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Abstract

Background: Genomic instability in cancer leads to abnormal genome copy number alterations (CNA) as a
mechanism underlying tumorigenesis. Using microarrays and other technologies, tumor CNA are detected by
comparing tumor sample CN to normal reference sample CN. While advances in microarray technology have
improved detection of copy number alterations, the increase in the number of measured signals, noise from array
probes, variations in signal-to-noise ratio across batches and disparity across laboratories leads to significant
limitations for the accurate identification of CNA regions when comparing tumor and normal samples.

Methods: To address these limitations, we designed a novel “Virtual Normal” algorithm (VN), which allowed for
construction of an unbiased reference signal directly from test samples within an experiment using any publicly
available normal reference set as a baseline thus eliminating the need for an in-lab normal reference set.

Results: The algorithm was tested using an optimal, paired tumor/normal data set as well as previously
uncharacterized pediatric malignant gliomas for which a normal reference set was not available. Using Affymetrix
250K Sty microarrays, we demonstrated improved signal-to-noise ratio and detected significant copy number
alterations using the VN algorithm that were validated by independent PCR analysis of the target CNA regions.

Conclusions: We developed and validated an algorithm to provide a virtual normal reference signal directly from
tumor samples and minimize noise in the derivation of the raw CN signal. The algorithm reduces the variability of
assays performed across different reagent and array batches, methods of sample preservation, multiple personnel,
and among different laboratories. This approach may be valuable when matched normal samples are unavailable

or the paired normal specimens have been subjected to variations in methods of preservation.

Background

DNA copy number alterations (CNA) including
sequence amplifications and deletions can cause onco-
gene activation or reduced tumor suppressor gene func-
tion associated with the emergence of cancer [1,2].
Recent advances in microarray technology including
high density SNP (single nucleotide polymorphism) pro-
filing have provided a novel approach to evaluate CNA
across the genome of patient tissue specimens as a
potential diagnostic tool for tumor classification.
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However, detection of a copy number amplification or
deletion is critically dependent on: 1) interrogation of
SNPs and/or nonpolymorphic markers at a frequency
sufficient to identify changes in specific genes, and 2)
accurate detection of gene copy number in tumor tis-
sues [3]. Evolution of arrays with increasing densities of
SNPs has mitigated the first factor but the ability to
accurately detect CNA remains a formidable challenge.
Specifically, the signal-to-noise ratio of copy number
intensity from tumor samples is markedly decreased (or
inferior) compared to that obtained from ideal samples
such as homogeneous cell lines or blood samples. These
differences are likely associated with cellular heterogene-
ity e.g. normal cells mixed with tumor cells, infiltrating
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inflammatory cells and/or the presence of proliferating,
apoptotic or necrotic cells. The variability is com-
pounded further by sample preservation e.g. formalin-
fixed paraffin embedded (FFPE) exhibit higher variability
than frozen samples. Thus, there are substantial metho-
dological hurdles to be resolved before CNA values
from SNP arrays can be integrated into diagnostic eva-
luation of tumor samples.

An ideal experimental comparison for tumor copy-
number evaluation comprises paired, normal tissue sam-
ples processed simultaneously with the tumor specimens
thereby eliminating technical variability from personnel
and batch effects. One additional advantage to paired
comparisons is the suppression of CN aberrations pre-
sent in both normal and tumor tissues. In practice how-
ever, paired tissue samples are rarely available and
acquisition of paired normal tissue does not typically fall
within the purview of therapeutic surgical intervention.
Consequently, normal CNA profiles are often derived
from a variety of normal specimens accumulated in a
laboratory and often include archived FFPE specimens.
Otherwise, investigators must rely on data from other
laboratories employing the same CNA platform and/or
by comparison to a publicly accessible database. The
variability inherent in these other data sources further
complicates interpretation of tumor sample CNA
results. To address this issue, we have developed a SNP
CN detection algorithm that derives a reliable copy
number reference signal specifically from tumor samples
thereby eliminating the need for a normal reference set.
Validation tests indicated that this approach achieves a
signal-to-noise ratio surpassing that obtained by other
techniques including paired normal reference sets.

Implementation

General Approach

Reducing the noise level by exploiting similarities
between the test and reference set has been successful
in at least two empirical studies [4,5]. In one study [4],
the entire data set (test as well as normal data if avail-
able) is acquired in the lab to build a reference set.
While noise reduction is achieved, this approach sup-
presses the CNA common for all samples in a data set,
making it impractical for systematic CN aberration ana-
lysis. The second employs a CN detection package in
CNAG [5], selecting the best from the pool of normal
samples based on similarity of correlation function
between a particular test sample and a given set of nor-
mal samples. While the noise level is somewhat reduced,
testing this approach in CNAG as well as in our own
implementation of a similar selection algorithm (data
not shown) shows that sometimes, the reference set
selected using this method may be very small (up to 1 -
2 samples) and therefore any CNA present in a normal
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reference will introduce false CNA in the tumor CN sig-
nal. Nevertheless, exploiting the natural similarity
between test and reference set is an attractive approach
if implemented carefully.

Methodological Considerations

Consider a scenario where the reference signal is com-
puted as an average (median) of tumor intensity signals
instead of traditional average of normal reference samples
intensities. Such signal would preserve the high frequency
component common for all tumor samples in a given
batch and therefore if used as a denominator in computing
the (log2) ratio in place of the standard reference would
decrease the noise this high frequency component is
responsible for. However this reference signal would carry
the CN variations common for the given tumor sample set
and therefore, if used unmodified, would suppress these
common variations for each particular tumor sample
where they are present and cause the false CN variations
for the rest of the tumors. To overcome this problem, we
can compute the (log2) ratio between this synthetic refer-
ence signal and normal reference set based signal (treating
these two references as a test/normal pair) and then
employ the mean preserving segmentation or filtering
technique to detect the common CN variations. If, then,
we use the information about the position and amplitude
of the common CN variations to modify the tumor based
reference signal in such a way that these common CN var-
iations go away when tested against the traditional refer-
ence signal, we would obtain a synthetic reference signal
which has two key properties:

a) Its high frequency component is highly correlated
with the one common for all tumor samples in the
given batch and therefore the noise in (log2) ratio
between given tumor raw CN and the reference sig-
nal is reduced.

b) The reference signal does not contain the CN
aberrations common for the part or the whole
tumor sample set, which means that when each indi-
vidual tumor sample is compared to the reference
signal, the aberration will be picked up for this parti-
cular tumor.

The whole process is illustrated on the Figure 1,
where Figure 1A shows the raw CN signal for a single
FFPE tumor sample obtained using the traditional refer-
ence signal based on frozen HapMap normal set, the
Figure 1B shows the raw CN segmentation results for
log2 ratio between the tumor and normal based refer-
ence signals and Figure 1C shows the log2 ratio between
the final transformed synthetic reference and normal
based reference signals. Note how the common tumor CN
variations got removed from the synthetic reference set.
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Figure 1 Virtual reference signal and noise reduction. A: The raw CN and segmentation results for sample 08_0015
reference set. Note the absence of the copy number amplification at 43Mb (red dotted oval). B: The raw CN and segmentation results of the
average signal computed over the whole tumor data set vs. average signal computed over the HapMap data set. Note the multiple CN events
detected (e.g., at 43Mb) due to common CN aberrations in tumor samples. If used as a reference signal, this aberration would cancel out the
real CNV in corresponding tumor samples. C: The VN-corrected tumor data set based average signal. Aberrations are removed using the VN
algorithm, and the resulting signal can be used as an unbiased reference for further processing. D: The raw CN and segmentation results using
the VN based reference signal from C. Note the detection of the copy number amplification (red dotted oval) at 43Mb that would be lost using
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The Figure 1D shows the raw CN and the segmenta-
tion results for this tumor sample using the synthetic
reference and illustrate significant (> 2 times) noise
reduction compared with traditional approach (Figure
1A). The original normal reference set is used here as
a template to construct an optimal reference signal

and will be referred to further as a template reference
set when applicable.

Unbiased Reference Signal Restoration
Depending on the signal-to-noise ratio between averages, we
can employ two basic strategies for detecting and correcting
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for shifted segments. If the signal-to-noise ratio is high
enough so that the false positive (FP)/false negative (FN)
detection is low, we can use the direct segment detection,
thus achieving the highest possible resolution. Shifting the
segments back is a problem requiring detection of points of
discontinuity of signal and calculating the mean over the
segment. There are very few efficient segmentation algo-
rithms available [6-8], which preserve a segment mean and
therefore can be used to accomplish the task. The perfor-
mance of a segmentation algorithm in this case should be
higher than on a single sample, as the ratio of averages
would not include the instrument noise.

If the noise level is too high so that FP/FN segment
detection is likely, then instead of direct segment detec-
tion, the low-pass filtering or window smoothing is used
for detecting the shift pattern, followed by correcting the
original average intensity signal for an abovementioned
shift pattern. With a proper choice of a smoothing win-
dow width, the problem of FP/EN detection presented in
the first method is eliminated. In practice, the width of a
smoothing window is comparable with one used for
smoothing in standard methods (e.g., 10 - 30 data
points). For comparatively rare CN events (i.e. less than
25 -30% of test samples), the smoothing described above
does not substantially alter the final spatial resolution, as
the CN aberrations will be suppressed by the same 25 -
30% thus preserving the high frequency component.

Data Set

Tumor DNA was obtained from a de-identified series of
25 pediatric malignant glioma tissue samples (Children’s
Oncology Group ACNS0423 study). Tissue accrual for the
current study was coordinated by the Pediatric Branch of
the Cooperative Human Tissue Network (CHTN). This
study was approved by Institutional Review Board (IRB)
for the University of Pittsburgh. Patients included children
with malignant gliomas arising outside the brainstem trea-
ted with surgery, field irradiation, and chemotherapy using
temozolomide administered on a daily schedule during
irradiation, and in conjunction with lomustine after irra-
diation. Eligibility for the study required institutional IRB
approval as well as central review of the histopathology,
and confirmation of a diagnosis of glioblastoma, anaplastic
astrocytoma, or gliosarcoma.

Samples were processed and data was collected using
the Affymetrix Mapping 250K Sty microarray chip using
standard procedures [9] that have been optimized in the
UPCI Clinical Genomics Facility (detailed methods are
described in Additional file 1). All data have been depos-
ited in the Gene Expression Omnibus (Accession number
GSE25589). Due to the specifics of the sample collection
protocol, paired normal samples (blood DNA) were not
available for analysis. Also, because of the sample preser-
vation method (FFPE), using the HapMap data as a
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normal reference set proved difficult due to the very high
noise level, likely from the difference in preservation pro-
tocols between the glioma samples (FFPE) and HapMap
(frozen). We therefore used an in-house processed FFPE
reference set, which was used to validate the results
obtained through the VN approach, as described. We
believe that having a sample set without an ideal refer-
ence set is a universal problem in cancer translational
research and highlights the potential usefulness and prac-
ticality of the VN method we describe.

Generating the VN Reference Signal

In preparation for generating the VN reference signal,
the intensities of test and reference samples were pre-
processed within the aroma.affymetrix framework [10]
using the latest CRMAv.2 method [11,12]. During the
preprocessing step, the sample intensities were corrected
for allelic crosstalk, normalized for nucleotide-position
probe sequence effects, summarized and finally cor-
rected for the PCR fragment length. We implemented
our own GC content correction using the approach
described by Diskin and colleagues [13], modifying it
slightly so the regions of high amplification/deletion
were also included into the GC wave parameter estima-
tion. All processing was done on the total intensities
and aimed to total raw CN estimates, but the results are
also applicable for allele-specific analysis.

Algorithm Description
Let I'y(p) and I'; (p) be the signal intensities for test (t)
and reference set (r), where i = 1.N and j = 1. M is a
sample number for test (i) and reference (j) sets respec-
tively and p is a genomic position. For the segmenta-
tion-based version of the algorithm, the VN reference
signal is generated as follows:

Compute the average signal for tumor test set and the
normal reference set separately, so

I'avg (p):median(lti(p)) (1a)
and
I"avg (p)=median(lri(p)) (1b)

where I‘avg and I'avg are intensity medians computed
for each chromosomal position p over the whole test
and reference sets respectively

Compute the (log2) ratio of two averages producing
the raw CN average signal

CNavg =log2 (I'avg | I"avg) (2)

Perform the GC correction on CNavg signal using the
modified PennCNV [13].
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Perform the segmentation of the average signal using
one of the segmentation algorithms which preserve the
mean level of each signal [6-8], so

S (p):M(CNang(p)) (3)

where S(p) is a piece-wise constant function of the
chromosomal position and M(CNavg(p)) is a mean of
(log2) ratio of two averages from (2) at the segment s
for the range of chromosomal positions p.

Using the segmentation results, modify the average
tumor set intensity signal in such a way that the regions
of the segmentation results deviating from the baseline
(zero for log2 ratio) would get shifted back to the base-
line, producing the virtual reference signal:

I"(p)= I'avg(p)* 25 (4)

where p is a chromosomal position, I"(p) is a virtual
reference intensity signal, I‘avg is an average intensity of
tumor samples and S(p) is a segmented average CN
from (2)

Use the resulting modified tumor average intensity
signal as a new (virtual) reference when generating the
raw CN signal for each tumor sample, i.e.

rawCN; =1log2(1; [ 1,,,) (5)

where the rawCN; is a raw CN signal for sample I, [; is
an intensity for tumor I and I,, is an intensity of the
modified tumor intensity average signal (the virtual
reference) from equation (4).

As was mentioned before, one of the major drawbacks
of using the segmentation technique in obtaining the
reference signal is that the erroneous (false positive)
detection of a segment would lead to a corresponding
false peak in all samples run against such a reference
set. A more conservative approach for eliminating such
a possibility involves filtering the log2 ratio and using
this filtered signal in place of a segmented signal. In this
case the expression for S(p) (3) is given by the formula:

S(p)=F(CNavg w) (3a)

where F is a filtering operator (moving Gaussian

smoothing window for example) and w is a width of
smoothing window.

The trade-off of this approach is that the loss of reso-
lution due to the filtering leaves the narrow peaks in the
virtual reference signal uncorrected, which in turn sup-
presses the peaks in each corresponding test sample
exhibiting such a peak. In practice we found that gener-
ating the virtual reference based on a set of normals
from the same lab requires the same filtering window
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width as when using a standard approach. Moreover,
the peak suppressing effect largely goes away when the
CN aberration event is not present in all test samples,
which is a typical situation. In practice, the peak sup-
pression of very small CN regions did not exceed 15% -
20% and in most instances was undetectable, which
allows using the noise reduction obtained through the
VN to full advantage.

Methods for Implementation and Validation

The algorithm was implemented in R as an add-on to
the aroma.affymetrix extendable open source CNV ana-
lysis package [10]. The main workflow remained com-
parable to the conventional scenario of using an
unpaired reference set, with the major exception relating
to the method of obtaining the reference signal. Instead
of using the average of a normal reference set signal, the
VN reference is obtained as described above. Another
difference with the aroma.affymetrix workflow is a cor-
rection for GC content which is implemented based on
ideas from the PennCNYV package [14] with a modifica-
tion allowing the inclusion of the amplified/deleted
regions into the GC curve fitting process, thus improv-
ing the robustness of correction in case the samples
have a high percentage of CN aberrations. The VN
reference generation algorithm also uses this version of
the GC correction. While the authors of the aroma.affy-
metrix package suggest that for high-density chips
(250K and above) GC correction is not necessary, we
found it to be very beneficial in our case, especially dur-
ing processing of FFPE samples using the frozen refer-
ence set as a template for VN.

The segmentation of the resulting raw CN signal as
well as a segmentation-based version of the VN algo-
rithm was implemented using the Sparse Bayesian
Learning-based GADA package [7]. The block-scheme
of the algorithm is presented in Figure 2.

We assessed the validity of this method in several
ways. First, using a data set from nine tumor/normal
pairs (available from Affymetrix; see Additional file 1),
we compared the validity and performance of the
method with the standard unpaired and paired approach
as outlined below. This data set was chosen for a preli-
minary test due to the high signal-to-noise ratio as well
as known SNP CN aberration positions. Next, the level
of noise and the quality of segmentation of the glioma
samples under consideration were assessed using the
HapMap normal samples as a reference set. A conven-
tional CN analysis using the tumor and in-house lab
FFPE sample set (5 normal FFPE blood samples) was
then used to validate the VN algorithm on the HapMap
results. We also constructed a second VN reference sig-
nal using the same normal in-lab sample set as a tem-
plate and the results were compared to assess the
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Figure 2 Algorithm block scheme.

usability of a VN with Hapmap. Further, the filtering
version of the VN algorithm was applied to generate a
reference signal based on the HapMap template and the
gain in signal-to-noise ratio was gauged.

To validate the VN results directly, genomic DNA was
analyzed using Applied Biosystems TagMan® Copy
Number Assays (chromosome 4: Hs04800686_cn; chro-
mosome 15: Hs05319670_cn, Hs01691525_cn) with the
Applied Biosystems StepOnePlus system. Each sample
was analyzed in quadruplicate as per the manufacturer’s
instructions (AACt method). The data was imported
into Applied Biosystems CopyCaller™ software and the
copy number for chromosomes 4 and 15 was calculated.
The results are shown as an average of three indepen-
dent experiments +/- S.E.M.

Results

Validation using Tumor/Normal Paired Samples

Nine paired tumor and normal samples with high intra-
specimen tissue homogeneity and copy number signal
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intensity (Affymetrix: see see Additional file 1) were
used as “ideal” sample set to validate the Virtual Normal
algorithm developed in this study. These paired samples
were combined with the normal HapMap samples in
multiple combinations to emulate scenarios of data
acquisition and processing. Specifically, processing stra-
tegies were compared using (1) paired analysis of the
nine optimal tumor-normal pairs; (2) non-paired analy-
sis of the nine tumors using HapMap normals as the
reference set; and (3) the reference signal generated by
the Virtual Normal algorithm from the nine tumor sam-
ples with the HapMap normals as a baseline. The results
from processing sample CRL-2324, Chr.1 are presented
in Figure 3 (A-C: sigma values above each graph repre-
sent the standard deviation (SD) of log2 ratio). The Vir-
tual Normal algorithm provided the lowest noise level
among all three approaches while yielding comparable
results for raw CN and segmentation.

Application to Pediatric Glioma Using FFPE Samples

We compared the results of processing with the Virtual
Normal algorithm to traditional approaches utilizing dif-
ferent reference sets including: (1) a set of normal fro-
zen tissue samples processed in the laboratory; (2) the
HapMap reference set obtained from frozen tissue;
(3) samples of normal tissue after formalin fixation and
paraffin embedding (FFPE) and (4) the VN reference set
with HapMap data as a baseline. A comparison of the
raw CN estimates along with segmentation results for
sample 08_0015 on Chr.7 is presented in Figure 4.
These data demonstrate that inter-laboratory variability
(HapMap), sample preservation (FFPE vs. frozen) and
inter-batch variability (in-lab FFPE reference set) all
contribute to increased noise that is further com-
pounded when admixtures of these sample types are
combined. It is important to note that the virtual refer-
ence signal constructed from the tumor data set using
the VN algorithm achieved the lowest noise level of the
four methods (panel D). Concordance between segmen-
tation results for the FFPE reference set and the VN
reference set was assessed by generating plots of seg-
mentation results corresponding to +/- 0.2 threshold in
log2 ratio. Summary plots of segments detected on
Chr.7 compared VN with the best results achieved by
traditional methods (Figure 5) demonstrating high con-
cordance between the VN approach and the best tradi-
tional methods.

Segmentation plots of all chromosomes demonstrated
high concordance between the VN analysis and the best
traditional approaches (see Additional file 1). Comparison
of raw copy number standard deviation and corresponding
signal-to-noise ratio averaged over all glioma samples/
chromosomes for the 4 processing scenarios are summar-
ized in Table 1. Use of the Virtual Normal method
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Figure 3 Validation of VN-based processing for sample CRL-2324, Chr.1.
Traditional unpaired processing using the HapMap reference set. The SD is roughly 1.6 times higher than for paired processing, C: VN algorithm
based processing (HapMap data set as a template). Note the SD is even less than for paired processing (by ~10%) which can be explained by
elimination of the instrument noise in the virtual reference signal, which is essentially a modified average of all tumor samples. The SD is
reduced ~ 1.7 times compared to the processing using the HapMap reference set.

A: Traditional paired processing, nine tumor-normal pairs. B:

increased the signal-to-noise ratio from unacceptable (< 1)
when processing FFPE tissue samples using the frozen
reference set to a reliable level (~2) with minimal pre-
segmentation signal smoothing of the VN reference signal.
Validation of the analysis is demonstrated in Figure 6
including measurement of copy number in a region of
chromosome 4 and 15. The region of Chr.4 was deter-
mined to be elevated in several glioma tumor samples
whereas all samples were determined to have a copy num-
ber of 1.97 for this region of Chr.15 using the VN
approach. Copy number changes determined using our
VN analysis were confirmed using a PCR-based copy
number analysis approach. The VN assay indicated that a
specific 2.9 Mb region of Chr.4 was amplified with a raw

CN average of 3.48 for samples 08_0175 and 08_0177.
PCR analysis of this region computed a copy number of
4.18+/- 0.45 and 4.47+/-0.58 reinforcing the sensitivity of
copy number determinations obtained using the VN
approach.

Application to higher density arrays

Initially we were motivated to develop this algorithm for
the particular study on the Affymetrix 500K platform
due to the absence of the adequate normal FFPE refer-
ence set, i.e. under the most unfavorable conditions.
However, the algorithm is generic enough to be applied
to a wide range of platforms which utilize the normal
sample set to generate a reference signal. In particular,
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it was successfully tested during the renal carcinoma
studies (frozen tumor and normal samples) performed
on the Affymetrix Genome-Wide 6.0 platform (see
Additional file 1, Figure S7 A, B and C). Here we show
the exemplary raw CN and segmentation processing

results for a renal carcinoma sample on Chr. 2 which
utilize three different sources of the reference signal: a)
HapMap normal set (Additional file 1, Figure S7a); b)
in-lab normal set (Additional file 1, Figure S7b) and c)
VN using HapMap as a template (Additional file 1,
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Figure S7c). The reference signal generated using VN
algorithm allowed to achieve the best signal-to-noise
ratio compared to the traditional methods even when
in-lab normal reference set with matching preservation
protocol was available.

Conclusions

We have demonstrated that it is possible to construct a
reference signal directly from the tumor sample intensities
using the normal sample reference set as a template and
that such a reference has the properties to minimize the
noise in the resulting raw CN signal. The proposed algo-
rithm allows minimizing the negative effect of inter-batch
or inter-lab variability and is generic enough to be applic-
able to a variety of platforms which utilize the reference sig-
nal for processing. When the test sample preservation
protocol differs from the one for the available normal refer-
ence set or when the in-lab reference set is unavailable, the

described approach could likely be an ideal option to pro-
duce reliable total CN estimates. We did not investigate the
applicability of the method for allele-specific CN estimates,
but it’s likely it could be used in such instances as well.

We have discussed the tradeoffs between segmenta-
tion based and filter based VN versions. Our primary
goal was to accommodate the different signal-to-noise
ratios between two average intensities so to achieve the
maximum spatial resolution while minimizing FP/FN
events. We believe, that using the wavelet based filtering
similar to CDF 5/3 [15,16], would help to achieve an
optimal compromise between a low FN/FP rate as for
filtering based VN and the highest possible spatial reso-
lution. We are working on incorporating such filtering
as an option for the VN algorithm.

The recent trend in CNV detection algorithms is to
use the total and allele-specific CN estimates and the
genotyping call results together to obtain the more

Table 1 Comparison of a standard deviation (SD) and signal to noise (S/N) ratio for a raw CN signal obtained using
different types of references. Here SD is an average of all SDs obtained for each raw CN segmented region in log2
scale, and S/N is computed as a ratio of the difference between the raw CN values corresponding to CN = 3 and

CN = 2 in log2 scale and the SD value defined above

FFPE Tumor vs: Blood normals (frozen) HapMap (frozen) FFPE normals VN based
SD (log2) 0.627 0.592 0.363 0.281
S/N ratio for CN = 3 (log2) 0.797 0.845 1377 1.78
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Figure 6 Copy number validation. Copy number validation as
determined by Tagman Copy number analysis for samples 08_175
and 08_177 at Chr4 and Chr.15, as indicated.

reliable CN event detection [17]. We plan to work on
such extension of the aroma.affymetrix package includ-
ing the VN into the processing pipeline in a near future.

Finally, during evaluation, the VN algorithm demon-
strated a better signal-to-noise ratio than paired analysis.
Still, in most cases, the paired analysis is preferable as it
allows exclusion of CN aberrations that are not disease-
specific. However, in rare cases, the paired normal may
have disease specific aberrations if obtained in close
proximity to the tumor. We suggest that using both
methods applied to the same dataset would provide
more information on the disease related CN aberrations,
than each method applied alone.

The algorithm was implemented in R language as an
add-on to the open source aroma.affymetrix package but
can be easily adapted for use with other packages. The
algorithm source code as well as the GC correction
module along with necessary modifications in aroma.
affymetrix package is readily available for download at
the following URL - http://Inx02.dbmi.pitt.edu/down-
load/Aroma%20Extensions.zip.

Availablility and Requirements
Project name: Virtual Normals
Project home page: http://Inx02.dbmi.pitt.edu/down-
load/Aroma%20Extensions.zip
Operating system(s): Platform independent.
Programming language: R
Other requirements: R 2.11 or higher, aroma.affyme-
trix 1.5.0 or higher.
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License: Please contact corresponding author (RWS)
for commercial license. No license required for aca-
demic use.

Any restrictions to use by non-academics: License
needed for commercial use.

Additional material

Additional File 1: Definitions, additional methods, a description of
the paired tumor/normal data set, Heat Maps, Segmentation plots
and a comparison of raw CN and segmentation results. The file
contains: a) A set of definitions for some terms used throughout the text.
b) A detailed method for the Affymetrix 250K Sty assay for formalin fixed,
paraffin embedded tissue (FFPET) samples. ) Information on the paired
tumor/normal data set used. d) References Cited in the Additional file. )
Heat Maps for the (1) in-lab FFPE normals reference, (2) the VN reference
based on in-lab FFPE normals data set and (3) VN reference based on
HapMap data set. f) Segmentation plots for the (1) in-lab FFPE normals
reference, (2) the VN reference based on in-lab FFPE normals data set
and (3) VN reference based on HapMap data set. g) A figure showing a
comparison of raw CN and segmentation results (Affymetrix 6.0 array) for
a renal carcinoma sample on Chr.2 utilizing three different sources of the
reference signal.

Abbreviations

VN: virtual normals; (algorithm described herein) CN: copy number; CNA:
copy number alterations; SNP: single-nucleotide polymorphism; FFPE:
formalin-fixed paraffin embedded sample preservation protocol; FP: false
positive; FN: false negative; SD: standard deviation; GC, GC content: guanine-
cytosine content; GC wave: variation in hybridization intensity associated
with the GC content.
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