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A multiphase Eulerian, three-dimensional, computational fluid dynamics (CFD) model was 

developed and implemented in ANSYS, Fluent v14.5 to predict the local hydrodynamics and the 

overall performance of Slurry Bubble Column Reactors (SBCRs) for Fischer Tropsch (F-T) 

synthesis [1, 2]. The CFD model predictions were validated against the experimental gas holdup 

profiles obtained under ambient conditions by Yu and Kim [3] for air-water-glass beads system 

and by Chen et al. [4] for N2-Drakeol-glass beads system. The model predictions were also 

validated against the overall gas holdup data for He/N2 mixtures, as surrogates for H2/CO, 

measured in a molten F-T reactor wax containing iron catalyst, under operating conditions typical 

to those of F-T synthesis in our pilot-scale SBCR, available in the Reactor and Process Engineering 

Laboratory (RAPEL) at the University of Pittsburgh. These validations, carried out in the absence 

of F-T reactions, showed that the inclusion of the RNG k-ε turbulence model, coupled with the 

gas-liquid drag model by Wen-Yu [5], the liquid-solid drag model by Schiller -Naumann [6] and 

the lift coefficient by Tomiyama et al. [7], along with our empirical mass transfer coefficients 

correlation into the CFD model, led to the most accurate predictions of the experimental data 

mentioned above.  

The validated CFD model was then used to predict the effects of internals and spargers design 

on the local hydrodynamics in our pilot-scale (0.3-m ID, 3-m height) SBCR and the effects of 

internals on the local hydrodynamics in a larger-scale conceptual SBCR (1-m ID, 10-m height), in 
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the absence of F-T reactions. Moreover, the kinetic expressions for F-T and WGS reactions 

measured for iron catalyst provided by the National Institute for Clean-and-Low-Carbon Energy 

(NICE), China were incorporated into the validated CFD model and the subsequent model was 

then used to predict the local hydrodynamics and the overall performance of our pilot-scale SBCR 

and those of the commercial-scale (5.8-m ID, 30-height) SBCR by NICE. The simulation results 

are described in the following: 

 In the absence of F-T reactions, the effect of parallel internals on the local hydrodynamics (gas 

holdup, liquid and gas velocity vectors, and mixing intensities) were predicted in the pilot-

scale SBCR reactor, provided with a 6-arms spider gas sparger, using the CFD model. The 

simulation results showed that the presence of internals increased the gas holdup, the gas and 

liquid velocities and the turbulence intensities, and led to more even gas holdup radial 

distribution in the reactor. Also, larger liquid recirculation cells were present in the upper part 

of the reactor around the internals after 40 s, while smaller and faster liquid recirculation cells 

were present in the vicinity of the sparger. 

 In the absence of F-T reactions, the effects of the gas sparger types and orifice orientations on 

the gas holdup, Sauter mean bubble diameter, axial concentration profiles, mean axial velocity 

profiles and flow structure were predicted in the pilot-scale SBCR, including no internals, 

using the CFD model. Three spargers (a 6-arms spider and a concentric ring sparger, both with 

upward- and downward-facing orifices, and a perforated plate) were used. The simulation 

results showed that the spargers with downward-facing orifices were more effective in solids 

dispersion and exhibited larger Sauter bubble diameters when compared with those of upward-

facing orifices. The 6-arms spider spargers resulted in smaller Sauter bubble diameters when 

compared with those of the concentric ring spargers. For the spider spargers, faster and smaller 
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liquid recirculation cells appeared in the vicinity of the spargers, whereas, larger and slower 

liquid recirculation cells appeared after about 0.36-m measured from the bottom flange. For 

the concentric ring and perforated plate spargers, however, slower and larger liquid 

recirculation cells were present throughout the reactor starting at the top of the distributor. 

 In the absence of F-T reactions, the effects of internals configuration (3 parallel and 4 bundled) 

on the gas holdup and liquid axial velocity were predicted in the large-scale conceptual SBCR 

using the CFD model. A concentric-ring sparger, consisting of 3 concentric-rings with 333, 

167 and 111 identical (7-mm ID) orifices was used. The simulation results showed that using 

parallel internals led to faster and larger liquid recirculations at a much earlier time when 

compared with those using bundled internals. Liquid recirculations were stronger when using 

1-bundled or 3-bundled internals than those when using a 4-bundled or 5-bundled internals; 

and the liquid backmixing profiles were governed by the clearance between the internals and 

the reactor’s wall. Also, using bundled internals exhibited smoother radial gas holdup profiles, 

with lower local gas holdup values, when compared with those using parallel internals.  

 In the presence of F-T and WGS reaction kinetics with iron catalyst, the gas holdup, the Sauter 

mean bubble diameter and the performance (CO and H2 conversions, and C5
+ products yield) 

of the pilot-scale SBCR, provided with one-bundled internals (one, 2.5-inch pipe at the center 

surrounded by six, 1.75-inch pipes in a hexagonal pattern) and a 6-arms spider sparger, were 

predicted using the CFD model. The simulations were carried out using catalyst concentrations 

of 5, 10 and 15 vol.% and H2/CO ratios of 1, 1.5 and 2, at a pressure of 20.5 bar, a temperature 

of 443 K, and a superficial gas velocity of 0.24 m/s. The simulation results showed that the gas 

holdup and Sauter mean bubble diameter axial profiles in the presence of F-T reactions were 

different from those predicted in the absence of F-T chemical reactions. Also, the CO and H2 
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conversions increased with increasing catalyst concentration; and our pilot-scale SBCR can 

produce a maximum yield of 1.87 tons/day of C5
+ products using a H2/CO ratio of 2/1 and a 

catalyst concentration of 15 vol%.  

 In the presence of F-T and WGS reaction kinetics with iron catalyst, the overall performances 

of the NICE commercial-scale F-T SBCR, provided with 604 bundled internals and a 12 

concentric-ring spargers, were also predicted using the CFD model. The simulations were 

carried out at four superficial gas velocities of 0.12, 0.24, 0.3 and 0.4 m/s using a catalyst 

concentration of 10 vol%, a pressure of 29 bar, and a temperature of 528 K. Under these 

conditions, the simulation results showed that the CO conversions were 48%, 59%, 58% and 

55%; the H2 conversions were 36%, 51%, 56% and 54%; and the C5
+ products yields were 

275, 576, 627 and 654 ton/day at the superficial gas velocities of 0.12, 0.24, 0.3 and 0.4 m/s, 

respectively.  

Thus, our CFD model built and validated in this study for 3-phase non-reactive and reactive 

systems could be used to optimize the SBCR design and/or troubleshoot any problems associated 

with the internal reactor operation. 
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1.0  INTRODUCTION 
 

 

 

 

Fischer-Tropsch (F-T) synthesis provides a pathway for converting carbon containing natural 

resources, such as natural gas, coal, heavy residue, biomass, municipal waste, etc., into liquid fuels 

and high value chemicals. Initially called “Synthol,” the F-T synthesis was developed in the 1920’s 

in Germany at the Kaiser Wilhelm Institute by two Germans, Franz Fischer and Hans Tropsch [10-

14], with the intent of producing synthetic hydrocarbons based on the 1902 discovery by Sabatier 

and Senderens [15] that methane can be produced from H2 and CO in the presence of nickel 

catalyst. 

The overall F-T process involves three main steps: syngas generation, F-T catalytic 

reactions and product upgrading, as shown in Figure 1-1. Syngas generation involves converting 

the carbonaceous feedstock into a H2-CO mixture (synthesis gas, known as syngas) via reactions 

with steam and optionally air or oxygen. Solid feedstocks, such as coal and biomass, are converted 

in a gasifier, of which various types have been already in industrial applications [16-19]. Different 

gasification processes and technologies have also been discussed in the literature [13, 20-30]. 

Natural gas, on the other hand, is converted to syngas in a reformer using either partial oxidation 

(POX), steam methane reforming (SMR) or auto-thermal reforming (ATR).  
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Figure 1-1: Overview of XTL process 

 

Current worldwide commercial activities are summarized in Figure 1-2. As of 2016, the 

global commercial F-T capacity is 402,500 barrels per day (bpd), with an additional 216,000 bpd 

under construction. Although numerous planned F-T activities and plants have been put on hold 

or delayed due to the 2014 slump in oil prices [31, 32], there remains a significant and increased 

interest in GTL and CTL commercialization, once the oil market stabilizes [33-35].  
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Figure 1-2: Commercial F-T activities worldwide as of 2016 [12, 31, 36, 37] 

 

 

South Africa 
Sasol      160,000 bpd 
PetroSA      22,000 bpd 

Australia 
Sasol/Chevron 
132,000 bpd 

Qatar 
Pearl GTL (Shell/QP)       140,000 bpd 
Oryx GTL (Sasol/ QP)       34,000 bpd 

Russia 
Gazprom/Syntroleum  
130,00 bpd 

Nigeria 
Escravos 
(Sasol/Chevron/NNPC) 
34,000 bpd 

Malaysia 
Shell (Bintulu) 
12,500 bpd 

Louisiana, USA 
Sasol/Flour/Technip 
96,000 bpd 

Ningxia, China 
Shenhua CTL      80,000 bpd 

Uzbekistan 
Uzbekistanneftgaz/Sasol/Petronas 
37,000 bpd 

Oklahoma, USA 
Velocys/WM/Ventech/NRG 
250 bpd 

Ohio, USA 
Velocys 
5000 bpd 

Russia 
Gazprom/Shell  

Brazil 
Petrobras/ 
CompactGTL 

Kazakhstan 
CompactGTL 
3,000 bpd 
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In F-T synthesis, the syngas reacts in the presence of a heterogeneous catalyst to produce 

a wide range of hydrocarbon products, primarily linear alkanes and alkenes. Although many metals 

have been identified to catalyze the F-T reactions, only iron (Fe) and cobalt (Co) have been used 

in industrial applications [18, 30]. Iron catalyst is cheap and has a high water-gas-shift (WGS) 

activity, however, it is prone to severe attrition and the water produced during the reaction 

appeared to decrease its activity [12, 38]. Cobalt-based catalyst, on the other hand, has higher 

activity than iron catalyst since it is not strongly inhibited by water. It also has longer life than iron 

catalyst as it is more resistant to attrition. Cobalt-based catalyst, however, is more expensive and 

has no WGS activity [12, 39].  

During Cobalt catalyzed F-T reaction, the oxygen from CO dissociation is converted to 

H2O, as shown in Equation (1-1). Conversely, Iron catalyst has a high affinity for the WGS reaction 

as shown in Equation (1-2), resulting in the conversion of a significant portion of the oxygen from 

CO dissociation into CO2. 

𝐹 − 𝑇:           𝐶𝑂 + 2𝐻2 →−𝐶𝐻2 −  + 𝐻2𝑂 (1-1) 

𝑊𝐺𝑆:             𝐶𝑂 + 𝐻2𝑂 ⇆𝐻2 + 𝐶𝑂2 (1-2) 

Thus, the extent of the WGS reaction has to be closely considered as it affects the H2/CO ratio in 

the F-T process.  

In the case of gas-to-liquid (GTL) applications, the produced syngas is highly rich in H2 

and any additional H2 via the WGS reaction is undesirable. In contrast, carbon-rich feedstocks, 

such as coal or biomass, produce a CO-rich syngas; and would therefore require an extent of WGS 

in the F-T reactor. Hence, industrial GTL plants have conventionally used cobalt-based catalysts, 

such as the Shell (Pearl) and the Sasol (Oryx) plants in Qatar, whereas the coal-to-liquid (CTL) 
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plants usually use iron-based catalysts, such as the Sasol Synfuels complex in Secunda, South 

Africa and the planned CTL plants in China [30, 32, 40]. 

The F-T process configuration could ultimately dictate the type of the catalyst to be used 

for GTL or CTL applications. For instance, if the process is configured for recycling CO2 or CO2-

rich tailgas to the methane reformer, this will lower the H2/CO ratio and will allow the use of iron 

catalyst in GTL applications. Similarly, if the process is configured for a sour shift of the syngas 

from the gasifier over Cu/ZnO catalyst, followed by an acid gas (CO2 and H2S) removal, this will 

allow the use of cobalt in CTL applications. Various process configurations for Anything-to-

Liquid (XTL) plants can be found elsewhere [12, 21, 32, 41-45]. 

Depending on the reaction temperature, the F-T process is referred to as low temperature 

F-T (LTFT) or high temperature F-T (HTFT). The temperature of the LTFT ranges from 180 to 

260 oC and the syncrude produced is wax consisting mostly of long chain hydrocarbons, while the 

temperature of the HTFT process is between 290 and 360 oC and the products are mostly short 

chain hydrocarbons and gases. Therefore, the final products of the LTFT process consist mostly 

of diesel fuel, while gasoline production has been the focus of the HTFT [11]. The LTFT syncrude 

product is easy to upgrade by a hydroprocessing step and a fractionation step to obtain naphtha 

and middle distillate, whereas the HTFT syncrude requires more complex refinery facilities [11]. 

It should be noted that recent R&D and large-scale commercial efforts have been focused on the 

LTFT due to the current drive for using more diesel engines than gasoline engines, the excellent 

quality of sulfur-free F-T diesel, and perhaps the mild conditions of the process. 

Reactor technologies used for commercial applications of the F-T synthesis are 

summarized in Table 1-1 and depicted in Figure 1-3. The HTFT reactors include fixed fluidized-

bed reactors (FFBRs) and circulating fluidized-bed reactors (CFBRs), whereas multi-tubular 
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fixed-bed reactors (FBRs) and slurry bubble column reactors (SBCRs) are used for the LTFT 

process. Also, LTFT micro-channel reactors for small-scale applications have been recently 

receiving increasing attention, even though, no commercial applications are yet available.  

 

Table 1-1: Commercial F-T plants, catalysts and reactor technologies [12, 32] 

F-T Plant Country Date of 
Operation 

Reactor 
Technology 

Catalysts 

CTL  

(14 plants 

active at end 

of WWII) 

Germany 1935-1962 LTFT FB 

Co/ThO2/kieselguhr (100:18:100) before 

1938 

Co/ThO2/MgO/kieselguhr (100:5:8:200) 

after 1938 

Hydrocol 

GTL 
USA 1951-1957 HTFT FFB 

Fused Fe3O4/Al2O3/K2O (97:2.5:0.5) 

Later replaced by natural magnetite with 

0.5% K2O 

Sasol I 

CTL/GTL 

South 

Africa 

1955-

present 

HTFT CFB 

LTFT FB 

LTFT SBCR 

Magnetite with 0.5% K2O (same as Hydrocol 

GTL) 

Precipitated Fe/SiO2/K2O/Cu (100:25:5:5) 

Precipitated Fe/SiO2/K2O/Cu (100:25:5:5) 

Sasol 

Synfuels CTL 

South 

Africa 

1980-

present 
HTFT FFB 

Fused Fe (similar to Sasol I HTFT CFB 

catalyst) 

PetroSA GTL 
South 

Africa 

1992-

present 

HTFT CFB 

LTFT SBCR 

Fused Fe (same as Sasol Synfuels) 

Co based catalyst 

Shell Bintulu Malaysia 
1993-

present 
LTFT FB Co/Zr/SiO2 

Sasol Oryx 

GTL 
Qatar 

2007-

present 
LTFT SBCR Co/Pt/Al2O3 

Shell Pearl 

GTL 
Qatar 

2011-

present 
LTFT FB Co/Zr/SiO2 

Escravos 

GTL 
Nigeria 

2014-

present 
LTFT SBCR Co/Pt/Al2O3 

 

In multi-tubular FBRs, the syngas flows through small diameter tubes packed with catalyst 

at small voidage, resulting in a high pressure drop and an increased operating cost. These reactors 

have comparatively complex heat transfer characteristics and their maximum production capacity 
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is limited by the amount of heat which can be removed. Hot spots would ultimately result in carbon 

deposits on the catalyst surfaces and serious plugging of the reactor tubes. These types of reactors, 

however, have been used to carry out LTFT by both Germany during WWII and Sasol since 1950’s 

as well as by Shell at the Bintulu GTL (Malaysia) and more recently at the Pearl GTL (Qatar) [12, 

20, 32, 46, 47]. 

SBCRs, on the other hand, have a simpler design and allow for much higher heat removal 

efficiencies than multi-tubular FBRs due to the presence of a large volume of the liquid-phase. Its 

advantages include a much greater flexibility than FBRs and its capital cost is 20 - 40% lower than 

that of a multitubular FBRs [48]. However, the high mechanical shear on the catalyst resulting in 

particles attrition and the lack of a reliable system for the fine particles separation from the liquid 

products, have delayed commercial deployment of SBCRs until the 1990’s. Conversely, 

microchannel reactors have a stationary catalyst bed combined with enhanced heat and mass 

transfer characteristics. Also, they are typically aimed at exploiting a different market than 

conventional reactors where their small size is an advantage.  

The proper design and scaleup of SBCRs for LTFT synthesis require, among other, precise 

knowledge of the kinetics, hydrodynamics, mass transfer, heat transfer in F-T synthesis. In the 

following, a comprehensive literature review of the current state-of-knowledge of the mechanisms, 

kinetics, hydrodynamics, mass transfer, heat transfer and mathematical as well as computational 

fluid dynamics (CFD) modeling of LTFT synthesis in SBCRs is provided. 
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Figure 1-3: Different F-T reactor technologies  

  

2
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2.0  LITERATURE REVIEW 
 

 

 

 

2.1 KINETIC STUDIES OF FISCHER-TROPSCH SYNTHESIS 
 

 

The complexity of the F-T reaction mechanism and the numerous species involved are major 

obstacles to fully describe the kinetics of the F-T synthesis. In order to simplify the task, many 

empirical overall reaction rate equations have been developed and are available in the literature. 

Latest studies, however, have focused on developing comprehensive kinetics based on the 

Langmuir-Hinshelwood-Hougen-Watson (LHHW) approach, since the variety of the products 

obtained from the F-T synthesis can only be explained and modeled by detailed kinetic models, 

which include every elementary reaction [49]. The reaction rates available in the literature for the 

iron and cobalt-based catalysts are presented in the following. 

Iron catalyst has a high WGS activity and therefore the rate of the WGS reaction along 

with that of the F-T must be taken into account for simulation purposes. Since the 1950’s, 

numerous studies of the kinetics of the F-T on iron catalyst, conducted mostly in fixed-bed and 

slurry reactors, led to very different kinetic rate expressions as can be seen in Tables A-8-1 and A-

8-2 (Appendix A), for F-T and WGS reactions, respectively. Only recently, however, 

comprehensive kinetic models, able to predict both the syngas consumption rate and products 

distribution, have been proposed [49-55]. The differences among the rate equations may arise from 

the diversity of the catalysts, reactors (mass transfer not always negligible) and the operating 

conditions used in these studies. As a matter of fact, when choosing one of those expressions for 
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modeling purposes, one has to select the correlations which have been developed within the 

conditions closest to the simulated ones.  

Iron catalyst activity was found to increase with the partial pressure of H2 and decrease 

with the partial pressure of H2O [56, 57], suggesting a strong competition between CO and H2O 

for the adsorption onto the active catalyst sites. It was therefore suggested that the F-T reaction 

rate over iron catalysts is inhibited by water as well as CO2, as reflected by the kinetic equations 

by Anderson [58], Huff and Satterfield [59] and Ledakowicz et al. [60]. In 2006, however, Botes 

et al. [61] conducted kinetic studies on a potassium-promoted precipitated iron catalyst at Sasol 

and concluded that neither water nor CO2 had any significant influence on the chemical reaction 

kinetics. Also, in 2010, Zhou et al. [62], confirmed the findings and the proposed rate equation by 

Botes et al. [61]. 

Review articles on cobalt-catalyzed F-T kinetics are available in the literature [63, 64], 

whereas Zennaro et al. [65] and Das et al. [66] presented in a tabulated format the explicit rate 

equations, which were suggested for cobalt catalyst. Of these, the LHHW type rate equations 

proposed by Outi et al. [67], Sarup and Wojciechowski [68] and Yates and Satterfield [69] had 

been frequently cited in the literature [70]. Table A-3 (Appendix A) shows the kinetic rate 

expressions available in the literature for the F-T cobalt-based catalysts.  

Thus, the main difference between the kinetics of cobalt-based catalysts and those of iron 

catalysts lies in the former’s inactivity towards the WGS reaction since H2O is not adsorbed on the 

catalyst active sites. As a result, the WGS reaction can be neglected when modeling the kinetics 

of F-T synthesis using cobalt-based catalysts. It seems that the kinetic models for cobalt are 

consistent with a mechanism where CO dissociation occurs before any interaction with H2, 

whereas those for iron are consistent with a mechanism of hydrogen-assisted CO dissociation. 
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Actually, recent results from the DFT calculations lend some support to these implications [71]. It 

was reported that direct CO dissociation is facile over open, high reactivity surfaces, such as 

corrugated or stepped cobalt surfaces, however, H2 involvement in CO dissociation seems to be 

required on low reactivity surfaces, such as carbided iron, which is the predominant active phase 

under iron catalyzed F-T synthesis conditions [72, 73]. Figures 2-1, 2-2 and 2-3 compare various 

F-T and WGS rate expressions by different authors at various H2/CO ratios; and as expected, 

different expressions provide different values. 

 

 

 

Figure 2-1: Comparison among F-T rate expressions at various H2/CO ratios over Iron 
catalysts (T = 528 K and P = 3 MPa)  
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Figure 2-2: Comparison among F-T rate expressions at various H2/CO ratios over Cobalt 
catalysts (T = 528 K and P = 3 MPa) 
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Figure 2-3: Comparison among WGS kinetic rate expressions at various H2/CO 
ratios (T = 528 K and P = 3 MPa) 
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vol.%, mixture of hydrocarbons as the liquid-phase, H2 and CO mixture as the gas-phase, micron 

sized Fe or Co-based on typical catalyst support as a solid-phase). It should be mentioned that the 

hydrodynamics and mass transfer in SBCRs have been consistently shown to depend on the reactor 

size as well as operating conditions [74], and accordingly, using such available data in the 

literature, which were obtained in small reactor diameters (< 0.15 m) under ambient conditions or 

with a single gas for designing commercial-scale SBCRs, with inside diameters reaching several 

meters and operating in the churn-turbulent flow regime, could be risky.  

 

 

2.2.1 Overall Gas Holdup  
 

 

The gas holdup represents the volume fraction of the gas-phase in the reactor. Deckwer et al. [75] 

measured the gas holdup for N2 in a paraffin wax in the presence of up to 16 wt.% of alumina 

particles at 416 and 543 K. However, their experiments were carried out in small columns of 0.04 

and 0.1 m ID at low superficial gas velocities, uG < 0.04 m/s and pressures, P < 11 bar. The gas 

holdup for N2 in paraffin wax was investigated by Bukur et al. [76] who used iron oxide and silica 

as solid phases. Their data were measured in a small column of 0.05 m ID at low ranges of gas 

velocities and at low pressure (~ 1 bar). Krishna et al. [77] reported gas holdup data obtained in a 

relatively large column of 0.38 m ID with a three-phase system consisting of air, paraffin oil and 

silica particles and covered ranges of solid concentrations and gas velocities typical to those of 

industrial F-T reactor, nevertheless, their experiments were conducted at atmospheric pressure and 

ambient temperature. Vandu et al. [78] measured the gas holdup of air in a paraffin oil in the 

presence of alumina particles, however, they used a small SBCR of 0.1 m ID operating at 

atmospheric pressure and ambient temperature. Woo et al. [79] obtained gas holdup data while 

carrying out F-T synthesis over alumina-supported cobalt catalyst in a small SBCR of 0.05 m ID. 
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They reported that optimal conditions were reached when using gas velocities in the range of 

0.068-0.1 m/s and catalyst concentration of 15 wt.%. It should be emphasized, however, that higher 

gas flow rates and solid loading would be expected in large-scale SBCRs in order to increase the 

reactor productivity. Behkish et al. [8, 80] measured the gas holdup for H2, CO, N2, CH4 and He 

in Isopar-M (an iso-paraffinic liquid mixture of C10 – C16) in the presence of alumina particles 

under high pressures (up to 30 bar), temperatures (up to 473 K), gas velocities (up to 0.39 m/s) and 

solid concentrations (up to 36 vol.%). While typical F-T operating conditions were covered, these 

authors did not use gas mixtures which would mimic the syngas. Furthermore, although Isopar-M 

could be used as a startup liquid for an F-T reactor, its composition varies greatly from the molten 

reactor wax which would be present in the SBCR once steady-state operating conditions are 

reached. More recently, Sehabiague et al. [81] have measured gas holdup data for N2 and He, in 

C12-C13, paraffins mixture, light F-T cut, and heavy F-T cut  in a 0.3 m ID SBCR under high 

pressure (up to 30 bar), temperature (up to 500 K) in the presence of  Alumina, Puralox Alumina, 

and iron oxide particles  (up to 20 vol.%) at varying superficial gas velocities (up to 0.27 m/s). 

The effects of various operating variables on the gas holdup have been extensively 

investigated in the literature; and the parameters believed to impact the gas holdup are the 

superficial gas velocity, liquid density, liquid surface tension, liquid viscosity, and liquid vapor 

pressure. Hikita et al. [82] concluded that the effects of nozzle diameter, column diameter and 

liquid height on the gas holdup could be neglected. Akita et al. [83] showed that the effect of liquid 

superficial velocity on the gas holdup could be neglected at values < 0.044 m/s. The gas holdup 

has been shown to increase with increasing the superficial gas velocity [46], which affects the flow 

regime in the reactor. The following power law expression best describes the relationship between 

gas holdup and superficial gas velocity. 
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휀𝐺  ∝ 𝑢𝐺
𝑛   (2-1) 

The value of n is dependent on the flow regime. In the homogenous flow regime, the value of n is 

in the range of 0.7 - 1.2 [84, 85], exhibiting an almost linear relationship between the gas holdup 

and the superficial gas velocity. The value of the gas holdup changes at the transition regime and 

as a result the value of “n” increases, enhancing the nonlinear dependency on the superficial gas 

velocity. The value of “n” then drops to 0.4 - 0.7 in the heterogeneous flow regime [84-87]. This 

change of the value of “n” was attributed to the variation of the system physical properties and the 

operating variables during the regime transition. Other studies have also reported that the effect of 

surface tension become more significant at low superficial gas velocities (< 0.05 m/s) [87-89]. 

The dependence of gas holdup on the pressure has been widely investigated and most of 

studies concluded that increasing pressure increases the gas holdup in SBCRs [90-92]. This 

dependency was attributed to the effect of increasing gas density (gas momentum) as the pressure 

increases. Increasing pressure is believed to reduce coalescence between the gas bubbles, and thus 

increases the number of small rigid gas bubbles, which translates into a high gas holdup [89, 93, 

94]. 

The gas holdup was reported to increase with liquid viscosity and surface tension, and in 

some instances was reported to increase and decrease with increasing liquid density [93, 95-103]. 

The effect of viscosity was attributed to the rise of more bubbles coalescence in more viscous 

liquids. The effect of surface tension was attributed to the cohesive forces between the liquid 

molecules, which make it harder for the smaller bubbles to either coalesce or breakup [102, 104]. 

The gas holdup was found to be higher in organic liquids when compared with that in water. 

Moreover, for organic mixtures, the gas holdup was found to reach a maximum at a certain 

composition of the mixture.  
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The dependence of gas holdup on temperature was related primarily to the effect of temperature 

on the liquid physical properties. High temperatures, such as F-T synthesis, will reduce the liquid 

density, viscosity and surface tension, which in turn, will affect the gas holdup [105]. 

Increasing the solid particles density was reported to decrease the gas holdup [106-114]. 

The effect of solid particles size on the gas holdup was dependent on the wettability of the particles 

[76, 89, 103]. For non-wetting particles, the gas holdup was found to increase with the particle 

size, whereas the opposite was observed for wetting particles [76, 103, 106-114]. The effect of 

solid particles wettability on the gas holdup, however, was not clear as the values were reported to 

increase and also decrease [76, 103].  

The reactor geometry has a strong effect on the gas holdup, depending on the location 

within the reactor. At the bottom of the SBCR, the gas holdup is influenced by the sparger design, 

whereas the values in the bulk and near the top of the reactor exhibit different dependencies [102, 

115, 116]. Typically, slug flow and large gas bubbles would not occur at large reactor inside 

diameters (> 0.15 m) [83, 85, 102, 117-119]. In reactors with small inside diameters, slug flow and 

large gas bubbles would occur, decreasing the gas holdup. Similarly, the effect of reactor height, 

usually represented in terms of height to diameter ratio was found to be negligible for hc/dc values 

> 6 [102, 117, 120]. In addition, sparger design greatly influences the gas holdup as it affects the 

size and distribution of the initial bubbles generated at the bottom of the reactor [83, 94, 121-125].  

There are numerous gas holdup correlations available in literature as highlighted by 

Behkish [9]. Many of these correlations were developed for aqueous and highly ionic systems at 

ambient conditions in laboratory-scale reactors, which brings into question their ability in 

predicting the gas holdup in industrial large-scale reactors operating under F-T conditions. Table 
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A-5 (Appendix A) summarizes the gas holdup correlations available in literature for three-phase 

reactors. 

In order to graphically show the difference among these correlations, the data given in 

Table 2-1 were used to predict the effects of superficial gas velocity, catalyst particle diameter, 

solid loading and hc/dc on the overall gas holdup as depicted in Figure 2-4. As can be seen in this 

figure, there is a wide variation among the predicted values, especially at high superficial gas 

velocities. Also, with the exception of the correlations by Behkish et al. [9] and Sehabiague et al. 

[81], most correlations do not account for the effect of particle diameter, catalyst loading and hc/dc 

on the overall gas holdup. 

 

Table 2-1: Operating conditions used in the correlations for comparison purposes 

Parameter Value 
Pressure 3 MPa 

Temperature 500 K 

uG 0.05 - 0.45 m/s 

uL 0.01 m/s 

Cv 5-35 vol.% 

dp 40-520 micron 

hc 50 m 

hc/dc 2.5-20 

Liquid and Solid physical properties Taken from Sehabiague and Morsi [126] 

 
Table 2-2: Correlations for the physicochemical properties of the liquid phase [126] 

𝜌𝐿 = 978.05 − 0.5403𝑇 (2-2) 

𝜇𝐿 = 𝑒𝑥𝑝 (
2504.2

𝑇
− 4.3371) (2-3) 

𝜎𝐿 =
1.367×10−4𝑇2 − 0.1915𝑇 + 80.486

1000
 (2-4) 

𝑙𝑜𝑔10(𝑃𝑣) = −
50951

𝑇2
−
1694.1

𝑇
+ 3.146 (2-5) 
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(a) (b) 

  
(c) (d) 

 
Figure 2-4: Comparison among literature gas holdup correlations at various (a) superficial 

gas velocities, (b) Catalyst particle diameters, (c) Solid loadings and (d) hc/dc values
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2.2.2 Radial Distribution of Gas Holdup 
 

 

The radial profile of the gas holdup in two-phase flows has been measured and reported in the 

literature [127-134]. Literature experiments for measuring the radial gas holdup distribution are 

given in Table 2-3. The exact experimental measurements have proven to be complex and time 

consuming, even though numerous tomographic and velocimetric techniques had been developed 

over the past three decades. The radial distribution of the gas holdup is generally modeled with a 

power law [134] (Equations (2-6) and (2-7)), based on experimental findings using Computed 

Tomography (CT) measurements [135, 136].  

휀𝐺(𝜉) = 휀�̃�(
𝑚 + 2

𝑚
)(1− 𝑐𝜉𝑚) (2-6) 

Where ε̃𝐺  is related to the cross-sectional average holdup by the following equation: 

휀�̅� = 휀�̃�(
𝑚 + 2 − 2𝑐

𝑚
) (2-7) 

The value of the parameter ‘m’ is high for a flat gas holdup distribution (corresponding to bubbly 

flow regime) and decreases for the more parabolic profile prevalent in the churn-turbulent flow 

regime [134, 137]. This number is typically > 5 for a flat holdup profile, which exists in the bubbly-

flow regime and is lower (~2) for the churn-turbulent flow regime. While the parameter c allows 

for a non-zero holdup at the wall, which was observed from CT measurements [138, 139]. The 

above equations have been validated by other authors to fit the experimental radial holdup profiles 

[140, 141]. 

For industrial reactors, however, it is important to obtain a few cross-sectional 

measurements of the gas holdup throughout the column. It is often overlooked that a single line 

averaged holdup, even across the centerline of the column, is not representative of the cross-
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sectional mean value. Nevertheless, a line averaged gas holdup along several radial positions can 

be used to obtain a cross-sectional mean, provided that the holdup distribution is assumed 

axisymmetric. If such an assumption can be made, the radial variation of the gas holdup and hence 

the cross-sectional mean can be obtained by making use of the Abel integral and its inversion 

(Equation (2-8)) [135, 137]. 

휀𝐺(𝑥, 𝑅) = 2 ∫ 𝑓 (√(𝑅2 − 𝑥2), 𝑅)

√(𝑅2−𝑥2)

0

𝑑𝑦 = 2∫
𝑓(𝑟, 𝑅)𝑟

√(𝑟2 − 𝑥2)
𝑑𝑟

𝑅

0

 (2-8) 

Where 𝑓(𝑟, 𝑅) is a function of the radial position, which is not zero within the circle of radius R.  

 

Table 2-3: Experimental work for measuring radial gas holdups in three phase reactors 

Reactor 
dimensions Phase properties Operating conditions Reference 

dC  =  0.1 m 

hC  =  0.8 m 

 Glass beads/ Air/Water 

 dp: 0.12 –  0.47 mm 

 ρs: 2500 kg/m
3 

 Solid loading: 12.5 – 

50% 

 u𝐺  =  0.01 m/s 

Rigby 

[142] 

dC  =  0.12 m 

hC  =  2 m 

 Glass beads / Air/ Water 

 ρs: 2500 kg/m
3 

 dp: 2.2 mm 

 30 kg solid loading 

 uL  =  0.05 m/s 

 uG  =  0.02 − 0.14 m/s 

Marooka 

[143] 

dC  =  0.254 m 

hC  =  2.5 m 

 Glass beads / Air/ Water 

 ρs: 2500 kg/m
3 

 dp:  2.3 mm 

 30 kg solid loading 

 uL  =  0.06 m/s 

 uG  =  0.01 − 0.14 m/s 

Yu and 

Kim [3] 

dC  =  0.102 m 

hC  =  1.05 m 

 Alumina particles /Air/Water 

 dp:  75 μm 

 Solid loading: 0 – 25% 

 uG  =  0.02 − 0.13 m/s 
Wu [144] 
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2.2.3 Sauter Mean Gas Bubbles Diameter  
 

 

Behkish et al. [8, 80] measured the Sauter mean gas bubble diameter (d32) for H2, CO, N2, CH4 

and He in Isopar-M (an isoparaffinic liquid mixture of C10 – C16) in the presence of alumina 

particles under high pressures (up to 30 bar), temperatures (up to 473 K), gas velocities (up to 0.39 

m/s) and solid concentrations (up to 36 vol.%). While the experiments by these authors were 

conducted under typical F-T operating conditions, they did not use gas mixtures, mimicking the 

syngas; and the composition of their Isopar-M is different than that of the molten wax produced in 

the F-T SBCRs. More recently, Sehabiague et al. [81] have measured the Sauter mean gas bubble 

diameter (d32)  for N2 and He, in C12-C13, paraffins mixture, light F-T cut, heavy F-T cut  in a 0.3 

m ID SBCR under high pressure (up to 30 bar ), temperature ( up to 500 K) and in the presence of 

Alumina, Puralox Alumina, and Iron oxide particles (up to 20 vol.%) at various superficial gas 

velocities (up to 0.27 m/s). 

SBCRs are customarily operated in the churn-turbulent flow regime, which is believed to 

be the best mode of operation of such reactors [78, 145]. In this regime, large and small size gas 

bubbles were found to co-exist [145-147]. The large gas bubbles, with typical rise velocities in the 

order of 1.5 m/s, usually rise straight up through the reactor and disengage without any 

recirculation. The small bubbles, on the other hand, may experience recirculation and backmixing 

due to their low rise velocities.  

Modeling of the gas bubbles behavior in SBCRs has received significant attention due to 

its effect on solid distribution and reactants conversion, Table A-6 (Appendix A) highlights 

commonly referenced bubble diameter correlations available in the literature, whereas Figure 2-5 

depicts the behavior various correlations at various superficial gas velocities; and as can be 

observed, different values and trends of the bubble sizes are predicted.  
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In the bubbly flow regime, the gas-phase behavior can be adequately modeled assuming a 

uniform gas bubbles size distribution [148, 149]. On the other hand, in the Churn-turbulent flow 

regime, the two-class modeling approach introduced by Krishna [145, 147] was implemented by 

Rados [150], Sehabiague [151], and Maretto [152], among others. It assumes a generalized two-

phase model, in which a dilute- and a dense-phase are identified. The dilute-phase which is 

dominated by large gas bubbles is virtually in plug flow, while the dense-phase experiences 

turbulent backmixing. The main disadvantage of this approach is that the cross flow interactions 

between the two-bubble classes usually are either neglected in steady state models or assumed to 

occur infinitely fast to quickly homogenize the composition of both classes in the transient and 

startup models [153, 154]. This approach gives rise to inaccuracies and deviations since it is only 

concerned with the limiting cases, while the actual extent of the interaction between the large and 

small gas bubbles would occur somewhere in the middle, which would create some differences in 

species concentration [136]. Moreover, intra-phase backmixing has either been accounted for 

using perfect mixing or by assuming plug flow [155], however, non-ideal flow models, accounting 

for a finite degree of backmixing, are believed to be more realistic.  

It should be mentioned that the two-bubble class model in conjunction with the axial 

dispersion model has been accepted and used to model bubbles behavior in SBCRs [151, 152, 154-

159]. In this model, the churn turbulent flow regime was assumed where large bubbles rise straight 

up through the reactor without recirculation, while small bubbles with lower rise velocity were 

entrained in the liquid and as such they followed the liquid-phase backmixing behavior.  

There are two basic categories of non-ideal flow models, axial dispersion models and 

multi-cell models. Moreover, Iliuta [160] proposed a core annulus, multi-compartment model, 

which is a modified multi-cell approach that divides the reactor into compartments based on the 
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bubble size, and individually models the chemistry, thermodynamics and thermal effects of each 

compartment, while accounting for the thermo-physical interaction between the compartments. 

Although many of the earlier SBCR models assumed no solids concentration gradient 

throughout the reactor, Kato [150] showed a gradient in the longitudinal concentration of solid 

particles, which was a function of the liquid micro- and macro-mixing. Therefore, the axial profile 

of the solids concentration is not flat and is highly dependent on the slurry properties and the 

operating conditions. 

 

 

Figure 2-5: Comparison of various bubble diameter velocity correlations   
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2.2.4 Bubble Dynamics 
 

 

Gas–liquid–solid systems have been applied extensively in industry for physical, chemical, 

petrochemical and biochemical processing [136, 161-163]. Current worldwide commercial 

activities in converting natural gas to fuels and chemicals, or gas-to-liquids technology use slurry 

bubble column reactors with column sizes considerably larger than those commonly considered in 

research investigations and in previous industrial applications [164]. Such commercial activities 

have prompted further fundamental research interest in fluid and bubble dynamics, transport 

phenomena, and the effects of high temperature and pressure conditions. . 

In gas–liquid–solid systems, bubble dynamics plays a key role in dictating the transport 

phenomena and ultimately affects the overall rates of reactions. It has been recognized that the 

bubble wake, when it is present, is an important factor governing the system hydrodynamics [135]. 

In general, consideration of the flow associated with the bubble wake near the bubble base, whether 

laminar or turbulent, is essential to characterize the complete behavior of the rising bubble, 

including its motion. Conversely, examining the shape, rise velocity, and motion of a bubble can 

provide an indirect understanding of the dynamics of the liquid–solid flow around the bubble. Most 

of the three-phase processes with considerable commercial interest are conducted under high 

pressure and high temperature, for example, methanol synthesis (at P = 5.5 MPa and T = 260 oC), 

resin hydro-treating (at P = 5.5–21 MPa and T = 300–425 oC), Fischer–Tropsch synthesis (at P = 

1.5–5.0 MPa and T = 250 oC), and benzene hydrogenation (at P = 5.0 MPa and T = 180 oC) [165-

170]. Fundamental study of bubble dynamics in these gas–liquid–solid fluidization systems, 

particularly under high-pressure and high-temperature conditions, is thus crucial. 
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Generally, bubble-induced turbulence and shear induced turbulence are two sources of 

liquid phase turbulence in bubble columns. However, the dominating mechanism of the liquid 

phase turbulence is still not clear in such bubbly flows. 

In a three-phase fluidization system, bubble size variation is intimately related to bubble–

particle collisions. The collisions can yield two different consequences: the particle is ejected from 

the bubble surface, or the particle penetrates the bubble leading to either bubble breakage or non-

breakage. Bubble–particle collisions generate perturbations on the bubble surface. After the 

bubble–particle collision, three factors become crucial in determining the breakage characteristics 

of the bubble [171]: 

(1) Shear stress, which depends on the liquid velocity gradient and the relative bubble–

particle impact speed, and tends to break the bubble; 

(2) Surface tension force, which tends to stabilize the bubble and causes it to recover the 

bubble’s original shape; 

(3) Viscous force, which slows the growth rate of the surface perturbation, and tends to 

stabilize the bubble. 

There are three criteria that are required for particle penetration through a bubble. These criteria 

were developed by neglecting the shear effects due to the liquid flow [4]. The particle will 

penetrate the bubble when any of the following three criteria is satisfied. The three criteria are 

given as follows: 

(1) The acceleration of the particle is downward; 

(2) The particle velocity relative to the bubble is downward; 

(3) The particle penetration depth is larger than the deformed bubble height. 
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When none of these criteria are satisfied, the particle will be ejected from the bubble surface upon 

contact with the bubble. 

The bubble dynamics is controlled by the size and distribution of the gas bubbles present 

in the reactor. The bubble size controls the gas-liquid interfacial area and subsequently it influences 

the overall rate of reactions occurring in the reactor during commercial processes. The formation 

of gas bubble at the injection point is subject to the buoyancy forces due to the difference in density 

between the gas and liquid phases, and the surface tension forces that govern the stability of the 

gas bubble from the orifice and throughout the liquid/slurry phase. The behavior of the gas bubbles 

depends, among others, on the hydrodynamic flow regime. If a bubbly flow regime governs in the 

reactor, the bubbles will be narrowly distributed and low bubble-bubble interactions could be 

expected. In fact a uniform bubble size distribution is generally characteristics of the homogeneous 

bubbly flow regime. As the superficial gas velocity is increased, the high frequency of gas bubble 

interactions leads to coalescence and breakup and the reactor is found to be operating in the churn 

turbulent flow regime, and a distinguishable bimodal bubble size distribution can be observed. 

Consequently, bubbles in this regime can be arbitrary classified into “small”, and “large”. These 

bubbles appear to behave differently as the large gas bubbles rise rapidly in the reactor in a plug 

flow mode and create backmixing, and the small gas bubbles are entrained and re-circulate with 

the liquid/slurry. In the churn turbulent flow regime, bubble breakup and coalescence can occur at 

any moment after the formation of the gas bubble at the orifice, thus the bubble size distribution 

will depend on the balance between coalescence and breakup. 
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2.2.5 Bubble Rise Velocity  
 

 

The behavior of the rising gas bubbles can be described using the rise velocity, shape and motion 

of the bubbles, which are related to the physical properties of the surrounding medium (solid 

loading, liquid viscosity and density) as well as the interfacial properties of the bubbles. The bubble 

rise velocity primarily depends on the bubble size for small gas bubbles and on the liquid surface 

tension and viscosity for large bubbles. Most studies investigating the bubble rise velocity were 

mainly conducted in water-based systems under ambient conditions, which bring into question the 

confidence in applicability to a realistic F-T SBCR conditions. 

Table A-7 (Appendix A) summarizes the bubble rise velocity correlations available in 

literature for use in bubble columns and SBCRs modeling, whereas Figure 2-6 compares the 

behavior of different correlations at various superficial gas velocities. Krishna et al. [172] studied 

the effect of pressure on the rise velocity and found that the gas density has no noticeable effect 

on the bubble rise velocity. Their work, however, was conducted within a very narrow pressure 

range. Lin et al. [173, 174] measured the rise velocities of a single bubble of a known size in 

Paratherm NF heat transfer fluid under a wide range of pressures ranging from 0.1 to 14.9 MPa at 

three temperature 300, 320 and 350 K. They showed that the rise velocity was independent of 

temperature and decreased with increasing pressure. They attributed this behavior to the pressure-

temperature effects on the liquids physical properties. Lou et al. [135] developed a mechanistic 

first principle-based correlations to predict the initial bubble size in slurries at high pressure and 

temperature conditions by accounting for the various competing forces at the bubble distribution 

source. In their model, the bubbles were assumed to be formed in two stages, expansion and 

detachment. During the expansion stage, the bubble initially expands with its base attached to the 

source nozzle; and the detachment stage occurs when the bubble’s base moves away while 
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remaining connected to the nozzle through the neck. The bubble was assumed to be spherical 

during the entire formation process.  

The volume of the gas bubbles can be determined using the balance of all the forces, if 

either of the instantaneous gas flow or the instantaneous gas velocity through the orifice is known, 

as has been discussed by Behkish [89].  

 

 

Figure 2-6: Comparison among various bubble rise velocity correlations 
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2.3 MASS TRANSFER STUDIES IN F-T SBCR  
 

 

In F-T SBCRs, the reactants have to diffuse through the liquid produced in order to reach the 

catalyst active sites before the chemical reaction can take place. Figure 2-7 shows the mass transfer 

process in gas-liquid-solid systems, where the reaction takes place inside the pores of the solid 

catalyst. As can be seen, the reactants in the gas-phase have to travel from the bulk gas-phase to 

the gas-liquid interface and then through the liquid bulk. Once in the liquid bulk, the reactants start 

to mix before transferring to the external surface of the catalyst (solid) particles. After reaching 

the catalyst surface, the reactants have to diffuse inside the catalyst pores until they collide with 

an active site, where the chemical reaction can take place based on the kinetic conditions of the 

system. Once the products are formed, they start diffusing all the way back from the active sites to 

the catalyst surface, through the liquid bulk, to the gas-liquid interface, before diffusing into the 

gas-phase. 

Since the diameter of the catalyst particles frequently used in SBCRs is very small (micron 

size), the interfacial area between the liquid and the catalyst surface is considerably large, and as 

such, the mass transfer resistance between the liquid and solid phases could be neglected. 

Additionally, the mass transfer resistance due to mixing of the reactants in the bulk liquid could 

also be neglected, if the reactor is operating in the churn-turbulent flow regime, as it provides 

effective mixings conditions. Furthermore, since the majority of F-T products have negligible 

vapor pressure, the resistance to transfer of the reactants from the bulk gas-phase to the gas-liquid 

interface could be neglected. Thus, the two remaining resistances which have to be considered are 

the reaction kinetic and the liquid-film resistances. 

Generally, mass transfer between the phases can be represented using Fick’s law as shown 

in Equation (2-9), where DAB is the diffusivity of component A into component B. Vermeer and 
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Krishna [175], however, argued in favor of using Maxwell-Stephan’s equation for representing a 

multicomponent mixture close to the saturation, as shown in Equation (2-10).  

 

 

Figure 2-7: Concentration profiles for mass transfer in a three phase system [46] 
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The mass transfer through the liquid-film can be described by a steady-state mass transfer flux 

according to the two-film theory as shown in Equation (2-11). 

𝐽𝐿 = 𝑘𝐿𝑎(𝐶
∗ − 𝐶𝐿) (2-11) 

Where C* is the concentration at the gas-liquid interface, CL is the concentration in the liquid bulk 

and kL is the liquid-side mass transfer coefficient, which is often represented as a function of the 

gas-liquid diffusivity and the liquid film thickness by Equation (2-12).  
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𝑘𝐿 =
𝐷𝐴𝐵
𝛿

 (2-12) 

The volumetric liquid-side mass transfer coefficient (kLa) is the product of the liquid-side mass 

transfer coefficient (kL) and the gas-liquid interfacial area (𝑎). The gas-liquid interfacial area is 

the area of interface between the gas bubbles and the liquid-phase, which represents the surface 

through which mass transfer takes place. This area can be determined from the knowledge of the 

gas holdup and a characteristic length for the gas bubbles assuming the bubbles to be of a specific 

shape. 

The effects of mass transfer on three-phase reactor performance have been extensively 

investigated in the literature [80, 81, 176-179].  Earlier studies on the mass transfer focused on the 

significance of hydrogen mass transfer compared to the overall reaction resistance. This was due 

to the fact that F-T kinetics over iron catalyst were reported to be first order with respect to 

hydrogen. The principal mass transfer resistance occurs in the slurry-phase of the reactor and the 

extent of the effect of gas-liquid mass transfer on the reactor performance has been argued. 

Satterfield and Huff [180] concluded that the hydrogen mass transfer was the limiting step for 

reactor productivity, whereas Deckwer [75] showed that the mass transfer resistance was small 

compared to the kinetics resistance. Inga and Morsi [181] and Sehabiague and Morsi [81, 177] 

reported that F-T SBCRs operating under a kinetically-controlled regime at low catalyst 

concentrations could move to a mass transfer-controlled regime at high catalyst concentrations, 

where the reactor performance quickly declines. Nonetheless, it is generally agreed that the mass 

transfer strongly depends on the bubble size, where smaller gas bubbles result in a greater gas-

liquid interfacial area, which improves the overall mass transfer.  

The volumetric mass transfer coefficients, derived from the inlet and outlet concentrations 

of absorption experiments, were influenced by the dispersion in both phases. [74] Since the 
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dispersion is strongly dependent on the column size and geometry, the developed equations for the 

calculating the volumetric mass transfer coefficients appear to include geometric parameters, such 

as the column diameter and sparger characteristics. Behkish et al. [8, 80] measured the volumetric 

mass transfer coefficients (kLa)  for H2, CO, N2, CH4 and He in Isopar-M (an isoparaffinic liquid 

mixture of C10 – C16) in the presence of alumina particles under high pressures (up to 30 bar), 

temperatures (up to 473 K), gas velocities (up to 0.39 m/s) and solid concentrations (up to 36 

vol.%). While the experiments by these authors were conducted under typical F-T operating 

conditions, they did not use gas mixtures, mimicking the syngas; and the composition of their 

Isopar-M was greatly different than that of the molten wax produced in the SBCR. More recently, 

Sehabiague et al. [81] have measured the volumetric mass transfer coefficients for N2 and He, in 

C12-C13, paraffins mixture, light F-T cut, heavy F-T cut  in a 0.3 m ID SBCR under high pressure 

(up to 30 bar ), temperature ( up to 500 K) in the presence of  Alumina, Puralox Alumina, Iron 

oxide particles  (up to 20 vol.%) at various superficial gas velocities (up to 0.27 m/s). 

Table A-8 (Appendix A) summarizes the few available literature studies and correlations 

for 𝑘𝐿𝑎 in SBCRs. It should be mentioned, however, that numerous 𝑘𝐿𝑎 correlations in BCRs are 

available in the literature as highlighted by Behkish. [89] Moreover, Figure 2-8 shows the effects 

of superficial gas velocity, catalyst particle diameter, solid loading and hc/dc on 𝑘𝐿𝑎 using the 

conditions provided Table 2-1. As can be in this figure, there is a wide variation in the predicted 

𝑘𝐿𝑎 values especially at higher superficial gas velocities, which is similar to the behavior shown 

by gas holdup correlations presented in Figure 2-4, it should be noted that most of the correlations 

presented in Table A-8 do not account for the effect of particle diameter, catalyst loading and hc/dc 

on 𝑘𝐿𝑎. 
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(a) (b) 

  
(c) (d) 

 

Figure 2-8: Comparison among three-phase correlations for kLa at various (a) superficial 

gas velocities, (b) Catalyst particle diameters, (c) Solid loadings and (d) hc/dc values
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Table 2-4 summarizes the effects of various parameters on the hydrodynamics and mass 

transfer parameters in SBCRs based on the preceding literature review.  

 

Table 2-4: Summary of reported effects of operating conditions on the hydrodynamic mass 
transfer parameters 

Parameter Effect 

Gas density [74, 80, 89, 90, 

105, 121, 174, 182-184] 

Denser gas leads to higher gas holdups and smaller gas 

bubbles. 

Gas molecular weight [90] Same effect as gas density; higher molecular weights results 

in higher gas holdups and smaller gas bubbles 

Liquid density [83, 99, 105, 

107, 118, 121, 183-188] 

 Effect is unclear, both an increase and decrease of the 

gas holdup has been reported. 

 Volumetric mass transfer coefficient decreases with 

decreasing liquid density. 

Liquid viscosity [82, 83, 99, 

101, 105, 107, 118, 183, 184, 

186, 188, 189] 

Increasing liquid viscosity: 

 Increases  gas bubbles size 

 Decreases gas holdup and  mass transfer coefficients 

Liquid surface tension [82, 83, 

90, 105, 187, 188, 190-193] 

Increasing liquid surface tension: 

 Decreases gas holdup 

 Results in the formation of large gas bubbles 

 Decreases the volumetric mass transfer coefficients 

Solid density [194]  Increasing solid density decreases gas holdup. 

Particle Diameter [106, 194, 

195] 

Increasing particle diameter: 

 Increases gas holdup for non-wettable particles 

 Decrease/No effect on gas holdup for wettable particles 

Wettability [194] In general, have no clear effect on the gas holdup. Although 

some reported it to increase or decrease the gas holdup. 

Temperature [183, 184, 188, 

193, 196, 197] 

Increasing temperature: 

 Decreases liquid surface tension; Decreases liquid 

viscosity 

 Increases gas holdup; Increases gas diffusivity; 

Increases volumetric mass transfer coefficients 

 



 

36 

Table 2-4 (continued) 

Parameter Effect 

Pressure [80, 185, 198-200] Increasing pressure: 

 Increases gas density and gas momentum; Increases gas 

holdup 

 Increases volumetric mass transfer coefficients 

Superficial gas velocity [75, 

82, 83, 90, 105, 183, 184, 186-

188, 196] 

Increases superficial gas velocity: 

 Increases gas holdup; Increases volumetric mass transfer 

coefficients 

Liquid velocity [76, 106, 195, 

201, 202] 

Increasing liquid velocity decreases the gas holdup in the 

absence and presence of solid particles 

Solid loading [8, 76, 103, 106, 

107, 203] 

Increasing solid loading: 

 Decreases the gas holdup, despite some studies reported 

otherwise. 

 Increases slurry viscosity 

 Decreases the volumetric mass transfer coefficients 

 Leads to the formation of large gas bubbles 

 Increases the rate of bubble coalescence 

 Increases the volumetric mass transfer coefficient at low 

solid concentrations 

Column Diameter [83, 85, 102, 

118, 119, 204, 205] 

Strong effect for small column diameters < 0.15 m, no effect 

for larger diameters. 

Column Height/Diameter ratio 

[90, 120, 204, 206] 

No effect on gas holdup for ratios > 6 

Gas distributor [102, 190]  Increasing the size of the openings decreases the gas 

holdup due to the formation of large gas bubbles. 

 Has minimal effect on the gas bubbles size and gas 

holdup for orifice diameters 0.001-0.002 m. 

Internal design [4, 207-215] Some effect on increasing gas holdup has been reported; 

most variations lie within the range of experimental error; 

and no major effect was reported when internals represent the 

<15-20 % of reactor volume. 
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2.4 HEAT TRANSFER STUDIES IN F-T SBCR  
 

 

One of the main advantages of SBCRs is the ease of heat removal and the uniform temperature 

distribution within the reactor, which makes modeling of the heat transfer a simple task. The effect 

of the slurry physical properties on the heat transfer is indisputable and thus the presence of water 

produced in F-T synthesis and its effect on the slurry properties should in turn affect the heat 

transfer behavior. A generalized heat balance on the SBCR can be written as: 

𝜕

𝜕𝑧
[𝜌𝑠𝑙𝐶𝑝𝑠𝑙(1 − 휀𝐺)𝐷𝐿

𝜕𝑇

𝜕𝑧
] −

𝜕(𝜌𝑠𝑙𝐶𝑃𝑠𝑙𝑢𝑠𝑙𝑇)

𝜕𝑧
− 𝑈𝐻𝑒𝑎𝑡(𝑇 − 𝑇𝑐𝑜𝑜𝑙)          

+ (1 − 휀𝐺)(−∆𝐻𝐹𝑇𝑟𝐹𝑇) = 0 

(2-13) 

 

Although interphase heat exchange is not important because the inlet gas is typically preheated by 

the outlet gas before entering the reactor[166, 216], the continuous contact among the phases and 

the degree of mixing are important to allow for a uniform temperature gradient and almost 

isothermal operation. 

In SBCRs, the intimate contact among the phases allows for an almost uniform temperature 

and near isothermal operation. Most of studies on the heat transfer in multiphase reactors have 

been focused on the determination of the effects of operating variables on the heat transfer 

coefficients. Table A-9 (Appendix A) summarizes the heat transfer coefficient correlations 

available in the literature for BCRs and SBCRs. 

 

 

2.4.1 Previous Studies Investigating Effect of Internals on BCR and SBCR Performance 
 

 

The vicinity of the gas sparger is highly chaotic and generally well-mixed. Krishna et al. [110] 

listed the typical conditions for an industrial F-T SBCR, including the heat removal by means of 
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cooling pipes, which are essential for controlling temperature in the highly exothermic F-T reactor 

[217-219]. The fact is the effect of internals on the performance of SBCRs has received little 

attention as of today. In addition, there is no convincing guidance on the design of internals in 

SBCRs. However, there have been numerous investigations on the effect of internals in BCRs, 

which will be discussed below. 

Hulet et al. [220] reviewed the heat transfer studies in BCRs and recommended that more 

work involving columns with internals needs to be conducted to develop reliable models for 

predicting large-scale unit performance. Kölbel and Ralek [221] suggested the insertion of 

honeycombed cross section vertical shafts inside the column, with cooling pipes located in corners 

or around the shafts. They claimed this design would eliminate unfavorable backmixing, which 

can reduce desirable selectivities as it reduces the residence time in the BCR to that in an ideal 

stirred tank reactor.  

Korte [222] studied heat transfer from horizontal and vertical tube bundles with an 

embedded heat transfer probe in BCRs of 0.19 and 0.45 m diameter and concluded that the heat 

transfer coefficient is very sensitive to the configuration and density of the bundle. He showed that 

even with high viscosity liquids, which enhance bubble coalescence, the presence of internals may 

inhibit any decrease of the heat transfer values by enhancing the bubble break-up rate. He also 

developed the following correlation: 

 

𝑆𝑡 = 0.139[(𝑅𝑒𝐺𝐹𝑟𝐺𝑃𝑟𝐿
2.26)1/3]

0.84
𝐴𝑓
−0.2 (

𝑡𝑅
𝑑𝑅
)
0.14

(
𝜇𝐿
𝜇𝑙𝑤

)
0.3

 (2-14) 

Where: 

𝐴𝑓 = (𝑑𝑐
2 − 𝑛𝑅𝑑𝑅

2)/𝑑𝑐
2 (2-15) 
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From a fundamental standpoint, it is expected that similar to the heat transfer coefficients, the mass 

transfer coefficients are altered by the presence of internals; and accordingly mass transfer 

correlations and models developed in columns without internals need to be revisited. Bernemann 

[223] used a flywheel anemometer and found the axial component of the liquid-phase velocity to 

be higher in a column with internals than in a column without internals, irrespective of the gas 

velocity used. However, in the radial profile, the inversion point (stationary liquid velocity) 

between the upward and downward liquid velocities was maintained at about the same 

dimensionless radius of ~ 0.7. 

Saxena et al. [207] investigated the effect of internal tubes in 0.305 m diameter column, 

representing 1.9, 2.7 and 14.3% of the total column cross-sectional area operating with an air-

water-glass beads system. The gas holdup was found to be higher for 37 tubes than for 7 tubes. 

They reported the overall gas holdup as a macroscopic value, with no mention of the radial profile 

and accordingly the effect of internals on the liquid recirculation could not be assessed using their 

data. Similarly, Pradhan et al. [224] studied six different volume fractions of straight tube internals 

ranging from 10.8 to 19.3% and helical coil internals ranging from 2.6 to 3.9% of the reactor cross-

sectional area, within a 0.102 m diameter column, and found that the gas holdup increased with 

increasing the internals volume fraction. Moreover, helical coil internals provided higher gas 

holdup than vertical tubes, which was attributed to the fact that vertical inter-tubes gaps allow large 

bubbles to escape, decreasing the gas holdup, while in the helical coils, smaller gaps were present. 

Chen et al. [4] studied the effect of internals covering ~ 5% of the total column cross-

sectional area, using gamma ray Computed Tomography (CT) and Computer Automated 

Radioactive Particle Tracking (CARPT). They studied gas holdup, liquid recirculation, and 

turbulent parameters in a 0.46 m diameter column. Their data showed that the presence of internals 
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have no significant effect on the liquid recirculation velocity, while gas holdup increased by ~ 10% 

at the center of the column and less towards the wall region. Also, the turbulent stresses and eddy 

diffusivities were lower when the internals were added. 

Modeling BCRs with internals was attempted by Forret et al. [213], who developed a 2-D 

model to predict the effect of internals on the liquid mixing by accounting for an axial dispersion 

coefficient (Dax,2-D), a radial dispersion coefficient (Drad,2-D), and a radially dependent axial 

velocity profile. They reported that the presence of internals decreased the liquid fluctuation 

velocity and enhanced the large-scale liquid recirculation based on their liquid tracer experiments. 

Larachi et al. [225] carried out CFD simulations for the flow behavior in a column without 

internals and with four different internal arrangements. The occupied cross-sectional areas ranged 

between 2 and 16.2%; and the core-annulus flow was predicted by the simulation of the uniform 

internals configurations, which confirmed the results highlighted earlier by Bernemann [223, 226]. 

However, for non-uniform internals, a complex flow behavior was detected. Youssef et al. [227] 

reviewed experimental efforts investigating the effect of internals in BCRs and the following 

summary of the effects of horizontal and vertical arrangements of internals in BCRs was given. 

[228]: 

1. Sectionalizing bubble columns via perforated trays leads to an increase of the gas holdup; 

and a similar increase of the gas holdup was observed when utilizing horizontal tubes instead 

[114]; 

2. Blass and Cornelius [229] reported a decrease in the bubble coalescence upon the addition 

of horizontal sectionalizing plates ranging from 1.1% to 46% of open cross-sectional area in 

a 3-phase system (0.14 m diameter). Kemoun et al. [230] used ~ 5% open cross-sectional 
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area sieve trays in an air-water system (0.19 m diameter) and claimed that the trays induce 

bubble coalescence and present an obstacle to the formation of uniform bubbles; 

3. Horizontal internals in bubble columns tend to reduce the overall backmixing, so that the 

benefits of reactor operation as an ideal cascade can be approached [231-235]; 

4. Other authors [229, 236] reported an increase of the backflow ratio with increasing the 

perforated plate open free area, making the overall reactor behavior approach similar to that 

of a mixed stirred vessel. While other studies [233, 237] showed that decreasing the open 

free area reduced the liquid recirculation and increased the pressure drop; 

5. The mass transfer coefficients were found to increase upon sectionalization with perforated 

trays [238], and to decrease with the addition of more horizontal tube rows [234]; 

6. Saxena et al. [113] and Pradhan et al. [224] reported that vertical internals inhibit bubble 

coalescence and enhance bubble breakup; however, O’Dowd et al. [208] found an increase 

in bubble size with the insertion of the vertical baffles;  

7. Intuitively, longitudinal tube internals tend to decrease the area available for flow, resulting 

in an increase in gas holdup when compared with that in empty reactors [210, 239]. The same 

applies when helical coils are used [224]. 

8. The gap size between internals is important in the longitudinal funneling of liquid flow, as it 

governs the size of the large-scale eddies. This gap length is also responsible for decreasing 

the liquid kinetic turbulent energy [225]. 

9. The large-scale liquid recirculation increased when vertical tube internals covered a large 

cross-sectional area (~22%) [213], while a less covered cross-sectional area (5%) did not 

affect the liquid recirculation; [4] 
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10. Forret et al. [213] proposed a 2-D model that seemed to provide good prediction for large 

BCRs with and without vertical tube internals; and 

11. Vertical tubes increased the heat transfer coefficient more than horizontal internals did [240]. 

The axial dispersion coefficient also increased, especially in the bubbly flow regime, where 

it was a strong function of the gas velocity at the bottom of the column. This distribution was 

largely affected by the presence of internals [214]. 

 
 
 
 

2.5 MODELING OF SBCRS FOR F-T SYNTHESIS 
 

 

Recent efforts have been focused on simulating F-T in SBCRs, with the aim of understanding the 

complex hydrodynamics and their effects on the reactor performance. Empirical 1-D models have 

been proposed for F-T SBCRs [126, 150, 241], which provide valuable information and 

predictions of the overall reactor performance. Multidimensional effects were accounted for using 

dispersion coefficients which cannot be calculated from first principles, but were empirically 

obtained for each system in question. However, the flow structures and internal recirculation zones 

in the SBCR were ignored in the 1-D models. 

Earlier studies mainly focused on experimentally examining the macroscopic fluid dynamic 

behavior of three-phase fluidized beds and developing empirical correlations, however, with 

increasing computer power, the use of CFD has gained considerable attention. Over the past 

decade, significant advances have been made in numerical modeling of gas-solid and gas-liquid 

flow systems. However, understanding of the three-phase flows is still limited because of the 

complex phenomena underlying interactions among the phases, including the particle-bubble 

interaction and the liquid interstitial effect during particle-particle collision. Recently, several CFD 
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models have been reported to simulate three-phase fluidization behavior [242-244]. The following 

literature review indicates that modeling effort of SBCRs can be grouped as (1) Axial dispersion 

models (ADM); (2) multiple cell circulation models (MCCM); and (3) CFD models. Details are 

given in the following. 

 

 

2.5.1 Axial Dispersion Models 
 

 

The most common approach for modeling liquid mixing in bubble columns is the 1-D axial 

dispersion model (ADM), in which all mechanisms leading to liquid-phase macro-mixing are 

lumped into a single axial dispersion coefficient. Due to its simplicity and ease of use, the 1-D 

axial dispersion model has been widely implemented, however, its validity in describing multi-

phase flows with large degrees of backmixing, such as those present in bubble and slurry bubble 

columns has been scrutinized [245, 246], with investigators going as far as advising against the 

use of the ADM for multiphase systems [247, 248]. Hatton and Lightfoot [248] assessed the 

problem of dispersion and mass transfer from a generalized dispersion framework and showed that 

simplistic 1-D dispersion models were incapable of describing the dispersion in multiphase 

systems. Myers et al. [249] presented a detailed analysis of the shortcomings of the ADM in bubble 

columns by comparing it to a two region phenomenological model designated as the slug and cell 

model, which represents the gas-rich and gas-lean parts of the column. Their model accounted for 

the different mechanisms governing the upwards and downwards mixing within the bubble 

column, which was in contrast to the gradient transport nature of the ADM, predicting a symmetric 

rate of transport with the mean liquid velocity. Nonetheless, despite the arguments against the use 

of ADMs, they remain widely popular due to their ease of implementation in complex systems, 
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and the fact that numerous correlations were developed for gas, liquid and solid dispersion 

coefficients in multiphase flows as shown in Tables A-8-10 to A-8-12 (Appendix A).  

It should be emphasized that these dispersion coefficient correlations vary considerably in 

complexity as well as details; and different correlations could predict an order of magnitude 

difference as reported by Rice and Littlefield. [250]. Also, a major drawback of the ADM is that 

most of the experiments were conducted using air-water systems at ambient conditions; and the 

experimental data points obtained in the churn-turbulent flow regime were limited when compared 

with those in the bubbly flow regime [251]. 

The determination of liquid-phase dispersion coefficients is based on a tracer injection 

method, followed by analysis of the mean and the variance of the system response curves. 

Electrolytes, dyes, and heat are normally applied as a tracer, which can be injected in a steady-

state or an unsteady-state method; and it has been verified that both methods provide same results 

[86]. In the steady-state method, a tracer is injected at the exit or in another convenient point in the 

reactor, the axial concentration profile is measured upward in the liquid bulk, and the dispersion 

coefficients are then evaluated from this profile. In the unsteady-state method, a variable flow of 

a tracer is injected, usually at the reactor inlet and samples are then taken at the exit.  

Most of the liquid-phase dispersion coefficient (DL) correlations are function of the 

superficial gas velocity and column diameter and in some cases, liquid properties are accounted 

for. The majority of these correlations are empirical; however, attempts at theoretical or semi-

theoretical derivations of the axial dispersion coefficients, based on several theories and 

approaches, were made [252]. Baird and Rice [253] assumed the validity of the Kolmogorov 

theory of isotropic turbulence [254] and used dimensional analysis to show that the liquid-phase 

axial dispersion coefficient can be expressed as: 
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𝐷𝐿 = 𝐾𝑟𝑙𝑒
4/3
𝑃𝑚
1/3

 (2-16) 

Where Ie is the characteristic length of the eddies, which are primarily responsible for eddy 

diffusion effects, Pm is the specific energy dissipation per unit mass which can be expressed as ugg 

for bubble columns. Assuming the characteristic length is equivalent to the column diameter, 

Equation (2-16) can be rewritten as shown in Table A-10. This correlation is one of the most 

widely used to predict the liquid-phase backmixing in bubble columns. 

Several investigators also correlated the axial liquid-phase dispersion coefficient in terms 

of the liquid circulation velocity [255, 256]. Joshi and Sharma [256] assumed the existence of 

axially symmetric steady multiple circulation cells in the bubble columns and used an energy 

balance to derive an expression for the average liquid circulation velocity. The liquid-phase axial 

dispersion coefficient was then directly correlated with the liquid recirculation velocity as shown 

in Equation (2-17).  

𝐷𝐿 = 0.31𝑑𝐶
1.5𝑢𝑙𝑐

1.5; 𝑊ℎ𝑒𝑟𝑒   𝑢𝑙𝑐 = 1.4[𝑑𝑟𝑔(𝑢𝐺 − 휀𝐺)] (2-17) 

This correlation showed good agreement with the experimental data [256] in small column 

diameters, however, its applicability to large column diameters is questionable as the existence of 

these multiple cells in a time averaged sense has not been experimentally investigated or 

correlated. Similarly, Zehner [255] develop an alternative model assuming the stationary eddies 

are layered transversely above each other, and showed the validity of the following commonly 

used relationship by McHenry and Wilhelm [257]: 

𝑃𝑒 =
𝑢𝑙𝑐𝑑𝐶
𝐷𝐿

 (2-18) 

He then derived the following expression for the liquid-phase axial dispersion coefficient, which 

is similar to that by Baird and Rice [253] as: 
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𝐷𝐿 = 0.5𝑓1/3𝑑𝐶
1/3(𝑢𝐺𝑔)

1/3 (2-19) 

Where 𝑓 is the friction factor, which was empirically correlated to be 0.398.  

Figure 2-9 compares the predictions of the liquid axial dispersion coefficient by different 

models; and as can be seen most of the models exhibit similar trends with various column 

diameters, whereas there is a large discrepancy among the predictions at different superficial gas 

velocities. 

Generally, the radial dispersion in BCRs has been lumped with the axial dispersion 

coefficient and the latter has been widely used and almost exclusively as an indication of mixing 

in such reactors. As a matter of fact, while considerable information exists on axial dispersion of 

fluids in bubble columns, radial mixing has been almost completely ignored. The few 

measurements cited by Deckwer [137] suggested that the radial dispersion coefficient is always 

less than one-tenth of the value of the axial dispersion coefficient.  

Based on the assumptions that the velocities and holdups of individual phases are uniform 

in the radial and axial directions, and the axial (𝐷𝑧𝑙) as well as the radial (𝐷𝑟𝑙) dispersion 

coefficients were assumed to be constant throughout the fluidized bed, and the two-dimensional 

unsteady-state dispersion model can be expressed as: 

𝜕(휀𝐶)

𝜕𝑡
+
𝜕(휀𝑢𝑧𝐶)

𝜕𝑧
+
1

𝑟

𝜕(𝑟휀𝑢𝑟𝐶)

𝜕𝑟
=
1

𝑟

𝜕

𝜕𝑟
[𝑟휀𝐷𝑟𝐿

𝜕𝐶

𝜕𝑟
] +

𝜕

𝜕𝑧
[휀𝐷𝑧𝐿

𝜕𝐶

𝜕𝑧
] (2-20) 

Equation (2-20) is usually reduced to the axial dispersion (1-D) model, since the radial dispersion 

coefficient (DrL) is often assumed to be negligible when compared with the axial dispersion 

coefficient.  

Table A-13 (Appendix A) shows a summary of the ADM models in three-phase reactors 

available in the literature; and as can be seen in all models, three distinct phases (gas-phase, liquid-

phase and solid-phase) are used. In most of these models, the gas-phase is described in terms of 
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‘large’ and ‘small’ bubbles [56, 150, 153, 241, 258, 259] and in other studies, a single-bubble 

model is assumed [157, 260, 261]. The solid-phase dispersed in the liquid-phase is referred to as 

the “slurry-phase”.  

The solid (catalyst) concentration in the reactor is often assumed constant, and in several 

models, the Sedimentation-Dispersion Model (SDM) is used to estimate the catalyst concentration 

profile. Also, the syngas consumption is not always considered or is estimated using a linear 

relationship between the gas consumption and the syngas conversion; and in several models, an 

overall mass balance on the gas-phase is formulated in order to simulate the effect of syngas 

consumption [151, 158, 262-267]. 

Early models treated the gas-phase as plug-flow, while the slurry-phase is often assumed 

to be perfectly-mixed [247, 248, 253, 268-270]. This latter assumption is inappropriate for 

simulating small-scale reactors, however, it could be viable for large-scale ones since the liquid-

phase backmixing and the dispersion coefficients were reported to increase with reactor diameter 

[253]. Recent models have introduced the dispersion coefficients in the mass balance equations 

when using the ADM for the gas and slurry phases [46, 150, 265]. Rados et al. [265] showed that 

utilizing the ADM to model backmixing in the F-T SBCR is more versatile than the combination 

of ideal reactor models, such as plug-flow and perfectly-mixed. Nonetheless, for large-scale F-T 

reactors, considering the gas-phase moves in a plug-flow and the slurry-phase moves as perfectly-

mixed appeared to give the closest results to those obtained from the ADM [265]. 

Visual observations and photographic methods revealed the coexistence of distinctly two 

classes of gas bubbles (small and large) in Bubble Column Reactors (BCRs) operating in the churn-

turbulent (heterogeneous) flow-regime [8, 175, 178, 185, 271]. This finding led to the separation 

of the gas-phase into two distinct classes, large gas bubbles and small gas bubbles. The large gas 
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bubbles class is often modeled as plug-flow while the small gas bubbles class is assumed to be 

perfectly-mixed, similar to the slurry-phase. This is an adequate assumption, since in large-scale 

F-T SBCRs operating in the churn-turbulent flow regime, the fast-rising large gas bubbles induce 

strong circulations and create backmixing or re-circulation zones wherein the small gas-bubbles 

are entrained [145, 175]. 

Few models employed the ADM for the large and small gas bubble classes as well as for 

the slurry-phase. de Swart and Krishna [153] used the ADM and 1st order reaction kinetics with 

respect to H2 to simulate the F-T SBCR. These authors estimated the gas consumption using a 

simple linear relationship for the syngas conversion. Rados et al. [150] also used the ADM for 

both classes, however, they introduced a gas bubbles term to account for the interactions among 

gas bubbles of different classes. Moreover, they assumed that the magnitude of the interaction is 

proportional to a dimensionless cross-flow coefficient and the slip velocity between the two 

interacting classes of gas bubbles; however, they only provided a guessed value for this coefficient 

corresponding to moderate interactions between the small and large gas bubbles. In addition, these 

authors included the change of gas holdup and gas velocity due to the syngas consumption and in 

their derivation, they considered all of the variables as space-dependent of the mass balances.  

Thus, it is obvious that the reactor model developed by Rados et al. [150] is quite different 

from the earlier models which assumed constant parameters along the reactor height or used a 

linear relationship between the syngas conversion and the gas velocity to represent the gas 

consumption. However, like de Swart and Krishna [153], Rados et al. [150] used 1st order reaction 

kinetics with respect to H2 in order to simulate the F-T reaction and assumed the catalyst to be 

uniformly distributed. Iliuta et al. [160] introduced a pseudo 2-dimensional model based on the 

two-class bubbles model and the ADM by separating the reactor radially into a core region and an 
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annulus region; and they included the gas bubbles interactions term previously introduced by 

Rados et al. [150]. They considered the WGS reaction and used detailed kinetics for the F-T 

reaction. They also estimated the gas consumption from the overall mass balance, and the gas-

phase and liquid-phase concentrations from the vapor-liquid-equilibria (VLE). Although the 

empirical reactor model by Iliuta et al. [160] appears to be the most complete to date, it requires 

the knowledge of many parameters which are not readily available, especially for high-pressure, 

high-temperature reactors operating with organic liquids, such as F-T synthesis. Obviously, this 

could be a disadvantage, since the estimation of so many unknown parameters may compound the 

errors, leading to significant uncertainties in the reactor model predictions. 
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(a) (b) 

 

Figure 2-9: Comparison among the liquid axial dispersion models at various  
(a) column diameters for ug = 0.25 m/s, (b) gas velocities for dc = 3.5 m 
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2.5.2 Multiple Cell Circulation Models 
 

 

Multiple cell circulation models (MCCM) were very popular in early modeling attempts aimed at 

understanding the hydrodynamics of bubble and slurry bubble column reactors. These models are 

based on the idea that the flow instability can be described mathematically using flow disturbances 

in the dispersed-phase, which can be accounted for in the mass balance as follows: 

𝜕(휀 + 𝛿휀)

𝜕𝑡
+ 𝛻 ∙ [(휀 + 𝛿휀)(𝑣 + 𝛿𝑣)] = 0 (2-21) 

Mixing of the liquid-phase is attributed to various phenomena, such as turbulent vortices, liquid 

entrainment in the wakes of rising bubbles, liquid circulation and radial exchange flows. Generally, 

liquid mixing in bubble columns and SBCRs is a resultant of three major contributing mechanisms 

[140, 272-276]: (1) global convective circulation of the liquid-phase induced by the non-uniform 

radial gas holdup distribution [277]; (2) turbulent diffusion due to the presence of large and small 

eddies generated by the rising bubbles [135]; and (3) molecular diffusion is negligible when 

compared with the other diffusion mechanisms. 

In SBCRs operating in the churn-turbulent flow regime, the gas flow generates significant 

backmixing in the slurry-phase (dense-phase). This backmixing of the dense-phase is caused by 

the gas-induced eddies, which derive their energy from the large fast-rising bubbles. The maximum 

size of eddies, for reactors with ℎ𝑐/𝑑𝑐  >  1 is limited by the column diameter 𝑑𝑐 [135]. The 

induced circulation patterns have a strong impact on the mass transfer and productivity and are 

especially vital in eliminating the concentration gradients within the SBCRs. Therefore, the design 

of SBCRs will require consideration of the liquid-phase backmixing. In BCRs operating in the 

churn-turbulent flow regime, the large gas bubbles tend to concentrate in the middle of the column, 
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the liquid-phase is drawn upwards in the central region and when the bubbles disengage at the top, 

the liquid returns down the column in the wall region.  

Despite the availability of ample experimental data on the liquid-phase backmixing in the 

literature for different column diameters and superficial gas velocities, it is somewhat difficult to 

compare the results due to the differences in the reactor dimensions and the physicochemical 

properties of the liquids used. Generally, the circulations consist of an upward flow region where 

the liquid-rich of entrained gas bubbles moves upward and a compensating region where a liquid-

poor of gas bubbles moves downward [278]. The liquid circulations are driven by the buoyancy 

of the gas-phase as it rises and drags the liquid. The bubbles-driven circulations can occur with or 

without net superficial liquid motion, but it requires a net upward motion of the gas.  

Although the liquid circulation is desirable for some applications, such as gas lift, thermo-

syphon devices, or in the downcomers of distillation columns, it is undesirable in BCRs or SBCRs, 

because it decreases the gas retention time and causes liquid backmixing, which decrease the gas-

liquid mass transfer. For instance, the widely used simplification that the flow is uniform across 

any horizontal cross-sectional area of the BCR or SBCR consistently predicts greater gas holdup 

and better mass transfer values than those actually observed [278, 279]. Also, the assumption that 

large gas bubbles are completely backmixed [279] may not be true for columns with significant 

ℎ𝑐/𝑑𝑐 ratios, wherein many liquid circulations are prevailing. The liquid circulation phenomenon, 

has been claimed by many authors to be analogous to the natural convection [161, 280-284]. Yet, 

this analogy is inaccurate, because in natural convection, the mixing of streams with different 

densities eliminates the driving force by producing a stream with intermediate density, which 

cannot regroup spontaneously into low- and high-density streams. However, if a bubble-rich and 

a bubble-lean streams are mixed to produce one stream of intermediate bubble content, this stream 
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can regroup (due to buoyancy forces) to reform bubble-rich and bubble-poor streams. Therefore, 

circulation in bubble columns does not permanently eliminate the driving forces of bubble-induced 

circulations as it does in natural convection.  

Millies and Mewes [285] argued that the liquid recirculation in bubble columns is a 

turbulence-induced flow instability due to the disturbance or non-uniformity of the gas distribution 

profile, and hence they used the MCCM similar to that by Joshi and Sharma [256] to calculate the 

flow fields in their bubble column. This effect was firstly reported by De Nevers [278], who stated 

that the liquid circulation pattern is induced by density differences caused by the uneven 

distribution of the bubbly-phase across the cross-sectional area of the BC. In the central area of 

the BC, however, the local gas holdup values are greater than those close to the wall, resulting in 

liquid up-flow in the central region and liquid down-flow along the wall.  

When there are no baffles or internals, the length of the circulation cell will depend on the 

difference between the gas and slurry viscosities and densities in the SBCRs. It is typically smaller 

for low viscosity liquids, such as water, and much larger for high viscosity systems, such as F-T 

slurries [278]. This makes the use of water-based empirical models, representing circulation or 

turbulence parameters, inaccurate for representing the F-T SBCRs. When the gas velocity inside 

the column is increased, the bubble flow ceases to be uniform and strong circulation was observed 

within the gas-slurry mixed phase and the column operated in the circulation flow regime [139, 

140]. This circulation is once again due to the existence of a bubble-rich phase near the center of 

the column and a bubble-lean phase near the wall of the column, which creates a difference in 

buoyancy forces.  

The 1-D circulation models are based on solving the one-dimensional continuity and 

momentum balance equations, which are simplified versions of the two-fluid model equations 
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[272]. These models are typically applicable to the middle of the SBCR with an ℎ𝑐/𝑑𝑐  >  5, where 

experimental evidence shows the presence of 1-D profiles [277]. The model equations for the 

conservation of momentum are: 

1

𝑟

𝑑

𝑑𝑟
(𝑟𝜏𝑟𝑧) =

𝑑𝑃

𝑑𝑧
+ 𝜌𝑙 (1 − 휀𝑔(𝑟))𝑔 (2-22) 

−
𝑑𝑃

𝑑𝑧
=
2𝜏𝑟𝑧
𝑅

+ 𝜌𝑙(1 − 휀�̅�)𝑔 (2-23) 

Where 휀𝑔 is the gas holdup and 𝜏𝑟𝑧 is the Reynolds shear stress.  

The Reynolds shear stress distribution is commonly described using the following 

procedure by Rice and Geary [141]: 

𝜏𝑟𝑧(𝜉) =
𝜌𝐿𝑔𝑑𝐶
2

(
2휀�̃�
𝑚𝜆2

) 𝜉 [1 − (
𝜉

𝜆
)
𝑚

] 𝜉 ≤ 𝜆

𝜏𝑟𝑧
∗ (𝜉) =

𝜌𝐿𝑔𝑑𝐶
2

(
휀�̅�
𝜆2
) 𝜉 [

𝜆2 − 𝜉2

𝜉
] 𝜉 ≥ 𝜆

 (2-24) 

The solution of the above model requires the knowledge of the gas holdup profile and a closure 

model for the Reynolds shear stress. Several variations of the above 1-D circulation model as 

shown in Figure 2-10 have been discussed in the literature [139-141, 286-288]. The variations of 

these models are mostly due to the boundary conditions and the Reynolds shear stress turbulence 

models used. Table A-14 (Appendix A) provides a summary of the various MCCM published in 

the literature.  

Generally, the 1-D circulation model has been proven to be successful in studying liquid 

circulation in BCRs and SBCRs [289]. Kumar et al. [139] compared the existing variations of the 

1-D circulation model to study liquid recirculation in BCRs; and they concluded that there is a lack 

of literature correlations for eddy viscosity and mixing length to predict the 1-D liquid velocity 

profiles under a wide range of operating conditions. They correlated a mixing length profile from 
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the experimental measurements of the Reynolds shear stress and liquid velocity gradient and 

showed that the mixing length in a 0.19 m diameter column can be used along with the measured 

holdup profile to predict recirculation in large diameter columns, up to 0.30 m. Their model was 

validated for gas velocities ranging from 0.02 – 0.12 m/s.  The use of the power law expression 

was later introduced to predict the radial gas holdup profiles, as discussed in Section 2.2.2. The 

above system of equation is usually solved using numerical integration and details of the solutions 

can be found elsewhere [243, 285, 288, 290].  

 

 

Figure 2-10: Circulation cell depiction of the continuous-phase circulation patterns in 
BCRs  and SBCRs: (a) Zehner [280, 281], (b) Groen et Al. [291], (c) Joshi And Sharma 

[256].
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2.5.3 Computational Fluid Dynamics (CFD) Models 
 

 

CFD modeling of multiphase systems can be successful, if the calculations are carefully validated. 

A general overview of a CFD model development is shown in Figure 2-11. It is typically composed 

of three main stages: pre-processing, solver development, and post processing. Pre-processing 

involves the development of the geometry to be investigated and defining the meshing procedure 

over which the model will be solved. Solver development describes all activities related to defining 

model structures, properties, parameters, boundary and initial conditions, and solution methods. 

Once the model is solved for a specific case, the raw data is then post processed to generate 

analyzable figures and graphics.  

 

 

Figure 2-11: Overview of CFD process 

 

The two most commonly used CFD approaches [292] are the Eulerian-Eulerian or Multi-

fluid Eulerian approach [293] and the Eulerian-Lagrangian approach [294]. The Eulerian-Eulerian 

approach assumes that the dispersed and continuous phases are interpenetrating continua, and a 

set of Navier-Stokes equations is solved for each of the phases. The coupling between the motion 
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of the dispersed and continuous phases is achieved by implementing momentum exchange terms 

into the respective phase’s momentum balance equations, which are based on drag consideration. 

On the other hand, the Eulerian-Lagrangian approach assumes that the dispersed-phase consists of 

representative particles transported with the continuous-phase and a set of Navier-Stokes 

equations, which include coupling between the continuous and dispersed phases, is solved only 

for the continuous-phase, whereas the dispersed-phase particles are tracked by solving the 

individual motion equations for each particles. Table A-15 (Appendix A) shows a summary of the 

CFD modeling efforts in three-phase reactors using 2-D and 3-D Multi-fluid Eulerian and 

Eulerian-Lagrangian models. In general, the Eulerian-Lagrangian model is best suited for 

fundamental studies, such as bubble-bubble and bubble-liquid interactions and its applications are 

limited only to cases where the gas superficial velocities are low and the phase holdups are small. 

Thus, this model is not viable when the dispersed-phase occupies a large volume fraction of the 

reactor, such as in many industrial applications. As a result, the Multi-fluid Eulerian approach is 

typically preferred for modeling large-scale applications, including SBCRs, which often operate 

in the churn-turbulent flow regime [295], where gas holdup values are high. Additional 

simplifications, such as 2-D Cartesian with axisymmetry and isothermal flow, are usually 

implemented in order to lower the computational cost [201, 243, 244, 293, 294, 296-302]. Details 

of the various modeling approaches can be found elsewhere [242, 275, 298, 303-308].  

The momentum balance equation in the Multi-fluid Eulerian approach is: 

In the Eulerian-Lagrangian approach, the force balance equation used to track individual particles 

is: 

𝜕(𝛼𝑘𝜌𝑘𝑢𝑘)

𝜕𝑡
+ 𝛻 ∙ (𝛼𝑘𝜌𝑘𝑢𝑘𝑢𝑘) = −𝛼𝑘𝛻𝑝 − 𝛻 ∙ (𝛼𝑘𝜏𝑘) + 𝛼𝑘𝜌𝑘𝑔 + 𝐹𝐷 + 𝐹𝐺   (2-25) 
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Among the above forces, Becker [309] and Oey et al. [310] reported that the drag force (FD) is the 

most critical, whereas the other forces only have a minor or “tuning” effect.  

The drag force between any two phases can be written as: 

𝐹𝐷 =  
1

2
𝐶𝐷𝜋𝑟𝑑

2𝜌𝑐|𝑢𝑠|𝑢𝑠  (2-27) 

Where, CD is the drag coefficient.  

The CFD modeling of multiphase reactors strongly depends on the closure drag model; and 

the effects of using different drag coefficient correlations on the modeling results have been 

reported in literature [302, 311, 312]. The most commonly used drag coefficients for two-phase 

and three-phase systems are given in Section 2.5.3.1.  

In most CFD reactor modeling, the simulation domain is typically restricted to the reactor 

and the general flow within the feed, whereas spargers and cooling pipes are not accounted for. 

Furthermore, although the inlet volumetric flow rates are known, the velocity distribution is not 

specified. The most widely used practice is to use the knowledge of fully developed flow in pipes 

to specify the inlet velocity distribution. Therefore, for laminar flow through a cylindrical inlet 

pipe, one can specify a parabolic velocity profile as a boundary condition at the inlet, however, if 

the feed pipes have complex shapes, which is typical of bubble columns and SBCRS, it is necessary 

to develop an additional model, which include appropriate boundary conditions. The outlet is the 

surface of the solution domain through which the flow exits. Usually the outlet boundary condition 

implies that the gradients normal to the outlet boundary are zeros for all the variables, except 

pressure. In order to predict the effects of turbulence, CFD models primarily concentrate on the 

methods which make use of turbulence models. These methods have been specifically developed 

𝑚𝑝

𝑑𝑢𝑝
𝑑𝑡

= 𝐹𝑝 + 𝐹𝐷 + 𝐹𝑉𝑀 + 𝐹𝐿 + 𝐹𝐺    (2-26) 
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to account for the effects of turbulence without recourse to a prohibitively fine mesh and direct 

numerical simulation. 

Generally, liquid mixing in SBCRs is a resultant of three major contributing mechanisms 

[140, 272-276]: (1) global convective circulation of the liquid-phase induced by the non-uniform 

radial gas holdup distribution [277]; (2) turbulent diffusion due to the presence of large and small 

eddies generated by the rising bubbles [135]; and (3) molecular diffusion is negligible when 

compared with the other diffusion mechanisms. 

Scaling laws are an important tool for describing turbulence. Most of the conclusions and 

observations regarding turbulence are based on the order of magnitude estimates, which follow 

from logical applications of scaling laws and dimensional analysis. Generally, the turbulent length 

scale is a physical quantity related to the size of the large eddies, containing the energy in the 

turbulent flow. A variety of length scales (eddy sizes) exists within the turbulent flow, wherein the 

size of the largest eddies are typically denoted by L, and those of the smallest eddies are denoted 

by η. The largest eddies in the flow account for most of the momentum and energy transport, and 

their size is only constrained by the physical boundaries of the flow. Thus, L is referred to as the 

integral length scale. The size of the smallest eddies (η), on the other hand, is determined by the 

viscosity. Therefore, the effect of viscosity increases with decreasing length scales. The smallest 

length scales are those where the kinetic energy is dissipated into heat. The turbulence eddies are 

visualized as molecules, constantly colliding and exchanging momentum and obeying laws similar 

to the kinetic theory of gases. Most models of Reynolds stress, using an eddy viscosity hypothesis 

based on an analogy between the molecular and turbulent motions, are described as follows: 

−𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ ̅ = 𝜇𝑇 (
𝜕𝑢

𝜕𝑥𝑖
+
𝜕𝑢

𝜕𝑥𝑗
) −

2

3
𝛿𝑖𝑗  (𝜇𝑇

𝜕𝑢

𝜕𝑥𝑘
+ 𝜌𝑘)   (2-28) 
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Where μT is the turbulent or eddy viscosity, which unlike molecular viscosity, is not a fluid 

property, but depends on the local state of flow or turbulence; 𝜇𝑇 is a scalar quantity, which varies 

significantly within the flow domain; and k is the turbulent kinetic energy.  

Although there are numerous turbulence models as outlined in Table 2-5, the most widely 

used is the two-equation, k-ε, model; in which the turbulence viscosity is related to k and ε by the 

following equation: 

𝜇𝑇 =
𝐶𝜇𝜌𝑘

2

휀
    (2-29) 

Where Cμ is an empirical coefficient; and the modified form of the transport equation for the k-ε 

model becomes: 

𝜕𝜌𝑘

𝜕𝑡
+
𝜕(𝜌𝑢𝑖𝑘)

𝜕𝑥𝑖
=  

𝜕

𝜕𝑥𝑖
(
𝜇𝑇
𝜎𝑘

𝜕𝑘

𝜕𝑥𝑖
) + 𝐺 − 𝜌휀 (2-30) 

𝜕𝜌휀

𝜕𝑡
+
𝜕(𝜌𝑢𝑖휀)

𝜕𝑥𝑖
=  

𝜕

𝜕𝑥𝑖
(
𝜇𝑇
𝜎

𝜕휀

𝜕𝑥𝑖
) +

휀

𝑘
(𝐶1𝐺 − 𝐶2𝜌휀) 

(2-31) 

Where G is the turbulence generation term expressed as: 

𝐺 = 
1

2
𝜇𝑇[𝛻�̅� + (𝛻�̅�)

𝑇]2   (2-32) 

The values of the empirical parameters in the above turbulence equations are obtained using 

experimental data and can be found in the literature. 
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Table 2-5: Different turbulence models available in the literature [275] 

Model Advantages Disadvantages 

Zero-equation models  

(Mixing length model) 
 Cost-effective 

 Applicable to very limited number of flows 

 vT → 0 as ∂U/ ∂y = 0 

 Lack of transport of turbulent scales. 

 Estimation of mixing lengths is difficult. 

 Cannot be used as a turbulence model. 

One-equation model 

(k-algebraic model) 
 Cost-effective model 

 Applicable to limited number of flows 

 The use of an algebraic equation to represent 

length scale is too restrictive. 

 Transport of the length scale is not accounted 

for. 

Reynolds Stress Model 

(RSM) 

 Most general model 

 Can well predict many complex flow scenarios 

such as non-circular ducts and curved flows 

 Solves for seven additional PDE’s, increased 

computational load 

 Not good for round gets and flows involving 

significant curvature, swirl, sudden 

acceleration, separation and low Re regions. 

Two-equation models 

(k-ε: standard, RNG, 

realizable) 

 Can predict velocity and length scales with 

transport equations. 

 Good results for numerous flow applications. 

 Robust economically and easy to implement. 

 Limited to an eddy viscosity assumption. 

 Turbulent viscosity is assumed to be isotropic. 

 Convection and diffusion of the shear stress 

are neglected. 

Standard k-ε  Very widely used and heavily validated. 
 Performs poorly in certain scenarios same as 

RSM. 

RNG k-ε 

 Enhancement of the standard k-ε model primarily 

to improve prediction of swirling flows and flow 

separation. 

 Not as stable as the standard k-ε model, not 

suitable for round jets. 

Realizable k-ε 
 Enhancement of the standard k-ε model to handle 

both swirling flows and round jets. 

 Can be very unstable and susceptible to 

divergence. 
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Grevskott [243] modeled water-TiO2 nanoparticles as a single pseudo-homogenous-phase, 

assuming that the nanoparticles are sufficiently small to behave as liquid molecules, and 

accordingly the water and solid particles were assumed to have the same local velocity. The 

momentum and continuity equations were then solved using a 3-D, two-fluid Eulerian model with 

per phase k-ε turbulence in order to investigate the local holdups and velocities of the phases. Fan 

et al. [294, 313] developed a 2-D Eulerian-Lagrangian model for three-phase systems using: (1) 

the averaged Navier-Stokes equation for the liquid-phase (Euler), (2) the volume of fluid (VOF) 

method for the gas-phase, and (3) the discrete particle method (DEM) for the solid-phase 

(Lagrange). Their simulations, however, were limited to 100 solid particles, and they investigated 

the behavior of a single-bubble rise. A similar approach was used by Zhang and Ahmadi [298]. 

Mitra-Majumdar et al. [244] used a 2-D axisymmetric model with a modified drag 

coefficient model between the liquid and gas phases to represent the effect of gas bubbles, and 

another modified drag coefficient model between liquid and solid phases to simulate the effect of 

solid particles. Matonis et al. [297] applied the kinetic theory of granular flow (KTGF) for the 

solid-phase and the k-ε turbulence model for the continuous-phase. Schallenberg et al. [299] 

accounted for the interphase momentum between the two dispersed phases (gas and solid) and 

extended the k-ε turbulence model to account for the bubble induced turbulence. Panneerselvam 

et al. [293] used the multi-fluid Eulerian model to investigate the gas holdup and axial solid 

velocity patterns in three-phase fluidized beds. They used the closure law for modeling the liquid 

turbulence as well as the interphase momentum exchange and the k-ε turbulence for modeling the 

turbulence induced by the phases. They also used the constant viscosity model for calculating the 

solid pressure term, instead of using the kinetic theory of granular flow. 
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Matos et al. [301] used an axisymmetric two-fluid Eulerian approach for modeling a three-

phase slurry reactor for petroleum hydrodesulfurization. They combined the solid and liquid 

phases into a pseudo-liquid-phase and assumed that the difference between the densities of the 

catalyst and the slurry-phase was so small that the catalyst did not settle, and that the fluid velocity 

was so small that a 2-D axisymmetric model was justified. They used friction terms to couple the 

momentum balance of the gas-phase and the pseudo-liquid-phase; the overall mass balance to 

couple both phases; the k-ε turbulence model to describe the behavior of the continuous-phase; 

and the axial velocities at the entrance of the reactor were set using the experimental results by 

Torvik and Svendsen [314]. They also added simplified hydro-desulfurization kinetics to the mass 

balance. They then investigated the radial variations of the gas and liquid holdups and the results 

were validated against the experimental values reported by Grienberger and Hofmann [315] for a 

two-phase, air-water system. They also, investigated the effects of the grid size and simulation 

time on the kinetic results.  

Troshko and Zdravistch [316] employed a two-fluid Eulerian approach to model a three-

phase SBCR for F-T synthesis. They used a population balance model to predict the bubble size 

distribution throughout the reactor and a turbulence was described using the two-equation RNG k-

ε turbulence model. They used the interphase drag exchange coefficient by Ishii and Mishima 

[272] and incorporated the heterogeneous and homogenous kinetic reaction rates by Yates and 

Satterfield [317], representing a simplified F-T synthesis. They predicted the time-averaged Sauter 

mean bubble diameter at different elevations from the inlet of the SBCR, the gas holdup at different 

catalyst concentration, and the axial variation of the time-averaged Sauter mean bubble diameter 

along the reactor axis at different catalyst concentrations. Their results were then validated against 

the experimental data by Kulkarni et al. [318] for air-water bubble columns at standard 
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atmospheric conditions. Moreover, they also modeled the effect of the syngas inlet velocity on its 

conversion and reactor productivity; however, these results were not validated against any 

experimental data.  

It should be emphasized that around half of the CFD multi-phase modeling efforts shown in 

Table A-15 (Appendix A) have not been experimentally validated and that, except for the work by 

Matos et al. [301], almost all experimental validations were conducted using small-scale air-water-

solid systems at ambient pressures and temperatures, which brings into question the validity of 

extrapolating the conclusions to large-scale industrial reactors, operating under high pressures and 

temperatures with organic liquids and slurries, such as F-T synthesis. 

 

 

2.5.3.1 Commonly used drag coefficient models for two-phase and three-phase                

systems While there is extensive work on two-phase flow systems, studies investigating 

three-phase hydrodynamics are rather limited. Tables A-8-16 and A-8-17 (Appendix A) show the 

gas-liquid and solid-fluid drag coefficient models, respectively, which are commonly used in CFD 

modeling of multiphase flows. In general, the drag coefficient (CD), is a function of the bubble (or 

particle) Reynolds Number and the void fraction. Table A-16 (Appendix A) shows the gas-liquid 

drag coefficient correlations obtained using experiments in two-phase systems by Clift et al. [171], 

Ishii and Zuber [319], Kurose et al. [320], Lain et al. [321] and in three-phase systems by Grevskott 

et al. [243] and Tomiyama et al. [322]. Also, the model by Mei and Klausner [323] was based on 

a derivation for spherical bubble in an unbounded shear flow and the model by Snyder et al. [324] 

was based on the statistical analysis of small bubbles in isotropic turbulence. The solid loading 

used by Grevskott et al. [243] was 7 – 20 wt.% and the solid holdup used by Tsuchiya et al. [325] 

was up to 57 vol.%. Moreover, Figure 2-12 (b) compares a few gas-liquid drag correlations, and 
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as can be seen most correlations predict very similar values for the drag coefficient at varying 

bubble Reynolds numbers. It should be noted that all the gas-liquid drag coefficient correlations 

presented in Table A-16 (Appendix A) were developed under ambient conditions. 

Table A-17 (Appendix A) shows the gas-solid and liquid-solid drag coefficient 

correlations; and as can be seen all correlations were derived from experimental data, except those 

by Ma and Ahmadi [326] who used thermodynamic derivation for multiphase turbulent flows; 

Gidaspow [242] who used theoretical derivation; and Zhang and Van der Heyden [327] who used 

numerical simulation for gas-solid flows. This difference among the correlations is primarily due 

to the nature of the experiments conducted or to the assumptions made to develop these 

correlations. For instance, the model by Ishii and Zuber [319] assumes the slip velocity is 

independent of the gas bubble diameter, while that by Schiller and Nauman [6] does not account 

for the bubble deformation effects. This in fact, limits these models applicability beyond the 

systems used in their development. Figure 2-12 (a), compares various liquid-solid drag correlations 

at various particle Reynolds numbers, and unlike the gas-liquid drag correlations, the liquid solid 

drag coefficients appear to vary greatly at similar values of the Reynolds Number .which amplifies 

the confusion about the selection of solid-liquid and/or gas-solid drag coefficient models for CFD 

modeling of SBCRs.  

Thus, the gas-liquid and liquid solid drag models available were obtained mostly using air-

water or air-water-glass beads flows under ambient conditions, which again bring into question 

their applicability for modeling large-scale industrial SBCRs, operating with organic media under 

high pressures and temperatures. Moreover, Zhang and Ahmadi [298] and more recently 

Hamidipour et al. [292] underscored the need for better and more representative drag correlations 

for their CFD modeling of the hydrodynamics in three-phase reactors. In addition, in some CFD 
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modeling efforts, the gas-liquid drag coefficients were justified by lumping the liquid and solid 

phases into one pseudo-homogenous phase (slurry), assuming the particle-liquid slip velocity is 

too small, which reduces the gas-liquid-solid system to a two-phase system [158, 292, 294, 298, 

301, 302]. This is definitely a gross oversimplification of the three-phase flow since the gas-liquid 

drag coefficients were used instead of gas-slurry drag coefficients. Therefore, there is a great need 

to develop pertinent and applicable drag coefficient correlations for modeling SBCRs. 
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(a) (b) 

Figure 2-12: Comparison of various (a) Liquid-Solid and (b) Gas-Liquid drag correlation
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3.0  RESEARCH OBJECTIVE 
 

 

 

 

Modeling of 3-phase Slurry Bubble Column Reactors (SBCRs) requires, among others, detailed 

description of the hydrodynamics, reaction kinetics and mass as well as heat transfer parameters. 

Over the past 20 years, our research group has been measuring macroscopic values of these 

parameters in a pilot-scale (0.3-m ID and 3-m height) hot SBCR, available in our Reactor and 

process Engineering Laboratory (RAPEL) at the University of Pittsburgh. These data were used 

as input in 1-D and 2-D steady-state empirical reactor models which were incorporated into a 

working simulator in our laboratory [301, 328]. These empirical models, however, are incapable 

of predicting the local hydrodynamic or mass transfer values, flow patterns, radial velocities, 

species distribution or solid concentration profiles, which makes it difficult to interpret the 

hydrodynamic behavior and overall performance of SBCRs. Computational Fluid Dynamics 

(CFD), which could provide such data, have been recently used in modeling SBCRs, as 2-D and 

3-D CFD multiphase systems are available in the literature. Many CFD modeling frameworks, 

however, have not been properly validated since, except for the work by Matos et al. (2009) [301], 

almost all validations were carried out with data obtained in small-scale reactors for air-water-

solid systems at ambient conditions. Therefore, the predictions of the current CFD models cannot 

offer any proper interpretation of the complex hydrodynamic behavior of large-scale SBCRs 

operating at high-pressures and high-temperatures, and often provided with cooling internals. 
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The overall objective of this study is to develop a more comprehensive CFD model in 

ANSYS for LTFT synthesis in SBCRs. This three-phase model is based on the principles of 

conservation of mass and momentum in turbulent flow, and includes many complexities, such as 

gas-liquid-solid contacts, momentum exchange, solid-phase representation, bubble induced 

turbulence, bubble population balance, and actual reaction kinetics and gas-liquid mass transfer 

data for F-T synthesis. The CFD model is used to predict the volume fractions, species distribution 

and velocity profiles for the three phases in space and time. These predictions are validated against 

actual experimental hydrodynamic data available in the literature and those obtained for F-T 

synthesis in our pilot-scale SBCR. Upon successful validation, the CFD model is used to 

thoroughly investigate the effects of the three main spatio-temporal complexities, namely gas 

sparger design, cooling internals layout, and reaction kinetics, on the hydrodynamic and overall 

behavior of SBCRs for F-T synthesis. 

In order to achieve this objective, the following tasks are proposed: 

Task 1: Develop a three-phase CFD model for the slurry bubble column reactor.  

Task 2: Validate the CFD model predictions against our experimental data and those available in 

the literature for multi-phase systems. 

Task 3: Use the CFD model to investigate the effects of spargers on the local hydrodynamics in 

the pilot-scale SBCR:  

Task 4: Use the CFD model to predict the effects of internals on the local hydrodynamics in the 

pilot-scale and a conceptual large-scale SBCRs 

Task 5: Incorporate the F-T reaction kinetics into the CFD model and use it to predict the 

performance as well as the local hydrodynamics in the pilot-scale and a commercial-scale 

F-T SBCRs. 
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4.0  CFD MODEL FORMULATION 
 

 

 

 

The 3-D transient model built in the present study is based on the Eulerian multi-fluid approach for 

the three phases (gas-liquid-solid). The model equations are based on the ensemble averaging of 

the local instantaneous equations for a single-phase flow [274, 329]. The complete mathematical 

model is based on an a multi-Eulerian approach and consists of three main components: (i) the core 

hydrodynamics model consisting of the Navier-Stokes equations; (ii) the multiple-fluid model 

based on an analog of Boussinesq approximation to represent the natural convection; and (iii) the 

population balance equations to describe the size distribution of the dispersed gas-phase. A 

schematic diagram of the model components and their couplings is given in Figure 4-1.  

 

 

Figure 4-1: Schematic of the model components and their couplings  
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The mass and momentum conservation equations are: 

𝜕(𝜌𝑘𝛼𝑘)

𝜕𝑡
+ 𝛻(𝜌𝑘𝛼𝑘�⃗� 𝑘) = �̇�𝑘𝑛 (4-1) 

𝜕(𝜌𝑘𝛼𝑘�⃗� 𝑘)

𝜕𝑡
+ 𝛻(𝜌𝑘𝛼𝑘�⃗� 𝑘�⃗� 𝑘) = −𝛼𝑘 ∙ 𝛻𝑝𝑓 + 𝛻(𝛼𝑘𝜏 𝑘) + 𝛼𝑘𝜌𝑘𝑔 + �⃗� 𝑘𝑛�̇�𝑘𝑛 + �⃗⃗� 𝑘 (4-2) 

Where k indicates the phase (G for gas, L for liquid and S for solid); �⃗� 𝑘 = (u, v, w) is the velocity 

of phase k; ṁkn is the mass transfer rate between phases k and n; �⃗� 𝑘𝑛 is the relative velocity 

between phases k and n; α is the volume fraction of each phase; �⃗⃗� 𝑘 is the overall interfacial 

momentum, 𝑝𝑓 is the fluid pressure; and τ is the stress tensors.  

The stress tensor 𝜏 𝑘 is represented as: 

𝜏 𝑘=𝐺,𝐿 = 𝛼𝑘𝜇𝑘,𝑒𝑓𝑓 (𝛻�⃗� 𝑘 + (𝛻�⃗� 𝑘)
𝑇 −

2

3
𝐼 (𝛻 ∙ �⃗� 𝑘)) (4-3) 

μeff , is the effective viscosity, which is typically the sum of molecular and turbulent viscosities.  

For the liquid-phase, the effective viscosity, which accounts for the three contributions (1) 

molecular viscosity, μL,M, (2) shear induced turbulence viscosity, μL,T and (3) additional term due 

to the bubble induced turbulence, μL,B is represented as:  

𝜇𝑒𝑓𝑓 = 𝜇𝐿,𝑀 + 𝜇𝐿,𝑇 + 𝜇𝐿,𝐵. (4-4) 

The turbulent viscosity is expressed as: 

𝜇𝐿,𝑇 = 𝐶𝜇,𝐵𝜌𝐿(
𝑘2

휀
), with    𝐶𝜇,𝐵 = 0.6 (4-5) 

For the gas-phase, the effective viscosity is represented as the sum of the molecular viscosity 𝜇𝐺,𝑀 

and the turbulence induced viscosity: 

𝜇𝑒𝑓𝑓 = 𝜇𝐺,𝑀 + 𝜇𝐺,𝑇. (4-6) 

Where the turbulence induced viscosity for the gas-phase is represented as: 
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𝜇𝐺,𝑇 =
𝜌𝐿
𝜌𝐺
(𝜇𝐿,𝑇) (4-7) 

 

 

 

 

4.1 SOLID PHASE REPRESENTATION 
 

 

For the solid-phase, the effect of particle-particle interactions will be accounted for by introducing 

additional terms to the stress tensor. The kinetic theory of granular flow (KTGF) is be used to 

represent the solids behavior in the system. The stress tensor for the solid-phase is represented as: 

𝜏𝑆 = 𝛼𝑆𝜇𝑆(𝛻�⃗� 𝑆 + (𝛻�⃗� 𝑆)
𝑇) − 𝑃𝑠𝐼 + 𝛼𝑆𝜇𝑆 (𝜆𝑆 −

2

3
) 𝐼 (𝛻 ∙ �⃗� 𝑆) (4-8) 

𝜆𝑆, is the solids bulk viscosity, which describes the resistance of the particle suspension against 

compression; and is expressed as: 

𝜆𝑆 =
4

3
𝛼𝑆
2𝜌𝑆𝑑𝑝𝑔0(1 + 𝑒𝑝)√

𝛩

𝜋
 (4-9) 

Ps, is the solids pressure, which represents the normal solid-phase forces due to particle-particle 

interactions; and is expressed as: [330] 

𝑃𝑠 = 𝜌𝑆𝛼𝑆𝛩 + 2𝑔0𝜌𝑠𝛼𝑆
2𝛩(1 + 𝑒𝑝) (4-10) 

The first term in the right-hand-side of the solid pressure equation represents the kinetic 

contribution, which accounts for the momentum transferred through the system by particles 

moving across imaginary shear layers in the flow. The second term represents the collisional 

contribution, which represents the momentum transferred by direct collisions.  

ep, is the restitution coefficient, which represents the ratio of normal relative velocity after 

and before the collision, and it is taken as 0.9 as proposed by Ding and Gidaspow [331]. 
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g0, is the radial distribution function, which accounts for the increase in the probability of 

collisions when the particle density increases; and is expressed as [171, 331]: 

𝑔0 = 0.6 [1 − (
𝛼𝑆

𝛼𝑆,𝑚𝑎𝑥
)

1/3

]

−1

 (4-11) 

Where 𝛼𝑆,𝑚𝑎𝑥 = 0.62,  and beyond this value, the radial distribution function goes to infinity.  

Θ, represents the granular temperature, which is a measure of the kinetic energy contained 

in the fluctuating velocity for the solid particles and it is defined using the algebraic model by Ding 

and Gidaspow, [331] which helps minimize the computational load by avoiding to solve an 

additional differential equation along with its closure models: 

𝛩 =
𝑑𝑝
2

30(1 − 𝑒𝑝)
(𝛻𝑢𝑆 + (𝛻𝑢𝑆)

𝑇) (4-12) 

μS, represents the solids shear viscosity, which is an elastic force, arising from the solid-phase the 

response to shear, compression and extension stresses exerted on it by the continuous liquid-phase. 

It should not be confused with the viscous forces, which arise during the fluid flow, as fluid 

viscosities are proportional to the rate of deformation over time, whereas the solid viscosity is 

proportional to the amount of shear deformation. The following model by Gidaspow [242] is used 

to describe the solid-phase viscosity as follows: 

𝜇𝑆 =
4

5
𝛼𝑠
2𝜌𝑠𝑑𝑝𝑔0(1 + 𝑒𝑝)√

𝛩

𝜋
+
2
5√𝜋
96 𝜌𝑠𝑑𝑝√𝛩

𝑔0(1 + 𝑒𝑝)
∙ [1 +

4

5
𝛼𝑠𝑔0(1 + 𝑒𝑝)]

2

 (4-13) 
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4.2 TURBULENCE MODEL 
 

 

As the mass and momentum balances are obtained through the ensemble averaging formulations, 

the terms uk and uk
′ represent the mean and fluctuating components of the velocity, thus the 

unclosed terms in the stress Equation (4-3) should be modeled. It is decided to use the RNG k-ε 

turbulence model after a comparison between various k-ε turbulence schemes was conducted 

[332]. The turbulent kinetic energy (k) and the turbulent energy dissipation (ε) are calculated based 

on the following governing equations, respectively: 

𝜕(𝜌𝑘)

𝜕𝑡
+ 𝛻(𝜌𝐾�⃗� ) = 𝛻(𝑃𝑟𝑒𝑓𝑓,k

−1  𝜇𝑒𝑓𝑓𝛻𝑘) + 𝐺𝑘 + 𝐺𝑏 − 𝜌휀 − 𝑌𝑀 + 𝑆𝑘 
(4-14) 

𝜕(𝜌휀)

𝜕𝑡
+ 𝛻(𝜌휀�⃗� ) = 𝛻(𝑃𝑟𝑒𝑓𝑓,ε

−1  𝜇𝑒𝑓𝑓𝛻휀) + 𝐶 1

휀

𝑘
(𝐺𝑘 + 𝐶 3𝐺𝑏) − 𝐶 2𝜌

휀2

𝑘
− 𝑅 + 𝑆  

(4-15) 

Where Gk represents the generation of turbulence kinetic energy due to the mean velocity 

gradients; Gb is the generation of turbulence kinetic energy due to buoyancy; YM is the contribution 

of the fluctuating dilation in compressible turbulence to the overall dissipation rate; Cε1, Cε2, Cε2 

are constants set as 1.44, 1.92 and 0.09, respectively. 𝑃𝑟𝑒𝑓𝑓,𝑘
−1  and 𝑃𝑟𝑒𝑓𝑓,ε

−1  are the inverse effective 

Prandtl numbers for K and ε, respectively derived analytically using the RNG theory. In addition, 

Sk and Sε are user-defined source term. The equations used to calculate some of the above 

parameters are: 

𝐺𝑘 = 𝜇𝑡 (
𝜕�⃗⃗� 𝑖
𝜕𝑥𝑗

+
𝜕�⃗⃗� 𝑗
𝜕𝑥𝑖

)
𝜕�⃗⃗� 𝑖
𝜕𝑥𝑗

−
2

3

𝜕�⃗⃗� 𝑘
𝜕𝑥𝑘

(3𝜇𝑡(
𝜕�⃗⃗� 𝑘
𝜕𝑥𝑘

) + 𝜌𝑘) (4-16) 

𝐺𝑏 =

{
 
 

 
 

𝜇𝑡
𝜌𝜎𝑝

𝑔𝑖
𝜕𝑝

𝜕𝑥𝑖
𝑓𝑢𝑙𝑙 𝑏𝑜𝑢𝑦𝑎𝑛𝑐𝑦 𝑚𝑜𝑑𝑒𝑙

𝜇𝑡
𝜌𝜎𝑝

𝜌𝛽𝑔𝑖
𝜕𝑇

𝜕𝑥𝑖
                𝐵𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞 𝑏𝑜𝑢𝑦𝑎𝑛𝑐𝑒 𝑚𝑜𝑑𝑒𝑙

 (4-17) 
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|
𝑃𝑟𝑒𝑓𝑓

−1 − 1.3929

α0 − 1.3929
|

0.6321

.       |
𝑃𝑟𝑒𝑓𝑓

−1 + 2.3929

α0 + 2.3929
|

0.3679

=   
μmol
μeff

, α0 = 1 (4-18) 

 
Where α0 = 1, ( 𝜇𝑚𝑜𝑙) is the molecular viscosity. In the high Reynolds number limit where 

(
μmol

μeff
≪ 1) , and 𝑃𝑟𝑒𝑓𝑓,ε

−1 = 𝑃𝑟𝑒𝑓𝑓,k
−1 ≈ 1.393 [333]. 

 

 

 

 

4.3 MOMENTUM EXCHANGE TERMS AND INTERPHASE COEFFICIENT 
CORRELATIONS 

 

 

The momentum exchange term in the momentum balance Equation (4-2), which describes the 

interface forces between the phases has been described as follows: 

�⃗⃗� 𝑘 = �⃗⃗� 𝐷 + �⃗⃗� 𝐿 + �⃗⃗� 𝑉𝑀 + �⃗⃗� 𝑊 + �⃗⃗� 𝑇𝐷 (4-19) 

The right hand terms of Equation (4-19) represent the interphase drag, lift, virtual mass, wall force, 

and turbulence dispersion, respectively. A brief description of each of the momentum (force per 

unit volume), in addition to the expression used to describe them in this model is presented in 

Table 4-1. The terms for the various coefficients used in these terms are presented in Table 4-2. 
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Table 4-1: Momentum interphase terms used in our model 

Force 
Term 

Equation used in model Reference 

Drag 

�⃗⃗� 𝐷,𝐺 = �⃗⃗� 𝐷,𝐺−𝐿 + �⃗⃗� 𝐷,𝐺−𝑆 , �⃗⃗� 𝐷,𝐿 = �⃗⃗� 𝐷,𝐿−𝐺 + �⃗⃗� 𝐷,𝐿−𝑆,

�⃗⃗� 𝐷,𝑆 = �⃗⃗� 𝐷,𝑆−𝐺 + �⃗⃗� 𝐷,𝑆−𝐿  

𝐺 − 𝐿:  �⃗⃗� 𝐷,𝐺−𝐿 =
3

4

𝐶𝐷,𝐺−𝐿
𝑑𝑏

𝛼𝐺𝛼𝐿𝜌𝐿|�⃗� 𝐺 − �⃗� 𝐿|(�⃗� 𝐺 − �⃗� 𝐿) 

𝑆 − 𝐿:  �⃗⃗� 𝐷,𝐺−𝐿 =
3

4

𝐶𝐷,𝑆−𝐿
𝑑𝑝

𝛼𝑆𝛼𝐿𝜌𝐿|�⃗� 𝑆 − �⃗� 𝐿|(�⃗� 𝑆 − �⃗� 𝐿) 

𝑆 − 𝐺: �⃗⃗� 𝐷,𝐺−𝑆 =
3

4

𝐶𝐷,𝑆−𝐺
𝑑𝑝

𝛼𝑆𝜌𝐺|�⃗� 𝑆 − �⃗� 𝐺|(�⃗� 𝑆 − �⃗� 𝐺) 

Clift et al. [171] 

Schallenberg et 

al. [299] 

Lift �⃗⃗� 𝐿,𝐿 = 𝛼𝐺𝜌𝐿𝐶𝐿(�⃗� 𝐺 − �⃗� 𝐿)×(𝛻×�⃗� 𝐿) 
Drew et al. 

[334, 335] 

Virtual 

Mass. 
�⃗⃗� 𝑉𝑀 = 𝛼𝐺𝜌𝐿𝐶𝑉𝑀 (

𝐷�⃗� 𝐺
𝐷𝑡

−
𝐷�⃗� 𝐿
𝐷𝑡

) ,  𝐶𝑉𝑀 = 0.5 Auton et al. 

[336] 

Lateral 
�⃗⃗� 𝑊 =

{
 
 

 
 𝛼𝐺𝜌𝐿(�⃗� 𝐺 − �⃗� 𝐿)

𝐷𝑆
𝑚𝑎𝑥 (0, 𝐶𝑤1 + 𝐶𝑤2

𝐷𝑆
𝑦𝑤
)𝑛𝑤 𝑦𝑤 < (

𝐶𝑤2
𝐶𝑤1

)𝐷𝑆

0 𝑦𝑤 > (
𝐶𝑤2
𝐶𝑤1

)𝐷𝑆

 

𝑦𝑤: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑤𝑎𝑙𝑙, 𝑛𝑤 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑛𝑜𝑟𝑚𝑎𝑙 𝑡𝑜 𝑤𝑎𝑙𝑙, 

𝐶𝑤1 = −0.0064, 𝐶𝑤2 = 0.0166 

Antal et al. 

[337] 

Krepper et al. 

[338] 

Turbulence 

dispersion 

𝑀𝑇𝐷 = 𝐶𝑇𝐷𝜌𝐿𝑘𝛻𝛼𝐺 

𝐶𝑇𝐷 = 0.2 

Bertodano [339] 

Burns et al. 

[340] 

  



 

 77 

Table 4-2: Interphase coefficient expressions used in our model 

Term Model Reference 

Gas-

Liquid 

Drag 

𝐶𝐷,𝐺−𝐿 =

{
 
 

 
 (

24

𝑅𝑒𝑏
)(1 + 0.1𝑅𝑒𝑏

0.75)            𝑁𝜇 < 36√2
(1 + 0.1𝑅𝑒𝑏

0.75)

𝑅𝑒𝑏
2

2

3
√𝐸ö𝑏                                          𝑁𝜇 ≥ 36√2

(1 + 0.1𝑅𝑒𝑏
0.75)

𝑅𝑒𝑏
2

 
Ishii and 

Zuber [319] 

Gas-

Solid 

Drag 

𝐶𝐷,𝐺−𝑆 = {
(
24

𝑅𝑒𝑝
)(1 + 0.15𝑅𝑒𝑝

0.687)    𝑅𝑒𝑝 < 1000

0.44                                           𝑅𝑒𝑝 ≥ 1000

 

Schiller and 

Naumann [6] 

Liquid-

Solid 

Drag 

𝐶𝐷,𝐿−𝑆 = 𝛼𝑠
−1.65𝑚𝑎𝑥(

24

𝛼𝑠𝑅𝑒𝑆−𝐿
(1 + 0.15(𝛼𝑠𝑅𝑒𝑆−𝐿)

0.687), 0.44) ,

𝑅𝑒𝑆−𝐿 =
𝜌𝐿|𝑢𝑆 − 𝑢𝐿|𝑑𝑝

𝜇𝐿
 

Wen and Yu 

[5] 

Liquid-

Gas Lift 

𝐶𝐿,𝐿−𝐺

= {

𝑚𝑖𝑛[0.288 𝑡𝑎𝑛ℎ(0.12𝑅𝑒) , 𝑓(𝐸�̈�𝑑)] 𝐸�̈�𝑑 < 4

𝑓(𝐸�̈�𝑑) = 0.00105𝐸�̈�
3 − 0.0159𝐸�̈�𝑑

2 − 0.0204𝐸�̈�𝑑 + 0.474 4 ≤ 𝐸�̈�𝑑 ≤ 10
−0.29 𝐸�̈�𝑑 > 10

 

𝐸�̈� =
𝑔∆𝜌𝑑𝐵

2

𝜎
, 𝐸�̈�𝑑 = 𝐸�̈�(1 + 0.163𝐸�̈�

0.757)2/3 

Tomiyama 

[7] 

 
 
 
 

4.4 BUBBLES REPRESENTATION 
 

 

In a three-phase fluidized system, bubble size variation is intimately related to bubble-particle 

collisions. The collisions can yield two different consequences: the particle is ejected from the 

bubble surface, or the particle penetrates the bubble leading to either bubble breakage or non-

breakage. Bubble-particle collisions generate perturbations on the bubble surface. After the 

bubble-particle collision, three factors become crucial in determining the coalescence and 

breakage characteristics of the bubble [171]: (1) shear stress, which depends on the liquid velocity 

gradient and the relative bubble-particle impact speed, and tends to break the bubble; (2) surface 
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tension force, which tends to stabilize the bubble and drive it to recover its original shape; and (3) 

viscous force, which slows the growth rate of the surface perturbation, and tends to stabilize the 

bubble. Accordingly, bubble coalescence and breakage models are classified into four main 

categories [341]: (1) turbulent fluctuation and collision; (2) viscous shear stress; (3) shearing-off 

process; and (4) interfacial stability. The bubbles induced turbulence and bubble population 

balance are discussed below. 

 

 

4.4.1 Bubble Induced Turbulence 
 

 

The bubble induced turbulence is represented by introducing two source terms, Sk and Sε, into the 

k-ε equation as [310, 342]: 

𝑆𝑘 = (
𝜌𝐺

𝜌𝐺 + 𝐶𝑉𝑀𝜌𝐺
)𝛼𝐺 (

3 𝐶𝐷
4 𝑑𝐵

) |�⃗� 𝐺 − �⃗� 𝐿|(𝑞𝐿𝐺 − 2𝑘𝐿 + �⃗� 𝑑 ∙ �⃗� 𝑟);   𝑆 = 𝐶 3

휀

𝑘
𝑆𝑘  (4-20) 

Where 𝑞𝐿𝐺  is the covariance of the liquid-phase and the dispersed gas-phase velocities; ur and ud 

are the relative and drift velocities, respectively; and 𝐶 3 = 1.2.  

This model is rigorously derived by writing the equation of motion for a single bubble and 

rearranging it in terms of the fluid velocity, where the drag and mass coefficients (CD and CVM) 

appear in the formulation. The equations for the relative and drift velocities are: 

�⃗� 𝑟 = [�⃗� 𝐺 − �⃗� 𝐿] − �⃗� 𝑑 , �⃗� 𝑑 = −�⃗⃗� 12
𝑡 [
∆𝛼2
𝛼2

−
∆𝛼1
𝛼1
] (4-21) 

The drift velocity (u⃗ d) is a statistical quantity due to the conditional averaging; and may not be 

negligible as it accounts for the dispersion effects due to the bubbles transport by the turbulent 

fluid motion. D⃗⃗ 12
t  is the fluid-bubble dispersion tensor, which is expressed in terms of the fluid 

bubble velocity covariance [𝑞𝐿𝐺] and the fluid-bubble turbulent interaction time scale [ τ12
t ]. For 
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the purpose of practical computations [212], the dispersion tensor is simplified to its diagonal form 

[273, 310, 343, 344] as: 

�⃗⃗� 12
𝑡 =

1

3
𝜏 12
𝑡 𝑞𝐿𝐺 ∙ 𝐼, 𝑊ℎ𝑒𝑟𝑒 𝐼 𝑖𝑠 𝑎 3×3 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 (4-22) 

 

 

4.4.2 Bubble Population Balance 
 

 

It is necessary to take into account bubble breakup and coalescence phenomena in the CFD model 

when a bubble column or a slurry bubble column operates in the heterogeneous flow regime. The 

usual approach is to use population balance models, which describe the variation in a given 

population property over the space and time within a velocity field. Therefore, a population balance 

model is used to represent the bubble size distribution. Assuming that each bubble class travels at 

the same mean algebraic velocity, the individual number density of a bubble class i can be 

expressed as [345]: 

𝜕𝑛𝑖
𝜕𝑡

+ 𝛻(𝑢𝐺𝑛𝑖) = (∑𝑅𝐽
𝐽

)

𝑖

= 𝐵𝐶 + 𝐵𝐵 −𝐷𝐶 − 𝐷𝐵 (4-23) 

Where (∑ RJJ )
i
 represents the net change in the number density distribution due to the coalescence 

and breakup of bubbles; and BC, BB, and DC, DB, represent the birth and death rates, respectively 

due to coalescence and breakup. 

The model proposed by Lou and Svendsen [346] for the breakup rate of bubbles is used in 

this work. Their model was developed based on the assumption of bubble binary breakup (each 

bubble breaks up into two distinctly smaller bubbles) under isotropic turbulence. The ‘daughter’ 

bubble sizes were accounted for using a dimensionless variable (fBV ): 
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𝑓𝐵𝑉 =
𝑣𝐼
𝑣
=
𝑑𝐼
3

𝑑
=

𝑑𝐼
3

𝑑𝐼
3 + 𝑑𝐼𝐼

3  (4-24) 

Where vI, dI and dII, represent the volumes and diameters of the daughter bubbles in the binary 

breakage of a parent bubble of diameter d and volume v. The breakup rate of the bubbles can be 

represented as: 

𝛺𝐵(𝑣: 𝑣𝑓𝐵𝑉) = 0.923(1 − 𝛼𝐺)𝑛 (
휀

𝑑2
)
1/3

∫
(1 + 𝜉)2

𝜉11/3
𝑒𝑥𝑝 (−

12𝑐𝑓𝜎

𝛽𝜌𝐿휀2/3𝑑5/3𝜉11/3
) 𝑑𝜉

1

𝜉𝑚𝑖𝑛

 (4-25) 

Where ξmin = λmin/𝑑 and ξ = λ/𝑑, representing the size ratio between an eddy and a bubble in 

the inertial subrange, and β is a constant derived from fundamental consideration and it equals 2. 

Subsequently, the birth and death rates due to breakup are represented as: 

𝐵𝐵 =∑𝛺𝐵(𝑣𝑗: 𝑣𝑖) 𝑛𝑖,  
(4-26) 

𝐷𝐵 = 𝛺𝑖𝑛𝑖 𝑤ℎ𝑒𝑟𝑒 𝛺𝑖 = ∑ 𝛺𝑚𝑖

𝑁

𝑚=1

 

(4-27) 

On the other hand, bubble coalescence occurring due to bubble collision is caused by three major 

phenomena (1) wake entrainment, (2) buoyancy and (3) random turbulence. Wake entrainment has 

been widely accepted to be negligible [347] and the effect of buoyancy is eliminated as all bubbles 

of the same class have been assumed to travel at the same mean velocity. Therefore, the only 

remaining driving force is that of the random turbulence. The coalescence rate due to random 

turbulent collision is adopted from Prince and Blanch as given below [348]: 

𝜒𝑖𝑗 =
𝜋

4
[𝑑𝑖 + 𝑑𝑗]

2
(𝑢𝑇𝑖

2 + 𝑢𝑇𝑗
2 )

0.5
𝑒𝑥𝑝(−

𝑡𝑖𝑗
𝜏𝑖𝑗
) (4-28) 

uT, is the turbulent velocity in the inertial subrange of isotropic turbulence and can be estimated 

as: [349] 
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𝑢𝑇 =
𝑟𝑖𝑗
2/3

휀1/3
 (4-29) 

τij, is the contact time between two colliding bubbles: 

𝜏𝑖𝑗 =
𝑟𝑖𝑗
2/3

휀1/3
 (4-30) 

tij, is the time for two bubbles with radii ri and rj to coalesce: 

𝑡𝑖𝑗 = (
𝑟𝑖𝑗
3𝜌𝑙

16𝜎
)

0.5

𝑙𝑛 (
ℎ0
ℎ𝑓
) (4-31) 

Where h0 and hf represent the initial bubble film thickness and the critical film thickness were 

reported to be 10-4 and 10-8 m, respectively. 

rij, is the equivalent radius: 

𝑟𝑖𝑗 =
2𝑟𝑖𝑟𝑗

(𝑟𝑖 + 𝑟𝑗)
 (4-32) 

Subsequently, the number density for individual bubble groups governed by birth and death due 

coalescence can be expressed as: 

𝐵𝐶 =
1

2
∑∑𝜂𝑗𝑘𝑖𝜒𝑖𝑗

𝑖

𝑗=1

𝑖

𝑘=1

𝑛𝑖𝑛𝑗 

Where  𝜂𝑗𝑘𝑖 = {

(𝑣𝑗 + 𝑣𝑘) − 𝑣𝑖−1/(𝑣𝑖 − 𝑣𝑖−1) 𝑖𝑓       𝑣𝑖−1 < 𝑣𝑗 + 𝑣𝑘 < 𝑣𝑖

𝑣𝑖+1 − (𝑣𝑗 + 𝑣𝑘)/(𝑣𝑖+1 − 𝑣𝑖) 𝑖𝑓       𝑣𝑖 < 𝑣𝑗 + 𝑣𝑘 < 𝑣𝑖+1
0 𝑖𝑓                  𝑛𝑒𝑖𝑡ℎ𝑒𝑟           

 

(4-33) 

𝐷𝐶 = ∑ 𝜒𝑖𝑗𝑛𝑖𝑛𝑗

𝑁

𝑚=1

 (4-34) 

It is important to note that this model will be developed for a SBCR operating under typical 

pressures and temperatures of F-T synthesis; and it is possible that other correlations/parameters 

would provide a better fit for different circumstances and scenarios.  
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4.5 KINETICS AND MASS TRANSFER 
 

 

The interphase mass-transfer rate depends on the mass-transfer coefficient, the interfacial area 

concentration, and the rate of chemical reaction. The mass-transfer coefficient is a function of the 

local hydrodynamics, which are influenced on one hand by the bubble shrinkage due to physical 

or chemical absorption and on the other hand by the change of the physical properties due to the 

heterogeneous distributions of the chemical species. 

In calculating the gas-liquid mass transfer in the transient CFD simulation, it is not possible 

to obtain the mass transfer coefficients from the hydrodynamic data generated using our multi-

Eulerian simulation. This is primarily due to the limitations at the interface in the jump boundary 

conditions from the gas to liquid, which ideally require empirical mass transfer data or correlations 

to be incorporated in the CFD model.  

Using CFD to model mass transfer and interfacial phenomena from the first principles is 

feasible at a very small scale, such a single droplet, using a Lagrangian or a Volume of Fluid (VOF) 

scheme. However, it should be noted that Gidaspow et al. [242, 331] used the granular temperature 

approach to derive the mass transfer coefficients in multiphase systems. Nonetheless, this would 

not be possible for our large-scale SBCR. Actually, attempting multi-fluid Eulerian to perform 

multiphase-multicomponent mass transfer would result in numerically unstable sources and sinks.  

Therefore, the species mass transfer rate from the dispersed-phase to the continuous-phase 

per unit volume, which appeared in Equations (4-1) and (4-2) above, is defined as: 

�̇�𝑘𝑛 = 𝑘𝐿𝑎 ∙ (𝐶
∗ − 𝐶𝐿) (4-35) 

Where 𝑘𝐿𝑎 is the volumetric liquid-side mass transfer coefficient, which was represented using an 

empirical correlation developed using numerous experimental data for different three-phase F-T 

systems obtained under elevated pressures and temperatures in our pilot-scale SBCR [350]: 
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𝑘𝐿𝑎 = 7.99×10
−9
𝜌𝐿
1.82𝜌𝐺

0.27𝑢𝐺
0.387Γ0.173

𝜇𝐿
0.25𝜎𝐿

0.976𝑀𝑤𝑔
0.02

(
𝑃

𝑃 − 𝑃𝑉
)
0.242

(
𝑑𝐶

𝑑𝐶 + 0.3
)
0.1

×𝑒𝑥𝑝[−1.3𝐶𝑝 + 0.8𝐶𝑝
2 − 𝐶𝑝

3 − 1675.7𝑑𝑝 + 0.176𝑋𝑊] 

(4-36) 

The multi-formulation described above was implemented into the commercial CFD code, ANSYS 

Fluent v14.5, where the governing equations were solved using a multiphase-Eulerian segregated 

solver algorithm. 

When accounting for chemical reactions, an additional species conservation equation has 

to be considered as follows: 

𝜕(𝜌𝑘𝛼𝑘𝑦𝑘
𝑖 )

𝜕𝑡
+ 𝛻(𝜌𝑘𝛼𝑘𝑢𝑘𝑢𝑘𝑦𝑘

𝑖 ) = 𝛻(𝛼𝑘𝜌𝑘𝐷𝑘
𝑖𝛻𝑦𝑘

𝑖 ) + 𝑟𝑘
𝑖 − 𝑟𝑘𝑛

𝑖𝑗
 (4-37) 

Where yk
i  represents the mass fraction of species i in phase k, whereas rk

i  and rkn
ij

 represent the F-

T reaction kinetics rate and the rate of chemical absorption. 

 

 

 

 

4.6 SOLUTION METHOD AND BOUNDARY CONDITIONS 
 

 

The multi-formulation described above was implemented into ANSYS Fluent v 14.5, where the 

governing equations are solved using an Eulerian multiphase segregated solver algorithm. The 3-

D time-dependent simulations are conducted, both due to the nature of the geometry investigated 

and the bubble plume oscillations, which are characteristic of the churn-turbulent flow regime 

[351]. The RNG k-ε turbulence model is used, as it provides the best validation results as 

previously demonstrated elsewhere [332]. At the bottom of the column, Dirichlet velocity and 

volume fraction conditions for all phases are set, and a second order spatially accurate QUICK 

scheme [352-354] is employed to discretize all equations.  
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𝑢𝑘(𝑧 = 0, 𝑡) =  𝛽,𝑤ℎ𝑒𝑟𝑒 𝛽 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (4-38) 

Moreover, a multiphase variant of the SIMPLE scheme is used for pressure-velocity coupling 

[355]. The first order implicit time stepping is then used to advance the solution in time. Before 

each simulation, mesh and time independence studies are carried out in order to optimize the 

solution and computational time. In all simulations quasi-steady state numerical solutions are 

obtained. This means that at the end of the calculations, all variables exhibit small oscillations 

around steady-state values, indicating that the statistical averages were reached for all variables.  

Additionally, outlet boundary conditions are implemented taking into account the following 

[301, 316]: (1) F-T SBCR reactors are typically operated in semi-batch mode where the liquid 

level may reach the top of the reactor [209]; and (2) Due to the F-T reaction, the liquid (mainly 

hydrocarbon products) formed inside the reactor is continuously removed using appropriate 

filtration devices within the reactor. Therefore, the following outlet boundary conditions are 

executed to account for the two aforementioned considerations: 

1. The real computation domain is selected to be taller than the initial height of the reactor, 

similar to the work by Troshko and Zdravistch [316]. 

2. The initial liquid height is set by initializing the liquid volume fraction to 1 in the zone up 

to a known initial liquid height, while the gas volume fraction will be set to 1 in the region 

above that. 

3. The ambient media in the computational zone above the reactor is set to be stagnant CO, 

such that the values for the pressure, backflow gas volume fraction, backflow CO gas 

species concentration and backflow turbulent parameters, are 1 atmosphere, 1, 1, and 0, 

respectively [316]. 
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The implementation of these outlet boundary conditions allows for modeling of the slurry-phase 

height expansion due to the gas holdup and heterogeneous reactions without being affected by the 

gas-phase backflow.  Moreover, due to the strong non-linear characteristics of the model, 

relaxation coefficients (Patankar [356]) are introduced in the momentum conservation equations. 

The convergence criterion adopted from Patankar [356], based on the pressure, is given by: 

|∑∑𝑃𝑖𝑗
(𝑛+1)

𝑁

𝑖=2

𝑁

𝑗=2

−∑∑𝑃𝑖𝑗
(𝑛)

𝑁

𝑖=2

𝑁

𝑗=2

| < 10−9 𝑊ℎ𝑒𝑟𝑒 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑠ℎ 𝑠𝑖𝑧𝑒 (4-39) 
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5.0  CFD MODEL VALIDATION 
 

 

 

 

The CFD model proposed above was implemented into ANSYS Workbench v. 13.0 and 14.5 and 

was systematically validated as follows:  

 

 

 

 

5.1 TESTING OF CFD MODEL USING AQUEOUS AIR-WATER-GLASS BEADS 

DATA BY YU AND KIM [3] 

 

 

The CFD model was initially tested against the radial gas holdup data by Yu and Kim [3] obtained 

for an air-water-glass beads system in a 0.254 m ID and 2.5 m height column using various 

superficial gas velocities under ambient conditions. More details of their study are given in Table 

5-1. 

 
Table 5-1: Experimental conditions by Yu and Kim [3] used for selecting of our CFD model 

parameters 

Reactor Diameter 0.254 m 

Reactor Length 2.5 m 

Liquid Velocity 0.06 m/s 

System Air-Water-Glass Beads 

Particle Diameter 2.3 mm 

Solid Concentration 9.47% 

Solid Density 2500 kg/m3 

Gas Velocity 0.01; 0.06; 0.14 m/s 
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The aim of this study was to select the gas-liquid and liquid-solid drag models and the most 

accurate and effective turbulence model to be used in the CFD model in order to predict the 

experimental data with high accuracy. Three gas-liquid drag models by (1) Wen and Yu [3], (2) 

Haider and Levenspiel [357] and (3) Gidaspow [242], listed in Table A-16 (Appendix A), along 

with two liquid-solid drag models by (1) Schallenberg et al. [299] and (2) Schiller-Naumann [6], 

also listed in Table A-17 (Appendix A) were investigated. Three turbulence models, (1) Standard 

k-ε, (2) Realizable k-ε and (3) RNG k-ε summarized in Table 5-2 were also investigated. For each 

turbulence model, six combinations of the gas-liquid and liquid-solid drag models were used and 

the CFD model predictions were performed at three different superficial gas velocities of 0.01, 

0.06 and 0.14 m/s. The comparisons between experimental and predicted data using the CFD 

model are illustrated in Figure 5-1 and the absolute average relative errors (AARE) are presented 

in Table 5-3 for the three superficial gas velocities. From these figures and tables, the following 

observations can be made: 

1. For all gas-liquid and liquid-solid drag model combinations, the Realizable k-ε turbulence 

model gives the worst predictions (highest AARE), which is in agreement with previous 

studies [292, 302];  

2. The RNG k-ε turbulence model, coupled with the gas-liquid drag model by Wen-Yu [5] and 

the liquid-solid drag model by Schiller Naumann [6], gives the most accurate predictions of 

the experimental data (the lowest AARE); and 

3. The accuracy of our CFD model predictions using the RNG k-ε turbulence model, at 0.01 and 

0.06 m/s superficial gas velocities was not satisfactory, since their corresponding AARE values 

varied from 17.5% to 35.1% and from 9.6% to 28.7%, respectively. This behavior was 

expected since under such low velocities in an aqueous system, the bubbly flow regime prevails 
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in the SBCR. At the superficial gas velocity of 0.14 m/s, however, the churn turbulent flow 

regime prevails and our CFD model predictions were in good agreement with the experimental 

data where the AARE using the RNG k-ε turbulence varied between 4.9 and 8.2%. 

 

Table 5-2: Model equations for the three k-ε turbulence models used  
Standard k-ε 

𝜕(𝜌𝑘)

𝜕𝑡
+
𝜕

𝜕𝑥𝑗
(𝜌𝑘𝑈𝑖) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎𝑘
)
𝜕𝑘

𝜕𝑥𝑗
] + 𝐺𝑘 + 𝐺𝑏 − 𝜌휀 − 𝑌𝑀 + 𝑆𝑘 

𝜕(𝜌휀)

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌휀𝑈𝑖) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎
)
𝜕휀

𝜕𝑥𝑗
] + 𝐶1

휀

𝑘
(𝐺𝑘 + 𝐶3 𝐺𝑏) − 𝐶2 𝜌

휀2

𝑘
+ 𝑆  

𝐶1 = 1.44,  𝐶2 = 1.92, 𝐶3 = 0.09, 𝜎𝑘 = 1 and 𝜎 = 1.3. 

𝐺𝑘 = 𝜇𝑡 (
𝜕𝑈𝑖

𝜕𝑥𝑗
+
𝜕𝑈𝑗

𝜕𝑥𝑖
)
𝜕𝑈𝑖

𝜕𝑥𝑗
−
2

3

𝜕𝑈𝑘

𝜕𝑥𝑘
(3𝜇𝑡

𝜕𝑈𝑘

𝜕𝑥𝑘
+ 𝜌𝑘); 𝐺𝑏 = {

𝜇𝑡

𝜌𝜎𝑝
𝑔𝑖

𝜕𝑝

𝜕𝑥𝑖
𝑓𝑢𝑙𝑙 𝑏𝑜𝑢𝑦𝑎𝑛𝑐𝑦 𝑚𝑜𝑑𝑒𝑙

𝜇𝑡

𝜌𝜎𝑝
𝜌𝛽𝑔𝑖

𝜕𝑇

𝜕𝑥𝑖
𝐵𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞 𝑏𝑜𝑢𝑦𝑎𝑛𝑐𝑒 𝑚𝑜𝑑𝑒𝑙

 

𝜇𝑡 = 𝐶𝜇𝜌
𝑘2
; 𝐶𝜇 = 0.09  [358] 

Realizable k-ε 
𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑘𝑈𝑗) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎𝑘
)
𝜕𝑘

𝜕𝑥𝑗
] + 𝐺𝑘 + 𝐺𝑏 − 𝜌휀 − 𝑌𝑀 + 𝑆𝑘 

𝜕(𝜌휀)

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌휀𝑈𝑗) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎
)
𝜕휀

𝜕𝑥𝑗
] + 𝜌𝐶1𝑆 − 𝜌𝐶2

휀2

𝑘 + √𝑣휀
+ 𝐶1

휀

𝑘
𝐶3 𝐺𝑏 + 𝑆  

𝐶1 = 𝑚𝑎𝑥 [0.43,
𝜂

𝜂 + 5
] , 𝜂 = 𝑆

𝑘

휀
, 𝑆 =  √2𝑆𝑖𝑗𝑆𝑖𝑗 

RNG k-ε 

𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑘𝑈𝑖) =

𝜕

𝜕𝑥𝑗
[𝛼𝑘𝜇𝑒𝑓𝑓

𝜕𝑘

𝜕𝑥𝑗
] + 𝐺𝑘 + 𝐺𝑏 − 𝜌휀 − 𝑌𝑀 + 𝑆𝑘 

𝜕(𝜌휀)

𝜕𝑡
+
𝜕

𝜕𝑥𝑗
(𝜌휀𝑈𝑖) =

𝜕

𝜕𝑥𝑗
[𝛼 𝜇𝑒𝑓𝑓

𝜕휀

𝜕𝑥𝑗
] + 𝐶1

휀

𝑘
(𝐺𝑘 + 𝐶3 𝐺𝑏) − (𝐶2 +

𝐶𝜇𝜂
3(1 − 𝜂/𝜂0)

1 + 𝛽𝜂3
)𝜌

휀2

𝑘
+ 𝑆  

𝐶1 = 1.42, 𝐶2 = 1.68. 

|
𝛼 − 1.3929

𝛼0 − 1.3929
|
0.6321

|
𝛼 + 2.3929

𝛼0 + 2.3929
|
0.3679

=
𝜇𝑚𝑜𝑙
𝜇𝑒𝑓𝑓

 

𝛼0 = 1, except in the high Reynolds number limit i.e  
𝜇𝑚𝑜𝑙

𝜇𝑒𝑓𝑓
≪ 1, 𝛼𝑘 = 𝛼 ≈ 1.393 

𝑑 (
𝜌2𝑘

√ 𝜇
) = 1.72

(
𝜇𝑒𝑓𝑓

𝜇
)

√(
𝜇𝑒𝑓𝑓

𝜇
)
3

−1+𝐶𝑣

𝑑 (
𝜇𝑒𝑓𝑓

𝜇
) ; Cv ≈ 100; 𝑅 =

𝐶𝜇𝜌𝜂
3(1−𝜂/𝜂0)

1+𝛽𝜂3

2

𝑘
;  𝜂0 = 4.38, 𝛽 = 0.012 

𝜇𝑡 = 𝐶𝜇𝜌
𝑘2

휀
; 𝐶𝜇 = 0.0845 
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Table 5-3: Absolute average relative errors (AARE) for different turbulence and drag  
G-L and L-S models against experimental data by Yu and Kim [3] 

ug (m/s) Gas-Liquid/Liquid-Solid Drag models 
AARE (%) 

RNG k-ε Realizable k- ε Standard k- ε 

0.01 

Wen-Yu [5] /Schallenberg et al. [299] 30.83 56.94 25.71 

Haider-Levenspiel [357]/ Schallenberg 

et al. [299] 27.28 57.98 17.14 

Gidaspow [242]/ Schallenberg et al. 

[299] 35.08 61.11 36.27 

Wen-Yu [5] /Schiller Naumann [6] 30.69 62.15 17.38 

Haider-Levenspiel [357]/ Schiller 

Naumann [6] 17.51 59.02 12.70 

Gidaspow [242]/ Schiller Naumann [6] 24.01 60.07 17.03 

0.06 

Wen-Yu [5] /Schallenberg et al. [299] 11.63 63.20 13.27 

Haider-Levenspiel [357]/ Schallenberg 

et al. [299] 28.73 64.24 15.19 

Gidaspow [242]/ Schallenberg et al. 

[299] 10.54 53.81 9.56 

Wen-Yu [5] /Schiller Naumann [6] 9.61 54.85 13.07 

Haider-Levenspiel [357]/ Schiller 

Naumann [6] 12.80 55.90 25.44 

Gidaspow [242]/ Schiller Naumann [6] 18.29 51.20 18.38 

0.14 

Wen-Yu [5] /Schallenberg et al. [299] 6.7 27.7 14.2 

Haider-Levenspiel [357]/ Schallenberg 

et al. [299] 8.2 29.4 10.4 

Gidaspow [242]/ Schallenberg et al. 

[299] 7.1 28.7 11.6 

Wen-Yu [5] /Schiller Naumann [6] 4.9 30.1 8.0 

Haider-Levenspiel [357]/ Schiller 

Naumann [6] 5.9 31.6 13.0 

Gidaspow [242]/ Schiller Naumann [6] 5.6 33.5 8.8 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 5-1: Evaluation of various G-L and L-S drag model combinations using the standard k-ε ((a) to (c)) and the RNG k-ε ((d) to (f)) 
turbulence models against experimental data by Yu and Kim [3] 
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5.2 VALIDATION OF OUR CFD MODEL USING ORGANIC N2-DRAKEOL-GLASS 

BEADS DATA BY CHEN ET AL. [4] 

 

 

Our CFD model was subsequently validated against the experimental data by Chen et al. [4] for 

an organic system, N2-Drakeol-Glass beads as detailed in Table 5-4. The experimental data were 

conducted inside a bubble column reactor of 0.44 m ID and 2.44 m height. Inside this bubble 

column, 1-inch pipe internals are arranged in two concentric rings as shown in Figure 5-2 (a). This 

geometry is reconstructed in ANSYS Fluent as displayed in Figure 5-2 (b). It should be noted that 

the mesh size shown is very refined as the simulation was conducted at small mesh size to 

investigate the mesh dependency. This work was one of the first CFD simulation with internals.  

The aim of the validation was to test the viability of our CFD model when using organic 

liquids and to check its ability in handling reactor internals. Three simulations were performed 

using our CFD model with the RNG k-ε turbulence model, coupled with the gas-liquid drag model 

by Wen-Yu [5] and the liquid-solid drag model by Schiller Naumann [6], at inlet superficial gas 

velocities of 0.02, 0.05 and 0.1 m/s. Since the sparger has not yet been configured in our CFD 

model, the inlet boundary conditions were set at 70% of the total cross-sectional area at the bottom 

of the column similar to that used by Silva et al. [302]. The CFD modeling was conducted for 60 

seconds with time steps of 0.01 s in order to investigate the effect of internals as shown in Table 

5-5 and Figure 5-3; and as can be seen our CFD model is able to predict the radial gas holdup with 

an absolute average relative error between 4.45% and 15%. Although the real computation time 

for this simulation was relatively long, requiring around 220 hours for completion, no 

computational difficulties or divergences were exhibited, which provided confidence in using our 

CFD model for investigating different internal configurations. 
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Table 5-4: Experimental details by Chen et al. [4] 

Reactor diameter 0.44 m 

Reactor length 2.44 m 

Liquid velocity 0 m/s 

System Air-Drakeol-glass beads 

Internals fraction of the reactor cross-sectional area 5.33% 

Pipe diameter 0.0254 m 

Number of internal pipes 16 

Gas velocity 0.02; 0.05; 0.1 m/s 

 

  

(a) (b) 
Figure 5-2: Geometry sketch and mesh of the column used by Chen et al. [4] 

 
Table 5-5: Comparison between average relative errors (ARE) and absolute average 

relative errors (AARE) between experimental results and CFD predictions 

Gas Velocity AARE 
0.02 m/s 11.78% 

0.05 m/s 4.45% 

0.10 m/s 15% 
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Figure 5-3: Comparison between our CFD model predictions and the experimental radial 
gas holdup data by Chen et al. [4] 

 

 

 

 

5.3 VALIDATION AGAINST OUR EXPERIMENTAL DATA OBTAINED FOR      

N2-F-T REACTOR WAX-IRON-BASED CATALYST SYSTEM 

 
 

5.3.1 Experimental Setup 
 

 

The characteristics of the SBCR used in this study are shown in Figure 5-4 and given in Table 5-6, 

and a schematic diagram of the experimental setup and photographs of the SBCR and gas sparger 

are shown in Figures 5-5 and 5-6, respectively. The SBCR consists mainly of: reactor (column), 

gas sparger, damper, filter, demister, compressor, Coriolis mass flow-meter, gas supply vessel, and 
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gas cylinder. The reactor is provided with two Jerguson sight-windows in order to enable recording 

the bubbles size/behavior under a given operating condition. The reactor’s hydro-pressure is 85.5 

bar at 295 K and its maximum allowable working pressure is 57 bar at a maximum temperature of 

590 K. The reactor is equipped with 8 heating elements and an internal cooling coil of 0.306 m2 

total contact area. The heating elements, covered with a heavy-duty insulation jacket, operate with 

460 V and are controlled by Solid State Contactors rated up to 50 A. The gas is introduced from a 

supply vessel through the bottom of the column using a six-arm spider-type gas distributor. The 

gas is recycled through the reactor using a single-stage compressor built by Fluitron Inc., Ivy land, 

USA. The compressor has a nominal displacement of 4.8x10-3 m3/rev. using 30 Horsepower, 

1160 rpm electric motor. The gas flow rate is measured using a Coriolis mass and density meter 

model CMF100M330NU that gives a current output signal through a transmitter model 

RFT9739E4SUJ, manufactured by MicroMotion, USA. The gas velocity can be adjusted with a 

needle valve through a bypass line around the compressor inlet and outlet. The damper vessel is 

placed at the compressor’s outlet in order to dampen the vibrations and fluctuations created by the 

movements of the piston. 

 

Table 5-6: Characteristics of the SBCR 

Nominal Diameter 12 in (0.3048 m) 

Schedule 80 

Material Stainless Steel 

Outside diameter, m 0.324 

Inside diameter, m 0.3 

Wall thickness, m 0.017 

Inside cross sectional area, m2 0.066 

Outside surface area, m2/m 1.017 

Inside surface area, m2/m 0.908 

Weight, kg/m 131.895 

Height, m 3.00 

Height/Diameter ratio 10.38 
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The demister is placed at the outlet of the column in order to prevent the liquid and solid 

particles from entering the compressor. In addition, a filter manufactured by Parker Hannifin 

Corp., USA is inserted between the demister and the compressor as a second stage device to 

prevent any solid particles or liquid mist from entering the compressor. There are two differential 

pressure cells (dP), model IDP10-V20A11F manufactured by Foxboro, USA rated at 7.5 kPa 

connected at different positions on the reactor, which allow the measurement of the hydrostatic 

pressure head between any two levels in the reactor. The pressure and the temperature in the system 

are recorded with 5 pressure transducers manufactured by Wika, Germany, and 7 thermocouples 

type J manufactured by Omega Engineering Inc., USA. The design of the entire unit allows the 

gas to flow through or bypass the liquid using the two pneumatically actuated valves (AV-1 and 

AV-2); and permits up to 60% of the gas in the reactor to be sent back to the supply vessel without 

venting to the hood. 

An online data acquisition from the thermocouples, pressure transducers, dP cells and the 

Coriolis mass flow meter is performed using the National Instrument FieldPoint modules FP-TC-

120 and FP-AI-110, which are connected to a serial bus module (FP-1000) with RS-232 interface 

to a host PC. The output signals from the host PC are received by the FieldPoint module FP-AO-

V10 for controlling the pneumatically activated valves and the heating elements of the reactor. The 

LabView software is used to monitor the entire process and perform the appropriate programs for 

I/O applications.  

The gas sparger used in the SBCR is a spider-type with six identical legs. Each leg has 6 

orifices of 0.005 m inside diameter (ID) on each side and on the bottom, totaling 18 holes in each 

leg and a total of 108 on the sparger. There are no orifices oriented towards the top of the legs so 

that solid particles could not block the orifices and the gas should be able to lift any solid particles 
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which might settle at the bottom flange. The gas sparger is screwed to a 0.0254 m ID pipe and its 

height from the bottom of the column is about 0.102 m (4 in). 

This gas sparger is designed so that the reactor could operate in the fully developed 

hydrodynamic regime. This condition is attained if Weber number defined in Equation (5-1) is 

maintained at a value > 2 within the range of sparger geometry in combinations with the operating 

conditions [359]. 

𝑊𝑒 =
𝜌𝐺𝑈𝐺,𝑜

2 𝑑𝑜
𝜎

=
𝜌𝐺𝑈𝐺

2𝑑𝑅
4

𝑁𝑜2𝑑𝑜
3𝜎

> 2 (5-1) 

Where NO is the number of openings on the sparger and dO is the inside diameter of the orifice. 
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Figure 5-4: Mechanical Specifications of the SBCR  
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Figure 5-5: Schematic of the Experimental Setup 
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Figure 5-6: Photographs of the SBCR and Gas Sparger  
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5.3.2 Gas-Liquid-Solid System and Operating Conditions Used 
 

 

5.3.2.1 Gas Phase The gases used were He and N2 as surrogates of H2 and CO, respectively. 

N2 and He were purchased from Valley National Gases (USA). Some thermodynamic parameters 

[360] of these gases are given in Table 5-7. 

 

Table 5-7: Thermodynamic properties of the gases used 

Gases MW 
(kg/kmol) Tb (K) TC (K) PC (bar) VC 

(m3/kmol) ZC  

N2 28.013 77.35 126.10 33.94 0.0901 0.292 0.040 

He 4.003 4.22 5.20 2.28 0.0573 0.302 -0.390 

H2 2.016 20.39 33.18 13.13 0.0642 0.305 -0.220 

CO 28.010 81.70 132.92 34.99 0.0931 0.295 0.066 

 

 

5.3.2.2 Liquid Phase  The liquid phase used is a molten reactor wax provided by NICE, 

China using the F-T process. The molten reactor wax is solid at room temperature with a melting 

point above 90 ºC. It consists of saturated and straight chains hydrocarbons with almost no 

branches. The wax composition in weight fraction is shown in Figure 5-7. The components 

containing less than 14 carbon atoms as well as those containing more than 82 carbon atoms were 

grouped into 2 pseudo components consisting of C7 and C101 respectively, as shown in Equation 

(5-2). Assuming the composition before C14 and beyond C82 follows the well-known geometric 

progression that is the Anderson-Schulz-Flory distribution the properties of algebraic series were 

used to estimate the numbers of carbon atoms in those 2 pseudo components [361]: 

𝑛 = {
1 +

𝛼

1 − 𝛼
−
14𝛼14

1 − 𝛼14
; 𝐶𝑁 < 14

82 +
𝛼

1 − 𝛼
;                𝐶𝑁 > 82

 (5-2) 

 

Jager and Espinoza [362] reported that for an existing pilot reactor, new iron and cobalt catalysts 

have shown α values between 0.8 and 0.95. Since 1955 Sasol, using iron based catalyst in their 
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tubular fixed bed Arge reactors, have been producing a product slate with an alpha value of about 

0.95. An average chain growth probability factor for the NICE wax of 0.95 was used for the 

calculation of the pseudo components carbon numbers. It should be noted that in the next sections 

when density, viscosity and surface tension of the molten wax are calculated, the first pseudo 

component for CN < 14 which was vaporing at the higher temperature was omitted. 

The molecular weight of the reactor wax is 507.64 kg/kmol, as calculated from its 

compositions according to the following equation: 





n

1i

iiWax MWxMW  (5-3) 

Where xi represents the mole fraction of species i. 

 

 
Figure 5-7: Wax composition in weight fraction  
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The density, viscosity and surface tension of the molten wax were measured in our laboratory at 

different temperatures ranging from 380 to 460 K using graduated flasks, Cannon-Fenske routine 

viscometers and a Fisher Surface Tensiomat, respectively. These experimental data were modeled 

as a function of temperature and predictive correlations were developed. The vapor pressure was 

predicted with the Asymptotic Behavior Correlations (ABC) developed by Marano and Holder 

[363, 364], assuming the wax composition consists mainly of linear paraffins. From the values 

obtained a simple equation was developed for calculating the vapor pressure as a function of 

temperature. The different correlations for predicting the physical properties of the molten reactor 

wax as a function of temperature are grouped in Table 5-8 and comparisons between the predicted 

and experimental values are shown in Figure 5-8. 

 

Table 5-8: Correlations for predicting the physicochemical properties of the reactor wax 

𝜌𝐿 = 978.05− 0.5403 ∙ 𝑇 (5-4) 

𝜇𝐿 = 𝑒𝑥𝑝 (
2504.2

𝑇
− 4.3371) (5-5) 

𝜎𝐿 =
1.367×10−4 𝑇2 − 0.1915 𝑇 + 80.486

1000
 (5-6) 

𝑙𝑜𝑔10(𝑃𝑉) = −
50951

𝑇2
−
1694.1

𝑇
+ 3.146 (5-7) 
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(a) (b) 

  
(c) (d) 

Figure 5-8: Effect of temperature on the density (a), viscosity (b), surface tension (c) and 
vapor pressure (d) of the molten reactor wax  
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5.3.2.3 Solid Phase The solid-phase used in the experiments is an iron-based catalyst with a 

skeletal density of 3,380 kg/m3. The particle size distribution of the catalyst is listed in Table 5-9 

and accordingly the average particle diameter = 81 μm. 

 

Table 5-9: Size distribution of the solid particles used 

Diameter Volume % finer than 
39 µm 10% 

56 µm 30% 

80 µm 60% 

169 µm 95% 

 

5.3.2.4 Operating Conditions Used  The gas holdup, bubble size and mass transfer 

coefficients were measured under the operating conditions listed in Table 5-10, which are typical to 

those of F-T synthesis. A test matrix covering these conditions was devised following the Central 

Composite Statistical Design (CCSD) developed at the University of Pittsburgh. Repeat runs were 

also carried out in order to ensure the reproducibility of the experimental data. The distribution of 

experiments according to this Central Composite Statistical Design is given in Figure 5-9. The 

experimental procedures and calculation methods used in the experimental portion of this work are 

provided in Appendix B.  
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Table 5-10: Experimental conditions 

Variable Value 
Pressure (MPa) 1, 1.5, 2, 2.5, 3 

Temperature (oC) 140, 155, 170, 185, 200 

He/N2 Ratio 0, 1, 2, 3 

Superficial Gas Velocity (m/s) 0.1, 0.15, 0.2, 0.25, 0.3 

Solid Concentration (vol. %) 5, 10, 15 

 

 
P: Pressure; S: Solid Concentration; T: Temperature; U: Superficial Gas Velocity 

Figure 5-9: CCSD experimental design matrix [8, 151, 365]  



 

106 

5.3.3 Hydrodynamic and Mass Transfer Parameters in the Pilot Scale SBCR under F-T 

Conditions 

 

 

In this section, the effects of pressure, temperature, gas and liquid velocities, gas nature and 

composition, solid concentration, liquid and solid phases natures on the hydrodynamics (εG and d32) 

and mass transfer (kLa) parameters for N2 and He as single components as well as for different 

mixtures of these two gases obtained in the NICE molted reactor wax in the presence and absence 

of iron-based catalyst using the pilot-scale SBCR are discussed. 

 

 

5.3.3.1 Gas Holdup  The gas holdup values for N2 and He/N2 gas mixtures in molten reactor wax 

generally decrease with increasing the solid concentration under the various operating conditions as 

shown in Figure 5-10. This is due to the increase of the slurry viscosity and density, resulting in low 

gas momentum/mass of slurry and large gas bubbles. This behavior is in agreement with previous 

findings by Vandu et al. [366] using alumina particles in a C9-C11 paraffins mixture; Deckwer et al. 

[75, 367] using alumina particles in paraffin wax; Krishna et al. [368] using silica particles in 

paraffins oil, Behkish et al. [8] using alumina particles in iso-paraffins mixture (Isopar-M), and 

Sehabiague and Morsi [81] using alumina and iron oxide particles in C12-C13 paraffins mixture and 

F-T cuts. Moreover, in the absence and presence of solid particles up to 15 vol. %, the gas holdup 

for N2 in molten reactor wax appear to increase with temperature as depicted in Figures 5-11 to 

5-13, which is in accord with other literature data [8, 81]. This behavior can be attributed to the 
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decrease of the liquid-phase viscosity and surface tension with increasing temperature which led to 

high gas holdup values.  

Moreover, as shown in Figure 5-14, gas holdup values are found to increase with reactor 

pressure, which is in agreement with other reported findings [8, 81, 369]. This behavior can be 

attributed to the increase of the gas density and the gas-phase momentum, which led to the increase 

of the gas holdup. Similarly, the gas holdup of N2 in the molten reactor wax appear to increase with 

the superficial gas velocity, as shown in Figure 5-15.  

The gas holdup values are also found to increase with increasing the mole fraction of N2 or 

decreasing the mole faction of He in the gas mixture, as shown in Figure 5-16, which is in agreement 

with earlier findings for He, N2 and He/N2 mixtures in an iso-paraffinic mixture (Isopar-M), and in 

3 different F-T liquids [8, 81]. The presence of the heavier gas (N2) increases the density and thus 

the momentum of the gaseous mixture which led to the increase of the gas holdup and to the 

formation of smaller gas bubbles, which resulted in a greater gas-liquid interfacial area and 

consequently kLa. Indeed, kLa values increased with increasing the mole fraction of N2 in the gas 

mixture, with the highest kLa values observed for N2 as a single component. 
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Figure 5-10: Effect of solids concentration on εG in F-T reactor 
wax 

Figure 5-11: Effect of temperature on εG in F-T reactor wax at 
0-5 vol. % solid concentrations 
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Figure 5-12: Effect of temperature on εG in F-T reactor wax at 10 
vol. % solid concentrations 

Figure 5-13: Effect of temperature on εG in F-T reactor wax at 15 
vol. % solid concentrations 
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Figure 5-14: Effect of pressure on εG in F-T reactor wax 
Figure 5-15: Effect of superficial gas velocity on εG in F-T 

reactor wax 
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Figure 5-16: Effect of gas density on εG in F-T reactor wax 
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5.3.3.2 Sauter Mean Bubble Diameter The Sauter-mean diameter (d32) of gas bubbles 

appear to increase with increasing the concentration of solid particles under the operating 

conditions used as shown in Figure 5-17, which is in agreement with other findings [8, 81]. This 

behavior is due to the increased slurry viscosity at higher solid concentrations, which increases the 

rate of gas bubbles coalescence, leading to the formation of large gas bubbles and consequently 

large Sauter mean bubble diameters. It seems that the addition of solid particles prevented the 

breakup of gas bubbles. 

Figures 5-18 and 5-19 also show that in the absence and presence of solid particles up to 

10 vol%, the values of the Sauter mean bubble diameters decrease with increasing temperature, 

which can be attributed to the decrease of the liquid viscosity and surface tension with increasing 

temperature, leading to the formation of small gas bubbles. [8] Figure 5-18 also shows that a 

minimum Sauter mean bubble diameter of about 0.2 mm is reached for solid concentrations up to 

5 vol%. Also, at the highest solid concentration of 15 vol%, as shown in Figure 5-20, the 

temperature has no effect on the gas bubble size. 

Moreover, as shown in Figures 5-21 and 5-22, both the superficial gas velocity and the 

pressure appear to have an insignificant effect on the Sauter-mean gas bubble diameter for N2 in 

wax in the presence of solid particles up to 15 vol%.
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Figure 5-17: Effect of solids concentration on d32 in F-T 
reactor wax 

Figure 5-18: Effect of temperature on d32 in F-T reactor wax at 0 – 5 
vol. % solid concentrations 
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Figure 5-19: Effect of temperature on d32 in F-T reactor wax at 10 
vol. % solid concentrations 

Figure 5-20: Effect of temperature on d32 in F-T reactor wax at 15 
vol. % solid concentrations 
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Figure 5-21: Effect of Pressure on d32 in F-T reactor wax Figure 5-22: Effect of superficial gas velocity on d32 in F-T 
reactor wax 
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5.3.3.3 Volumetric Mass Transfer Coefficients Figures 5-23 and 5-24 show that in the 

absence and presence of solid particles up to 10 vol.%, the volumetric mass transfer coefficients 

(kLa) values for N2 and He/N2 mixtures in NICE molten wax increase with increasing temperature. 

However, at high solid concentrations of 15 vol.%, the effect of temperature on kLa, seems to be 

governed by the pressure, where at low pressures kLa values increase with increasing temperatures, 

whereas at higher kLa values the effect of temperature is insignificant.  

Also, at similar temperatures, kLa values for the same gas-liquid system decrease with 

increasing solid concentration, as shown in Figure 5-25, which is in agreement with other findings 

[80, 81]. This behavior can be related to the decrease of the gas holdup and the increase of the 

Sauter mean bubble diameter with increasing solid concentration as shown in Figures 1 and 8.  

The kLa for N2 in NICE molten wax, with and without solid particles, also appear to 

increase with increasing pressure, as shown in Figure 5-26, which is due to the increase of the gas 

holdup and the decrease of the Sauter mean gas bubble diameter, which led to the increase of the 

gas-liquid interfacial area (a). Moreover, as expected, kLa for N2 in NICE molten reactor wax 

always increased with increasing the superficial gas velocity (Figure 5-27), which was attributed 

to an increase of the gas holdup and turbulences, which increased the gas-liquid interfacial area 

(a) and the mass transfer coefficient (kL), respectively. 

 



 

 117 

 

 

 

 

Figure 5-23: Effect of temperature on kLa in F-T reactor wax at 0 
– 5 vol. % solid concentrations 

Figure 5-24: Effect of temperature on kLa in F-T reactor wax 
at 10 vol. % solid concentrations 
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Figure 5-25: Effect of solids concentration on kLa in F-T reactor 

wax Figure 5-26: Effect of pressure on kLa in F-T reactor wax 

  

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 3 6 9 12

k
L
a

(s
-1

)

CS (vol.%)

0.20.250.30.350.40.450.50.550.60.65

0 3 6 9 12
CS (vol.%)

T=454 K; P=10.6 bar; Ug=0.20 m/s

T=470 K; P=20.5 bar; Ug=0.20 m/s

T=456 K; P=20.6 bar; Ug=0.19 m/s

T=420 K; P=20.7 bar; Ug=0.19 m/s

T=447 K; P=20.7 bar; Ug=0.20 m/s

T=448 K; P=20.7 bar; Ug=0.11 m/s

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

5 15 25 35

k
L
a

(s
-1

)

Pressure (bar)

0.20.250.30.350.40.450.50.550.60.65

5 15 25 35Pressure (bar)

Cs=0 vol.%; T=458 K; Ug=0.15 m/s

Cs=0 vol.%; T=460 K; Ug=0.20 m/s

Cs=5 vol.%; T=463 K; Ug=0.25 m/s

Cs=5 vol.%; T=468 K; Ug=0.15 m/s

Cs=10 vol.%; T=419 K; Ug=0.20 m/s

Cs=10 vol.%; T=446 K; Ug=0.20 m/s



 

 119 

 

 

Figure 5-27: Effect of superficial gas velocity on kLa in F-T 
reactor wax 
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5.3.4 Geometry and Numerical Meshing of the Pilot-Scale SBCR 
 

 

A picture of the gas sparger described above is given in Figure 5-28 (a). The gas sparger is screwed 

onto a 0.0254 m ID pipe to a height of 0.102 m from the bottom flange of the reactor. Also, its 

maximum height from the bottom of the reactor is about 0.152 m. The constructed geometry of this 

gas sparger is shown in Figure 5-28 (b). 

 

  

(a) (b) 

Figure 5-28: (a) Picture and (b) Constructed geometry of the sparger used in this study 

 

The numerical meshing structure used is shown in Figure 6. A quadrilateral/hexahedral meshing 

combination is generated in order to discretize the domain limited by the geometry. After 

preliminary numerical tests, it was proved that around 1,150,000 control volumes are enough to 

obtain mesh numerical independence, as shown in Figure 5-29. Also, due to the strong non-linear 

characteristics of our model, relaxation coefficients (Patankar [356]) are introduced in the 

momentum conservation equations as previously discussed by Silva Jr. et al. [302]. The 

convergence criterion adopted from Patankar [356], based on the pressure, is shown in Equation 

(4-39).  
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The simulations were carried out with a 0.01 s time step for a duration of 60 s, or until 

steady state is reached. An upwind QUICK (Quadratic Upstream Interpolation for Convective 

Kinematics) scheme was used to solve the model equations. This is because the upwind QUICK 

is superior than the second order upwind since QUICK has less dispersion and dampens the high 

frequency components much less. Typically, the simulations took around 220 hours to complete. 

 

 

Figure 5-29: Mesh Independence analysis 
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Figure 5-30: Geometry and mesh details of the numerical structure employed in our 

simulations: (a) Cross section view, (b) Side view in sparger vicinity, (c) Side view of whole 
column  

 

 

 

 

(a) 

 
(b) (c) 
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5.3.5 Comparison between the CFD model predictions and our experimental data 
 

 

The aim of this validation was to test our CFD model, with its optimized interphase drag 

coefficients, turbulence models, mesh size and structure, step size and solution method, using 

actual gas holdup data obtained under typical F-T conditions. All simulations were performed for 

a time period of 60 s with a time step of 0.01 s, which was enough to obtain quasi-steady state 

values of the hydrodynamic parameters. The model predictions were compared with the 

experimental data as shown in Figure 5-31. As can be observed in Figure 5-31 (a), our CFD model 

is capable of predicting the gas holdup as a function of temperature under different superficial gas 

velocities, solid concentrations, and pressures with an absolute averaged relative error (AARE) of 

4.8%. Similarly, Figure 5-31 (b) shows that the model was able to predict the gas holdup data as a 

function of superficial gas velocities under different solid concentrations, temperatures and 

pressures with an AARE of 6.8%. 
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(a) (b) 

Figure 5-31: Time averaged CFD model validation vs. gas holdup data as a function of (a) temperature and (b) superficial gas 
velocity 
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Moreover, the performance of the CFD model with and without incorporating mass transfer 

coefficients was validated against the experimental data measured in our pilot-scale reactor at a 

pressure of 20.5 bars, temperature of 443 K and solid concentration of 11 vol% at different 

superficial gas velocities as illustrated in Figure 5-32. As can be seen in this figure, when ignoring 

mass transfer coefficients, the model predictions of the experimental data were with AARE of 

11.1%, whereas when considering the mass transfer coefficients, the predictions were more 

accurate with only AARE of 1.3 %. This underscores the importance of incorporating the mass 

transfer coefficients in our CFD model in order to obtain precise and accurate predictions. 

 

 

Figure 5-32: Effect of mass transfer coefficients on our CFD model predictions of the gas 
holdup data under different operting conditions  
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6.0  CFD MODEL PREDICTIONS OF THE HYDRODYNAMICS INSIDE A SBCR 
 

 

 

 

Following the model testing and validation, the CFD model was used to predict the local phase 

holdups, liquid velocity vectors, solids distribution, axial distribution of the Sauter mean bubble 

diameter, and the local turbulence intensity and contours within the reactor as detailed below. 

 

 

 

 

6.1 EFFECT OF THE GAS SPARGER TYPE ON THE LOCAL HYDRODYNAMICS 

IN THE PILOT-SCALE SBCR 

 

 

Gas sparger type is an integral component in SBCRs as it can alter the bubble characteristics and 

consequently the gas holdup, gas-liquid interfacial area and many other parameters affecting the 

performance of the reactor. Some common gas spargers used in literature include perforated plates, 

porous plates, porous membranes, rings type distributors and multiple-arms spargers [370]. 

Although significant work has been done investigating bubbles formation at the orifice [371-391], 

the effect of sparger design on the performance of bubble columns and SBCRs has received little 

attention. An efficient sparger design should aim at minimizing the pressure drop across the 

sparger while maintaining a uniform distribution of gas bubbles at the orifices, which would 

translate into significant savings in operating costs and overall process energy requirements. 

Generally, when the diameter of the SBCR is large (> 1 m) multi-arms spiders or concentric-rings 

spargers are preferred over perforated plates [392]. Moreover, some studies reported that the 
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effects of sparger type on the gas holdup and bubble diameter were more significant at low 

superficial gas velocities (10 cm/sec), however, such effects become insignificant at higher 

superficial gas velocities or in the churn-turbulent flow regime [393, 394]. 

In this section, the effect of three different distributors, namely 6-arms spider, concentric-

rings and perforated plate, on the gas holdup, bubble size and liquid-phase recirculation within the 

pilot-scale SBCR are investigated using the built CFD model. The spider-type sparger used 

consists of six arms, each arm has 6 orifices of 5 mm ID on each side and on the bottom, totaling 

18 orifices. Thus, there are a total of 108 orifices on the 6-arms spider gas sparger. It should be 

emphasized that there are no orifices at the top of the arms so that the solid particles could not plug 

them and the gas downward jets should be able to lift any solid particles, which might settle at the 

bottom flange of the reactor. The gas sparger is screwed onto a 0.0254 m ID pipe to a height of 

0.102 m from the top of the bottom flange. Also, its maximum height from the bottom of the 

reactor is about 0.152 m. A picture of the spider-type sparger is shown in Figure 6-1 and the 

geometry and numerical mesh details are shown in Figure 6-2. 

The concentric ring sparger consists of three concentric rings with 30, 15 and 10 orifices 

per ring, respectively, totaling 55 identical orifices. Each orifice has an ID of 7 mm. The geometry 

and numerical mesh details of the concentric ring sparger are shown in Figure 6-3. 

The perforated plate consists of 1580 identical orifices of 1.3 mm ID, as shown in Figure 

6-4. It should be noted that the dimensions of the concentric ring and perforated plate spargers 

were selected such that the total orifice area for gas sparging is the same (2.12 m2). Moreover, the 

effect of nozzles orientation on the flow dynamics within the SBCR for both the multi-arms spider 

and concentric-rings sparger are investigated. 
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Table 6-1: Description of the spargers investigated in this work 

Sparger type Description 
Spider-type sparger Six arms, each arms has 6 orifices of 5 mm ID on each side and on the 

bottom, totaling 18 orifices. Thus, there are a total of 108 orifices on 

the gas sparger. 

Concentric-rings Three concentric-rings, with 30, 15 and 10 orifices per ring, 

respectively, totaling 55 identical orifices.  Each orifice has an ID of 7 

mm. 

Perforated plate 1580 identical orifices of 1.3 mm ID 

 

 

  
(a) (b) 

Figure 6-1: (a) Picture and (b) Constructed geometry of the spider sparger used in this 

study 

 

  
(a) (b) 

Figure 6-2: Geometry and mesh details of the spider sparger: (a) Cross-section view,  

(b) Side- view   
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(a) 

  
(b) (c) 

Figure 6-3: Geometry and mesh details of the concentric-rings sparger: (a) Built geometry,  
(b) Cross-section view of the mesh, (c) Side-view of the mesh 

 

  
(a) (b) 

Figure 6-4: Geometry and mesh details of perforated plate: (a) Cross-section view,  
(b) Mesh structure   
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6.1.1 Effect of Sparger Design on the Gas Holdup Inside the Pilot-Scale SBCR 
 

 

The spatial variations of the local gas holdup in the SBCR give rise to the local pressure variations, 

which induce liquid recirculations inside the reactor. These liquid recirculations are crucial as they 

govern the rate of mixing, affecting the heat and mass transfer characteristics. Our CFD model 

predictions illustrated in Figures 6-5, 6-6 and 6-7 for the spider, concentric-rings and perforated 

plate spargers, respectively, show several snapshots of the gas holdup inside the reactor at different 

times of 1, 20, 40 and 60 s. Also, Figures 6-8 to 6-14 compare the radial gas holdup profiles while 

using the three spargers at H/D values of 0.5, 1, 2, 3, 5 and 7, respectively. These data were 

obtained using an inlet superficial gas velocity of 0.20 m/s at temperature of 443 K, pressure of 

20.5 bar and catalyst concentration of 11 vol%. Under these operating conditions, the overall gas 

holdup in the SBCR were 0.42, 0.36 and 0.45 for the spider, concentric-rings and perforated plate, 

respectively.  

As can be seen in these figures, the gas holdups obtained using the three spargers vary with 

the axial and radial positions in the SBCR and the radial gas holdup exhibits a non-linear behavior 

at any axial position as illustrated by the gradual variation in the color shades of the gas holdup 

from the center to the wall of the reactor. It should be pointed out that the maximum gas holdup 

value can be mainly seen near the center of the reactor before it gradually decreases along the radii 

with various profiles in the axial direction. Also, the 6-arms spider and concentric-rings spargers 

showed distinctly steeper radial gas holdup profiles, whereas, the perforated plate showed a more 

uniform gas holdup distribution, which reached the steady-state much sooner than the other two 

spargers.  
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Figure 6-5: Snapshots of gas holdup contours at different times for the spider sparger 
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Figure 6-6: Snapshots of gas holdup contours at different times for the concentric-ringss 

sparger 
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Figure 6-7: Snapshots of gas holdup contours at different times for the perforated plate 
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Figure 6-8: Comparison of time averaged radial profiles of gas holdup at H/D = 0.5 for the 
three gas spargers used 

 

 

Figure 6-9: Comparison of time averaged radial profiles of gas holdup at H/D = 1 for the 
three gas spargers used 
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Figure 6-10: Comparison of time averaged radial profiles of gas holdup at H/D = 2 for the 

three gas spargers used 
 

 

Figure 6-11: Comparison of time averaged radial profiles of gas holdup at H/D = 3 for the 
three gas spargers used 
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Figure 6-12: Comparison of time averaged radial profiles of gas holdup at H/D = 5 for the 

three gas spargers used 
 

 

Figure 6-13: Comparison of time averaged radial profiles of gas holdup at H/D = 7 for the 
three gas spargers used  
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6.1.2 Effect of Sparger Design on the Liquid Recirculations inside the SBCR 
 

 

The CFD model was also used to predict the liquid circulations as shown in Figures 6-14, 6-15 

and 6-16 for the 6-arms spider, concentric-rings and perforated plate, respectively, which shows 

snapshots of liquid velocity vectors in the SBCR at 1, 20, 40 and 60 s. In general, these figures 

show strong liquid recirculations and backmixing are present near the reactor walls because the 

liquid-phase rises upward with the gas bubbles at the center of the reactor and then flows 

downward near the reactor wall.  

Figure 6-14 shows that for the 6-arms spider sparger, smaller and faster liquid recirculation 

cells are present in the vicinity of the sparger from the startup until the steady-state. Also, larger 

and slower liquid recirculation cells appeared after about 0.36 m measured from the bottom flange. 

These smaller and faster liquid recirculations in the vicinity of the sparger are primarily due to the 

geometry of this sparger type because all gas sparging orifices are located on the sides and bottom 

and none on the top of each sparger arms.  

Figures 6-15 and 6-16 show that for the concentric-rings and perforated plate spargers, only 

large and slow recirculation cells are present throughout the column above the distributor zone, 

which is in contrast with liquid velocity vectors observed when using the 6-arms spider, Figure 

6-14. 

It is important to mention also that the CFD model predictions indicated that the solid-

phase velocity vectors followed very closely those of the liquid-phase, which is due primarily to 

the small particle-liquid slip velocity. 
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Figure 6-14: Snapshots of liquid velocity vectors at different times for the spider sparger 
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Figure 6-15: Snapshots of liquid velocity vectors at different times for the concentric-rings 

sparger 

  

Liquid 
Velocity 

(m/s) 
 

     
 t = 1 s t = 20 s t = 40 s t = 60 s 

 



 

140 

 

Figure 6-16: Snapshots of liquid velocity vectors at different times for the perforated plate 
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6.1.3 Effect of Sparger Design on the Liquid Turbulence Intensity inside the SBCR 
 

 

The CFD model was also used to predict the turbulence intensity profiles inside the pilot-scale 

SBCR using the three different spargers. The turbulence intensity is defined as the root-mean-

square of the velocity fluctuations to the mean flow velocity. It is expressed as: 

𝐼 =  
𝑢′

𝑈
=
√1
3
(𝑢𝑥′2 + 𝑢𝑦′2 + 𝑢𝑧′2)

√𝑈𝑥2 +𝑈𝑦2 + 𝑈𝑧2
 

(6-1) 

 

In general, a turbulence intensity of ≤ 1% is considered low and that of  ≥ 10% is considered high 

[395]. The CFD model turbulence intensity predictions for the 6-arms spider, concentric-rings and 

perforated plate are shown in Figures 6-17, 6-18 and 6-19, respectively. As can be seen in these 

figures, the turbulence intensities for the three spargers throughout the reactor appear to increase 

with time.  

Figure 6-17 shows that for the 6-arms spider, relatively high liquid turbulence intensities 

can be observed in the vicinity of the sparger during the startup time, however, after reaching 

steady-state, the turbulence intensities become more evenly distributed throughout the reactor. 

Figure 6-18 shows that for the concentric-rings sparger, the turbulence intensities are more uniform 

throughout the reactor during the first 40 s, however, their values increase drastically near the walls 

at 60 s, due to the development of large recirculation cells as shown in Figure 6-15. On the other 

hand, Figure 6-19 shows that the perforated plate exhibits higher turbulence intensities throughout 

the reactor with higher values near the top after 40 s, which is different from those shown using 

the other two spargers. 

Thus, the CFD model confirmed that the sparger design and configuration have significant 

impact on the local hydrodynamics. This is a critical criterion for optimizing mixing characteristics 

inside the SBCR, which directly impact its overall performance. 
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Figure 6-17: Snapshots of local turbulence intensity contours at different times for the 

spider sparger  
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Figure 6-18: Snapshots of local turbulence intensity contours at different times for the 

concentric-ringss sparger 
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Figure 6-19: Snapshots of local turbulence intensity contours at different times for the 

perforated plate 
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6.1.4 Effect of Sparger Orifices Orientation on the Local Hydrodynamics in the SBCR 
 

 

The effect of the sparger nozzles orientation on the overall gas holdup and the axial solids 

dispersion was investigated using our CFD model. The 6-arms spider sparger similar to that shown 

in Figure 6-1, provided with upward pointing orifices and the concentric-rings sparger shown in 

Figure 6-3 with downward pointing orifices were used in this investigation. The effect of the 

sparger design and orientation on the overall gas holdup, axial solid loadings and axial bubble size 

variation were investigated using three different superficial gas velocities of 0.1, 0.2 and 0.3 m/s 

at temperature of 443 K, pressure of 20.5 bar and catalyst concentration of 11 vol%. 

A sparger with downward pointing orifices or nozzles is expected to be more effective in 

solids dispersion in a SBCR when compared with a similar sparger provided with upward pointing 

orifices or nozzles. It is argued that the gas jets from downward facing orifices or nozzles provide 

the agitation to facilitate solids dispersion. Also, the sparger used definitely determines the bubble 

sizes observed in the reactor, hence small orifices or nozzles enable the formation of small gas 

bubbles.  

A general rule-of-thumb used for the determination of the effect of sparger design on the 

bubble size in a SBCR is given in Equation (6-2) [393, 394]. For the experimental conditions used 

in this study, this rule seems to hold only at high solid concentrations and superficial gas velocities 

> 0.2 m/s as shown in Figure 6-20. Nonetheless, at low solid concentrations or low superficial gas 

velocities, the effect of sparger type will remain significant.  

 

𝐸�̈�𝐹𝑟0.5 > 16 (6-2) 

Where 
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𝐸�̈� =
∆𝜌𝑔𝑑𝑜

2

𝜎
 (6-3) 

𝐹𝑟 =
𝑈𝐺
2

√𝑔𝑑𝑜
 (6-4) 

 

 

Figure 6-20: Effect of temperature on 𝑬�̈�𝑭𝒓𝟎.𝟓 under the experimental conditions  
used in this study 

(NICE reactor wax, P = 4-31 bar, T = 380-500 K, uG = 0.1-0.3 m/s, and Cs = 5-15 vol.%) 

 

Figure 6-21 shows the effect of the 6-arms sparger orifice orientations on the overall gas holdup 

at different superficial gas velocities. As can be observed in this figure, both the upward and 

downward 6-arms spider orifice orientations give higher gas holdup values when compared with 
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rings sparger with downward facing orifices gives higher gas holdup values than those using the 

sparger provided with upward facing orifices. 

Figure 6-22 shows the effect of the sparger orifice orientations on the Sauter mean bubble 

diameter (d32) at different superficial gas velocities. As can be observed in this figure, the 

concentric-rings spargers resulted in greater d32 when compared with those of the 6-arms spider, 

which can be attributed to the larger orifice size (7 mm ID) for the concentric-rings sparger versus 

5 mm ID for the 6-arms spider. The effect of the superficial gas velocity on the d32 obtained with 

the 6-arms spider was insignificant, which is in agreement with the experimental data presented in 

Section 5.3.3.4. The effect of superficial gas velocity on the d32, however, was more significant 

for the concentric-rings upward facing orifices sparger as a result of the turbulent eddies created, 

which enhanced the bubbles coalescence. This is because bubbles coalescence and breakup 

mechanisms is primarily governed by the turbulent eddies, which in turn, are controlled by the 

liquid and gas velocities [288]. The bubble breakup, however, is governed by the turbulent stresses, 

which are controlled by the pressure variations within the fluid and subsequently are related to the 

physical property gradients within the continuous-phase [348]. This behavior also explains why 

the temperature changes, affecting the physical properties, have a stronger influence on bubbles 

breakup than on the bubbles coalescence. 

Figures 6-23 to 6-25 show the effects of the sparger orifices orientations on the axial solid 

concentration profiles at superficial gas velocities of 0.1, 0.2 and 0.3 m/s, respectively. As can be 

seen in these figures, the downward facing orifices spargers give a more uniform axial solids 

distribution, whereas, the upward facing orifices spargers result in a solid accumulation near the 

bottom of the reactor. Actually, high solid concentrations (up to 17.2 vol %) can be seen at the 
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bottom of the reactor at superficial gas velocity 0.2 m/s, leading to lower solid concentrations 

above and far from the sparger. 

It is important to note that the concentric-rings sparger with upward facing orifices resulted 

in higher solid concentrations at the bottom of the reactor when compared with those of the 6-arms 

spider with upward facing orifices. This behavior could be due to the fact that the 6-arms spider 

has also nozzles on the sides of each arms, which helped in enhancing mixing around this sparger. 

The effect of sparger orifices orientation on the axial solids distribution profile at an axial position 

(z) to the total height (H) ratio (z/H) greater than 0.2 appear to decrease with increasing the 

superficial gas velocity. Generally, the spargers with downward facing orifices were more 

effective in solids distribution when compared with those with upward facing orifices. This is due 

to the increased mixing provided by the gas jets from the downward facing orifices, which 

increased the solid particles distribution. 
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Figure 6-21: Effect of sparger type and nozzles orientation on the gas holdup at different 

superficial gas velocities 
 

 
Figure 6-22: Effect of sparger type and nozzles orientation on the Sauter bubble diameter 

at different superficial gas velocities   
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Figure 6-23: Comparison of axial solid loadings for different sparger nozzles orientations at 

UG = 0.1 m/s 
 

 
Figure 6-24: Comparison of axial solid loadings for different sparger nozzles orientations at 

ug = 0.2 m/s   
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Figure 6-25: Comparison of axial solid loadings for different sparger nozzles orientations at 

ug = 0.3 m/s 
 
Basha et al. [2] classified the different liquid recirculation profiles typically observed in bubble 

columns and SBCRs into three patterns as discussed in Section 2.5.2. Pattern (a) is characterized 

by large segmented liquid recirculations along the height of the reactor, pattern (b) is characterized 

by a single large liquid recirculation flow structure across the entire reactor, and pattern (c) is 

characterized by smaller and faster liquid recirculations throughout the reactor. 

The CFD model predictions of the mean axial velocity profiles in the SBCR are presented 

in Figures 6-26 through 6-28 for the different gas spargers used at a superficial gas velocity of 0.2 

m/s for height to diamter ratios (H/D) of 1, 3 and 6, respectively. As can be observed in these 

figures, the sparger design and orifices orientation appear to significantly affect the mean axial 

velocity profiles throughout the entire length of the reactor. Thus, the previous claims that the 

sparger deisgn has no effect on the flow structure at high superficial gas velocites in bubble 
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columns and SBCRs, which were based on experiments conducted at ambient temperature [393, 

394], are not applicable to the SBCRs operating under typical Fischer-Tropsch conditions.  

Furthermore, these figures show that the concentric-rings and the 6-arms spider with 

downward facing orifices exhibit flow profiles which are similar to the circulation pattern (c). 

Also, the concentric-rings and 6-arms spider spargers with upward facing orifices follow the 

circulation pattern (a). It should be mentioned, however, that the perforated plate exhibited a 

unique flow profile, which follows the circulation pattern (b).  

 

 

Figure 6-26: Mean axial liquid velocity profiles at H/D = 1 for different gas spargers at ug = 
0.2 m/s  
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Figure 6-27: Mean axial liquid velocity profiles at H/D = 3 for different gas spargers 
at ug = 0.2 m/s  

 

 

Figure 6-28: Mean axial liquid velocity profiles at H/D = 6 for different gas spargers 
at ug = 0.2 m/s   
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6.1.5 Sensitivity Analysis of the Model Parameters 
 

 

In order to use our model as an efficient design tool, it is critical to identify the relative importance 

of each of the incorporated sub-models and parameters, and to eventually eliminate any 

unnecessary terms that needlessly increase the computational time without an acceptable increase 

in the prediction accuracy. In this work, the effect of incorporating a bubble population balance 

(Equation (4-23)) and the effect of incorporating momentum exchange terms (Equation (4-19)), 

on the model predictions were investigated. More precisely, the predictions were carried out under 

six different cases were compared with those of the original model described in Section 4 (Base 

Case). These cases are: 1. eliminating the bubble population balance; 2. accounting for the bubble 

population balance with only the coalescence kernel activated; 3. accounting for the bubble 

population balance with only the breakup kernel activated; 4. accounting only for the drag in the 

momentum exchange terms; 5. accounting only for Drag and Lift; and 6. accounting only for Drag, 

Lift and Virtual Mass. 

The cases were validated against two sets of experimental data to test both the spatial and 

overall model predictions. The data of Chen et al. [4] for N2-Drakeol-Glass beads system at 

superficial gas velocities of 0.05 as described in Section 6.6.3, were used to investigate the model’s 

prediction of the radial gas holdup profiles. Also, our experimental data, as described in Section 

6.6.4, were used to investigate the overall model performance at an inlet superficial gas velocity = 

0.20 m/s, temperature = 443 K and catalyst concentration = 11 vol%. Three main criteria were 

used to evaluate the relative importance of each of those parameters: (i) the overall computational 

time, (ii) the Absolute Average Relative Error (AARE), and (iii) the Percent Bias (PBIAS), which 

is used to identify the model’s bias to underestimate or overestimate the data [396] as shown in 

Equation (6-5): 
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𝑃𝐵𝐼𝐴𝑆 = 
∑ (Pred.−Exp).n
1

∑ (Pred. )n
1

×100% (6-5) 

Positive values indicate the model’s underestimation bias, whereas positive values indicate the 

model’s overestimation bias. 

Tables 6-2 and 6-3 show the model performance using the two sets of experimental data. 

As can be seen in these tables, the greatest reduction in computation time for two sets was achieved 

by accounting only for the drag momentum exchange term, while eliminating the other terms (Case 

# 4), which resulted in a decrease of computational time by 25.5% and 27.1% for set 1 and set 2, 

respectively, with an almost insignificant change in the AARE. Moreover, eliminating the bubble 

population balance significantly reduced the computation time by 19% and 23.3% for set 1 and set 

2, respectively, however, a significant increase in AARE of 9.47% and 6.57% was observed. Thus, 

the degree of complexity employed in our model is dependent on the required prediction accuracy. 

Obviously, increased accuracy will significantly increase the required computational time. 

 

Table 6-2: Model performance against the radial gas holdup experimental data of  
Chen et al. [4] 

Case # Eliminated sub-model AARE PBIAS 
Computation 

Time (hrs) 
Time 

Reduction 
Base - 4.45% 1.07% 220 - 

1 Bubble population balance 13.92% -1.3% 178 19.1% 

2 Breakup kernel 7.98% 0.07% 184 16.4% 

3 Coalescence kernel 11.21% 1.21% 192 12.7% 

4 
Lift, Virtual Mass, Wall, 

Turbulence dispersion 
4.75% 1.12% 164 25.5% 

5 
Virtual Mass, Wall, 

Turbulence dispersion 
4.69% 1.09% 207 5.9% 

6 
Wall, Turbulence 

dispersion 
4.56% 1.06% 214 2.7% 
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Table 6-3: Model performance against overall gas holdup data measured in our lab 

Case # Eliminated sub-model AARE PBIAS Computation 
time (hrs) 

Time 
Reduction 

Base - 2.75% 0.32% 218 - 

1 Bubble population balance 9.32% 8.1% 167 23.4% 

2 Breakup kernel 5.64% 6.5% 181 17.0% 

3 Coalescence kernel 7.21% 8.1% 173 20.6% 

4 
Lift, Virtual Mass, Wall, 

Turbulence dispersion 
2.86% 0.44% 159 27.1% 

5 
Virtual Mass, Wall, 

Turbulence dispersion 
3.07% 3.70% 203 6.9% 

6 
Wall, Turbulence 

dispersion 
3.22% 3.63% 217 0.5% 
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6.2 EFFECTS OF INTERNALS ON THE LOCAL HYDRODYNAMICS IN SBCRS 

 

 

Reactor internals with different shapes and configurations are an integral part of the design and 

optimization of numerous industrial applications. For instance, different types of internals, such as 

rings, inverse-cone tubes, horizontal ring-type baffles, and perforated plates were used in the 

circulating fluidized bed (CFB) to improve the solids radial distribution [397]. Fixed and floating 

internals were used in the fast fluidized-beds to reduce the agglomerate size in cohesive powders 

for fluidization improvement [398]. Porous draft tubes, open-sided draft tubes and non-porous 

draft tubes were used in conical spouted beds to increase the gas flow rate from the spout into the 

annulus and enhance heat transfer [399, 400]. Different internals were also used in SBCRs to 

maintain a near isothermal operation using the highly exothermic processes. 

Generally, heat transfer rate in multiphase systems is controlled by many variables, such 

as heat transfer area, heat transfer coefficient, superficial gas velocity, liquid circulation velocity, 

and bubble dynamics, including the local and overall phase holdups, bubble velocities, bubble 

sizes, and bubble frequency.  

In SBCRs, the good mixing and high heat capacity of the slurry-phase allow for excellent 

temperature control, making it ideal for the F-T synthesis process, which is highly exothermic. 

Kolbel and Ralek [221] reported a temperature difference of less than 1 oC over the total length of 

a pilot-scale SBCR (1.29-m ID, 8-m height) used for F-T synthesis at 268 oC. The cooling surface 

requirements in slurry bubble reactor reactors have been reported to be less than a quarter of those 

used in a multitubular fixed bed reactors, due to the improved heat transfer film coefficient in 

addition to a higher permissible ΔT between reactant and coolant [165, 401].  
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In this section, the effect of internals on the internal hydrodynamics in our pilot-scale 

SBCR are investigated using the CFD model in two steps. In the first step, the effect of internals 

on the experimental and predicted hydrodynamics previously discussed in Section 6.1 was 

investigated. In the second step, the effect of different internals configurations on the gas holdup 

structure and liquid backmixing was investigated.  

 

 

6.2.1 Effect of Internals in the Pilot-Scale Reactor on the Liquid Backmixing, Gas Holdup 

and Local Turbulence Intensity 

 

 

The internals configuration used in the pilot-scale SBCR, shown in Figure 6-29 consists of a 

bundled arrangement of one, 2.5-inch pipe at the center of the reactor, surrounded by 6, 1.75-inch 

pipes in a hexagonal pattern. The overall cross sectional areal coverage of the internals was 

17.65%. The internal pipes were 2.1-m in length each, and extended from the top of the reactor up 

to 70% of the total length of the reactor, with a volume fraction of 12.3%.  

In the CFD modeling, a tetrahedral mesh was used with 4.95 million nodes and 2.85 million 

cells. The mesh has an average element quality of 0.84 and the cross-sectional contour of the mesh 

is shown in Figure 6-29. The simulations were carried out at an inlet superficial gas velocity = 0.20 

m/s, temperature = 443 K, pressure = 20.5 bar and catalyst concentration = 11 vol. %. The local 

values of the gas holdup, local turbulence intensity and liquid velocity were determined over 60 s, 

which is the time required to achieve a steady-state within the pilot-scale reactor.  
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(a) (b) 

Figure 6-29: Geometry and mesh structure used in this section: Cross sectional view 

(a) and view in the vicinity of the sparger (b) 

 

Figure 6-30 shows snapshots of gas holdup contours at different times. As can be observed 

in this figure, the presence of internals generally increases the gas holdup when compared with the 

reactor without internals shown in Figure 6-5. This behavior could be due to a decrease of the area 

available for gas flow. Moreover, there is a significant effect on the radial distribution of the gas 

holdup, as more even radial distribution can be seen in the presence of internals. 
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Figure 6-30: Snapshots of gas holdup contours at different times 
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Figure 6-31 shows snapshots of turbulence intensity contours at different times in the pilot-

scale SBCR and as can be observed the presence of internals does not have a significant effect on 

the turbulence intensity during the first 40 s, when compared with the case without internals shown 

in Figure 6-17. However, after 40 s, there is a significant increase in the turbulence intensity in the 

presence of internals, particularly in the upper region of the reactor where the internals are present. 

This is primarily due to the effect of internals on the longitudinal funneling of the flow, which 

tends to control the size of large scale eddies, resulting in a more turbulent flow. This effect is also 

supported by Figure 6-32 which shows snapshots of the liquid velocity vectors at different times 

in the SBCR. As shown in this figure, the presence of internals results in a significantly different 

flow structure throughout the reactor after the 40 s, with smaller and faster liquid recirculation 

cells in the vicinity of the sparger, and larger liquid recirculation in the upper part of the reactor 

where the internals are present. 
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Figure 6-31: Snapshots of turbulence intensity contours at different times  
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Figure 6-32: Snapshots of liquid velocity vectors at different times 
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The effect of internals length on the local hydrodynamics was also investigated. The 

simulations were carried out in the pilot-scale SBCR under the same operating conditions, 

however, the internals were extended from 2.1 m to 2.6 m, covering 86% of the total reactor length 

and representing a volume fraction of 15.3%, as shown in Figure 6-33. As can be observed in the 

figure, increasing the internals length increases the overall gas holdup and results in less steep 

radial gas holdup profiles in the vicinity of the internals. Also, there is a general increase of the 

turbulence intensity, primarily in the upper regions of the reactor. Moreover, there is a significant 

liquid funneling and larger recirculations at the internals zone and smaller, faster recirculations in 

the vicinity of the sparger.  

 

Figure 6-33: Steady state Gas holdup (a), Local turbulence intensity (b) and liquid velocity 
vectors (c) of the pilot-scale reactor with vertically extended internals  
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6.2.2 Effect of Parallel Internal Configurations on the Liquid Backmixing and Gas Holdup 
 

 

The effect of internals configurations on the liquid backmixing and gas holdup was predicted using 

our CFD model in three different parallel (baffled) configurations inside a conceptual large-scale 

reactor (1-m ID and 10-m height). The areal coverage and volume fraction of the internals in both 

reactors are shown in Table 6-4. In all the cases investigated, the internals extended from the top 

of the reactor up to 86% of the reactor height. The gas was introduced using a concentric-ring 

sparger, consisting of 3 concentric-rings with 333, 167 and 111 orifices, totaling 611 identical 

orifices, each with an ID of 7-mm.  

The simulations were carried out at an inlet superficial gas velocity of 0.20 m/s, 

temperature of 443 K, pressure of 20.5 bar and catalyst concentration of 11 vol. %. In order to 

prevent numerical problems, however, the calculations were carried out with a 0.05 s increment 

for the first 1000 time steps, increased to 0.1 s for the next 1000 time steps, then increased to 0.25 

s until the end of the simulation time. The simulated physical time was for 300 s, at which the 

statistical quasi-steady state was attained, i.e. once the converging time averages of the local 

holdups and axial velocities were stabilized. The cross-sectional contours for both the liquid axial 

velocity and gas holdup at different z/D points throughout the reactor are shown in Figures 6-34 

to 6-37. 
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Table 6-4: Details of parallel internal configurations used in this study 

 

 

 

Figure 6-34: Liquid axial velocity cross-sectional contours at different heights for the 
parallel internals configurations at 30 s  

Parallel Arrangement 

P-1 P-2 P-3 

   

19% CSA Coverage 
16.34% Volume coverage 
293 – 1 in internal pipes 

1 m –ID, 10 m high SBCR 

10% CSA Coverage 
8.6% Volume Coverage 
155 – 1 in internal pipes 

1m –ID, 10 m high SBCR 

5% CSA Coverage 
4.3% Volume Coverage 
77 – 1 in internal pipes 

1m –ID, 10 m high SBCR 

 

t =  
30 s 

Liquid Axial Velocity  

P-1 P-2 P-3 

 

(m/s) 

z/D = 

2.5 

   

z/D = 

5 

   

z/D = 

7.5 

   

 



 

167 

 
Figure 6-35: Liquid axial velocity cross-sectional contours at different heights for the 

parallel internals configurations at 300 s  

 

Figures 6-34 and 6-35 show the axial liquid velocity contours for cases P-1 through P-3. 

As can be seen in this Figure, strong liquid recirculations are exhibited at a much earlier time, 

marked by smaller scale liquid circulations throughout the reactor, which eventually grow into 

large scale recirculation cells with positive axial velocity near the reactor center and strong 

backmixing near the reactor wall at steady-state conditions. Similar flow structure and behavior is 

also exhibited for cases P-1 and P-2, in which the liquid recirculations develop at a much faster 

rate, and eventually result in large liquid recirculations throughout the reactor. This behavior is 

primarily due to liquid funneling because of the presence of internals in the reactor, which 

t =  
300 s 

Liquid Axial Velocity  

P-1 P-2 P-3 

 

(m/s) 

z/D = 

2.5 

   

z/D = 

5 

   

z/D = 

7.5 

   

 



 

168 

significantly affect the flow structure, resulting in large, fast and more turbulent liquid 

recirculations. 

 

 

 
Figure 6-36: Gas holdup cross-sectional contours at different heights for the parallel 

internals configurations at 30 s  
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Figure 6-37: Gas holdup cross-sectional contours at different heights for the parallel 

internals configurations at 300 s  
 

 

Figures 6-36 and 6-37 shows the presence of internals increases the gas holdup throughout 

the reactor, which is in agreement with earlier findings [223, 226]. Also, in all cases at z/D value 

of 2.5, the radial gas holdup profiles exhibit higher values near the reactor center and lower values 

near the reactor wall, which eventually flatten along the reactor height, with more distinctly flatten 

gas holdup profiles at higher z/D values of 5 and 7.5. 
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6.2.3 Effect of Bundled Internal Configurations on the Gas Holdup and Liquid Backmixing 

in the Conceptual Reactor 

 

 

Four different bundled configurations in the conceptual reactor (1-m ID and 10-m height) with 1, 

3, 4 and 5 bundles, as shown in Table 6-5, were investigated. This was performed to investigate 

the effect of the reactor geometry on the local hydrodynamics in the presence of internals, and the 

impact of inserting a large number of internals inside the reactor. In all the cases investigated, the 

internals extended from the top of the reactor up to 86% of the reactor height, which is equivalent 

to 2.58 m for the 3 m height reactor and 8.6 m for the 10 m reactor. The simulations were carried 

out at an inlet superficial gas velocity of 0.20 m/s, temperature of 443 K, pressure of 20.5 bar and 

catalyst concentration of 11 vol. %. The cross-sectional contours for both the liquid axial velocity 

and gas holdup at different z/D points throughout the reactor are shown in Figures 6-38 and 6-8. 

 

Table 6-5: Details of bundled internal configurations used in this study  
(1-m ID, 10-m high SBCR) 
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Figures 6-38 and 6-39 show the axial liquid velocity contours for cases B-1 through B-4; 

and as can be seen the presence of bundled internals results in significantly different backmixing 

profiles. Strong liquid recirculations are exhibited for cases B-1 and B-2 for the 1 and 3 bundle 

configurations, whereas weaker liquid recirculations are shown for cases B-3 and B-4 for the 4 

and 5 bundle configurations. Generally, backmixing zones in the bundled arrangements seem to 

be affected by the presence of wall clearance zones, especially in the configurations which promote 

large wall clearances, such as the 3 bundle and 5 bundle arrangements, where the large wall 

clearance zones generated unique backmixing profiles. 

 

 
Figure 6-38: Liquid axial velocity cross-sectional contours at different heights for the 

bundled internals configurations at 30 and 300 s (1-m ID, 10-m high SBCR)  
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Figure 6-39: Liquid axial velocity cross-sectional contours at different heights for the 

bundled internals configurations at 30 and 300 s (1-m ID, 10-m high SBCR) 
 

Figures 6-40 and 6-41 show the gas holdup contours for cases B-1 to B-4, at 30 and 300 s, 

respectively. As can be observed for all cases, the presence of internals results in smoother radial 

gas holdup profiles, however, the local gas holdup values were lower than those exhibited for the 

parallel configurations (Figure 6-36). This behavior is primarily due to the increase of the average 

bubble size for bundled internals when compared with those for parallel internals, as shown in in 

Figure 6-42. 
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Figure 6-40: Gas holdup cross-sectional contours at different heights for the bundled 
internals configurations at 30 s (1-m ID, 10-m high SBCR) 
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Figure 6-41: Gas holdup cross-sectional contours at different heights for the bundled 

internals configurations at 300 s (1-m ID, 10-m high SBCR) 
 

Figure 6-42 shows that the bundled internals result in higher Sauter mean bubble diameter 

(d32) values when compared with those for the parallel internals. This behavior could be due to the 

fact that the presence of parallel internals enhances bubble breakup and inhibits bubble 

coalescence, whereas the presence of bundled internals enhances bubble coalescence. This is 

clearly shown when comparing the bubble diameters of case P-1 to the values obtained with no 

internals (Figure 6-42). Moreover, the bubble size appears to increase with decreasing the cross-

sectional area for the parallel internals and increasing the number of bundled internals. This 

behavior could be related to the effect of the distance between the internals in the case of parallel 

configurations, where lower cross-sectional area coverages result in wider distance between the 
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internals, leading to the formation of large gas bubbles. For bundled internals, on the other hand, 

this effect is due to the wall clearance, where bigger clearances resulted in increased bubble 

diameter.  

 

  

Figure 6-42: Axial Sauter mean bubble diameter for different internals configurations 

 

Additionally, the effect of the number of internals and the internals cross-sectional area 

coverage on both the gas holdup and backflow fraction, has been investigated, as shown in Figures 

6-43 and 5-21. As shown in these figures, the number of internals does not have a significant effect 

on the gas holdup, which seems to be governed by the internal cross-sectional areal coverage of 

the internals. On the other hand, the number of internals appears to have significant effect on 

enhancing liquid backmixing when compared with that of the cross-sectional area coverage. Thus, 

the presence of internals and their combination can increase or decrease backmixing depending on 

their design and arrangement.  
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Figure 6-43: Effect of number of internal pipes and internals CSA coverage on the gas 
holdup 

 

 

Figure 6-44: Effect of number of internal pipes and internals CSA coverage on the liquid 
backflow fraction 
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6.3 CFD MODEL PREDICTIONS OF PERFORMANCE OF A PILOT- AND LARGE- 

SCALE SBCRs FOR F-T SYNTHESIS 

 

 

The use of CFD models to predict the F-T reactor performance at relatively large scales has been 

rarely attempted as previously discussed in Section 2.5.3, due to the computational and physical 

complexity of the process. Most modeling attempts have been limited to 1-D axial dispersion 

models. In this investigation, our CFD model was used to predict the performance of the pilot-

scale SBCR reactor available in our laboratory and an industrial-scale SBCR for F-T synthesis 

using iron catalyst. The kinetic rate expressions used for both the F-T and WGS reactions are given 

in Table 6-6.  

 

Table 6-6: F-T Catalyst and kinetics provided by NICE 

Catalyst Reaction Equation Parameters 

NICE 

Catalyst 

(Fe) 

F-T 𝑟𝐹𝑇 =
𝑘𝑃𝐶𝑂𝑃𝐻2

𝑃𝐶𝑂 + 𝑎𝑃𝐻2 + 𝑏𝑃𝐶𝑂2
 

k = 0.118 mol∙kg-1∙s-1∙MPa-1 at 

528 K 

a = 5.9 

b = 5.9 

WGS 𝑟𝑊𝐺𝑆 =

𝑘 (𝑃𝐶𝑂𝑃𝐻2 −
𝑃𝐻2𝑃𝐶𝑂2
𝐾𝑝

)

(𝑃𝐶𝑂 + 𝑎𝑃𝐻2 + 𝑏𝑃𝐶𝑂2)
2 

k = 0.083 mol∙kg-1∙s-1 

a = 1.9 

b = 1.9 

KP = 79.7 at 528 K 

 

The composition of the syngas used in the CFD simulation is given in Table 6-7. 

 

Table 6-7: Syngas composition used in this investigation 

Composition Mol. % 
H2 52.47 

O2/Ar 0.27 

N2 12.72 

CO 34.46 

CO2 0.02 

CH4 0.03 
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The F-T products distribution was determined using the 2-α model [46]. The mole fraction 

of the products with an n carbons is calculated using Equation (6-6): 

𝑥𝑛 =
𝛼1
𝑛−1 + (

𝛼1
𝛼2
)
𝜉−1

𝛼2
𝑛−1

1
1 − 𝛼1

+ (
𝛼1
𝛼2
)
𝜉−1 1

1 − 𝛼2

 (6-6) 

Where ζ represents the break point of the products distribution in the 2-α model.  

The products selectivities obtained by Withers et al. [402] were used to fit the values of the 

parameters ζ , α1 and α2 and they were found to be 13, 0.79 and 0.91, respectively. Furthermore, 

the literature data by Chang et al. [403] available for an iron-based catalyst, similar to the one used 

in this study, were used to develop Equation (6-7) in order to predict the ratio of α-olefins to 

paraffins (Rop). 

 

𝑛 < 5 𝑅𝑜𝑝𝑛 = −1.06𝑛
2 + 7.18𝑛 − 6.25

𝑛 ≥ 5 𝑅𝑜𝑝𝑛 = −0.000115𝑛
4 + 0.00804𝑛3 − 0.188𝑛2 + 1.4𝑛 + 1.47

 (6-7) 

 

The solubilities of gases, other than H2 and CO, were calculated using the Marano and Holder 

[361, 363, 364, 404] correlations for the multi-component vapor-liquid equilibrium model. The 

design data and operating conditions for the pilot-scale and the industrial-scale SBCRs used in this 

CFD modeling are given Table 6-8. 
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Table 6-8: Design data for the pilot-scale and industrial-scale SBCRs  
 

Parameter Pilot-scale Industrial-Scale 
Reactor inside diameter 

(DR) 
0.3 5.8 m 

Reactor effective height 

(HR) 
3 m 42 m 

Sparger Type 6-arms spider Concentric circles 

Orifices inside diameter 

(IDorifice) 
5 mm 3 mm 

Number of orifices (Norifice) 108 29,000 

Cooling Pipes Stainless Steel Stainless Steel 

Number of cooling pipes × 

Cooling pipe size 

1 × 63.5 mm OD (58.42 mm ID) 151 × 89 mm OD (77 mm ID) 

6 × 44.45 mm OD (39.37 mm ID) 453 × 57 mm OD (47 mm ID) 

Pressure 20.5 bar 29 bar 

Temperature 443 K 528 K 

Superficial gas velocity 0.24 m/s 0.12, 0.24, 0.30 and 0.40 m/s 

Slurry or Liquid flow rate 0.00015 m/s 0.00015 m/s 

Catalyst Iron (Table 6-6) Iron (Table 6-6) 

Average particle size 81 micron 81 micron 

Particle skeletal density 

(NICE catalyst) 
3,380 kg/m3 (Iron) 3,380 kg/m3 (Iron) 

Catalyst loading (solid 

concentration) 
0-15 vol% (0-45 wt. %) 10 vol% (34 wt. %) 

 

 

6.3.1 Prediction of the Pilot-Scale SBCR Performance 
 

 

Our CFD model was first used to predict the performance of the pilot-scale SBCR for F-T 

synthesis. The effect of catalyst concentration on the H2 and CO conversions and the overall C5
+ 

products yield was investigated at three solid concentrations of 5, 10 and 15 vol% for three H2/CO 

ratios of 1, 1.5 and 2. The simulations were carried out at a pressure of 20.5 bar, a temperature of 

443 K, and superficial gas velocity of 0.24 m/s. The geometry used is shown in Figure 6-29.  

The simulations were carried out for a period of 120 minutes, using a 0.25 s time step, for 

a total of 28,800 time steps per simulation. Each simulation took an average of 270 hours to 
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complete. It should be noted that the addition of the reaction kinetics resulted in significant 

convergence difficulties and that the simulation had to be initialized using a first order steady state 

solution before advancing the transient solution. The results for the yield were ultimately expressed 

in tons of C5
+ products per day. 

Our CFD model was able to predict the performance of the pilot-scale SBCR as shown in 

Figures 6-45 through 6-47. The predictions indicated that increasing catalyst concentration 

increases the CO and H2 conversions. Also, Figure 6-47 shows that this pilot-scale SBCR could 

produce a maximum of 1.87 tons/day of C5
+ products when using a catalyst concentration of 15 

vol. % under the operating conditions given in Table 6-8.  

 

 
Figure 6-45: CFD model predictions of CO conversion for different H2/CO ratios at 

different catalyst concentrations for F-T synthesis in the pilot-scale SBCR  
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Figure 6-46: CFD model predictions of H2 conversion for different H2/CO ratios at 

different catalyst concentrations for F-T synthesis in the pilot-scale SBCR 
 

 
Figure 6-47: CFD model predictions of the C5+ products yield for different H2/CO ratios at 

different catalyst concentrations for F-T synthesis in the pilot-scale SBCR  
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6.3.2 Effect of Incorporating Kinetics on the Local Hydrodynamics in the Pilot-Scale SBCR 
 

 

The impact of incorporating the F-T reaction kinetics on the hydrodynamics in the pilot scale 

SBCR was investigated. Generally, the effect of the chemical reaction on the hydrodynamics in a 

SBCR is expected, primarily due to gas and liquid velocity changes along the reactor axial position, 

and the net molar gas consumption or production as the reaction proceeds. The changes in the local 

gas velocities are expected to change the gas holdup and bubble size, which in turn affect the gas-

phase continuity equation, and the momentum balance for the gas and liquid phases. In this 

analysis the CFD results, with and without F-T reaction kinetics, were compared at pressure = 20.5 

bar, temperature = 443 K, inlet superficial gas velocity = 0.20 m/s, catalyst concentration = 10 vol. 

%., and at H2/CO ratio = 2. The geometry used in this work is shown in Figure 6-29. It includes a 

6-arms spider sparger, and one bundled internal, consisting of one, 2.5-inch pipe at the center of 

the reactor, surrounded by 6, 1.75-inch pipes in a hexagonal pattern. The internals had a cross 

sectional areal coverage of 17.65% and extended for 86% of the overall reaction length, 

representing a volume fraction of 15.3%. 

Figure 6-21 shows the axial average Sauter mean bubble diameters profiles of in the pilot-

scale SBCR with and without chemical reactions. As can be seen in this figure incorporating the 

F-T reaction kinetics into the CFD model decreases the average d32 values along the reactor by an 

average of 17.63%. Similarly, Figure 6-49 shows axial average gas holdup profiles in the pilot-

scale SBCR with and without chemical reactions. As can be observed in this figure incorporating 

the F-T reaction kinetics into the CFD model decreases the average gas holdup along the reactor 

by an average of 15.4%. Moreover, Figure 6-50 shows the cross sectional contours of the gas 

holdup in the pilot-scale SBCR. It is important to note that despite the changes of the average d32 

and gas holdup values along the reactor in the presence of chemical reaction, the liquid 
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recirculation patterns exhibited in the pilot-scale SBCR under these conditions was similar to that 

obtained in the absence of chemical reaction as can be observed in Figure 6-51. 

 

 
Figure 6-48: Effect of coupling kinetics on the average Sauter mean bubble diameter in the  

Pilot-scale SBCR 
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Figure 6-49: Effect of incorporating kinetics in the CFD model on the avarage gas holdup 
in the pilot-scale SBCR 
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Figure 6-50: Effect of incorporating kinetics in the CFD model on the gas holdup contours 

with and without chemical reaction at t = 60 s in the pilot-scale SBCR 
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Figure 6-51: Effect of incorporating kinetics in the CFD model on the liquid recirculation 

patterns with and without chemical reaction at t = 60 s in the pilot-scale SBCR 
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6.3.3 Prediction of the Industrial-Scale SBCR Performance 
 

 

Our CFD model was then used to predict the performance of the industrial-scale SBCR with the 

design data and operating conditions given in Table 6-8. Due to the huge number of sparger orifices 

required, 12 concentric-ring spargers were built at the inlet of the reactor. A cross-section view of 

the geometry and mesh structure of the reactor is shown in Figure 6-52. The mesh consisted of 8.8 

million elements, in addition to a mixed-element grid consisting of 71% tetrahedral, 16% prism, 

9% pyramid and 4% hexahedral elements. The average element quality was 0.84 and the minimum 

element quality was 0.167. It should be noted that although a relatively coarse mesh was selected 

due to the large size of the reactor, this mesh satisfied the convergence criteria set by Patankar 

[356] for highly non-linear relaxation coefficients, as previously discussed in Section 6.5.  

 

 

  
(a) (b) 

Figure 6-52: Geometry and mesh details of the industrial scale SBCR: (a) Cross-sectional 
view, (b) mesh structure  
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The CFD simulations were conducted at four superficial gas velocities of 0.12, 0.24, 0.30 and 0.40 

m/s. Figures 6-53 through 6-55 show the simulation results for the CO conversion, H2 conversion 

and C5
+ products yields, respectively. Under these conditions, the results indicated that the CO 

conversions are 48%, 59%, 58% and 55% at the superficial gas velocities of 0.12, 0.24, 0.3 and 

0.4 m/s, respectively. Similarly, the H2 conversions are 36%, 51%, 56% and 54% at the superficial 

gas velocities of 0.12, 0.24, 0.3 and 0.4 m/s, respectively. The C5+ products yields are 275, 576,627 

and 654 ton/day at superficial the gas velocities of 0.12, 0.24, 0.3 and 0.4 m/s, respectively. 

 

 
Figure 6-53: CFD model predictions of the CO conversion for different superficial gas 

velocities for F-T synthesis in the industrial-scale SBCR 
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Figure 6-54: CFD model predictions of H2 conversion for different superficial gas velocities 

for F-T synthesis in the industrial-scale SBCR 
 

 
Figure 6-55: CFD model predictions of the C5+ products yield for different superficial gas 

velocities for F-T synthesis in the industrial-scale SBCR 
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7.0  CONCLUDING REMARKS 
 

 

 

 

1. A three-phase, 3-D comprehensive CFD model to predict the local hydrodynamics and 

performance of SBCRs for F-T synthesis was developed. The kinetic theory of granular flow 

(KTGF) was used to represent the solid-phase behavior, and the model by Gidaspow [242] was 

used to describe the solid viscosity. The bubbles induced turbulence was considered by 

introducing two source terms, 𝑆𝑘  and 𝑆 , into the k-ε equation to account for the covariance of 

the liquid- and dispersed-phase velocities as well as the relative and drift velocity effects. Also, 

a bubble population balance was included to represent the bubble size distribution. In addition, 

the model incorporated the breakup and  coalescence models by Lou and Svendsen [405] and 

Prince and Blanch [348], respectively. The CFD model was developed in ANSYS and a first 

order implicit time stepping was used to advance the solution in time. Moreover, due to the 

strong non-linear characteristics of the model, relaxation coefficients, as proposed by Patankar 

[356], were introduced in the momentum conservation equations. 

2. The CFD model predictions, in the absence of F-T reactions, were tested against the 

experimental data by Yu and Kim [3] for air-water-glass beads system and by Chen et al. [4] 

for N2-Drakeol-glass beads system in order to select the turbulence and drag models. Based on 

these validations, of inclusion of the RNG k-ε turbulence model coupled with the gas-liquid 

drag model by Wen-Yu [5], the liquid-solid drag model by Schiller Naumann [6] and the lift 
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coefficient by Tomiyama [7] in the CFD model, allowed the most accurate predictions of these 

experimental data.  

3. Due to the absence of adequate hydrodynamics and mass transfer data in the literature to 

validate our CFD model, an experimental program was devised to measure the gas holdup (ɛG), 

Sauter mean bubble diameter (d32), and volumetric mass transfer coefficients (kLa) for gaseous 

mixtures of He/N2 as surrogates for H2/CO in F-T reactor wax containing iron catalyst in a 

pilot-scale (0.3-m ID, 3-m height) SBCR. These data were measured under various operating 

conditions, pressures (4-31 bar), temperatures (380-500 K), superficial gas velocities (0.1-0.3 

m/s) and catalyst concentrations (0-15 vol. %), which are typical to those of the F-T synthesis. 

The gas distributor used for gas sparging was a 6-arms spider. The F-T reactor wax was 

provided by the National Institute of Clean and Low-Carbon Energy (NICE), China; and was 

obtained from a large-scale (5.8-m ID, 30-m height) SBCR operating with iron catalyst under 

actual F-T industrial conditions. The CFD model predictions, in the absence of F-T chemical 

reactions, were validated against the gas holdup data obtained in this study under actual F-T 

conditions, and this validation underscored the importance of including the kLa correlation in 

the CFD model in order to precisely predict the gas holdup data in the pilot-scale SBCR.  

4. After validation, the CFD model was used to predict the effect of internals on the local 

hydrodynamics (local gas hold up, liquid and gas velocity vectors, mixing intensities) inside 

the pilot-scale SBCR reactor (0.3-m ID, 3-m height) provided with the 6-arms spider for gas 

sparging. From the simulation results obtained in the absence of F-T reactions, the following 

remarks can be made:  

a. The presence of internals generally increases the gas holdup when compared with the 

reactor without internals. This behavior could be due to a decrease of the area available for 
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gas flow. Moreover, there is a significant effect on the radial distribution of the gas holdup, 

as more even radial distribution can be seen in the presence of internals. 

b. The presence of internals does not have a significant effect on the turbulence intensity 

during the first 40 s, when compared with the case without internals. However, after 40 s, 

there is a significant increase in the turbulence intensity in the presence of internals, 

particularly in the upper region of the reactor where the internals are present. This is 

primarily due to the effect of internals on the longitudinal funneling of the flow, which 

tends to control the size of large scale eddies, resulting in a more turbulent flow. Moreover, 

the presence of internals results in a significantly different flow structure throughout the 

reactor after the 40 s, with smaller and faster liquid recirculation cells in the vicinity of the 

sparger, and larger liquid recirculation in the upper part of the reactor where the internals 

are present. 

c. Increasing the internals length increases the overall gas holdup and results in less steep 

radial gas holdup profiles in the vicinity of the internals. Also, there is a general increase 

of the turbulence intensity, primarily in the upper regions of the reactor. Moreover, there 

is significant liquid funneling and larger recirculations at the internals zone and smaller, 

faster recirculations in the vicinity of the sparger.  

d. The number of internals does not have a significant effect on the gas holdup, which seems 

to be governed by the internal cross-sectional areal coverage of the internals. On the other 

hand, the number of internals appears to have significant effects on enhancing liquid 

backmixing when compared with that of the cross-sectional area coverage. Thus, the 

presence of internals and their combination can increase or decrease backmixing depending 

on their design and arrangement 
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e. Increasing the number internals for the same cross-sectional areal coverage did not have a 

significant effect on the overall gas holdup inside the reactor. The internal mixing and the 

backmixing fraction, nonetheless, increased significantly (about 50% higher) with 

increasing the number of internals.  

f. The local gas holdup and liquid backmixing fraction inside the SBCR provided with 

internals appeared to increase with increasing the inlet superficial gas velocity and 

temperature for all internals configurations used. 

5. The CFD model was then used to investigate the effect of the gas sparger type and orientation 

on the gas holdup, Sauter mean bubble diameter, axial concentration profiles, mean axial 

velocity profiles and the flow structure in the pilot-scale (0.3-m ID, 3-m height), with no 

internals and no F-T reactions. A 6-arms spider, a concentric ring sparger, with upward and 

downward facing orifices, and a perforated plate distributer were used in this investigation.  

The following conclusions can be drawn: 

a. The gas holdups obtained using the three spargers vary with the axial and radial positions 

in the SBCR and the radial gas holdup exhibits a non-linear behavior at any axial position 

as illustrated by the gradual variation in the color shades of the gas holdup from the center 

to the wall of the reactor. It should be pointed out that the maximum gas holdup value can 

be mainly seen near the center of the reactor before it gradually decreases along the radii 

with various profiles in the axial direction. Also, the 6-arms spider and concentric-rings 

spargers showed distinctly steeper radial gas holdup profiles, whereas, the perforated plate 

showed a more uniform gas holdup distribution, which reached the steady-state much 

sooner than the other two spargers.  
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b. The CFD model confirmed that the sparger design and configuration have significant 

impact on the local hydrodynamics. For the 6-arms spider, relatively high liquid turbulence 

intensities can be observed in the vicinity of the sparger during the startup time, however, 

after reaching steady-state, the turbulence intensities become more evenly distributed 

throughout the reactor. For the concentric-rings sparger, the turbulence intensities are more 

uniform throughout the reactor during the first 40 s, however, their values increase 

drastically near the walls at 60 s, due to the development of large recirculation cells. On 

the other hand, the perforated plate exhibits higher turbulence intensities throughout the 

reactor with higher values near the top after 40 s, which is different from those shown using 

the other two spargers. 

c. For the 6-arms spider sparger, smaller and faster liquid recirculation cells are present in the 

vicinity of the sparger from the startup until the steady-state. Also, larger and slower liquid 

recirculation cells appear to develop after around 1.2 time the reactor diameter (measured 

from the bottom flange). These smaller and faster liquid recirculations in the vicinity of the 

sparger are primarily due to the geometry of this sparger type because all gas sparging 

orifices are located on the sides and bottom and none on the top of each sparger arms. For 

the concentric-rings and perforated plate spargers, only large and slow recirculation cells 

are present throughout the column above the distributor zone, which is in contrast with 

liquid velocity vectors observed when using the 6-arms spider. 

d. Both the upward and downward 6-arms spider orifice orientations give higher gas holdup 

values when compared with those of the concentric-rings spargers. The 6-arms spider with 

upward facing orifices resulted in the highest gas holdups. However, at low superficial gas 

velocities (Ug < 0.15 m/s), the concentric-rings sparger with downward facing orifices 
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gives higher gas holdup values than those using the sparger provided with upward facing 

orifices. 

e. The concentric-rings spargers resulted in greater d32 values when compared with those of 

the 6-arms spider, which can be attributed to the larger orifice size (7 mm ID) for the 

concentric-rings sparger versus 5 mm ID for the 6-arms spider. The effect of the superficial 

gas velocity on the d32 obtained with the 6-arms spider was insignificant, which is in 

agreement with the experimental data. 

f. The effect of superficial gas velocity on the d32, however, was more significant for the 

concentric-rings upward facing orifices sparger as a result of the turbulent eddies created, 

which enhanced the bubbles coalescence. This is because bubbles coalescence and breakup 

mechanisms is primarily governed by the turbulent eddies, which in turn, are controlled by 

the liquid and gas velocities [288]. The bubble breakup, however, is governed by the 

turbulent stresses, which are controlled by the pressure variations within the fluid and 

subsequently are related to the physical property gradients within the continuous-phase 

[348]. 

g. The downward facing orifices spargers give a more uniform axial solids distribution, 

whereas, the upward facing orifices spargers result in a solid accumulation near the bottom 

of the reactor. Actually, high solid concentrations (up to 17.2 vol %) can be seen at the 

bottom of the reactor at superficial gas velocity 0.2 m/s, leading to lower solid 

concentrations above and far from the sparger. 

h. The concentric-rings sparger with upward facing orifices resulted in higher solid 

concentrations at the bottom of the reactor when compared with those of the 6-arms spider 

with upward facing orifices. This behavior could be due to the fact that the 6-arms spider 
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has also nozzles on the sides of each arms, which helped in enhancing mixing around this 

sparger. 

i. The effect of sparger orifices orientation on the axial solids distribution profile at an axial 

position (z) to the total height (H) ratio (z/H) greater than 0.2 appear to decrease with 

increasing the superficial gas velocity. Generally, the spargers with downward facing 

orifices were more effective in solids distribution when compared with those with upward 

facing orifices. This is due to the increased mixing provided by the gas jets from the 

downward facing orifices, which increased the solid particles distribution. 

6. The CFD model was then used to study the effect of four parallel and four bundled internals 

configurations on the gas holdup and liquid axial velocity inside a Conceptual SBCR (1-m ID, 

10 m high), and in the absence of F-T reactions, the following remarks can be made: 

a. For the parallel internals, in the larger Conceptual reactor, faster, larger liquid 

recirculations were exhibited at a much earlier time, when compared to similar simulations 

inside the Pilot Scale SBCR. Moreover, the presence of internals significantly enhanced 

liquid funneling in the Conceptual reactor when compared to pilot-scale SBCR. On the 

other hand, the gas holdup profiles were found take a longer time to develop in the pilot-

scale SBCR when compared to the Conceptual reactor. 

b. On the other hand, in the presence of bundled internals, strong liquid recirculations are 

exhibited for the 1 and 3 bundle configurations, whereas, weaker liquid recirculations were 

shown for the 4 and 5 bundle configurations. Also, backmixing zones in the bundled 

arrangements seem to be affected by the presence of wall clearance zones, especially in the 

configurations which promote large wall clearances, such as the 3 bundle and 5 bundle 

arrangements, where the large wall clearance zones generated unique backmixing profiles. 
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Bundled internals also exhibited smoother radial gas holdup profiles, with lower local gas 

holdup values when compared to the parallel internals. This behavior is primarily due to 

the increase of the average bubble size for bundled internals when compared with those for 

parallel internals. 

c. The bundled internals result in higher Sauter mean bubble diameter (d32) values when 

compared with those for the parallel internals. This behavior could be due to the fact that 

the presence of parallel internals enhances bubble breakup and inhibits bubble coalescence, 

whereas, the presence of bundled internals enhances bubble coalescence. Also, the bubble 

size appears to increase with decreasing the cross-sectional area for the parallel internals 

and increasing the number of bundled internals. This behavior could be related to the effect 

of the distance between the internals in the case of parallel configurations, where lower 

cross-sectional area coverages result in wider distance between the internals, leading to the 

formation of large gas bubbles. For bundled internals, on the other hand, this effect is due 

to the wall clearance, where bigger clearances resulted in increased bubble diameter.  

7. The CFD model was also used to simulate the performance of the pilot-scale SBCR reactor 

available in our laboratory and an industrial-scale SBCR for F-T synthesis using iron catalyst. 

The kinetic expressions of the F-T synthesis and water-gas-shift provided by NICE were 

included in the CFD model. The CO and H2 conversions and C5
+ yields were calculated at 

different operating conditions. The following remarks can be made: 

a. The CFD model was used to simulate the performance of the pilot-scale (0.3-m, 3-m 

height) F-T SBCR, provided with internals in a single bundled arrangement of one, 2.5-

inch pipe at the center of the reactor, surrounded by 6, 1.75-inch pipes in a hexagonal 

pattern and a six arm spider sparger and operating with NICE iron catalyst. The CFD 
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model was capable of predicting the overall performance and the local hydrodynamics in 

this pilot-scale SBCR. The simulations were carried out with a catalyst concentrations of 

5, 10 and 15 vol% and three H2/CO ratios of 1, 1.5 and 2, at temperature of 443 K, pressure 

of 20.5 bar, and a superficial gas velocity of 0.24 m/s. The Simulation results showed that 

the CO and H2 conversions increase with increasing the catalyst concentration. Also, the 

pilot scale SBCR can produce a maximum of 1.87 tons/day of C5
+ products when using a 

catalyst concentration of 15 vol%. 

b. The CFD model was also used to simulate the performance of a commercial-scale (5.8-m 

ID, 42-m height) F-T SBCR, provided with 604 internals and a concentric ring sparger, 

and operating with NICE iron catalyst. The CFD model was capable of predicting the 

overall performance and the local hydrodynamics in this commercial-scale SBCR. The 

simulations were conducted at a catalyst loading of 10 vol% at a temperature of 528 K, 

pressure of 29 bar and four superficial gas velocities of 0.12, 0.24, 0.3 and 0.4 m/s. Under 

these conditions, the simulation results indicated that the CO conversions were 48%, 59%, 

58% and 55%; the H2 conversions were 36%, 51%, 56% and 54% and the C5
+ products 

yields were are 275, 576,627 and 654 ton/day at the superficial gas velocities of 0.12, 0.24, 

0.3 and 0.4 m/s, respectively.   

c. Thus, the CFD model built and validated in this work could be used to optimize the SBCR 

design and/or troubleshoot any problems associated with the internal reactor operation. 



 

199 

APPENDIX A 

 
 
 
 

LITERATURE REVIEW TABLES 



 

200 

Table A-1: Kinetics studies for the F-T synthesis on iron catalyst 

Catalyst Reactor 
Operating Conditions 

Equation Reference 
T (oC) P , 

MPa 
H2/CO 

feed 

Fe Fixed Bed - - - 𝑟𝐹𝑇 = 𝑘𝐹𝑇𝑃𝐻2
2 𝑃𝐶𝑂 Brotz [406] 

Reduced Fused 

Fe/K2O/MgO 

Fixed Bed, 

Fluidized 
Bed, Slurry 

250-320 2.2-4.2 2.0 𝑟𝐹𝑇 = 𝑘𝐹𝑇𝑃𝑡𝑜𝑡𝑎𝑙  Hall et al. [407] 

Reduced 

Nitrided Fe 
Fixed Bed - - - 

𝑟𝐹𝑇 = 𝑘𝐹𝑇𝑃𝐻2 

𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2𝑃𝐶𝑂

𝑃𝐶𝑂 + 𝑎𝑃𝐶𝑂2
 

Anderson [408] 

Reduced 

Nitrided Fused 
Fe 

Fixed Bed 225-240 2.2 0.25-2.0 𝑟𝐹𝑇 = 𝑎𝑃𝐻2
0.6𝑃𝐶𝑂

0.4 − 𝑏𝑃𝐻2𝑂
0.5 𝑟𝐹𝑇

0.5 
Anderson and 

Karn [409] 

Fused Fe & 

Prec. 
Fe/Cu/MgO/ 

K2CO3 

Fixed Bed 200-280 10 3.12 𝑟𝐹𝑇 = 𝑎𝑃𝐻2
1.5𝑃𝐶𝑂

0.2 − 𝑏𝑃𝐻2𝑂
0.2 𝑟𝐹𝑇

0.5 
Kolbel et al. 

[410] 

Reduced 

Nitrided Fused 
Fe/Cr2O3/SiO2/

MgO/K2O 

Fixed Bed 225-255 2.2 0.25-2.0 𝑟𝐹𝑇 = 𝑃𝐻2
0.66𝑃𝐶𝑂

0.34 
Anderson et al. 

[411] 

Reduced Fused 

Fe/K2O/Al2O3/ 
SiO2 

Fixed Bed 225-265 1.0-1.8 1.2-7.2 𝑟𝐹𝑇 = 𝑘𝐹𝑇𝑃𝐻2 Dry et al. [412] 

Fe 

Fixed Bed, 

Fluidized 
Bed 

200-340 0.5-4.0 1.0-7.3 𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2𝑃𝐶𝑂

𝑃𝐶𝑂 + 𝑎𝑃𝐻2𝑂
 

Dry [413] 

Reduced 

Nitrided Fused 

Fe/K2O/Al2O3/ 
SiO2 

Gradientless

Fixed Bed 
250-315 2.0 2.0 𝑟𝐹𝑇 = 𝑘𝐹𝑇

𝑃𝐻2𝑃𝐶𝑂
𝑃𝐶𝑂 + 𝑎𝑃𝐻2𝑂

 
Atwood and 

Bennett [414] 
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Table A-1 (continued) 

Catalyst Reactor 
Operating Conditions 

Equation Reference 
T (oC) P , 

MPa 
H2/CO 

feed 
Plasma Sprayed 

Fe 
Recirculatin

g Reactor 
250-300 

0.77-
3.1 

1.5-3.9 𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2𝑃𝐶𝑂

𝑃𝐶𝑂 + 𝑎𝑃𝐻2𝑂
 

Thomson et al. 
[415] 

Reduced Prec. 

Fe/Cu/K2O 
Fixed Bed 220-270 1.0-2.0 1.0-6.0 𝑟𝐹𝑇 = 𝑘𝐹𝑇

𝑃𝐻2
𝑃𝐶𝑂
0.25

 

Feimer et al. 

[416] 

Reduced Fused 

Fe/K2O/CaO/ 

SiO2 

Slurry 232-263 0.4-1.5 0.5-1.8 𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2
2 𝑃𝐶𝑂

𝑃𝐶𝑂𝑃𝐻2 + 𝑎𝑃𝐻2𝑂
 

Huff and 

Satterfield [59] 

Fe/Cu/K - 265 - - 𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2𝑃𝐶𝑂

𝑃𝐶𝑂 + 𝑎𝑃𝐶𝑂2
 

Leib and Kuo 

[417] 

Reduced Prec. 

Fe/K 
Slurry 220-260 1.0 0.5-0.6 𝑟𝐹𝑇 = 𝑘𝐹𝑇

𝑃𝐻2𝑃𝐶𝑂

𝑃𝐶𝑂 + 𝑎𝑃𝐶𝑂2
 

Ledakowicz et 

al. [60] 

Prec. Fe & 

Fused Fe 
Slurry 210-280 0.5-5.5 0.5-3.5 

𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2𝑃𝐶𝑂

𝑃𝐶𝑂 + 𝑎𝑃𝐻2𝑂
 

𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2𝑃𝐶𝑂

𝑃𝐶𝑂 + 𝑎𝑃𝐶𝑂2
 

Nettelhoff et al. 

[418] 

Reduced Prec. 
Fe/K 

Slurry 220-260 - 0.5-2.0 

𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2𝑃𝐶𝑂

𝑃𝐶𝑂 + 𝑎𝑃𝐶𝑂2
 

𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2
2 𝑃𝐶𝑂

𝑃𝐶𝑂𝑃𝐻2 + 𝑎𝑃𝐻2𝑂
 

Deckwer et al. 
[419] 

Prec. Fe/Cu/K 

& Reduced 

Fe/Cu/K/SiO2 

Slurry 235-265 1.5-3.0 0.6-1.0 

𝑟𝐹𝑇 = 𝑘𝐹𝑇𝑃𝐻2 

𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2𝑃𝐶𝑂

𝑃𝐶𝑂 + 𝑎𝑃𝐻2𝑂
 

Zimmerman 

and Bukur 

[420] 

Prec. Fe/Cu/K Gradientless 230-264 1.0-2.6 1.1-2.4 

𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2𝑃𝐶𝑂

𝑃𝐶𝑂 + 𝑎𝑃𝐻2𝑂
 

𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2
2 𝑃𝐶𝑂

𝑃𝐶𝑂𝑃𝐻2 + 𝑎𝑃𝐻2𝑂

 

Shen et al. 

[421] 
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Table A-1 (continued) 

Catalyst Reactor 
Operating Conditions 

Equation Reference 
T (oC) P , 

MPa 
H2/CO 

feed 
Reduced Prec. 

Fe/Cu/K 
Fixed Bed 220-300 1.0-3.2 1.1-2.8 𝑟𝐹𝑇 = 𝑘𝐹𝑇

𝑃𝐻2𝑃𝐶𝑂

𝑃𝐶𝑂 + 𝑎𝑃𝐻2𝑂
 

Liu et al. [422] 

Reduced Prec. 

Fe/Cu/K/SiO2 
Slurry 250 1.2-4.0 0.25-4.0 𝑟𝐹𝑇 = 𝑘𝐹𝑇

𝑃𝐻2
0.5𝑃𝐶𝑂

(1 + 𝑎𝑃𝐶𝑂 + 𝑏𝑃𝐶𝑂2)
2 

van der Laan 

[423] 

Reduced Prec. 

Fe/CuO/K2O/ 
Na2O/SiO2 

Fixed Bed 250-350 0.6-2.1 3.0-6.0 

𝑟𝐶𝑛𝐻2𝑛+2 = 𝑘5

𝑃𝐻2 (
𝑘1𝑃𝐶𝑂

𝑘1𝑃𝐶𝑂 + 𝑘5𝑃𝐻2
) 𝛼𝑛−1

1 + (
𝑘1𝑃𝐶𝑂

𝑘1𝑃𝐶𝑂 + 𝑘5𝑃𝐻2
)

1
𝛼 − 1

 

𝑟𝐶𝑛𝐻2𝑛 = 𝑘6

𝑃𝐻2 (
𝑘1𝑃𝐶𝑂

𝑘1𝑃𝐶𝑂 + 𝑘5𝑃𝐻2
)𝛼𝑛−1

1 + (
𝑘1𝑃𝐶𝑂

𝑘1𝑃𝐶𝑂 + 𝑘5𝑃𝐻2
)

1
1 − 𝛼

 

𝛼 =
𝑘1𝑃𝐶𝑂

𝑘1𝑃𝐶𝑂 + 𝑘5𝑃𝐻2 + 𝑘6
 

Lox and 

Froment [50, 
51] 

Precipitated Fe Slurry 210-250 
1.38-

4.12 
1-7 𝑟𝐹𝑇 =

𝑘𝐹𝑇𝑃𝐶𝑂𝑃𝐻2
0.5

𝑃𝐶𝑂 + 𝑎𝑃𝐻2𝑂
 

van Berge 

[424] 

Reduced Prec. 

Fe/Cu/K/SiO2 

Spinning 

Basket 
250 0.8-4.0 0.25-4.0 

𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2𝑃𝐶𝑂

1 + 𝑎𝑃𝐶𝑂 + 𝑏𝑃𝐻2𝑂
 

𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2𝑃𝐶𝑂

(1 + 𝑎𝑃𝐶𝑂 + 𝑏𝑃𝐻2𝑂)
2

 

𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2
0.5𝑃𝐶𝑂

(1 + 𝑎𝑃𝐶𝑂 + 𝑏𝑃𝐻2𝑂)
2

 

van der Laan 

and Beenackers 
[425] 

Fe Fixed Bed 220-260 2.4 1.87-2.0 5 
𝑟𝐹𝑇 = 𝑘𝐹𝑇𝐶𝐻2

1

1 + 1.6
𝐶𝐻2𝑂
𝐶𝐶𝑂

 
Jess et al. [426] 

Fe & Fe/Al2O3/ 

Cu/K2O & 

Fe/Mn/Cu/K2O 

Slurry 225-275 
PH2=0.26-3.02 
PCO=0.02-1.94-

 

𝑟𝑐,𝑜𝑟𝑔 =
𝑘𝐹𝑇(𝑃𝐻2

1.5𝑃𝐶𝑂/𝑃𝐻2𝑂)

(1 + 𝑎(𝑃𝐻2𝑃𝐶𝑂/𝑃𝐻2𝑂))
2 van Steen and 

Schulz [427] 
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Table A-1 (continued) 

Catalyst Reactor 
Operating Conditions 

Equation Reference 
T (oC) P , 

MPa 
H2/CO 

feed 

Fe & Fe/K Slurry 200-240 1.0 1.0-3.0 𝑟𝐹𝑇 = 𝑘𝐹𝑇(𝑃𝐻2)
𝑥
(𝑃𝐶𝑂)

𝑦

 

Eliason and 

Bartholomew 
[428] 

Fe/Cu/K - - - - 

𝑟𝐶𝐻4 =
𝑘5𝑀𝑃𝐻2𝛼1

1 + (1+
1

𝐾2𝐾3𝐾4

𝑃𝐻2𝑂
𝑃𝐻2
2 +

1
𝐾2𝐾3𝑃𝐻2

+
1
𝐾4
)∑ (∏ 𝛼𝑗

𝑖
𝑗=1 )𝑁

𝑖=1

, (𝑛 = 1) 

𝑟𝐶𝑛𝐻2𝑛+2 =
𝑘5𝑃𝐻2∏ 𝛼𝑗

𝑖
𝑗=1

1 + (1 +
1

𝐾2𝐾3𝐾4

𝑃𝐻2𝑂
𝑃𝐻2
2 +

1
𝐾2𝐾3𝑃𝐻2

+
1
𝐾4
)∑ (∏ 𝛼𝑗

𝑖
𝑗=1 )𝑁

𝑖=1

, (𝑛

≥ 2) 

𝑟𝐶𝑛𝐻2𝑛 =
𝑘6(1− 𝛽𝑛)∏ 𝛼𝑗

𝑖
𝑗=1

1 + (1 +
1

𝐾2𝐾3𝐾4

𝑃𝐻2𝑂
𝑃𝐻2
2 +

1
𝐾2𝐾3𝑃𝐻2

+
1
𝐾4
)∑ (∏ 𝛼𝑗

𝑖
𝑗=1 )𝑁

𝑖=1

, (𝑛

≥ 2) 

𝑟𝐶𝑂2 =

𝑘𝑉 (
𝑃𝐶𝑂𝑃𝐻2𝑂
𝑃𝐻2
0.5 −

𝑃𝐶𝑂2𝑃𝐻2
0.5

𝐾𝑝
)

1 +
𝐾𝑉𝑃𝐶𝑂𝑃𝐻2𝑂

𝑃𝐻2
0.5

 

𝛼1 =
𝑘1𝑃𝐶𝑂

𝑘1𝑃𝐶𝑂 + 𝑘5𝑀𝑃𝐻2
, (𝑛 = 1) 

𝛼𝑛 =
𝑘1𝑃𝐶𝑂

𝑘1𝑃𝐶𝑂 + 𝑘5𝑃𝐻2 + 𝑘6(1− 𝛽𝑛)
, (𝑛 ≥ 2) 

𝛽𝑛

=

𝑘−6
𝑘6

𝑃𝐶𝑛𝐻2𝑛

[𝛼𝐴
𝑛−1 𝑘1𝑃𝐶𝑂

𝑘1𝑃𝐶𝑂 + 𝑘5𝑃𝐻2
+

𝑘1𝑃𝐶𝑂
𝑘1𝑃𝐶𝑂 + 𝑘5𝑃𝐻2 + 𝑘6

∑ 𝛼𝐴
𝑖−1𝑃𝐶(𝑛−𝑖+2)𝐻2(𝑛−𝑖+2)

𝑛
𝑖=2 ]

,  

(𝑛 ≥ 2) 

𝛼𝑛 =
𝑘1𝑃𝐶𝑂

𝑘1𝑃𝐶𝑂 + 𝑘5𝑃𝐻2 + 𝑘6
, (𝑛 ≥ 2) 

𝐾𝑝 =
5078.0045

𝑇
− 5.8972089+ 13.958689×10−4𝑇

− 27.592844×10−8𝑇2 

Wang et al. [52, 
429] 



 

204 

Table A-1 (continued) 

Catalyst Reactor 
Operating Conditions 

Equation Reference 
T (oC) P , 

MPa 
H2/CO 

feed 

Reduced 

Fe/Cu/K 
Fixed Bed 220-269 1.1-3.1 1.0-3.0 

𝑟𝐶𝐻4 =
𝑘5𝑀𝑃𝐻2𝛼1

1 + (1 +
1

𝐾2𝐾3𝐾4

𝑃𝐻2𝑂
𝑃𝐻2
2 +

1
𝐾3𝐾4𝑃𝐻2

+
1
𝐾4
)∑ (∏ 𝛼𝑗

𝑖
𝑗=1 )𝑁

𝑖=1

, 

 (𝑛 = 1) 
𝑟𝐶𝑛𝐻2𝑛+2

=
𝑘5𝑃𝐻2∏ 𝛼𝑗

𝑖
𝑗=1

1 + (1 +
1

𝐾2𝐾3𝐾4

𝑃𝐻2𝑂
𝑃𝐻2
2 +

1
𝐾3𝐾4𝑃𝐻2

+
1
𝐾4
)∑ (∏ 𝛼𝑗

𝑖
𝑗=1 )𝑁

𝑖=1

, 

 (𝑛 ≥ 2) 

𝑟𝐶𝑛𝐻2𝑛 =
𝑘6(1 − 𝛽𝑛)∏ 𝛼𝑗

𝑖
𝑗=1

1 + (1 +
1

𝐾2𝐾3𝐾4

𝑃𝐻2𝑂
𝑃𝐻2
2 +

1
𝐾3𝐾4𝑃𝐻2

+
1
𝐾4
)∑ (∏ 𝛼𝑗

𝑖
𝑗=1 )𝑁

𝑖=1

,  

(𝑛 ≥ 2) 

 𝑟𝐶𝑂2 =

𝑘𝑉 (
𝑃𝐶𝑂𝑃𝐻2𝑂
𝑃𝐻2
0.5 −

𝑃𝐶𝑂2𝑃𝐻2
0.5

𝐾𝑝
)

1 +
𝐾𝑉𝑃𝐶𝑂𝑃𝐻2𝑂

𝑃𝐻2
0.5

 

Wang et al. 

[430] 

Reduced Fe/Mn Fixed Bed 267-327 1.0-3.0 1.0-3.0 

𝑟𝐶𝐻4 =
𝑘7𝑀𝐾4𝐾6𝐾3

′𝑃𝐶𝑂𝑃𝐻2
3

𝑃𝐻2𝑂

/ [1 + √𝐾4𝑃𝐻2 + 𝐾1𝑃𝐶𝑂 +
𝐾3
′𝑃𝐶𝑂𝑃𝐻2

2

𝑃𝐻2𝑂

+𝐾1𝐾2𝑃𝐶𝑂𝑃𝐻2 +
𝐾6𝐾4

0.5𝐾3
′𝑃𝐶𝑂𝑃𝐻2

2.5

𝑃𝐻2𝑂

+
𝐾3
′𝑃𝐶𝑂𝑃𝐻2

2

𝑃𝐻2𝑂
(1 + 𝐾6√𝐾4𝑃𝐻2)∑(∏𝛼𝑗

𝑖

𝑗=1

)

𝑁

𝑖=1

]

2

 

 

Yang et al. 
[431] 
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Table A-1 (continued) 

Catalyst Reactor 
Operating Conditions 

Equation Reference 
T (oC) P , 

MPa 
H2/CO 

feed 

     

𝑟𝐶𝑛𝐻2𝑛+2 =
𝑘7𝐾4𝐾6𝐾3

′𝑃𝐶𝑂𝑃𝐻2
3

𝑃𝐻2𝑂
∏𝛼𝑗

𝑖

𝑗=1

/ [1 + √𝐾4𝑃𝐻2 + 𝐾1𝑃𝐶𝑂 +
𝐾3
′𝑃𝐶𝑂𝑃𝐻2

2

𝑃𝐻2𝑂

+𝐾1𝐾2𝑃𝐶𝑂𝑃𝐻2 +
𝐾6𝐾4

0.5𝐾3
′𝑃𝐶𝑂𝑃𝐻2

2.5

𝑃𝐻2𝑂

+
𝐾3
′𝑃𝐶𝑂𝑃𝐻2

2

𝑃𝐻2𝑂
(1 + 𝐾6√𝐾4𝑃𝐻2)∑(∏𝛼𝑗

𝑖

𝑗=1

)

𝑁

𝑖=1

]

2

 

𝑟𝐶𝑛𝐻2𝑛 =
𝑘8
+(1 − 𝛽𝑛)𝐾3

′𝑃𝐶𝑂
𝑃𝐻2𝑂

∏𝛼𝑗

𝑖

𝑗=1

/ [1 + √𝐾4𝑃𝐻2 + 𝐾1𝑃𝐶𝑂 +
𝐾3
′𝑃𝐶𝑂𝑃𝐻2

2

𝑃𝐻2𝑂

+𝐾1𝐾2𝑃𝐶𝑂𝑃𝐻2 +
𝐾6𝐾4

0.5𝐾3
′𝑃𝐶𝑂𝑃𝐻2

2.5

𝑃𝐻2𝑂

+
𝐾3
′𝑃𝐶𝑂𝑃𝐻2

2

𝑃𝐻2𝑂
(1 + 𝐾6√𝐾4𝑃𝐻2)∑(∏𝛼𝑗

𝑖

𝑗=1

)

𝑁

𝑖=1

]

2

 

 

Fe/Mn & 

Fe/Cu/K 

Spinning 

Basket 
260-300 1.1-2.6 0.67-2.05 

𝑟𝐶𝐻3𝑂𝐻 = 𝑘9,1𝐾1𝐾4𝐾7𝐾8𝑃𝐶𝑂𝑃𝐻2
2 [𝑠]2 

𝑟𝐶𝐻4 = 𝑘11,1𝛼𝑇,1𝐾2𝑃𝐻2[𝑠]
2 

𝑟𝐶𝑛𝐻2𝑛+1𝑂𝐻 = 𝑘9𝐾1𝐾4𝐾7𝐾8𝑃𝐶𝑂𝑃𝐻2
2 ∏𝛼𝑇,1

𝑛−1

𝑖=1

[𝑠]2 

𝑟𝐶𝑛𝐻2𝑛−1𝑂𝑂𝐻 =
𝑘10𝐾1𝐾7𝑃𝐶𝑂𝑃𝐻2𝑂

𝐾6
∏𝛼𝑇,1

𝑛−1

𝑖=1

[𝑠]2 

 

Teng et al. 

[432] 
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Table A-1 (continued) 

Catalyst Reactor 
Operating Conditions 

Equation Reference 
T (oC) P , 

MPa 
H2/CO 

feed 

     

𝑟𝐶𝑛𝐻2𝑛+2 = 𝑘11𝐾4𝑃𝐻2[𝑠]
2∏𝛼𝑇,1

𝑛

𝑖=1

 

𝑟𝐶𝑛𝐻2𝑛 = 𝑘12√𝐾4𝑃𝐻2[𝑠]∏𝛼𝑇,1

𝑛

𝑖=1

(1 − 𝛽𝑛) 

 

Precipitated Fe Slurry - - - 𝑟𝐹𝑇 =
𝑘𝐹𝑇𝑃𝐶𝑂𝑃𝐻2

0.5

(1 + 𝑘𝐶𝑂𝑃𝐶𝑂)2
 

Botes et al. 
[433] 

Fe/Cu/K/SiO2 Slurry 250-290 1.0-2.5 0.67-1.5 

𝑟𝐶𝐻4 = 𝐾1𝐾2𝐾3𝐾6𝑘7,𝑀𝐾4
0.5
𝑃𝐶𝑂𝑃𝐻2

2.5

𝑃𝐻2𝑂
[𝑠]2 

𝑟𝐶𝑛𝐻2𝑛+2 = 𝐾1𝐾2𝐾3𝐾6𝑘7𝐾4
𝑃𝐶𝑂𝑃𝐻2

3

𝑃𝐻2𝑂
∏𝛼𝑖

𝑛

𝑖=2

[𝑠]2

+ 𝑃𝐻2𝑘ℎ
𝑘8,−𝑃𝐶𝑛𝐻2𝑛

∗ [𝜎]

𝑘ℎ𝑃𝐻2 + 𝑘8,+
, (𝑛 ≥ 2) 

𝑟𝐶𝑛𝐻2𝑛 = 𝐾1𝐾2𝐾3𝑘8,+(1 − 𝛽𝑛)
𝑃𝐶𝑂𝑃𝐻2

2

𝑃𝐻2𝑂
∏𝛼𝑖

𝑛

𝑖=2

[𝑠]2

− 𝑃𝐻2𝑘ℎ
𝑘8,−𝑃𝐶𝑛𝐻2𝑛

∗ [𝜎]

𝑘ℎ𝑃𝐻2 + 𝑘8,+
, (𝑛 ≥ 2) 

Chang et al. 

[434] 

Reduced Fe Slurry 260 1-3 0.8-3.2 

𝑟𝐹𝑇 =
𝑘𝐹𝑇𝐶𝐶𝑂𝐶𝐻2

0.5

(1 + 𝑘𝐶𝑂𝐶𝐶𝑂)
2
 

𝑟𝐹𝑇 =
𝑘𝐹𝑇𝐶𝐶𝑂𝐶𝐻2

(1 + 𝑘𝐶𝑂𝐶𝐶𝑂)
 

Zhou et al. 

[435] 
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Table A-2: Kinetics studies for the WGS reaction on iron catalyst 

Catalyst / Promoter Reactor 
Operating Conditions 

Equation Reference T (oC) P , 
MPa 

H2/CO 
feed 

Fe 

Fixed Bed, 

Fluidized 

Bed 

200-

340 
0.5-4.0 1.0-7.3 𝑟𝑊𝐺𝑆 = 𝑘𝑊𝐺𝑆𝑃𝐶𝑂 Dry [413] 

Reduced Prec. 

Fe/Cu/K2O 
Fixed Bed 

220-

270 
1.0-2.0 1.0-6.0 𝑟𝑊𝐺𝑆 = 𝑘𝑊𝐺𝑆𝑃𝐶𝑂 

Feimer et al. 

[416] 

Fe/Cu/K - 265 - - 
𝑟𝑊𝐺𝑆 = 𝑘𝑊𝐺𝑆

(𝑃𝐶𝑂𝑃𝐻2𝑂 −
𝑃𝐶𝑂2𝑃𝐻2
𝐾𝑒𝑞

)

𝑃𝐶𝑂 + 𝑎𝑃𝐻2𝑂  

Leib and 

Kuo [417] 

Prec. Fe/Cu/K & 

Reduced Fe/Cu/K/SiO2 
Slurry 

235-

265 
1.5-3.0 0.6-1.0 

𝑟𝑊𝐺𝑆 = 𝑘𝑊𝐺𝑆

(𝑃𝐶𝑂𝑃𝐻2𝑂 −
𝑃𝐶𝑂2𝑃𝐻2
𝐾𝑒𝑞

)

𝑃𝐶𝑂 + 𝑎𝑃𝐻2𝑂
 

𝑟𝑊𝐺𝑆 = 𝑘𝑊𝐺𝑆

(𝑃𝐶𝑂𝑃𝐻2𝑂 −
𝑃𝐶𝑂2𝑃𝐻2
𝐾𝑒𝑞

)

𝑃𝐶𝑂𝑃𝐻2 + 𝑎𝑃𝐻2𝑂
 

Zimmerman 

and Bukur 

[420]  

Reduced Prec. 

Fe/CuO/K2O/Na2O/SiO2 
Fixed Bed 

250-

350 
0.6-2.1 3.0-6.0 𝑟𝑊𝐺𝑆 = 𝑘𝑊𝐺𝑆

(𝑃𝐶𝑂𝑃𝐻2𝑂 −
𝑃𝐶𝑂2𝑃𝐻2

0.5

𝐾𝑒𝑞
)

(1 + 𝑎
𝑃𝐻2𝑂
𝑃𝐻2
0.5 )

2  
Lox and 

Froment [50, 

51] 

Prec. Fe/Cu/K Gradientless 
230-

264 
1.0-2.6 1.1-2.4 

𝑟𝑊𝐺𝑆 = 𝑘𝑊𝐺𝑆

(𝑃𝐶𝑂𝑃𝐻2𝑂 −
𝑃𝐶𝑂2𝑃𝐻2
𝐾𝑒𝑞

)

𝑃𝐶𝑂𝑃𝐻2 + 𝑎𝑃𝐻2𝑂
 

𝑟𝑊𝐺𝑆 = 𝑘𝑊𝐺𝑆

(𝑃𝐶𝑂𝑃𝐻2𝑂 −
𝑃𝐶𝑂2𝑃𝐻2
𝐾𝑒𝑞

)

𝑃𝐶𝑂 + 𝑎𝑃𝐻2𝑂 + 𝑏𝑃𝐶𝑂2
 

Shen et al. 

[436]2 
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Table A-2 (continued) 

Catalyst / Promoter Reactor 
Operating Conditions 

Equation Reference T (oC) P , 
MPa 

H2/CO 
feed 

Precipitated Fe Slurry 
210-

250 

1.38-

4.12 
1-7 𝑟𝑊𝐺𝑆 = 𝑎(𝑃𝑐𝑜 −

𝑃𝐶𝑂2𝑃𝐻2
𝑘𝑊𝐺𝑆𝑃𝐻2𝑂

) 
van Berge 

[424] 

Reduced Prec. 

Fe/Cu/K/SiO2 

Spinning 

Basket 
250 0.8-4.0 0.25-4.0 

𝑟𝑊𝐺𝑆 = 𝑘𝑊𝐺𝑆

(𝑃𝐶𝑂𝑃𝐻2𝑂 −
𝑃𝐶𝑂2𝑃𝐻2
𝐾𝑒𝑞

)

(1 + 𝑎𝑃𝐶𝑂 + 𝑏𝑃𝐻2𝑂)
2 

𝑟𝑊𝐺𝑆 = 𝑘𝑊𝐺𝑆

(
𝑃𝐶𝑂𝑃𝐻2𝑂
𝑃𝐻2
0.5 −

𝑃𝐶𝑂2𝑃𝐻2
0.5

𝐾𝑒𝑞
)

(1 + 𝑎𝑃𝐶𝑂 + 𝑏𝑃𝐻2𝑂)
2  

van der Laan 

and 

Beenackers 

[56, 423, 

425] 

Reduced Prec. 

Fe/Cu/K/SiO2 
Slurry 250 1.2-4.0 0.25-4.0 𝑟𝑊𝐺𝑆 = 𝑘𝑊𝐺𝑆

(𝑃𝐶𝑂𝑃𝐻2𝑂 −
𝑃𝐶𝑂2𝑃𝐻2
𝐾𝑒𝑞

)

(𝑃𝐶𝑂 + 𝑎𝑃𝐻2𝑂)
2  

van der Laan 

[423] 

Fe Fixed Bed 
220-

260 
2.4 1.87-2.0 5 𝑟𝑊𝐺𝑆 = 𝑘𝑊𝐺𝑆𝑃𝐻2𝑂 

Jess et al. 

[426] 

Reduced Prec. Co/MnO 
Micro-

Fixed Bed 

210-

250 
0.6-2.6 1.6-4.1 

𝑟𝑊𝐺𝑆 = 𝑘𝑊𝐺𝑆𝑃𝑓 (𝑃𝐶𝑂 −
𝑃𝐶𝑂2𝑃𝐻2
𝐾𝑒𝑞𝑃𝐻2𝑂

) 

𝑤ℎ𝑒𝑟𝑒 𝑃𝑓 = 𝑃
(
0.5−𝑃

250
)

  

Keyser et al 

[437] 

Fe/Cu/K - - - - 𝑟𝑊𝐺𝑆 = 𝑘𝑊𝐺𝑆

(
𝑃𝐶𝑂𝑃𝐻2𝑂
𝑃𝐻2
0.5 −

𝑃𝐶𝑂2𝑃𝐻2
0.5

𝐾𝑒𝑞
)

(1 + 𝑏
𝑃𝐶𝑂𝑃𝐻2𝑂
𝑃𝐻2
0.5 )

2

 

Wang et al 

[52, 429] 
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Table A-2 (continued) 

Catalyst / Promoter Reactor 
Operating Conditions 

Equation Reference T (oC) P , 
MPa 

H2/CO 
feed 

Reduced Fe/Cu/K Fixed Bed 
220-

269 
1.1-3.1 1.0-3.0 𝑟𝑊𝐺𝑆 = 𝑘𝑊𝐺𝑆

(
𝑃𝐶𝑂𝑃𝐻2𝑂
𝑃𝐻2
0.5 −

𝑃𝐶𝑂2𝑃𝐻2
0.5

𝐾𝑒𝑞
)

(1 + 𝑏
𝑃𝐶𝑂𝑃𝐻2𝑂
𝑃𝐻2
0.5 )

2  
Wang et al. 

[54] 

Reduced Fe/Mn Fixed Bed 
267-

327 
1.0-3.0 1.0-3.0 𝑟𝑊𝐺𝑆 = 𝑎

(
𝑃𝐶𝑂𝑃𝐻2𝑂
𝑃𝐻2
0.5 −

𝑃𝐶𝑂2𝑃𝐻2
0.5

𝐾𝑒𝑞
)

(1 + 𝑏
𝑃𝐶𝑂𝑃𝐻2𝑂
𝑃𝐻2
0.5 )

2  
Yang et al. 

[431] 

Fe/Mn & Fe/Cu/K 
Spinning 

Basket 

260-

300 
1.1-2.6 0.67-2.05 𝑟𝑊𝐺𝑆 = 𝑎

(𝑃𝐶𝑂𝑃𝐻2𝑂 −
𝑃𝐶𝑂2𝑃𝐻2
𝐾𝑒𝑞

)

𝑐𝑃𝐻2
0.5 + 𝑃𝐻2 + 𝑑

𝑃𝐶𝑂𝑃𝐻2𝑂
𝑃𝐻2

 

Teng et al. 

[432] 

Fe/Cu/K/SiO2 Slurry 
250-

290 
1.0-2.5 0.67-1.5 𝑟𝑊𝐺𝑆 = 𝑎

(
𝑃𝐶𝑂𝑃𝐻2𝑂

𝑃𝐻2
0.5 −

𝑃𝐶𝑂2
𝑃𝐻2
0.5

𝐾𝑒𝑞
)

(1+𝑏
𝑃𝐶𝑂𝑃𝐻2𝑂

𝑃𝐻2
0.5 )

2

 

Chang et al. 

[434] 

Sasol commercial spray 

dried precipitated Iron 

Catalyst 

Slurry 
240-

250 
5-40 1.55 𝑟𝑊𝐺𝑆 =

𝑎 (𝑃𝐶𝑂𝑃𝐻2𝑂 − (
𝑃𝐻2𝑃𝐶𝑂2
𝐾𝑊𝐺𝑆

))

(1 + 1.1𝑃𝐻2𝑂 + 6.3 (
𝑃𝐻2𝑂
𝑃𝐻2
0.5 ))

2 Botes [438] 

1 as reported in [420] 
2 as reported in [439] 
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Table A-3: Kinetics studies for the Fischer-Tropsch synthesis on cobalt-based catalyst 

Catalyst Reactor 
Operating Conditions 

Equation Reference 
T (oC) P 

(MPa) H2/CO feed 

Co - - - - 𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2
2

𝑃𝐶𝑂 
Brotz [406] 

Co/ThO2/kie

selguhr 
- - - - 𝑟𝐹𝑇 = 𝑘𝐹𝑇

𝑃𝐻2
2 𝑃𝐶𝑂

1 + 𝑎𝑃𝐶𝑂𝑃𝐻2
2

 

Anderson [408] 

Co - - - - 𝑟𝐹𝑇 = 𝑘𝐹𝑇𝑃𝐻2𝑃𝐶𝑂
0.5

 

Yang et al. [440] 

Co - - - - 𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2
0.55

𝑃𝐶𝑂
0.33

 

Pannell et al. 

[441] 

Reduced 

Prec. 

Co/Al2O3 

Fixed 

Bed 
250 

0.015-

0.1 
0.25-5 𝑟𝐹𝑇 = 𝑘𝐹𝑇

𝑃𝐻2𝑃𝐶𝑂
0.5

1 + 𝑎𝑃𝐶𝑂
0.5 + 𝑏𝑃𝐻2

1.5 Outi et al. [67] 

Co/Kieselgu

hr 

Berty 

internal 

recycle 

reactor 

190 0.2-1.5 0.5-8.3 

𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2
0.5𝑃𝐶𝑂

0.5

(1 + 𝑎𝑃𝐶𝑂
0.5 + 𝑏𝑃𝐻2

0.5)
2 

𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2
0.5𝑃𝐶𝑂

(1 + 𝑎𝑃𝐶𝑂 + 𝑏𝑃𝐻2
0.5)

2

 

Sarup and 

Wojciechowski 

[68] 

Co/Zr/SiO2 Slurry 
220-

280 
2.1 0.5-2.0 𝑟𝐹𝑇 = 𝑘𝐹𝑇

𝑃𝐻2
2 𝑃𝐶𝑂

𝑃𝐶𝑂𝑃𝐻2 + 𝑎𝑃𝐻2𝑂
 

Withers et al. 

[402]  

Co/MgO/Si

O2 
Slurry 

220-

240 
1.5-3.5 1.5-3.5 𝑟𝐹𝑇 = 𝑘𝐹𝑇

𝑃𝐶𝑂𝑃𝐻2
(1 + 𝑎𝑃𝐶𝑂)2

 
Yates and 

Satterfield [69] 

Co/MgO/Th

O2/SiO2 
Slurry 

210-

250 

1.38-

4.12 
1-7 𝑟𝐹𝑇 = 𝑘𝐹𝑇

𝑃𝐶𝑂𝑃𝐻2
(1 + 𝑎𝑃𝐶𝑂)2

 van Berge [424] 

Co/MgO/Th

O2/SiO2 & 

Co/SiO2 

Slurry 
190-

210 

PH2 = 0.01-1.93 

PCO = 0.05-2.54 
𝑟𝑐,𝑜𝑟𝑔 =

𝑘𝐹𝑇(𝑃𝐻2
1.5𝑃𝐶𝑂/𝑃𝐻2𝑂)

(1 + 𝑎(𝑃𝐻2𝑃𝐶𝑂/𝑃𝐻2𝑂))
2

 

van Steen and 

Schulz [427] 
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Table A-3 (continued) 

Catalyst Reactor 
Operating Conditions 

Equation Reference 
T (oC) P 

(MPa) H2/CO feed 

CO/TiO2 

Differen

tial fixed 

bed 

reactor 

180-

240 
2.0265 1-3.5 𝑟𝐹𝑇 =

𝑘𝐹𝑇𝑃𝐶𝑂𝑃𝐻2
0.74

(1 + 𝑎𝑃𝐶𝑂)2
 

Zennaro et al. 

[65] 

Reduced 

Prec. 

Co/MnO 3 

Micro-

Fixed 

Bed 

210-

250 
0.6-2.6 1.6-4.1 𝑟𝐹𝑇 = 𝑘𝐹𝑇

𝑃𝐻2𝑃𝐶𝑂
𝑃𝐶𝑂 + 𝑃𝐻2𝑂 

Keyser et al. 

[437] 

Co/Al2O3 

Fixed 

Bed 

(micro) 

210-

235 
0.8-2.5 1.8-2.7 

𝑟1,𝑁 = 𝑘1𝑁𝜃𝐶𝐻2∗𝜃𝐻∗ 

𝑟𝐶𝐻4 = 𝑘𝐶𝐻4𝜃𝐶𝐻3∗𝜃𝐻∗  

𝑟𝐺,𝑛 = 𝑘𝐺𝜃𝑅𝑛∗𝜃𝐶𝐻2∗ , 𝑛: 1, 49 

𝑟𝑃,𝑛 = 𝑘𝑃𝑛𝜃𝑅𝑛∗𝜃𝐻∗ , 𝑛: 2, 50 

𝑟𝑂,𝑛 = 𝑘𝑂𝑛,𝑑𝑥𝜃𝑅𝑛∗ − 𝑘𝑂𝑛,𝑠𝑥𝑥𝑂𝑛𝜃𝐻∗, 𝑛: 3, 50 

𝑟𝑂,2 = 𝑘𝑂𝑛 ,𝑑𝑥𝜃𝑅2∗ − 𝑘𝑂2,𝑠𝑥𝑥𝑂2𝜃𝐻∗ , 𝑛: 3, 50 

Visconti et al. 

[442] 

Co/Al2O3 Slurry 220 2.0 1.6-3.35 

Detailed kinetics based on hydrocarbon productions 

considering olefin re-adsorption based on van Steen and 

Schulz 

𝑟𝑐,𝑜𝑟𝑔 = 𝑘𝐹𝑇
𝑃𝐻2
1.5𝑃𝐶𝑂

(𝑃𝐻2𝑂 + 𝑎𝑃𝐻2𝑃𝐶𝑂)
2

 

Anfray et al. 

[443] 

Co-Re/Al2O3 Batch 

205, 

220, 

230 

1.5, 2.5 1.4, 2.1 

𝑟𝐶𝐻4 = 𝑘𝑆𝑀𝐾7
0.5𝑃𝐻2

1.5𝛼1[𝑆] 

𝑟𝐶2𝐻4 = 𝑘6𝐸,0𝑒
2𝑐√𝐾7𝑃𝐻2𝛼1𝛼2[𝑆] 

𝑟𝐶𝑛𝐻2𝑛+2 = 𝑘5𝐾7
0.5𝑃𝐻2

1.5𝛼1𝛼2∏𝛼𝑖

𝑛

𝑖=3

[𝑆]    𝑛 ≥ 2 

 

Todic et al. [53] 
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Table A-3 (continued) 

Catalyst Reactor 
Operating Conditions 

Equation Reference 
T (oC) P 

(MPa) H2/CO feed 

     

𝑟𝐶𝑛𝐻2𝑛 = 𝑘6,0𝑒
𝑐𝑛√𝐾7𝑃𝐻2𝛼1𝛼2∏𝛼𝑖

𝑛

𝑖=3

[𝑆]    𝑛 ≥ 3 

[𝑆] = 1/{1 + √𝐾7𝑃𝐻2

+√𝐾7𝑃𝐻2 (1 +
1

𝐾4
+

1

𝐾3𝐾4𝑃𝐻2

+
1

𝐾2𝐾3𝐾4

𝑃𝐻2𝑂

𝑃𝐻2
2 )(𝛼1 + 𝛼1𝛼2

+ 𝛼1𝛼2∑∏𝛼𝑗

𝑖

𝑗=3

𝑛

𝑖=3

)} 

 

Co/Al2O3 

Tubular 

fixed 

bed 

reactor 

190 - 

220 
1 – 2.5 1.5 - 3 𝑟𝐹𝑇 = 𝑘𝐹𝑇

𝑃𝐻2𝑃𝐶𝑂
(1 + 𝑎𝑃𝐶𝑂)

 
Kaiser et al. 

[444] 
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Table A-4: Literature data on the hydrodynamics and mass transfer in SBCRs using F-T liquids 

Reference Gas-Liquid-Solid System Reactor Geometry Operating Conditions Parameter 
Measured 

Deckwer et al. [75] N2 - Paraffin Wax - Al2O3 𝑑𝐶  =  0.04, 0.1 𝑚 

P up to 11 bar; T = 416 K & 543 

K; ug up to 0.04 m/s; CS up to 16 

wt.% 

εg, kLa 

Bukur et al. [76] 
N2 - FT-300 Paraffin Wax - Iron 

Oxide, Silica 

𝑑𝐶  =  0.05 𝑚;  

ℎ𝐶  =  3 𝑚 

Patm; T = 538 K; ug = 0.02-0.12 

m/s; CS = 10-30 wt.% 
εg 

Krishna et al.  [77] Air - Paraffin Oil - Silica 𝑑𝐶  =  0.38 𝑚 
Patm; Tamb; ug up to 0.5 m/s; CS 

up to 36 vol.% 

εg 

Vandu et al. [366] 
Air - C9-C11 Paraffin Oil - Puralox 

(Al2O3) 
𝑑𝐶 =  0.1 𝑚 

Patm; Tamb; ug up to 0.4 m/s; CS 

up to 25 vol.% 
εg, kLa 

Behkish et al. [8, 

80] 

H2, CO, N2, He, CH4 - Isopar-M - 

Glass Beads, Al2O3 

𝑑𝐶  =  0.3 𝑚; 

ℎ𝐶  =  3 𝑚 

P up to 30 bar; T up to 473 K; ug 

up to 0.39 m/s; CS up to 36 

vol.% 

εg , d32, kLa 

Woo et al. [79] 
Actual F-T reactive system with 

Al2O3 supported Co catalyst 

𝑑𝐶  =  0.05 𝑚; 

ℎ𝐶  = 1.5 𝑚 

P = 10 - 30 bar; T = 480–520 K; 

ug = 0.017-0.136 m/s; CS = 9-27 

wt.% 

εg 

Sehabiague et al. 

[81] 

N2, He – C12-C13, Paraffins 

mixture, Light F-T cut, Heavy F-T 

cut – Alumina, Puralox Alumina, 

Iron oxide  

𝑑𝐶  =  0.3 𝑚; 

ℎ𝐶  =  3 𝑚 

P up to 30 bar; T up to 500 K; ug 

up to 0.27 m/s; CS up to 20 

vol.% 

εg , d32, kLa 
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Table A-5: Gas holdup correlations for three-phase reactors available in literature 

System Conditions Correlation Reference 

Air 

Sugar solution 

Carboxymethylcellulose 

Water-acetone 

Glass beads 

Irregular gravel 

𝑑𝐶: 0.66 𝑚 

ℎ𝐶: 2.438 𝑚 

𝑢𝑔: 0.007 − 0.161 𝑚/𝑠 

𝑑𝑝: 1 − 6 𝑚𝑚 

𝜌𝑠: 2300 − 2950 𝑘𝑔/𝑚
3 

𝜌𝑙: 960 − 1170 𝑘𝑔/𝑚
3 

𝜇𝑙: 0.001 − 0.07 𝑃𝑎 ∙ 𝑠 

𝜎𝑙: 0.0398 − 0.0738 𝑁/𝑚 

휀𝑙

= 1.40 (
𝑢𝑙
2

𝑔𝑑𝑝
)

0.170

(
𝜇𝑙𝑢𝑙
𝜎𝑙
)
0.078

− 1.504(
𝑢𝑙
2

𝑔𝑑𝑝
)

0.234

(
𝑢𝑔
2

𝑔𝑑𝑝
)

−0.086

(
𝑢𝑙𝑑𝑝𝜌𝑙

𝜇𝑙
)

−0.082

(
𝜇𝑙𝑢𝑙
𝜎𝑙
)
0.092

 

Kim et al. 

[445] 

Air 

Ethanol 

Aqueous Glycerol 

Methanol 

Water 

Solid 

𝑢𝑔: 0.05 − 4 𝑚/𝑠 

𝑑𝐶: 0.05 –  0.1 𝑚 

𝑑𝑝: 0.011 − 0.0287 𝑚 

ℎ𝐶: 0.05 − 0.2 𝑚 

𝜌𝑙: 797 − 1165 𝑘𝑔/𝑚
3 

𝜇𝑙: 1.01 − 14.45 𝑐𝑃 

𝜎𝑙: 0.0233 − 0.0728 𝑁/𝑚 

휀𝑔 = 0.19(
𝑢𝑔
2𝑑𝑝𝜌𝑙

𝜎𝑙
)

0.11

(
𝑢𝑙

√𝑔𝑑𝑝
)

0.22

 
Kito et al. 

[446] 

Air 

Water 

Glass beads 

𝑢𝑔: 0.02 − 0.12 𝑚/𝑠 

𝑢𝑙: 0.03 − 0.14 𝑚/𝑠 

𝜌𝑠: 2500 𝑘𝑔/𝑚
3 

𝑑𝑝: 1.63 − 7.85 𝑚𝑚 

𝑑𝐶: 0.15 𝑚 

ℎ𝐶: 2.5 𝑚 

휀𝑔 = 0.46 (
𝑢𝑙
2

𝑔𝑑𝑝
)

0.19

(
𝑢𝑔
2

𝑔𝑑𝑝
)

0.01

(
𝑢𝑙𝑑𝑝𝜌𝑙

𝜇𝑙
)

0.026

− 0.26 (
𝑢𝑙
2

𝑔𝑑𝑝
)

0.44

(
𝑢𝑔
2

𝑔𝑑𝑝
)

−0.032

(
𝑢𝑙𝑑𝑝𝜌𝑙

𝜇𝑙
)

−0.006

 

Oh and Kim 

[447] 

Air 

Water 

Alumina beads 

Glass beads 

Alumino silicate 

Plexiglas 

𝑢𝑔: 0 − 0.173 𝑚/𝑠 

𝑢𝑙: 0 − 0.12 𝑚/𝑠 

𝜌𝑙: 100 − 1200 𝑘𝑔/𝑚
3 

𝜌𝑠: 1720 − 2440 𝑘𝑔/𝑚
3 

𝑑𝑝: 1.9 − 6.3 𝑚𝑚 

𝑑𝐶: 0.076 –  0.152 𝑚 

ℎ𝐶: 0.22 − 0.45 𝑚 

휀𝑔 = 1.61𝑢𝑔
0.72𝑑𝑝

0.168𝑑𝑐
−0.125 

Begovich and 

Watson [448] 
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Table A-5 (continued) 

System Conditions Correlation Reference 

Air 

Kerosene 

Solids 

𝑢𝑔: 0 − 0.0022 𝑚/𝑠 

𝑑𝑝: 1.1 𝑚𝑚 

𝜌𝑠: 1330 𝑘𝑔/𝑚
3 

𝜌𝑙: 810 𝑘𝑔/𝑚
3 

𝜇𝑙: 1.4 𝑚𝑃𝑎 ∙ 𝑠 

(1 − 휀𝑔)𝑢𝑔 + 휀𝑔𝑢𝑙 = 휀𝑔(22.67휀𝑔 + 10.44) 

Khang et al. 

[449] taken 

from [450] 

Air 

Glycerol 

Glycol 

Barium chloride 

Sodium sulfate 

Glass spheres 

Bronze spheres 

𝑢𝑔: 0.03 − 0.15 𝑚/𝑠 

𝜌𝑠: 2500, 8770 𝑘𝑔/𝑚
3 

𝑑𝑝: 47.5 − 192 𝜇𝑚 

𝜌𝑙: 997 − 1178 𝑘𝑔/𝑚
3 

𝜇𝑙: 0.894 − 17.6 𝑚𝑃𝑎 ∙ 𝑠 

𝜎𝑙: 0.0515 − 0.073 𝑁/𝑚 

𝑑𝐶: 0.1 − 0.3 𝑚 

ℎ𝐶: 2.3 − 3 𝑚 

휀𝑔

(1 − 휀𝑔)
4 =

𝐴(
𝑢𝑔𝜇𝑙
𝜎𝑙

)
0.918

(
𝑔𝜇𝑙

4

𝜌𝑙𝜎𝑙
3)

−0.252

1 + 4.35 (
𝐶𝑠
𝜌𝑝
)
0.748

(
𝜌𝑝 − 𝜌𝑙
𝜌𝑙

)
0.881

(
𝑑𝐶𝑢𝑔𝜌𝑙
𝜇𝑙

)
−0.168 

𝐴 = {
0.277 𝑊𝑎𝑡𝑒𝑟 𝑎𝑛𝑑 𝑎𝑞. 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 𝑎𝑛𝑑 𝑔𝑙𝑦𝑐𝑜𝑙
0.364 𝐴𝑞. 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒𝑠

 

Koide et al. 

[107] 

N2 

Water 

Aqueous ethanol (95%) 

Silicone oil 

Ethylene glycol 

Glass beads 

𝑢𝑔: 0.02 − 0.22 𝑚/𝑠 

𝜌𝑠: 2420, 3990 𝑘𝑔/𝑚
3 

𝑑𝑝: 19.4 − 96.5 𝜇𝑚 

𝐶𝑣: 2.8 − 5 𝑣𝑜𝑙% 

𝜌𝑙: 820 − 1100 𝑘𝑔/𝑚
3 

𝜇𝑙: 0.82 − 17.1 𝑚𝑃𝑎 ∙ 𝑠 

𝜎𝑙: 17.4 − 71.5 𝑚𝑁/𝑚 

𝑑𝐶: 0.108 𝑚 

ℎ𝐶: 1.94 𝑚 

휀𝑔 = [2.25 + (
33.9

0.01𝑢𝑔
)(
𝜌𝑠𝑙𝜎𝑙
72

)
0.31

(1000𝜇𝑠𝑙)
0.016]

−1

 

𝜇𝑠𝑙 = 0.001𝜇𝑙𝑒𝑥𝑝 [
5휀𝑠

3(1 − 휀𝑠)
] 

Smith et 

al.[451]  

Air  

Water 

Trichloroethylene 

Glass beads 

𝑢𝑔: 0.02 − 0.2 𝑚/𝑠 

𝜌𝑔: 0.168 − 1.34 𝑘𝑔/𝑚
3 

𝐶𝑣: 𝑢𝑝 𝑡𝑜 10 𝑣𝑜𝑙.% 

𝜌𝑠: 1510 − 4470 𝑘𝑔/𝑚
3 

𝑑𝑝: 71 − 745 𝜇𝑚 

휀𝑔 = 296𝑢𝑔
0.44𝜌𝑙

−0.98𝜎𝑙
−0.16𝜌𝑔

0.19 + 0.009 
Reilly et al. 

[452] 



 

216 

Table A-5 (continued) 

System Conditions Correlation Reference 

 

𝜌𝑙: 788 − 1450 𝑘𝑔/𝑚
3 

𝜇𝑙: 0.522 − 1.452 𝑚𝑃𝑎 

𝜎𝑙: 0.0283 − 0.072 𝑁/𝑚 

𝑑𝐶: 0.3 𝑚 

ℎ𝐶: 0.5 𝑚 

  

N2, O2  

Water 

Na2SO4 

Activated Carbon  

Diatomite 

Al2O3 

𝑃𝑎𝑡𝑚 , 𝑇𝑎𝑡𝑚 

𝑢𝐺 < 0.07𝑚𝑠
−1 

𝐶𝑣: 0.51 −  15.22 𝑣𝑜𝑙% 

𝑑𝑝: 5.4, 6.6 8.1 𝜇𝑚 

𝑑𝐶: 0.095 𝑚 

ℎ𝐶: 0.85 𝑚 

휀𝑔 = 𝐹 ∙ 𝑢𝑔
0.87𝜇𝑒𝑓𝑓

−0.18 

𝐹 = {
0.81 𝑓𝑜𝑟 𝑠𝑎𝑙𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
0.43 𝑓𝑜𝑟 𝑡𝑎𝑝 𝑤𝑎𝑡𝑒𝑟

 

𝜇𝑒𝑓𝑓 = 𝑘(2800𝑢𝑔)
𝑛−1

 

𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑖𝑛𝑑𝑒𝑥 = 1.97 

𝑛: 𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 1 ≥ 𝑛 ≥ 0.18 

Schumpe et 

al. [453] 

Air 

H2O 

Various Plastics 

Sand  

𝑢𝑔: 0.01 − 0.08 𝑚/𝑠 

𝑑𝑝: 0.11 − 2.8 𝑚𝑚 

𝐶𝑣: 0 − 20 𝑣𝑜𝑙% 

𝑃𝑎𝑡𝑚 

𝜌𝑠: 1020 − 2780 𝑘𝑔/𝑚
3 

PfP, SP Sparger 

휀𝑔
′′′

1 − 휀𝑔′′′
= 𝐾(

𝑢𝑔

(𝑣𝑠𝑙𝑔𝑢𝑔)1/4
)

𝐵1

(
𝑣𝑠𝑙

�⃑�𝑒𝑓𝑓,𝑟𝑎𝑑
)

𝐵2

(
𝐶𝑠
𝐶𝑠𝑜

)

𝐵3

 

 

The values of constant K and of exponents B1-B3 are as follows: 

 

Sieve plate  Perforated Plate 

K = 0.00476  K = 0.0277 

B1 = 0.888  B1 = 0.844 

B2 = -0.258  B2 = -0.136 

B3 = 0.0407  B3 = 0.0392 

 

𝑣𝑠𝑙 =
𝜇𝐿(1 + 2.5휀𝑠 + 10.05휀𝑠

2 + 0.00273𝑒16.6 𝑠)

𝜌𝑠𝑙
 

�⃑�𝑒𝑓𝑓,𝑟𝑎𝑑 = 0.011𝑑𝐶√𝑔𝑑𝐶 (
𝑢𝑔
3

𝑔𝜂𝑙
)

1/8

 

 

Sauer and 

Hempel [186] 
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Table A-5 (continued) 

System Conditions Correlation Reference 

  

𝐶𝑠
𝐶𝑠𝑜

=
𝑢𝑠𝑠ℎ𝑐
𝑢𝑔𝑑𝑐

13𝐹𝑟𝑔(1 + 0.09𝑅𝑒𝑝𝐹𝑟𝑔
−0.8)

1 + 8𝐹𝑟𝑔
0.85  

𝜌𝑠𝑙 = 휀𝑠𝜌𝑠 + (1 − 휀𝑠)𝜌𝑙 

 

Air 

Water 

Glass beads 

𝑢𝑔: 0.0057 − 0.02 𝑚/𝑠 

𝑢𝑙: 0.0039 − 0.0195 𝑚/𝑠 

𝐶𝑣: 0.1 − 0.9 𝑣𝑜𝑙.% 

𝑑𝑝: 250 𝜇𝑚 

𝑑𝐶: 0.2 𝑚 

ℎ𝐶: 3.35 𝑚 

휀𝑔 = 0.794 − 0.04𝑋1
2 − 0.034𝑋2

2 − 0.006(𝑢𝑙)
0.246(𝑢𝑔)

−0.059
 

𝑋1 = 0.409(𝑢𝑙 − 3.01) − 0.913(𝑢𝑔 − 2.12) 

𝑋2 = 0.973(𝑢𝑙 − 3.01) − 0.229(𝑢𝑔 − 2.12) 

Lee and Lasa 

[454] 

N2 

FT-300 Paraffin Wax, 

Iron Oxide 

Silica 

𝑃𝑎𝑡𝑚 

𝑢𝑔: 0.02 − 0.12 

𝐶𝑠: 10 − 30 𝑤𝑡.% 

𝑇: 538 

𝑑𝐶: 0.05 𝑚  

ℎ𝐶: 3 𝑚 

S-ON Sparger 

〈휀𝑔〉𝑖𝑗 = 1−
∆𝑃𝑖𝑗/(𝑆𝑠𝑙)𝑖𝑗

∆ℎ𝑖𝑗
  

𝑖 =  1 𝑡𝑜 5, 𝑗 =  𝑖 +  1 

 

where 

(𝑆𝑠𝑙)𝑖𝑗 =
1/𝜌𝑤𝑎𝑡𝑒𝑟

〈𝑊𝑠〉𝑖𝑗/𝜌𝑝 + (1 − 〈𝑊𝑠〉𝑖𝑗/𝜌𝑙)
 

The average gas holdup for the entire dispersion is estimated using a 

weighted average of the gas holdups in the individual sections 

휀𝑔 =
∑ 〈𝜖𝑔〉𝑖𝑗∆ℎ𝑖𝑗
5
𝑖−1

∑ ∆ℎ𝑖𝑗
5
𝑖=1

 

Bukur et al. 

[262] 

Various Experimental data 

for three phase systems 

𝜌𝑙: 683 − 2965 𝑘𝑔/𝑚
3 

𝜇𝑙: 0.29 − 30 𝑚𝑃𝑎 ∙ 𝑠 

𝜎𝑙: 0.019 − 0.073 𝑁/𝑚 

𝜌𝑔: 0.2 − 90 𝑘𝑔/𝑚
3 

휀𝑠: 0 − 40 𝑣𝑜𝑙% 

𝑑𝑝: 20 − 143 𝜇𝑚 

𝜌𝑠: 2200 − 5730 𝑘𝑔/𝑚
3 

휀𝑔

1 − 휀𝑔
=
2.9(𝑢𝑔

4𝜌𝑔/𝜎𝑙𝑔)
𝛼
(𝜌𝑔/𝜌𝑠𝑙)

𝛽

[𝑐𝑜𝑠ℎ(𝑀𝑜𝑚
0.054)]

4.1  

𝑀𝑜𝑚 =
𝑔(𝜌𝑠𝑙 − 𝜌𝑔)(𝜉𝜇𝑙)

4

𝜌𝑠𝑙
2 𝜎𝑙

3  

 

Fan et al. 

[105] 
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Table A-5 (continued) 

System Conditions Correlation Reference 

 

𝑢𝑔: 0.05 − 0.69 𝑚/𝑠 

𝑢𝑙: 0 

𝑑𝐶: 0.1 − 0.61 𝑚 

ℎ𝐶/𝑑𝐶 > 5 

𝑀𝑜 =
𝑔(𝜌𝑙 − 𝜌𝑔)(𝜇𝑙)

4

𝜌𝑙
2𝜎𝑙

3  

𝛼 = 0.21𝑀𝑜𝑚
0.0079, 𝛽 = 𝑀𝑜𝑚

−0.011 

𝑙𝑛 𝜉 = 4.6휀𝑠{5.7휀𝑠
0.58𝑠𝑖𝑛ℎ[−0.71𝑒𝑥𝑝 (−5.8휀𝑠)×𝑙𝑛(𝑀𝑜)

0.22] + 1} 

 

Air 

Paraffin oil 

Tellus oil 

Silica 

𝑢𝑔 < 0.5 𝑚/𝑠 

𝐶𝑣: 0 − 36 𝑣𝑜𝑙.% 

𝑑𝐶: 0.1, 0.19, 0.38, 0.63 𝑚 

휀𝑔 = 휀𝑔−𝑙𝑎𝑟𝑔𝑒 + 휀𝑑𝑓(1 − 휀𝑔−𝑙𝑎𝑟𝑔𝑒) 

휀𝑔−𝑙𝑎𝑟𝑔𝑒 =
𝑢𝑔 − 𝑢𝑔−𝑑𝑓

𝑢𝑏−𝑙𝑎𝑟𝑔𝑒
 

𝑢𝑏−𝑙𝑎𝑟𝑔𝑒 = 0.71(𝑔𝑑𝑏)
0.5(𝐷𝐹)(𝑆𝐹)(𝐴𝐹) 

𝑆𝐹: 

{
  
 

  
 1 𝑓𝑜𝑟

𝑑𝑏
𝑑𝐶
< 0.125

1.13 𝑒
(
−𝑑𝑏
𝑑𝐶

)
  𝑓𝑜𝑟 0.125 <  

𝑑𝑏
𝑑𝐶
< 0.6 

0.496 (
𝑑𝑏
𝑑𝐶
)
−0.5

  𝑓𝑜𝑟 
𝑑𝑏
𝑑𝐶
> 0.6

, 

𝐴𝐹 =  𝛼 + 𝛽(𝑢𝑔 − 𝑢𝑔−𝑑𝑓), 𝐷𝐹 = (
1.29

𝜌𝑔
)
0.5

 

𝑑𝑏 = 𝛾(𝑢𝑔 − 𝑢𝑔−𝑑𝑓)
𝛿
, 𝑢𝑔−𝑑𝑓 = 𝑢𝑏−𝑠𝑚𝑎𝑙𝑙휀𝑑𝑓 

휀𝑑𝑓 = 휀𝑑𝑓,0 (
𝜌𝑔

𝜌𝑔,𝑟𝑒𝑓
)

0.48

(1 −
0.7

휀𝑑𝑓,0
𝐶𝑣) 

𝑢𝑏−𝑠𝑚𝑎𝑙𝑙 = 𝑢𝑏−𝑠𝑚𝑎𝑙𝑙,0 (1 −
0.8

𝑢𝑏−𝑠𝑚𝑎𝑙𝑙,0
𝐶𝑣) 

휀𝑑𝑓,0, 𝑢𝑏−𝑠𝑚𝑎𝑙𝑙,0: 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑 𝑛𝑎𝑡𝑢𝑟𝑒 

Krishna and 

Sie [455] 

Air 

Water 

Nickel Slurry 

𝑢𝑔: 0.02 − 0.04 𝑚/𝑠 

𝑢𝑙: 0.018 − 0.037 𝑚/𝑠 

𝐶𝑠: 5.7 𝑣𝑜𝑙% 

휀𝑔 = 0.75𝑢𝑔
0.78𝑒𝑥𝑝[8.12×10−6ℎ𝐶] 

Chen et al. 

[456] 
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Table A-5 (continued) 

System Conditions Correlation Reference 

 

𝑑𝑝: 177 − 210 𝜇𝑚 

𝜌𝑠: 8900 𝑘𝑔/𝑚
3 

𝑑𝐶: 0.05 𝑚 

ℎ𝐶: 0.5 𝑚 

  

Air 

55% Glycerol 

25% Glycerol 

Water 

Mono ethanol amine (MEA) 

Solids of various sizes and 

shapes 

𝑢𝑔: 0 − 0.13 𝑚/𝑠 

𝜌𝑔: 0.168 − 1.34 𝑘𝑔/𝑚
3 

𝜌𝑠: 2030 − 2480 𝑘𝑔/𝑚
3 

𝑑𝑝: 4.11 − 6.8 𝑚𝑚 

𝑢𝑙: 0 − 0.13 𝑚/𝑠 

𝜌𝑙: 100 − 1150 𝑘𝑔/𝑚
3 

𝜇𝑙: 0.85 − 15 𝑚𝑃𝑎 

𝜎𝑙: 0.049 − 0.072 𝑁/𝑚 

𝑑𝐶: 0.072 𝑚 

ℎ𝐶: 1.0 𝑚 

휀𝑔 = 

0.17(
𝑢𝑔
2

𝑔𝑑𝑝
)

0.33

(
𝑑𝑝𝑢𝑙𝜌𝑙
𝜇𝑙

)
−0.065

(
𝑑𝑝
3𝜌𝑙(𝜌𝑠 − 𝜌𝑙)𝑔

𝜇𝑙
2 )

0.125

(
𝜇𝑙
4𝑔

𝜌𝑙𝜎𝑙
3)

0.05

  

𝑓𝑜𝑟 
𝑑𝑝𝑢𝑙𝜌𝑙
𝜇𝑙

≤ 100  

0.11(
𝑢𝑔
2

𝑔𝑑𝑝
)

0.35

(
𝑑𝑝𝑢𝑙𝜌𝑙
𝜇𝑙

)
0.2

(
𝑑𝑝
3𝜌𝑙(𝜌𝑠 − 𝜌𝑙)𝑔

𝜇𝑙
2 )

0.11

(
𝜇𝑙
4𝑔

𝜌𝑙𝜎𝑙
3)

0.075

  

𝑓𝑜𝑟 
𝑑𝑝𝑢𝑙𝜌𝑙
𝜇𝑙

> 100 

 

Ramesh and 

Murugesan 

[457] 

H2 

CO 

N2 

CH4 

Isopar-M 

Hexanes 

Glass beads 

Iron Oxide 

𝑢𝑔: 0.0035 − 0.574 𝑚/𝑠 

𝐶𝑠: 0 − 36 𝑣𝑜𝑙.% 

𝑇: 275 − 538 𝐾 

𝑃: 0.1 − 15 𝑀𝑃𝑎  

𝜌𝑠: 700 − 4000 𝑘𝑔/𝑚
3 

𝑑𝑝: 5 − 300 𝜇𝑚 

𝜌𝑙: 633.4 − 1583 𝑘𝑔/𝑚
3 

𝜇𝑙: 0.189 − 398.8 𝑚𝑃𝑎 ∙ 𝑠 

𝜎𝑙: 8.4 − 75 𝑚𝑁/𝑚 

𝑑𝐶: 0.0382 − 5.5 𝑚 

휀𝑔

= 4.94

×10−3 (
𝜌𝑙
0.415𝜌𝑔

0.177

𝜇𝑙
0.174𝜎𝑔

0.27 )𝑢𝑔
0.553 (

𝑃𝑇
𝑃𝑇 − 𝑃𝑆

)
0.203

(
𝑑𝐶

𝑑𝐶 + 1
)
−0.117

𝛤0.053

×𝑒𝑥𝑝[−2.23𝐶𝑣 − 0.16𝜌𝑠𝑑𝑝 − 0.24𝑋𝑊] 

𝛤 = 𝐾𝑑×𝑁𝑜𝑑𝑜
𝛼 

𝐾𝑑 , 𝛼: 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔𝑎𝑠 𝑠𝑝𝑎𝑟𝑔𝑒𝑟 

휀𝑔−𝑙𝑎𝑟𝑔𝑒 = 휀𝑔
0.84(𝐹) = 휀𝑔

0.84(1 − 3.04×10−6
𝜌𝑙
0.97

𝜇𝑙
0.16 ×𝑒𝑥𝑝[−4.59𝐶𝑠] 

휀𝐺−𝑠𝑚𝑎𝑙𝑙 = {
휀𝐺 − 휀𝐺−𝑙𝑎𝑟𝑔𝑒  𝑓𝑜𝑟 휀𝐺 > 𝐹

25/4 

0 𝑓𝑜𝑟 휀𝐺 < 𝐹
25/4 

 

Behkish et al. 

[9] 

Table A-5 (continued) 



 

220 

System Conditions Correlation Reference 

Air 

Water 

CCl4 

Glass beads 

𝑢𝑔: 0 − 0.107 𝑚/𝑠 

𝑢𝑙: 0.021 − 0.169 𝑚/𝑠 
𝑇: 305 𝐾 

𝐶𝑠: 13.8 − 24.3 𝑣𝑜𝑙.% 

𝜌𝑠: 2216 − 2270 𝑘𝑔/𝑚
3 

𝑑𝑝: 2.18 − 4.05 𝑚𝑚 

𝜌𝑙: 998.4 − 1600 𝑘𝑔/𝑚
3 

𝜇𝑙: 0.8 − 0.94 𝑚𝑃𝑎 ∙ 𝑠 
𝑑𝐶: 0.1 𝑚 
ℎ𝐶: 1.24 𝑚 

휀𝑔 = 5.53 (
𝑢𝑔
2

𝑔𝑑𝑐
)

0.4135

(
𝜌𝑙𝑢𝑙𝑑𝑐
𝜇𝑙

)
−0.1808

(
ℎ𝑐
𝑑𝑐
)
0.0597

(
𝑑𝑝

𝑑𝑐
)

0.0873

 
Jena et al. 

[458] 

Air 

Water, 20% glycerol, 60% 

glycerol, 90% glycerol, 65% 

glycerol, 85% glycerol, 

MEA, Butyric acid, 0.1 % 

Carboxymethylcellulose 

(CMC), 0.5 % CMC, 1% 

CMC,  

Spheres, Berl Saddles, 

Raschig Rings 

𝑢𝑔: 0.00375 − 0.1375 𝑚/𝑠 

𝑢𝑙: 0.008 − 0.2487 𝑚/𝑠 
𝑇: 305 𝐾 

𝐶𝑠: 13.8 − 24.3 𝑣𝑜𝑙.% 

𝜌𝑠: 2216 − 2270 𝑘𝑔/𝑚
3 

𝑑𝑝: 1 − 13.66 𝑚𝑚 

𝜌𝑙: 1245 − 2960 𝑘𝑔/𝑚
3 

𝜇𝑙: 0.85 − 32 𝑚𝑃𝑎 ∙ 𝑠 
𝜎𝑙: 0.025 − 0.072 𝑁/𝑚 

𝑑𝐶: 0.005 − 0.15 𝑚 
ℎ𝐶: 1.8 𝑚 

휀𝑔

= 0.98 (
𝑢𝑔
2

𝑔𝑑𝑝
)

0.382

(
𝑢𝑙
2

𝑔𝑑𝑝
)

0.0438

(
𝜌𝑠
𝜌𝑙
)
−0.529

(
𝑑𝑝

𝑑𝑐
)

0.0339

(
𝑔𝜇𝑙

4

𝜌𝑙𝜎𝑙
3)

0.0265

𝜙𝑠
−0.0217 

 

𝜙𝑠: 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 

Sivakumar et 

al. [450] 

He, N2  

Paraffins mixture, C12-C13, 

Light F-T Cut, Heavy F-T- 

Cut,  

Alumina, Puralox Alumina, 

Iron oxide 

𝑢𝑔: 0.14 − 0.26 𝑚/𝑠 

𝐶𝑣 : 0 − 20 𝑣𝑜𝑙. % 
𝑇: 330 − 530 𝐾 

𝑃: 8 − 30 𝑀𝑃𝑎  
𝜌𝑠: 3218 − 4000 𝑘𝑔/𝑚

3 

𝑑𝑝: 1.5 − 140 𝜇𝑚 

𝜌𝑙: 631.3 − 779.5 𝑘𝑔/𝑚
3 

𝜇𝑙: 0.27 − 9.96 𝑚𝑃𝑎 ∙ 𝑠 
𝜎𝑙: 13 − 27 𝑚𝑁/𝑚 

𝑑𝐶: 0.3 𝑚 

ℎ𝐶: 3 𝑚 

휀𝑔 = 11241.6 (
𝜌𝑔
0.174𝑢𝑔

0.553𝛤0.053

𝜇𝑙
0.025𝜎𝑙

0.105𝜌𝑙
1.59

)(
𝑃

𝑃 − 𝑃𝑆
)
0.203

(
𝑑𝐶

𝑑𝐶 + 1
)
−0.117

×𝑒𝑥𝑝[−1.2×10−3𝐶𝑠 − 0.4×10
−6𝐶𝑠

2 − 4339𝑑𝑝

+ 0.434𝑋𝑊] 

Sehabiague et. 

al. [81] 
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Table A-6: Bubbles diameter correlations available in the literature 

Correlation Reference 

𝑑𝑏,𝑜 = 81.18
𝜎𝑙
𝑃𝑜𝑔

 
Eversole et al. 

[459] 

𝑑𝑏 = (1.722
𝑄6/5

𝑔3/5
6

𝜋
)

1/3

 
Van Krevelen and 

Hoftijzer [460] 

𝑑𝑏,𝑜 = 1.82
𝑑𝑜𝜎𝑙

0.25

𝑔𝑑𝑜
2𝜌𝑙

 
Benzing and 

Mayers [371] 

𝑑𝑏,𝑜 = 0.19𝑑𝑜
2𝑅𝑒𝑏

0.32 
Leibson et al. [380, 

381] 

𝑑𝑏 = (𝑙
2ℎ)1/3 

𝑙 =
𝑑𝑏

1.14𝑇𝑎−0.176

ℎ = 1.3𝑑𝑏𝑇𝑎
−0.352

} 𝑓𝑜𝑟 2 < 𝑇𝑎 < 6,

𝑙 =
𝑑𝑏

1.36𝑇𝑎−0.28

ℎ = 1.85𝑑𝑏𝑇𝑎
−0.56

} 𝑓𝑜𝑟 6 < 𝑇𝑎 < 16.5 

𝑇𝑎 = 𝑅𝑒𝑏𝑀𝑜
0.23,  

𝑅𝑒𝑏 =
𝑑𝑏𝑢𝑏𝜌𝑙
𝜇𝑙

 

𝑀𝑜 =
𝑔𝜇𝑙

4

𝜌𝑙𝜎𝑙
3 

Nedeltchev and 

Schumpe [461] 

Viscous Liquids: 

𝑉𝑏 = 1.378
𝑄6/5

𝑔3/5
 

𝑑𝑏 = (1.378
𝑄6/5

𝑔3/5
6

𝜋
)

1/3

 

 

Inviscid liquids: 

𝑑𝑏,𝑜 =
32𝑔

11
[
𝑡2

4
+
𝑉𝑜𝑡

2𝑄
−
𝑉𝑜
2

2𝑄2
𝑙𝑛 (

𝑄𝑡 + 𝑉𝑜
𝑉𝑜

)] 

𝑉𝑜 =
𝜋𝑑𝑜

2

3
 

Davidson and 

Schuler [373] 
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Table A-6 (continued) 

Correlation Reference 

𝑉𝑏 = (
4𝜋

2
)
0.25

(
15𝜇𝑙𝑄

2𝜌𝑙𝑔
)
0.75

 

Kumar and co-

workers [378, 385, 

462, 463] 

𝑉𝑏 = 1.09𝑄
6/5𝑔−3/5 Wraith [391] 

𝑉𝑏,𝑜 =
𝜋𝑑𝑜𝜎𝑙
∆𝜌𝑔

 Park et al. [384] 

𝑉𝑏 = 0.976 (
𝑄2

𝑔
)

3/5

 
Acharya et al. 

[464] 

𝑑𝑏,𝑜 = (
3𝜎𝑙𝑑𝑜
𝜌𝑙

+√(
3𝜎𝑙𝑑𝑜
𝜌𝑙

)
2

+
𝐾𝑑𝑜
𝑔
)

1
3

 

𝐾: 𝑝𝑢𝑙𝑠𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

Rabiger and 

Vogelpohl [465] 

𝑉𝑏,𝑜 =
4𝜋𝜎𝑙𝑑𝑜
𝜌𝑙𝑔

+ 2
𝐺2

𝑔
(

3

4𝜋𝑉𝑓
2)

0.33

 
Rice and Lakhani 

[466] 

𝑑𝑏,𝑜 = [(
6𝑑𝑜𝜎𝑙
𝜌𝑙𝑔

) +
81𝜂𝑙𝑢𝑏
𝜋𝑔

+ (
135𝑢𝑏

2

4𝜋2𝑔
)

5/3

]

0.25

 
Gaddis and 

Vogelpohl [467] 

𝑑𝑏 = 6.9 (
𝜎𝑙
𝜌𝑙
)
0.5

𝑢𝑔
0.44 

𝑉𝑏 =
𝜋𝑑𝑜𝜎𝑙
∆𝜌𝑔

 

Tsuge et al. [386-

388, 468] 

𝑑𝑏 = (𝑎
2𝑏)

1
3 

𝑎:𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑏𝑢𝑏𝑏𝑙𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟; 𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑏𝑢𝑏𝑏𝑙𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 

Sada et al. [469] 

𝑉𝑏,𝑜 =
𝜋𝑑𝑜

3

12
 

Wilkinson and van 

Dierendonck [390] 

𝑑𝑏,𝑜 = 𝑑𝑜𝐴√
𝑊𝑒𝑙(𝜌𝑙 − 𝜌𝑔)

(𝑊𝑒𝑙 − 8)
 

𝐴 = √
4

𝑅𝑒𝑜
+
0.124

√𝑅𝑒𝑜
;  𝑅𝑒𝑜 =

2𝑢𝑏𝑑𝑜
𝜂𝑙

 

Pamperin and Rath 

[383] 

 



 

223 

Table A-6 (continued) 

Correlation Reference 

𝑑𝑏,𝑜 = [
5

𝐵𝑑𝑜
1.08 +

9.26𝐹𝑟𝑙
0.36

𝐺𝑎𝑙
0.39 + 2.147𝐹𝑟𝑙

0.51]

0.33

 

𝐵𝑑𝑜 = 4
𝜌𝑙𝑔𝑑𝑏

2

𝜎𝑙
 

Jamialahmedi et 

al.[377] 

𝑑𝑏 = 26𝑑𝑐 (
𝑑𝑐
2𝑔𝜌𝑙
𝜎𝑙

)

−0.5

(
𝑔𝑑𝑐

3

𝜂𝑙
2 )

−0.12

(
𝑢𝑔

√𝑔𝑑𝑐
)

−0.12

 
Akita and Yoshida 

[190] 

𝑑𝑏,𝑜 = [(
6𝑑𝑜𝜎𝑙
𝜌𝑙𝑔

)
4/3

+ (
81𝑄𝜂𝑙
𝜋𝑔

) + (
135𝑄2

4𝜋2𝑔
)

4/5

]

1/4

 
Gaddis and 

Vogelpohl [467] 

𝑑𝑏 = (0.976
𝑄6/5

𝑔3/5
6

𝜋
)

1/3

 
Kumar and Kuloor 

[462] 

𝑑𝑏 = 0.725
𝜎𝑙
3/5

𝜌𝑙
1/5
𝑃2/5

 Hinze [470] 

𝑑𝑏 = 𝑊𝑒𝑐
3/5 𝜎𝑙

3/5

𝜌𝑔
1/5
𝑃2/5

(
𝜇𝑙
𝜇𝑔
)

0.1

 

𝑊𝑒𝑐 =
𝜌𝑙𝑢𝑟𝑚𝑠

2 𝑑𝑏

𝜎𝑙
; �̅�𝑟𝑚𝑠

2 = (
𝑃𝑑𝑏

𝜌𝑙
)
2/3

 

Lin et al. [174] 

𝑑𝑏 = 1.817
2𝜎𝑙

𝑢𝑏
2√𝜌𝑔𝜌𝑙

23

 
Levich [471] 

𝑑𝑏 = 𝑘√
𝜎𝑙
𝑔𝜌𝑔

 

𝑘 = {
2.53 𝐿𝑖𝑞𝑢𝑖𝑑
3.27 𝑆𝑙𝑢𝑟𝑟𝑦

 

Luo et al. [472] 

𝑑𝑏 =

2𝜋√
𝜎𝑙
𝑔𝛥𝜌

(
𝜌𝑙
𝛥𝜌
)

𝜌𝑔𝑢𝑟
2

2√𝜎𝑙𝑔𝛥𝜌
+

(

 
 
1+

(
𝜌𝑙𝜌𝑔𝑢𝑟

2

2 )

2

(𝜌𝑙 + 𝜌𝑔)
2
𝜎𝑙𝑔𝛥𝜌

)

 
 

0.5 

𝑢𝑟: 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑔𝑎𝑠 𝑎𝑛𝑑 𝑙𝑖𝑞𝑢𝑖𝑑 𝑝ℎ𝑎𝑠𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 

Wilkinson and van 

Dierendonck [90] 
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Table A-7: Bubbles rise velocity correlations available in the literature 

Correlation Reference 

𝑢𝑏 =
𝑔𝜌𝑙𝑑𝑏

2

18𝜇𝑙
 Stokes [473] 

𝑢𝑏∞ = 0.35√𝑔𝑑𝑏 
Dumitrescu 

[474] 

𝑢𝑏 =
𝑔𝜌𝑙𝑑𝑏

2

18𝜇𝑙
𝑅𝑒 < 2

𝑢𝑏 =
0.33𝑔0.76𝜌𝑙

0.52𝑟𝑏
1.28

10𝜇𝑙
0.52

2 < 𝑅𝑒 < 4.02𝑀𝑜−0.214

𝑢𝑏 = 1.35 (
2𝜎𝑙𝑔

𝑑𝑏𝜌𝑙
)
0.5

4.02𝑀𝑜−0.214 < 𝑅𝑒 < 3.1𝑀𝑜−0.25

 

𝑢𝑏 = 1.18 (
𝜎𝑙𝑔

2

𝜌𝑙
) 3.1𝑀𝑜−0.25 < 𝑅𝑒 

626 < 𝜌𝑙 < 1071
𝑘𝑔

𝑚3

0.016 < 𝜎𝑙 < 0.72 𝑁/𝑚
0.22 < 𝜇𝑙 < 31 𝑐𝑃

 

Peebles and 

Garber [475] 

𝑢𝑏 = 0.721√𝑔𝑑𝑏

782 < 𝜌𝑙 < 1480
𝑘𝑔

𝑚3

0.02 < 𝜎𝑙 < 0.72 𝑁/𝑚
0.52 < 𝜇𝑙 < 18000 𝑐𝑃

 
Haberman 

and Morton 

[476] 

𝑢𝑏∞ = 1.53 [
𝑔∆𝜌𝜎𝑙
𝜌𝑙
2
]
0.25

𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒𝑙𝑦 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑𝑠

𝑢𝑏∞ = 𝜆𝑙√
𝑔∆𝜌𝑑𝑏
𝜌𝑙

𝐶𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙 𝑆𝑙𝑢𝑔𝑠

 
Harmathy 

[477] 

𝑢𝑏 = 𝐾
(0.5𝑑𝑏

3)
𝑚

6
 

𝑚 = 0.167(1 + 0.34𝑀𝑜0.24) 
𝐾 = 25/(1 + 0.33𝑀𝑜0.29) 

Angelino 

[478] 

𝑢𝑏 = √
2𝜎𝑙
𝑑𝑏𝜌𝑙

+ 0.5𝑔𝑑𝑏

782 < 𝜌𝑙 < 1480
𝑘𝑔

𝑚3

0.02 < 𝜎𝑙 < 0.72 𝑁/𝑚
0.52 < 𝜇𝑙 < 18000 𝑐𝑃

 
Mendelson 

[479] 

𝑢𝑏 = (
𝜇𝑙

𝜌𝑙𝑑𝑏,𝑒
)𝑀𝑜−0.149(𝐽 − 0.857) 

𝐽 = {
0.94𝐻0.757 (2 < 𝐻 ≤ 59.3)

3.24𝐻0.441 (𝐻 > 59.3)
 

𝐻 =
4

3
𝐸𝑜𝑀𝑜−0.149 (

𝜇𝑙
𝜇𝑤
)
−0.14

 

Grace et al. 
[480] 

𝑢𝑏 = √
3𝜎𝑙
𝑑𝑏𝜌𝑙

+
𝑔𝑑𝑏∆𝜌

𝜌𝑙

782 < 𝜌𝑙 < 1480
𝑘𝑔

𝑚3

0.02 < 𝜎𝑙 < 0.72 𝑁/𝑚
0.52 < 𝜇𝑙 < 18000 𝑐𝑃

 Lehrer [481] 
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Table A-7 (continued) 

Correlation Reference 

𝑢𝑏 =
𝜇𝑙
𝜌𝑙𝑑𝑝

𝑀−0.149(𝐽 − 0.857) 

𝑀 = 
𝑔𝜇𝑙

4(𝜌𝑙 − 𝜌𝑔)

𝜌𝑙
2𝜎𝑙

3  

𝐽 =  {
0.94𝐻0.747 𝑓𝑜𝑟 2 < 𝐻 ≤ 59.3

3.42𝐻0.441 𝑓𝑜𝑟 𝐻 > 59.3
 

𝐻 =
4

3
𝐸�̈�𝑀−0.149 (

𝜇𝐿
𝜇𝑤𝑎𝑡𝑒𝑟

)
−0.14

 

𝑀 <  10−3, 𝐸�̈�  <  40, 𝑅𝑒 >  0.1 

Clift et al. 
[171] 

𝑢𝑏 = 1.3(𝑔𝑑𝑏)
0.5 

Fukuma et al. 
[482] 

𝑢𝑏 = 0.361(1 + 4.89/𝐸�̈�)
0.25 

Nickens et al. 

[483] 

𝑢𝑏 (
𝜌𝑙
𝑔𝜎𝑙

)
0.25

= {(
𝑀𝑜−0.25

𝐾𝑏
(
𝜌𝑙 − 𝜌𝑔

𝜌𝑙
)
1.25

𝑑𝑏
2
𝑔𝜌𝑙
𝜎𝑙
)

−𝑛

+ (
2𝑐

𝑑𝑏
(
𝑔𝜌𝑙
𝜎𝑙
)
−0.5

+
(𝜌𝑙 − 𝜌𝑔)𝑑𝑏

2𝜌𝑙
(
𝑔𝜌𝑙
𝜎𝑙
)
0.5

)

−0.5𝑛

}

−
1
𝑛

 

𝑛 =  0.8 (𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑙𝑖𝑞𝑢𝑖𝑑), 1.6 (𝑝𝑢𝑟𝑒 𝑙𝑖𝑞𝑢𝑖𝑑) 
𝑐 =  1.2 (𝑚𝑜𝑛𝑜𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑙𝑖𝑞𝑢𝑖𝑑), 1.4 (𝑚𝑢𝑙𝑡𝑖𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑙𝑖𝑞𝑢𝑖𝑑) 

𝐾𝑏  =  𝑚𝑎𝑥(𝐾𝑏,0 𝑀𝑜
−0.038, 12) 

𝐾𝑏,0  =  14.7 (𝑎𝑞𝑢𝑒𝑜𝑢𝑠 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛), 10.2 (𝑜𝑟𝑔𝑎𝑛𝑖𝑐) 

Fan and 

Tsuchiya 
[135] 

𝑢𝑏 =
𝑢𝑏,𝑠𝑝ℎ𝑢𝑏,𝑤𝑎𝑣

(𝑢𝑏,𝑠𝑝ℎ
2 + 𝑢𝑏,𝑤𝑎𝑣

2 )
0.5 

𝑢𝑏,𝑠𝑝ℎ =
𝑔𝑑𝑏

2(𝜌𝑙 − 𝜌𝑔)

18𝜇𝑙
(
3𝜇𝑙 + 3𝜇𝑔

2𝜇𝑙 + 3𝜇𝑔
) ; 𝑢𝑏,𝑤𝑎𝑣 = (

2𝜎

𝑑𝑏(𝜌𝑙 + 𝜌𝑔)
+
𝑔𝑑𝑏
2
)

0.5

 

Jamialahmedi 

et al. [194] 

𝑢𝑏 = 1.16 [
𝑑𝐵𝑔

0.5𝜌𝑙
𝑏′𝑀𝑜0.23𝑏

′

𝜇𝑙
𝑏′𝐶𝐷

0.5
]

1/(1−𝑏′)

 

𝐶𝐷 = 24(1 + 0.173𝑅𝑒
0.65)𝑅𝑒 + 0.143/(1 + 16300𝑅𝑒−1.089) 

Karamanev 
[484] 

𝑢𝑏 = (
𝑔(𝜌𝑙 − 𝜌𝑔)𝑑𝑏

2𝜌𝑙
+
2𝑐𝜎𝑙
𝑑𝑏𝜌𝑙

)

0.5

 

𝑐 = 0.449
𝜌𝑙
0.128

𝜇𝑙
0.019𝜎𝑙

0.083 

1301 ≤  𝜌𝑙(𝑘𝑔/𝑚
3)  ≤ 2927 

4.23 ≤  𝜇𝑙(10
−4𝑃𝑎 ∙ 𝑠)  ≤ 83.6 

0.024 ≤  𝜎𝑙(𝑁/𝑚)  ≤ 0.049 

Maneri [485] 

𝑢𝑏 = 𝑑𝐵 [(
𝑔𝜇𝑙
𝜌𝑙
)
0.33

(
4𝑎′𝑀𝑜0.46𝑏

′

2.850.5−2𝑏
′ )(

𝜌𝑙
2𝑔

𝜇𝑙2
)

(2−2𝑏′)

(6−6𝑏′)

]

(2−2𝑏′)

(2𝑏′+1)

 
Nguyen 

[486] 
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Table A-7 (continued) 

Correlation Reference 
𝑢𝑏−𝑙𝑎𝑟𝑔𝑒 = 0.71(𝑔𝑑𝑏)

0.5(𝐷𝐹)(𝑆𝐹)(𝐴𝐹) 

𝑆𝐹: 

{
  
 

  
 1 𝑓𝑜𝑟

𝑑𝑏
𝑑𝐶

< 0.125

1.13 𝑒
(
−𝑑𝑏
𝑑𝐶

)
  𝑓𝑜𝑟 0.125 < 

𝑑𝑏
𝑑𝐶
< 0.6 

0.496 (
𝑑𝑏
𝑑𝐶
)
−0.5

  𝑓𝑜𝑟 
𝑑𝑏
𝑑𝐶
> 0.6

 

𝐴𝐹 =  𝛼 + 𝛽(𝑢𝑔 − 𝑢𝑔−𝑑𝑓); 𝐷𝐹 =  (
1.29

𝜌𝑔
)
0.5

 

Krishna et al. 
[487] 

𝑢𝑏 (
𝜌𝑙
𝑔𝜎𝑙

)
0.25

= {(
𝑀𝑜−0.25

𝐾𝑏
(
𝜌𝑙 − 𝜌𝑔

𝜌𝑙
)
1.25

𝑑𝑏
2
𝑔𝜌𝑙
𝜎𝑙
)

−𝑛

+ (
2𝑐

𝑑𝑏
(
𝑔𝜌𝑙
𝜎𝑙
)
−0.5

+
(𝜌𝑙 − 𝜌𝑔)𝑑𝑏

2𝜌𝑙
(
𝑔𝜌𝑙
𝜎𝑙
)
0.5

)

−0.5𝑛

}

−
1
𝑛

 

𝑛 =  0.8 (𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑙𝑖𝑞𝑢𝑖𝑑), 1.6 (𝑝𝑢𝑟𝑒 𝑙𝑖𝑞𝑢𝑖𝑑) 
𝑐 =  1.2 (𝑚𝑜𝑛𝑜𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑙𝑖𝑞𝑢𝑖𝑑), 1.4 (𝑚𝑢𝑙𝑡𝑖𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑙𝑖𝑞𝑢𝑖𝑑) 

𝐾𝑏  =  𝑚𝑎𝑥(𝐾𝑏,0 𝑀𝑜
−0.038, 12) 

𝐾𝑏,0  =  14.7 (𝑎𝑞𝑢𝑒𝑜𝑢𝑠 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛), 10.2 (𝑜𝑟𝑔𝑎𝑛𝑖𝑐) 

𝑀𝑜 = 𝑔(
(𝜌𝑙 − 𝜌𝑔)𝜇𝑙

4

𝜌𝑙
4𝜎𝑙

3 ) 

Luo et al. 

[472] 

𝑢𝑏 = 𝛼 [
𝑢𝑔(1 − 휀𝑔)

휀𝑔
]

𝛽

 
Yang et al. 

[488] 

𝑢𝑏 = √
2𝜎𝑙
𝜌𝑙𝑑𝑏

+
𝑔𝑑𝑏
2

 

Nedeltchev 

and Schumpe 

[461] 

𝑢𝐵 = 
𝑉𝑟𝜇𝑙

0.33𝜎𝑙
0.33

(𝑑𝐵)
2/3𝜌𝑙

2/3
 

722 < 𝜌𝑙 < 1380
𝑘𝑔

𝑚3

0.015 < 𝜎𝑙 < 0.091 𝑁/𝑚
0.0022 < 𝜇𝑙 < 18 𝑃𝑎 ∙ 𝑠

 

Rodrigue 

[489] 

𝑢𝑏 = 1.95𝑑𝐶
1/6(𝑔𝑑𝑏)

0.5 𝑓𝑜𝑟 𝑑𝑏 ≥ 0.005 𝑚 
De Swart and 

Krishna [153] 
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Table A-8: Gas-Liquid mass transfer correlations applicable to SBCRs 

System Conditions Correlation Reference 

135 data sets of 7 

different groups 
-  𝑘𝐿 = 0.00163𝑢𝑔

0.21 (
ℎ𝐶
𝑑𝐶
)
−0.261

(
𝜌𝑙𝜎𝑙

3

𝑔𝜇𝑙
4 )

0.119

 
Gestrich et al. 

[490] 

N2 – Water, Glycerol, 

Glycol, BaCl2, Na2SO4 

– Glass, Bronze 

𝑃𝑎𝑡𝑚 

𝑢𝐺: 0.03 − 0.15 𝑚𝑠
−1 

𝐶𝑆: 0 − 200 𝑘𝑔/𝑚
3 

𝑑𝐶: 0.1 −  0.3 𝑚 

ℎ𝐶: 2.3 − 3 𝑚 

𝑘𝐿𝑎 = (
𝑔𝜌𝑙𝐷𝐴𝐵
𝜎𝑙

)

2.11 (
𝜇𝑙

𝜌𝑙𝐷𝐴𝐵
)
0.5
(
𝑔𝜇𝑙

4

𝜌𝑙𝜎𝑙
3)

−0.159

휀𝑔
1.18

𝐴
 

𝐴

=  1

+ 1.47

×104 (
𝐶𝑆
𝜌𝑆
)
0.612

(
𝑢𝑡∞

(𝑔𝑑𝐶)
0.5
)
0.486

(
𝑑𝐶𝑔𝜌𝑙
𝜎𝑙

)
−0.477

(
𝑑𝐶𝑢𝑔𝜌𝑙

𝜇𝑙
)

−0.345

 

Koide et al. 

[107] 

N2, O2 –Water, 

Na2SO4/Activated 

Carbon – Diatomite, 

Al2O3 

𝑃𝑎𝑡𝑚 , 𝑇𝑎𝑡𝑚 

𝑢𝐺 < 0.07𝑚𝑠
−1 

𝐶𝑉: 0.51 −  15.22 𝑣𝑜𝑙% 

𝑑𝑝: 5.4, 6.6 8.1 𝜇𝑚 

𝑑𝐶: 0.095 𝑚 

ℎ𝐶: 0.85 𝑚 

𝑘𝐿𝑎 = 𝐾𝑢𝑔
0.82𝜇𝑒𝑓𝑓

−0.39 

𝐾 = {
0.063  𝑓𝑜𝑟 𝑆𝑎𝑙𝑡 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

0.042  𝑓𝑜𝑟 𝑆𝑎𝑙𝑡 𝑓𝑟𝑒𝑒 𝑆𝑦𝑠𝑡𝑒𝑚𝑠
 

𝜇𝑒𝑓𝑓 = 𝑘(2800𝑢𝑔)
𝑛−1

 

𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑖𝑛𝑑𝑒𝑥 = 1.97;  𝑛: 𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 1

≥ 𝑛 ≥ 0.18 

Schumpe et al 

[453] 

Air – Water – 10 

different solid particles 

𝑢𝑔: 0.01 − 0.08 𝑚/𝑠 

𝐶𝑉: 0 − 20 𝑣𝑜𝑙% 

𝑑𝑝: 0.11 − 2.8 𝑚𝑚 

𝑃𝑎𝑡𝑚 

𝜌𝑠: 1020 − 2780 𝑘𝑔/𝑚
3 

PfP, SP Sparger 

𝑘𝐿𝑎 (
𝑣𝑠𝑙
𝑔𝑢𝑔

)

1/2

= 𝐾(
𝑢𝑔

(𝑣𝑠𝑙𝑔𝑢𝑔)
1/4
)

𝐵1

×(
𝑣𝑠𝑙

�⃑�𝑒𝑓𝑓,𝑟𝑎𝑑
)

𝐵2

×(
𝐶𝑆
𝐶𝑆𝑂

)

𝐵3

 

 

The values of constant K and of exponents B1-B3 are as follows: 

Sieve plate  Perforated plate 

K = 0.231 x 10-4  K = 0.197 x 10-4 

B1 = 0.305  B1 = 0.385 

B2 = -0.0746  B2 = -0.0712 

B3 = -0.0127  B3 = -0.0114 

Sauer and 

Hempel [491] 
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Table A-8 (continued) 

System Conditions Correlation Reference 

Air – Water – Glass 

beads 

𝑑𝑝: 0.056 − 2.8 𝑚𝑚 

𝑢𝑔: 𝑢𝑝 𝑡𝑜 0.1 𝑚𝑠
−1 

𝐶𝑉: 9 − 40 𝑣𝑜𝑙% 

𝑘𝐿𝑑32
2

6휀𝑔𝐷𝐴𝐵
= 4.5×10−4𝑆𝑐0.5𝐺𝑎0.8𝐵𝑜−0.2 

Fukuma et al. 

[492]  

Air, N2 – Water, 

Alcohols, Calcium 

alginate, Polystyrene 

𝑃𝑎𝑡𝑚 

𝑢𝑔  𝑢𝑝 𝑡𝑜 0.15𝑚𝑠
−1 

𝐶𝑉  𝑢𝑝 𝑡𝑜 20 𝑣𝑜𝑙% 

𝑑𝐶: 0.14, 0.218, 0.3 𝑚 

ℎ𝐶: 1.5 𝑚 

𝑘𝐿𝑎 = 12.9𝑆𝑐
0.5𝑀𝑜−0.159𝐵𝑜−0.184휀𝑔

1.3 (
𝑔𝜌𝑙𝐷𝐴𝐵
𝜎𝑙

)

×(0.47

+ 0.53𝑒𝑥𝑝 (−41.4
𝛱∞𝑘𝑙
𝜇𝑙𝑢𝑝

𝑅𝑒𝐵
−0.5)) (1 + 0.62𝐶𝑉)

−1 

𝛱∞ = −𝐶𝐵 (
𝑑𝜎

𝑑𝐶𝐵
)  

Salvacion et al 

[203] 

O2, CO2 – Glycol, 

Water, Brine, Aqueous 

Polyacrylamide 

Sieve and Sintered plate 

𝑘𝐿 = 𝛼(
(𝜌𝑙 − 𝜌𝑔)𝜇𝑙𝑔

𝜌𝑙
2 )

1
3

(
𝜇𝑙

𝜌𝑙𝐷𝐴𝐵
)
−
2
3
 

𝛼 = {

0.31      𝑓𝑜𝑟    𝑑𝑝 < 1.0 𝑚𝑚

0.0031    𝑓𝑜𝑟   1.0 < 𝑑𝑝 < 2.5 𝑚𝑚

0.0042     𝑓𝑜𝑟    𝑑𝑝 > 2.5 𝑚𝑚

 

Calderbank et 

al. [493] 

CO2 – NaHCO3, 

Na2CO3 surfactants 

𝑑𝐶  =  0.113 𝑚 

ℎ𝐶  =  1.086 𝑚 

𝑢𝑔 < 0.002 𝑚𝑠
−1 

𝑘𝐿 = 𝐾4𝑢𝑔
0.5𝜎𝑙

1.35 

K4 is a function of the bubble plate size 

Vazquez et al. 

[494] 

He, N2, SF6, Air – 0.8 M 

Na2SO4 – Xanthan gum,  

Diatomite, Alumina 

suspensions 

𝑃: 0.1 –  1 𝑀𝑃𝑎 

𝑢𝐺: 0.01 − 0.08 𝑚𝑠
−1 

𝐶𝑉: 𝑈𝑝𝑡𝑜 18% 𝑣𝑜𝑙 

𝑑𝑝: 7, 22 𝜇𝑚 

𝑑𝐶: 0.115 𝑚 

ℎ𝐶: 1.37 𝑚 

𝑘𝐿𝑎 = 𝑢𝑔
0.9𝜇𝑒𝑓𝑓

−0.55𝜌𝑔
0.46 

𝐾 = {
0.063  𝑓𝑜𝑟 𝑆𝑎𝑙𝑡 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

0.042  𝑓𝑜𝑟 𝑆𝑎𝑙𝑡 𝑓𝑟𝑒𝑒 𝑆𝑦𝑠𝑡𝑒𝑚𝑠
 

𝜇𝑒𝑓𝑓 = 𝑘(2800𝑢𝑔)
𝑛−1

 

𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑖𝑛𝑑𝑒𝑥 = 1.97;  𝑛: 𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 1

≥ 𝑛 ≥ 0.18 

Dewes et al. 

[199] 

 



 

229 

Table A-8 (continued) 

System Conditions Correlation Reference 

N2/Fe(CN) -  NaOH, 

CMC,HNaCO3- 

Na2CO3/glass, 

diatomite, silicon 

carbide, alumina 

𝑢𝑔: 0.007 − 0.09 𝑚𝑠
−1 

𝐶𝑉: 1.3 − 12.4 𝑣𝑜𝑙% 

𝑑𝑝: 44 − 105 𝜇𝑚 

𝜌𝑠: 2448 − 3965 𝑘𝑔/𝑚
3 

𝜌𝑙: 1026 − 1121 𝑘𝑔/𝑚
3 

𝜇𝑙: 0.99 − 6.27 𝑚𝑃𝑎 ∙ 𝑠 

𝑑𝐶: 0.05 𝑚 

ℎ𝐶: 0.75 𝑚 

𝑘𝐿
𝑢𝑔
= 0.103(𝑅𝑒𝐹𝑟𝑆𝑐2)−0.265 

Neme et al. 

[101] 

Air – Water – Lexan, 

PS, Glass 

𝑢𝑔: 0.0025 − 0.05 𝑚𝑠
−1 

𝜌𝑠: 1170 − 2460 𝑘𝑔/𝑚
3 

𝐶𝑉: 0.9 − 2.5 𝑣𝑜𝑙% 

𝑑𝑝: 2.3 − 3 𝑚𝑚 

𝑑𝐶: 0.06 𝑚 

ℎ𝐶/𝑑𝐶: 22 − 30.2 

𝑘𝐿𝑎 =  4.49𝑢𝑔
0.338𝐶𝑠

0.595 (1 −
𝜌𝑙
𝜌𝑠
)
0.337

 
Guo et al. 

[495] 

Air – Water - Nickel 

𝑢𝑔: 0.02 − 0.04 𝑚/𝑠 

𝑢𝑙: 0.018 − 0.037 𝑚/𝑠 

𝐶𝑠: 5.7 𝑣𝑜𝑙% 

𝑑𝑝: 177 − 210 𝜇𝑚 

𝜌𝑠: 8900 𝑘𝑔/𝑚
3 

𝑑𝐶: 0.05 𝑚 

ℎ𝐶: 0.5 𝑚 

𝑘𝐿𝑎 = 0.4𝑢𝑔
0.625𝑢𝑙

0.26×𝑒𝑥𝑝[1.477 ∙ 10−5ℎ𝐶] 
Chen et al. 

[456] 

H2/CO – Paraffin oil – 

Silica gel 

𝑇: 293 − 523 𝐾 

𝑃:1 − 5 𝑀𝑃𝑎 

𝑑𝑝: 134 𝜇𝑚 

𝐶𝑉: 5 −  20 𝑣𝑜𝑙% 

𝑑𝐶: 0.037 𝑚 

ℎ𝐶: 0.48 𝑚 

𝐻2 : 
𝑘𝐿𝑑32
𝐷𝐴𝐵

= 1.546×10−2𝐸𝑢0.052𝑅𝑒0.076𝑆𝑐−0.231 

𝐶𝑂: 
𝑘𝐿𝑑32
𝐷𝐴𝐵

= 8.748×10−2𝐸𝑢−0.012𝑅𝑒0.024𝑆𝑐−0.133 

Yang et al. 

[496] 
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Table A-8 (continued) 

System Conditions Correlation Reference 

H2, CO, N2 CH4, Isopar-

M. Hexanes – Glass 

beads, Iron Oxide 

𝑢𝑔: 0.0035 − 0.574 𝑚/𝑠 

𝐶𝑠: 0 − 36 𝑣𝑜𝑙.% 

𝑇: 275 − 538 𝐾 

𝑃: 0.1 − 15 𝑀𝑃𝑎  

𝜌𝑠: 700 − 4000 𝑘𝑔/𝑚
3 

𝑑𝑝: 5 − 300 𝜇𝑚 

𝜌𝑙: 633.4 − 1583 𝑘𝑔/𝑚
3 

𝜇𝑙: 0.189 − 398.8 𝑚𝑃𝑎 ∙ 𝑠 

𝜎𝑙: 8.4 − 75 𝑚𝑁/𝑚 

𝑑𝐶: 0.0382 − 5.5 𝑚 

𝑘𝐿
(1 − 휀𝑔)

= 6.14×104 ∙
𝜌𝑙
026𝜇𝑙

0.12휀𝑔
1.21𝐷𝐴𝐵

0.5

𝜎𝑙
0.52𝜌𝑔

0.06𝑢𝑔
0.12𝑑𝑝

0.05𝑇0.68
𝛤0.11 (

𝑑𝐶
𝑑𝐶 + 1

)
0.4

 
Lemoine et al. 

[179] 

Semi-Theoretical 

approach based on 

Kolmogorov theory of 

isotropic turbulence 

- 

𝑘𝐿𝑎 = 𝑓𝑐√
4𝐷𝐴𝐵𝑅𝑠𝑓

𝜋𝑆𝐵

𝑓𝐵𝑆𝐵
𝐴𝑐𝑢𝑏

 

𝑅𝑠𝑓 = 𝜋√
𝑙𝑏
2 + ℎ𝑏

2

2
−
(𝑙𝑏 − ℎ𝑏)

2

8
𝑢𝑏; 

𝑆𝐵 = 𝜋
𝑙2

2
[1 + (

ℎ

𝑙
)
2 1

2𝑒
𝑙𝑛
(1 + 𝑒)

(1 − 𝑒)
] ;  𝑒 = √1 − (

ℎ

𝑙
)
2

 

𝑙 =
𝑑𝑏

1.14𝑇𝑎−0.176

ℎ = 1.3𝑑𝑏𝑇𝑎
−0.352

} 𝑓𝑜𝑟 2 < 𝑇𝑎 < 6; 
𝑙 =

𝑑𝑏
1.36𝑇𝑎−0.28

ℎ = 1.85𝑑𝑏𝑇𝑎
−0.56

} 𝑓𝑜𝑟 6 < 𝑇𝑎 < 16.5 

𝑇𝑎 = 𝑅𝑒𝑏𝑀𝑜
0.23; 𝑅𝑒𝑏 =

𝑑𝑏𝑢𝑏𝜌𝑙
𝜇𝑙

; 𝑀𝑜 =
𝑔𝜇𝑙

4

𝜌𝑙𝜎𝑙
3 

 

Nedeltchev 

and Schumpe 

[461] 
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Table A-8 (continued) 

System Conditions Correlation Reference 

  

𝑓𝑐 = 0.124𝐸�̈�
0.94 (

𝜌𝑔

𝜌𝑔
𝑟𝑒𝑓
)

0.15

= 0.124 (
𝑔(𝜌𝑙 − 𝜌𝑔)𝑑𝑏

2

𝜎𝑙
)

0.94

(
𝜌𝑔

1.2
)
0.15

 

𝑓𝐵 =
𝑢𝑔𝐴𝑐

𝑉𝑏
;  𝑉𝑏 =

𝜋𝑑𝑏
3

6
=
4

3
𝜋 (
𝑙

2
)
2 ℎ

2
 

 

H2, CO, N2 CH4, Isopar-

M. Hexanes – Glass 

beads, Iron Oxide 

𝑢𝑔: 0.0035 − 0.574 𝑚/𝑠 

𝐶𝑉: 0 − 36 𝑣𝑜𝑙.% 

𝑇: 275 − 538 𝐾 

𝑃: 0.1 − 15 𝑀𝑃𝑎  

𝜌𝑠: 700 − 4000 𝑘𝑔/𝑚
3 

𝑑𝑝: 5 − 300 𝜇𝑚 

𝜌𝑙: 633.4 − 1583 𝑘𝑔/𝑚
3 

𝜇𝑙: 0.189 − 398.8 𝑚𝑃𝑎 ∙ 𝑠 

𝜎𝑙: 8.4 − 75 𝑚𝑁/𝑚 

𝑑𝐶: 0.0382 − 5.5 𝑚 

𝑘𝐿𝑎 = 0.18𝑆𝑐
0.6 (

𝜌𝑙𝜂𝑔

𝑀𝑤𝑙
)
−2.84

(𝜌𝑔𝑢𝑔)
0.49

×𝑒𝑥𝑝[−2.66𝐶𝑉] 
Behkish et al. 

[9] 

He, N2 – Paraffins 

mixture, C12-C13, Light 

F-T Cut, Heavy F-T- Cut 

– Alumina, Puralox 

Alumina, Iron oxide 

𝑢𝑔: 0.14 − 0.26 𝑚/𝑠 

𝐶𝑠: 0 − 20 𝑣𝑜𝑙.% 

𝑇: 330 − 530 𝐾 

𝑃: 8 − 30 𝑀𝑃𝑎  

𝜌𝑠: 3218 − 4000 𝑘𝑔/𝑚
3 

𝑑𝑝: 1.5 − 140 𝜇𝑚 

𝜌𝑙: 631.3 − 779.5 𝑘𝑔/𝑚
3 

𝜇𝑙: 0.27 − 9.96 𝑚𝑃𝑎 ∙ 𝑠 

𝜎𝑙: 13 − 27 𝑚𝑁/𝑚 

𝑑𝐶: 0.3 𝑚; ℎ𝐶: 3 𝑚 

𝑘𝐿𝑎

= 7.99×10−9
𝜌𝑙
1.82𝜌𝑔

0.27𝑢𝑔
0.387𝛤0.173

𝜇𝑙
0.25𝜎𝑙

0.976𝑀𝑤𝑔
0.02 (

𝑃𝑇
𝑃𝑇 − 𝑃𝑆

)
0.242

(
𝑑𝐶

𝑑𝐶 + 0.3
)
0.1

×𝑒𝑥𝑝[−1.3𝐶𝑝 + 0.8𝐶𝑝
2 − 𝐶𝑝

3 − 1675.7𝑑𝑝 + 0.176𝑋𝑊] 

Sehabiague et 

al. [81] 
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Table A-9: Heat transfer correlations applicable to SBCRs  

Correlation Reference 
𝑁𝑢(𝑑𝑅) = 34.7𝑅𝑒𝐺,𝑑𝑅

0.22    𝑓𝑜𝑟 𝑅𝑒𝐺,𝑑𝑅 > 150 

𝑁𝑢(𝑑𝑅) = 22.4𝑅𝑒𝐺,𝑑𝑅
0.36    𝑓𝑜𝑟 𝑅𝑒𝐺,𝑑𝑅 > 150 

Kölbel et al. [497] 

𝑆𝑡𝑆𝑢𝑠 = 0.124 [(𝑅𝑒𝐺𝐹𝑟𝐺𝑃𝑟𝑆𝑢𝑠
2.5)

1/3
]
−0.66

 
Kölbel and 

Langemann [498] 

𝛼𝑊 = 8850𝑢𝐺
0.22 Fair et al. [118] 

𝑆𝑡 = 0.1[(𝑅𝑒𝐺𝐹𝑟𝐺𝑃𝑟𝐿
2)1/3]

−2/3
 Kast [499] 

𝑆𝑡 = 0.11[(𝑅𝑒𝐺𝐹𝑟𝐺𝑃𝑟𝐿
2.48)1/3]

−0.69
 Burkel [500] 

𝑆𝑡 = 0.11×1.25 [(𝑅𝑒𝐺𝐹𝑟𝐺𝑃𝑟𝐿
2.5)

1/3
]
−0.667

 
Shaykhutdinov et 

al. [501] 

𝑆𝑡 = 0.418(𝑅𝑒𝐺𝐹𝑟𝐺𝑃𝑟𝐿
2)−1/3𝑢𝑔

1/4
(
𝜌𝑙 − 𝜌𝑔

𝜌𝑙
)
1/3

(
𝜂𝐿
𝜂𝐿,𝑊

)

−0.05

 

𝑆𝑡 = 0.3(𝑅𝑒𝐺𝐹𝑟𝐺𝑃𝑟𝐿
2)−1/3 (

𝜌𝑙 − 𝜌𝑔

𝜌𝑙
)
1/3

(
𝜂𝐿
𝜂𝐿,𝑊

)

−0.05

 

𝑆𝑡 = 1.2(𝑅𝑒𝐺𝐹𝑟𝐺𝑃𝑟𝐿
2)−1/3(𝑢𝐺𝑢𝐿)

1/4 (
𝜌𝐿 − 𝜌𝐺
𝜌𝐿

)
1/3

(
𝜂𝐿
𝜂𝐿,𝑊

)

−0.05

 

Nishikawa et al. 

[502] 

ℎ = 1977𝑢𝑙
0.070𝑢𝐺

0.059𝑑𝑝
0.106 Baker et al. [503] 

𝑆𝑡 = 0.136[(𝑅𝑒𝐺𝐹𝑟𝐺𝑃𝑟𝐿
1.94)1/3]

−0.81
 Louisi [504] 

𝑆𝑡 = 0.1[(𝑅𝑒𝐺𝐹𝑟𝐺𝑃𝑟𝐿
1.94)1/3]

−0.75
 

Deckwer et al. 

[367, 505] 

ℎ𝑑𝐶
𝑘𝐿

= 0.4 (
𝑑𝐶𝑣𝑐𝜌𝐿
𝜂𝐿

)

2
3
(
𝜇𝑙
𝜇𝑙,𝑤

) (
𝐶𝑝,𝑙𝜇𝑙

𝑘𝑙
)

1/3

 

𝑣𝑐 = 1.31[𝑔𝑑𝐶(𝑢𝐺 − 휀𝐺𝑣𝑏∞)]
1/3 

Joshi and Sharma 

[506] 

𝑁𝑢′ = 0.044(𝑅𝑒′𝑃𝑟)0.78 + 2.0𝐹𝑟𝑔
0.17 

 

Kato et al. [507] 
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Table A-9 (continued) 

Correlation Reference 

𝑁𝑢′ =
ℎ𝑑𝑝휀𝑙

𝐾𝐿(1 − 휀𝑙)
     ,     𝑅𝑒′ =

𝜌𝑙𝑑𝑝𝑢𝑙휀𝑙

𝜇𝑙(1 − 휀𝑙)
 

𝑃𝑟 = 
𝜇𝑙𝐶𝑝𝑙
𝐾𝑙

             , 𝐹𝑟𝑔 =
𝑢𝑔
2

𝑔𝑑𝑝
 

 

ℎ𝑙𝐵
𝑘𝐿

= 0.18(1 − 휀𝐺) (
𝑣𝑐𝑙𝐵
𝜂𝐿

)

2
3
(
𝐶𝑝,𝑙𝜇𝑙

𝑘𝑙
)

1
3
 

𝑣𝑐 = √
1

2.5
(
𝜌𝐿−𝜌𝐺

𝜌𝐿
)𝑔𝑑𝐶𝑢𝐺

3
; 𝑙𝐵 = 𝑑𝐵√

𝜋

6 𝐺

3
 

Zehner [255, 508] 

𝑆𝑡 = 0.0371𝑅𝑒𝐺
−0.17𝐹𝑟𝐺

−0.32𝑃𝑟𝐿
−0.46 

Wendt [509] 

𝑆𝑡 = 0.11[(𝑅𝑒𝐺𝐹𝑟𝐺𝑃𝑟𝐿
2)1/3]

−0.75
 

𝑆𝑡𝑆𝑢𝑠 = 0.12 [(𝑅𝑒𝐺,𝑆𝑢𝑠𝐹𝑟𝐺𝑃𝑟𝑆𝑢𝑠
2 )

1/3
]
−0.75

 

Michael [510] 

𝑆𝑡𝑚3 = 𝑆𝑡𝑚2 = 0.1234𝑅𝑒𝑚2
−0.305𝑃𝑟−2/3 

Chiu and Ziegler 

[511] 

ℎ = 2290𝑢𝑔
0.1𝑢𝑔

0.05𝜇𝑙
−0.18𝑑𝑝

0.04 
Kang et al. [512] 

ℎ3
ℎ2
= 1 + 0.0413 (

𝑢𝑔

𝑢𝑙
)
0.3

(
(𝑑𝑝/𝐷𝑐)(𝜌𝑠 − 𝜌𝑙)

𝜌𝑙
)

0.61

 
Muroyama et al. 

[513] 

𝑁𝑢 = 0.762𝑅𝑒𝑚
0.646𝑃𝑟0.638𝑈𝑅

0.266𝜙𝑠
−1 (1 −

휀𝑙,2
휀𝑙,3
) 

Chiu and Ziegler 

[514] 

𝑁𝑢 = 0.036𝑅𝑒𝑙
0.81𝑃𝑟0.65 Kang et al. [515] 

ℎ = 2.13 (10−4)𝑢𝑔
0.338𝑢𝑙

0.54𝜌𝑙
1.235𝜇𝑙

0.162𝐾𝐿
0.04𝐶𝑝,𝑙

1.04𝑑𝑙
0.930 ∙ (𝜌𝑠 − 𝜌𝑙)

−0.357 

Saberian-

Broudjenni et al. 

[516] 
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Table A-9 (continued) 

Correlation Reference 

ℎ = 0.0647 [𝐾𝑙𝜌𝑙𝐶𝑝,𝑙 (
((𝑢𝑙 + 𝑢𝑔)(휀𝑙𝜌𝑙 + 휀𝑔𝜌𝑔 + 휀𝑠𝜌𝑠) − 𝑢𝑙𝜌𝑙)

휀𝑙𝜇𝑙
)

0.5

]

0.5

 Suh et al. [517] 

ℎ = 0.0722 [𝐾𝑙𝜌𝑙𝐶𝑝,𝑙 (
((𝑢𝑙 + 𝑢𝑔)(휀𝑙𝜌𝑙 + 휀𝑔𝜌𝑔 + 휀𝑠𝜌𝑠) − 𝑢𝑙𝜌𝑙)

휀𝑙𝜇𝑙
)

0.5

]

0.5

 Kim et al. [518] 

𝑗𝐻
′ = 0.137𝑅𝑒𝑙,𝑔

′ −0.271 

𝑗𝐻
′ = (

ℎ𝑤
𝜌𝑙𝐶𝑝,𝑙𝑢𝑙

) 휀𝑙𝑃𝑟
2/3    , 𝑅𝑒𝑙,𝑔

′ = 𝑅𝑒𝑙 (
(휀𝑙 − 휀𝑔)

휀𝑙(1 − 휀𝑙 − 휀𝑔)
) 

Muroyama et al. 

[519, 520] 

𝑁𝑢𝑃𝑟𝑙
−1/3

(
𝜇𝑏
𝜇𝑤
)
−0.14

𝑅𝑒𝑙
0.2𝑅𝑒𝑔

0.055 = 10.5𝑒−3.18(10
−4)(𝐶𝑠−22)

2
 Hatate et al. [521] 

𝑆𝑡 = 0.12[(𝑅𝑒𝐺𝐹𝑟𝐺𝑃𝑟𝐿
2.2)1/3]

−0.83
(
𝐷𝑅
𝑑𝑅
)
0.15

(
𝜂𝐿
𝜂𝐿,𝑊

)

0.3

 Korte [222, 522] 

ℎ = 0.1 (𝐾𝐿𝜌𝑙𝐶𝑝,𝑙 (
𝑃𝑣
𝑣𝑙
)
0.5

)

0.5

+ 0.285((
𝐾𝐿𝜌𝑙𝐶𝑝,𝑙휀𝑠

1/3
(𝑢𝑙 − 𝑢𝑚𝑓)

𝜑𝑠𝑑𝑒𝑞
))

0.5

 
Magiliotou et al. 

[523] 

ℎ = 0.0685

(

 
 
𝐾𝐿𝜌𝑙𝐶𝑝,𝑙

(

 
(𝑢𝑙 + 𝑢𝑔) {([1 − (

𝑉𝑓/𝑉𝑆
(1 + 𝑉𝑓/𝑉𝑆)

)] 휀𝑠𝜌𝑠 + 휀𝑓𝜌𝑓 + 휀𝑔𝜌𝑔 + 휀𝑙𝜌𝑙) − 𝑢𝑙𝜌𝑙}𝑔

휀𝑙𝜇𝑙
)

 

0.5

)

 
 

0.5

 

0.02 ≤ 𝑢𝑔 ≤ 0.14 𝑚𝑠
−1, 0.02 ≤ 𝑢𝑙 ≤ 0.09 𝑚𝑠

−1 

1 ≤ 𝑑𝑝 ≤ 6 𝑚𝑚, 0 ≤
𝑉𝑓
𝑉𝑠
≤ 0.2, 1500 ≤ 𝜌𝑓 ≤ 1800 𝑘𝑔/𝑚

3 

Kim et al. [524] 

𝑁𝑢 = 0.042𝑅𝑒𝑙
0.72𝑃𝑟𝑙

0.86𝐹𝑟𝑔
0.067 

0.01 ≤ 𝑢𝑔 ≤ 0.14 𝑚𝑠−1, 1.27 ≤ 𝑢𝑙 ≤ 9 𝑐𝑚𝑠
−1 

3.7 ≤ 𝜇𝑙 ≤ 300 𝑚𝑃𝑎, 𝑑𝑝 = 3, 5 𝑚𝑚 

Zaidi et al. [525] 
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Table A-9 (continued) 

Correlation Reference 
ℎ = 1800𝑢𝑔

0.11𝜇𝑒𝑓𝑓
−0.14𝑢𝑙

1.03(0.65− 𝑙)𝑑𝑝
0.58( 𝑙−0.68) 

0.01 ≤ 𝑢𝑔 ≤ 0.14 𝑚𝑠
−1, 0.013 ≤ 𝑢𝑙 ≤ 0.09 𝑚𝑠

−1 
 

ℎ𝑤 = 0.0035(𝑘𝑠𝑙𝜌𝑠𝑙𝐶𝑝,𝑠𝑙)
0.5
(
𝜌𝑠𝑙𝑔

𝜇𝑠𝑙
)
0.47

𝑢𝐺
0.25 Saxena [526] 

𝑁𝑢′ = 5.56(10)2(𝑅𝑒′𝑃𝑟)0.709 (
𝜌𝑠 − 𝜌𝑙
𝜌𝑠

)
0.156

 

𝑁𝑢′ =
ℎ𝑎𝑣,2𝑑𝑝휀𝑙

𝐾𝐿(1 − 휀𝑙)
     , 𝑅𝑒′𝑃𝑟 =

𝑑𝑝𝑢𝑙𝜌𝑙𝐶𝑝𝑙

𝐾𝐿(1 − 휀𝑙)
 

59.96 ≤ 𝑅𝑒′𝑃𝑟 ≤ 15,472.7  (𝑓𝑜𝑟 𝑃𝑟 = 5.83)          ,      1.04 ≤ 𝜌𝑠 ≤ 2.5 𝑔𝑐𝑚
−3 

Kumar et al. [527] 

𝑆𝑡 = 0.037 [(𝑅𝑒𝑠𝑙𝐹𝑟𝑃𝑟𝑠𝑙
1.87 (

휀𝑔

1 − 휀𝑔
))]

−0.22

 Yang et al. [488] 

𝑆𝑡 = 𝐴(𝑅𝑒𝐹𝑟)𝐵𝑃𝑟𝐶 (
𝑥

𝐻
)
𝐷

(
𝑟

𝑅
)
𝐸

 Kantarci et al. [528] 

𝑆𝑡 = 0.1 [𝑃𝑟2𝑅𝑒𝐹𝑟
𝜇𝑏
𝜇𝑙

𝑃𝑉
𝑔𝜌𝑙𝑢𝑙

]
−0.25

 Kskrao [529] 

ℎ𝑑𝐶
𝑘𝑙

= 0.084 (
𝑑𝐶𝑣𝑐𝜌𝐿
𝜂𝐿

)
0.8

(
𝐶𝑝,𝑙𝜇𝑙

𝑘𝑙
)

1/3

(
𝜇𝑙
𝜇𝑙,𝑤

)

0.14

 

𝑣𝑐 = 0.21√𝑔𝑑𝐶 (
𝑢𝑔
3

𝑔𝜂𝑙
)

0.125

 

ℎ(𝑟) = ℎ (1 − (
𝑛 − 1

𝑛
) (
𝑟

𝑅
)
𝑛

) 

Where recommended value of n = 1.4 

Jhawar and Prakash 

[530] 
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Table A-10: Liquid-phase axial dispersion coefficient models 

Model Conditions 
𝐮𝐠 

(cm/s) 

𝐮𝐥  

(cm/s) 

𝐝𝐜 

(cm) 
Reference 

𝐷𝐿 =
𝑑𝑐(2𝑢𝑔 + 𝑢𝑏∞)

𝑃𝑒𝑙
 

Air-tap water systems. Concentrated NaCl was 

injected via 20 holes in a spiral tube, tracer 

concentrations were measured using a 

conductivity meter. 

45 
0.88-

2.18 

5.08,14

, 29 

Reith et al. 

[129] 

𝐷𝐿

= {

75.4𝑑𝑐
2𝑢𝑔

1.2 + 17000𝑑𝑜 0 ≤ 𝑢𝑔 ≤ 0.07 𝑚/𝑠

0.14𝑑𝑐

(1 − 휀𝑔)
2 𝑢𝑔 ≥ 0.1 𝑚/𝑠

 

Air-tap water systems. The tracer, 4 N aqueous 

solution of potassium chloride, was poured 

instantaneously and uniformly on the liquid 

surface at the top of column from the tracer 

injector. 

2-26 0 4-16 
Ohki and 

Inoue [531] 

𝐷𝐿 =
𝑔0.5𝑑𝑐

1.5

13
[1 + 6.5 (

𝑢𝑔

√𝑔𝑑𝑐
)

0.8

] 
Used zero order reaction analysis under 

continuous flow conditions of the liquid. 
4-20 0.52 

3, 4.5, 

6.6, 

12.2 

Kato and 

Nishiwaki 

[268] 

𝐷𝐿 = 1.23𝑑𝑐
1.5𝑢𝑔

0.5 

Steady-state experiments with large diameter 

bubble columns. 
0.9-8.92 0.6-1.5 

40.64, 

106.68 

Towell and 

Ackerman 

[279] 

𝐷𝐿 = 𝑔
0.5𝑑𝑐

1.5 [0.06 + 0.55 (
𝑢𝑔

√𝑔𝑑𝑐
)

0.7

] 
Various gas-liquid systems, liquids were water, 

glycol, methanol and aqueous NaCl, gases were 

air, oxygen, helium and CO2 

0.53-

41.9 
3.5 

15.2, 

30.1, 

60 

Akita and 

Yoshida [83] 

𝐷𝐿 = 0.692𝑑𝑐
1.4𝑢𝑔

1/3
 

Air-Water system. The dispersion coefficient 

was measured using the stationary method using 

both a dye and a heat source. 

0.5-15 0.2-0.8 15 Badura [532] 

𝐷𝐿 = 𝑑𝑐
1.25(0.15 + 0.69𝑢𝑔

0.77) (
10−3

𝜂𝑙
)

0.12

 

Impulse injection with KCl solution as tracer. 

Two bubble columns (19 and 10 cm diameter, 

240 and 150 cm high). Air was used for the gas 

phase, water, aqueous methanol and aqueous 

cane sugar solutions used for the liquid phase. 

Temperature range of 12.5 – 20 oC. 

4.3-33.8 0 10, 19 

Hikita and 

Kikukawa 

[533] 
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Table A-10 (continued) 

Model Conditions 
𝐮𝐠 

(cm/s) 

𝐮𝐥  

(cm/s) 

𝐝𝐜 

(cm) 
Reference 

𝐷𝐿 = 0.678𝑑𝑐
1.4𝑢𝑔

0.3 

Different gas distributors. Liquid phases 

investigated were tap water, aqueous solutions of 

sodium sulfate and sodium chloride, as well as 

aqueous solutions of molasses with various 

concentrations. Gas phase was oxygen. Steady 

and impulse injection with NaCl solution as 

tracer. 

5-12 0.71 15, 20 
Deckwer et 

al. [86] 

𝐷𝐿 = 0.33𝑑𝑐
4/3(𝑔𝑢𝑔)

1/3
 

Semi theoretical model based on isotropic 

turbulence model for eddy diffusivity, correlated 

to experimental data from literature. 

0.3-45 - 8.2-107 
Baird and 

Rice [253] 

𝐷𝐿 = 0.9𝑑𝑐
1.5[ℎ𝐶(𝑢𝑔 − 휀𝑔𝑉𝑠)]

1/3
 

𝑉𝑠 = 0.164(1 − 휀𝑔)
1.39

(1 + 2.25휀𝑔
3) 

N/A - - - 

Field and 

Davidson 

[269] 

𝐷𝐿 = 0.33(𝑉𝐶 + 𝑢𝐿)𝑑𝐶  

𝑉𝐶 = 1.31 [𝑔𝑑𝐶 (𝑢𝑔 −
휀𝑔

1 − 휀𝑔
𝑢𝑙

− 휀𝑔𝑢𝑏∞)]

1/3

 

Theoretical derivation based on the multiple 

circulation cell model of a bubble column. The 

height to diameter ratio of the circulation cell and 

the column was taken to be 0.8 rather than 1.0. 

- - - 
Joshi and 

Shah [534] 

𝐷𝐿 = 𝑑𝑐
1.5𝑢𝑔

0.25 (0.291 +
0.341

(1 − 0.5𝑢𝑔
0.5)

2) Theoretical derivation. - - - 
Miyauchi et 

al. [134] 

𝐷𝐿 = 0.068(𝑔𝑢𝑔)
3/8
𝑑𝑐
1.5𝑢𝑙

−1/8
 

Theoretical derivation based on the assumption 

of the validity of the Pe = 2 analogy, developed 

for fixed bed, to bubble columns. 

- - - 
Riquarts 

[535] 

𝐷𝐿 ∝ 𝐷𝑐
1.5 

𝐷𝐿 ∝ 𝑢𝑔
1/3

 

Steady injection, heat tracer method. Systems 

investigated were air/water/CO2, N2/n-

propanol/CO2 and air/glycol. 

0.5-18 0-6 10 

Mangartz and 

Pilhofer 

[536] 
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Table A-10 (continued) 

Model Conditions 
𝐮𝐠 

(cm/s) 

𝐮𝐥  

(cm/s) 

𝐝𝐜 

(cm) 
Reference 

𝐷𝐿 = 0.5×0.368𝑔
1/3𝑑𝑐

4/3
𝑢𝑔
1/3

 
Theoretical calculation based on the multiple 

circulation cell model of a bubble column. 
- - - Zehner [127] 

𝐷𝐿 = 0.606𝑑𝐶(
𝑔𝑢𝑔ℎ𝑙𝑜

4 +
70

𝑅𝑒0.25
ℎ𝑙𝑜
𝑑𝐶

)

1/3

 

𝑅𝑒 > 1000,
ℎ𝑙𝑜
𝑑𝐶

> 3 

Theoretical calculation using microscopic and 

macroscopic balances. 
- - - 

Walter and 

Blanch [133] 

𝐷𝐿 ∝ 𝑑𝐶
1.4 

Steady injection method using both heat and 

NaCl as tracers. 
1.5-30 0.2-4.5 6.3 

Wendt et al.  

[509] 

𝐷𝐿 = 0.343𝑛
−8/3𝑔1/3𝑑𝑐

4/3
𝑢𝑔
1/3

 

Measured dispersion coefficients in several 

Newtonian and non-Newtonian liquids (water, 

MC, CMC-1, CMC-2, and Separan) in a 0.23 m 

diameter, 1.22 m high bubble column. Solid 

tracer particles suspended freely in the liquid 

were used to determine the dispersion 

coefficient. 

0.01-5 - 23 

Kawase and 

Moo-Young 

[537] 

𝐷𝐿 = 0.208𝑢𝑔
0.4(𝑑𝑐 + 𝑛𝑡𝑑𝑡)

1.48𝐴𝑓
1.8𝑢𝑙

−0.12 N/A - - - 
Bernemann  

[226] 

𝐷𝐿 = 0.632𝑑𝑐
1.25

𝑢𝑔

휀𝑔
 

Tap water, aqueous alcohol and CMC solutions 

of lower concentrations were used as the liquid 

phase. Dispersion coefficients were measured by 

detecting tracer gas concentration in the 

quadrupole mass spectrometer. Helium, argon 

and carbon dioxide were used as the tracer gases. 

1-18  15, 25 Kantak [130] 

𝐷𝐿 ∝ 𝑑𝑐
𝑛; 

𝑛

𝑛𝑜
= 1− 0.11𝑙𝑛 (

𝜌𝑔

𝜌𝑔,𝑜
) 

Thermal dispersion, water and hydrocarbon as 

the liquid phase, air as the gas phase. 
2-20 

0.34 -

1.0 
5.08 

Yang et al. 

[55] 
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Table A-11: Liquid-phase radial dispersion coefficient investigations 

Description ug (cm/s) ul  (cm/s) dc (cm) Reference 

Air-tap water systems. A steady tracer stream was introduced by a single tube at 

the axis of the column; radial dispersion was obtained by measuring the 

concentration downstream of the injection point at several distances from the axis 

of the column. The radial dispersion coefficient was found to be a factor 10 

smaller than the axial dispersion coefficient at the same superficial gas velocity.  

45 0.88-2.18 14, 29 Reith et al. [129] 

Air-tap water system in a 5-cm co-current air-water bubble column were 

investigated using the steady-state, point-source tracer injection technique. Radial 

dispersion coefficients were found to be a factor of 10 times smaller than the axial 

dispersion coefficient for the same gas and liquid velocities. 

1.41 - 6.72 0.748 - 1.275 5 Eissa et al. [128] 

Air-tap water and air/sea water systems were used. Measured radial dispersion in 

a 2.3 m tall, 0.193 m diameter bubble column bioreactor. For otherwise equal 

conditions, the radial dispersion coefficient value was typically only about 1% of 

the axial value 

0.062 -5.1 0 19.3 Rubio et al. [131] 
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Table A-12: Solid-phase dispersion coefficient models 

Model Conditions Reference 

PeS =
ugdc

dp

= [1 + 0.009Res (
ug

gdC
)
−0.8

]
13(ug/√gdC)

1 + 8(ug/√gdC)
0.85 

For low Froude number and large particle diameters. 

Glass beads, ρp = 2520 kg/m
3, 75.5 < dp < 163 μm 

Cs = 48 − 202 kg/m
3 

Kato and Nishiwaki 

[268] 

ugdc

dp
= 10(

ug

gdC
)
0.76

 
Glass beads, 1 < dp < 125 μm, 

Cs = 3.1 − 62 kg/m
3 

Kojima et al. [108] 

ugdc

dp
= 7.7 (

Frg
6

Reg
)

0.098

+ 0.019Rep
1.1 

Glass beads, ρp = 2420 kg/m
3, 88 <  dp < 105 μm 

Cs = up to 420 kg/m
3 

O’Dowd et al. [208] 

ugdc

dp
= 9.6 (

Frg
6

Reg
)

0.1114

+ 0.019Rep
1.1 

Glass beads, ρp = 2420, 3990 kg/m
3, 48.5 <  dp <

164 μm 

Cs = up to 420 kg/m
3 

Smith and Reuther 

[538] 



 

241 

Table A-13: Literature F-T SBCR empirical models [46, 126] 

Authors/Ref. Kinetics 
Species 

involved in 
MB 

Gas Phase Liquid/Slurry 
Phase 

Solid 
Phase Energy Gas 

Consumption 

Steady-
State or 

Transient? LB SB 
Calderbank et 

al. [539] 
F-T, 1st order H2 PF PF Uniform - - - 

Satterfield and 

Huff [540] 
F-T, 1st order H2 PF PM Uniform Isothermal No 

Steady-

State 

Deckwer et al. 

[541] 
F-T, 1st order H2 PF PM Uniform Isothermal Linear f(X) 

Steady-

State 

Deckwer et al. 

[542] 
F-T, 1st order H2 ADM ADM SDM ADM Linear f(X) 

Steady-

State 

Bukur [148] F-T, 1st order H2 PF PM; PF Uniform Isothermal Linear f(X) 
Steady-

State 

Kuo [543] 

F-T, 1st order H2 

PF PF; PM; ADM Uniform Isothermal Linear f(X) 
Steady-

State 
F-T, L-H 

WGS, L-H 

H2, CO, H2O, 

CO2 

Stern et al. [176] F-T, 1st order H2 PF PM Uniform Isothermal No 
Steady-

State 

Leib and Kuo 

[417] 

F-T, L-H 

WGS, L-H 

H2, CO, H2O, 

CO2 
PF Unmixed SDM - Linear f(X) 

Steady-

State 

Stern et al. [267] 

F-T, 1st order 

WGS, 2nd 

order 

H2, CO, H2O, 

CO2, CnHm 
ADM ADM SDM Isothermal 

Overall gas 

MB 

Steady-

State 

Bukur and 

Zimmerman 

[262] 

F-T, L-H 

WGS, L-H 

H2, CO, H2O, 

CO2, CnHm 
PF Unmixed SDM Isothermal 

Overall gas 

MB 

Steady-

State 

Turner and Mills 

[270] 
F-T, 1st order H2 

MCM; PF MCM Uniform Isothermal 
Linear f(X) 

Steady-

State ADM ADM SDM ADM 

Prakash [264] 
F-T, L-H 

WGS, L-H 

H2, CO, H2O, 

CO2 
ADM ADM SDM Isothermal 

Overall gas 

MB 

Steady-

State 
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Table A-13 (continued) 

Authors/Ref. Kinetics 
Species 

involved in 
MB 

Gas Phase Liquid/Slurry 
Phase 

Solid 
Phase Energy 

Gas 
Consumption 

Steady-
State or 

Transient? LB SB 

Leib et al. [544] F-T, 1st order H2 MCM MCM Uniform Isothermal Linear f(X) 
Steady-

State 

Inga and Morsi 

[181] 

F-T, L-H 

WGS, L-H 

H2, CO, H2O, 

CO2 
PF MCM Uniform Isothermal No 

Steady-

State 

Mills et al. [261] F-T, 1st order H2 ADM ADM SDM ADM Linear f(X) 
Steady-

State 

Maretto and 

Krishna [241] 
F-T, L-H H2, CO PF PM PM Uniform Isothermal No 

Steady-

State 

van der Laan et 

al. [56] 

F-T, L-H 

WGS, L-H 

H2, CO, H2O, 

CO2, n-

products 

PF PM PM Uniform Isothermal Linear f(X) 
Steady-

State 

de Swart and 

Krishna [153] 
F-T, 1st order H2 ADM 

AD

M 
ADM SDM ADM Linear f(X) Transient 

Rados et al. 

[150, 265] 
F-T, 1st order 

H2, CO, H2O, 

pseudo-product 
ADM 

AD

M 
ADM Uniform ADM 

Overall gas 

MB 
Transient 

Song et al. [266] F-T, L-H 
H2, CO, H2O, 

pseudo-product 
PF PM Uniform Isothermal 

Overall gas 

MB 

Steady-

State 

Song et al. [545] F-T, L-H 
H2, CO, H2O, 

CO2 
PM PM Uniform Isothermal No 

Steady-

State 

Fernandes [258] 
F-T, L-H 

WGS, L-H 

H2, CO, H2O, 

CO2, n-

products 

PF PM PM Uniform Isothermal Linear f(X) 
Steady-

State 

Iliuta et al. [160, 

263] 

F-T, L-H 

WGS, L-H 

H2, CO, H2O, 

CO2, n-pseudo- 

products 

Core & Annulus ADM ADM 
Overall gas 

MB 

Steady-

State 
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Table A-13 (continued) 

Authors/Ref. Kinetics 
Species 

involved in 
MB 

Gas Phase Liquid/Slurry 
Phase 

Solid 
Phase Energy 

Gas 
Consumption 

Steady-
State or 

Transient? LB SB 

Sehabiague et 

al. [151] 
F-T, L-H 

H2, CO, H2O, 

CO2, N2, n 

products 

ADM 
AD

M 
ADM SDM ADM 

Overall gas 

MB 

Steady-

State 

Wang et al. 

[158] 

F-T, L-H 

WGS, L-H 

H2, CO, H2O, 

CO2, N2, n- 

products 

PF PM PM Uniform Isothermal 
Overall gas 

MB 

Steady-

State 

Guettel and 

Turek  [546] 
F-T, 1st order H2 PF PM Uniform PF Linear f(X) 

Steady-

State 

L-H: Overall reaction rate based on Langmuir-Hinshelwood kinetics. 

ADM: Axial-Dispersion Model 

MCM: Mixing-Cell Model 

SDM: Sedimentation-Dispersion Model 

PF: Plug-Flow 

PM: Perfectly Mixed 

MB: Mass Balance 
1 as reported by Mills et al. [261] 

2 as reported by Bukur and Zimmerman [262] 
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Table A-14: Summary of multiple cell circulation models [285] 

Reference 
Numerical method for the 

continuous phase 
Numerical method for 

the dispersed phase 
Height of circulation 

cells 
Liquid circulation driving 

force 

Freedman [547] Vortex function equation 
Bubble path calculated in 

the known velocity field 

Equal to the column 

height 

Gas distribution partially 

covering cross section 

Rietema and Ottengraf  

[548, 549] 
Laminar, viscous 

Maximum of the energy 

dissipation function 

Only one circulation 

cell 
N/A 

Whalley and Davidson 

[550] 

Equation for the vortex 

function 

Bubble path calculated in 

the known velocity field 

Equal to the column 

diameter 

Gas distribution partially 

covering cross section 

Ueyama and Miyauchi 

[140] 

Analytical with constant 

apparent liquid viscosity 

Assumed distribution 

profile 
N/A N/A 

Joshi and Sharma [256, 

551] 

Equation for the vortex 

function 

Bubble path calculated in 

the known velocity field 

Equal to the column 

diameter 

Gas distribution partially 

covering cross section 

Zehner [127, 255] 

Circulation velocity 

calculated from the drag 

coefficient 

Algebraic equation 

derived using mass 

balance 

Equal to the column 

diameter 
N/A 

Clark et al. [286, 552] 
Difference method, mixing 

lengths 
Bubble path integrated N/A N/A 

Anderson and Rice [287] Von Karman 
Assumed distribution 

profile 
N/A N/A 

Gasche et al. [553] Finite volume, k-ε Finite volume N/A N/A 

Geary and Rice  

[141, 290, 554] 
Mixing lengths 

Assumed distribution 

profile 
N/A N/A 

Grienberger and Hoffmann 

[315] 
Finite volume, k-ε Finite volume 

Only one circulation 

cell along column N/A 
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Table A-14 (continued) 

Reference Numerical method for the 
continuous phase 

Numerical method for 
the dispersed phase 

Height of circulation 
cells 

Liquid circulation driving 
force 

Svendsen et al. [405] Finite volume, k-ε Finite volume 

Only one circulation 

cell along column 

height 

N/A 

Ranade [555] Finite volume, k-ε Finite volume 

Only one circulation 

cell along column 

diameter 

N/A 

Sokolichin et al. [556] 
Finite volume, Laminar 

flow 
Finite volume 

Only one circulation 

cell along column 

height 

Gas distribution partially 

covering cross section 

Millies et al. [285, 557] 
Explicit difference method, 

mixing length 

Transient assumptive 

functions, integrated along 

the characteristics 

Calculated 
Small disturbances of the 

gas distribution 

Delnoij et al. [283, 284] 

Finite elements, Volume 

averaged mass and 

momentum balance 

equations 

Individual Bubble path 

integrated by accounting 

for force balance 

20 circulation cell per 

L/D along column 

height 

Gas distribution partially 

covering cross section 
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Table A-15: CFD modeling of three-phase reactors 

Multiphase model Supporting models/ Simulation conditions Parameters investigated Author 

Multi-fluid Eulerian 

approach for three 

phase fluidized bed 

- Both symmetric and axisymmetric  

- Kinetic theory granular flow model applied for solid phase 

- Gas phase treated as a particulate phase with 4 mm diameter  

- Compared time averaged axial solid 

velocity with experimental data 

- Verified different flow regimes in 

fluidized beds. 

Bahary et al. 

[558] 

Two fluid Eulerian-

Eulerian model for 

three phase bubble 

column 

- 3-D 

- Liquid phase and solid particles modelled as pseudo-

homogeneous phase by modifying the viscosity and density. 

- Included bubble size distribution based on the bubble 

induced turbulent length scale and the local turbulent kinetic 

energy level. 

- Liquid circulation 

- Solid movement 

- Studied variation of bubble size 

distribution 

Grevskott et 

al. [243] 

Multi fluid Eulerian 

approach for three 

phase bubble 

column 

- 2-D axisymmetric  

- Modified drag correlation between liquid and gas phase to 

account for effect of solid particles. 

- Modified drag correlation between solid and liquid phase to 

account for the effect of gas bubbles. 

- Standard k-ε turbulence model 

- Accounted for effect of bubbles on liquid phase turbulence 

- Studied axial variation of gas holdup 

and solid holdup profiles for a wide range 

of superficial gas velocities and solid 

circulation velocities. 

Mitra-

Majumdar et 

al. [244] 

Eulerian-Eulerian 

approach for three 

phase bubble 

column 

- 2-D 

- Pseudo two phase fluid dynamics model based on the time 

averaged Navier-Stokes equation. 

- ksus-εsus-kb-εb turbulence model used to describe and 

calculate the local flow (sus: suspension phase, b: gas phase). 

- Studied effects of: 

o Solid loading 

o Superficial liquid velocity 

o Superficial gas velocity 

- On local flow characteristics such as 

axial liquid velocity and gas holdup. 

- Validated local axial liquid velocity 

and local gas holdup with experimental 

data from tap water-compressed air-resin 

particles system. 

Jianping and 

Shonglin 

[201] 
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Table A-15 (continued) 

Multiphase model Supporting models/ Simulation conditions Parameters investigated Author 

Eulerian-

Lagrangian model 

for three phase 

fluidization 

- 2-D CFD-VOF-DPM 

- Eulerian fluid dynamics method to account for liquid phase 

flow. 

- Dispersed particle method (DPM) to account for solid 

particles behavior. 

- Volume of fluid (VOF) method to account for gas phases. 

- Continuum surface force (CSF) model to account for gas-

liquid coupling. 

-  Surface tension force model to account for particle-bubble 

coupling 

- Newton’s third law to account for particle liquid coupling. 

- Included a close distance interaction model in the particle-

particle collision analysis to account for the liquid interstitial 

effects between colliding particles. 

Studied: 

- Single bubble rise velocity in a liquid 

solid fluidized bed. 

- Bubble wake structure and bubble 

rise velocity in liquid and liquid-solid 

mediums. 

Li et al. [294] 

Multi fluid Eulerian 

approach for three 

phase draft tube 

bubble column 

- 3-D 

- Extended multiphase k-ε turbulence model as developed by 

Kashiwa [559] 

- Drag between solid grains and the gas bubbles was 

modelled identically to drag between liquid and gas bubbles – 

based on the notion that solid particles in the vicinity of gas 

bubbles tend to follow the liquid. 

- Simulated gas volume fractions and 

liquid circulation in draft tube bubble 

column. 

- Validated simulation results with 

experimental measurements of gas 

holdups for three and two fluid flow 

systems (tap water-air-siliceous sand) in a 

an air lift draft tube by Pironti et al. [560] 

Padial et al. 

[561] 

Eulerian-

Lagrangian model 

for three phase 

fluidized bed 

- 2-D 

- Eulerian volume averaged method to describe the liquid 

phase 

- Lagrangian dispersed particle method (DPM) to describe the 

solid particles 

- Volume of fluid (VOF) method to describe the gas bubbles. 

- Studied the effect of pressure and 

solid holdup on the bubble size rise 

characteristics such as the bubble rise 

velocity, bubble shape and bubble 

trajectory. 

Zhang et al. 

[313] 

 



 

248 

Table A-15 (continued) 

Multiphase model Supporting models/ Simulation conditions Parameters investigated Author 

 

- Bubble induced force model to describe the particle –bubble 

coupling interaction 

- Continuum surface force (CSF) model to describe the gas 

liquid coupling interaction 

- Newton’s third law to describe the particle-liquid coupling 

interaction 

- Validated simulation results with 

experimental measurements of bubble rise 

velocities of a gas-liquid system. 

 

Eulerian-

Lagrangian model 

for three phase 

fluidized bed 

- 2-D 

- Eulerian volume averaged method to describe the liquid 

phase 

- Lagrangian dispersed particle method (DPM) to describe the 

solid particles 

- Volume of fluid (VOF) method to describe the gas bubbles. 

- Bubble induced force model to describe the particle –bubble 

coupling interaction 

- Continuum surface force (CSF) model to describe the gas 

liquid coupling interaction 

- Newton’s third law to describe the particle-liquid coupling 

interaction 

- Studied: 

o Single bubble rise behavior in a 

liquid solid suspension. 

o Bubble entrainment by a bubble on 

the surface of the bed. 

o Validated simulation results with 

experimental measurements of bed 

expansion and pressure drop in a water-

air-Pliolite particles fluidized bed by Lin 

et al. [562] 

Zhang et al. 

[563] 

Multi fluid Eulerian 

approach for slurry 

bubble column 

- 3-D 

- Kinetic theory granular flow (KTGF) model for describing 

particulate phase 

- Standard k-ε turbulence model for liquid phase turbulence 

- Studied: 

o Time averaged solid velocity  

o  Volume fraction profiles 

o Normal and shear Reynolds stress 

- Validated simulation results with 

experimental measurements of velocity 

profiles and gas and solid volume 

fractions for a three phase air-water-

Ballotini leaded glass beads system.  

Matonis et al. 

[297] 
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Table A-15 (continued) 

Multiphase model Supporting models/ Simulation conditions Parameters investigated Author 

Multi fluid Eulerian 

approach for slurry 

bubble column 

- Standard k-ε turbulence model for liquid phase turbulence 

- Accounted for the momentum transfer between the 

dispersed phases (gas-solid) through the modified drag model 

of Padial et al. [561] 

- Used a very course grid with average grid length of 0.059 m  

to limit computational load 

- Studied gas and solid holdups 

throughout the SBCR at different 

superficial gas velocities. 

- Validated gas holdup simulations 

against the data of Dziallas [564] 

Michele ad 

Hempel [565] 

Multi-phase 

Eulerian-Eulerian 

model for three 

phase flow in a 

bubble column 

- 2-D 

- Standard k-ε turbulence model for liquid phase turbulence. 

- Kinetic theory granular flow (KTGF) model for describing 

particulate phase 

- Studied the effect of solid loading 

and superficial gas velocity on solid 

distribution. 

- Qualitatively validated simulation 

results with experimental values from an 

air-water-glass beads system 

Rampure et al. 

[566] 

Multi-phase 

Eulerian-Eulerian 

model for three 

phase flow in a 

slurry bubble 

column 

- 2-D 

- Used the kinetic theory of granular flow with a measured 

restitution coefficient to model particulate viscosity 

- Simplified kinetics to incorporate the reaction between 

carbon monoxide and hydrogen to produce methanol 

- Operating conditions are based on the Air Products/DOE La 

Porte’s slurry reactor for methanol synthesis 

- Solids distribution 

- Reactor performance 

Gamwo et al. 

[567] 

Eulerian-

Lagrangian model 

for three phase 

fluidized bed 

- 3-D 

- Locally averaged Navier-Stokes equations are used to 

describe the liquid phase flow outside the gas bubble and the 

gas phase floe inside the gas bubble. 

- Employed a Sub-Grid Scale (SGS) stress model with 

modified coefficients to account for the effect of the bubble 

induced turbulence. 

- Level set method to describe the motion and topological 

variation of the gas bubbles. 

-  

- Studied air bubble formation from an 

orifice and bubble rise velocity 

- Validated simulation results with 

experimental measurements of bubble rise 

velocity for air-water and air-heat transfer 

fluid (Paratherm NF)-solid systems. 

Chen and Fan 

[372] 
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Table A-15 (continued) 

Multiphase model Supporting models/ Simulation conditions Parameters investigated Author 

 
- Lagrangian dispersed particle method (DPM) to describe the 

solid particles 
-   

Modified transport 

equation approach 

for three phase 

bubble column 

- 2-D 

- Modified mixture model for the volume fraction of the 

dispersed phase 

- Ignored particle interactions 

- Implemented Reynolds stress turbulence model. 

- Investigated the time averaged 

vertical mixture velocity and the volume 

fraction of the gas and solid phases. 

Glover and 

Generalis 

[568] 

Multi fluid Eulerian 

approach for three 

phase bubble 

column 

- 3-D 

- Liquid and solid phases modelled as a pseudo homogenous 

phase because of ultrafine nanoparticles. 

- Interface model used for drag, lift and virtual mass. 

- Standard k-ε turbulence model 

- Compared the local time averaged 

liquid velocity and gas holdup profiles 

along the radial position 

Feng et al. 

[296] 

Multi fluid Eulerian 

approach for three 

phase bubble 

column 

- 2-D 

- Multi fluid Eulerian model coupled with a population 

balance equation. (Solid and gas phases considered Eulerian) 

- Accounted for bubble breakup and coalescence using source 

terms in the mass balance 

- Modified k-ε turbulence model for the liquid phase 

- Kinetic theory granular flow (KTGF) model for describing 

particulate phase pressure and stress tensor. 

- Studied back mixing in the liquid 

and gas phase 

- Presented an alternate approach to 

the modeling of three phase floe for an 

L/D ratio of 5. 

Wieman and 

Mewes [569] 

Multi fluid Eulerian 

approach for three 

phase bubble 

column. 

- 3-D 

- Modified gas-liquid drag coefficient based on single bubble 

rise, modified for the effect of the solid phase. 

- Standard k-ε turbulence model for bubble induced 

turbulence 

- Accounted for interphase momentum between the two 

dispersed phases. 

- Validated simulation results with 

experimental measurements of local gas 

and liquid holdup, and liquid velocities 

for a three phase air-water-solid particles 

system by Dziallas et al. [564] 

Schallenberg 

et al. [299] 
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Table A-15 (continued) 

Multiphase model Supporting models/ Simulation conditions Parameters investigated Author 

Multi scale Eulerian 

Lagrangian model 

for thee phase flow  

- 3-D 

- Combined front tracking approach for gas bubbles  

- Discrete particle (DP) approach for solid particles 

- Staggered rectangular 3-D grid using a two-step projection-

correction method with explicit treatment of the convection and 

diffusion terms and implicit treatment of the pressure gradient. 

- Studied bubble rise behavior and 

bubble-particle interaction for single and 

multiple bubble scenarios 

Annaland and 

Kuipers [570] 

Eulerian-

Lagrangian model 

for three phase 

slurry reactor 

- Liquid flow modeled using a volume averaged system of 

governing equations 

- Bubbles and particles modelled using a Lagrangian trajectory 

analysis procedure 

- Bubble-bubble and particle-particle collision are included 

using a hard sphere collision model. 

- Two way phase coupling. Coupling between fluid and 

dispersed phases is implemented using a momentum interaction 

term from the discrete phase to the fluid phase. 

- Accounted for drag, lift, buoyancy and virtual mass forces. 

- Bubble coalescence included in the model using a critical 

Webber number approach. 

Studied: 

-  Transient characteristics of the gas, 

liquid and solid phase flows in terms of 

flow structure and instantaneous 

velocities. 

- Effect of bubble size on variation of 

flow patterns. 

Zhang and 

Ahmadi [298] 

Multi fluid Eulerian 

approach for three 

phase fluidized bed 

- 2-D 

- Gidaspow model for drag 

- Isothermal, reaction free model for mass and momentum 

balances 

Studied: 

- Phase holdups and velocity profiles 

- Effect of liquid velocity on pressure 

drop 

- Effect of liquid velocity on bed 

porosity 

-  

Nguyen et al. 

[571] 

Multi fluid Eulerian 

approach for three 

phase fluidized bed 

reactor 

- 2-D and 3-D 

- Pressure field is assumed to be shared by all three phases, in 

proportion to their volume fraction. 

-  

- Validated simulation results with 

experimental measurements of solid phase 

mean and turbulent velocities for a three 

phase air/tap water/ solid (glass, PVC and  

Panneerselva

m et al. [293] 
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Table A-15 (continued) 

Multiphase model Supporting models/ Simulation conditions Parameters investigated Author 

 

- Momentum of each phase is governed by respective mass and 

momentum conservation equations. 

- Applied closure law to model liquid turbulence, solid 

pressure and interphase momentum exchange 

- Modelled gas-solid interphase drag in the same way as that 

between the continuous and dispersed phase using the model 

developed by Wang et al. [572] 

acetate) bead system by Kiared et al. 

[573], and with experimental 

measurements of gas and liquid phase 

velocities and holdups for a three phase 

air-water-glass beads system by Yu and 

Kim [3, 574] 

 

Multi fluid 

Eulerian-

Lagrangian 

approach for a three 

phase circulating 

fluidized bed 

- 2-D 

- Two fluid model used for coupling between gas and liquid 

phases. 

- Lagrangian Distinct element method (DEM) used to describe 

solid particle motion. 

- Standard k-ε turbulence model 

- Studied: 

o Radial distribution of local liquid 

velocity at various liquid viscosities and at 

various superficial gas velocities. 

o Variation of local solid hold-up in 

radial direction for various superficial gas 

velocities 

- Qualitatively validated simulation 

results with experimental values from an 

air-water-styrene resin beads system 

Cao et al. 

[575] 

Two fluid Eulerian 

approach for a three 

phase slurry reactor 

for petroleum 

hydrosulfurization 

- 2-D 

- Axisymmetric 

- Solid and Liquid combined into a pseudo-liquid phase 

- Difference in density between the catalyst and the slurry 

phase is so small that the catalyst does not settle and the fluid 

velocity is sufficiently small to assume axial symmetry. 

- Mass balance for the two phases (pseudo-liquid and gas) is 

coupled by an overall mass balance. 

- Friction terms used to couple the momentum balance of both 

phases. 

- Standard k-ε turbulence model 

-  

- Validated simulation results with 

experimental measurements of the radial 

variation of the gas and liquid holdups for 

a two phase air-water system by 

Grienberger and Hofmann [315]   

- Studied effect of grid size and 

simulation time on kinetics results 

Matos et al. 

[301] 
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Table A-15 (continued) 

Multiphase model Supporting models/ Simulation conditions Parameters investigated Author 

 

- Implemented hydro-sulfurization reaction kinetics into the 

mass balance 

- Axial velocities at the entrance of the reactor set using 

experimental results by Torvik and Svendsen [314] 

-   

Multi fluid Eulerian 

approach for three 

phase fluidized bed 

contactor 

- 3-D 

- Isothermal energy conditions, no energy equations 

- Neglected momentum transfer between dispersed phases 

- Bubbles are assumed as rigid spheres with a constant 

diameter 

- k-ε turbulence model for liquid phase 

- Investigated the effect of various drag 

force models on phase velocities 

- Studied the effect of : 

o Liquid superficial velocity on the 

axial solid velocity 

o Particle size and density on the axial 

solid velocity 

o Gas velocity and liquid viscosity on 

bed porosity 

o Column diameter on gas holdup, 

liquid holdup and bed porosity. 

Muthiah et al. 

[576] 

Multiphase 

Eulerian approach 

for three phase 

fluidized bed  

- 2-D 

- Introduced the Multiphase particle-in-cell (MP-PIC) method 

for modeling particle dynamics and collisional exchange. 

Solved the solid phase particle distribution function. 

Studied: 

- Mass averaged velocities of solid and 

liquid phases 

- Particle velocity fluctuations 

- Collision time 

- Liquid droplet distribution 

O’Rourke et 

al. [577] 

Two fluid Eulerian 

approach for a three 

phase slurry reactor 

for Fischer Tropsch 

synthesis 

- 2-D/3-D 

- Bubble size distribution predicted using a population balance 

model. 

- Incorporated heterogeneous and homogenous reaction rates 

representing simplified F-T synthesis from Yates and 

Satterfield [317] 

- Turbulence is described by the two equation RNG k-ε model 

Studied: 

- Time averaged Sauter diameter at 

different elevations from inlet 

- Gas holdup at different catalyst 

concentrations 

- Inlet velocity on syngas conversion 

and reactor productivity 

Troshko and 

Zdarvistch 

[316] 
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Table A-15 (continued) 

Multiphase model Supporting models/ Simulation conditions Parameters investigated Author 

 
- Interphase drag exchange coefficient from Ishii and Mishima 

[272] 

- Axial variation of time averaged 

Sauter diameter along the reactor axis for 

different catalyst concentrations 

 

Multi-phase 

mixture approach 

for three phase 

fluidized bed 

reactor 

- Discrete phase method (DPM) to account for gas phase 

behavior. 

- Solid and liquid phases modelled using a simplified  mixture 

model in: phases  move at different velocities, but assume local 

equilibrium over short spatial length scales 

- Second order upwind scheme for discretization of the 

momentum equations. 

- Studied effect of different porous 

models (porous jump vs porous zone) on 

liquid and solid phase velocities. 

- Validated simulation results with 

experimental measurements of pressure 

drop for a three phase air/water/solid 

system. 

Sivaguru et al. 

[300] 

Multi fluid Eulerian 

approach for three 

phase fluidized bed 

reactor 

- 3-D pressure based solver 

- Triple Euler model 

- Applied closure law to model liquid turbulence, solid 

pressure and interphase momentum exchange 

- Isothermal, reaction free model for mass and momentum 

balances 

- Accounted for liquid-solid, gas-liquid and gas –solid drag 

forces. 

- k-ε turbulence model 

- Studied: 

o Significance of implementing 

different numerical schemes. 

o Accuracy of different k-ε turbulence 

models (standard, RNG, realizable) 

o Solid wall boundary conditions 

o Granular temperature models  

- Validated simulation results with 

experimental measurements of axial solid 

velocity and gas holdup for a three phase 

air-tap water-glass bead system by Kiared 

et al. [573], and  Yu and Kim [3] 

Hamidipour et 

al. [292] 

Multi fluid Eulerian 

approach for three 

phase slurry bubble 

column 

- 3-D transient simulation 

- Wen-Yu and Gidaspow models used for liquid-solid drag 

force correlations [578]. 

- Schallenberg and Syamlal-O’Brien models used for gas-solid 

drag force correlations [299] 

- Turbulence is described by the two equation RNG k-ε model.  

- Disregarded heat and mass transfer effects. 

- Validated simulation results using 

different drag models with experimental 

measurements of axial gas velocity and 

holdup for a three phase air-water-catalyst 

system by Wu et al. [144] 

Silva Jr. et al. 

[302] 
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Table A-16: Commonly used gas-liquid drag models 

System Drag Coefficient Correlation Reference 

Various experimental data for 

air-water 
𝐶𝐷 =

{
 
 

 
 29.1667

𝑅𝑒𝑏
−
3.8889

𝑅𝑒𝑏
2 + 1.222            1 < 𝑅𝑒𝑏 < 10

(
24

𝑅𝑒𝑏
) (1 + 0.15𝑅𝑒𝑏

0.687)             10 < 𝑅𝑒𝑏 < 200

 Clift et al. [171] 

Ambient air-water, air-dilute 

NO2SO3 
𝐶𝐷 =

{
 
 

 
 (

24

𝑅𝑒𝑏
) (1 + 0.1𝑅𝑒𝑏

0.75)            𝑁𝜇 < 36√2
(1 + 0.1𝑅𝑒𝑏

0.75)

𝑅𝑒𝑏
2

2

3
√𝐸ö𝑏                                          𝑁𝜇 ≥ 36√2

(1 + 0.1𝑅𝑒𝑏
0.75)

𝑅𝑒𝑏
2

 Ishii and Zuber [319] 

Derivation for spherical 

bubble in an unbounded shear 
flow 

𝐶𝐷 = (
16

𝑅𝑒𝑏
) {1 + [

8

𝑅𝑒𝑏
+ 0.5 (1 +

3.315

√𝑅𝑒𝑏
)]

−1

} 
Mei and Klausner 

[323] 

Ambient air-tap water-glass 

beads/ non-spherical silica 

For Pure Liquid: 

𝐶𝐷 = 𝑚𝑎𝑥

[
 
 
 

𝑚𝑖𝑛 (
16

𝑅𝑒𝑏
(1 + 0.15𝑅𝑒𝑏

0.687),
48

𝑅𝑒𝑏
) ,
8

3

𝐸ö𝑏
𝐸ö𝑏 + 4

(
1 + 17.67𝛼𝑠

9
7

18.67𝛼𝑠

3
2

)

2

]
 
 
 

 

 

For a slightly contaminated liquid: 

𝐶𝐷 = 𝑚𝑎𝑥

[
 
 
 

𝑚𝑖𝑛 (
24

𝑅𝑒𝑏
(1 + 0.15𝑅𝑒𝑏

0.687),
72

𝑅𝑒𝑏
) ,
8

3

𝐸ö𝑏
𝐸ö𝑏 + 4

(
1 + 17.67𝛼𝑠

9
7

18.67𝛼𝑠

3
2

)

2

]
 
 
 

 

 

For contaminated systems: 

𝐶𝐷 = 𝑚𝑎𝑥 [
24

𝑅𝑒𝑏
(1 + 0.15𝑅𝑒𝑏

0.687),
8

3

𝐸ö𝑏
𝐸ö𝑏 + 4

] 

Tomiyama et al. [322] 

Air-water system at 12-70 oC 

Ambient air-water-glass beads 

system with solid loading of 7 

– 20% 

𝐶𝐷 =
5.645

𝐸ö𝑏
−1 + 2.835

 Grevskott et al. [243] 
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Table A-16 (continued) 

System Drag Coefficient Correlation Reference 

Iron particle in glycerin/water 

shear flow 
𝐶𝐷 =

{
 

 
16

𝑅𝑒𝑏
                                         𝑅𝑒𝑏 < 1

(
16

𝑅𝑒𝑏
) (1 + 0.15𝑅𝑒𝑏

0.5)        𝑅𝑒𝑏 ≥ 1

 Kurose et al. [320] 

Air-tap water/ propanol 𝐶𝐷 =

{
 
 
 

 
 
 

16

𝑅𝑒𝑏
                                                                               𝑅𝑒𝑏 ≤ 1.5

14.9

𝑅𝑒𝑏
0.78                                                                 1.5 ≤ 𝑅𝑒𝑏 ≤ 80

48

𝑅𝑒𝑏
(1 −

2.21

√𝑅𝑒𝑏
) + (1.86×10−15)𝑅𝑒𝑏

4.756 80 ≤ 𝑅𝑒𝑏 ≤ 1500

2.61                                                                                    𝑅𝑒𝑏 ≥ 1500

 Lain et al. [321] 

Statistical analysis of small 

bubbles in isotropic 
turbulence 

𝐶𝐷 =

{
  
 

  
 

24

𝑅𝑒𝑏
                                                                    𝑅𝑒𝑏 ≤ 1

(
24

𝑅𝑒𝑏
)(1 +

3.6

𝑅𝑒𝑏
0.313 (

𝑅𝑒 − 1

19
)
2

)           1 ≤ 𝑅𝑒𝑏 ≤ 20

(
24

𝑅𝑒𝑏
)(1 + 0.15𝑅𝑒𝑏

0.687)                                   𝑅𝑒𝑏 > 20

 Snyder et al. [324] 
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Table A-17: Commonly used liquid-solid and gas-solid drag models 

System Drag Coefficient Correlation Reference 

Smooth spherical particle in 

stagnant fluid 𝐶𝐷 = {
(
24

𝑅𝑒𝑝
) (1 + 0.15𝑅𝑒𝑝

0.687)    𝑅𝑒𝑝 < 1000

0.44                                           𝑅𝑒𝑝 ≥ 1000

 
Schiller and 

Naumann [6] 

Sand/silt-Water system 

dp =  0.001 − 0.01 m 
𝐶𝐷 = (0.63 +

4.8

√𝑅𝑒𝑝
)

2

 Dalla Ville [579] 

Smooth spherical particle in 

stagnant fluid 

dp = 0.0025 m 
𝐶𝐷 =

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

24

𝑅𝑒𝑝
                                                          𝑅𝑒𝑝 < 0.1

22.73

𝑅𝑒𝑝
+
0.0903

𝑅𝑒𝑝
2 + 3.69                       0.1 < 𝑅𝑒𝑝 < 1

29.1667

𝑅𝑒𝑝
−
3.8889

𝑅𝑒𝑝
2 + 1.222                  1 < 𝑅𝑒𝑝 < 10

46.5

𝑅𝑒𝑝
−
116.67

𝑅𝑒𝑝
2 + 0.6167                       10 < 𝑅𝑒𝑝 < 100

98.33

𝑅𝑒𝑝
−
2778

𝑅𝑒𝑝
2 + 0.3644                          100 < 𝑅𝑒𝑝 < 1000

148.62

𝑅𝑒𝑝
−
4.75×104

𝑅𝑒𝑝
2 + 0.357           1000 < 𝑅𝑒𝑝 < 5000

−490.546

𝑅𝑒𝑝
+
57.87×104

𝑅𝑒𝑝
2 + 0.46         5000 < 𝑅𝑒𝑝 < 10000

−1662.5

𝑅𝑒𝑝
+
5.4167×106

𝑅𝑒𝑝
2 + 0.5191  10000 < 𝑅𝑒𝑝 < 50000

 
Morsi and 

Alexander [580] 
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Table A-17 (continued) 

System Drag Coefficient Correlation Reference 

Various published 

experimental data for glass 
beads/spheres-water/ glycol/ 

glycerol systems 

dp = 0.006 m 

𝐶𝐷 =
1

𝑓2
(0.63 +

4.8

√𝑅𝑒𝑝/𝑓
)

2

 

𝑓 = 0.5 [𝐴 − 0.06𝑅𝑒𝑝 +√0.036𝑅𝑒𝑝
2 + 0.12𝑅𝑒𝑝(2𝐵 − 𝐴) + 𝐴2] 

𝐴 =  𝛼𝑠
4.14   ; 𝐵 = {

0.8𝛼𝑠
1.28 𝛼𝑠 ≤ 0.85

𝛼𝑠
2.65      𝛼𝑠 > 0.85

 

Garside and Al-
Dibouni [581] 

Various published 

experimental data for glass 
beads/spheres-water/ glycol/ 

glycerol systems 

dp = 0.006 m 

𝐶𝐷 =
0.44

𝛼𝑠
2(𝑛−1)

    ; 𝑛 =  
5.1 + 0.27𝑅𝑒𝑝

0.9

1 + 0.1𝑅𝑒𝑝
0.9  

(Richardson and Zaki) 

Garside and Al-

Dibouni [581] 

478 points from various 

published experimental data 

for a wide range of Reynolds 
[395, 582-604] 

𝐶𝐷 =
24

𝑅𝑒𝑝
+
3

16
𝑅𝑒𝑝 < 0.01

𝐶𝐷 =
24

𝑅𝑒𝑝
[1 + 0.1315𝑅𝑒𝑝

(0.82−0.05𝑤)] 0.01 ≤ 𝑅𝑒𝑝 ≤ 20 

𝐶𝐷 =
24

𝑅𝑒𝑝
[1 + 0.195𝑅𝑒𝑝

0.6305] 20 ≤ 𝑅𝑒𝑝 ≤ 260

𝑙𝑜𝑔(𝐶𝐷) = 1.6435 − 1.1242𝑤 + 0.1558𝑤
2 260 ≤ 𝑅𝑒𝑝 ≤ 1500

𝑙𝑜𝑔(𝐶𝐷) = −2.4571 + 2.5558𝑤 − 0.929𝑤
2 + 0.1049𝑤3 1500 ≤ 𝑅𝑒𝑝 ≤ 1.2×10

4

𝑙𝑜𝑔(𝐶𝐷) = −1.9181 + 0.6370𝑤 − 0.0636𝑤
2 1.2×104 ≤ 𝑅𝑒𝑝 ≤ 4.4×10

4

𝑙𝑜𝑔(𝐶𝐷) = −4.3390 + 1.5809𝑤 − 0.1546𝑤
2 4.4×104 ≤ 𝑅𝑒𝑝 ≤ 3.8×10

5

 

𝑤 = 𝑙𝑜𝑔(𝑅𝑒𝑝) 

Clift et al.[171] 

 

 



 

259 

Table A-17 (continued) 

System Drag Coefficient Correlation Reference 

Glass spheres - Ethylene 
glycol 

glass spheres - water 

𝐶𝐷 = (
24

𝑅𝑒𝑝
)(1 + 0.347 (

𝑟𝑜
𝛿
+
1

2
(
𝑟𝑜
𝛿
)
2

)) 

𝑟𝑜
𝛿
=

1

(0.9/(1 − 𝛼𝑠)1/3) − 1
 

Molerus [605] 

Glass Spheres in Glycerin-
Water 

10 cm ID column 

dp = 0.036 

𝐶𝐷 = {
(
24

𝑅𝑒𝑝
) (1 + 0.1𝑅𝑒𝑝

0.75)                                   𝑅𝑒𝑝 < 1000

0.45                                          1000 ≤ 𝑅𝑒𝑝 ≤ 2×10
5

 
Ishii and Zuber 

[319] 

Derived using the 
experimental data from 

Heywood [606, 607] and 

Lapple and Shepherd [608] for 
a wide range of spherical 

particles in Newtonian fluids 

𝐶𝐷 =
24

𝑅𝑒𝑝
10𝐸  

𝐸 = 0.261𝑅𝑒𝑝
0.369 − 0.105𝑅𝑒𝑝

0.431 −
0.124

1 + (𝑙𝑜𝑔(𝑅𝑒𝑝))
2 

Flemmer and 

Banks [609] 

Derived using the same 

experimental data used by 
Clift et al. [171] 

𝐶𝐷 =
24

𝑅𝑒𝑝
(1 + 0.173𝑅𝑒𝑝

0.657) +
0.413

1 + 16300𝑅𝑒𝑝
−1.09 𝑅𝑒𝑝 < 2.6×105 

Turton and 

Levenspiel [610] 

Fitted experimental data [599, 

602, 608, 611]1-5 using the 

modified Rosenbrock method 
[612] 

𝐶𝐷 = (2.25𝑅𝑒𝑝
−0.31 + 0.36𝑅𝑒𝑝

0.06)
3.45

0.01 ≤ 𝑅𝑒𝑝 ≤ 3×10
5 

Khan and 

Richardson 

[613] 

Derived using the same 

experimental data used by 
Clift et al. [171] 

𝐶𝐷 =
24

𝑅𝑒𝑝
(1 + 0.1806𝑅𝑒𝑝

0.6459) +
0.4251

1 + 6880.95𝑅𝑒𝑝
−1 𝑅𝑒𝑝 < 2.6×10

5
 

Haider and 

Levenspiel [357] 

Thermodynamic derivation 

for multiphase turbulent flows 
𝐶𝐷 = (

24

𝑅𝑒𝑝
) (1 + 0.1𝑅𝑒𝑝

0.75)

[
 
 
 
 

1

(1 − (
1 − 𝛼𝑠
0.64356

))

1.6089

]
 
 
 
 

 
Ma and Ahmadi 

[326] 
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Table A-17 (continued) 

System Drag Coefficient Correlation Reference 

Theoretical derivation 

휀𝑔 < 0.8 (Derived using the Wen and Yu[5] Fluidization model) 

𝛽 = 150
(1 − 𝛼𝑔)

2
𝜇𝑔

𝛼𝑔𝑑𝑝
2 + 1.75

𝜌𝑔(1− 𝛼𝑔)|𝑣𝑔 − 𝑣𝑠|

𝑑𝑝
 

휀𝑔 ≥ 0.8 (Derived using the Ergun Pressure Drop correlation [614]) 

𝛽 =
3

4
𝐶𝐷
𝛼𝑔|𝑣𝑔 − 𝑣𝑠|𝜌𝑔(1 − 𝛼𝑔)

𝑑𝑝
 

𝐶𝐷 = {
(
24

𝛼𝑔𝑅𝑒𝑏
)(1 + 0.15(𝛼𝑔𝑅𝑒𝑏)

0.687
)𝛼𝑔

−2.65            𝛼𝑔𝑅𝑒𝑝 < 1000

0.44𝛼𝑔
−2.65                                                         𝛼𝑔𝑅𝑒𝑝 ≥ 1000

 

Gidaspow [242] 

Glass ballotini/ Lead shot- 

bromoform  
0.062 m ID column 

dp = 0.031754 m  

𝐶𝐷 = 0.44𝛼𝑠
−2.65 

Richardson and 

Zaki [615] 

Numerical simulation for two 

phase gas-solid flows 
𝐶𝐷 = 0.44 +

24

𝑅𝑒𝑝
+

6

1 + √ 𝑅𝑒𝑝
 

Zhang and van 

der Heyden 
[327] 
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APPENDIX B 

 
 
 
 
EXPERIMENTAL PROCEDURES AND CALCULATION METHODS 

 
 
 
 

B.1 EXPERIMENTAL PROCEDURES 
 

 

The experimental procedures to obtain the volumetric liquid-side mass transfer coefficients (kLa), 

gas holdup (εG), and the Sauter-mean bubble diameter (d32) are detailed in the following. 

 

 

B.1.1 εG Measurement 
 

 

The hydrostatic method, known also as the manometric method, was used to obtain the gas holdup. 

Once the system reaches thermodynamic equilibrium (steady state), the following procedure for 

obtaining the gas holdup was followed: 

1. The dP cells legs were purged of liquid or slurry and pressurized with the gas which was 

being used. 

2. The hydrostatic pressure was measured at different positions along the height of the reactor 

by opening and closing the corresponding valves. 

3. The computer collected the dP cell readings and calculates the gas holdup at any given 

position along the reactor.  



 

262 

B.1.2 d32 Measurement 
 

 

The Dynamic Gas Disengagement (DGD) technique was employed to obtain the bubble size and 

the bubble size distribution. Once kLa and εG measurements were successfully completed at given 

temperature, the following procedure was followed: 

1. The dP cell legs at given positions were opened. 

2. Using the pneumatically actuated valves, the inlet valve for the gas flow at the bottom of 

the reactor was closed, while the valve located at the top of the reactor was opened, 

directing the gas from the bottom to the top of the reactor, and as a result the gas retained 

in the liquid disengaged. 

3. The dP cell readings were recorded until all the gas bubbles were completely disengaged 

from the liquid or slurry and the pressure leveled off. 

4. The computer collected the dP cell readings and calculated the gas holdup. 

5. The bubble sizes were then calculated using the gas holdup versus time data. 

 

 

B.1.3 kLa Measurement 
 

 

The Transient Physical Gas Absorption technique (TPGA) was employed to obtain kLa for the 

gases into the liquid phase or slurry phase under the operating conditions used. The experimental 

procedure is described below: 

1. A predetermined amount of liquid or slurry was charged into the reactor (95 liters). 

2. The entire system was vacuumed to remove any gases which might be dissolved in the 

liquid-phase. Once the pressure in the reactor reaches the vapor pressure of the liquid phase, 

the vacuum was stopped. 
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3. The reactor content was heated to the desired temperature. 

4. The gas was charged into the supply vessel and an initial mass balance was built. 

5. The gas was then charged to the reactor until the desired pressure was reached. 

6. The cooling water and the drain valves for the compressor were opened. 

7. Once the gas was charged, the compressor was turned on and the gas was being recirculated 

only through the top of the reactor with valve AV-2 open and valve AV-1 closed. The gas 

velocity was adjusted to the desired flow rate, regulated by the gas bypass valve.  

8. The top valve AV-2 was closed while simultaneously opening the bottom gas valve AV-1 

allowing the gas to flow through the liquid or slurry. The reactor pressure was recorded as 

a function of time during the gas absorption in the liquid or slurry phase until 

thermodynamic equilibrium is reached. 

9. Once the system reaches thermodynamic equilibrium, data collection was stopped. 

10. kLa was then calculated from the transient part of the pressure-time data and the gas 

solubility (C*) is obtained from the equilibrium part.  

In order to obtain different kLa at various conditions, Steps 2-8 are repeated. 
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B.2 CALCULATIONS 
 

 

The equilibrium solubility (C*) for the each gas used in the molten reactor wax was calculated 

from the steady-state portion of the pressure decline (Pressure -Time) curve, whereas the 

volumetric liquid-side mass transfer coefficient (kLa) was obtained from the transient portion of 

the same curve. The calculations were performed by building mass balances on the supply vessel 

of the SBCR and the reactor, coupled with the Peng-Robinson Equation of State (PR-EOS).  

The following assumptions were made in order to calculate C* and kLa: 

1. The gas-phase in the preheater (or supply vessel) and reactor behaves as non-ideal gas and the 

Peng-Robinson Equation-of-State (PR-EOS) is applicable.  

2. The gas and liquid phases are well mixed, resulting in homogeneous concentrations for each 

phase. 

3. No gas absorption prior to mixing. 

4. The liquid volume is constant during the absorption process, which is true, if the gas has low 

solubility in liquid-phase. 

 

 

B.2.1 Peng-Robinson EOS 
 

 

The PR-EOS was used to calculate the number of moles of gas in the feed tank before and after 

charging the reactor, and to calculate the number of moles remaining in the reactor after gas 

absorption. A general form of the PR-EOS can be written as: 

𝑃 =
𝑅𝑇

𝜈 − 𝑏
−

𝑎

𝜈2 + 2𝑏𝜈 − 𝑏2
 (B-1) 

This equation can be expressed in terms of the compressibility factor, Z as:  



 

265 

𝑍3 − (1 − 𝐵)𝑍2 + (𝐴 − 3𝐵2 − 2𝐵)𝑍 − (𝐴𝐵 − 𝐵2 − 𝐵3) = 0 (B-2) 

Where: 

𝐴 = 
𝑎𝑃

𝑅2𝑇2
 

(B-3) 

𝐵 = 
𝑏𝑃

𝑅𝑇
 

(B-4) 

𝑧 =  
𝑃𝜈

𝑅𝑇
 

(B-5) 

For a multi-component, one-phase system, the solution of Equation (B-2) results in three real roots 

or one real (single-phase) and two imaginary roots. The coefficients in Equations (B-3) and (B-4) 

are listed below. 

𝑎 =∑∑𝑦𝑖𝑦𝑗𝑎𝑖𝑗
𝑗𝑖

 
(B-6) 

𝑏 =∑𝑦𝑖𝑏𝑖
𝑖

 (B-7) 

𝑎𝑖𝑗 = (1 − 𝛿𝑖𝑗)√𝑎𝑖𝑎𝑗 (B-8) 

𝑎𝑖 = 0.45724
𝑅2𝑇𝑐

2

𝑃𝑐2
[1 + 𝜅[1 − 𝑇𝑅

0.5]] 
(B-9) 

𝑏𝑖 = 0.0778
𝑅𝑇𝑐
𝑃𝑐

 
(B-10) 

𝜅 = 0.37464 + 1.5422𝜔 − 0.26992𝜔2 (B-11) 

Equation (B-1) was used to calculate the number of moles before and after absorption in the gas-

phase in order to calculate the gas solubility. 
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B.2.2 Equilibrium Solubility, C* 
 

 

The equilibrium solubility (C*) is defined as the number of moles of gas absorbed into the liquid 

at equilibrium and can be defined by: 

𝐶𝑖
∗ =

𝑁𝑖,𝐼 − 𝑁𝑖,𝐹
𝑉𝐿

 (B-12) 

Where Ni,I  is the initial number of moles of the gaseous species (i) in the reactor prior to absorption 

and Ni,F is the number of moles of the gaseous species (i) remaining in the reactor at 

thermodynamic equilibrium. Ni, I and Ni, F are calculated as follows: 

𝑁𝑖,𝐼 =
𝑉𝐺

𝑍𝑖,𝐼  𝑅 𝑇𝐼
(𝑃𝑖,𝐼 − 𝑃

𝑆) (B-13) 

𝑁𝑖,𝑓 =
𝑉𝐺

𝑍𝑖,𝐹  𝑅 𝑇𝐹,𝑎𝑣𝑔
(𝑃𝐹𝑖,𝐼 − 𝑃

𝑆) (B-14) 

Where TI is the initial temperature before the start of the absorption and TF,avg is the average 

temperature of the gas phase during the absorption. The volume of the gas phase, VG, is calculated 

by subtracting the reactor volume and the liquid volume as follow: 

𝑉𝐺 = 𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟 − (
𝑚𝑙𝑖𝑞𝑢𝑖𝑑

𝜌𝑙𝑖𝑞𝑢𝑖𝑑
) (B-15) 

In the above equation, mliquid and ρliquid are the mass and density of the liquid-phase, respectively. 

The solubility, C* is then obtained by substituting Equations (B-13) or (B-14) into Equation (B-

15). 

 

 

B.2.3 Gas Holdup, εG 
 

 

The gas holdup was determined using the manometric method (also known as the hydrostatic head 

method) with the following assumptions: (1) the reactor is operating under steady-state condition; 
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(2) the liquid or slurry and gas phases are well mixed in the volume between the 2 dP cell legs; 

and (3) the impact of the frictional effects on the pressure drop is negligible [616, 617]. 

The passage of gas bubbles throughout the slurry phase alters the pressure drop along the column 

which can be expressed by the following expression: 

𝑑𝑃

𝑑ℎ
= −𝜌𝐷𝑔 

(B-16) 

Where ρD is the density of the dispersed phase containing gas, liquid and solid and can be derived 

as: 

𝜌𝐷 = 휀𝐺𝜌𝐺 + 휀𝐿𝜌𝐿 + 휀𝑆𝜌𝑆 (B-17) 

Introducing cV as the volumetric concentration of catalyst in the slurry-phase, the equation above 

becomes: 

𝜌𝐷 = 휀𝐺𝜌𝐺 + (1 − 휀𝐺)[𝑐𝑉𝜌𝑆 + (1 − 𝑐𝑉)𝜌𝐿] (B-18) 

Replacing this expression of ρD in Equation (B-17), the latter can be integrated as follows: 

∫ 𝑑𝑃

𝑃𝑇

𝑃𝐵

= − ∫ (휀𝐺𝜌𝐺 + (1 − 휀𝐺)[𝑐𝑉𝜌𝑆 + (1 − 𝑐𝑉)𝜌𝐿])𝑔𝑑ℎ

ℎ𝑇

ℎ𝐵

 (B-19) 

The lower and higher limits are defined by the position of the dP cell legs on the column. If 

assumption #2 is used, the gas holdup and the catalyst concentration can be considered constant 

between the two dP cell legs leading to: 

𝑃𝑇 − 𝑃𝐵 = −[휀𝐺𝜌𝐺 + (1 − 휀𝐺)[𝑐𝑉𝜌𝑆 + (1 − 𝑐𝑉)𝜌𝐿]]𝑔(𝐻𝑇 −𝐻𝐵) (B-20) 

The pressure difference between the lower and the upper legs is directly measured by the dP cell 

and since the distance between the legs is known, the following expression for gas holdup can be 

written: 
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휀𝐺 =
𝑐𝑉𝜌𝑆 + (1 − 𝑐𝑉)𝜌𝐿

𝑐𝑉𝜌𝑆 + (1 − 𝑐𝑉)𝜌𝐿 − 𝜌𝐺
(1 −

𝛥𝑃𝑐𝑒𝑙𝑙
(𝑐𝑉𝜌𝑆 + (1 − 𝑐𝑉)𝜌𝐿)𝑔𝛥𝐻𝑐𝑒𝑙𝑙

) (B-21) 

 

 

B.2.4 Gas Bubbles Size (db) and the Sauter Mean Bubble Diameter (d32) 
 

 

The Dynamic Gas Disengagement (DGD) technique was used to obtain the Sauter-mean bubble 

diameter. The corresponding gas holdups of the small and large gas bubbles in the SBCR were 

calculated using the technique introduced by Inga and Morsi [369] and successfully used by 

Behkish et al. [618, 619] and Lemoine et al. [620]. This technique relies on the assumption that 

large gas bubbles have greater rise velocity and therefore disengage first, whereas small gas 

bubbles, retained within the slurry or entrained in the wakes created by the flow of the large gas 

bubbles, have smaller rise velocity and therefore they disengage in a later stage. 

The following assumptions were made in order to derive the equations needed for 

calculating the gas bubble sizes: (1) the rate of gas disengagement of each bubble is constant under 

given experimental conditions; (2) once the gas flow is stopped, there is no coalescence or breakup 

of gas bubbles, meaning that the bubbles sizes remain constant as they disengage; and (3) the liquid 

internal circulation does not affect the bubble rise velocity. [621] 

The assessment of the εG with time after the gas flow inside the SBCR has been stopped 

using Equation (B-21) can lead to the estimation of the rate of disengagement of each bubble size. 

An example of the behavior of εG with time is shown in Figure B-1. From t = 0 to t1, the dP cell 

shows no decline in εG, however, no more gas is entering the bottom of the reactor. This means 

that the amount of gas that leaves the dP cell section (from HB to HT) is the same as the one which 

leaves the lower section (from H0 to HB). From t1 to t2, the large gas bubbles having a bubble rise 

velocity (Ub) ranging from ΔHcell/t1 = (HT-HB)/t1 to ΔHcell/t2 disengage from the cell region and 
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during this period, the small gas bubbles present in the lower section (H0 to HB) do not affect the 

dP cell reading. From t2 to t3, the small gas bubbles are disengaging from the cell region (HB to 

HT) and the dP cell reflects the small gas bubbles with Ub ranging from ΔHcell/t2 to ΔHcell/t3. 

The volume of the gas bubbles that leaves the dP cell region (ΔHcell = HT - HB) can therefore 

be represented by the decrease of the total gas holdup as follows: 

𝛥휀𝐺,𝑖 = ∫
𝑑휀𝐺
𝑑𝑡

𝑡𝑖

𝑡𝑖−1

𝑑𝑡 (B-22) 

Consequently the total gas holdup is: 

휀𝐺 =∑𝛥휀𝐺,𝑖

𝑛

𝑖=1

 (B-23) 

The rise velocity of each size of the bubbles can then be calculated at any time (t) from: 

𝑈𝑏,𝑖 =
𝛥𝐻𝑐𝑒𝑙𝑙
𝑡

 (B-24) 

This method is valid when dealing with gas-liquid system, however, the presence of solids should 

be accounted for, due to the settling velocity of the solid particles. In this study, the correlation 

proposed by Fukuma et al. [622], who used up to 50 vol.% glass beads, was used to calculate the 

bubble size db,i: 

𝑑𝑏,𝑖 =
𝑈𝑏,𝑖
2

1.69𝑔
 (B-25) 

The Sauter-mean bubble diameter (d32 or dS) was then calculated using the following equation: 

𝑑32 =
∑ 𝑛𝑖𝑑𝑏,𝑖

3
𝑖

∑ 𝑛𝑖𝑑𝑏,𝑖
2

𝑖

 (B-26) 
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Figure B-1: Dynamic Gas Disengagement in SBCR [619] 
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B.2.5 Volumetric Liquid-Side Mass Transfer Coefficient, kLa 
 

 

The volumetric mass transfer coefficient, kLa, was calculated using the Transient Physical Gas 

Absorption technique. During the absorption of the gas into the liquid, the decline of reactor 

pressure was recorded as a function of time until the equilibrium was reached. 

The rate of mass transfer of the solute gas into the liquid phase can be calculated using the 

two-film model as: 

𝑑𝑛𝐿
𝑑𝑡

= 𝑘𝐿𝑎(𝐶
∗ − 𝐶𝐿)𝑉𝐿  (B-27) 

The interface gas concentration (C*) at a given gas partial pressure was estimated assuming the 

validity of Henry’s law. At any time (t), the gas concentration in the liquid-phase (CL) was 

calculated by building a mass balance on the gas-phase inside the reactor with the Peng-Robinson 

Equation of State (P-R EOS), which uses the experimental pressure decline data and the 

temperature recorded during the gas absorption. The kLa values were then calculated by 

numerically solving Equation (B-27), i.e., by fitting the CL/C* values as function of time.
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APPENDIX C 

 
 
 
 

EFFECT OF OPERATING CONDITIONS ON THE GAS BUBBLES DISTRIBUTION 

 
 
 
 
The dynamic gas disengagement (DGD) technique was used to calculate the bubble size and 

distribution using the data obtained in this study as presented in Section 6.1. The bubble size was 

determined using the bubble rise velocity, which is dependent on the positions of the pressure 

transducers or on the liquid height, as shown in Equation (C-1), and a correlation relating the 

bubble rise velocity to the bubble diameter, such as that by Fukuma et al. [622] (Equation (C-2)).  

𝑈𝑏,𝑖 =
𝛥𝐻𝑐𝑒𝑙𝑙
𝛥𝑡

 (C-1) 

𝑑𝑏,𝑖 =
𝑈𝑏,𝑖
2

1.69(𝑔)
 (C-2) 

Eight different classes were identified in the SBCR based on the bubble diameter as follows: < 1 

mm, 1-3 mm, 3-5 mm, 5-10 mm, 10-15 mm, 15-20 mm, 20-30 mm and > 30 mm. The volume 

fraction and relative frequency of each bubble-class were calculated using Equations (C-3) and 

(C-4), respectively.  

𝑉𝑜𝑙𝑢𝑚𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖 =
∑ 𝑉𝐺,𝑖
𝑑𝑏,𝑖−𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝑑𝑏,𝑖−𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

𝑉𝐺,𝑡𝑜𝑡𝑎𝑙
 (C-3) 
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𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑖 =
∑ 𝑛𝑖
𝑑𝑏,𝑖−𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝑑𝑏,𝑖−𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

𝑛𝑡𝑜𝑡𝑎𝑙
 (C-4) 

The volume fraction represents the ratio between the volume of a certain bubble-class and the total 

volume of the bubbles in the reactor, whereas, the relative frequency represents the ratio between 

the number of bubbles in a certain bubble-class and the total number of bubbles in the reactor. 

Although the relative frequency may not have a direct effect on gas holdup, it is an important factor 

in characterizing the fluid flow and turbulent behavior within the reactor, where the bubbles 

induced turbulences play a significant role. 

 

 

 

 

C.1 EFFECT OF PRESSURE ON GAS BUBBLES DISTRIBUTION 
 

 

Figure C-1 shows that increasing pressure increases the volume fraction of larger gas bubble sizes 

(> 30 mm) and decreases the volume fraction of the intermediate and small gas bubble sizes. Figure 

C-2 also shows that increasing pressure significantly decreases the relative frequency of small gas 

bubbles (< 1 mm) and increases those of the intermediate and large gas bubbles. This behavior can 

be attributed to the fact that increasing pressures decreases the gas bubbles size at the distributor, 

resulting in the formation of more frequent smaller gas bubbles. Also, increasing pressure increases 

the gas momentum, which imparts a greater upward force on the bubbles, thus enhancing their 

departure from the sparger zone. Thus, increasing pressure increases the frequency and momentum 

of gas bubbles, which enhance their coalescence and interaction in the vicinity of the gas sparger, 

resulting in significantly high frequency of the 1-3 mm bubbles. It is important to note that the 

relative frequency of bubbles has a significant effect on the hydrodynamics and flow regimes 

within the reactor.  
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At low pressures, however, the high frequency of small gas bubbles results in low 

interphase pressure gradients and weak turbulence forces, leading to strong tendencies of gas 

bubbles movement towards the reactor walls with low liquid-backmixing. 

 

  
(a) (b) 

Figure C-1: Effect of pressure on bubble volume fraction 
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(a) (b) 

Figure C-2: Effect of pressure on bubble relative frequency 

 

 

 

 

C.2 EFFECT OF SOLID CONCENTRATION  
 

 

Figures C-3 and 10-4 show that increasing solids concentration increases the volume fraction of 

the larger gas bubbles and decreases the relative frequency of smaller gas bubbles. This behavior 

is primarily due to the fact that increasing solid concentration increases the slurry viscosity and 

density, which enhance the gas bubbles coalescence and accordingly the formation of large gas 

bubbles.  

It should be noted that the effect of solid particle-bubble interaction in the SBCR was 

insignificant due to the small particle sizes used in this study (100 µm), which are an order of 

magnitude smaller than that of the lowest bubble-class size present in the reactor. When using 
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large solid particle sizes, however, the effect of particle-bubble interactions on enhancing the gas 

bubbles breakup becomes significant [623]. 

 

  
(a) (b) 

Figure C-3: Effect of solid concentration on bubble relative frequency 
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(a) (b) 

Figure C-4: Effect of solid concentration on bubble relative frequency 
 
 

 

 

C.3 EFFECT OF TEMPERATURE 
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of the large gas bubbles (> 30 mm) and decreases that of the small gas bubbles.  

Similarly, Figure C-6 show that increasing temperature at low solid concentrations slightly 

increases the relative frequency of the smallest gas bubble-class and slightly decreases the relative 

frequency of the rest of the gas bubble classes. Increasing temperature at high solid concentrations, 

however, significantly decreases the relative frequency of the smallest bubble-class and increases 

the relative frequency of the other gas bubble classes. These results are supported by Figures 5-18 
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to 5-20, where increasing temperature at low solid concentrations increased the Sauter mean 

bubble diameter (d32), while increasing temperature at high solid concentrations did not have clear 

effect on d32.  

At high temperatures and high solid concentrations, the change of the gas bubbles behavior 

is primarily due to the competing effects of both temperature and solid concentration on the slurry 

physical properties. Increasing temperature decreases the liquid surface tension and viscosity, 

whereas, increasing solid concentration increase the slurry viscosity. It should be pointed out, 

however, that at high temperatures, the effect of solid concentrations on the slurry viscosity 

decreases significantly as shown in Figure C-7.  

 

  
(a) (b) 

Figure C-5: Effect of temperature on bubble volume fraction 
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(a) (b) 

Figure C-6: Effect of temperature on bubble relative frequency 
 
 

  

(a) (b) 

Figure C-7: Temperature on the slurry density (a) and viscosity (b) at different solid 
concentrations 
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C.4 EFFECT OF SUPERFICIAL GAS VELOCITY 
 

 

Figures C-8 and C-9 show that increasing the superficial gas velocity does not have a significant 

effect on either the bubble size volume fraction or the relative bubble frequency, which is an 

agreement with Figure 5-22, which indicated that the superficial gas velocity did not have a 

noticeable effect on the gas bubbles size within the experimental conditions used. 

 

  

(a) (b) 
Figure C-8: Effect of superficial gas velocity on bubble volume fraction 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

V
o

lu
m

e
 F

ra
c
ti

o
n

db (mm)

ug = 0.26 m/s

ug = 0.16 m/s

Cs = 10 vol%.
P = 2.21 MPa
T = 426 K

0

0.05

0.1

0.15

0.2

0.25

V
o

lu
m

e
 F

ra
c

ti
o

n

db (mm)

ug = 0.28 m/s

ug = 0.19 m/s

Cs = 15 vol%.
P = 2.07 MPa
T = 428 K



 

281 

  

(a) (b) 
Figure C-9: Effect of superficial gas velocity on bubble relative frequency 

 

 

 

 

C.5 EFFECT OF GAS DENSITY 
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(a) (b) 

Figure C-10: Effect of gas density on bubble volume fraction 
 

  
(a) (b) 

Figure C-11: Effect of gas density on bubble relative frequency 
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APPENDIX D 

 
 
 
 

COMPARISON WITH LITERATURE GAS HOLDUP AND SAUTER BUBBLE 

DIAMETER DATA 

 
 
 
 

Figure 7 shows a comparison between our gas holdup data and available experimental values 

obtained by numerous investigators under different operating conditions as given in Table 7. As 

can be observed, the gas holdup data obtained in this work are notably greater than all other data 

depicted in the figure. This behavior can be attributed to the high pressure values used in this work 

(15.6 and 20.5 bar), which increased the gas density, momentum, and thus the gas holdup [121]. 

This behavior is further supported by the behavior of data sets 5 and 6 obtained at lower pressures 

of 11.7 and 7.5 bar by Behkish et al. [8, 80]. Also, the relatively high gas holdup (data set 8) by 

Deckwer et al. [75] obtained at 8 bar and 523 K were measured at low gas velocities (0.005-0.03 

m/s) and no direct comparison with our data could be made. 

The gas holdup (data sets 9 and 15) by Bukur et al. [624-627] obtained at ambient pressure 

(1 bar) and high temperature (538 K) in 0.05 and 0.21 m ID reactors are greater than those (data 

set 7) by Behkish et al. [8, 80] and those (data sets 16 and 17) by Krishna et al. [77] obtained under 

about 1 bar at 298 K. This behavior was expected since increasing temperature decreases the liquid 

properties (viscosity, surface tension and density), which enhance the gas bubbles breakup, leading 
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to the formation of numerous small bubbles, thus increasing the gas holdup. As a matter of fact, 

under 1 bar, Bukur et al. [624-627] reported small bubble diameters between 0.9 to 1.4 mm at 538 

K, whereas Behkish et al. [8, 80] reported bubble diameters between 2-3 mm at 400 K. On the 

other hand, increasing temperature decreases the gas density and its momentum, thus decreasing 

the gas holdup. It appears that the effect of decreasing liquid properties on the gas holdup was 

more significant than that of decreasing the gas momentum, since the gas holdup was found to 

increase with temperature.  

Figure 8 shows a comparison between our Sauter mean bubble diameter (d32) and 

experimental values obtained by Patel et al.[628, 629] and Bukur et al. [624-627, 629] under 

different conditions as given in Table 8. It should be emphasized that their data were measured 

under ambient pressure (1 bar) and high temperature (538 K) in different waxes using the Dynamic 

Gas Disengagement technique in the absence of solid particles. As can be observed in this figure, 

our (d32) values (data sets 1-6) vary between 0.18 and 6 mm; and the values (data sets 7-10) by 

Patel et al.,[628, 629] obtained at superficial gas velocities (< 0.12 m/s) in a small diameter column 

(0.05 m), varied from 0.37 to 5.6 mm. However, d32 vales (data set 11) by Patel et al. [628, 629] 

and (data set 12) by Bukur et al. [624-627, 629] measured in a 0.23 and 0.21 m diameter columns, 

respectively, at gas velocities (< 0.12 m/s) were between 0.27 and 1.7 mm. As mentioned above, 

increasing temperature enhances gas bubbles breakup, leading to the formation of numerous small 

bubbles; and increasing pressure shrinks further these gas bubbles, leading to small values of d32. 

On the other hand, increasing solid concentration, increases the slurry viscosity thereby increasing 

the bubble coalescence and the formation of large bubbles, resulting in high values of d32. Thus, 

these two opposing effects should dictate the resultant value of the Sauter mean bubble diameter. 

Based only on the temperature effect, our d32 values were supposed to be greater than those by 
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Patel et al.[628, 629] and Bukur et al.[624-627, 629] in the large column since our temperature is 

lower. Also, based on the presence of solids in addition to the higher viscosity of the reactor wax 

used in this work, our d32 were supposed to be greater than those by these authors. However, the 

much greater pressure used in this work appeared to suppress the bubble growth and reduce the 

bubble size, leading to d32 in the range of from 0.18 to 6 mm, which is in agreement with previous 

findings.[46] 
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Figure D-1: Comparison of measured gas holdup data with published data sets in the literature 
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Table D-1: Gas holdup data sets used in the comparison in Figure D-1 

# Reference 

Operating 
Conditions Reactor Dimensions Liquid Solid 

Gas 
T 

(K) 
P 

(bar) 
𝑪𝒗 

(wt%) 
𝑫𝑪 
(m) 

𝑯𝑪 
(m) 

Gas 
distributor, 

do (mm) 
Type 𝝆𝑳 

(kg/m3) 
𝝁𝑳 

(mPa∙s) 
𝝈𝑳 

(Nm-1) 
Type 𝝆𝒔 

(kg/m3) 
𝒅𝑷 

(µm) 

1 This work 461 15.6 20 0.29 3 Spider, 5 
Reactor 

Wax 
728.97 2.989 0.0213 

Fe-

based 
3380 81 N2 

2 This work 443 20.5 34 0.29 3 Spider, 5 
Reactor 

Wax 
738.70 3.727 0.0225 

Fe-

based 
3380 81 N2 

3 This work 
445.

9 
25.9 20 0.29 3 Spider, 5 

Reactor 

Wax 
737.13 3.593 0.0223 

Fe-

based 
3380 81 N2 

4 This work 
459.

5 
20.7 45 0.29 3 Spider, 5 

Reactor 

Wax 
729.78 3.043 0.0214 

Fe-

based 
3380 81 N2 

5 
Behkish et 

al. [8, 80] 
400 11.7 32.8 0.29 3 Spider, 5 

Isopar-

M 
733.21 0.909 0.0213 

Alumina 

powder 
3218.3 42.4 N2 

6 
Behkish et 

al. [8, 80] 
400 7.5 32.8 0.29 3 Spider, 5 

Isopar-

M 
733.21 0.909 0.0213 

Alumina 

powder 
3218.3 42.4 N2 

7 
Behkish et 

al. [8, 80] 
298 1.75 41.2 0.316 2.82 Spider, 5 

Isopar-

M 
783.343 2.705 0.0277 

Glass 

beads 
2500 19 N2 

8 
Deckwer et 

al. [75] 
523 8 16 0.1 0.6-11 

Sintered 

plate, 0.075 

Molten 

Paraffin 
670 2.0 0.021 

Alumina 

powder 
1284 ≤5 N2 

9 

Bukur et al. 
[624-627, 

629] 

538 1 20 0.21 3 
Perforated 

Plate, 2 

Sasol 

Wax 
655 2.0 0.016 

Iron 

Oxide 
5100 

20-

44 
N2 

10 

Bukur et al. 
[624-627, 

629] 

538 1 20 0.21 3 
Perforated 

Plate, 2 

Sasol 

Wax 
655 2.0 0.016 

Iron 

Oxide 
5100 0-5 N2 

11 

Bukur et al. 
[624-627, 

629] 

538 1 20 0.21 3 
Perforated 

Plate, 2 

Sasol 

Wax 
655 2.0 0.016 Silica 2650 

20-

44 
N2 
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Table D-1 (continued) 

# Reference 

Operating 
Conditions Reactor Dimensions Liquid Solid 

Gas 
T 

(K) 
P 

(bar) 
𝑪𝒗 

(wt%) 
𝑫𝑪 
(m) 

𝑯𝑪 
(m) 

Gas 
distributor, 

do (mm) 
Type 𝝆𝑳 

(kg/m3) 
𝝁𝑳 

(mPa∙s) 
𝝈𝑳 

(Nm-1) 
Type 𝝆𝒔 

(kg/m3) 
𝒅𝑷 

(µm) 

12 

Bukur et al. 
[624-627, 

629]2 

538 1 20 0.21 3 
Perforated 

Plate, 2 

FT-300 

Wax 
681 2.7 0.017 

Iron 

Oxide 
5100 

20-

44 
N2 

13 

Bukur et al. 
[624-627, 

629]2 

538 1 20 0.05 3 Orifice, 2 
FT-300 

Wax 
681 2.7 0.017 Silica 2650 0-5 N2 

14 

Bukur et al. 
[624-627, 

629] 

538 1 20 0.05 3 Orifice, 2 
FT-300 

Wax 
681 2.7 0.017 

Iron 

Oxide 
5100 0-5 N2 

15 
Bukur et al. 
[624-627, 

629] 

538 1 20 0.05 3 Orifice, 2 
Sasol 

Wax 
655 2.0 0.016 

Iron 

Oxide 
5100 

20-

44 
N2 

16 
Krishna et 

al. [77] 
298 1 58.9 0.38 4 

Sintered 

plate, 0.05 

Paraffin 

Oil 
790 2.9 0.028 

Silica 

particles 
2100 ≤47 Air 

17 
Krishna et 

al. [77] 
298 1 59.9 0.38 4 

Sintered 

plate, 0.05 

Paraffin 

Oil 
790 2.9 0.028 

Silica 

particles 
2100 ≤47 Air 

1Suspension height 
2Liquid velocity = 0.005 m/s 
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Figure D-2: Comparison of measured Sauter bubble diameter data with published data sets in the literature 
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Table D-2: Sauter bubble diameter data sets used in the comparison in Figure D-2 

# Reference 

Operating Conditions Reactor Dimensions Liquid Solid 

Gas T 
(K) 

P 
(bar) 

𝑪𝒗 
(wt%) 

𝑫𝑪 
(m) 

𝑯𝑪 
(m) 

Gas 
distributor, 

do (mm) 
Type 𝝆𝑳 

(kg/m3) 
𝝁𝑳 

(mPa∙s) 
𝝈𝑳 

(Nm-1) 
Type 𝝆𝒔 

(kg/m3) 
𝒅𝑷 

(µm) 

1 This work 429.1 14.29 34 0.29 3 Spider, 5 
Reactor 

Wax 
746.21 4.476 0.0235 Fe-based 3380 81 N2 

2 This work 455.9 27.63 45 0.29 3 Spider, 5 
Reactor 

Wax 
731.73 3.176 0.0216 Fe-based 3380 81 N2 

3 This work 414 14.95 34 0.29 3 Spider, 5 
Reactor 

Wax 
754.37 5.538 0.0246 Fe-based 3380 81 N2 

4 This work 443 27.85 34 0.29 3 Spider, 5 
Reactor 

Wax 
738.69 3.727 0.0225 Fe-based 3380 81 N2 

5 This work 444.3 21.07 34 0.29 3 Spider, 5 
Reactor 

Wax 
733.21 3.666 0.0224 Fe-based 3380 81 N2 

6 This work 470.8 24.66 20 0.29 3 Spider, 5 
Reactor 

Wax 
723.68 2.669 0.0206 Fe-based 3380 81 N2 

7 
Patel et al. 

[628, 629] 
538 1 0 0.05 3 Orifice, 2 

Mobil 

Wax 
674 2.3 - - - - N2 

8 
Patel et al. 

[628, 629] 
538 1 0 0.05 3 Orifice, 2 

Sasol 

Wax 
655 2.0 0.016 - - - N2 

9 
Patel et al. 

[628, 629] 
538 1 0 0.05 3 Orifice, 2 

FT-300 

Wax 
681 2.7 0.017 - - - N2 

10 
Patel et al. 

[628, 629] 
538 1 0 0.05 3 Orifice, 4 

FT-300 

Wax 
681 2.7 0.017 - - - N2 

11 
Patel et al. 

[628, 629] 
538 1 0 0.23 3 

Perforated 

Plate, 2 

FT-300 

Wax 
681 2.7 0.017 - - - N2 

12 

Bukur et 
al. [624-

627, 629] 

538 1 0 0.21 3 
Perforated 

Plate, 2 

Sasol 

Wax 
655 2.0 0.016 - - - N2 
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APPENDIX E 

 
 
 
 
CORRELATIONS OF THE HYDRODYNAMIC AND MASS TRANSFER PARAMETERS 
 
 
 
 
Using the experimental data obtained in the pilot scale SBCR operating with the molten reactor wax, 

the following parameters can be estimated: (1) overall gas holdup; (2) large and small gas bubble 

holdups; (3) Sauter mean bubble diameters of large and small gas bubbles; and (4) gases volumetric 

gas-liquid mass transfer coefficients. The hydrodynamic and mass transfer data obtained in the 

reactor wax were compared with the predictions of different correlations available in the literature 

by calculating the average relative error (ARE), the absolute average relative error (AARE) and 

their associated standard deviations (SD). 

 

 

 

 

E.1 OVERALL GAS HOLDUP CORRELATION 

 

 

The overall gas holdup data were compared with the predictions of the available literature 

correlations are shown in Table E-1. As can be observed in this table, the correlation by Sehabiague 

and Morsi [81] gives the best prediction closely followed by that of Hammer et al., [630] Joshi et 

al., [631] Wilkinson et al., [102] and Urseanu et al. [632] The correlation by Sehabiague and Morsi 
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[81] was further modified as shown in Equation (E-1) in order to enhance the accuracy of the gas 

holdup predictions as given in Table E-1 and Figure E-1 (a).  

 

휀𝐺 = 1.235×10
4
𝜌𝑔
0.174𝑢𝑔

0.553Γ0.053

𝜌𝐿
1.59𝜇𝐿

0.025𝜎𝐿
0.105 (

𝑃

𝑃 − 𝑃𝑣
)
0.203

(
1 + 𝐷𝐶
𝐷𝐶

)
0.117

×𝑒𝑥𝑝(−1.5×10−4𝐶𝑝 − 1.78×10
−6𝐶𝑝

2 − 433.9𝑑𝑝 + 0.434𝑋) 

(E-1) 

 

Table E-1: Comparison among perditions of the gas holdup correlations 

Reference ARE SD (ARE) AARE SD(AARE) 

Equation (E-1) -0.9% 9.5% 7.3% 6.1% 

Sehabiague and Morsi [81]  -17.9% 10.1% 18.9% 8.1% 

Hammer et al. (1984) as reported in [630] -3.0% 20.4% 17.9% 10.2% 

Joshi et al. (1998) as reported in [631] -9.9% 18.9% 18.9% 9.9% 

Wilkinson et al. [102]  -13.9% 18.5% 20.7% 10.3% 

Urseanu et al. [632]  6.5% 22.9% 19.1% 14.2% 

Krishna et al. [87, 110, 455, 487] 23.6% 19.0% 25.5% 16.4% 

Koide et al. [107] -56.4% 7.3% 56.4% 7.3% 

Gandhi et al. [631] -53.7% 11.6% 53.7% 11.6% 

Dharwadkar et al. [633] 66.2% 35.9% 66.2% 35.8% 

Reilly et al. [634] 71.8% 35.4% 71.8% 35.4% 

Akita and Yoshida [83]  >100% >100% 79.3% 4.7% 

Nedeltchev and Schumpe [461] 85.8% 47.6% 85.9% 47.5% 
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Figure E-1: Comparison between experimental data and predicted gas holdup values using 

Equation (E-1) 

 
 

 

 

E.2 SAUTER MEAN DIAMETER OF GAS BUBBLES CORRELATION 

 

 

Table E-2 shows that the correlations by Fukuma et al. [492] and Wilkinson et al., [635] which were 

developed for gas-liquid systems, are unable to predict the experimental data in the presence of 

solids which was not surprising. Similarly, the correlation by Lemoine et al. [179] could not predict 

the data with acceptable accuracy. Therefore, a more accurate correlation, based on the that of 

Lemoine et al., [179] is developed to predict the gas Sauter mean bubble diameter for catalyst 

volumetric concentrations less or greater than 5 vol.% as shown in Equation (E-2). 
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𝑖𝑓 𝐶𝑣 < 5 𝑣𝑜𝑙.% 𝑑32 = 0.213𝑒
2.81𝐶𝑣𝐹

𝑖𝑓 𝐶𝑣 ≥ 5 𝑣𝑜𝑙.% 𝑑32 = 0.0574𝑒
29𝐶𝑣𝐹

 

𝐹 = 
𝜇𝐿
0.08𝜎𝐿

1.22𝜌𝐺
0.02𝑇1.66𝑈𝐺

0.14

𝜌𝐿
1.52𝑀𝑤𝐺

0.12 (
𝐷𝐶

𝐷𝐶 + 1
) (1 − 휀𝐺)

1.56Γ−0.02 

(E-2) 

 

Table E-2: Comparison among predictions of the gas bubbles Sauter mean diameter 
correlations  

Reference ARE SD(ARE) AARE SD(AARE) 

Equation (E-2) -34.9% 22.2% 37.4% 17.7% 

Lemoine et al. [636] >100% >100% >100% >100% 

Fukuma et al. [492] >100% >100% >100% >100% 

Wilkinson et al. [635] >100% >100% >100% >100% 

 
 
 
 

E.3 HOLDUP OF LARGE GAS BUBBLES CORRELATION 

 

 

The data for the holdup of large gas bubbles were compared with the correlations by Behkish et al. 

[9] and by Krishna et al. [87, 110, 455, 487]. The correlation of Behkish et al. [9] was able to predict 

the experimental data with reasonable accuracy as shown in Table E-3.  

 

Table E-3: Comparison among predictions of the large gas bubbles holdup correlations  

Reference ARE SD (ARE) AARE SD(AARE) 

Behkish et al. [9] 3.0% 24.8% 15.1% 19.9% 

Krishna et al. [87, 110, 455, 487] - 41.9% 24.5% 42.6% 23.3% 
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E.4 DIAMETER OF LARGE GAS BUBBLES CORRELATION 

 

 

The correlation by Krishna et al. [487] proposed for gas-liquid systems could not predict the size of 

the large gas bubbles, whereas that by Lemoine et al. [636] under predicted the size of large gas 

bubbles by an average of 93%. The latter correlation was then modified as shown in Equation (E-3) 

to predict the experimental data with better accuracy as shown in Table E-4. 

 

 0.78 5 0.22 0.03 8.6 0.04 2.37 2.74

32 1 10LB L L L g G LBd d U     
 

(E-3) 

 

Table E-4: Comparison among predictions of the large gas bubble diameter correlations  

Reference ARE SD (ARE) AARE SD(AARE) 

Equation (E-3) 0.0% 51.9% 44.2% 27.0% 

Lemoine et al. [637] -93.0% 5.8% 93.0% 5.8% 

Krishna et al. [487] >100% >100% >100% >100% 

 

 

 

 

E.5 VOLUMETRIC MASS TRANSFER COEFFICIENT CORRELATION 

 

 

The experimental kLa data obtained in this study were compared with the predictions of different 

literature correlations shown in Table A-8; and as can be observed in Table E-5, the best prediction 

was obtained using the correlation by Sehabiague and Morsi,[81] which could predict the 

experimental data with an ARE of 9.9%. This correlation was further modified in order to increase 

the prediction accuracy as show in Equation (E-4) and Figure E-1 (b).  
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Figure E-2: Comparison between experimental data and predicted kLa values using  

Equation (E-4)  
 

 

Table E-5: Comparison among predictions of kLa correlations 

Reference ARE SD (ARE) AARE SD(AARE) 

Equation (E-4) 0.0% 14.0% 11.1% 8.5% 

Sehabiague and Morsi [81] - 9.9% 22.0% 20.7% 12.4% 

Koide et al. [107] - 16.2% 27.4% 28.2% 14.6% 

Nedeltchev and Schumpe [461] >100% >100% >100% >100% 
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E.6 NOVEL APPROACH AND CORRELATION FOR BUBBLE SIZE 

DISTRIBUTION IN THE SBCR OPERATING IN THE CHURN- TURBULENT FLOW 

REGIME 

 

 

Over the past four decades, significant work has been done to investigate the hydrodynamics in 

bubble columns and SBCRs, and numerous correlations were developed for predicting the gas 

holdup, average bubble size, bubble rise velocity and axial dispersion coefficients, as recently 

summarized by Basha et al. [2]. However, investigating the bubble size distribution in bubble 

columns and SBCRs has been limited, despite its importance in developing proper closure models 

for numerical modeling as well as CFD simulation. 

Previous 1-D and 2-D modeling efforts investigating bubble columns and SBCRs have 

frequently used the “two-bubble” or bimodal class model, which is based on convective and 

dispersive mechanisms [244, 638], in order to account for gas bubbles representation [155, 301, 

350]. This model represents an oversimplification of the complex hydrodynamics inside the two-

phase and three-phase reactors. In this model, the gas bubbles are classified into small bubbles, 

which are primarily controlled by the liquid- or slurry-phase motion, and large bubbles, which are 

independent of the liquid or slurry motion as they flow upwards in a plug-flow manner. The 

demarcation size of the gas bubbles classified as small has been always arbitrary.   

The validity of two-bubble class model in describing the gas bubbles behavior, however, 

appeared to be questionable due to the fact that actual results for gas bubbles did not follow a 

bimodal size distribution, as demonstrated by numerous investigators [144, 145, 243, 639-642]. 

Also, the bimodal gas bubble distribution fails to explain the enhanced gas-phase mixing with 

increasing the superficial gas velocity. This is because this model assumes that the increase of the 

volume fraction of large gas bubbles leads the gas mixing to approach a plug-flow, which 
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contradicts the reported experimental data [266, 643, 644]. Therefore, there is a great need to 

develop a novel model for bubble size distribution, which should enable more accurate 

representation of the different gas bubble classes inside the SBCR. 

The current practice to determine the size of gas bubbles in bubble column and SBCRs is 

to employ  the DGD technique coupled with the correlation relating the bubble rise velocity to the 

bubble diameter by Fukuma et al. [622].  In this DGD technique, the disengagement profiles, which 

have been studied by various authors [8, 111, 645, 646], have been characterized by two straight 

lines, where the first line represents the disengagements of the large gas bubbles and some of the 

small bubbles, and the second line represents the disengagement of the small gas bubbles. It should 

be pointed out, however, some of the small gas bubbles disengage within the fast bubble flow 

region and some are hindered by the disengagement of the large bubbles; and the bubble rise 

velocity obtained from DGD is actually the swarm rise velocity associated with the class of gas 

bubbles disengaging during a given period. Thus, it is important to differentiate between the swarm 

properties and the gas bubble properties in order to accurately determine the bubble size 

distribution in the DGD process.  

Schumpe and Grund [185, 453] reported some of the uncertainties and problems associated 

with the DGD technique. These included: (1) the subjectivity involved in obtaining an accurate 

disengagement profile during large gas bubbles disengagement, (2) the waterfall effect or the 

downward flow of liquid during bubble disengagement and its impact on the rise velocities of the 

small gas bubbles, which are still in the liquid-phase, and (3) the errors introduced by the bubbles 

entering the dispersion zone as the pressure in the plenum chamber equilibrates with the 

hydrostatic pressure in the reactor after the interruption of the feed gas. In addition, in a strongly 

coalescing or highly turbulent flow regime, the assumptions that there are no bubble-bubble 

interactions and that the dispersion is axially homogenous at the moment when the gas flow is 
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interrupted are not entirely accurate.  It is important to note that in the coalescing flow regime, the 

bubble-bubble interactions play a significant role in bubbles formation, a behavior which is 

oversimplified with the assumption of a bimodal bubble size distribution. Furthermore, it should 

be mentioned that the correlation by Fukuma et al. [622] was developed using an air- tap water 

system in the presence of glass beads at ambient conditions. The glass beads used had diameters 

from 0.056 to 0.46 mm and exhibited solid concentrations between 13 and 50 vol.%. This brings 

into question the extrapolation of such a correlation to predict the bubble rise velocity and 

consequently the bubble diameters in SBCRs, operating under high-pressures and high-

temperatures.  

In this study, in order to delineate the bubble size distributions from the DGD technique, 

we define a minimum stable bubble size based on the assumptions that turbulences are isotropic 

and that bubble breakup mainly occurs due to the collision of eddies with the gas bubbles in the 

turbulent flow regime. We also assume that only eddies of length-scale ≥ the bubble diameter 

would contribute to the bubbles breakup, while small eddies would transport the bubbles without 

breakup. This latter assumption is based on the statistical derivation of Prince and Blanch [348], 

which indicated that smaller eddies are unlikely to significantly contribute to the bubble breakup, 

due to their comparatively insignificant momentum when compared with that of large bubbles. 

The smallest hydrodynamic eddy length-scale at which the energy is dissipated in turbulent flow, 

referred to as the Kolmogorov’s length-scale, is used to represent the minimum stable bubble size, 

which is expressed by Equation (E-5): 

𝑙𝑚𝑖𝑛 = 𝑑𝑏,𝑚𝑖𝑛 = (
𝐷𝑐𝜇𝑠𝑙𝑢𝑟𝑟𝑦

3

𝜌𝑠𝑙𝑢𝑟𝑟𝑦
3 𝑈𝐺

3)

0.25

 (E-5) 

Also, the semi-empirical correlation by Luo et al. [472] for high-pressure SBCRs is used to 

represent the maximum stable bubble size as shown in Equation (E-6):  
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𝑑𝑏,𝑚𝑎𝑥 = 2.53(
𝜎𝑙𝑖𝑞𝑢𝑖𝑑
𝑔𝜌𝐺

)
0.5

 (E-6) 

A typical DGD pressure-drop-time relationship, corresponding to the gas bubbles leaving the DGD 

cell (length), is shown in Figure E-3 for three different runs. The increase of the pressure drop at 

any time (t) is due to the disengagement of bubbles from the DGD cell.  

 

 
Figure E-3: Pressure drop change with time as obtained from three DGD experiments 

 

Our novel approach considers the overall energy balance within the gas disengagement cell. 

During the DGD process, the pressure drop measured is primarily due to the change in the overall 

density within the DGD cell. In order to write the energy balance on the DGD cell, the following 

assumptions are made:  
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1. There is no dissipation of mechanical energy. 

2. The bubble rise velocities, which is dependent on the bubble diameter, will determine which 

bubbles will disengage first. This means that at a given time (t), only a single bubble class 

will disengage from the DGD cell, with the largest bubbles disengaging first. 

3. The gas bubbles disengage from the top of the DGD cell in the axial direction at a 0 o angle 

Considering these assumptions, the energy balance on the DGD cell requires that the energy 

lost from the cell should be equivalent to that gained by the bubbles leaving the cell, as expressed 

in Equation (E-7).  

𝑑𝑃 ∙ (𝑉𝐷𝐺𝐷−𝑐𝑒𝑙𝑙) = (∆𝐻𝐷𝐺𝐷−𝑐𝑒𝑙𝑙)∑𝑛𝑏,𝑖𝐹𝑏,𝑖 (E-7) 

Where 𝐹𝑏,𝑖 refers to the force applied on the number of disengaging bubbles of class i (𝑛𝑏,𝑖). 

The overall force balance on one spherical bubble (assuming no bubble deformation) with a 

constant bubble rise velocity (𝑈𝑏,𝑖) throughout the disengagement cell, is expressed using Equation 

(E-8): 

∑𝐹𝑏,𝑖 = 𝐹𝐵𝑜𝑢𝑦𝑎𝑛𝑐𝑦 + 𝐹𝑀 − 𝐹𝐷 − 𝐹𝑉𝑀 − 𝐹𝐵𝑎𝑠𝑠𝑒𝑡 − 𝐹𝐶 − 𝐹𝐺 (E-8) 

Where FD is the liquid drag; FBasset is the Basset force, FBuoyancy is the buoyancy force; FC is the 

particle collision; FVM is the virtual mass force, FM is the force due to bubble momentum and FG 

is the gravity. The description of each force is given in Table E-6.  
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Table E-6: Forces involved in the overall energy balance for the gas bubble [272, 323, 336, 

351, 372, 647] 

Force Equation Description 

FD:  

Drag 

𝐶𝐷 (
𝜋

4
𝑑𝑏
2)
𝜌𝑠𝑙𝑢𝑟𝑟𝑦𝑈𝐺

2

2
 

  𝐶𝐷 = {
(
24

𝑅𝑒𝑏
)(1 + 0.15𝑅𝑒𝑏

0.687)    𝑅𝑒𝑏 < 10
3

0.44                                           𝑅𝑒𝑏 ≥ 103
 

Force accounting for the fluid 

resistance, acting opposite to the 

relative motion of the bubbles. The 

drag coefficient of Schiller and 

Naumann was used [6]. 

𝐹𝑉𝑀:  

Virtual Mass 

𝜋

12
𝜌𝑠𝑙𝑢𝑟𝑟𝑦𝑑𝑏

3
𝑈𝐺
∆𝑡

 

Accounts for the resistance of the 

fluid mass that is moving at the same 

acceleration as the particle. It is 

assumed that the liquid velocity is 

insignificant compared to the gas 

velocity, ∆𝑡 was taken to be 0.05 s. 

FBasset:  

Basset 

3

2
𝑑𝑏
2(𝜋𝜌𝑠𝑙𝑢𝑟𝑟𝑦𝜇𝑠𝑙𝑢𝑟𝑟𝑦)

0.5 𝑈𝑏
(∆𝑡)0.5

 

Additional drag due to vortices 

formed by bubble acceleration 

[648], ∆𝑡 was taken to be 0.05 s. 

FBuoyancy: 

Buoyancy 

𝜋

6
𝑑𝑏
3(𝜌𝑠𝑙𝑢𝑟𝑟𝑦 − 𝜌𝐺)𝑔 

Upward force exerted by the slurry 

on the bubble. 

FG:  

Gravity 

𝜋

6
𝑑𝑏
3𝜌𝐺  𝑔 Force due to gravity 

FC:  

Particle 

Collision  

𝜋

4
𝑑𝑏
2휀𝑠𝑈𝐺

2𝜌𝑠 
Force imparted due to collision with 

solid particles [242] 

FM: 

Bubble 

Momentum 

𝜋

4
𝑑𝑏
2𝜌𝐺𝑈𝑏

2 
Accounts for the bubble momentum 

as it rises throughout the column. 

 

The solution of Equation (E-8) was carried out under the constraints given in Equations (E-9) 

through (E-12).  

∑𝐹𝑏,𝑖 = 𝜌𝐺 (
𝜋𝑑𝑏,𝑖

3

6
)
𝑈𝑏,𝑖
∆𝑡

 (E-9) 
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𝑉𝐺,𝑖 = 휀𝐺,𝑖𝑉𝐷𝐺𝐷−𝑐𝑒𝑙𝑙 = 𝑛𝑏,𝑖(
𝜋𝑑𝑏,𝑖

3

6
) (E-10) 

𝑑𝑏,𝑚𝑖𝑛 ≤ 𝑑𝑏 ≤ 𝑑𝑏,𝑚𝑎𝑥  (E-11) 

𝑑𝑏,𝑖|𝑡 > 𝑑𝑏,𝑖|𝑡+∆𝑡 (E-12) 

It is important to note that in order to successfully use this novel method, the gas holdup for each 

bubble class is required, which can be simultaneously determined from the gas disengagement 

profile while performing the DGD experiments, as described in Sections 5.3 and 5.4. 

When substituting the forces given in Table E-6 into the right-hand-side of Equation (E-8) and 

inserting it into Equation (E-7), the energy balance leads to a cubic equation of db,i, which can be 

used to identify the single bubble size and the number of bubbles for every bubble class 

disengaging at any time (t).  

In this study, this novel method was followed to calculate the number of bubbles for every 

bubble diameter between the minimum and maximum stable sizes calculated using Equations (E-

5) and (E-6), with increments of 0.5 mm. It should be mentioned that a single bubble diameter 

(db,i) and number of bubbles (nb,i) were obtained for the majority of the experimental data. In a few 

cases, however, multiple solutions were found and the values, which were more in line with the 

rest of the data at similar operating conditions, were selected. The volume fraction of each bubble 

size was then calculated using Equations (E-13) and (E-14), whereas the relative frequency of each 

bubble size was determined using Equation (C-4).  

𝑉𝑜𝑙𝑢𝑚𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑏,𝑖 =
∑ 𝑛𝑏,𝑖𝑉𝑏,𝑖
𝑑𝑏,𝑚𝑎𝑥
𝑑𝑏,𝑚𝑖𝑛

𝑉𝐺,𝑡𝑜𝑡𝑎𝑙
 (E-13) 

𝑉𝑏,𝑖 =
𝜋(𝑑𝑏,𝑖 − 0.5 ∙ ∆𝑑𝑏)

3

6
 (E-14) 

Where ∆𝑑𝑏= 0.5 mm in this work. 
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Figures 5-22 and 6-14 show the calculated volume fraction and relative frequency as a 

function of the bubble diameter at different operating conditions, respectively.  

 

 
Figure E-4: Bubbles volume fraction distributions from the DGD under different operating 

conditions 
 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.5 1 1.5 2 2.5 3

V
o

lu
m

e
 F

ra
c

ti
o

n

Bubble Diameter (cm)

T = 432.2 K, P = 15.3 bar, Ug = 0.148 m/s, Cs = 5 vol.%

T = 418.4 K, P = 22 bar, Ug = 0.21 m/s, Cs = 10 vol. %

T = 436.6 K, P = 27.4 bar, Ug = 0.196 m/s, Cs = 15 vol.%, xHe = 0.5

T = 458.8 K, P = 27.9 bar, Ug = 0.145 m/s, Cs = 15 vol.%, xHe = 0.25



 

305 

 
Figure E-5: Bubbles relative frequency distributions from the DGD under different 

operating conditions 
 
 

As can be seen in these figures, the bubbles volume fraction and relative frequency 

distributions at each set of operating conditions (T, P, Cs, and ρg) can be represented using a 

probability distribution function, as shown in Equation (E-15).  

𝑓(𝑑𝑏,𝑖|𝑑𝑏,𝑎𝑣𝑔, 𝛽
2)|

𝑇,𝑃,𝑢𝐺
=

1

√2𝛽2𝜋
𝑒
−(
(𝑑𝑏,𝑖−𝑑𝑏,𝑎𝑣𝑔)

2

2𝛽2
)

 (E-15) 
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Where 𝑓(𝑑𝑏,𝑖|𝑑𝑏,𝑎𝑣𝑔, 𝛽
2)|

𝑇,𝑃,𝑢𝑔
is the relative frequency of a bubble class i with a diameter (𝑑𝑏,𝑖) 

at a certain set of operating conditions (T, P, ug); 𝑑𝑏,𝑎𝑣𝑔  is the arithmetic mean of the bubble sizes 

obtained from a given DGD data set at fixed pressure, temperature and gas velocity; and 𝛽2 is the 

variance. It should be remembered that the variance represents the spread of the distribution, where 

a small variance indicates that the bubble distribution is close to the arithmetic mean, whereas a 

large variance indicates that the bubble distribution spreads far away from the arithmetic mean. 

The experimental DGD data obtained in the pilot-scale SBCR for the gas-liquid solid 

systems discussed in Sections 6.1.1 to 6.1.3 along with those for paraffins mixture-Puralox 

alumina, reactor wax-iron oxide, and reactor wax-alumina obtained also in the SBCR [8, 46, 81, 

637, 649] were used to correlate the arithmetic mean bubble size and the variance as a function of 

the operating conditions used in each run. A total of 772 DGD experiments were used to develop 

the correlations of the arithmetic mean bubble size and the bubble size variance, which are given 

in Equations (E-16) and (E-17), respectively.  

𝑑𝑏,𝑎𝑣𝑔 = 2.03×10
−3
𝜇𝑠𝑙𝑢𝑟𝑟𝑦
0.159 𝑈𝐺

0.885(𝜌𝑠𝑙𝑢𝑟𝑟𝑦 − 𝜌𝐺)
2.05

𝜌𝑠𝑙𝑢𝑟𝑟𝑦
1.13 𝜎𝑙𝑖𝑞𝑢𝑖𝑑

4.07  (E-16) 

𝛽2 = 1.27×10−3 (
𝑅𝑒0.0358𝐸�̈�0.494

𝑊𝑒0.0198
) (E-17) 

The definition of the dimensionless numbers, Re, We and Eö used in these correlations are given 

in Equations (E-18) through (E-20).  

𝑅𝑒𝑏 =  
𝜌𝑠𝑙𝑢𝑟𝑟𝑦𝑈𝐺𝑑𝑏
𝜇𝑠𝑙𝑢𝑟𝑟𝑦

 (E-18) 

𝑊𝑒 =
𝜌𝑠𝑙𝑢𝑟𝑟𝑦𝑑𝑏 𝑈𝐺

2

𝜎𝑙𝑖𝑞𝑢𝑖𝑑
 (E-19) 
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𝐸�̈� =
𝑔(𝜌𝑠𝑙𝑢𝑟𝑟𝑦 − 𝜌𝐺)𝑑𝑏

2

𝜎𝑙𝑖𝑞𝑢𝑖𝑑
 (E-20) 

It should be mentioned that these correlations can only be used within the following ranges: 

 

48 ≥ Reb ≥ 1305 

0.2 ≥ We ≥ 31.5 

0.05 ≥ Eö ≥ 143 

0.2 ≥ µslurry (mPa∙s) ≥ 24 

660 ≥ ρslurry (kg/m3) ≥ 1155 

9 ≥ σliquid (mN/m) ≥ 27 

1.7 ≥ ρG (kg/m3) ≥ 23.4 

0.05 ≥ UG (m/s) ≥ 0.29 

4.1 ≥ P (bar) ≥ 31.9 

323 ≥ T (K) ≥ 531 

0 ≥ Cs (vol. %) ≥ 15.2 

 

The calculated arithmetic mean bubble size and variance are plotted in Figures 12-6 and 12-7 with 

an absolute average relative errors (AARE) of 9.49% and 5.87%, respectively.  

As can be deduced, Equation (E-15), coupled with Equations (E-16) and (E-17) can be 

used to calculate the bubble size distribution inside the pilot-scale SBCR available in our 

laboratory at elevated pressures, temperatures and different gas velocities. Therefore, our novel 

approach overcomes the problems associated with the oversimplified method adopted when using 

the DGD technique data as reported by numerous investigators [144, 155, 306, 312, 348, 461, 623, 

650] .  
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Figure E-6: Comparison between experimental and predicted values of the mean bubble 
diameter 
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Figure E-7: Comparison between experimental and predicted values of the bubble size 
variance 

 

 

In addition, the predicted values of  𝑓(𝑑𝑏,𝑖) and 𝑑𝑏,𝑖 using Equations (E-15), (E-16) and 

(E-17) were used to calculate the Sauter mean bubble diameter with Equation (E-21) using the 

experimental data obtained in this study and those obtained for different gas-liquid-solid systems 

under various operating conditions inside in the same pilot-scale SBCR [8, 46, 81, 637, 649, 651].  

𝑑32 =
∑ 𝑓(𝑑𝑏,𝑖)𝑑𝑏,𝑖

3
𝑖

∑ 𝑓(𝑑𝑏,𝑖)𝑑𝑏,𝑖
2

𝑖

 (E-21) 

The calculated values using Equation (E-21) are plotted in Figure E-8; and as can be 

observed in this figure, the novel method is capable of predicting the Sauter mean bubble diameter 
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our initial correlation [651], Equation (E-22), which employed the equation by Fukuma et al. [622] 

to predict the intermediate bubble sizes. It should be noted that Equation (E-22) was able to predict 

the experimental data with an AARE of 37.4%, which was an improvement when compared with 

other commonly used correlations available in the literature [492, 635], as highlighted by 

Sehabiague et al. [651]. 

𝑑32 = 0.213𝑒2.81𝐶𝑠𝐹      𝑖𝑓 𝐶𝑠 < 5 𝑣𝑜𝑙.% 

𝑑32 = 0.0574𝑒
29𝐶𝑠𝐹      𝑖𝑓 𝐶𝑠 ≥ 5 𝑣𝑜𝑙.% 

𝐹 =
𝜇𝑙𝑖𝑞𝑢𝑖𝑑
0.08 𝜎𝑙𝑖𝑞𝑢𝑖𝑑

1.22 𝜌𝐺
0.02𝑇1.66𝑈𝐺

0.14

𝜌𝑙𝑖𝑞𝑢𝑖𝑑
1.52 𝑀𝑊𝐺

0.12 (
𝐷𝐶

𝐷𝐶 + 1
)
0.3

(1 − 휀𝐺)
1.56(𝛤−0.2) 

(E-22) 

 

 

Figure E-8: Comparison between experimental and predicted values of the Sauter bubble 
diameter using Equation (E-21) 
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