, and OSHA) 
1000 – 2000  Unconsciousness at once, with early cessation of respiration and death in a few minutes. Death 

may occur even if individual is removed to fresh air at once (ANSI and OSHA) 
Sources: (ANSI, 1972, ATSDR, 2014a, OSHA, 2014) 
Abbreviations: PPM, parts per million; ANSI, American National Standards Institute; ATSDR, Agency for Toxic 
Substances and Disease Registry; OSHA, Occupational Safety and Health Administration 

 

In the following three sections we summarize known and potential health effects due to 

acute, post-acute, and chronic exposure to H2S in humans. See ATSDR (2014a) for details about 

effects from a broad set of exposures such as ingestion, as well as a review of results from animal 

studies, which were not the main focus of this chapter. 
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2.7.1 Acute Exposure Effects (>100 ppm, rapid onset) 

Hydrogen sulfide’s odor becomes detectable in concentrations as low as .0005 ppm, but an 

individual’s sense of smell is lost after 2-15 minutes at/near 100 ppm (Ruth, 1986, Beauchamp et 

al., 1984), effectively rendering odor ineffective at risk prevention. In situations presenting with 

extremely high H2S levels in the air, people also run the risk of experiencing “knockdown,” or 

passing out in the area. This hazard severely diminishes survival rates due to the inability to escape 

and may also endanger potential rescuers (ATSDR, 2014a). 

In cases of severe acute toxicity, a person is exposed to extremely high levels of hydrogen 

sulfide (above 500 ppm) for a short time period either through an injection or inhalation. At these 

levels, unconsciousness and death may result almost immediately. Cause of death is typically 

respiratory failure or arrest, with symptoms such as difficulty breathing, noncardiogenic 

pulmonary edema, coma, and cyanosis (OSHA, 2012, Parra et al., 1991, Krekel, 1964, Deng and 

Chang, 1987, ATSDR, 2014a, Adelson and Sunshine, 1966). If the victims survive the initial 

knock down, they may exhibit various neurological and respiratory sequelae following exposure 

(Kilburn, 1993, Snyder et al., 1995, Tvedt et al., 1991a, Tvedt et al., 1991b, Hessel et al., 1997). 

In other cases, there are reports where individuals exposed to high levels exhibit no long-term 

symptoms (Ravizza et al., 1982, Deng and Chang, 1987, Krekel, 1964, Osbern and Crapo, 1981), 

but the reason remains unknown. 

As with many other compounds, the most well documented arena for understanding 

hydrogen sulfide risks at high levels is through occupational exposures. According to available 

data from OSHA and the Bureau of Labor Statistics (BLS), H2S is one of the most dangerous gases 

in the workplace, second only among toxic gases to carbon monoxide; from 2004-14, 

approximately 83 workers lost their lives, and 120 were sickened and missed work due to exposure 
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to H2S while on the job. The majority of both fatal and nonfatal workplace incidents involved 

exposure to males, not females (Bureau of Labor Statistics, 2016a, Bureau of Labor Statistics, 

2016b, Bureau of Labor Statistics, 2016c, Bureau of Labor Statistics, 2016d). See Table 6 to Table 

9 for details regarding fatal and nonfatal injuries where hydrogen sulfide was identified as either 

the primary or secondary source, 2004-2014. Note the many data gaps, where rows do not add up 

to the totals listed by BLS. This issue is compounded by the fact that reliable exposure data are 

often not available when such incidents occur, either on the job or in communities living near H2S 

sources. 

Table 6. Hydrogen sulfide as primary or secondary source in fatal workplace injuries, 2004-2010 

Characteristic 2005 2006 2007 2008 2009 2010 
Total1 5  9  14  6  7  9  

Occupation (SOC)2 

Management, business, science, and arts 
occupations 

- - 5  - - - 

Management, business, and financial  
occupations 

- - 5  - - - 

Management occupations - - 5  - - - 
Other management 

occupations 
- - 5  - - - 

Natural resources, construction, and 
maintenance occupations 

- 6  7  - 5  6  

Construction and extraction occupations - - 4  - 5  - 
Extraction workers - - - - 3  - 

Installation, maintenance, and repair 
occupations 

- - - - - 3  

Production, transportation, and material  
moving occupations 

- - - 3  - - 

Primary source3 

Chemicals and chemical products 5  7  13  6  6  9  
Other chemicals 5  7  13  6  6  9  
Sulfur and sulfur compounds 5  7  13  6  6  9  
Hydrogen sulfide 5  7  13  6  6  9  

Secondary source4 

              
Structures and surfaces - - 9 - - 5 
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Table 6 Continued 

Structures - - 9 - - 5 
Mines, caves, tunnels - - 5 - - - 

1 The Census of Fatal Occupational Injuries (CFOI) has published data on fatal occupational injuries for the 
United States since 1992. During this time, the classification systems and definitions of many data elements have 
changed.  Please see the CFOI Definitions page (http://www.bls.gov/iif/oshcfdef.htm) for a more detailed 
description of each data element and their definitions. 
2 Occupation data from 2003 to 2010 are based on the Standard Occupational Classification system, 2000. 
Occupation data from 2011 to the present are based on the Standard Occupational Classification system, 2010. 
3 Based on the BLS Occupational Injury and Illness Classification System (OIICS) in effect for 1992 to 2010 
data. The primary source of injury identifies the object, substance, or exposure that directly produced or inflicted 
the injury. For most transportation incidents, the primary source identifies the vehicle in which the deceased was 
an occupant. For most falls, the primary source identifies the surface or object contacted. 

4 Based on the BLS Occupational Injury and Illness Classification System (OIICS) in effect for 1992 to 2010 
data. The secondary source of injury, if any, identifies the object, substance, or person that generated the source 
of injury or that contributed to the event or exposure. For vehicle collisions, the deceased’s vehicle is the primary 
source and the other object (truck, road divider, etc.) is the secondary source. For most homicides, the "bullet" is 
the primary source and the "assailant" is the secondary source. For most falls, the secondary source identifies the 
equipment or surface from which the worker fell. 
Note: Data for all years are revised and final. Totals for major categories may include subcategories not shown 
separately. Dashes indicate no data reported or data that do not meet publication criteria. N.e.c. means "not 
elsewhere classified." CFOI fatal injury counts exclude illness-related deaths unless precipitated by an injury 
event. There were no fatal occupational injuries from H2S exposure in 2004, so that column was not included in 
this table. 

Source: Bureau of Labor Statistics (2016a). The public-facing version of the BLS database was down at the time 
of this inquiry, so the data above were provided directly by the BLS on 4-7-16. 

 

Table 7. Hydrogen sulfide as primary or secondary source in fatal workplace injuries, 2011-2014 

Characteristic 2011 2012 2013 2014 
Total1 10  3  10  10  

Occupation (SOC)2 

Natural resources, construction, and maintenance occupations 8  - 8  6  

Farming, fishing, and forestry occupations - - 1  - 
Supervisors, farming, fishing, and forestry workers - - 1  - 

First-line supervisors/managers of farming, fishing, and forestry workers - - 1  - 

First-line supervisors of farming, fishing, and forestry workers - - 1  - 

Construction and extraction occupations 5  - 5  6  
Other construction and related workers 3  - 1  - 
Septic tank servicers and sewer pipe cleaners 3  - 1  - 
Septic tank servicers and sewer pipe cleaners 3  - 1  - 
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Table 7 Continued 

Extraction workers - - - - 
Derrick, rotary drill, and service unit operators, oil, gas, and 
mining 

- - - 1  

Service unit operators, oil, gas, and mining - - - 1  

Installation, maintenance, and repair occupations - - 2  - 
Other installation, maintenance, and repair 
occupations 

- - 2  - 

Miscellaneous installation, maintenance, and 
repair workers 

- - 2  - 

Helpers--installation, maintenance, and repair 
workers 

- - 2  - 

Production, transportation, and material moving 
occupations 

- 3  2  4  

Production occupations - 3  - - 
Transportation and material moving occupations - - 2  4  

Material moving workers - - 2  - 
Laborers and material movers, hand - - - - 
Cleaners of vehicles and equipment - - - 1  
Pumping station operators - - 2  - 
Wellhead pumpers - - 2  - 

Primary source 20113 

Chemicals and chemical products 9  3  9  9  
Other chemicals 9  3  9  9  
Sulfur and sulfur compounds 9  3  9  9  
Hydrogen sulfide 9  3  9  9  

Parts and materials - - 1  - 
Building materials - - 1  - 
Pipes, ducts, tubing - - 1  - 
Metal pipes, tubing - - 1  - 

Tools, instruments, and equipment 1  - - 1  
Ladders 1  - - 1  
Ladders fixed - - - 1  
Movable ladders 1  - - - 
Straight ladders 1  - - - 

Secondary source 20114 

          
Chemicals and chemical products  1  -  1   1  

Other chemicals  1  -  1   1  
Sulfur and sulfur compounds  1  -  1   1  
Hydrogen sulfide  1  -  1   1  

Structures and surfaces  9   1   9   9  
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Table 7 Continued 

Confined spaces5  9   1   9   9  

Mines, caves, tunnels - - -  2  
Sewers, manholes, storm drains - - -  2  
Pipeline interiors - -  2  - 
Tank, bin, vat interiors  4  -  2   3  
Septic tank or water tank interiors  4  - - - 
Oil storage tank interiors - - -  1  
Hopper interiors - - -  2  
Confined spaces on vehicles  1   1   2   4  
Tanker truck interiors -  1   2   3  
Other confined spaces - - 1  - 

1 The Census of Fatal Occupational Injuries (CFOI) has published data on fatal occupational injuries for the 
United States since 1992. During this time, the classification systems and definitions of many data elements have 
changed. Please see the CFOI Definitions page (http://www.bls.gov/iif/oshcfdef.htm) for a more detailed 
description of each data element and their definitions. 
2 Occupation data from 2003 to 2010 are based on the Standard Occupational Classification system, 2000. 
Occupation data from 2011 to the present are based on the Standard Occupational Classification system, 2010. 
3 Based on the BLS Occupational Injury and Illness Classification System (OIICS) 2.01 implemented for 2011 
data forward. The primary source of a fatal occupational injury is the object, substance, person, bodily motion, or 
exposure that most directly led to, produced, or inflicted the injury or illness. 
4 Based on the BLS Occupational Injury and Illness Classification System (OIICS) 2.01 implemented for 2011 
data forward. The secondary source of a fatal occupational injury is the object, substance, person, or exposure, 
other than the source, if any, which most actively generated the source or contributed to the injury or illness. 
5 May differ from the definition of confined spaces as defined by Occupational Safety and Health Administration. 

Note: Data for 2014 are preliminary. Data for all other years are revised and final. Totals for major categories may 
include subcategories not shown separately. Dashes indicate no data reported or data that do not meet publication 
criteria. N.e.c. means "not elsewhere classified." CFOI fatal injury counts exclude illness-related deaths unless 
precipitated by an injury event. 

Source: Bureau of Labor Statistics (2016b). The public-facing version of the BLS database was down at the time 
of this inquiry, so the data above were provided directly by the BLS on 4-7-16. 

 

Table 8. Number of nonfatal occupational injuries and illnesses involving days away from work (1) by 

selected worker and case characteristics, All U.S., private industry, 2004 - 2010 

Characteristic All sources of injury/ 
illness 

Hydrogen sulfide 
(code 0972XX) 

2004 2005 2006 2007 2008 2009 2010 
Total: 

 
- 30 20 - 20 - - 

Sex 
Men 563850 - 30 20 - 20 - - 
Women 365610 - - - - - - - 

Number of days away from work 
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Table 8 Continued 

Cases involving 1 day 134080 - 20 - - - - - 
 “” 2 days 101560 - - - - - - - 
“” 3-5 days 167010 - - - - - - - 
“” 6-10 days 109690 - - - - - - - 
“” 11-20 days 104220 - - - - - - - 
“” 21-30 days 60030 - - - - - - - 
“ 31 or more days 256590 - - - - - - - 
Median days away from work (5) 8 - 1 180 - 5 - - 

Industry sector 
Goods producing industries (2) 223020 - 20 20 - - - - 
Natural resources and mining (2) (3) 20930 - - - - - - - 
Agriculture Forestry Fishing and 
Hunting (2) 

14010 - - - - - - - 

Mining (3) 6910 - - - - - - - 
Construction 74950 - - - - - - - 
Manufacturing 127140 - - - - - - - 
Service providing industries 710170 - - - - - - - 
Trade Transportation and Utilities (4) 284630 - - - - - - - 
Wholesale Trade 58060 - - - - - - - 
Retail Trade 131380 - - - - - - - 
Transportation and Warehousing (4) 89540 - - - - - - - 
Utilities 5650 - - - - - - - 
Information 19330 - - - - - - - 
Financial activities 27480 - - - - - - - 
Finance and Insurance 10500 - - - - - - - 
Real Estate and Rental and Leasing 16980 - - - - - - - 
Professional and business services 75890 - - - - - - - 
Professional Scientific and 
Technical Services 

18140 - - - - - - - 

Management of Companies and 
Enterprises 

7160 - - - - - - - 

Administrative and Support and 
Waste Management and 
Remediation Services 

50590 - - - - - - - 

Education and health services 186830 - - - - - - - 
Educational Services 10440 - - - - - - - 
Health Care and Social Assistance 176380 - - - - - - - 
Leisure and hospitality 88740 - - - - - - - 
Arts Entertainment and Recreation 15050 - - - - - - - 
Accommodation and Food Services 73700 - - - - - - - 
Other services 27260 - - - - - - - 
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Table 8 Continued 

Other Services except Public Administration 27260 - - - - - - - 

Public Administration - - - - - - - - 
1 Days away from work include those that result in days away from work with or without job transfer or 
restriction. 
2 Excludes farms with fewer than 11 employees. 
3 Data for mining (Sector 21 in the North American Industry Classification System -- United States 2007) include 
establishments not governed by the Mine Safety and Health Administration (MSHA) rules and reporting such as 
those in oil and gas extraction and related support activities. Data for mining operators in coal metal and nonmetal 
mining are provided to BLS by the Mine Safety and Health Administration U.S. Department of Labor. 
Independent mining contractors are excluded from the coal metal and nonmetal mining industries. These data do 
not reflect the changes Occupational Safety and Health Administration made to its recordkeeping requirements 
effective January 1 2002; therefore estimates for these industries are not comparable with estimates for other 
industries. 
4 Data for employers in railroad transportation are provided to BLS by the Federal Railroad Administration U.S. 
Department of Transportation. These data do not reflect the changes Occupational Safety and Health 
Administration made to its recordkeeping requirements effective January 1 2002; therefore estimates for these 
industries are not comparable with estimates for other industries. 
5 Median days away from work is the measure used to summarize the varying lengths of absences from work 
among the cases with days away from work. Half the cases involved more days and half involved less days than a 
specified median. Median days away from work are represented in actual values. 
NOTE: Because of rounding and data exclusion of nonclassifiable responses data may not sum to the totals. 
Dashes indicate data that do not meet publication guidelines. The scientifically selected probability sample used 
was one of many possible samples each of which could have produced different estimates. A measure of 
sampling variability for each estimate is available upon request -- please contact iifstaff@bls.gov or call (202) 
691-6170. 
SOURCE: Bureau of Labor Statistics (2016c). The public-facing version of the BLS database was down at the time 
of this inquiry, so the data above were provided directly by the BLS on 4-7-16. 

 

Table 9. Number of nonfatal occupational injuries and illnesses involving days away from work (1) by 

selected worker and case characteristics, All U.S., private industry, 2011 - 2014 

Characteristic All sources of injury/ 
illness 

Hydrogen sulfide 
(code 1771XX) 

2011 2012 2013 2014 
Total: 

 
- 50 - - 

Sex 
Men 560970 - 30 - - 
Women 348720 - - - - 

Number of days away from work 
Cases involving 1 day 127140 - - - - 
 “” 2 days 97830 - - - - 
 “” 3-5 days 156810 - - - - 
“” 6-10 days 108230 - - - - 
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Table 9 Continued 

 “” 11-20 days 103270 - - - - 
 “” 21-30 days 57630 - - - - 
 “” 31 or more days 265530 - - - - 
Median days away from work (5) 9 - 19 - - 

Industry sector 
Goods producing industries(2) 225180 - 50 - - 
Natural resources and mining (2) (3) 24730 - 40 - - 
Agriculture forestry fishing and 
hunting (2) 

17050 - - - - 

Mining (3) 7680 - - - - 
Construction 74460 - - - - 
Manufacturing 125990 - - - - 
Service providing industries 691260 - - - - 
Trade transportation and utilities 

(4) 
278700 - - - - 

Wholesale trade 59240 - - - - 
Retail trade 120640 - - - - 
Transportation and warehousing 

(4) 
95040 - - - - 

Utilities 3780 - - - - 
Information 15730 - - - - 
Financial activities 26350 - - - - 
Finance and insurance 10010 - - - - 
Real estate and rental and leasing 16350 - - - - 
Professional and business 
services 

77720 - - - - 

Professional scientific and 
technical services 

19360 - - - - 

Management of companies and 
enterprises 

5530 - - - - 

Administrative and support and 
waste management and 
remediation services 

52830 - - - - 

Education and health services 175900 - - - - 
Educational services 11460 - - - - 
Health care and social assistance 164440 - - - - 
Leisure and hospitality 90920 - - - - 
Arts entertainment and recreation 15770 - - - - 
Accommodation and food 
services 

75140 - - - - 

Other services 25940 - - - - 
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Table 9 Continued 

Other services except public 
administration 

25940 - - - - 

Public administration - - - - - 
 1 Days away from work include those that result in days away from work with or without job transfer or 
restriction. 
 2 Excludes farms with fewer than 11 employees. 
 3 Data for mining (Sector 21 in the North American Industry Classification System -- United States 2007) include 
establishments not governed by the Mine Safety and Health Administration (MSHA) rules and reporting such as 
those in oil and gas extraction and related support activities. Data for mining operators in coal metal and 
nonmetal mining are provided to BLS by the Mine Safety and Health Administration U.S. Department of Labor. 
Independent mining contractors are excluded from the coal metal and nonmetal mining industries. These data do 
not reflect the changes Occupational Safety and Health Administration made to its recordkeeping requirements 
effective January 1 2002; therefore estimates for these industries are not comparable with estimates for other 
industries. 
 4 Data for employers in railroad transportation are provided to BLS by the Federal Railroad Administration U.S. 
Department of Transportation. These data do not reflect the changes Occupational Safety and Health 
Administration made to its recordkeeping requirements effective January 1 2002; therefore estimates for these 
industries are not comparable with estimates for other industries. 
 5 Median days away from work is the measure used to summarize the varying lengths of absences from work 
among the cases with days away from work. Half the cases involved more days and half involved less days than a 
specified median. Median days away from work are represented in actual values. 
NOTE: Because of rounding and data exclusion of nonclassifiable responses data may not sum to the totals. 
Dashes indicate data that do not meet publication guidelines. The scientifically selected probability sample used 
was one of many possible samples each of which could have produced different estimates. A measure of 
sampling variability for each estimate is available upon request -- please contact iifstaff@bls.gov or call (202) 
691-6170. For additional information about methodology and coding structures see the BLS Handbook of 
Methods chapter 9: http://www.bls.gov/opub/hom/homch9.htm. 
SOURCE: Bureau of Labor Statistics (2016d). The public-facing version of the BLS database was down at the 
time of this inquiry, so the data above were provided directly by the BLS on 4-7-16. 

 

Beyond summary statistics, it is difficult to interpret trends from the BLS data available on 

occupational fatalities and injuries due to H2S. Generally, industries such as petroleum production 

and refining, sewer and wastewater treatment, agricultural silos and pits, textile manufacturing, 

pulp and paper processing, food processing, hot asphalt paving, and mining are considered those 

most at-risk (OSHA, 2016a). Favorable conditions for high H2S production - such as hot weather, 

confined spaces, and low wind - are likely better indicators than one’s job, especially for assessing 

risk outside of occupational settings. For the American public, hydrogen sulfide remains a 

significant inhalation hazard, as well. In 2012, there were an estimated 809 non-occupational 



 

41 

exposures resulting in 5 deaths as logged in the National Poison Data System (Mowry et al., 2013). 

In 2013 there was an increase to 855 exposures and 10 deaths, second only to carbon monoxide 

deaths (n=60) (Mowry et al., 2014). Even with the previously discussed data gaps, acute H2S 

effects are the most well documented and well understood category of exposures. 

2.7.2 Post-Acute Exposure (≥1-100ppm, slower onset) 

A less documented set of exposures occurs at levels greater than 1 ppm but typically less than 100 

ppm, or occur via ingestion. In these cases, death and a variety of neurological disorders may not 

occur right away but take hours, days, or weeks to present (Gregorakos et al., 1995, ATSDR, 

2014a, Haahtela et al., 1992, Hirsch, 2002). Levels up to 10 ppm can be tolerated fairly well by 

healthy adults for a short period of time, but between 10 and 100 ppm has been documented to 

produce some effects in animal studies, such as pulmonary congestion, pulmonary edema, and 

olfactory neuronal loss (Cantox Environmental Inc., 2002, Dorman et al., 2004, Kohno et al., 1991, 

Khan et al., 1990). Data are several lacking in this exposure category, since at other times, no 

symptoms are reported even during controlled exposure trials with humans (Bhambhani Y and M., 

1991, Bhambhani et al., 1997, Bhambhani et al., 1996, Bhambhani et al., 1994). 

The variability of symptoms and effects of post-acute exposures is likely due to a 

combination of factors. A generally overlooked possibility is that H2S might be temporarily 

converted into HS-X species (which are themselves non-toxic), but being metastable, these species 

may revert back to H2S. If the victim is cut off from the source of the exposure and HS-X 

reconversion to H2S is slow enough, acute symptoms may be avoided. We suspect that post-acute 

toxicity could, therefore, be mechanistically similar to acute, but development of symptoms is 

slowed down by the formation of meta-stable buffers (HS-X). Sulfhemoglobin potentially 
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represents one such “buffer” and is frequently evident at autopsy of sulfide poisoning victims (See 

Section 2.8.3 on Molecular Pathology). 

2.7.3 Chronic Exposure (<1ppm) 

The effects of low-level or long-term exposure to ambient levels of H2S (<1 ppm) found in the air 

are more difficult to estimate than either acute or post-acute because the mechanism for chronic 

toxicity is not well understood and H2S is not included in most ambient air monitoring programs. 

Hydrogen sulfide turnover in the body may be fast enough so as not to produce the symptoms we 

have come to except at higher levels. At chronic levels and duration, we expect symptoms of 

exposure to include visual complications, olfactory fatigue, nausea, respiratory irritation, and 

possible headaches due to the sensitivity of those systems to hydrogen sulfide exposure (ATSDR, 

2014a, Legator et al., 2001, Deng and Chang, 1987, Thoman, 1969, Jäppinen et al., 1990). 

However, significantly more research and real-time air monitoring need to be conducted in this 

arena to begin to understand the chronic effects to expect at specific H2S levels. 

Few places provide a better natural experiment for determining health effects from chronic 

H2S exposure than Rotorua, New Zealand, where a population of 60,000 people live near an active 

geothermal field. The most reliable background levels of H2S in this area indicate a median 

ambient concentration of 30 μg/m3 (20 ppb) (Bates et al., 1997). Even though their follow up study 

of 1,637 adult men and women who had resided in the area for at least three years proved 

inconclusive, there was some suggestive evidence that low levels of H2S were protective against 

asthma incidence (Bates et al., 2013). More recent research by Bates on this population has found 

similarly conflicting results regarding the effects of chronic H2S exposure on lung function or as a 

risk factor for asthma or chronic obstructive pulmonary disease (Bates et al., 2015). 
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Effects from dermal exposure and ingestion, as well as genotoxicity and reproductive 

effects are even less well understood (ATSDR, 2014a). At all levels – acute, post-acute, and 

chronic – the effects of H2S inhalation still present many unknowns, although markedly more gaps 

exist within post-acute and chronic exposures. 

2.8 CONFLICTING OBSERVATIONS REGARDING THE CHEMICAL 

TOXICOLOGY OF H2S 

2.8.1 Lessons from Occupational Accidents 

The available (anecdotal) evidence from human (occupational) mass exposures to H2S gas clearly 

suggests that approximately 20% of victims should require no treatment, but there will be ~5% 

fatalities and about 75% of the victims can be expected to arrive alive at the clinic exhibiting coma, 

disequilibrium, respiratory insufficiency and/or pulmonary edema (Snyder et al., 1995, Burnett et 

al., 1977, ATSDR, 2006c). Amongst sewer workers exposed in enclosed spaces below ground 

level, fatalities can be expected to be higher, but there are still survivors (Adelson and Sunshine, 

1966, Knight and Presnell, 2005, Yalamanchili and Smith, 2008). Based upon their experience 

with workers in Canadian sour gas wells (the epicenter of H2S poisonings in North America) 

Burnett et al. (1977) assert that “increased attention to cardiopulmonary resuscitation at the 

exposure site and during transportation to hospital is necessary to reduce the mortality from H2S 

exposure.” Neurological sequelae have been reported (Schneider et al., 1998, Snyder et al., 1995, 

Tvedt et al., 1991a, ATSDR, 2006c), but these remain quite rare and, interestingly, no such long-
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term effects were evident in any of the 221 cases documented in the Canadian study (Burnett et 

al., 1977). 

Where autopsies have been performed in timely fashion (since H2S leaves the body 

quickly), it has been noted that the internal organs of human H2S poisoning victims have been 

discolored – the blood and sectioned brain in particular appearing distinctly green due to the 

formation of sulfhemoglobin (Park et al., 2009, Adachi et al., 1986, Tatsuno et al., 1986, Milroy 

and Parai, 2011) in which the porphyrin ring has been covalently modified (Figure 5) (Carrico et 

al., 1978, Park et al., 1986, Bondoc et al., 1986). Significantly, at this time, these established 

characteristics of human poisonings have not been observed together in any of the reported animal 

models of which we are aware. For instance, mice given LD40 doses of NaSH by injection either 

die in less than 4 minutes, or fully recover within 15 minutes (Cronican et al., 2015). Moreover, 

while purified mouse hemoglobin can readily be manipulated to undergo the same conversion to 

sulfhemoglobin as the human protein, the animals have so far never exhibited any evidence of 

sulfhemoglobin formation, irrespective of whether the toxicant is given by single-shot 

intraperitoneal injection, slow tail vein infusion, or by inhalation (L.L. Pearce & J. Peterson, 

unpublished observations). This situation is not helpful with regard to the development of effective 

therapies, and there are no currently approved antidotes/protocols to treat poisoning by H2S/HS–, 

only suggested supportive countermeasures (ATSDR, 2014b, ATSDR, 2006c, ATSDR, 2006a, 

ATSDR, 2012). 

Some authors in the early literature (before these structures were properly identified) 

confused this terminology. For example, what we now call sulfidomethemoglobin (metHbSH) 

some early authors (e.g. Adelson and Sunshine (1966)) referred to as sulfhemoglobin (SHb). Here 

we reserve the latter term for the covalently modified macrocyclic structures shown in Figure 5.  
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Figure 5. Hemoglobin cycle and interactions with H2S 
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Table 10. Descriptive terminology for Figure 5 

Term Written Names Characteristic 

Hb hemoglobin / deoxyhemoglobin Red in color 

HbO2 oxyhemoglobin / monoxyhemoglobin Red in color 

metHb methemoglobin Red in color 

metHbSH methemoglobin sulfide / sulfido(met)hemoglobin Red in color 

SHb sulfhemoglobin / sulfHb / deoxysulfHb Green in color 

SHbO2 oxysulfhemoglobin Green in color 

metSHb metsulfhemoglobin / sulfido(met)sulfhemoglobin Green in color 

metSHbSH metsulfhemoglobin sulfide Green in color 

2.8.2 H2S Catabolic Biochemistry 

The reader will be aware that a significant literature continues to emerge regarding the function of 

H2S as a “gasotransmitter” (Kolluru et al., 2013, Mancardi et al., 2011, Wang, 2010, Wang, 2002, 

Szabo et al., 2014, Xie et al., 2016), but this body of work is outside the scope of the present review 

and confounding, rather than clarifying, with regard to some important questions relevant to H2S 

toxicity. Any signaling functions of H2S take place at orders of magnitude lower concentrations 

than the relevant levels in toxicity scenarios – considerations of mass action alone probably 

ensuring that different small-molecule bioinorganic reactions are involved in these two 

circumstances. For example, there presently seems to be a concurring opinion (Hildebrandt, 2011, 

Hildebrandt and Grieshaber, 2008, Kabil and Banerjee, 2010, Lagoutte et al., 2010, Szabo et al., 

2014, Abou-Hamdan et al., 2015, Bouillaud and Blachier, 2011) that the catabolic elimination of 

H2S in mammals is catalyzed almost exclusively by the sulfide oxidase system localized within 

mitochondria (Figure 6). This condition may well be the case under more-or-less normal 

physiological circumstances, but probably not at the elevated H2S levels to be experienced during 
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poisonings and some other pathological conditions. The first enzyme of the sulfide oxidase system, 

sulfide quinone reductase, abstracts a hydrogen atom from H2S and passes two electrons to the 

electron-transport chain via ubiquinone. Of course, the terminal acceptor for these two electrons 

is oxygen at the active (ligand-binding) site of cytochrome c oxidase (complex IV). Now we have 

an instructive conundrum, for if the primary molecular target for the toxicant H2S/HS– is, as widely 

accepted (see below) the ligand-binding site of cytochrome c oxidase, then sulfide unavoidably 

inhibits its own elimination. 

There are, however, several lines of evidence contradicting the notion that sulfide need 

necessarily inhibit its own elimination completely. Firstly, mice rendered unconscious (near death) 

by infusion of NaSH solutions into the tail vein over 5-10 minutes recover within seconds of 

stopping the infusion (L.L. Pearce & J. Peterson, unpublished observations) much faster than 

recovery from equivalently toxic levels of the similarly acting toxicant sodium cyanide. Secondly, 

the observation at autopsy of sulfhemoglobin formation in humans (Park et al., 2009, Adachi et 

al., 1986, Tatsuno et al., 1986, Milroy and Parai, 2011) is clear evidence for at least one other 

alternate competitive metabolic pathway for sulfide. Thirdly, a literature has emerged describing 

the presence of dimethylsulfide (CH3SCH3) in exhaled breath (Tangerman, 2009, Tangerman and 

Winkel, 2008) another pathway for elimination of sulfide. This occurrence has been 

confirmed/discovered in individuals with elevated levels due to “extra-oral halitosis” – that is, not 

due to bacterial production of dimethylsulfide in the oral cavity, but from internal sources 

(Tangerman and Winkel, 2007, Tangerman and Winkel, 2010). Finally, it appears that H2S/HS– 

can only be detected in the bloodstream of both rats and sheep for a matter of seconds when 

administered intravenously at sub-lethal, but measurably toxic, levels (Haouzi et al., 2014b, 

Sonobe et al., 2015, Haouzi et al., 2014a, Sonobe and Haouzi, 2015). In short, there are almost 
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certainly multiple pathways through which sulfide can be eliminated from mammals, though these 

remain poorly delineated at this time. This ought not be surprising, as sulfide is both a good ligand 

and reductant; some of its biochemical toxicology may not be enzyme catalyzed. 

 

Figure 6. Inhibition of H2S catabolism and ETC 

2.8.3 Molecular Pathology 

While sulfide can clearly react with multiple biomolecules and there are tissue-specific variations 

in the toxic response, the crucial molecular target in acute cases is generally accepted to be 

cytochrome c oxidase (complex IV) of the mitochondrial electron-transport chain (ETC) (ATSDR, 

2014b, ATSDR, 2006c, Cooper and Brown, 2008, Dorman et al., 2002, Cronican et al., 2015, 

Guidotti, 1996, ATSDR, 2006a, ATSDR, 2012). Sulfide is certainly a potent inhibitor of complex 
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IV, but it is less well known that it also reacts with the enzyme resulting in catalytic turnover 

(Cooper and Brown, 2008, Hill et al., 1984, Nicholls and Kim, 1982, Nicholls et al., 2013). 

Therefore, while these reactions remain poorly understood, they do provide yet another potential 

route for catabolic elimination of sulfide when enzyme inhibition is sub-maximal. As molecular 

H2S can freely diffuse through membranes, it readily crosses the blood-brain barrier to inhibit 

mitochondrial ETCs within the central nervous system, which in unanesthetized laboratory 

animals results in clear behavioral signs of intoxication 2 minutes post-injection and can lead to 

death from respiratory paralysis within ~3 minutes (Cronican et al., 2015, ATSDR, 2006c), or 

cardiac failure after ~7 minutes (Sonobe et al., 2015, Sonobe and Haouzi, 2015).  

At this time, it is not clear how to reconcile the observation that free H2S/HS– seemingly 

only persists for a matter of seconds in the bloodstream (Haouzi et al., 2014b, Sonobe et al., 2015, 

Haouzi et al., 2014a, Sonobe and Haouzi, 2015) yet onset of symptoms associated with complex 

IV inhibition by H2S/HS– occurs at 2 minutes after the toxicant dose. We remind the reader at this 

point that significant numbers of human victims of H2S inhalation arrive at the clinic with 

cardiopulmonary symptoms 30 minutes or more after exposure and frequently succumb hours later 

(Burnett et al., 1977, ATSDR, 2006c, CSB, 2003, EPA, 2003, Guidotti, 1996). 

2.8.4 Pulmonary Considerations 

Prior to the emergence of any gasotransmitter activity, there were insightful concise reviews of 

H2S toxicity published (Guidotti, 1996, Reiffenstein et al., 1992, Haggard, 1925, Milby and Baselt, 

1999) that still provide an excellent entry point to this literature, as well as some lengthier scholarly 

documents (ATSDR, 2006c, Roth and Goodwin, 2003, Beauchamp et al., 1984). A few key points 

worth reiterating include that while there are some relatively mild and mostly resolvable ocular 
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conditions associated with chronic H2S exposures, the neurological sequelae reported in humans 

following more acute exposures may primarily be caused by brain anoxia or head trauma suffered 

during collapse, both secondary to the direct toxic effects of H2S. The observed symptoms of acute 

gaseous exposures are hyperpnea, then unconsciousness (knockdown), followed by apnea and 

finally, death, frequently accompanied by pulmonary edema. The lung appears to be especially 

sensitive as hyperpnea, and apnea are observed in laboratory animals administered sulfide 

solutions by injection (Almeida and Guidotti, 1999), while edema only seems to follow H2S 

inhalation (Reiffenstein et al., 1992, Guidotti, 1996, Milby and Baselt, 1999, Lopez et al., 1989).  

Recent work with the cysteine dioxygenase knockout mouse, which accumulates H2S/HS—

, has confirmed that the lung (and pancreas) is (are) more susceptible to toxicity from endogenously 

elevated H2S/HS– than liver or kidney (Roman et al., 2013) and, also, in various other animal 

models, H2S/HS– has been demonstrated to contribute to the development and progression of lung 

inflammation and injury (Zhang and Bhatia, 2009). Bizarrely and to the contrary, however, 

H2S/HS— is apparently ameliorative in the case of lipopolysaccahride-induced acute lung-injury 

(ALI) in rats (Du et al., 2014) and in burn/smoke-induced ALI in sheep (Esechie et al., 2009). 

Olson and associates have written extensively (Olson, 2012, Olson et al., 2014) on the practicalities 

of manipulating H2S/HS— in biological samples and the difficulty in distinguishing physiological 

from pharmacological processes, particularly at the uncertain sulfide levels encountered.  

Of course, one should expect that many of the paradoxical observations in the present 

literature could be resolved with improved knowledge of the underlying H2S/HS— biochemistry. 

In this regard, quantitative understanding of the small molecule bioinorganic chemistry 

underpinning much of the field appears especially lacking. So, for example, while some authors 

argue that oxygen-dependent redox processes are involved in H2S/HS— cytotoxicity observed in 
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cultured cells (Eghbal et al., 2004, Truong et al., 2006), other groups have pointed out that in the 

case of intact animals (Cronican et al., 2015) and human patients (Reiffenstein et al., 1992) any 

effects of supplemental oxygen are indistinguishable from normal recovery. While less than 

helpfully informative, it is probably not disingenuous to describe the current status of the relevant 

redox biochemistry (Kabil and Banerjee, 2010, Xie et al., 2016) as complicated, at best. 

There is perhaps some hypersensitivity exhibited by individuals with pre-existing 

conditions such as asthma (ATSDR, 2006c, Milby and Baselt, 1999), but in comparison to other 

common chemical reagents like ammonia and volatile organic acids, H2S is a modest 

lachrymator/pulmonary irritant – accidental releases being more likely to elicit eruptions of puerile 

humor from one’s laboratory colleagues than more serious consequences. In view of such 

experiences, it is possible that the severity of inhaled H2S as an irritant has sometimes been 

overstated – maybe originating in attempts to explain some of the observed physiological 

responses to exposure predating any understanding that one or more sulfide species might be 

signaling molecules. During inhalation, the sulfide fluxes experienced by the lung tissues will be 

significantly greater than both the systemic levels and, also, the fluxes that the lung tissues 

themselves would experience following toxicant administration by alternate methods. Thus, 

development of pulmonary edema following H2S inhalation, the most notable lesion in human 

fatalities (Burnett et al., 1977), reflects this locally elevated exposure, but probably involves 

responses other than merely reaction to an irritant. Typically, clinical presentations of pulmonary 

edema are secondary to either elevated pulmonary capillary pressure from left-side heart disease 

(cardiogenic), or injury and increased permeability of the lung microvasculature, frequently 

associated with sepsis (noncardiogenic) (Murray, 2011, Ware and Matthay, 2005). Endothelial 

barrier function is seemingly always compromised, while the epithelial barrier is usually, but not 
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always affected (Murray, 2011). The less-often-encountered syndromes neurogenic pulmonary 

edema and high-altitude pulmonary edema each show both cardiogenic and noncardiogenic 

features (Bhagi et al., 2014, Murray, 2011, Šedý et al., 2015). It has been clear for decades that 

H2S-induced pulmonary edema is associated with vascular permeability due to the high protein 

content of the extravasated fluid (Lopez et al., 1988a, Lopez et al., 1987, Prior et al., 1990) – but 

further similarity between this and any of the other noncardiogenic syndromes essentially remains 

open to question. 

Multiple types of calcium and potassium ion channels (at least) are susceptible to 

modulation by H2S, especially within the cardiovascular system (Dunn et al., 2016, Munaron et 

al., 2013, Martelli et al., 2013). These emerging effects of H2S exhibit a complicated 

interdependence with those of nitric oxide, the relationship being demonstrably evident in 

endothelial and smooth muscle cells (Altaany et al., 2014, Dunn et al., 2016, Huang et al., 2015, 

Moccia et al., 2011). Since the details of these interactions in physiological circumstances are still 

emerging, any associated pathological biochemistry is unavoidably even less well delineated, but 

there is clearly promising scope here for discovery of a mechanism to explain H2S-induced 

pulmonary edema and, thus, potential therapeutic targets. There has been some recent focus on the 

lung epithelial sodium channel as a target for treating H2S-induced acute pulmonary edema (Jiang 

et al., 2016, Jiang et al., 2014, Jiang et al., 2015). Unfortunately, there is cause for pessimism with 

regard to this suggestion because multicenter clinical trials with epithelial sodium channel 

activators/stimulators for the treatment of patients with pulmonary edema have, thus far, proven 

disappointing (Fronius, 2013). In proof-of-concept laboratory experiments with animals, where 

the poisoning protocols were quite unlike human cases, it has been shown that hydroxocobalamin 

(Truong et al., 2007) and its biological precursor cobinamide (Brenner et al., 2014) offer some 
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protection against injected NaSH. However, in keeping with the reported observation that free 

H2S/HS— is eliminated from the bloodstream very quickly (Haouzi et al., 2014a, Haouzi et al., 

2014b), the hydroxocobalamin had to be given within ~2 minutes of the toxicant, and the 

cobinamide was given during administration of the toxicant dose – neither protocol being of any 

practical value in relation to human poisonings. 

2.9 H2S CONCLUSION 

Since the days of the Princess Alice disaster, we have come to understand a great deal more about 

the risks posed by hydrogen sulfide. On a global scale, the sulfur cycle shown is likely able to 

accommodate current emissions (or moderate man-made increases), since natural geothermal 

activity is the largest contributor to worldwide H2S emissions based on this study and others. The 

compound’s toxicity above endogenous gaseous signaling molecule levels, under-quantified 

emissions, the studies highlighted in sections 2.3 and 2.7, and the conflicting research findings 

documented in Section 2.8, however, make this compound a public health risk worthy of further 

study.  

Take, for example, the many gaps presented in the BLS data in Table 6 through Table 9. 

One cannot compare worker injuries and fatalities across the four tables/years to identify potential 

trends due to the reporting discrepancies and blank records in the datasets. Regulators rely on 

timely, accurate, and consistent datasets to generate policies and procedures for protecting people, 

a structure that is considerably lacking for both H2S exposures and emissions nationally. The need 

for further toxicity study is accentuated by the aging reports cited in the most recent ATSDR Draft 

Toxicological Profile for hydrogen sulfide and carbonyl sulfide, as well (ATSDR, 2014a). Of the 
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719 citations in the document’s reference list, 408 (57%) were published more than 20 years ago. 

While this attribute does not invalidate the findings of the overall ATSDR report or each individual 

report found within, it does highlight the need for more up to date H2S toxicity and emissions 

research, especially in light of advanced laboratory technologies in the last two decades. 

The necessity to develop an antidote to H2S acute and possibly post-acute exposures is 

another quite obvious research requisite highlighted in this study. Firstly, detergent suicides can 

and do fail, as well as expose bystanders and responders during the process. It is important, 

therefore, to avoid chronically-injured survivors. Secondly, the potential for this ubiquitous gas to 

be used for malicious purposes cannot be ignored by the field of public health. The use of chemical 

agents for terrorism purposes has been on the rise since 1968 (Figure 7) (RAND, 2016); it is 

imperative that emergency responders be prepared for targeted attacks using H2S – a feat more 

easily accomplished if a working antidote were available. 

 
Figure 7. Count per year of worldwide terrorism incidents executed using chemical agents.  

 
Data source: RAND Database of Worldwide Terrorism Incidents 
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And thirdly, H2S continues to be one of the most dangerous gases in the workplace, despite 

the data gaps mentioned previously. As energy demand has and will likely continue to increase 

worldwide, there are growing political and industrial pressures to increase natural gas production 

for energy generation (US EIA, 2016b), especially from unconventional reserves such as shale gas 

and coalbed methane (US EIA, 2016a). Unfortunately, approximately 40% of untapped reserves 

may contain sour gas depending on the region explored (TOTAL, 2014, IEA, 2013), presenting a 

greater inhalation risk to fugitive H2S emissions for workers and nearby residents than is already 

present. Having an antidote available on site in the event of an inadvertent exposure would be a 

valuable resource for any occupation, but especially so for remotely-located operations such as oil 

and gas drilling sites and AFOs. There does not seem to be a hydrogen sulfide candidate antidote 

under development at this time, however. Increased investment in research aimed at better 

understanding the mechanistic toxicology might provide the foundation for the rational design of 

antidotes, or at least suggest some leads.  

H2S presents serious risks in concentrated doses and confined spaces such as sewers and 

AFO buildings. On a global scale, however, the sulfur cycle (Figure 1) is able to accommodate 

current emissions (and any moderate anthropomorphic increase), since natural geothermal activity 

is the largest contributor to worldwide H2S emissions based on this chapter’s study and previous 

assessments (Beauchamp et al., 1984, Hill et al., 1972, US EPA, 1993). In summary, future 

research should focus on monitoring known and potential sources of H2S emissions, improving 

the documentation of exposures and subsequent health impacts, clarifying the mechanistic 

pathways by which H2S exerts its effects on the body, and developing a compound-specific 

antidote and/or treatments. 
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3.0  ENVIRONMENTAL TOXICOLOGY OF CYANIDE 

3.1 INTRODUCTION 

From a public health perspective, the available data (ATSDR, 2006b) indicate that the general 

population is primarily exposed to cyanide in two ways worldwide. Firstly, through inhalation of 

contaminated air, including tobacco smoke, and secondly, by ingestion of foods derived from 

cyanogenic plants. Air exposure is an essentially continuous, low-dose (i.e. chronic) process, with 

the exception of exposure during fires (See Fire Smoke section 3.6.1). Consumption of cyanogenic 

plant materials, especially by livestock (Merk Veterinary Manual, 2005), can result in symptoms 

of acute and chronic cyanide poisoning (ATSDR, 2006b). While the deliberate consumption of 

cyanide-laced foods and beverages can be an effective method for murder/suicide (Bebarta et al., 

2011, Hall, 1979), accidental exposure from contaminated drinking water is of relatively low 

concern. The pKa of HCN, ~9.24 at 25°C (Ghosh et al., 2006), ensures that the toxic anion (CN–) 

readily becomes protonated in aqueous media around a neutral pH; subsequently, the uncharged 

HCN molecule is rapidly lost to the atmosphere. The physical properties of some important 

commercially available cyanide compounds are summarized in Table 1. 

There are numerous routes by which cyanide may be released into the environment, but 

monitoring data suitable for quantifying the relative importance of the sources worldwide are 

scarce. Available data indicate that industrial manufacturing of cyanide may total approximately 

2.3 million metric tones (2.5 million US tons) every year (Baskin et al., 2009). While the estimates 

vary between 0.5-12.9 x 1012 g of N/year emitted, the principal source of “environmental cyanide” 

(i.e. atmospheric HCN) is thought to be biomass burning (Crutzen and Carmichael, 1993, Flematti 
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et al., 2011, Li et al., 2003, Lupu et al., 2009), followed by - in no particular order - automobile 

emissions, volcanic activity and loss of industrial containment, especially in association with 

mining operations (ATSDR, 2006b). Deliberate releases of cyanide during activities such as 

“cyanide fishing” (Mak et al., 2005) and fumigation (ATSDR, 2006b) can be locally devastating 

to the wildlife targeted, but likely account for an insignificant addition to the total environmental 

cyanide burden. 

The cyanide anion is a potent inhibitor of mitochondrial cytochrome c oxidase (respiratory 

complex IV) resulting in the observed acute toxicity towards the central nervous system and death 

by pulmonary failure (ATSDR, 2006b). Many other enzyme systems are also subject to inhibition, 

but only at significantly higher cyanide concentration (Ballantyne, 1987, Ballantyne and Salem, 

2006). It is less widely appreciated that at lower cyanide concentrations, there are some intriguing 

non-toxic biological effects. For example, it has been independently verified in rats that cyanide 

salts are radioprotective (Schubert and Markley, 1963, Strelina, 1970, van der Meer et al., 1961) 

and metabolic cyanides appear to have multiple, beneficial effects in some plants (Xu et al., 2012). 

More recently, it has emerged that nitric oxide is able to reverse the inhibitory action of cyanide at 

cytochrome c oxidase (Cambal et al., 2011, Pearce et al., 2008), thereby affording protection in 

the form of an endogenous antidote. Presently, the extent to which our tolerance of normal 

environmental (and dietary) cyanide levels depends (or not) upon endogenous nitric oxide is 

presently unclear. 

This chapter, covering the literature up to the end of December 2012, reviews the major 

cyanide sources/sinks in relation to the environment and human exposure, and, so far as may be 

possible, assesses the limits of what may be considered “normal” environmental cyanide levels. 
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3.2 ENVIRONMENTALLY RELEVANT CHEMISTRY OF CYANIDES 

Table 11. Physical properties of common cyanide compounds 

Propertya Hydrogen 
cyanide 

Cyanogen 
chloride 

Acetonitrile Sodium 
cyanide 

Potassium 
cyanide 

Chemical formula HCN CNCl CH3CN NaCN KCN 
CAS registry 74-90-8 506-77-4 75-05-8 143-33-9 151-50-8 
Formula weight 27.03 61.47 41.05 49.01 65.12 
Odor Bitter almondsb Pungent Faint but 

distinct 
Odorless if dryc Odorless if dryc 

Appearanced Colorless Colorless Colorless White White 
Physical state (STP) Volatile liquid Gas Liquid / solvent Solid / crystals Solid / crystals 
Melting point (°C) -13.4 -6.0 -46.0 563.7 634.5 
Boiling point (°C) 25.7 12.7-13.8 81.6 1496 Not available 
Solubility (water) Miscible 28 mg/L (25°C) Miscible 480 g/L (10°C) 716 g/L (25°C) 
Solubility (organic 
solvents) 

Diethyl ether, 
ethanol 

Diethyl ether, 
ethanol 

Miscible Ethanol, 
formamidee 

Ethanol, 
methanole 

Log KOW 0.66 Not available -0.34f 0.44 Not available 
Henry’s law 
constant 

5.1 x 10-2 
atm·m3/ mol 
Dimensionless: 
2.1 

3.2 x 10-3 
atm·m3/ mol 
Dimensionless: 
1.3 

3.5 x 10-5 
atm·m3/ mol 
Dimensionless: 
1.4 x 10-3 

Not applicable Not applicable 

aData obtained from (ATSDR, 2006b) and references cited therein. 
bFaint smell not detectable by everybody. 
cBitter almond smell of HCN apparent if wet. 
dPure compounds, aqueous solutions are colorless. 
eSparingly soluble in organic solvents. 
fData obtained from (International Programme on Chemical Safety, 1993) and references cited therein. 

 

Hydrogen cyanide is the IUPAC-approved name for the molecular compound HCN, a colorless 

liquid having the odor of bitter almonds. Aqueous solutions and their vapors are now known as 

hydrocyanic acid, having previously been called prussic acid. The HCN molecule is soluble in 

alkaline aqueous media due to its ability to ionize to cyanide anion, (CN–) and hydronium ion. 

However, the pKa of this weak acid is > 9, so that in mildly acidic-to-neutral natural waters the 

cyanide anion becomes protonated to the less soluble molecular acid – with a Henry’s law constant 

favoring loss of HCN to the atmosphere (Ma et al., 2010) (Table 11). 

 Large amounts of HCN are produced industrially - approximately 750,000 tons were 

produced in 2001 in the U.S. - and it is a highly valuable precursor to many chemical compounds 
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ranging from polymers to pharmaceuticals (Wong-Chong et al., 2006). There are two common 

manufacturing routes both involving the reaction of methane and ammonia at elevated temperature 

over a platinum catalyst (Housecroft and Sharpe, 2008), but the first of these continues to be the 

more important: 

Equation 6. Primary manufacturing route for producing HCN 

 

Equation 7. Secondary manufacturing route for producing HCN 

 

A number of industrially important organic compounds are prepared by reaction of 

precursors with HCN including acetone  methyl methacrylate, used to form many resins and 

polymers, and butadiene  adiponitrile, the precursor to 1,6-diaminohexane use in the synthesis 

of Nylon 66 (Fox and Whitesell, 2004). (Acrylonitrile, a component of ABS plastics, is usually 

manufactured from propene and ammonia, not HCN.) The cyanide anion is a good nucleophile, 

which explains its use in organic chemistry as an attacking agent of partially positive carbons and 

its use in inorganic chemistry as a complexing agent for metal ions. Many industrial applications 

of cyanide make use of its complexing properties in various processes where metal surfaces are 

chemically modified, or metal mining operations. For example, the extraction of gold and silver 

during the refining of some ores utilizes the following chemistry (Housecroft and Sharpe, 2008): 

Equation 8. Refining ores using a sodium cyanide solution to extract silver and gold 

 

The organic chemistry of organo-cyanides, also referred to as nitriles, is in fact, somewhat 

similar to that of carboxylic acids. Both types of compounds have three carbon bonds to an 

electronegative atom and π bonding, which together render the carbon atom of the functional group 

2CH4  +  2NH3  +  3O2 2HCN  +  6H2O

HCN  +  3H2CH4  +  NH3
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somewhat positive and thus electrophilic. Consequently, common pathways to the degradation of 

nitriles (Fox and Whitesell, 2004) involve the acid-catalyzed addition of water to form an immine, 

followed by rearrangement to the amide, addition of a second water molecule, rearrangement and 

elimination of ammonium ion.  

Equation 9. Common nitrile degradation pathways involve liberation of ammonium ion 

 

Thus, liberation of ammonia tends to be a feature of the environmental (and some biochemical) 

pathways to the degradation of nitriles, thereby linking environmental cyanide chemistry to the 

global nitrogen cycle. 

Formation of nitriles is possible by several synthetic routes (Fox and Whitesell, 2004). For 

example, the addition of HCN to molecules containing carbonyl groups, forming hydroxynitriles, 

probably occurs in situations where inadequately contained cyanide waste comes into contact with 

organic matter (Equation 10). However, the dehydration of amides to nitriles is probably of greater 

biochemical importance (Equation 11): 

Equation 10. Addition of HCN to carbonyl groups to form hydroxynitriles 

 

Equation 11. Dehydration of amides to nitriles 

 

The latter overall reaction is carried out by many plants in a series of steps to form cyanoglycosides 

(or cyanogenic glycosides) (Vetter, 2000). Cyanoglycosides contain a sugar ring connected by 
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bridging oxygen to a nitrile bearing carbon. Thousands of these are known, prime examples being 

linamarin and dhurrin (Figure 8), the most prevalent cyanogenic glycosides found in, respectfully, 

cassava root (Nhassico et al., 2008) and sorghum leaves (Busk and Møller, 2002). 

 

Figure 8. Linamarin (R1 ≡ R2 = –CH3) and dhurrin (R1 = p-hydroxyphenyl; R2 = –H) 

 

 

Figure 9. Cyanocycline A 

 

 

Figure 10. ß-cyanoalanine 



 

62 

Other examples of biological nitriles include those with anti-microbial and, in some cases, 

anti-tumor activities isolated from bacteria. For example, cyanocyclines, isolated from 

Steptomyces, composed of an isoquinoline residue fused to a diazabicyclic core (Figure 9) (Arora 

and Cox, 1988). In addition, HCN is often “fixed” or combined with the amino acid alanine (Figure 

10) where it may subsequently add water to form an amino carbonate. In summary, plants (algae, 

bacteria, cyanobacteria, fungi, and higher green plants) exhibit quite a diverse set of anabolic 

pathways leading to formation of nitriles, and we only present a few examples here. 

Interestingly, many plants also produce HCN in small quantities (Peiser et al., 1984). The 

plant hormone ethylene is generated by oxidation of aminocyclopropane carboxylic acid and HCN 

is released as a by-product: 

Equation 12. Oxidation of aminocyclopropane carboxylic acid, releasing HCN 

 

Some microbes synthesize HCN, but a significantly greater number tend to biodegrade 

cyanide using a variety of pathways employing oxidative, reductive, hydrolytic and group-

exchange reactions (Ebbs, 2004). Pathways such as the cysteine → β-cyanoalanine → arginine 

conversion (Raybuck, 1992) can fix cyanide in the biosphere, but the vast majority lead to release 

of the nitrogen from cyanide as ammonium ion (Ebbs, 2004). Cyanate and thiocyanate (excreted 

by animals) are intermediates in some of the microbial pathways and, consequently, the biosphere 

may be thought of as a net converter of cyanide to ammonia thereby providing a link to the global 

nitrogen cycle. In most cases these reactions are carried out around neutral pH where cyanide is 

predominately protonated and the solubility of HCN is limited by Henry’s law. However, recent 

studies searching for bacteria that could be useful in the remediation of highly-contaminated (i.e. 



 

63 

alkaline) soil have found and characterized a Pseudomonas strain of bacteria that degrades cyanide 

and its metal ion complexes at pH 11, while seemingly requiring only a carbon source (e.g. acetate) 

for cyanotrophic growth (Luque-Almagro et al., 2011a, Luque-Almagro et al., 2011b). 

 The combustion/pyrolysis of organonitriles and carbon-nitrogen containing polymers is 

complex. The production of HCN from these materials is dependent on time-dependent 

temperature and oxygen concentration variations during the course of a fire. Detailed molecular 

studies are scarce, but the mechanism of combustion/pyrolysis of acetonitrile (CH3CN), an 

important solvent and by-product of acrylonitrile production, has been described in some detail 

(Britt, 2002). When oxygen is depleted and at temperatures below 1,000°C, there is substantial 

formation of HCN due to pyrolysis of acetonitrile by radical mechanisms including the following: 

Equation 13. Pyrolysis of acetonitrile, forming HCN 

 

When the relative amounts of fuel and oxygen are at least comparable, or oxygen is in 

excess, combustion of CH3CN (producing CO and CO2) results, and the oxidation of present HCN 

to NO occurs. The extent to which these reactions of acetonitrile can be used as a model for 

combustion/pyrolysis of other nitrogen containing molecules, including polymers, is not entirely 

clear. However, it does seem reasonable to infer that smoldering fires, where oxygen is depleted, 

have the potential to produce the significant amounts of HCN (Grabowska et al., 2012) – such as 

during the salvage phase of firefighting operations. 

 Similarly, in natural fires the most important contributor to atmospheric HCN levels is 

thought to be biomass burning (Li et al., 2003) with the greatest production of HCN from brush 
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fires occurring during the smoldering phases, and the most likely nitrogen source being amino 

acids (Lobert and Warnatz, 1993). A comparison of HCN production from the burning of different 

natural and synthetic materials is given in Table 12. 

Table 12. HCN produced by combustion of a variety of materialsa 

Material Temperature (C°) Yield (g HCN produced/g  
sample combusted) 

Acrylonitrile 750 0.030b 
 > 1,000 (low O2) 0.590b 
Acrylic fiber 800 0.095–0.193c 
Nylon 650 (well-ventilated) 0.005d 
    650 (ventilation limited) 0.018d 
 800 0.0076–0.0700c , e 
    900 (well-ventilated) 0.011d 
Polyurethane  650 (well-ventilated) 0.003d 
          650 (ventilation limited) 0.001d 
          900 (well-ventilated) 0.0003d 

Urea-formaldehyde foam 800 0.015–0.042c 
Rigid urethane foam 800 0.008c 

Silk n/ag 0.0222–0.0680f 
 800 0.036e 
Melamine 650 (well-ventilated) 0.001d 
  900 (well-ventilated) 0.033d 
Wool 350 (well-ventilated) 0.018d 
 650 (well-ventilated) 0.002d 
 900 (well-ventilated) 0.006d 
 800 0.007–0.054c , e 
 n/a 0.0126 – 0.0252f 
aList not intended to be exhaustive. 
bData obtained from (Britt, 2002). 
cData obtained from (Sumi and Tsuchiya, 1973). 
dData obtained from (Simonson et al., 2000) 
eData obtained from (Hobbs and Patten, 1962) 
fData obtained from (Olsen et al., 1933) 
gN/A: Temperature not indicated 

 

  Recent work on modeling the persistence of atmospheric HCN suggests that in both the 

stratosphere and the troposphere, the major degradation pathway is via a reaction with hydroxyl 

radical, followed by a cascade of reactions dependent on oxygen-derived species, where the 

ultimate products, CO2 and NOx, feed into the global carbon and nitrogen cycles, respectively: 
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Equation 14. Major degradation of atmospheric HCN via hydroxyl radical, releasing CO2 and NOX 

 

In the stratosphere, HCN is thought to be a major trace gas at levels around 10 ppt and most likely 

degrades slowly with an average lifetime of 5-10 years per molecule (Kleinbo¨hl et al., 2006). 

After the initial reaction with hydroxyl radical the product degrades in a very complicated fashion. 

A minor degradation pathway by initial reaction with singlet oxygen may also be of some 

significance. In the troposphere, HCN also predominately reacts with hydroxyl radical, but the 

average residence time is less than six months per molecule. As the degradation pathway 

dependent on hydroxyl radical is slow, the major sink is consensually argued to be the ocean (Lupu 

et al., 2009, Li et al., 2003). Presumably, the sink strength is tied to microbial degradation – the 

algal and cyanobacterial populations of the ocean almost certainly being large enough to support 

this idea (Dzombak et al., 2006). 

3.3 OCCUPATIONAL CONCERNS 

Some of the cyanides commonly employed in industrial processes are either volatile themselves, 

or unavoidably converted to HCN upon contact with water (Table 11) – worrisome properties that 

facilitate dissemination of their toxic consequences. Despite this concern and the widespread/usage 

of cyanides (RTI International, 2006), commercial transport and industrial consumption of these 

compounds make very little contribution (TRI03, 2005) to the overall cyanide content of the 

environment based on available data. More importantly, incidents similar to the Bhopal disaster in 
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which the accidental release of methyl isocyanate from a manufacturing facility eventually 

resulted in 20,000 human causalities in India (Varma and Varma, 2005) have, to date, not occurred 

with cyanide compounds. In fact, where large-scale spills of cyanide have occurred and been well 

documented, wildlife has sometimes been decimated, but relatively few human fatalities have been 

reported (Table 13). 

Workers may be exposed to cyanide on the job if they use cyanide compounds. According 

to the National Occupational Exposure Survey, in 2006 the number of workers exposed to cyanides 

in the U.S. totaled 165,295 (ATSDR). Dermal and inhalation are the main routes of exposure for 

this population (Baskin et al., 2009). While measured data are limited, the professions where a risk 

of being exposed exists include: cassava processing, factory work, electroplating, metal mining 

processes, metal finishing and plating, metallurgy, metal cleaning, pesticide application, leather 

tanning, photography and photoengraving, firefighting, gas works operations, dye/pharmaceutical 

industries (ATSDR, 2006b). NIOSH reports that workers who have been exposed to cyanide over 

time may experience symptoms ranging from headache, palpitations, loss of appetite, nausea, and 

irritation of the upper respiratory tract and eyes (2011).  
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Table 13. Major reported incidents of cyanide spills and leaks 

Site/ Operator/ Locationa Release 
Period 

Type of Spill / Media Quantity 
Spilled 

Environmental Consequences Human 
Causalities 

Source(s) 

Summitville gold mine, 
Summitville Consolidated 
Mining Co., Inc., Colorado, 
United States 

1986 – 
1992 

Cyanide, heavy metals and acid 
leached from the mine site into 
groundwater below heap leach 
pad and on several occasions 
leaked from transfer pipes into 
surface water 

unknown All stocked fish in nearby reservoir 
and in farm holding ponds died 
along 17 miles of river. Possible 
association with cyanide release; 
probable with acid and metals 
exposure. 

0 (USGS, 2005) 

Grouse Creek gold mining 
plant, Hecla Mining Co., 
Idaho, United States 

1994 –
1999 

Several spills of cyanide solution 
containing sodium cyanide 
(NaCN) 

>18.93 m3 Unknown. Closed site continues to 
leak. Fish kills reported. 

0 (Cascadia 
Times, 2000) 

Omai gold mine, Cambior 
Inc., Omai, Guyana 

1995 Walls of tailings pond were 
breached. Waste fluids 
containing cyanide leaked into 
surface waters 

4,200,000 
m3 

At least 20,000 steelhead fish died. 
Possible effects to nearby wildlife 
along 50-mile stretch of river. 

0 - Human 
health effects 
reported 

(Beebe, 2001) 
and references 
cited therein 

Aurul precious metals 
recovery plant, Esmeralda 
Exploration (Australian co.) 
and Romanian government, 
Baia Mare, Romania 

2000 Tailings dam broke, leaked 
cyanide and metal-rich liquid 
waste into surface waters 

100,000 m3  Rapid death of aquatic organisms 
and animals living close to the 
polluted rivers. Disruption of 
drinking water supplies in 24 
locations and for 2.5 million 
people. 

0 (Soldán et al., 
2001, 
Bacsujlaky, 
2004) 

Tarkwa gold mine, Gold 
Fields Limited, Tarkwa, 
Ghana 

2001 Pipe carrying cyanide solution 
broke, eventually reaching a 
nearby stream 

900-650 m3  Approximately 50 fish died from 
exposure. Additional distressed 
fish caught by residents. 

0 – Human 
health effects 
reported 

(Amegbey and 
Adimado, 
2003) 

Granite mine 
transportation vehicle, 
Central Australia 

2002 Transportation accident spilled 
cyanide pellets (NaCN) 

0.4 m3  Killed >500 birds and a dingo. 0 (Wakeham and 
Blair, 2002) 

Phu Bia gold mine, Pan 
Australian Resources, Chai 
Somboun special zone, Laos 

2005 Heavy rainfall caused cyanide to 
leak from the mine into small 
nearby river 

unknown Killed fish in the nearby rivers, 
and impacted villagers within at 
least 3km of the mine site. 

0 - Human 
health effects 
reported 

(Mineral Policy 
Institute, 2005) 

 
Lucebni Zavody chemicals 
plant, Kolin, Czech 
Republic 

2006 Cyanide-laced waste water 
overflowed into nearby river 
(CN–) 

600kgCN– 
per 30 m3 
waste water 

Contaminated 85km of the river. 
10 tons of fish died. 

0 (Balej, 2008, 
European 
Rivers 
Network, 2006)  

aNot meant to be an exhaustive list.  
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3.4 GROUND / SURFACE WATER 

Cyanides/nitriles in soil are efficiently biodegraded by microorganisms (Ebbs, 2004) so that their 

infiltration into the subsurface layers is usually insignificant and aquifers do not become 

contaminated (ATSDR, 2006b). The exception to that situation is in landfills, tailings, ponds, and 

spills where high levels of cyanide-containing waste may have been released (Mudder et al., 2001). 

The concentration of cyanide in landfill leachates can be high enough to kill the microorganisms 

normally responsible for their degradation (Lagas et al., 1982). Consequently, drinking water wells 

sunk in the vicinity of these incidents could conceivably become contaminated.  Approximately 

14% of households in the U.S. rely on private wells for their domestic supplies (U.S. Census 

Bureau, 2008) – essentially closed systems delivering water directly into homes that potentially 

could result in the release of HCN gas in enclosed spaces like bathrooms, kitchens, laundries etc. 

Fortunately, to date, there seem to have been no such occurrences reported. 

 In the U.S., 0.9 tons of pollutants per year were released into surface waters from registered 

industrial processes that use hydrogen cyanide. In comparison, 570 tons were released into the air 

and 779 tons placed into underground injection wells (TRI03, 2005). Free cyanide (HCN + CN–) 

has been found in Canadian lakes at up to 19 ppb (µg HCN/L water) (Sekerka and Lechner, 1976) 

and measured in municipal drinking water at up to 11 ppb in Canada and the U.S. (ATSDR, 

2006b). At the mean environmental temperature of ~15°C (WMO, 2012), a reasonable estimate 

for the dimensionless form of Henry’s law constant for the partitioning of total cyanide between 

air and water is 4x10-3 (Dzombak et al., 2006). Using the reported value of 11 ppb for cyanide 

(HCN + CN–) in drinking water to calculate the predicted atmospheric concentration of HCN 
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gives: 11 ppb x 4x10-3 = 0.044 ppb. The analogous calculation for the Canadian lake data yields: 

19 ppb x 4x10-3 = 0.076 ppb. The background level of atmospheric HCN at sea level is seemingly 

around 0.1 ppb (Ambrose et al., 2012, Li et al., 2003). Therefore, the level of cyanide that has been 

found in oligotrophic lakes and processed drinking water is at, or just below, the level predicted 

by atmospheric exchange according to Henry’s law. 

 In addition, cyanogen chloride, formed as a consequence of water treatment with chlorine, 

may also be present at up 25 ppb (Zheng et al., 2004). The molecular mass of cyanogen chloride 

(61.5) is about twice that of HCN (27) and so, there is up to ~22 ppb total cyanide concentration 

present in drinking water. The LD50 for orally administered cyanide in rats is ~3 mg/kg (ATSDR, 

2006b). Using this value to estimate the LD50 for 70 kg humans, one finds 3 x 70 = 210 mg.  

Assuming no elimination, achieving this LD50 dose by drinking water with 22 ppb (0.022 mg/L) 

of cyanide would require the consumption of 9,545 L – i.e. at the average consumption rate of ~2 

L/day, the amount of water that an adult person would normally consume in 13 years. Clearly, in 

the absence of any tampering, acute cyanide poisoning through drinking a properly managed 

public water supply should not be a concern. Of course, this statement does not directly apply to 

water drawn at private wells, where there may be additional sources of cyanide that are likely to 

persist without further processing. 

3.5 EXPOSURE TO CYANOGENS THROUGH DIET 

Humans may also be naturally exposed to cyanide through their diet (Dolan et al., 2010). Research 

indicates that cyanogenic β-glycosides (cyanides bound to sugar molecules containing a nitrile 

function) in plants help to protect them from being destroyed by pathogens and herbivores 
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(Poulton, 1993), although the effectiveness of this strategy depends on the organisms that consume 

the plants (Jones, 1998, Møller and Siegler, 1999). In many animals, cyanide is metabolized into 

the less toxic thiocyanate (SCN–), but a variety of foods also contain thiocyanate, including plants, 

dairy products, and meat. Thiocyanate is efficiently excreted by the body, and presently there is 

no concern that it may accumulate in humans, even though very little thiocyanate exposure data 

exist (ATSDR, 2006b). 

Approximately 2,650 identified plant species, including fruits, vegetables, and the pits of 

fruits and nuts, contain cyanogenic glycosides that release HCN upon hydrolysis. For humans, 

such hydrolysis occurs during digestion (ATSDR, 2006b, Siegler, 1991, World Health 

Organization, 2007). In plants, cyanogenic glycosides are normally stored separately from the 

enzyme that converts them to cyanohydrins (HO-C(R2)-CN), which are also readily hydrolyzed to 

produce cyanide (Selmar, 1993). This represents an exposure hazard to humans when the edible 

part of the plant contains high levels of these cyanogenic compounds and the rate of ingestion is 

faster than the rate in which the body detoxifies cyanide into thiocyanate (Donato, 2002, Jones, 

1998, Westley, 1988). Newly germinated shoots typically contain the most cyanogenic potential 

(Busk and Møller, 2002, Chand et al., 1992), particularly under drought conditions (Merk 

Veterinary Manual, 2005). This is why livestock cyanide intoxication due to grazing on the 

emerging shoots of cyanogenic, heat-tolerant plants after a prolonged drought is a common 

scenario (Merk Veterinary Manual, 2005) – For example, there were 15 such U.S. cattle deaths 

recently reported in Texas (CBS News, 2012). Plant-derived foodstuffs may contain high levels of 

cyanide when the cyanogenic plants have not been properly prepared before consumption 

(ATSDR, 2006b), and depending on the type of food, as summarized in Table 14: 
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Table 14. Cyanide concentrations in food products 

Plant Typea Releasable HCN  
(mg/kg or mg/liter) 

Cassava – whole tubers (roots) 380 – 445 b 
Mash (sweet) 81 c 
Dried roots (bitter) 95 – 2,450 c 
Leaves (bitter) 347 – 1,000 b, c 
Dried root cortex (bitter) 2360 b 

Gari flour (Nigeria) 10.6 – 22.1 b 
Sorghum – whole immature plant 2400 – 2,500 b , c 

Leaves (wet weight) (CN–) 192 – 1,250 b, d 
Bamboo – immature shoot tip 7,700 – 8,000 b , c 
Soy protein products (processed) 0.07 – 0.3 b 
Soybean hulls 1.24 b 
Lima beans from Puerto Rico (black) 2,900 – 3,000 b , c 

from Java (colored) 3,000 – 3,120 b , c 
from Burma (white) 2,000 – 2,100 b, c 
U.S. lima beans 100 – 170 b , c 

Commercial cherry juice (processed) 4.6 b 
Apricot pits (wet weight) 89 – 2,170 b 
Cereal grains and their products (processed) 0.001 – 0.45 b 
aUnprocessed unless otherwise indicated. 
bData obtained from (WHO, 2004) and (ATSDR, 2006b) and references cited therein. 
cData obtained from (Eisler, 1991). 
dData obtained from (Chand et al., 1992). 

 

For the U.S. population, the number of people exposed to cyanogens naturally in their food 

is not known (ATSDR, 2006b), although accidental poisoning through the ingestion of cyanogenic 

food in industrialized countries is uncommon (Baud, 2007). A significant number of cyanide 

poisonings through ingestion in the U.S. (45%) occur as a result of swallowing a cyanide solution 

or cyanide salts to commit suicide (Bebarta et al., 2011), as opposed to consuming naturally 

cyanogenic foods or through accidental occupational exposures (Baskin et al., 2009, Gill et al., 

2004). 

3.5.1 Dietary Health Hazards 

While acute cyanide toxicity is known to be mediated principally through inhibition of 

mitochondrial cytochrome-c oxidase (Ballantyne, 1987, Ballantyne and Salem, 2006), the 
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molecular mechanism(s) involved in chronic (low-level) cyanide intoxication is (are) presently 

unknown. Human diets deficient in protein, sulfur, riboflavin (vitamin B2) and hydroxycobalamine 

(vitamin B12) show greater risks of health effects from consuming foods high in cyanide, especially 

cassava and sorghum (ATSDR, 2006b, Oke, 1980, Speijers, 1993). In Africa, chronic cyanide 

poisoning has been attributed to consumption of cassava and nutritional deficiencies, resulting in 

spastic paraparesis or “Konzo” (Howlett, 1994, Tylleskar et al., 1992) and implicated in tropical 

ataxic polyneuropathy and the stunting of children (Oluwole et al., 2003). Exposed individuals 

often experience significant effects on the central nervous system, including weakness in the 

fingers and toes, dimness of vision, and deafness. Impacts on the thyroid gland have also been 

linked to the consumption of highly cyanogenic cassava (ATSDR, 2006b). It should be noted that 

consumption of cassava or its cyanogen might not be the only potential causes of these health 

effects. Interestingly, there is some evidence to suggest that low-level cyanide consumption and 

inhalation (10 ppm for 2 hours) can induce hearing deficiencies and loss through noise 

promulgation (Fechter et al., 2002). Concern regarding the level of cyanogens in cassava and 

sorghum is compounded by the sheer number of people whose diet is primarily made up of them 

– hundreds of millions across the globe (WHO, 2004). 

3.5.2 Cassava Consumption 

Cassava, in particular, serves as a staple food for developing countries within Africa, South and 

Central America, Southeast Asia, and India. Other names for cassava include Manihot esculenta, 

tapioca, manioc, or yucca. The cyanogen of concern in cassava is linamarin (Figure 8). With proper 

processing - which involves drying, fermenting, soaking in water, rinsing and/or baking the 

cassava - toxic cyanogen levels can be decreased 97-99% (Burns et al., 2012, Ferreira et al., 1995, 



 

 73 

Ngudi et al., 2003). Unfortunately, during periods of food shortage, drought, or a rush to get the 

product to market, cassava may not be thoroughly processed (Nhassico et al., 2008). For example, 

as recently as 2011 there were reported cases of unsafe levels of cyanide being found in ready-to-

eat cassava snacks (Miles et al.). 

The amount of cyanide actually consumed through cassava intake is difficult to gauge and 

varies by region and population. The worldwide average consumption of cassava from 2005-07 

was 43 Calories (kcal)/person/day. Daily cassava consumption in some countries such as the 

Democratic Republic of Congo, Mozambique, and Ghana were as high as 843, 658, and 603 kcals, 

respectively (FAO, 2010a). There have also been estimations regarding the average concentration 

of HCN within cassava that disagree with the more commonly accepted ranges reported in Table 

14. Table 15 demonstrates the difficulty in estimating the average daily dose per kg body weight 

of HCN through the consumption of cassava due to this variability, differences in consumption 

rates per day, and the type of cassava product ingested.  

Table 15. Estimating human exposure to HCN through cassava consumption 

Daily 
consumption 

kcal within 
edible 
portion/gb 

Estimated HCN intake mg/HCN/person-daya 
High concentration:  
255 mg/HCN/kgc 

Medium concentration:  
38 mg/HCN/kgd 

Low concentration: 
 0.1 mg/HCN/kge 

43 Cal 843 Cal 43 Cal 843 Cal 43 Cal 843 Cal 

Fresh cassava 1.46 0.1073 2.1034 0.016 0.3134 n/a n/a 
Meal/flour 
cassava (heated) 

3.38 n/a f n/a n/a n/a 0.0002 0.0036 

a70kg body weight assumed per person  
bData obtained from (WHO, 1972) and references cited therein. 
cAssessed fresh cassava (not processed). Data obtained from the following sources: (Yeoh and Sun, 2001, Siritunga 
and Sayre, 2003, Dufour, 1988). HCN concentration results ranged from 10-500 mg cyanide equivalent/kg dry 
matter. 
dAssessed fresh cassava (not processed). Data obtained from (Yeoh and Sun, 2001). HCN concentration results 
ranged from 15–61 mg HCN/kg. 
eData obtained from (Emmanuel et al., 2012). HCN concentration results ranged from 0.08–0.12 mg/HCN/kg dry 
weight. List of studies and concentrations not meant to be exhaustive. 
fN/A: Not measured in the referenced study. 
Exposure Limits Comparison: Oral LD50: 3 mg HCN-kg (in rats non-fasting) (ATSDR, 2006b). NOAEL: 12.5-
28.8 mg HCN/kg-day (mice and rats) (ATSDR, 2006b). Chronic Oral RfD for cyanogen: 0.001 mg HCN/kg-day 
(daily oral exposure to population and sensitive subgroups without appreciable risk during lifetime) (US EPA, 
2010). 
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In 1996, due to food scarcities in impoverished countries, the World Bank’s Consultative 

Group on International Agricultural Research recommended more cassava cultivation (Babaleye, 

1996). Some researchers, however, recommend using caution when promoting cassava cultivation 

to countries where it was previously never used as this could increase the risk of cyanide poisoning 

due to improper cassava processing (Nhassico et al., 2008). On the other hand, progress has been 

made to reduce the risk by creating a cassava strain that contains 60-94% less leaf linamarin and 

99% less root linamarin (Siritunga and Sayre, 2003).  

As an alternative to cassava, increased sorghum (a hardy cereal grain) production has been 

recommended to provide food in places where it is difficult to grow most other crops (International 

Fund for Agricultural Development, 2011). As shown in Table 14, however, sorghum has been 

found to contain higher levels of HCN compared to cassava according to data compiled by 

(ATSDR, 2006b) and others. Alternatively, recent data using a chilling method indicate a much 

lower range of HCN concentrations in sorghum than was originally estimated: 6.65–1.68 mg/100g 

(Prasad and Dhanya, 2011). In order to properly assess risk and make intelligent policy 

recommendations these data and measurement discrepancies should be addressed (FAO and 

WHO, 2011). They challenge the validity of present risk assessments and exposure limits, which 

were developed primarily from animal studies. 
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3.6 FIRES AND SMOKE 

3.6.1 Fire Smoke 

Hydrogen cyanide is also a by-product of the combustion of materials in products used in everyday 

life (insulation, carpets, clothing, and synthetics), especially manmade plastic and resins 

containing nitrogen that burn when the fire is hot and in an enclosed space. Common manmade 

materials that generate cyanide gas during combustion include nylon, polyurethane, melamine, and 

acrylonitrile. HCN poisoning has even been indicated in injuries and deaths during prison fires 

when inmates set fire to mattresses (Fortin et al., 2011, Ferrari et al., 2001). Increasingly, research 

is pointing to HCN as a substance that poses as much of a threat to first responders and victims 

encountering fire smoke as carbon monoxide (Alarie, 2002, Stamyr et al., 2012). The diverse 

components of the fire (e.g. heat, CO) can have additive and possibly synergistic effects with the 

HCN present. Such an environment may induce sub-lethal intoxication and limit the ability to 

escape the situation or perform rescue operations (Eckstein and Maniscalco, 2006), as may have 

been the case for several U.S. aircraft incidents involving fires during flight (Chaturvedi and 

Sanders, 1996). A more detailed discussion of fire smoke can be found in the book chapter by Hall 

and Borron (2015). 

3.6.2 Cigarette Smoke 

Although cigarette smoking among American high school students is declining, the proportion of 

students smoking (19.5%) (National Institute on Drug Abuse, 2011) is in fact the same as the 

proportion of adults over the 18 that smoke in the U.S. (19.3%) (CDC, 2011). Consequently, the 
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net level of smoking in the overall population is likely to remain relatively stable for years to come. 

Worldwide, the proportion of people exposed to secondhand smoke is estimated to be up to 40% 

of children, 35% of women, and 33% of men (Öberg et al., 2011); in 2006 these relevant 

percentages represented 126 million Americans. Additionally, it has been suggested that cyanide 

and thiocyanate can cross the placenta, putting fetuses of smoking mothers at risk of exposure, as 

well (US EPA, 2010). Although the composition of cigarette smoke and its effects have been 

studied for many years, new research continues to uncover the various dangers associated with this 

persistent behavior.  

Cigarette smoke is a complex, dynamic aerosol containing approximately 4,000 distinct 

chemicals (O’Connor and Hurley, 2008). Smoking cigarettes is known to increase levels of HCN 

in the blood (Chandra et al., 1980). In non-smokers, cyanide levels are reported to be between ~0.2 

μM (Tsuge et al., 2000) and ~3 μM (Borowitz et al., 2006). Whereas, in smokers blood cyanide 

levels are reported to vary between ~0.3 μM (Tsuge et al., 2000) and ~7 μM (Borowitz et al., 

2006). While these absolute estimates vary by an order of magnitude, there seems to be a consensus 

regarding the relative levels of blood cyanide between the two groups: 1.6 – 2.3 times higher in 

smokers than non-smokers (Borowitz et al., 2006, Tsuge et al., 2000). Due to the complex nature 

of cigarette smoke and especially the combined effects of its components, disentangling the 

particular role of cyanide in smoking-related health outcomes continues to be challenging. 

Research suggests that the levels of cyanide in mainstream, or inhaled, smoke from 

cigarettes purchased in the U.S. to range from 10–400 μg per cigarette (ATSDR, 2006b, Guo et 

al., 2012, Guthery and Taylor, 2011). However, one recent study has reported a higher range of 

170-830 μg/cigarette (Bodnar et al., 2012). Cigarettes available outside of the U.S. show similar 
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ranges of HCN in smoke: 280–550 μg/cigarette (mainstream) and 53–111 μg/cigarette 

(sidestream), respectfully (ATSDR, 2006b).  

Comparatively, marijuana use among youth is now higher than cigarette smoking 

according to certain parameters (seemingly due to both decreases in cigarette use and increases in 

marijuana use) (National Institute on Drug Abuse, 2011). While smoking marijuana may be 

considered a safer alternative to cigarettes by some (Zimmer and Morgan, 1997), marijuana smoke 

appears to contain roughly five times more cyanide in both mainstream and sidestream smoke 

compared to tobacco (Moir et al., 2008) (see Table 16). 

Table 16. Comparison of the HCN levels found in tobacco vs. marijuana smoke under two smoking conditions 

 Mainstream Smokea Sidestream Smoke 
 ISOb Extremec ISO Extreme 
 tobacco marijuana tobacco marijuana tobacco marijuana tobacco marijuana 
HCN 
(μg/cig) 

208 526 320 1668 84 685 103 678 

aAll data obtained from Moir et al. (2008). 
b International Organization for Standardization standard (ISO 3308), Routine Analytical Cigarette-Smoking 
Machine, Definitions and Standard Conditions 
c Extreme conditions: >700 °C 

3.7 CYANIDES CONCLUSION 

The transport and fate of manufactured cyanide compounds entering soil and water has quite 

recently been reviewed in considerable detail by Dzombak et al. (2006). Within this discourse, 

Ghosh et al. [Chapter 12] have presented both anthropogenic and natural cycles describing the 

recycling and transformation of cyanides. At the risk of being too parsimonious with the 

information content, we present here a minimal global cyanide cycle - delineating the major 

cyanide fluxes between the biosphere and the environment as they currently appear to be 

understood. 
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Figure 11. A parsimonious global cyanide cycle 

 
On a global scale, industrial/mining activity is currently responsible for relatively little 

release of cyanide into the soil and groundwater. Bacteria in landfills process cyanogenic effluent 

efficiently, preventing any cyanide migration into the wider biosphere/environment. The majority 

of HCN released into the atmosphere originates in the burning of biomass fuels for both domestic 

and industrial purposes. Most atmospheric HCN partitions into bodies of water, the oceans being 

the largest, before it can be transformed in the atmosphere. Bacteria in the hydrosphere initialize 

the biochemical conversion of HCN to metabolites, some of which will eventually form biomass 

to be used as fuel, thus beginning the cycle again. The cyanide cycle (Figure 11) is connected to 
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and subordinate to both the global nitrogen cycle (as shown) and the global carbon cycle (through 

CO2). 

Provided the carbon and nitrogen cycles remain stable, an enormous increase in the amount 

of anthropogenic HCN released would be required to significantly disturb the global steady-state 

levels of the cyanide-cycle components. Consequently, cyanide in the environment is of low 

concern at this time and, given current trends in the development of cleaner energy sources, can 

probably remain so in the future despite the increasing demands of Earth’s growing population. 

Never-the-less, due diligence should continue to be observed with regard to the monitoring and 

management of industrial/mining practices. 
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4.0  CONCLUSION 

The intent of this research was to collect and synthesize available information on the overall 

toxicity and sources of hydrogen sulfide and cyanide in order to guide the risk management of 

these two compounds. Endeavors such as this are broad because they reflect the very nature of the 

environmental health field – from understanding toxicity mechanisms, to preventing releases, to 

responding to exposures. Hydrogen sulfide and cyanide are agents that offer benefits to society, 

however they can also significantly risk public health and the environment if poorly managed.  

Risk analysis refers to the process by which we research, identify, characterize, 

communicate, and manage a variety of different risks – from infectious diseases to environmental 

agents (Renn, 2008). The U.S. Environmental Protection Agency’s (EPA) traditional framework 

for assessing risk (NRC, 1993), and indeed many popular funding models, do not adequately fit 

the framework needed to understand the risks put forth by cyanide and hydrogen sulfide based on 

the literature reviewed herein; those models tend to place significant emphasis on epidemiology. 

The number of people affected by H2S and cyanide worldwide is relatively small (based on 

available monitoring data) when compared with infectious diseases or car accidents, for example. 

Therefore, customary epidemiologic associations in this case would be misleading due to the small 

sample size. Consequently, in the case of hazards like cyanide and H2S, where exposures are 

intermittent and inadvertent, it is reasonable to adopt other approaches to risk characterization. 

Analysis of national/global release patterns coupled with mechanistic confirmation of cause and 

effect is one such reasonable approach.  
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Figure 12. Alternative risk analysis diagram 

 
Figure 12 visualizes such an alternative risk analysis paradigm in order to help situate the 

current findings within the larger body of environmental health research. Here, fundamental 

research and hazard identification play significant roles in characterizing risk, and eventually risk 

management. The initial stage in this process, driven by basic science, must take into consideration 

the costs associated with controlling such a risk (control options) and our ability to measure the 

reaction of the effects (measurement capability). For cyanide and H2S, many of these precursor 

pieces of information are still missing. For example, humans are much more adept at discerning 

the smell of H2S than any of our current monitoring technologies. Additionally, the fundamental 

research on antidotes is still being conducted, partially because of historic misunderstanding on 

toxicity mechanisms, and partially because of gaps in human health effects due to exposures at 

certain levels. Moving forward, a strategic way of incorporating how these risks compares to other 

risks that could benefit from further study is referred to as control options (e.g. how much effort 

would need to be put forth to control accidental hydrogen sulfide deaths compared to cyanide in 
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the U.S.). Both of these facets drive the need to begin such a study, as well as to continue it, into 

the second stage of risk analysis. Once a need has been identified, exposure and dose-response 

studies (fed by interventions such as antidote trials) help determine the number and ways in which 

people can be affected by the risk in question. The risk can be properly characterized following 

the compilation of research from the preceding steps. The fourth, and final, stage is risk 

management, whereby the impacts of control options and measurement capability are seen again. 

Risk management must also consider the broader framework where controlling the risk takes place 

that could affect how successful the approach is at reducing risk – e.g. the legal, economic, and 

social issues. Gold cyanidation is banned in some countries and regions (Mudder and Botz, 2004), 

for example, while certain releases of airborne H2S are permitted but are only monitored on a 

piece-meal basis (discussed in further detail below), perhaps due to political pressures or economic 

constraints. And finally, this alternative paradigm assumes a natural feedback loop, wherein new 

research on hydrogen sulfide and cyanide can continue to feed the process and update how the 

risks are managed.  

Due to the broad scope of this study – from quantifying sources in the environment to 

identifying gaps in monitoring information to highlighting impacts on the body – the present 

findings touch upon almost all subdivisions of the risk analysis paradigm. The following sections 

discuss opportunities for future research and public health efforts for both cyanide and hydrogen 

sulfide that were identified through this study and should be considered as part of the risk analysis 

paradigm. 
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4.1 SYSTEMATIC AIR MONITORING NEEDS 

The effects that cyanide and hydrogen sulfide impart at various exposure levels when inhaled are 

not fully understood, despite extensive knowledge on their sources. One of the root causes of this 

issue is the lack of systematic monitoring where human exposures can and do occur – located 

within Exposure in the risk analysis paradigm. This issue was highlighted for H2S in the emissions 

study detailed in Chapter 2, noting the focus on monitoring animal feeding operation (AFO) 

emissions over sources that could potentially present higher risks to people such as oil and gas 

operations, or those that emit H2S at higher rates such as geothermal activity. Reasons for the focus 

on AFOs – in addition to funding incentives – could also be related to Control Options and 

Measurement Capability in that emissions from manure and animals within AFOs are much more 

predictable and controllable than intermittent oil and gas drilling or oceanic vent releases, for 

example. 

As discussed in some detail in Chapter 2, H2S can be emitted into the air at dangerously 

high rates from sour gas wells (Leo, 2015, Yang et al., 2006), and other more common mining 

operations such as coal (Chadwick et al., 1987, Simonton and King, 2013). Workers within specific 

industries in the U.S. are protected by various standards and requirements – such as requiring the 

use of personal protective equipment. These standards are industry- and exposure-specific, 

dependent on the likely sources and level of exposure. Monitoring on site is conducted by the 

company in situations when high H2S levels may present a risk, but not continually (OSHA, 

2016b). There is no national ambient air standard for hydrogen sulfide, however. While some states 

do have ambient air monitoring standards, most only monitor ambient air for H2S when the public 

presents complaints about a particular source in the area (Skrtic, 2006). Reactive monitoring, 

however, leaves the possibility for the most significant exposure events to go unnoticed. In the 
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event of a major hydrogen sulfide release from an industrial operation, the lack of monitoring data 

not only puts nearby residents at risk, it inhibits understanding the human health effects of exposure 

to H2S at certain levels. 

The Immediately Dangerous to Life or Health Concentration (IDLH) for inhaling H2S is 

100 ppm (NIOSH, 1994b), twice as high as HCN at 50 ppm (NIOSH, 1994a). While inhalation is 

a route of cyanide exposure, people are primarily exposed to cyanide through ingestion. In 

comparison to H2S, the need to conduct continuous, ambient air monitoring for cyanide is not as 

great. For example, a diluted sodium cyanide solution (NaCN) is used intentionally by workers to 

separate mined gold and silver from low-grade ore. The application of a cyanide solution via the 

MacArthur-Forrest process is the most commonly used method to extract these precious metals 

from the surrounding rock because cyanide easily bonds with them, allowing the metals to be 

brought into solution (Rubo et al., 2000). Very few human injuries and fatalities have resulted 

from exposure to cyanide as a result of this process (Mudder and Botz, 2004), and major spills of 

cyanide have almost never resulted in human fatalities – as detailed in Table 13. Additionally, 

gaseous HCN is not produced so long as the pH level of the tailings pond is kept alkaline (Rubo 

et al., 2000). Cyanide is more likely to be released into the air due to combustion of modern day 

products containing nitrogen, reaching high levels in enclosed spaces (e.g. prison or airplane fires) 

and under smoldering conditions. Such circumstances do not lend well to systematic air monitoring 

requirements for cyanide, especially compared to hydrogen sulfide, even though the IDLH is much 

lower for HCN.  
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4.2 ANTIDOTES 

Another gap identified through this study worth discussing here is how and/or whether certain 

antidotes function against hydrogen sulfide and cyanide exposures, a discussion that fits into the 

Intervention category of the risk analysis paradigm. Within the body, the active site of the electron 

transport chain complex IV (cytochrome c oxidase) is inhibited by both cyanide and hydrogen 

sulfide because the compounds bind to ferric heme. In doing so, rapid toxicity and death may result 

as oxygen cannot be not processed by the affected cells.  

Previous literature often mistakenly stated that cyanide antidotes work by generating 

methemoglobin (metHb), and then scavenging cyanide through the formation of 

cyanomethemoglobin (metHbCN). Peterson, Pearce, and colleagues have shown that by injecting 

sodium nitrite, however, NO antagonizes cyanide’s inhibition of cytochrome c oxidase (Pearce et 

al., 2003, Pearce et al., 2008). Essentially, then, the NO donor capacity of nitrite is the crucial 

mechanism for effective cyanide antidotes (Cambal et al., 2011), not metHB formation. Because 

NO displaces the cyanide anion from cytochrome c oxidase, however, NO must be removed by 

oxygen in order to reinstate enzyme functioning. 

There are currently two FDA-approved cyanide antidotes: Nithiodote, which is a combined 

administration of sodium nitrite and sodium thiosulfate (Hope Pharmaceuticals, 2011), and 

Cyanokit (e.g. hydroxocobalamin) (Meridian Medical Technologies Inc., 2011). Jiang and 

colleagues recently provided evidence that administering cobinamide (the penultimate precursor 

to hydroxocobalamin, or vitamin B12) is a more effective treatment for cyanide than 

hydroxocobalamin and that it reduces sulfide toxicity efficiently, as well (2016). All of these 

treatments, however, require intravenous injection. Currently there are no rapidly-acting 

alternatives, such as one administered through an inhaler. In a follow up to Peterson and Pearce’s 
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studies on cyanide antidotes, Cambal et al. demonstrated that inhaled aqueous vapor of sodium 

nitrite could be an effective and rapid antidote for cyanide, pending innovations in inhaler 

technologies (the current 0.1 mL inhaler dose would need to be increased to 0.26-0.3 mL, for 

example) (2013).  

Both hydrogen sulfide and cyanide are highly efficient disruptors of mitochondrial 

electron-transport chain function, with approximately identical inhibition constants (Ki) for 

cytochrome c oxidase (Cambal et al., 2011), and are both capable of producing a knockdown effect 

to those exposed. These characteristics would suggest that the antidote for acute H2S exposure 

would be similar to that of cyanide – by antagonizing hydrogen sulfide’s inhibition of cytochrome 

c oxidase (ATSDR, 2006c). While providing immediate cardiac and respiratory support is the 

primary recommendation within the treatment protocol for H2S poisoning, ATSDR’s own medical 

management guidelines suggest that nitrite therapy (found in the cyanide antidote kit) can be used 

immediately following the exposure, but science behind this association is lacking. Some literature 

even speculates that H2S is detoxified by the formation of sulfmethemoglobin when nitrites are 

administered in this fashion (ATSDR, 2014b).  

Within the literature, however, there have been a series of doubts and conflicting reports 

regarding the usefulness of sodium nitrite as a sulfide antidote (ATSDR, 2006c, Beck et al., 1981b, 

Hall and Rumack, 1997, Huang and Chu, 1987, Smith et al., 1976). Peterson and colleagues found 

that administering sodium nitrite in mice may only be beneficial prophylactically, but the window 

of opportunity to administer such an antidote may be longer for human exposures (Cronican et al., 

2015). Victims reaching the clinic sometimes succumb hours after the exposure, suggesting slower 

mechanisms of toxicity in humans secondary to the initial inhibition of cytochrome c oxidase 

(Burnett et al., 1977, Guidotti, 1996).  Even the recommended practice of providing cardiac and 
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respiratory support for H2S exposure may not be helping matters. Peterson and colleagues recently 

investigated whether supplemental oxygen ameliorates H2S intoxication in mice when given both 

alone and in conjunction with sodium nitrite, and found that supplemental oxygen exhibits no 

measureable effect (Cronican et al., 2015). As such, while the current recommendation to provide 

respiratory support to H2S exposure victims in the field is not harmful, it is likely not abetting 

survival rates, either. 

The absence of an FDA-approved antidote and/or reliable protocol for treating acute 

hydrogen sulfide (H2S/HS—) poisoning raises considerable public health concern; H2S suicides are 

on the rise and the gas continues to be problematic occupationally – as discussed previously. Even 

the understanding of cyanide toxicity mechanisms, although further along, is not complete. The 

investigations conducted to-date on antidotes are promising, but more research needs to be 

conducted to properly identify the exact mechanisms of hydrogen sulfide and cyanide toxicity. 

4.3 PUBLIC HEALTH PREPAREDNESS 

4.3.1 Workforce Education and Training 

We cannot expect to be able to prevent all potential exposures to H2S and cyanide – especially in 

the case of fires or industrial accidents. We can, however, be prepared for how to respond to them. 

There are several known deadly incidents where workers and even residents have died due 

hydrogen sulfide releases – such as the sour well blowout that occurred in Kaixian County, China 

that killed 243 people in the surrounding area and brought approximately 9,000 to the emergency 

room (Yang et al., 2006). While the region’s topography (large valley) played a key role in the 
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lethality of this incident, the very chance of its occurrence and the increasing role natural gas may 

play in future energy generation very clearly demonstrate why workers in the oil and gas industry 

and similar industries need to be aware of the risks that H2S poses to health and safety – both on 

site and in nearby communities. In sharp contrast, major spills and leaks of cyanide have never 

resulted in human fatalities, often because the utilized solution is incredibly diluted (Table 13). 

. In occupational settings, cyanide deaths are also significantly less common than those caused by 

hydrogen sulfide in the U.S. Between 2003 and 2010, cyanide and cyanide compounds only 

accounted for three worker deaths. Hydrogen sulfide, even after excluding the category of “sewer 

and mine gases,” was responsible for an order of magnitude more occupational fatalities (n=49) 

than cyanide (BLS, 2015). Therefore, more attention should be directed to understanding the 

exposure routes and mitigation strategies for hydrogen sulfide. 

It is difficult to discern without extensive further research whether each and every worker 

who may be exposed to hydrogen sulfide or cyanide on the job is knowledgeable of and prepared 

for the risks. For a few select examples, in 2012 Esswein and colleagues presented on findings 

from their work with NIOSH indicating that workers on oil and gas drilling sites in the U.S. were 

generally well-informed about H2S risk factors, although less so about other inhalation risks such 

as silica sand (Esswein et al., 2012). However, Esswein observed drilling operations under normal 

conditions, i.e. not during or immediately following a sour gas well blowout, for example. 

Emergency planning and response, in general, is an area that continues to receive criticism in the 

oil and gas field – especially as oil and gas drilling operations have increased in the last decade in 

unconventional formations and areas where sour gas may pose a higher risk. For example, it took 

out-of-state responders more than four days to control a 2014 well fire (exact cause unknown) in 

Greene County, Pennsylvania that killed one worker and injured another. Additionally, a post-
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incident review by PA’s Department of Environmental Protection indicated that the drilling 

company failed to continually provide meaningful updates to regulatory responders and even 

excluded state regulatory staff from important discussions on scene (Ryder et al., 2014). As drillers 

attempt to extract fossil fuels from tight shale, oil sands, and other unconventional hydrocarbon 

resources, the increased presence of H2S (from both a human exposure standpoint and as an 

explosion factor) should be a risk for which companies prepare their workforce and community 

relations personnel. 

Contrastingly, almost all mining sites extracting gold or silver utilize cyanide (90%) based 

on data from 2004. As discussed in Chapter 3, limited observations indicate that workers managing 

cyanide at mining sites are often highly trained on the risks that cyanide may pose – at least in the 

U.S. Additionally, in most cases, cyanide releases near mining sites pose more of a physical injury 

risk (e.g. crushed when a tailings pond fails) than a chemical one (Mudder and Botz, 2004). 

Monitoring and improving the transportation of cyanide materials to the work site, improving 

tailings pond engineering practices, and reducing the concentration of cyanide in tailings ponds, 

are all areas of opportunity for greater cyanide oversight and protection within the mining industry.  

An even greater opportunity for workforce education on cyanide and hydrogen sulfide risks 

may be in the medical sector, however. A 2010 survey of 130 incoming interns after medical school 

indicated that only a portion (47%) had received any formal disaster preparedness training during 

medical school. This issue is compounded by the fact that is no national consensus on a disaster 

preparedness curriculum for medical schools (Jasper et al., 2013). A major sector in the workforce, 

therefore, may be unprepared for the complex symptoms that an inhalation victim might present, 

especially in the event of a major industrial release of cyanide or hydrogen sulfide. 
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Many of the cases involving accidental H2S deaths and injuries on the job presented in 

Chapter 2 involved more than one person per incident. This pattern occurs because nearby workers 

or bystanders attempted to rescue the original victim without proper respiratory protection and 

were themselves injured. H2S and cyanide pose a variety of risks to workers, both on the scene and 

during an emergency response. It is to the benefit of companies who employ these staff to properly 

train them on the causes of incidents related to these compounds, as well as how best to protect 

themselves while responding to emergency situations. 

4.3.2 Protecting Emergency Responders 

Emergency responders may be exposed to cyanide and H2S in a number of ways, including contact 

while responding to fires and chemical suicides. As previously discussed, toxic levels of cyanide 

can accumulate in enclosed spaces when manmade materials containing nitrogen combust. Not 

only can the levels be lethal by and of themselves, but breathing in low levels can also impair an 

individual’s ability to escape the fire. When responding to a potential chemical suicide (either 

HCN or H2S-related), firefighters and EMS are at risk because gas levels can remain high in an 

enclosed space, continue to off-gas after the initial generation, and/or remain on the victim and/or 

their personal effects for some time (CHEMM, 2014). Regardless of the cause of the incident, 

personnel should clear the area and ventilate the space to reduce the risk of bystanders becoming 

ill, conduct air monitoring including determining wind speed/direction if possible, and then handle 

rescue operations of the victim(s) and those collaterally affected. Despite these serious risks, 

emergency responders can easily protect themselves using personal protective equipment (PPE) 

and a self-contained breathing apparatus (SCBA). However, compliance is not 100%, as it is not 

always feasible to don a full SCBA, such as when conducting welfare checks. 
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Departmental medical protocols and operating guidelines for how to handle toxic 

environments are in place for most if not all emergency response teams. These practices are 

supplemented by HAZMAT response protocols. Additional training and educational resources are 

also readily available online for emergency responders, firefighters, and hospital emergency staff 

(Bohrer, 2015, Adkins, 2010, CHEMM, 2014, DQE, 2011, Firefighters Support Foundation, 2013) 

but individual awareness of the potential effects from such exposures may not be as widespread. 

Further study is warranted to determine how often and how successfully best management 

practices for handling risks associated with gaseous cyanide and hydrogen sulfide are being 

communicated to and received by emergency responders. 

4.3.3 Risks from Localized Terrorist Attacks 

H2S has been a subject of discussion regarding the potential for it to be used as a terrorist agent 

and as a risk for first responders, especially in confined areas such as trains or buses (Adkins, 2010, 

DHS, 2008, Kuchikomi, 2008). Risks are heightened for this blood gas because H2S can be 

produced by materials commonly available to the public, and because at dangerous levels the 

characteristic rotten egg odor of H2S diminishes, as discussed in Chapter 2. 

Cyanide, too has been a concern for terrorism response departments because it is readily 

available from both natural and industrial sources. Attempts have already been made to utilize it 

as a terrorist weapon, such as in the 1993 truck bombing of the World Trade Center, because of its 

lethality at low concentrations (DHS, 2009, CIA, 2003). The inhalation of HCN and H2S likely 

pose higher occupational risks than they do from a terrorism perspective, however. To be used as 

an effective terrorist agent, both would have to be employed in enclosed, poorly ventilated spaces 

since the gases dissipate quickly. Nevertheless, because the approved antidotes for cyanide 
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exposure do not work on all cases even if administered in time, and because there is no approved 

antidote for H2S, these gaseous agents should be seriously considered by emergency planners and 

personnel. Measures to increase public health preparedness include establishing well-defined plans 

for ensuring that cyanide antidotes are available to first responders, educating emergency medical 

personnel on when and how to administer such antidotes (or when to provide cardiac and 

respiratory support in the case of an H2S attack), and making sure that the public is aware that such 

terrorist attacks could take place and how to respond appropriately.  

The potential for public exposure to cyanide gas outside of the workplace and a terrorist 

incident, while not likely, has occurred and should also be part of emergency response plans. For 

example, a deadly nightclub fire occurred in Brazil in 2013, when the combustion of 

soundproofing board made of polyurethane contributed to the deaths of 241 people. Due to an 

insufficiency in their antidote inventory, Brazilian authorities had to request 140 cyanide-treatment 

kits from the U.S. to administer to the remaining victims (Winter and Simões, 2013). Whether a 

fire is set deliberately or not, all hospitals and ambulances should be equipped with extensive 

cyanide antidote supplies given the widespread use of modern-day building materials that could 

release HCN upon combustion and the large capacity of some buildings. However, due to the high 

cost of such kits (upwards of $1,000 per kit) adequate supplies may not always be available at a 

local level. As such, emergency response plans should include a directive to activate the area’s 

supply chain network to obtain additional kits as soon as possible. 

4.3.4 Educating the General Public 

In addition to the emergency response planning indicated previously, the general public should be 

made aware of the risks that cyanide and H2S may pose to their health and why. If properly 
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educated on these compounds, for example, nearby residents may be able to alert regulatory bodies 

about violations in H2S emissions from nearby confined animal feeding operations or HCN gas 

being released from a metal finishing plant. Educating children and young adults on the high levels 

of HCN in marijuana smoke may reduce adoption of the behavior. In the event of an attempted 

H2S suicide, an informed passerby might save several lives by both recognizing the rotten egg odor 

of H2S and that they should alert emergency personnel to respond to the situation with full 

respiratory gear.4  

Protection for emergency responders and victims can also occur at the source, by 

preventing the mixture of chemicals that can produce gaseous HCN and H2S. The two most 

common gases produced when attempting a detergent suicides are cyanide and H2S (CHEMM, 

2014). One of the reasons for their “popularity” – so to speak – is because the ingredients are 

available for purchase over the counter (although the ingredients for producing H2S are markedly 

easier than those for HCN). It stands to reason, then, that household products may be accidentally 

mixed and produce these toxic gases – similar to how chlorine gas can be created by combining 

ammonia-based cleaning products and bleach. As such, labeling protocols should be reviewed and 

warnings instituted for cyanogenic and sulfide-containing products. 

                                                 

4 Acknowledging that the scent of these compounds is not always a reliable indicator of over-
exposure. People cannot detect H2S at the levels requisite to present acute health risks, as they lose 
their sense of smell after just a few minutes at levels above 100ppm. Additionally, not everyone 
can even detect the bitter almond scent of cyanide gas. 
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4.4 GLOBAL CONSIDERATIONS 

Burning fossil fuels and introducing gases into the atmosphere primarily since the Industrial 

Revolution have caused a major shift in the earth’s temperatures – since 2000 logging the 10 

warmest years since record keeping began in 1880 (NASA GISS, 2014). Such a drastic increase 

in the overall, average temperature in a relatively short geological timescale will, and already has, 

produced significant effects worldwide, including but not limited to melting glaciers and sea level 

rise, shifting seasons, and changes in agriculture (productivity and locations) (Cramer et al., 2014). 

More specifically, there are two broad situations triggered by global warming and/or climate 

change whereby people might be exposed to potentially high levels of cyanide or H2S: 1) in 

drought-stricken agricultural areas and 2) as ocean temperatures increase. 

4.4.1 Drought and Cyanide Ingestion 

As was discussed in Chapter 3, cyanogenic glycosides that release HCN are found naturally in 

approximately 2,650 plant species around the world, and cyanide can be found at higher than 

average levels in foodstuffs when those foods are not properly processed. This situation is much 

more likely to occur during periods of drought, food shortage, and/or high demand in the market. 

Cassava and sorghum, which grow fairly well in drought conditions, have some of the highest 

natural cyanogenic glycoside potential. Considering that hundreds of millions of people in the 

world depend on products made from these plants, chronic ingestion of cyanide is of global 

concern when the rate of ingestion is faster than the rate by which the body detoxifies cyanide into 

thiocyanate, especially for populations whose diets are already nutritionally deficit.  
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As global temperatures rise, the rate of evaporation increases, meaning that some areas in 

the world will see increased precipitation, while others will experience more frequent and/or more 

intense droughts than usual. Droughts of this nature have already been documented in various parts 

of the world, such as West Africa, with seasonal variations and human activity contributing to the 

droughts’ severity (Cramer et al., 2014). In light of population increases and drought effects on 

agricultural viability, recommendations have been made to increase the cultivation of drought-

resistant plants such as cassava and sorghum. However, such policy recommendations should be 

considered with caution. If not properly processed and monitored, these foods could chronically 

expose large populations of already at-risk individuals to cyanide, since droughts increase 

cyanogenic glycoside concentrations in plants. While developments to reduce HCN concentrations 

in food are promising, data and measurement discrepancies reviewed in Chapter 3 suggest that to 

determine risk at a global level there is still much exposure information to be collected and 

processed as global warming effects become more pronounced. 

4.4.2 Oceanic Hydrogen Sulfide Gas Production 

Increased temperatures have also had discernible effects on the amount of dissolved oxygen in 

some parts of earth’s oceans according to 2016 data from The National Center for Atmospheric 

Research, with expectations that most oceanic regions will see similar effects between 2030 and 

2040. The effects are two-fold: Warmer waters absorb less oxygen, and higher surface water 

temperatures lead to water stratification in the oceans which could lead to anoxia or euxinia (Long 

et al., 2016). These conditions not only threaten marine life, but they are also ideal breeding 

conditions for sulfate-reducing bacteria, at times causing H2S to bubble to the surface. Large and 

expanding dead zones (high H2S levels, long periods of hypoxia) due to increased water 
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stratification and fertilizer runoff (nutrient loading) have been observed in more than 400 systems 

across the globe (Diaz and Rosenberg, 2008). Expanding dead zones can affect both low- and high-

level trophic creatures – from zooplankton to commercial fisheries. On a tangential note, ocean 

anoxia and H2S gas production have been implicated in numerous mass extinction events on both 

land and in the ocean, such as the Permian-Triassic extinction (Kump et al., 2005), so the effects 

of significant H2S releases may be even broader than those felt in the ocean.  

In 2010 it was estimated that over three billion people worldwide relied on the consumption 

of fish to supply at least 15% of their average animal protein intake. Fish consumption is even 

more of a nutritional staple in developing and low-income food-deficit countries (FAO, 2010b). 

While humans may not be directly or immediately impacted by higher H2S levels in earth’s oceans 

through direct exposures, dead zone impacts on fish and wildlife could significantly change 

marine-based food systems and availability. Major shifts in food availability for such a large 

proportion of the worldwide population would likely produce long-standing and reverberating 

public health impacts in related sectors (e.g. advanced nutritional deficiencies or increased 

fertilizer-dependent agriculture cultivation). 

4.5 CONCLUDING RECOMMENDATIONS 

Scientists and public health officials have known the risks that exposure to cyanide and H2S can 

pose to people for quite some time. And yet, based on the results of this research, there are still 

many gaps within the scientific literature related to their toxicity mechanisms, health effects at 

various exposure levels, and antidotes. Future research and public health efforts related to cyanide 

and H2S should focus on the following recommendations:  
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1) Identifying precise H2S and cyanide toxicity mechanisms in humans and developing a 

tailored antidote for H2S,  

2) Establishing more rigorous environmental monitoring protocols to support 

Recommendation 1, especially for sulfur compounds in the air and HCN in foodstuffs, and 

3) Preparing workers, communities, and emergency responders for the potential release of 

cyanide and H2S in both large- and small-scale scenarios.
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APPENDIX: TABULATED H2S EMISSIONS AND CONCENTRATIONS DATA 

Table 17. Comprehensive H2S emissions and concentration data included in the review organized by source category 

Source 
(# monitoring results) 

Traita Concentration 
(mg/m3) 

Flux 
(mg/m2) 

Flux Density  
(mg/m2/hr) 

Flux Density AU 
(mg/AU/hr) 

Reference 

AFO 
(n=62) 

Mean Min 7.05E-01  
  

(Blunden et al., 2008) 
Mean Max 1.01E+00  

  

Mean 1.50E+03  
  

(Chénard et al., 2004) 
Mean 1.26E-02  

  
(Donham et al., 2006) 

Max 5.38E+01  
  

(Hoff et al., 2006) 
Mean 3.00E-04  

  
(Hoff et al., 2008) 

Max 4.92E-02  
  

Min 1.50E-01  
  

(Jacobson et al., 2005) 
Max 1.50E+00  

  

Max 8.55E+00  
  

(Kafle, 2014) 
Max Mean 1.17E+00  

  
(Kalantarifard et al., 
2013) 

Max Mean 5.24E-02  
  

(Koziel et al., 2004) 
Mean Max 1.49E+02  

  
(Lemay et al., 2008) 

Mean 7.29E+03  
  

(Moreno, 2009) 
Max 8.66E+03  
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Table 17 Continued 
 

Max Mean 3.96E-02  
  

(Ni et al., 2012) 
Max Mean 6.18E-02  

  

Mean 2.91E+01  
  

(Predicala et al., 2007) 
Max 1.43E+02  

  

Mean 6.75E-02  
  

(Rahman et al., 2011) 
Mean 9.60E-02  

  

Mean Max 3.02E-01  
  

(Sun et al., 2008) 
Max 2.25E-01  

  
(Sun et al., 2010) 

Mean 2.94E-02  
  

(Thorne et al., 2009) 
Mean 2.19E-01  

  

Max 2.79E-01  
  

Max 1.37E+00  
  

Mean 
 

 4.80E-03 
 

(Rumsey and Aneja, 
2014) Mean 

 
 2.29E-01 

 

Max 
 

 3.18E-01 
 

(Blunden and Aneja, 
2008) 

Mean 
 

 3.55E-01 
 

(Blanes-Vidal et al., 
2009) 

Total 
 

 3.77E-01 
 

(Wang et al., 2014) 
Max 

 
 8.48E+02 

 

Mean 
 

 1.53E+03 
 

(Hoff et al., 2006) 
Max 

 
 1.74E+03 

 

Median 
 

 2.12E+04 
 

(Grant et al., 2013) 
Total 

 
2.28E+00 

  
(Kaasik and Maasikmets, 
2014) Total 

 
5.20E+02 

  

Total Mean 
 

3.42E+03 
  

(Blunden et al., 2008) 
Total Mean 

 
2.00E+04 

   

Max Median 
 

4.32E+05 
  

(Schmidt et al., 2004) 
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Table 17 Continued 
 

Max 
 

6.30E+07 
   

Median 
 

 
 

6.67E+01 (Grant et al., 2013) 

Median 
 

 
 

1.46E+00 
Median 

 
 

 
1.70E+00 

Mean 
 

 
 

9.13E-03 (Kaasik and Maasikmets, 
2014) Mean 

 
 

 
4.16E-01 

Max 
 

 
 

3.18E-01 b (Lemay et al., 2008) 
Mean 

 
 

 
2.19E+03 b (Li et al., 2008) 

Mean 
 

 
 

1.70E-02 
Mean 

 
 

 
2.74E+03 

Mean 
 

 
 

1.83E-01 (Li et al., 2009) 
Mean 

 
 

 
7.60E-02 

Total 
 

 
 

3.21E+00 (Li et al., 2011) 
Mean 

 
 

 
1.60E+01 (Lin et al., 2012) 

Total 
 

 
 

7.91E-03 b (Luo et al., 2004) 
Total 

 
 

 
2.54E+00 b (Mukhtar and Mutlu, 

2008) 
Mean 

 
 

 
3.38E+01 (Pepple et al., 2011) 

Mean 
 

 
 

1.35E+02 (Rahman et al., 2011) 
Mean 

 
 

 
1.50E+01 

Mean Max 
 

 
 

2.13E+02 (Sun et al., 2008) 

Max 
 

 
 

2.96E+02 (Sun et al., 2010) 

Decomposition 
(n=15) 

Max Mean 1.50E-03  
  

(Azad et al., 2005) 
Max 3.00E-02  

  

Max 2.67E-01  
  

(Colledge, 2008) 
Max 9.36E-01  

  

Max 1.29E-02  
  

(Vasarevičius, 2011) 
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Table 17 Continued 
 

Max 1.03E+03  
  

(Velusami et al., 2013a) 
Max 3.13E+03  

  

Max 3.21E+02  
  

(Velusami et al., 2013b) 
Max 6.81E+02  

  

Max 6.41E+05 b  
  

(Brüchert et al., 2009) 
Mean 

 
 3.40E-04 

 
(Li et al., 2006) 

Max Mean 
 

 2.43E-03 
 

(Azad et al., 2005) 
Max   8.97E-03  
Mean 

 
 4.97E-03 

 
(Li et al., 2014) 

Max 
 

1.44E+05 
  

(Bolyard, 2012) 

Energy Production 
(n=10) 

Mean 3.30E-04  
  

(Bechtel et al., 2009) 
Mean 3.00E-04  

  
(Burstyn et al., 2007) 

Max 1.25E-02  
  

Max 9.24E-02  
  

(Carlsen et al., 2012) 
Max 5.18E+02  

  

Min 6.60E-02  
  

(Macey et al., 2014) 
Max 9.10E-02  

  

Mean 4.05E-02  
  

(Peralta et al., 2013) 
Mean 

 
4.48E+07 

  
(Baldacci et al., 2005) 

Total 
 

2.57E+09 
  

(Peralta et al., 2014) 

Geothermal 
(n=11) 

Max 3.75E+00  
  

(Horwell et al., 2005) 
Mean 1.50E+00  

  
(Watanabe et al., 2013) 

Mean Max 5.55E+01  
  

Mean Max 9.45E+01  
  

Max 3.79E+06 b  
  

(Emeis et al., 2004) 
Max 3.20E+06 b  

  
(Weeks et al., 2004) 

Mean 
 

 1.75E+00 
 

(Pérez et al., 2012) 
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Table 17 Continued 
 

Total 
 

 9.95E+03 
 

(Barberi et al., 2008) 
Max 

 
1.36E+02 

  
(Barrancos et al., 2012) 

Max 
 

1.63E+08 
  

(McGee et al., 2010) 
Total 

 
3.78E+08 

  
(Gerlach et al., 2008) 

Other 
(n=3) 

Max 4.50E+03 b  
  

(Gomez et al., 2011) 
Max 2.25E+00 b  

  

Max 1.84E+01  
  

(Gladkikh and Korolev, 
2014) 

Wastewater 
(n=29) 

Total 1.50E+00  
  

(Chen and Szostak, 2013) 
Max 2.70E-03  

  
(Colomer et al., 2012) 

Max 5.30E+02  
  

(Esteban‐García et al., 
2013) 

Max 4.50E+01  
  

(Latos et al., 2011) 
Max 1.50E-01  

  
(Lehtinen and Veijanen, 
2011) 

Mean 4.71E+02  
  

(Martinez et al., 2008) 
Max 7.50E+02  

  
(Matias et al., 2014) 

Mean Max 2.85E+01  
  

(Morton et al., 2006) 
Max 6.44E+01  

  

Mean 3.12E+02  
  

(Morton, 2014) 
Max 1.31E+03  

  

Max 1.09E-02  
  

(Mudragaddam et al., 
2014) 

Max 3.08E+01  
  

(Oviedo, 2010) 
Max 3.95E+01  

  

Max 8.00E+03 b  
  

Max 1.53E+04 b  
  

Max 3.33E+02  
  

(Pagaling et al., 2014) 
Max 5.85E-01  

  
(Thomas, 2007) 
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Table 17 Continued 
 

Max 3.51E+00  
   

Max 4.07E+00  
  

Mean 3.00E+02  
  

(Zhang et al., 2008) 
Mean 2.84E+02  

  
(Zhang, 2013) 

Max 7.50E+02  
  

Max 
 

 2.80E+00 
 

(Mudragaddam, 2010) 
Mean Max 

 
 1.07E+01 

 

Mean 
 

9.08E+02 
  

(Mudragaddam et al., 
2014) 

Mean Max 
 

4.17E+06 
  

(Morató et al., 2011) 
Max 

 
6.67E+06 

  
(Colomer et al., 2011) 

Mean Max 
 

8.91E+06 
  

(Colomer et al., 2012) 

Maximum  3.79E+06 2.57E+09 2.12E+04 2.74E+03 
a. Where possible, the maximum/peak recorded data point was logged in this study. When the maximum measurement was unavailable, 
alternative traits were recorded – such as mean, median, or total. 
b. Reported as sulfur or dissolved sulfide, not H2S. 
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