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Abstract

Background: Influenza vaccination is vital for reducing HIN1 infection-mediated morbidity and mortality. To
reduce transmission and achieve herd immunity during the initial 2009-2010 pandemic season, the US Centers for
Disease Control and Prevention (CDC) recommended that initial priority for HIN1 vaccines be given to individuals
under age 25, as these individuals are more likely to spread influenza than older adults. However, due to significant
delay in vaccine delivery for the HIN1 influenza pandemic, a large fraction of population was exposed to the HIN1
virus and thereby obtained immunity prior to the wide availability of vaccines. This exposure affects the spread of

impact of delayed vaccination.

regardless of the timing of the vaccination program.

among age groups and expected patterns of adherence.

the disease and needs to be considered when prioritizing vaccine distribution.

Methods: To determine optimal HIN1 vaccine distributions based on individual self-interest versus population
interest, we constructed a game theoretical age-structured model of influenza transmission and considered the

Results: Our results indicate that if individuals decide to vaccinate according to self-interest, the resulting optimal
vaccination strategy would prioritize adults of age 25 to 49 followed by either preschool-age children before the
pandemic peak or older adults (age 50-64) at the pandemic peak. In contrast, the vaccine allocation strategy that is
optimal for the population as a whole would prioritize individuals of ages 5 to 64 to curb a growing pandemic

Conclusions: Our results indicate that for a delayed vaccine distribution, the priorities that are optimal at a
population level do not align with those that are optimal according to individual self-interest. Moreover, the
discordance between the optimal vaccine distributions based on individual self-interest and those based on
population interest is even more pronounced when vaccine availability is delayed. To determine optimal vaccine
allocation for pandemic influenza, public health agencies need to consider both the changes in infection risks

Background

In response to the rapid spread of a pandemic strain of
HIN1 influenza A, the World Health Organization
(WHO) raised the pandemic alert to its highest phase
on June 11, 2009 [1]. The HIN1 pandemic was the first
influenza pandemic in over 40 years. Although most
HINI1 cases in individuals were mild and the case fatal-
ity rate was lower than that of previous influenza pan-
demics, severe cases frequently occurred in previously
healthy, young adults [2].
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Vaccines hold considerable promise for reducing the
spread of HIN1 influenza A. However, the HIN1 vac-
cine was not readily available until late October, 2009
[3]. This delayed the US vaccination program until after
a large proportion of the population had already been
exposed to HIN1.

There is evidence that a substantial proportion of the
elderly was protected by cross-immunity from prior
infection, resulting in the lowest infection rate in this age
group [4]. The 2009 H1N1 influenza disproportionately
affected younger patients [5,6]. The median age of hospi-
talized HIN1 patients was 27 years, which is much lower
than the median age of hospitalized seasonal-influenza
cases (between 75 and 79 years) [7,8]. Yet, HIN1
was least likely to turn fatal in patients under age 17 [8].
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Such differences in age-specific susceptibility and case
fatality for 2009 H1N1 strain posed a challenge to public
health agencies that sought to determine optimal vaccine
distribution and expected public adherence.

Determining an optimal vaccination policy can be
quite challenging. An individual’s risk of infection
depends not only on his or her decision to be vacci-
nated, but also on the decisions of others [9,10]. In addi-
tion, overwhelming majority of infected people are
either asymptomatic or recover without medical atten-
tion. Such cases may be unaware that they have been
exposed to the virus and still seek vaccination [11]. To
calculate the payoff of vaccination to an individual and
to the population as a whole, it is important to incorpo-
rate the cost of vaccination as well as the benefits of
vaccination such as both direct and indirect protection
due to herd immunity [10,12,13].

Here, we use game theory to investigate age-dependent
optimal vaccine distribution against HIN1 influenza A in
the US, from both individual and population perspec-
tives. We first model the evolving age distribution of
HIN1 cases as the pandemic unfolds, and examine the
optimal control strategy assuming that the vaccine
becomes available before, at, or after the peak of the
influenza pandemic. Then, we find the expected age-
specific HIN1 vaccine allocation strategy that would
emerge if individuals pursue their own interest, i.e. the
Nash strategy, and compare it to a strategy that is opti-
mal to the population as a whole, known as the utilitarian
strategy. The personal payoff of vaccination varies among
age groups and changes over the course of an outbreak,
and we recognize that individuals may not adhere to the
utilitarian strategy when acting according to self-interest.

Our game theoretical analyses of the vaccination pro-
gram for an influenza A (HIN1) pandemic in the United
States show that the utilitarian strategy prioritizes aggres-
sive control among individuals of age 5 and 64 regardless
of the timing of vaccination. In contrast, the Nash strat-
egy dictates vaccination of adults, ages 25-49, as the first
priority group. If the vaccination program implemented
before the peak of pandemic wave, then the second prior-
ity group to be vaccinated based on the Nash strategy is
preschool-age children; however, if vaccination is delayed
until the peak of pandemic wave, then the second priority
group is older adults (ages 50 to 64).

Methods

To model the transmission of the 2009 HIN1 influenza
and vaccination, we developed the age-structured model
incorporating six epidemiological compartments (i.e.
susceptible, vaccinated, latent, asymptomatic and infec-
tious, symptomatic and infectious, and recovered). Each
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epidemiological compartment is then subdivided into
two depending on an individual’s vaccination decision.
The asymptotic dynamics of this model are then used to
calculate the probability for individuals to become
infected based on their vaccination decision. The
expected cost of infection and vaccination associated
with vaccine acceptance and refusal are calculated using
these infection probabilities. Since the payoff of vaccina-
tion depends on both the individual’s decision and the
population’s average behaviour, we formulate our model
as a population game. Monte Carlo methods are
employed to determine the optimal vaccination levels
driven by self-interest versus the population interest.

Mathematical model for disease transmission and
vaccination

To model HIN1 influenza transmission in the United
States, we divide the population into the five age groups
(0-4, 5-24, 25-50, 50-64, and 65+), according to the age
classes used in US CDC case reports [14]. The numbers
of people in each age group were set to values estimated
for the US 2008 population (Additional File) [15]. In our
model, individuals in each age class k are subdivided
based on epidemiological status. The dynamics of influ-
enza infection, illness, and infectiousness reflect our cur-
rent understanding of the natural history of influenza.
Here, subscripts U and V represent an unvaccinated and
vaccinated population, respectively. We assume that S;;;
), Lygx (1), Ayx (), Igr (2), and Ry (£) represents the
respective number of unvaccinated susceptible, latent,
asymptomatic and infectious, symptomatic and infec-
tious, and recovered individuals in age groups k at time
t(k=1,2...,5). Similarly, we define Sy (£), Ly« (¢),
Ay (8), Iy (t), and Ry (£) as the respective number of
vaccinated susceptible, latent, asymptomatic and infec-
tious, symptomatic and infectious, and recovered indivi-
duals (k=1,2,...,5).

We assume that the vaccine provides partial protec-
tion, resulting in vaccinated individuals being less sus-
ceptible than unvaccinated ones. Vaccinated individuals
become infected at a fraction (1-0%) of the rate at which
unvaccinated susceptible individuals become infected,
where oy is the efficacy of the vaccine against infection
for individuals of age group k (Additional File). We con-
sider the three vaccination scenarios where vaccines
become available before, at, or after the peak of an influ-
enza pandemic. Thus, when vaccines become available,
we assume that a proportion, yy, of susceptible indivi-
duals in age group k is vaccinated. We also assume that
the same proportion, y, of individuals in age group k
who have been infected asymptomatically still may get
vaccinated, because they were not aware of exposure to



Shim et al. BMIC Public Health 2011, 11(Suppl 1):54
http://www.biomedcentral.com/1471-2458/11/51/S4

novel influenza A (HIN1) viruses. However, vaccine
doses given to those who were already exposed to HIN1
viruses are assumed to be wasted, because these indivi-
duals already gained immunity to the HIN1 strain.
Recovered individuals are assumed to be fully protected
against further influenza infection for the remainder of
the outbreak.

Upon infection, individuals enter a latency period, 1/4.
Latently infected individuals proceed to become infec-
tious, and a proportion, p, of infected individuals
becomes symptomatic. Infectious individuals recover
after an average period of 1/y. The inf luenza-induced
death rates are o and oty for unvaccinated and vacci-
nated individuals, respectively, for people in age group k.
Age-specific influenza-related death rates are based on
estimates of excess pneumonia and on influenza deaths
from the HIN1 influenza [16]. The transmission
dynamics are thus described by the following differential
equations:

dSU,k

dat = _Z'kSU,k' Eq(l)
dL
Uk = )*kSUk —6Lu kr EQ(Z)
dt ’ ’
dA
d—?k =61 -p)Lyy — YAy Eq(3)
dl
(Z'k =06pLyy — (v + oy )y Eq(4)
dR
—Lh =y (A + ) Eq(5)
dt ’ ’
das
—k = (1= )4Sv Eq(6)
dt ’
dL
d:'k =(1-0)MSy — 6Ly, Eq(7)
dA
d\t/lk =6(1=p)Ly ) —7Av Eq(8)
dl
Vik = OpLy ;= (v + ay i)y s Eq(9)

dt
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dR
dv'k =v(Ay +1ve) Eq(8)
t
for k=1,...,, 5.

We used a standard-incidence form for the force of
infection Ag

5
Ay = 2 Bbim(Lu e + Ay + Iy + Aug)

N Eq(9)

m=1
where N is the total population size. Thus, it follows
& ((Su() + Ly (6) + Ay () + Ty (6) + Ry (1) 5
o= 2(+sv,k(z) Ly p(0) + Aval0) + Iy u(0) + Ry (0 ]%4’“
where Nj is the number of people of age group £, i.e.
Ny (1) = Sy p(t) + Ly 1(8) + Ay 1(8) + Ty (1) + Ry o(£) + Sy (1) + Ly (1)
+ Ay (1) + Iy () + Ry (1)

Here ¢y, is the number of contacts per day between a
person in age group k with people in age group m, and
B is the probability of infection for a susceptible person
who has contact with an infectious person.

As both epidemiological and serological data are sug-
gestive of residual immunity to HIN1 among adults and
seniors, we assume that a proportion (&) of individuals
in age group k is immune to HIN1 viruses [4]. The resi-
dual immunity incorporates the fact that younger people
are more susceptible to the current HIN1 strain than
older people due to lack of exposure to a similar virus
in the past [4,17]. The demographic effects of aging,
birth, and death by causes unrelated to influenza are not
included because we only model one influenza season,
where these demographic effects are negligible.

The epidemic is initiated with a proportion of each
age group assumed to be immune to infection, with one
person of each age group assumed infectious, and with
the remaining population assumed susceptible. That is,

that

k=1

Su,k(o) =(1-& )N -2, Eu,k(o) =0, Au,k(o) =1, Iu,k(o) =1,
Ry 1(0) =&k Ny, Sy i(0) = Ey 1(0) =1y 4(0) = Ry ,(0) = 0.

We assume that an influenza pandemic approaches its
peak at time t=w, and a proportion of the population is
vaccinated at time r=w+6 where §=0 or 21 days. We
assume that vaccination instantaneously protects people,
so that the state variables change discontinuously at t=t:

Sup(e™) == )Suk(r7), Sve() =Sy p(e™)
with the other state variables remaining the same.

We further assume that the basic reproductive num-
ber (Ry), defined as the number of secondary cases
caused by a single infective case in a completely sus-
ceptible population, was 1.4, as estimated for the novel



Shim et al. BMIC Public Health 2011, 11(Suppl 1):54
http://www.biomedcentral.com/1471-2458/11/51/54

swine-origin HIN1 influenza outbreak [18]. For sensi-
tivity analysis, the basic reproductive ratio was
increased from 1.4 to 1.6 (Figure 1). We parameterized
age-specific contact rates, ¢, using data from a large-
scale survey of daily contacts [19]. These contact data
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show strong mixing between people of similar ages
and moderately high mixing between children and peo-
ple of their parents’ ages [20]. Given the contact data
and US population size, we reconstructed the contact
matrix to match our five age groups [19,20]. Using the
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Figure 1 (a) Nash and (b) utilitarian strategies when basic reproductive ratio is 1.6. Vaccination is assumed to be offered free of charge.
Vaccination is implemented three weeks before, exactly at, or three weeks after the peak of a pandemic influenza.
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relative size of the age group m (N,, / N) and the
number of contacts per person in age group k with
people in age group m, c,,, we define the elements of
the contact matrix by ¢4, =——. To ensure that the
number of contacts between dge groups is symmetric,
N,.Cim = NiCptr 1€ Ot = O, we made further
adjustment, ¢, =(§,,+d,m)/2, and used ¢y, to be
the contact matrix.

Cost parameterization

To calculate the average individual net payoff of vacci-
nation strategy, we incorporated the costs associated
with infection, vaccination, and the side effects of the
vaccine (Table 1). We calculate the cost of infection
using weighted average of the costs associated with
possible infection outcomes such as mortality, hospitali-
zation, outpatient visits, and cases without medical care.
The cost of vaccination includes the value of an indivi-
dual’s time receiving it ($16), and travel cost ($4), result-
ing in the total cost of vaccination estimated at $20 [21].
The cost of administration is not included in baseline
parameters because vaccine for the 2009 novel HIN1
influenza was provided free of charge in the US. How-
ever, for sensitivity analysis, we increase the cost of
administration from $0 up to $20, in order to examine
the elasticity of the Nash and utilitarian strategies to a
range of vaccination cost (Figures 2 and 3).

Table 1 Parameterization of infection and vaccination
cost

Variable Base case Reference
Cost of vaccine side effects, $
The cost associated with mild to 137 [40]
moderate vaccine side effects per (see Methods
vaccinee, $ for calculation)
The cost associated with severe 0.78 [2141]
side effects (treated in ICU) per (see Methods
vaccinee, $ for calculation)
Costs of vaccination, $
Patient time, $ 16.00 [2542]
Travel cost, $ 4.00 [2542]
lliness without 201 (individuals [26,35,43,44]
medical care, $ under age 65);

327 (individuals

over age 65)

Health care costs, $
General medical hospitalization 5,861 (individuals [26,35,45]

under age 65);

7,653
(individuals over
age 65)

Outpatient visits 322(individuals [26,35,43,44]

under age 65);

458 (individuals

over age 65)

Mortality, $ 1,045,278 [26,35,45]
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We calculate the cost for vaccine side effects based on
the reduction in quality of life and the costs of treating
individuals with severe side effects. Mild to moderate
side effects are reported to occur at a probability of 5%
and to reduce the quality of life by 0.05 for two days on
average [21]. To calculate the cost of vaccine side
effects, we use the conversion that a quality-adjusted life
year (QALY) is monetarily equivalent to $100,000
[22-24]. Thus, the cost associated with mild to moderate
vaccine side effects can be estimated at

0.05(0.05)(2/365)($100,000)=$1.37.

In line with clinical data, severe vaccine side effects
are assumed to occur at a probability of 0.001% and
result in hospitalization for 7 days, and the cost of hos-
pitalization in ICU to treat severe side effects is taken as
$3,739.05 per day [21]. In addition, we assume that
severe vaccine adverse effects result in death at 5% of
probability [21]. We assume that all individuals value
their life equally, irrespective of their age. Thus, the
value of life is estimated at $1,045,278 using average
expected future lifetime earnings for all ages [25,26].
Estimating the value of life at $1,045,278, the cost of
severe side effects is calculated as

1075($3739(7)+0.05($1045278))=$0.78.

Payoff to vaccination strategy

In our vaccination game, the payoff to an individual
choosing a particular strategy depends on the average
behavior of the population. We considered the two basic
strategies, “vaccinator” (obtain vaccination) and “non-
vaccinator” (decline vaccination). For both strategies, the
payoff to an individual is measured in terms of a mone-
tary cost due to infection and/or vaccination, based on
the probability of infections and vaccine risks (Table 1
and Additional File). We also parameterized the payoff
calculations with age-specific distributions of vaccine
efficacy in reducing influenza morbidity and mortality
(Additional File).

The net payoff to vaccinator strategy then is

Upgee = %W W) Crvp —Cy =2y - Cyy—25 - Cy

where x; is the probability of infection among vaccina-
tors, z,r is the probability of mild to moderate side
effects, and zg is the probability of severe side effects.
Crvx denotes the cost of infection among vaccinators in
age group k, Cy denotes the cost of vaccination, and Cy,
and Cs denote the cost of mild and severe side effects
associated with vaccination, respectively.

As the vaccine efficacy is imperfect, the vaccinator may
still be infected with reduced probability of infection (xy),
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which depends on both vaccination probability of age

i
group k () and on vaccination probability across all age J' SoLe . dt
groups (v ). If infected, vaccinated individuals incur PEv i
lower infection cost (Cjy;x) than unvaccinated ones. The x, (v, v) = 1=t -
probability of symptomatic infection among vaccinators in B
age group k who are not yet infected before vaccination is h[Nw(®) OpLu, di]

given by =0
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T
Here J OpLy; 1, dt represents the number of cumula-

tive symt[?toomatic infections until time ¢ = 7. People who
had have been symptomatically infected would be aware
that they gained immunity against HIN1, thus would
not get vaccinated, and therefore the expression,

N, (r) - J- 8pLyy, dt, represents the maximum number of

=0
vaccinating people in age group k.

The net payoff to a non-vaccinator is

Unom/ac,k =W y)- CIN,k
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where Cjyx denotes the cost of infection among non-
vaccinators of age group k, and y; is the probability of
symptomatic infection among non-vaccinators, given by

i
J. OpLyy, dt

t=t

(1-hINW()~ [ SpLay do
t=0

Ve W)=

f
Here, J SpLy, dt describes the cumulative number of

L=t
symptomatic infections among unvaccinated individuals
in age group k after vaccination is implemented at time
t=r1

Defining the Nash strategy

For individuals driven by self-interest, game-theoretic
decisions are assumed to settle to a Nash equilibrium at
which it is impossible for a few individuals to increase
their payoffs by switching to a different strategy [27].
We define these individual decisions at the Nash equili-
brium as the Nash strategy. A pure vaccinator strategy
cannot be the Nash equilibrium, because when the
population vaccine coverage is 100%, an individual who
chooses a non-vaccinator strategy reaps the benefits of
herd immunity without paying for vaccination and with-
out experiencing possible vaccine side effects. By com-
parison, a non-vaccinator can result in an individual
optimum under certain conditions, such as when the
infection risk is sufficiently low when vaccines become
available. In our age-structured model, it might be best
for some people in an age group to be vaccinated and
for others in the same group to choose not to get vacci-
nated. To allow this scenario, we consider mixed strate-
gies whereby individuals in age group k choose the
vaccinator strategy with probability w; (0 <y < 1) and
the non-vaccinator strategy otherwise. If all individuals
play the mixed strategy w;, then a proportion yy of the
population in age group k is vaccinated. The individual
optimum can be found by solving for yy ;,, in the equa-
tion Uyuor = Upopvack (k=1...5). The individual optimum
(Wiina) predicted by this game-theoretical analysis corre-
sponds to the level of coverage yy ;.4 expected under a
voluntary program where individuals act in a rational
way to maximize their payoffs.

Defining utilitarian strategy

From the perspective of group interest, the objective is to
maximize the total payoff of vaccinators and non-vaccina-
tors. If y; is the proportion of the population in age group
k that is vaccinated, we can express the expected payoff
T(y) due to vaccination and an influenza pandemic as
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5 .
1) =T v Vs v vs) = DL INKE = [ SpLus del bl + =Vl s} -
k=1 =0

We now maximize T(y,, Wy, W3, W, ¥5) on the parameter
space {(w1, W, W3, Wa, Ws) | 0 < yi <1} to determine the
utilitarian strategy (y1*, wo*, ws* ws*, ws*), which is the
coverage level that would maximize the total payoff.

Results

Epidemiological impact of the 2009 H1N1 influenza
pandemic

Our age-structured model of influenza transmission pre-
dicts that 41% of the US population will be infected
with pandemic H1N1 influenza in the absence of inter-
ventions (Figures 4 and 5). Based on our assumptions
that on average 33% of infected people become sympto-
matic after three day of incubation period [28], we esti-
mate that 13% of the population will be symptomatically
infected during the current influenza pandemic, which is
consistent with the estimate of previous modeling stu-
dies [29-31]. However, the age-specific attack rates are
predicted to vary considerably between age groups
because of age-dependent activity patterns and immune
profiles. The highest incidence is predicted to occur in
individuals of age 5-24, followed by adult population of
age 25-49, with symptomatic plus asymptomatic attack
rates of 57% and 43%, respectively (Figure 4b). The low-
est attack rate (14%) is predicted to occur in the oldest
age group (age 65 and older).

Our results also suggest that individuals in each age
group reach their highest incidence at different times
(Figure 4a). That is, school-age children and young
adults (age 5-24) reach their maximum incidence first,
followed by adults (age 25-49) and preschool-age chil-
dren under five years of age. In contrast, the oldest
group is the last one to reach maximum incidence.

In the absence of vaccination or other interventions,
our model predicts that the 2009 HIN1 influenza pan-
demic would result in 271 hospitalizations and 13
deaths per 100,000 individuals. With their highest case
fatality and hospitalization ratios among all age groups,
adults (age 25-49) bear the highest case fatality rate
(7 out of 13 per 100,000) and hospitalization rate (133
out of 271 per 100,000), followed by school-age children
and young adults of age 5-24 (Figures 4, 6, 7).

Optimal HIN1 vaccine distribution based on individual
self-interest

To determine optimal HIN1 vaccine distributions based
on individual self-interest versus population interest, we
constructed a game theoretical age-structured model of
influenza transmission assuming delayed vaccination.
Our calculations show that when vaccination occurs
three weeks prior to the peak of a pandemic wave, the
Nash (individual-based) strategy prioritizes vaccinating
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adults (age 25- 49) and preschool-age children, followed
by school-age children and young adults (age 5-24) and
then older adults (age 50-64) (Figure 8a). The Nash vac-
cination strategy among senior population of age 65 and
older would be to refuse vaccination. With such strat-
egy, the vaccination program is predicted to reduce an
overall attack rate from 41% to 15%, averting 8,514 clini-
cal infections, 179 hospitalizations and 9 deaths per
100,000 individuals.

The Nash strategy, however, was found to be highly
dependent on the timing of vaccine implementation
(Figure 8a). If vaccine production is delayed, then the pay-
off to the vaccinators is diminished because of reduced
risk of future infection. For example, if vaccination is
implemented at the peak of a pandemic, the Nash vaccina-
tion strategy does not include the preschool-age children
anymore. Instead, the Nash strategy is to vaccinate 91% of
adults (age 25-49), 87% of older adults (age 50-64), and
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63% of school-age children and young adults. This change
in vaccination strategy occurs because preschool-age chil-
dren have a relatively early pandemic peak and moderate
morbidity compared to other age groups. Thus, when a
vaccination is significantly delayed, the relative infection
risk of this group is low.

The only age groups that are included in the Nash
vaccination strategy regardless of vaccine delay are
adults (age 25-49) and school-age children/young adults
(age 5-24). In general, the demand for vaccine among
adults (age 25-49) is the most inelastic to vaccine delay.
The Nash level of vaccine coverage for school-age chil-
dren and young adults falls rapidly with vaccine delay
(Figure 8). For instance, when vaccination is delayed
until three weeks after the pandemic peak, the Nash
strategy is to vaccinate 88% of adults (age 25-49) and

23% of school-age children/young adults. This vaccina-
tion allocation would result in an overall attack rate of
36%, with 229 hospitalizations and 11 deaths per
100,000 individuals (Figures 5, 6, 7).

Our results also demonstrate the dependence of the
Nash strategy on basic reproductive ratio of pandemic
influenza. At higher transmissibility (Ry=1.6), the Nash
levels of vaccination are 100% among adults of age 25-
64 regardless of timing of vaccine implementation.
This is, in part, because the case fatality ratio and case
hospitalization ratio are highest in these age groups,
yielding a high payoff of vaccination (Figure 1).
School-age children/younger adults (age 5-24), on the
other hand, are expected to seek vaccination only if
vaccination is offered on or before the pandemic peak
(Figures 9 and 10).
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Finally, we considered the rising cost of vaccination  because, in this age group, the infection risk and case-
and its impact on the Nash strategy of each age group. fatality rate of HIN1 are high and residual immunity is
We show that the Nash vaccination level among adults low. In contrast, the Nash vaccination of older adults
(age 25-49) is the most inelastic to the changes in vacci-  (age 50 to 64) is the most elastic to the changes in the
nation cost (Figures 2 and 3). This inelasticity arises  vaccination cost, demonstrating the trade-off between
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beginning of an influenza pandemic and when vaccination is
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vaccine cost and reduced benefit of vaccine due to vac-
cine delay. This elasticity is because the infection risk in
this age group is relatively low, resulted from their resi-
dual immunity against HIN1 and low contact rate.
Seniors of age 65 or older are unlikely to seek vaccination
if vaccination is voluntary at a wide range of vaccination
costs because their risk of infection (and thus their vacci-
nation payoff) is lowest among all age groups.

Optimal H1N1 vaccine distribution based on population
interest

The average vaccination level across all age groups for
the utilitarian strategy is higher than that for the Nash
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Figure 10 Utilitarian strategy when vaccine is available at the
beginning of an influenza pandemic and when vaccination is
offered free of charge.
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strategy (Figure 8). For example, if vaccines become
available three weeks before the pandemic peak, the
overall Nash and utilitarian vaccine coverage are 76%
and 82%, respectively. When 93% of young individuals
(age under 24), 96% of adults (age 25-64) and 1% of
seniors (age 65 and older) are vaccinated according to
the utilitarian strategy three weeks prior to the peak of
the influenza pandemic, 25,767 clinical infections, 182
hospitalizations and 9 deaths would be averted per
100,000 individuals (Figures 5, 6, 7).

The utilitarian strategy is, however, much less effective
if vaccination is delayed. For instance, if vaccination is
delayed until the peak of influenza pandemic, it is esti-
mated that 15,683 infections, 112 hospitalizations and 6
deaths would be averted per 100,000 individuals, which is
considerably fewer than when the vaccination is imple-
mented before the pandemic peak (Figures 5 and 8).

We find that the utilitarian vaccine coverage levels are
more inelastic than those under the Nash strategy. For
instance, if vaccination is delayed until three weeks after
the pandemic peak, the resulting vaccine coverage level
according to the Nash strategy falls to 37% whereas the
utilitarian strategy is to still vaccinate 73% of population.
Thus, the resulting disease incidence and the number of
disease-related deaths are lower under the utilitarian
strategy than under the Nash strategy. The utilitarian
strategy includes vaccinating 90% of older adults (age
50-64), 88% of adults (age 25-49), 83% of school-age
children/young adults (age 5-24) and 43% of preschool-
age children. At a higher basic reproductive ratio of 1.6,
the utilitarian strategy also includes the vaccination of
preschool-age children (age 0-4), because the risk of
infection increases with transmissibility of influenza
virus, increasing the payoff of vaccination (Figure 1).
However, the Nash vaccination strategy does not include
preschool-age children or older adults, and thus the uti-
litarian coverage levels may be unachievable under
voluntary vaccination.

Conclusions

For pandemic HIN1, we find that the individual-based
(Nash) vaccination strategies differ significantly from
the utilitarian vaccination strategies. Without vaccina-
tion delay, the primary priority group under the
utilitarian strategy is school-age children and young
adults (age 5-24) because of their important role in
transmitting disease (Figures 9 and 10). The case hos-
pitalization ratio and the case fatality ratio are the
highest, and thus vaccinating these individuals yields
high individual and population payoffs. Indeed, regard-
less of length of the delay and when vaccination is
guided by the Nash or utilitarian strategies, younger
adults (age 25-49) are among the highest priority
groups for vaccination.
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However, the second priority group changes dramati-
cally under the Nash strategy. If vaccination occurs
before the pandemic peak, the second Nash priority
group is preschool-age children. If vaccination is
delayed, the second Nash priority group is shifted to
older adults (age 50-64) or to school-age children/
younger adults (age 5-24). The peak incidence among
preschool-age children is relatively early compared to
other age groups, thus lowering the benefit of vaccina-
tion to these children with time. Because the case fatal-
ity ratio is the highest among older adults, and HIN1
morbidity is the highest among school-age children/
younger adults, the benefit of vaccination is relatively
inelastic over the course of a pandemic. Therefore, the
demand for vaccines among these age groups is high
even if vaccination is delayed in a pandemic.

The discordance between the Nash and utilitarian stra-
tegies is even more pronounced when vaccine availability
is delayed. If vaccination is delayed but implemented near
the pandemic peak, the utilitarian vaccination strategy
includes individuals of age up to 64, in contrast to the
Nash strategy which excludes preschool-age children and
older adults (age 50-64) (Figure 8). If vaccination is
further delayed, the Nash strategy would also exclude
adults (age 25-49), preschool-age children and older
adults (age 50-64), whereas the utilitarian vaccination
strategy still includes individuals of age up to 64. There-
fore, the average vaccination level across all age groups at
the utilitarian strategy was found to be higher than that
at the Nash strategy.

Overall, our results indicate that a vaccination levels
under a voluntary immunization program may not be
optimal for the population, regardless of vaccine delay.
Such discordance between the Nash and utilitarian
strategies is predicted to be robust to the increase in
the basic reproductive ratio for pandemic influenza
(Figure 1). This finding is consistent with those of pre-
vious studies, which demonstrated that, in the context
of vaccination against smallpox and seasonal influenza,
the vaccination levels driven by self-interest are likely
to be lower than those that are optimal from the popu-
lation perspective [32-35].

There are three primary reasons for the discrepancy
between the individual-based and utilitarian age-specific
vaccination levels for pandemic H1N1. First, different
age groups have different incentives to vaccinate. In
particular, an earlier pandemic peak among young indi-
viduals results in a relatively low infection risk later in
the pandemic compared to that for older adults. There-
fore, the young are predicted to under-vaccinate under
the Nash strategy relative to the utilitarian strategy
when vaccination is delayed. Second, the positive
externalities of indirect protection by herd immunity
also contribute to the differences between utilitarian
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and Nash vaccination strategies. The benefits of herd
immunity contribute to the utilitarian strategy, but also
create an incentive for individuals to free ride on the
vaccination of others. Consequently, the overall level of
population vaccination is lower for the Nash strategy
than for the utilitarian strategy. Third, because vaccine
delivery was delayed for the HIN1 pandemic, our
model predicts that people will be less inclined to vacci-
nate than if vaccine was available at the beginning of
the pandemic. As a consequence, achieving vaccination
rates high enough to achieve the utilitarian strategy may
be difficult, and the discordance between the Nash and
utilitarian strategies is found to increase with vaccine
delay.

The guidelines for vaccinating against the 2009-2010
pandemic HINT1 influenza proposed by the CDC’s Advi-
sory Committee on Immunization Practices (ACIP) priori-
tize young people aged 6 months to 25 years, who are the
most efficient at transmitting influenza viruses [36]. This
guideline also reflects the reduced susceptibility among
the elderly due to their residual immunity from past expo-
sure [37]. If large stockpiles of vaccines had been available
prior to the pandemic, the optimal vaccine distribution
strategy would be to vaccinate children in order to reduce
transmission and achieve herd immunity [38,39]. However,
our analysis suggests that the success of such vaccination
strategies depends heavily on the timing of a vaccine’s
availability. Nevertheless, our analysis might be limited by
the difficulties of knowing the state of the pandemic at the
time vaccines become available. In addition, our outcome
measure (i.e. cost of infection and vaccination) may over-
simplify the vaccination decisions or be incongruous with
the consideration of the Advisory Committee on Immuni-
zation Practices (ACIP).

We found that, for both the Nash and utilitarian stra-
tegies, the optimal vaccination strategies with vaccine
delay should prioritize individuals of age 25 to 49. Our
results also suggest that a utilitarian vaccine strategy
should also include individuals from a wide range of
ages, from 5 months to 65 years; and for longer delay in
vaccination, vaccination priority should increasingly be
given to older individuals. Our results further suggest
that age-specific demands for vaccination depend on the
risk of infection at the time of vaccine delivery and the
severity of the disease. When vaccination is delayed,
voluntary adherence to vaccine recommendation might
become lower among young individuals. This suggests
that influenza pandemic response plans should include
efforts to encourage the vaccination of young individuals
if vaccine delivery is delayed.

List of abbreviations
HINT:(H: Hemaglutinin) (N: Neuraminadase); WHO: the World Health
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