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Purpose: Balance training has shown benefits in improving balance in older adults and people 

with vestibular disorders. However, the evidence for determining the appropriate intensity and 

progression of balance exercises is very limited. The purpose of this study was to develop a 

method for quantifying intensity of balance exercises, and to determine guidelines for 

progressing exercises.  

Participants: Sixty-two healthy subjects who were between the ages of 18 and 85 years 

old (50% female, mean age 55 ± 20 years), and eight participants with vestibular disorders (50% 

female, mean age 56 ± 16 years) were enrolled in the study.  

Methods: Healthy subjects were tested during two visits and performed two sets of 24 

randomized static standing exercises in each visit. Participants with vestibular disorders were 

tested in one visit and performed two sets of 16 randomized static standing exercises. The 

exercises consisted of combinations of the following factors: surface (firm and foam), vision 

(eyes open and eyes closed), stance (feet apart and semi-tandem), and head movement (still, yaw, 

and pitch). Postural sway and ratings of perceived difficulty were measured for each exercise. 

The test-retest reliability of subjects’ performance and their rating of perceived difficulty of 

different standing balance exercises was examined. Two scales of rating of perceived difficulty 

of balance exercises were validated by comparing them with quantitative sway measures. The 
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effects of age and vestibular disorders on postural and perceptual measures were tested using 

linear mixed models. 

Results: Position and acceleration sway measures demonstrated acceptable test-retest 

reliability, while sway velocity measures were the most reliable. The rating of perceived 

difficulty scales demonstrated fair to substantial agreement with few exceptions. Moderate to 

strong positive correlations were observed between the rating of perceived difficulty and all 

sway measures, establishing their validity. Sway and ratings of perceived difficulty increased in 

older subjects. Individuals with vestibular disorders did not produce more sway compared with 

controls, but they did have higher ratings of perceived difficulty.  

Conclusion: Quantitative sway measures and ratings of perceived difficulty can be used 

to prescribe the intensity of balance exercises and guide progression during rehabilitation. 
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1.0  INTRODUCTION 

The likelihood of falling increases as people get older (Berry & Miller, 2008; Centers for Disease 

& Prevention, 2008; Cnters for Disease & Prevention, 2016; Tinetti, Doucette, Claus, & 

Marottoli, 1995) or if an individual has a vestibular disorder (Agrawal, Carey, Della Santina, 

Schubert, & Minor, 2009; Cohen, Heaton, Congdon, & Jenkins, 1996). Falling can be a life 

threatening issue especially for older adults as it might result in death or injuries such as a hip 

fracture (Berry & Miller, 2008; Centers for Disease & Prevention, 2008; Tinetti et al., 1995). 

Another adverse consequence for those who have fallen is developing a fear of falling which 

may result in a reduction in participation in daily life activities and being non-active members in 

their community (Tinetti, Mendes de Leon, Doucette, & Baker, 1994). 

The human body is not completely still during upright stance, but in contrast, it 

demonstrates small amplitude motion, which is called postural sway. Despite the existence of 

this movement, the body remains stable as long as its center of mass (COM) remains over its 

base of support (Horak, 1987). One of the factors that increases postural sway is getting older 

(Baloh et al., 1994; Baloh, Jacobson, Enrietto, Corona, & Honrubia, 1998; Gill et al., 2001; 

Liaw, Chen, Pei, Leong, & Lau, 2009; Rogind, Lykkegaard, Bliddal, & Danneskiold-Samsoe, 

2003; Sheldon, 1963; Sullivan, Rose, Rohlfing, & Pfefferbaum, 2009). Another factor that 

affects postural sway adversely is sustaining a vestibular disorder (Baloh et al., 1998; Fujimoto et 

al., 2014).  

Customized balance exercises and vestibular rehabilitation therapy (VRT) are considered 

to be effective options to improve balance by facilitating the central nervous system’s ability to 

compensate for balance deficits (Hillier & McDonnell, 2011; Horak, Jones-Rycewicz, Black, & 
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Shumway-Cook, 1992; Shepard & Telian, 1995). These treatments have elicited beneficial 

results in improving balance in older adults and people with vestibular disorders, eliminating the 

symptoms of vestibular disorders, and reducing falls (Hillier & McDonnell, 2011; Horak et al., 

1992). 

Balance and vestibular rehabilitation therapy is comprised of different categories of 

exercises such as static standing, weight shifting, anticipatory postural adjustments, gait, and 

eye-head coordination (Alsalaheen et al., 2013). Each of the exercises in these categories can be 

performed in different ways by manipulating various modifying factors, such as the use of visual 

feedback, different sizes of base of support, and head movements (Alsalaheen et al., 2013). Some 

of these exercises and conditions are considered to be more difficult than others, in terms of 

causing a loss of balance or increasing sway. Typically, a physical therapist will intuitively 

progress the challenge of balance exercises during rehabilitation by using different combinations 

of the modifying factors based on clinical experience. For instance, static standing balance 

exercises may be progressed from eyes open to eyes closed, from a stable surface to an unstable 

surface such as a foam cushion, or from a plain visual background to the complex visual 

background such as a checkerboard pattern. Walking exercises may be progressed by decreasing 

the base of support in the medial-lateral direction or by closing the eyes. The progressions have 

justification based on theoretical concepts, experimental evidence, and clinical experience. 

However, quantification of the postural measures elicited by different across a comprehensive set 

of modifying factors has not yet been studied in the same experiment. By measuring the trunk tilt 

and center of pressure produced during these different exercises, we will have a standard way of 

assessing the level of difficulty of the exercises, which may facilitate better treatment 
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progression algorithms used in practice and research. In addition, these measures have not been 

compared with subjects’ rating of perceived difficulty. 

The purpose of this study is to record trunk tilt, center of pressure, and perceived 

difficulty during a wide variety of static standing exercises commonly performed in balance and 

vestibular rehabilitation. By using the postural and perceptual measures during standing 

exercises, we will be able to determine the relative difficulty of each exercise, and validate 

common rubrics for treatment progression. In addition, the effect of age on postural and 

perceptual measures will also be examined. A secondary aim is to record sway of individuals 

with vestibular disorders as they perform the exercises. Finally, I will be looking at the reliability 

of subjects’ performance of these exercises within and between 2 visits, performed 1 week apart. 

  



 4 

 SPECIFIC AIMS 

1.1.1 Specific aim 1 

To examine the test-retest reliability of the subjects’ performance of standing balance exercises, 

within and between two visits occurring one week apart.  

1.1.2 Specific aim 2 

To validate two rating scales of perceived difficulty of balance exercises by comparing the scales 

with quantitative sway measures. 

Hypothesis 1: On a within-subject basis, rating of perceived difficulty will increase as trunk tilt 

increases. 

1.1.3 Specific aim 3 

To examine the perceived difficulty and postural measures of static standing balance exercises in 

healthy adults from 18 to 85 y/o. 

Hypothesis 1:  

During the performance of balance exercises, trunk tilt sway measures and rating of perceived 

difficulty will increase from the youngest to the oldest age group. 
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Hypothesis 2:  

Trunk tilt sway measures and rating of perceived difficulty will increase as static stance balance 

exercises change from: level surface to foam surface, eyes open to eyes closed, head still to yaw 

or pitch movement, and feet apart to semi-tandem stance. 

Hypothesis 3:  

The increase in magnitude of trunk tilt sway measures will be greater as age increases and as 

static stance balance exercises change from: level surface to foam surface, eyes open to eyes 

closed, head still to yaw or pitch movement, and feet apart to semi-tandem stance. 

1.1.4 Specific aim 4 

To examine the effect of vestibular disorders on the magnitude of trunk tilt and rating of 

perceived difficulty during performance of different types of static standing balance exercises. 

Hypothesis 1:  

Individuals with vestibular disorders will have greater trunk tilt and rating of perceived difficulty 

during the performance of standing balance exercises compared with healthy age-matched 

controls.  

Hypothesis 2:  

Individuals with vestibular disorders will have an increase in postural sway and rating of 

perceived difficulty as static standing balance exercises change from level surface to foam 

surface, eyes open to eyes closed, head still to yaw movement, and feet apart to semi-tandem 

stance. 
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Hypothesis 3:  

The increase in magnitude of trunk tilt and rating of perceived difficulty as static stance balance 

exercises change from: level surface to foam surface, eyes open to eyes closed, head still to yaw 

movement, and feet apart to semi-tandem stance, will be greater in individuals with vestibular 

disorders compared with healthy age-matched controls. 
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2.0  BACKGROUND 

 BALANCE 

Balance is defined as the ability to maintain the upright position during static stance or dynamic 

activities such as walking or running. Body balance while performing various activities depends 

on the sensory information received from the eyes, sensory receptors in joints and muscles, and 

vestibular apparatus.  

Vision provides information to the brain about the body location in the surrounding area 

and surrounding obstacles that might disturb balance. The sensory receptors in the muscles and 

joints contribute to balance by sending information to the brain about the movement of limbs 

which helps the brain to take appropriate motor actions to avoid the loss of balance. In addition, 

the vestibular system contributes important information about the linear and angular movement 

of the head with respect to the body. 

The peripheral sensory organs send information to the brain to be integrated with each 

other and linked with the control and coordination area in cerebellum and the thinking and 

memory areas (Day, Guerraz, & Cole, 2002; Dozza, Chiari, & Horak, 2005; Horak, 2006; 

Rowell, Shepherd, & American Physiological Society, 1996; Rowell, Shepherd, & American 

Physiological Society (1887- ), 1996). After the integration of sensory information, the brain 

executes the appropriate motor action by moving the muscles of the neck, trunk and limbs to 

keep the body balanced, as well as to maintain fixation on a target during head movement. 

It has been found that the somatosensory system contributes more than the visual and 

vestibular system to the maintenance of balance across all age groups (Colledge et al., 1994; 
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Lord, Clark, & Webster, 1991a; Lord & Ward, 1994). However, there is variation in the relative 

amount of contribution between and within different age groups. For example, studies support 

that young children and older adults use vision to a greater degree than young adults. A study 

reported that the visual contribution to postural control starts from 3 years of age and increases 

until 6 years of age, although this contribution diminished at 7 years of age and increased again 

at 8 years of age to adulthood (Assaiante, 1992). In addition, older adults over the age of 55 

years sway more when vision is altered, which supports the fact that older adults rely heavily on 

feedback from vision (Peterka & Black, 1990). Interestingly, the same study reported increased 

sway in children up to 20 years of age during conditions requiring vestibular control (Peterka & 

Black, 1990).  

Balance disorders due to aging or due to disease and injury within the central nervous 

system or peripheral balance organs may lead eventually to falling (N. B. Alexander, 1994). 

Oliveira et al. compared patients with stroke within a year with healthy people and found that 

patients had worse scores on the Berg Balance Scale and Sensory Organization Test and also 

found a link between stroke and history of falls (Oliveira et al., 2011). 

As people get older they demonstrate age-related decline in sensory systems (Kerber, 

Ishiyama, & Baloh, 2006; Lichtenstein, Shields, Shiavi, & Burger, 1988; Lord et al., 1991a; Lord 

& Ward, 1994; Ring, Nayak, & Isaacs, 1989; Serrador, Lipsitz, Gopalakrishnan, Black, & Wood, 

2009), brain structural abnormalities and related cognitive function reduction (Baloh, Ying, & 

Jacobson, 2003; Sullivan et al., 2009; Tell, Lefkowitz, Diehr, & Elster, 1998), and lower limb 

muscle weakness (Aniansson, Hedberg, Henning, & Grimby, 1986; Dean, Kuo, & Alexander, 

2004; Larsson, Grimby, & Karlsson, 1979; Lord et al., 1991a). All may lead to poor postural 
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stability and higher risk of falling. In accordance, sustaining a vestibular disorder contributes to 

increasing postural instability (Baloh et al., 1998). 

In this review, I will review the research about postural sway and its relation to aging and having 

vestibular disorders. Also, I will address the effect of performing different balance exercises on 

postural sway. 

 FALLS 

Falling is one of the leading causes of serious injuries or even death among older people (Berry 

& Miller, 2008; Centers for Disease & Prevention, 2008; Tinetti et al., 1995; Tinetti & Williams, 

1998) and falls occur more frequently as people get older (Berry & Miller, 2008; Centers for 

Disease & Prevention, 2008; Cnters for Disease & Prevention, 2016; Sixt & Landahl, 1987; 

Tinetti et al., 1995; Woollacott, Shumway-Cook, & Nashner, 1986). The likelihood of falling 

increases when people reach 60 years or older as reported by Rubenstein (Rubenstein et al., 

1988). Falls among older adults may lead to serious injuries such as hip fractures (Berry & 

Miller, 2008; Centers for Disease & Prevention, 2008; Tinetti et al., 1995). Consequently, about 

25% of those who have a hip fracture die within a year (Forsen, Sogaard, Meyer, Edna, & 

Kopjar, 1999). The probability of longer hospital stays for those who fall increases four to five 

times in people older than 75 years compared to people of age 65 to 74 years (Scott, 1990). Over 

a 4 year period, the average length of stay in the hospital because of fall–related injuries was 

greater than the average length of stay for all other reasons for those who were 65 years and 

older (Public-Health-Agency-of-Canada, 2014). According to the Centers for Disease Control 

and Prevention (CDC), in some cases falls may lead to death due to fatal injury (CDC, 2014). 
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Falls cost the medical care system in the USA about 30 billion dollars in 2010 (Stevens, Corso, 

Finkelstein, & Miller, 2006b). By 2020, the CDC expects that the medical care's cost of fall 

injuries in the USA will reach approximately 54 billion dollars annually.  

Several risk factors of falling have been reported in many studies. Usually, these risk 

factors are classified into two different groups: extrinsic and intrinsic risk factors. Extrinsic 

factors result from the surrounding environment such as poor lighting and unstable walking 

surface, while intrinsic factors are considered a result of the physiological changes associated 

with aging (Lajoie & Gallagher, 2004) or diseases. Identifying risk factors of falling have helped 

to predict who is at risk of falling and have directed the clinical interventions whose goal is to 

reduce the number of future falls (Hilliard et al., 2008). One of the important intrinsic risk factors 

is an increase in postural sway which has been reported to be one of the predictors of falling 

among older adults (C. J. Chang, Chang, & Yang, 2013; Hilliard et al., 2008; Maki, Holliday, & 

Topper, 1994). For instance, the displacement of center of pressure (COP) helps to predict which 

older adults will  fall compared to healthy peers (C. J. Chang et al., 2013). Maki et al. did a 

prospective study for one year to assess the ability of different clinical and laboratory balance 

tests to predict risk of future falling. Among the laboratory balance tests, they found that lateral 

sway distinguishes optimally between fallers and non-fallers (Maki et al., 1994).  

The increased rate of falls among elderly people leading to serious injuries and fatal 

injury-related deaths has stimulated researchers to explore the effect of changes in postural sway 

related to aging. 
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 POSTURAL SWAY 

Postural sway is the movement of the body even when standing at rest. Postural sway was found 

to be correlated with some clinical measures of balance such as Berg Balance Scale and one leg 

stand test (Lichtenstein, Burger, Shields, & Shiavi, 1990; Nguyen et al., 2012). Postural sway 

also can provide helpful information to identify people with a high risk of falling (Fernie, Gryfe, 

Holliday, & Llewellyn, 1982; Maki et al., 1994; Stalenhoef, Diederiks, Knottnerus, Kester, & 

Crebolder, 2002) as postural sway and number of falls are highly correlated (Hilliard et al., 2008; 

Nanhoe-Mahabier, Allum, Pasman, Overeem, & Bloem, 2012).  

Centre of mass (COM) and center of pressure (COP) are parameters that are used to 

describe the control of body movement. The COM is the point where the body mass is 

distributed equally around it in the global reference system (GRS) (D. A. Winter, 1995). The 

center of gravity is the vertical projection of the center of mass onto the base of support (D. A. 

Winter, 1995; David A. Winter, 2009). On the other hand, COP is the point where the total sum 

of pressure field acts between a physical object and its supporting surface (D. A. Winter, 1995). 

Ankle plantar flexors and dorsiflexors are what control the movement of COP in the A/P 

direction whereas hip musculature primarily controls the COP movement in M/L direction (D. A. 

Winter, 1995). Practically, the COP position moves wider around the COG position and COP 

leads the movement of COG (D. A. Winter, 1995). There is a strong relationship between COG 

and COP as the difference between them is proportional to the horizontal acceleration of COM 

and therefore it is possible to estimate the location of COG with the COP by using low-pass filter 

(Brian J. Benda, 1994; Chiari et al., 2005; D. A. Winter, 1995). 

The next section of this review will be concerned with the relationship between age, 

vestibular disorders, different balance exercises and postural sway. 
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2.3.1 Postural sway and aging 

In the literature, both center of mass and center of pressure have been used as indicators of 

postural sway. It is well documented that an increase in postural sway is associated with increase 

in age (Baloh et al., 1994; Baloh et al., 1998; Gill et al., 2001; Rogind et al., 2003; Sheldon, 

1963; Sullivan et al., 2009). Sheldon monitored the change in postural sway with aging and 

found that when people reach between 18 and 20 years of age they have the optimal control of 

postural sway and they maintain that until about the age of 60 (Abrahamova & Hlavacka, 2008; 

Sheldon, 1963) when it starts to decline (Era et al., 2006). Worsening of postural sway in elderly 

people can be a result of poor peripheral sensory systems: vision (Lichtenstein et al., 1988; Lord, 

Clark, & Webster, 1991b), somatosensation (Lord et al., 1991b), vestibular function (Kerber et 

al., 2006) brain structural changes and related cognitive function reduction (Baloh et al., 2003; 

Sullivan et al., 2009; Tell et al., 1998), lower limb muscle weakness and absence of protective 

reflexes (Aniansson et al., 1986; Larsson et al., 1979). 

1- Postural sway in older adults and deterioration of sensory systems inputs 

Increased postural sway has been reported in many studies to be associated with reduced vision 

(Lichtenstein et al., 1988; Lord & Ward, 1994; Ring et al., 1989), poor somatosensory inputs 

(Lord et al., 1991a; Lord & Ward, 1994; Ring et al., 1989), and deteriorated vestibular function 

(Kerber et al., 2006; Lord & Ward, 1994; Serrador et al., 2009). One of the age-related changes 

that leads to postural instability is decline in visual acuity (Gittings & Fozard, 1986). Lord 

reported that postural sway increases by 20–70% when people stand with their eyes closed 

(Lord, 2006). Accordingly, Ray et al. conducted a study to assess postural stability of 46 

participants with mean of age 76 ± 13 years, by using the Sensory Organization Test (SOT), and 
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found a significant decrease in equilibrium composite scores among the visually impaired 

participants (below the legal blindness limit) compared to sighted participants (Ray, Horvat, 

Croce, Mason, & Wolf, 2008). Another study by Lord et al. suggested that impaired vision is an 

important risk factor for falls (Lord & Dayhew, 2001).  

Additionally, another important age-related risk factor for falling is reduced visual 

contrast sensitivity (VCS). Visual contrast sensitivity is the ability of vision to distinguish the 

difference in contrast. People need to maintain optimal VCS in order to avoid tripping over 

obstacles or objects in their environment during walking. A few studies which included different 

measures of vision found that the visual contrast sensitivity test is more important than 

measuring visual acuity in predicting who is at risk of falling (Lord, 2006; Lord & Dayhew, 

2001).  

Not only can poor vision in older adults affect the stability of the body, but also moving 

visual environments. A study conducted by Borger et al. found that body sway of older adults 

between the ages of 60 and 80 is more affected by dynamic visual environments during standing 

compared to younger adult subjects between 20 and 30 years, especially during standing on a 

moving platform and high amplitudes of scene movement (Borger, Whitney, Redfern, & 

Furman, 1999). Nevertheless, another study suggests that older adults can adapt to dynamic 

visual environments, but it requires them to have more repeated exposure to visual flow than 

young people (O'Connor, Loughlin, Redfern, & Sparto, 2008).  

There is evidence of age-related changes in somatosensory modalities (Kaplan, Nixon, 

Reitz, Rindfleish, & Tucker, 1985; Shaffer & Harrison, 2007). Somatosensory modalities have 

an important role in maintaining balance, whereas disordered somatosensation may deteriorate 

postural sway. Lord et al. conducted a study of 95 people between 59 to 97 yrs. to assess postural 
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sway during standing on firm or foam surface with eyes open or closed. They found greater sway 

during standing on a firm surface was associated with both decreased tactile sensation and 

proprioception. However, during standing on foam surface, increased postural sway was 

associated with decreased vibration sense and proprioception when the eyes were open, and 

decreased tactile sensation when the eyes were closed (Lord et al., 1991a).  

Several studies found an interaction between age and distorted somatosensation (Liaw et 

al., 2009; Peterka & Black, 1990). These studies found no significant difference between older 

and younger groups when standing on a stable surface, whereas, a significant difference was 

found between groups when they stood on a tilted surface. In contrast, a recent article suggests 

that vibration stimuli applied to the tibialis anterior and gastrocnemius muscles contributes to 

balance improvement with the eyes closed standing on two legs (J. T. Han, Lee, & Lee, 2013). 

Deterioration in vestibular function with age has been documented (Enrietto, Jacobson, & 

Baloh, 1999). An age-related reduction of about 20% of the vestibular hair cells has been 

reported (Rosenhall, 1973). In addition, there is evidence of a reduction of fibers in the vestibular 

nerve as people get older (Bergstrom, 1973). Furthermore, age-related reductions were also 

observed in vestibulo-ocular reflex (VOR) function  (Peterka, Black, & Schoenhoff, 1990). 

These adverse changes in vestibular function as people age appear to affect postural sway. In 

agreement with this statement, Kerber et al. conducted a study to assess postural stability and the 

vestibulo-ocular reflex (VOR) in healthy subjects older than 75 years for 9 years follow-up and 

found a decline of VOR gain over time. Changes in VOR gain were also associated with a 

decline in the Tinetti gait and balance score (Kerber et al., 2006). 

2- Postural sway and brain structural changes and decrease of cognitive function: 
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Several studies observed a relationship among age-related changes in brain structures, postural 

stability, and cognitive status (Baloh et al., 2003; Sullivan et al., 2009; Tell et al., 1998). A study 

conducted by Sullivan et al. found that brain tissue volume reduction and increased volume of 

supratentorial cerebrospinal fluid (CSF) in the lateral ventricles were associated with increased 

sway track length in men during static standing conditions (Sullivan et al., 2009). In the same 

study, the volume of white matter hyperintensities was associated with longer sway track length 

in women. However, in this study, worse cognitive scores were associated with increased sway 

track length in women only (Sullivan et al., 2009). Additionally, poor performance on various 

measures of balance such as the functional reach test and Romberg test have been positively 

associated with deteriorated brain changes on MRI (Tell et al., 1998). Consistently, white matter 

abnormalities have been associated with worse dynamic performance on the Tinetti test and 

worse walking performance (Baloh et al., 2003). Increases in gait speed among elderly people 

participating in rehabilitation programs depend on the difference in white matter hyperintensities 

(Nadkarni et al., 2013). 

However, these studies do not indicate whether this deterioration in brain structures is the 

direct cause of poor cognitive status and balance performance or is a marker for other 

degenerative processes. However, it is suggested that changes in a particular area of the brain is 

related to specific functional impairment. For instance, one of the brain structural changes is 

ventricular enlargement which has been found to be associated with gait impairments (Koller, 

Wilson, Glatt, Huckman, & Fox, 1983; Shprecher, Schwalb, & Kurlan, 2008). 

A deterioration in postural sway was found among the older adult population during 

balance tasks and doing cognitive tasks such as Brooks' spatial memory, backward digit recall in 

comparison to standing without doing cognitive tasks (Maylor & Wing, 1996). This finding has 
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been observed also between individuals with well-compensated unilateral vestibular loss and 

healthy age-matched controls (Redfern, Talkowski, Jennings, & Furman, 2004) Also, increasing 

postural sway has been reported among individuals with ongoing dizziness and disequilibrium 

when performing balance exercises combined with cognitive tasks (Yardley et al., 2001).  

3- Muscle weakness, loss of range of motion, and absence of protective reflexes 

Physiological changes in muscles found to be associated with aging includes weakness in lower 

limb muscles such as the quadriceps muscle (Aniansson et al., 1986; Larsson et al., 1979), hip 

extensors and flexors (Dean et al., 2004) and ankle dorsiflexors (Lord et al., 1991b). Other 

changes include a reduction of muscle mass especially after age of 30 yrs. (Borkan, Hults, 

Gerzof, Robbins, & Silbert, 1983), and decreased number of muscle fibers (Aniansson et al., 

1986; Vandervoort & McComas, 1986). As a result, these changes will interfere with older 

people's ability to perform activities of daily living.  

Deterioration in muscle strength associated with an increase in age contributes to poor 

balance control (Lord et al., 1991b). However, in the Lord et al. study, the association between 

increased sway and muscle weakness was not detected during a simple balance task (standing on 

firm surface), but instead, during a more difficult balance task such as standing on foam (Lord et 

al., 1991b). Moreover, decreased ankle dorsiflexion strength significantly existed among older 

adults who reported falls compared to non-faller peers (Whipple, Wolfson, & Amerman, 1987). 

Weakness of hip abductors and adductors is a common issue among elderly people which 

contributes to poor postural control and higher risk of falling (Moreland, Richardson, Goldsmith, 

& Clase, 2004). 

In summary, previous studies have detailed the effect of age on postural sway. However, 

the research has been performed during a very limited set of exercise conditions. I will extend 
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this research by examining the effect of age on postural sway in many other diverse exercise 

conditions that are typically used in balance and vestibular rehabilitation.  

2.3.2 Postural sway and different levels of difficulty of balance exercises 

The magnitude of postural sway is affected by the hypothetical difficulty of the balance exercise. 

For example, conditions involving closed eyes, a foam surface, and/or standing on one leg 

produce more body sway in comparison to those involving open eyes, a firm surface, and 

standing on two legs, respectively (Gill et al., 2001; Judge, King, Whipple, Clive, & Wolfson, 

1995). Postural sway is also worsened in conditions where visual and somatosensory information 

are distorted when using sway-referenced visual and somatosensory inputs compared to 

conditions where sensory information is available or even missing completely such as standing 

with eyes closed (Peterka & Black, 1990; Riley & Clark, 2003). Changing the size of the base of 

support when the subject stands on a narrow surface will increase postural sway. Danis et al. 

reported that body sway increased when standing with feet together versus feet apart (Danis, 

Krebs, Gill-Body, & Sahrmann, 1998). 

The effect of different standing conditions, especially sensory conditions, on postural 

sway has been commonly assessed using the Sensory Organization Test (SOT). The SOT has 

been found to be a useful tool in detecting balance abnormalities (Cohen et al., 1996). The SOT 

utilizes a moveable visual enclosure and moveable force plate to record postural sway in six 

conditions that have different levels of difficulty (Riley & Clark, 2003).  

The six conditions of SOT are as follows: condition 1: standing with eyes open on fixed 

platform surface and visual background; condition 2: standing with eyes closed on fixed 

platform; condition 3: standing with eyes open on fixed platform surface and sway-referenced 
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visual background; condition 4: standing with eyes open on a sway-referenced platform surface 

with a fixed visual background; condition 5: standing with eyes closed on sway-referenced 

platform surface; and condition 6: standing with eyes open on sway-referenced platform surface 

and with a sway-referenced visual background. Thus the SOT conditions hypothetically increase 

in difficulty from eyes open to eyes closed, from fixed visual enclosure to sway-referenced 

visual enclosure, and from a fixed support surface to a sway referenced support surface. 

As the SOT conditions become more difficult, moving from condition 1 to condition 6, 

postural sway increases. In healthy people over the age of 75 years, researchers found that 

subjects demonstrated more sway during conditions that alter proprioceptive inputs with a 

moving platform (Judge et al., 1995) compared with conditions with a stable platform. The odds 

ratio of losing balance when closing the eyes (conditions 2, 5) compared with conditions with 

eyes open (conditions 1, 4) was 5.7. Whereas, the odds ratio of losing balance with the moving 

the visual surround (conditions 3, 6) increased to 7.4 compared with conditions with eyes open 

(conditions 1, 4) (Judge et al., 1995). Moreover, more subjects lost their balance as the SOT 

progressed from condition 4 to 6 as follows: 25% of the subjects lost their balance in condition 4 

(1st trial), whereas 56% lost their balance in condition 5 (1st trial), and 62% lost their balance in 

condition 6 (1st trial) (Judge et al., 1995). 

2.3.2.1 Effect of surface on difficulty of balance exercises 

Assessment of postural control during standing on level surface usually does not differentiate 

between healthy subjects and individuals with balance disorders (Baloh et al., 1998) or young 

and older adults (Baloh et al., 1998; Liaw et al., 2009; Peterka & Black, 1990). In contrast, using 

foam in balance assessment is a helpful tool to differentiate between healthy subjects and those 
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who have balance disorders (Fujimoto et al., 2014) and between young and older adults (Baloh et 

al., 1998). Standing on foam makes the condition more challenging as it reduces the amount of 

proprioception inputs coming from the sole of the feet and makes the subject rely more on vision 

and the vestibular system. The effect of using different types of foam on balance measurements 

has been assessed in different studies (Chia-Cheng Lin, 2014; Patel, Fransson, Lush, & Gomez, 

2008; Petit, 2012b). Lin et al. did a test-retest reliability study of two different types of foam 

(Blue foam - Airex® (density 55 kg/m^3) and Gray foam – NeuroCom (density 60 kg/m^3)) and 

found that standing on the blue foam (Airex®) with eyes open and closed has a higher reliability 

(fair to excellent reliability (ICC (3, 1) = 0.41-0.81, p >0.05) compared to standing on the gray 

foam with eyes open and closed, which has poor to good reliability (ICC (3, 1) = 0.02-0.45, p 

>0.05) (C. C. Lin et al., 2015). Additionally, compared to standing on firm surface, standing on 

blue foam revealed a significant difference in three postural sway measures (peak to peak, RMS, 

and path length), whereas, standing on the gray foam revealed a significant difference in RMS 

only during eyes closed conditions and in path length during eyes open and closed conditions (C. 

C. Lin et al., 2015). Another study compared the effect of three different surfaces (firm, closed 

cell foam (density 55 kg/m^3), and open cell foam (density 32 kg/m^3)) on postural sway 

measures. The study found that all three surfaces are significantly different from each other in 

three postural sway measures (A/P sway range, M/L sway range, and Mean velocity) with higher 

postural sway in standing on the closed cell foam (Petit, 2012b). As a result of this review, I will 

be using the Airex® foam (density 55 kg/m^3) in this study as it has greater reliability, 

demonstrates significant differences in more sway measures when compared to NeuroCom one, 

and significantly higher sway values when compared to another foam of lower density. 
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2.3.3 Postural sway and interaction between age and difficulty of exercise conditions 

Several studies have assessed the interaction between age and difficulty of balance exercise 

conditions on postural sway. Two studies have assessed postural sway using the SOT with 107 

subjects between 16 – 80 years and 214 healthy subjects between 7 – 81 years, and found no age-

related effect on postural sway when subjects stood on a firm surface regardless of the visual 

conditions (Liaw et al., 2009; Peterka & Black, 1990). Paradoxically, whereas one of the studies 

found no age-related differences in postural sway in condition 3 of the SOT (Liaw et al., 2009), 

another study found age-related differences in sway in all conditions that involved sway-

referenced vision and surface, including condition 3 (Peterka & Black, 1990). Older adults 

between 60 – 80 years of age demonstrated greater sway compared with younger people 16 – 39 

years of age in conditions where they stood on a sway-referenced support (conditions 4, 5, and 6) 

(Liaw et al., 2009). The average stability score for the elderly group (60-80 yrs.) was 

significantly different from the younger group (16-39 yrs.) and middle-aged group (40-59 yrs.) 

(Liaw et al., 2009).  

Baloh et al., assessed postural sway of 70 subjects older than 75 and 30 younger subjects 

using the Chattecx Balance System, which utilizes a movable force plate that induces surface 

tilts (Baloh et al., 1998). They found that the sway velocity for all conditions combined (firm 

surface, foam surface, tilting the platform in sagittal direction, and tilting the platform in the 

lateral direction) was significantly faster in older subjects compared with younger subjects. 

However, there was no age-related effect on sway during the stable surface conditions. These 

results are consistent with those of other studies that used the SOT (Liaw et al., 2009; Peterka & 

Black, 1990). In contrast, sway in older subjects was significantly greater than younger subjects 
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in dynamic conditions especially with standing on platform that tilts in anterior-posterior 

direction (Baloh et al., 1998). 

Although it is clear that postural sway increases when a person loses sensory information 

through eye closure or standing on an unstable platform, many balance and vestibular 

rehabilitation exercises involve other challenging conditions. The relative difficulty of these 

conditions, as determined by the amount of postural sway elicited, has not been determined.  

 VESTIBULAR DISORDERS 

Approximately 65% of older people who fall suffer from balance disorders (Tinetti, Speechley, 

& Ginter, 1988) and among those with balance problems, approximately 50% have vestibular 

disorders (Overstall, Exton-Smith, Imms, & Johnson, 1977). Vestibular hypofunction is defined 

as a reduction of more than 25% of the caloric response in one ear compared to the other during 

caloric testing (Jongkees, Maas, & Philipszoon, 1962). Vestibular hypofunction may lead 

ultimately to increased body sway and risk of falling (Agrawal et al., 2009; Basta et al., 2011; 

Lee, Kim, Chen, & Sienko, 2012; Stevens, Corso, Finkelstein, & Miller, 2006a).  

Two-thirds to three-quarters of older adults who have had hip or wrist fractures were 

found to have an asymmetrical vestibular function (Kristinsdottir, Jarnlo, & Magnusson, 2000; 

Kristinsdottir et al., 2001). People with peripheral vestibular dysfunction may restrict their 

activities and reduce their participation in daily life activities (Giray et al., 2009). Dizziness, 

imbalance, and visual disturbances are common symptoms of peripheral vestibular hypofunction. 

Although these symptoms usually diminish within 3 to 6 months post injury (Horak et al., 1992), 
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about 6 million doctors' visits annually in the USA can be attributed to patients experiencing 

dizziness (Brodovsky & Vnenchak, 2013). 

2.4.1 Postural sway and vestibular disorders 

The vestibular system is one of the peripheral sensory systems that plays an important role in 

maintaining balance. The vestibular system in particular helps to coordinate eye movements 

during head movements and to control balance during upright stance and walking by facilitating 

contraction of the appropriate lower limb muscles in order to prevent falling. 

Vestibular disorders contribute to decreasing postural stability. In a comparison of the 

postural sway between 70 patients with peripheral and central vestibular disorders or reported 

dizziness and imbalance for an unknown reason and 70 control subjects both over the age of 75, 

sway velocity was significantly higher in patients than controls while standing on a platform that 

was tilting (Baloh et al., 1998). However, there was no significant difference between patients 

and controls during standing on a firm surface (eyes closed) or foam surface (Baloh et al., 1998). 

In accordance with the results of the previous study, another study compared 58 patients with 

vestibular neuritis between 23 – 83 yrs. and 66 healthy matched subjects and found an increase 

in the postural sway in patients during standing on foam with eyes closed (Fujimoto et al., 2014).  

Specific vestibular disorder diagnoses may affect postural control differently. Hong et al. 

found that people who have vestibular neuritis have significantly more sway during conditions 5 

and 6 of the SOT compared with individuals who have Meniere’s disease or migrainous vertigo. 

Whereas in condition 2, people with migrainous vertigo swayed significantly more than those 

who had vestibular neuritis (Hong et al., 2013). Individuals with vestibular disorders such as 

bilateral vestibular loss and cerebellar atrophy tend to have higher sway velocity during static or 
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dynamic standing with eyes closed compared with individuals with a different diagnosis such as 

a unilateral vestibular loss, a central disorder, or having dizziness and imbalance of unknown 

cause (Baloh et al., 1998).  

 VESTIBULAR REHABILITATION THERAPY (VRT) 

Vestibular rehabilitation is a group of exercises designed to stimulate central nervous system 

compensation through adaptation and habituation approaches in order to reduce symptoms and 

improve balance function. Vestibular rehabilitation resolves symptoms by enabling the central 

nervous system to adapt to the asymmetries in peripheral vestibular responses (Brodovsky & 

Vnenchak, 2013; Horak et al., 1992). Also, habituation exercises have been found to be helpful 

in training the CNS to recognize correct signals coming from the intact part of the vestibular 

system as well as other sensory modalities and ignore the false signals through repeating 

movements that provoke symptoms (Brodovsky & Vnenchak, 2013). 

The CNS has the ability to compensate for the conflict in afferent signals coming from 

the peripheral vestibular system (Helmchen et al., 2011; Shepard & Telian, 1995). The brain's 

ability to compensate is a result of neuronal plasticity in the cerebellum and the brainstem in 

response to asymmetries in peripheral vestibular responses (Shepard & Telian, 1995). As a result 

of this feature, it is suggested that physiotherapists prescribe vestibular exercises (Shepard & 

Telian, 1995).  

Since the early 1940s, vestibular rehabilitation programs were initiated by Cawthorne and 

Cooksey to enhance vestibular compensation of impaired functions caused by central and/or 

peripheral disorders (Cawthorne, 1946). Since then, vestibular rehabilitation has been widely 
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accepted with promising results. A recent Cochrane review that included 27 high-quality 

randomized studies suggested there was moderate to strong evidence that vestibular 

rehabilitation is safe and effective in treating unilateral peripheral vestibular symptoms (Hillier & 

McDonnell, 2011). 

However, vestibular exercises might not be beneficial with unstable symptoms that occur 

spontaneously such as with Ménière's disease (B. I. Han, Song, & Kim, 2011). Such symptoms 

may be resolved with other treatment options such as medications (B. I. Han et al., 2011). In 

certain cases such as anxiety-related dizziness or migraine-related dizziness a combination of 

methods might allow for better benefits. Physicians may prescribe medication to decrease 

dizziness along with having the patient attend a trial of vestibular rehabilitation (Furman, Cass, 

& Whitney, 2010). 

Compared with a generic exercise program, customized vestibular rehabilitation 

programs based on the physiotherapist examination have been found to decrease the symptoms 

of vestibular dysfunction and improve the patients' balance for those who sustained chronic 

vestibular loss symptoms (Giray et al., 2009; Shepard & Telian, 1995). Shepard and Telian 

studied 35 patients 18 to 69 years old with unilateral peripheral or central vestibular pathology 

and compared the results of customized versus generic vestibular rehabilitation programs. At the 

completion of the study, 85% of the patients in the customized group reported full recovery of 

symptoms versus 65% of the patients in the generic group (Shepard & Telian, 1995). 

A study was conducted to find out which vestibular rehabilitation technique was more 

effective in the treatment of patients with unilateral peripheral vestibular disorders. 

Computerized dynamic posturography (CDP) and optokinetic stimulation (OKN) were compared 

(12 patients in each group). After the evaluation, they found that both groups had significantly 
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improved. In the CDP group, greater improvement occurred in patients who performed worse 

during conditions where subjects relied more on vision and vestibular inputs, whereas in the 

OKN group, greater improvement occurred in patients with visual preference (Rossi-Izquierdo 

M, 2011). Vestibular rehabilitation for bilateral vestibular patients has been found to be more 

effective in reducing symptoms and increasing stability when it was customized for the patient’s 

deficits (Shepard & Telian, 1995). 

Vestibular rehabilitation exercises can be divided into two main categories which are 

gaze stabilization and balance exercises such as walking and standing (Whitney & Sparto, 2011). 

Gaze stabilization exercises are meant to reduce dizziness by having the patient move his/her 

head in different directions while vision remains fixed on a target in front of the patient. A 

variety of exercises can be prescribed by changing the speed and direction of the head movement 

(yaw, pitch, roll), standing surface (level, foam, etc.), base of support (feet apart, feet together, 

semi tandem, etc.), and change from sitting to standing and then walking position (Brodovsky & 

Vnenchak, 2013; Herdman & Clendaniel, 2014; Vereeck, Wuyts, Truijen, De Valck, & Van de 

Heyning, 2008; Whitney & Sparto, 2011; Yardley et al., 2004). A recent clinical practice 

guideline summarized the evidence for gaze stabilization exercises for treatment of peripheral 

vestibular hypofunction (Hall et al., 2016). Jung et al. found that gaze stabilization exercises are 

helpful in decreasing dizziness in elderly subjects. The prescribed exercises included turning the 

head in horizontal or vertical plane with different speeds and were done in sitting or walking 

position with eyes open or closed (Jung, Kim, Chung, Woo, & Rhee, 2009). Similarly, Herdman 

et al. used vestibular adaptation exercises with patients after acoustic neuroma resection and 

found improvement in peak-to-peak AP sway. The exercises included in this study were turning 



 26 

head right and left or up and down while standing or sitting (Herdman, Clendaniel, Mattox, 

Holliday, & Niparko, 1995).  

On the other hand, balance exercises in walking and standing are designed for subjects 

who have difficulty in controlling their posture. Different exercises can be created by modifying 

the size of base of support, altering the visual inputs, changing surface compliance, or 

performing in different postural positions such as sitting or standing. A randomized control study 

by Vereeck et al. incorporated gaze stability and balance exercises for patients after acoustic 

neuroma resection (young and older) and general instructions for the control group (young and 

older). Older adults in the experimental group showed significant improvements in most of the 

balance tests such as standing balance, Timed Up and Go test, tandem gait, and Dynamic Gait 

Index (DGI) compared to older adults in control group. In contrast, no significant difference was 

found between younger adult groups (Vereeck et al., 2008). 

A number of studies have developed exercise progression patterns which contributed to 

decreasing symptoms and increasing function for persons with vestibular disorders. In a 

randomized study conducted on 13 patients with bilateral vestibular hypofunction, researchers 

used their clinical experience to develop a progression of eye and head movement exercises for 

the treatment group whereas the control group received placebo exercises (Herdman, Hall, 

Schubert, Das, & Tusa, 2007). First, they increased the number of repetitions of the exercises 

during the day and the duration of exercise. Then, they placed the visual target in more complex 

visual backgrounds. These changes were progressed so that they did not evoke symptomatic 

complaints. The treatment group gained better dynamic visual acuity and decreased symptoms 

compared to the placebo exercise group (Herdman et al., 2007). 
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Alsalaheen et al. did a retrospective study of 104 patients who had been diagnosed with 

concussion and received vestibular rehabilitation exercises (Alsalaheen et al., 2013). Their aim 

was to describe the exercises given by the physical therapist and how they were progressed to 

make them more challenging. Exercises were classified into five types as follows: eye-head 

coordination, sitting balance, standing static balance, standing dynamic balance, and ambulation. 

These exercises were progressed by modifying conditions within each exercise category to make 

them more challenging. For example, the performance of the VORx1 exercise was progressed by 

having subjects perform the exercises in sitting, then standing with feet apart, and then standing 

with feet together, and then standing with feet semi-tandem. The exercise progression conditions 

included changes in posture position, surface type, base of support, trunk position, arm position, 

head movement direction, direction of whole body movement, visual input, and a cognitive dual 

task.  

In a case report study, Gill-body et al. documented a vestibular rehabilitation program for 

2 older patients with unilateral and bilateral vestibular hypofunction. The program has included a 

number of balance exercises that were distributed over a period of 8 weeks into three phases with 

various levels of difficulties from easier to harder respectively. The first phase extended for two 

weeks and included static standing on firm surface with eyes open and closed and feet together 

with arms outstretched and a book on head, walking with narrowed base of support and eyes 

open, marching in place slowly with eyes open, and active head movement in yaw, pitch, and roll 

planes. In the second phase, which extended for 4 weeks, exercises were progressed to static 

standing in semi-tandem stance with eyes open and closed and arms close to body with a book 

on head, static standing on foam surface with eyes open and book on head, walking with normal 

and narrow base of support with eyes open and a book on head, and active head movement in 
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yaw, pitch, and roll planes. In the final phase, which lasted for two weeks, exercises were 

progressed to static standing on foam surface with eyes closed and with and without a book on 

head, walking with narrowed base of support with eyes closed and with and without a book on 

head, walking with normal base of support with fast head movements, marching in place slowly 

with eyes open and closed and with and without a book on head, and active head movements in 

yaw, pitch, and roll planes (Gill-Body, Krebs, Parker, & Riley, 1994). 

One of the potential limitations of vestibular rehabilitation therapy is that real time 

feedback is not usually provided during the home based exercises (Martin G., et al, 2012). It has 

been found that providing biofeedback based treatment based on measuring the displacement of 

body sway helps patients who have balance disorders to restore balance and reduce falls (Wall, 

2010). 

Biofeedback technologies have been used along with vestibular rehabilitation to enhance 

the effect of physical therapy interventions. Biofeedback has been used to take place of 

vestibular system in complete loss or augment with partial loss. Different ways of providing 

feedback include auditory, visual, vibrotactile, and tongue electrotactile feedback. 

Auditory feedback helped patients with bilateral vestibular loss to control their posture 

during standing and walking tasks (Dozza et al., 2005; Hegeman, Honegger, Kupper, & Allum, 

2005). Dozza et al. did another study using auditory feedback with bilateral vestibular loss and 

healthy subjects and found a significant reduction of COP-RMS in three different standing 

conditions (eyes closed, eyes open on a foam, eyes closed on a foam) (Dozza, Horak, & Chiari, 

2007). Similarly, Chiari et al. reported a significant reduction in COP-RMS and mean velocity in 

the same conditions with healthy subjects (Chiari et al., 2005). 
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People who have vestibular dysfunction often complain of difficulty walking in 

circumstances where there are many visual distractions (Whitney et al., 2006). As a result, some 

studies support the use of virtual reality as a part of vestibular rehabilitation as it provides visual 

and auditory feedback in different levels of challenging scenes (Meldrum, Herdman, et al., 

2012). Virtual reality helped patients with Ménière's disease in reducing their dizziness 

symptoms and increase limit of stability (Garcia et al., 2013). Pavlou stated in her review those 

vestibular rehabilitation programs that incorporate optokinetic stimulation are more beneficial 

than programs that don’t include optokinetic stimulation (Pavlou, 2010). 

Vibrotactile biofeedback (VTF) has been shown to reduce trunk sway in many studies 

over the last decade (Dozza, Wall, Peterka, Chiari, & Horak, 2007; Kentala, Vivas, & Wall, 

2003; Sienko, Balkwill, Oddsson, & Wall, 2008; Sienko, Vichare, Balkwill, & Wall, 2010; Wall 

& Kentala, 2005). After training older adults with this technology, one study found that it helped 

older adults to improve their score in Dynamic Gait Index (DGI) which is considered a fall risk 

indicator (Wall, Wrisley, & Statler, 2009) while another study reported a reduction in trunk tilt 

measurements in older adults (Haggerty, Jiang, Galecki, & Sienko, 2012). As far as using VTF 

with patients is concerned, a study found that VTF reduced lateral trunk tilt in patients with 

vestibulopathies during some walking tasks (Horak, Dozza, Peterka, Chiari, & Wall, 2009; 

Sienko, Balkwill, Oddsson, & Wall, 2013).  

Several studies combined different types of feedback together in attempt to increase the 

effect of the intervention. A study used multi-modal biofeedback including vibrotactile, visual, 

auditory feedback which were provided to young and older adults during standing and gait tasks. 

The vibrotactile feedback activation threshold was the smallest, followed by auditory feedback 

and lastly by visual feedback. A couple of trunk tilt measures reduced significantly in all subjects 
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compared to a control group during standing as well as gait tasks (Davis et al., 2010). Another 

study combined visual and auditory feedback during balance exercises for older adults and found 

an improvement in postural sway measures and some functional tests including Timed Up and 

Go (Schwenk et al., 2014). 

 CLINICAL APPLICATIONS FOR THIS STUDY 

According to the American College of Sports Medicine (ACSM), there is a lack of studies that 

show the appropriate progression of balance exercises for older adults who suffer from frequent 

falls (Pescatello & American College of Sports Medicine., 2014). In addition, Farlie et al (2013) 

performed a systematic review of balance intervention studies and found that there was no 

description of the intensity of balance exercises (Farlie, Robins, Keating, Molloy, & Haines, 

2013). However, the ACSM recommends reducing the base of support (e.g. changing from 

standing feet apart to feet together, to semi tandem, to tandem, to single leg stance) and sensory 

inputs (e.g. changing from eyes open to eyes closed) (Pescatello & American College of Sports 

Medicine., 2014). 

Several groups have attempted to develop a way to grade the intensity of balance 

exercises. Muehlbauer et al. did an experiment to assess the relative difficulty of 12 balance 

exercises and to set a progression sequence. They had young subjects stand in 4 different bases 

of support (feet apart, semi tandem, tandem, and single leg) on either a firm surface with eyes 

open, foam surface with eyes open, or firm surface with eyes closed. COP displacement 

increased gradually from exercises done on the firm surface with eyes open, to the foam surface 

with eyes open, to firm surface with eyes closed. In addition, the COP displacement increased as 
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the base of support changed from feet apart, to semi tandem, to tandem and finally to single leg 

stance. Furthermore, they came up with a sequence of all 12 exercises, starting from the exercise 

that produced the least COP displacement (standing on firm surface and feet apart with eyes 

open) to the exercise that produced the most COP displacement (standing on firm surface and 

single leg stance with eyes closed) (Muehlbauer, Roth, Bopp, & Granacher, 2012).  

Farlie et al. did an observational study to explore the verbal and nonverbal responses 

during three exercises of different levels of difficulty so that they could develop an instrument 

that measures the intensity of balance difficulty (Farlie, Molloy, Keating, & Haines, 2016). They 

found that as the difficulty of the exercises increased, the time delay before commencing the 

exercise increased as well as the number of comments that subjects made before, during, and 

after exercises increased accordingly with the increased difficulty of the exercise. Additionally, 

they visually observed the physical responses and found that postural sway and postural 

reactions such as stepping and reaching increased as the exercise difficulty increased. 

Furthermore, at the end of each exercise, they asked their subjects to describe their perception of 

how difficult they found the exercise. The subjects’ perception seemed to correlate positively 

with the exercise intensity (Farlie et al., 2016). 

For aerobic and resistance exercises, there are well defined rules for how to determine the 

initial prescription for exercise intensity as well as how to progress the intensity level. According 

to American College of Sports and Medicine (ACSM) guidelines, initial intensity prescription of 

aerobic exercise is 40-60% of the heart rate reserve, which is considered a moderate intensity and 

may progressed to a vigorous intensity (60-85%) during endurance training and general aerobic 

exercises (Pescatello & American College of Sports Medicine., 2014). The prescribed intensity 

may vary depending on the fitness level and goals of the trainee, and whether the trainee has 
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chronic diseases or not (Pescatello & American College of Sports Medicine., 2014). Similarly, 

the intensity of resistance training is defined as a percentage of one repetition maximum (1 RM), 

which is the maximum weight that can be lifted for one time throughout the full range of motion. 

The ACSM recommends different intensity ranges depending on the type of exercise, whether it 

is muscular strength, endurance, or hypertrophy, and also the intensity depends on the level of 

the trainee (beginners, intermediate, or advanced). For instance, to increase muscular strength, it 

is recommended to prescribe the intensity between 60-70% of 1 RM for novice and intermediate 

and between 80-100% for advanced trainees. For muscular endurance, the ACSM recommends 

to prescribe the intensity of the resistance exercises lower than 70% of 1 RM, whereas, it is 

suggested for novice and intermediate trainees to left weights of intensity between 70-85% of 1 

RM and 70-100% for advanced trainees in order to increase muscle mass (Pescatello & 

American College of Sports Medicine., 2014). 

Furthermore, the rating of perceived exertion for aerobic and resistance exercises was 

developed to assist in determining how trainees perceive the intensity of activity in cases where 

the heart rate reserve or the maximum weight that can be lifted cannot be measured, due to 

medical conditions (e.g. heart failure), using a medication that affects the heart rate in response 

to physical effort, or lack of medical equipment to measure the event of interest (Robertson et al., 

2004; Robertson et al., 2003; Utter et al., 2004). During training programs, rating of perceived 

exertion scales help to monitor the intensity of the activity and provide healthcare providers with 

feedback of how hard their clients’ feel like they are exercising as well as if their clients are 

ready to progress to the next level of intensity.   

During the performance of balance exercises, measuring or visually observing the amount 

of sway is a common way of assessing the difficulty of exercises. However, many clinics don’t 
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have the capability to measure sway or interpret its results. In addition, visual observation is an 

imprecise tool, and evidence of inter-rater reliability is not established. Therefore, clinicians can 

use the rating of perceived difficulty scales for determining the intensity of balance exercises and 

progress them in cases when measuring sway is not an option. Additionally, ratings of perceived 

difficulty can be used for home-based balance exercise training to provide feedback to the 

physical therapist of how well the exercises met the targeted intensity.  

In this study we measured the trunk tilt and center of pressure induced during common 

static standing balance exercises, and asked subjects to rate their perceived difficulty of each 

exercise in order to establish a standard way of assessing the level of difficulty of the exercises 

(i.e. intensity). These measurements may facilitate better treatment progression algorithms used 

in practice and research. Several measures of the postural sway data (i.e. 90% range and IQR) 

can be used for different purposes: such as setting the thresholds for feedback delivered by  

sensory augmentation technologies. For example, the IQR could be used to set the first threshold 

when vibrotactile feedback would be activated, and the 90% range could trigger an even stronger 

feedback to alert the subject that a postural stabilizing correction needed to be activated 

imminently. The purpose of this study is to determine the relative difficulty of a wide variety of 

static standing exercises commonly performed in balance and vestibular rehabilitation, and 

validate common rubrics for treatment progression by recording postural sway measures (trunk 

tilt and center of pressure) and perceived difficulty. In addition, the effect of age on postural and 

perceptual measures will also be examined over a wide spectrum of ages from 18 to 85 years old 

as well as recruiting individuals with vestibular disorders to understand the effect of having 

vestibular disorders on postural sway measures and the perceived difficulty.  
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3.0  METHODS 

 EXPERIMENTAL DESIGN  

This research consists of four aims. For aims 1 and 2, a cross-sectional study was done to 

determine test-retest reliability of the subjects’ performance of static standing balance exercises, 

within and between two visits occurring one week apart and to establish concurrent validity of 

two scales of rating of perceived difficulty of balance exercises by comparing the scales with 

quantitative postural sway measures. For aims 3 and 4, an experimental study using a within-

subjects and between-groups design was done to determine the effect of age, having a vestibular 

disorder, and different exercise conditions on balance. 

 All potential research participants came in for a screening visit. The eligible subjects 

were asked to come back for testing during a 2nd visit, and only healthy subjects were asked to 

come for a 3rd visit one week later. For Aim 3, the independent variables are the age groups (4 

levels) and the exercise conditions (i.e. surface - 2 levels; visual input - 2 levels; base of support - 

2 levels; and head movement - 3 levels). The different levels of exercise conditions are shown in 

Table 3-1. These conditions were tested in a full factorial design which make a total of 24 

exercises as shown in Table 3-2. For Aim 4, the independent variables are presence of vestibular 

disorder (yes or no) and the same exercise conditions as above except pitch movement, which 

make a total of 16 exercises. The dependent variables are trunk tilt, center of pressure, and rating 

of perceived difficulty. 
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Table 3-1: Chosen conditions of static standing exercises 

Exercise category Surface Visual input Base of support 
Head 

movement 

Static standing 
Level surface 

Foam surface 

Eyes open 

Eyes closed 

Feet apart 

Semi-tandem  

Head still 

Yaw 

Pitch 

 

Table 3-2: The balance and vestibular exercises 

Exercise number Surface Visual input Base of support Head movement 
1 Firm Eyes open Feet apart Head still 

2 Firm Eyes open Feet apart Yaw 

3 Firm Eyes open Feet apart Pitch 

4 Firm Eyes open Semi-tandem Head still 

5 Firm Eyes open Semi-tandem Yaw 

6 Firm Eyes open Semi-tandem Pitch 

7 Firm Eyes closed Feet apart Head still 

8 Firm Eyes closed Feet apart Yaw 

9 Firm Eyes closed Feet apart Pitch 

10 Firm Eyes closed Semi-tandem Head still 

11 Firm Eyes closed Semi-tandem Yaw 

12 Firm Eyes closed Semi-tandem Pitch 

13 Foam Eyes open Feet apart Head still 

14 Foam Eyes open Feet apart Yaw 

15 Foam Eyes open Feet apart Pitch 

16 Foam Eyes open Semi-tandem Head still 

17 Foam Eyes open Semi-tandem Yaw 

18 Foam Eyes open Semi-tandem Pitch 

19 Foam Eyes closed Feet apart Head still 

20 Foam Eyes closed Feet apart Yaw 

21 Foam Eyes closed Feet apart Pitch 

22 Foam Eyes closed Semi-tandem Head still 

23 Foam Eyes closed Semi-tandem Yaw 

24 Foam Eyes closed Semi-tandem Pitch 
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 PARTICIPANTS 

Sixty-two healthy subjects who were independently participating in daily activities, and were 

between the ages of 18 and 85 years old (31 females and 31 males, mean age 55 ± 20 years) 

participated in this study. Study participants were distributed into four groups as follow: young 

(18-44 years old; n = 17), middle aged (45-59 years old; n = 15), old (60-74 years old; n = 15), 

and very old (75-85 years old; n = 15). Age divisions were developed based on age-related 

changes in the postural sway found in several studies (Abrahamova & Hlavacka, 2008; Baloh et 

al., 1998; Era et al., 2006; Gill et al., 2001; Liaw et al., 2009; Peterka & Black, 1990; Rine et al., 

2013; Rosenhall & Rubin, 1975; Sheldon, 1963). 

Participants with vestibular disorders were recruited from the Balance Disorders Clinic of 

the University of Pittsburgh Medical Center. We attempted to enroll as many individuals with 

confirmed vestibular disorders as possible to understand the influence of vestibular disorders on 

postural sway. A confirmed diagnosis of peripheral or central vestibular disorder was made by a 

neurotologist based on caloric testing, rotational chair testing, and vestibular evoked myogenic 

potentials and history. Patients were gender and age (±3 years of age) matched with healthy 

subjects in a ratio of 1:2. The matched healthy subjects’ data was used from a larger study.  

Healthy subjects and patients were between the age of 18 and 85 years old and 

participating in daily activities independently. Subjects were excluded if they were unable to 

stand for 3 minutes without rest; had distal sensory loss (unable to complete the Romberg test for 

30 seconds and unable to feel a pressure of 4.31 g monofilament applied on two different parts of 

each foot with eyes closed), had visual acuity worse than 20/40, had a diagnosis of benign 

paroxysmal positional vertigo (BPPV) (positive Dix–Hallpike test or positive supine roll test), 

had a history of neurological or orthopedic disorders; used an assistive device for ambulation; 
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were pregnant; had excessive weight (BMI > 35); had cognitive impairment (≤ 25 points on the 

Montreal Cognitive Assessment). Additionally, healthy subjects were excluded if they had a 

history of falling 2 times or more within the last 12 months doing activities of daily living; or had 

a peripheral vestibular disorder (positive head thrust test). 

This study was approved by the Institutional Review Board in University of Pittsburgh. 

All subjects provided a written informed consent prior to participating in the study. 

 SAMPLE SIZE JUSTIFICATION  

The sample size was calculated using the software G Power 3.1.7 (Faul, Erdfelder, Lang, & 

Buchner, 2007) based on models that tested for the main effect of age, and main effects of the 

modifying factors. The most conservative effect size was found in a study that examined the 

difference in postural sway between young and older subjects performing static balance exercises 

(standing with eyes open or open in the dark on fixed or movable surfaces) was 0.6 (C. C. Lin, 

2014). Based on a pilot study that I did prior to this study, the most conservative effect size for 

the modifying factors was 0.2. We did not have an estimate for the effect size for the interaction 

between age and modifying factors, so we used the most conservative effect size of 0.2. As a 

result, we found that sample size in each group should be 15 subjects at an alpha of 0.05 and a 

power of 0.80.  
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Table 3-3: Effect sizes 

Independent variables Effect size 

Age 0.6 

Surface 1.4 

Visual input 0.38 

Base of support 0.73 

Head movement (Head still vs. Yaw) 0.35 

Head movement (Yaw vs. Pitch) 0.2 

Head movement (Head still vs. Pitch) 0.56 

 

 PREPARATION FOR THE STUDY 

In preparation for this study, several factors were used to determine the choice of static standing 

balance exercises. The factors were chosen based on review of vestibular rehabilitation literature, 

consultation from physical therapists, conduction of a pilot study, and consideration of the 

amount of time that the chosen exercises will take.  

Upon reviewing several studies in the vestibular rehabilitation literature, static standing 

balance exercises were chosen because they are one of the most commonly prescribed exercises, 

and the fact that the exercises can be done in a clinical setting and at home. Standing on a level 

surface and foam are the most common surface conditions prescribed in several studies as part of 

balance training programs (Alsalaheen et al., 2013; Brodovsky & Vnenchak, 2013; Gill-Body et 

al., 1994; Gill et al., 2001; Meldrum, Glennon, Herdman, Murray, & McConn-Walsh, 2012; 

Whitney & Sparto, 2011). In contrast, standing on a ramp (Vereeck et al., 2008) or sway 

referenced platform are less commonly reported and patients are not able to do this at home. In 

the same way, exercises with eyes open and closed are the most prescribed visual conditions 

(Alsalaheen et al., 2013; Brodovsky & Vnenchak, 2013; Gill-Body et al., 1994; Gill et al., 2001; 
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Jung et al., 2009; Vereeck et al., 2008; Whitney & Sparto, 2011; Yardley et al., 2004) followed 

by complex patterns (Brodovsky & Vnenchak, 2013; Vereeck et al., 2008), whereas the visual 

sway referenced exercise is the least commonly reported one. As far as base of support is 

concerned, five base of support stances (feet apart, feet together, semi-tandem Romberg, tandem 

Romberg, and single leg stance) are roughly reported in the same amount (Alsalaheen et al., 

2013; Gill-Body et al., 1994; Gill et al., 2001; Meldrum, Glennon, et al., 2012; Vereeck et al., 

2008; Whitney & Sparto, 2011). The choice of which base of support conditions were selected 

will be discussed later in the preliminary data section. Standing with head still and moving the 

head in yaw or pitch planes are widely reported in studies related to vestibular rehabilitation 

(Alsalaheen et al., 2013; Gill et al., 2001; Herdman et al., 1995; Jung et al., 2009; Meldrum, 

Glennon, et al., 2012; Vereeck et al., 2008; Whitney & Sparto, 2011; Yardley et al., 2004), 

whereas moving the head in roll plane is not commonly reported. 

In addition to reviewing several studies in the vestibular rehabilitation literature, four 

physical therapists who specialized in vestibular rehabilitation and have at least 9 years of 

experience were consulted to determine which common exercises that they prescribe for their 

patients, but are not included in vestibular rehabilitation research. The physical therapists stated 

that they use provocative visual motion (such as a disco ball) or have patients to look at a 

checkerboard pattern.  

The other decisions about the experimental design were based on a pilot study that I 

conducted. 
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 PRELIMINARY DATA 

After making a list of 64 exercises, a pilot study was conducted with 3 healthy young adult 

subjects (29 y/o, 28 y/o and 26 y/o) who performed all exercises to determine which exercises 

should be eliminated. The findings of this pilot study were as follows (Table 3-4). The effect of 

foam and eyes closed conditions was greater than the effect of standing on level surface and eyes 

open in all postural sway measurements. The effect of standing in semi-tandem stance is greater 

than the effect of standing feet apart in all postural sway measurements except A/P RMS and 

90% range of center of pressure. As far as head movement effect is concerned, moving the head 

in the pitch plane showed higher sway values in all postural sway measurements except 90% 

range of M/L direction of trunk tilt followed by yaw movement and then head still (Table 3-4). A 

test of normality using the Kolmogorov-Smirnov test showed that only one trial (A/P trunk tilt) 

out of 141 trials was normally distributed. 

  



 41 

Table 3-4: Descriptive data from the pilot study 

Surface Level, Mean (SD) Foam, Mean (SD) 

Tilt_AP_range50 0.7 (0.4) 1.5 (0.6) 

Tilt_AP_range90 1.7 (1.2) 3.7 (1.6) 

Tilt_ML_range50 0.4 (0.4) 0.7 (0.3) 

Tilt_ML_range90 0.8 (0.6) 1.9 (1.0) 

COP_AP_rms 0.6 (0.4) 1.8 (0.6) 

COP_AP_range90 1.9 (1.2) 5.9 (2.1) 

COP_ML_rms 0.5 (0.5) 1.1 (0.5) 

COP_ML_range90 1.9 (1.7) 3.7 (1.7) 

Visual input Eyes open, Mean (SD) Eyes closed, Mean (SD) 

Tilt_AP_range50 1.0 (0.7) 1.2 (0.6) 

Tilt_AP_range90 2.4 (1.6) 3.0 (1.8) 

Tilt_ML_range50 0.4 (0.3) 0.6 (0.5) 

Tilt_ML_range90 1.1 (0.8) 1.6 (1.1) 

COP_AP_rms 1.0 (0.7) 1.3 (0.9) 

COP_AP_range90 3.4 (2.3) 4.3 (2.8) 

COP_ML_rms 0.7 (0.5) 1.0 (0.6) 

COP_ML_range90 2.5 (1.8) 3.2 (2.0) 

Base of support Feet apart, Mean (SD) Semi-tandem, Mean (SD) 

Tilt_AP_range50 1.1 (0.7) 1.1 (0.6) 

Tilt_AP_range90 2.5 (1.4) 3.0 (2.0) 

Tilt_ML_range50 0.3 (0.2) 0.8 (0.5) 

Tilt_ML_range90 0.9 (0.6) 1.9 (1.1) 

COP_AP_rms 1.2 (0.9) 1.1 (0.6) 

COP_AP_range90 3.9 (3.1) 3.8 (2.0) 

COP_ML_rms 0.5 (0.4) 1.2 (0.5) 

COP_ML_range90 1.6 (1.2) 4.1 (1.7) 

Head movement Head still, Mean (SD) Yaw, Mean (SD) Pitch, Mean (SD) 

Tilt_AP_range50 1.0 (0.6) 0.9 (0.5) 1.4 (0.7) 

Tilt_AP_range90 2.1 (1.0) 2.6 (1.6) 3.4 (2.2) 

Tilt_ML_range50 0.4 (0.3) 0.6 (0.3) 0.6 (0.5) 

Tilt_ML_range90 1.0 (0.7) 1.6 (1.2) 1.5 (1.0) 

COP_AP_rms 1.0 (0.7) 1.2 (0.7) 1.4 (0.8) 

COP_AP_range90 3.3 (2.4) 3.9 (2.5) 4.5 (2.7) 

COP_ML_rms 0.7 (0.4) 0.9 (0.7) 1.0 (0.6) 

COP_ML_range90 2.2 (1.5) 3.1 (2.2) 3.2 (1.9) 
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Conducting the pilot study helped to make a couple of other decisions about which 

conditions to test. The first decision involved the amount of time for the experiment. The choice 

of exercises was limited to a number of exercises that can be done within a time frame of 2 

hours, which is considered a reasonable amount of time for 1 visit. After taking into account the 

fact that each exercise is done twice for 35 seconds each plus 1-minute rest break after every 3 

exercises and the consenting and screening process is taking place during the 1st visit. I found 

that 24 exercises can fit within 2 hours’ period. 

Next, after determining that I could only have two base of support conditions, I decided 

to eliminate the tandem and single leg stance conditions because two of the subjects could not 

maintain 8 out of 12 of the tandem Romberg conditions and 2 out of 3 of the single leg stance 

conditions. However, they lost their balance on only 1 out of 12 of the feet together and semi-

tandem Romberg conditions. As far as the remaining conditions, I will include the easiest 

condition (feet apart) and the most challenging condition (semi-tandem) (see Table 3-5), based 

on the results of the postural measurements in the M/L direction.  

Table 3-5: The magnitude of postural measurements of different base of support conditions 

Base of support Feet apart Feet together Semi-tandem 

Measurements Mean (SD) Mean (SD) Mean (SD) 

Tilt_AP_range50 1.1 (0.7) 1.1 (0.6) 1.1 (0.6) 

Tilt_AP_range90 2.5 (1.4) 2.7 (1.5) 3.0 (2.0) 

Tilt_ML_range50 0.3 (0.2) 0.6 (0.3) 0.8 (0.5) 

Tilt_ML_range90 0.9 (0.6) 1.5 (0.7) 1.9 (1.1) 

COP_AP_rms 1.2 (0.9) 1.1 (0.5) 1.1 (0.6) 

COP_AP_range90 3.9 (3.1) 3.6 (1.8) 3.8 (2.0) 

COP_ML_rms 0.5 (0.4) 1.1 (0.5) 1.2 (0.5) 

COP_ML_range90 1.6 (1.2) 3.6 (1.9) 4.1 (1.7) 
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 INSTRUMENTATION 

During the performance of the exercises in static standing, subjects stood on a force platform 

(NeuroTest, NeuroCom, Inc., Clackamas, OR) that measured ground reaction forces at a 

sampling rate of 100 Hz. An inertial measurement unit (IMU, Xsense Technologies B.V., 

Enschede, The Netherlands) was mounted on each subject's lower back at the level of iliac crest 

(L4) to measure trunk angular displacement and velocity from vertical and linear acceleration in 

AP and ML directions at a sampling rate of 100 Hz. The IMU uses a combination of 

accelerometers, gyroscopes, and a magnetometer. The signals from the force plate and the 

inertial measurement unit were synced by starting both devices at the same time manually.  

 EXPERIMENTAL PROCEDURE 

3.7.1 Screening visit 

Consented subjects underwent screening tests done by physical therapist to ensure that they were 

eligible for the study. Screening tests included:  

- Romberg test: subjects stand with their feet together, arms at their sides, and eyes closed 

for 30 sec. The test is stopped and subject excluded if the subject changes his/her feet or arms 

starting position or opens his/her eyes (Horak, 1987). 

- Monofilament test: subjects close their eyes during this test. The examiner touches two 

different sites of the subject’s foot (plantar surface and medial side of the heel) three times with 
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monofilament. Subjects will be excluded if they cannot feel the 4.31 monofilament (Holewski, 

Stess, Graf, & Grunfeld, 1988). 

- Visual acuity test: is used to measure how well the subject can see using a standardized 

chart held in a distance of 20 feet away from the subject. Subjects included in this study has a 

visual acuity measurment of 20/40 or higher (Brien Holden, 2008; Muhammad, Alhassan, & 

Umar, 2015; World-Health-Organization, 2003) . 

- Montreal Cognitive Assessment - Version 3 (MOCA): The purpose of this test is to 

assess the cognitive ability in different domains such as visuospatial ability, naming task, 

orientation to time and place, and memory. The MOCA has been validated in detecting Mild 

Cognitive Impairment with sensitivity and specificity of 90% and 87% respectively (Nasreddine 

et al., 2005). The examiner will administer the test and subjects will be excluded if they score ≤ 

25 points out of 30 on the test (Nasreddine et al., 2005).  

- Dix–Hallpike Test: is a diagnostic maneuver to confirm the diagnosis of Benign 

Paroxysmal Positional Vertigo (BPPV) in the posterior semicircular canal. The Dix-Hallpike 

maneuver is performed on an examination table by turning the patient’s head 45° to one side and 

then moving the patient rapidly from sitting to supine position with the head extended over the 

end of the table about 30 degrees. This position should be held for about 20 seconds. In BPPV 

patients, clinicians should see nystagmus toward the lower ear (Dix & Hallpike, 1952). 

- Supine Roll Test: The Supine Roll Test is used to evaluate for horizontal semicircular 

canal BPPV.  The supine roll test typically starts from a straight supine position with the head in 

a neutral position. The head is quickly rolled 90 degrees to one side with observation of the 

patient’s eyes for nystagmus. The patient is asked to report any vertigo, and is then rotated back 

to a neutral position. Then the head is turned quickly 90 degrees to the opposite side with 
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observation for nystagmus and the patient is asked to report any vertigo. The side with the 

greatest prominent horizontal nystagmus is mostly expected to be the affected side (Herdman & 

Tusa, 2007). 

Moreover, only healthy subjects will undergo one additional screening test: 

- The Head Thrust Test (HTT): The HTT is used to assess the Vestibulo-Ocular Reflex 

(VOR) which is produced by the horizontal semicircular canal (HSCC). The examiner will grasp 

and flex the subject’s head into 30 degrees of cervical flexion and ask the subject to fix his/her 

eyes on a target. The examiner will then generate unpredictable rapid head movements while 

monitoring the subject’s eyes. The presence of a corrective saccade is a positive sign that 

indicates the presence of peripheral vestibular hypofunction on the side where the head was 

rotated. The Head Thrust Test has a good sensitivity (71% and 84%) in identifying people with 

unilateral and bilateral vestibular hypofunction respectively. Also, the Head Thrust Test has a 

good specificity (82%) in identifying people with unilateral and bilateral vestibular hypofunction 

(Schubert, Tusa, Grine, & Herdman, 2004). 

Eligible subjects who met the study criteria completed the Activities-specific Balance 

Confidence Scale (ABC) questionnaire, Functional Gait Assessment (FGA), and their gait speed 

was measured prior to experiment in order to better describe the participants. Moreover, people 

with vestibular disorders completed the Dizziness Handicap Inventory (DHI) and self-report of 

dizziness on visual analog scale. 

First, subjects completed an Activities-specific Balance Confidence Scale (ABC) 

questionnaire (Powell & Myers, 1995). The purpose of the questionnaire is to record the subject's 

confidence level in participating in 16 daily activities without losing balance or feeling unstable. 

This questionnaire is a self-report measure with scores ranging from 0-100, where 0 indicates 
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that the subject doesn't feel confident whereas 100 indicates that the subject is highly confident. 

This questionnaire has excellent test-retest reliability (r = 0.92, p < 0.001) assessed in the elderly 

population (Powell & Myers, 1995).  

Second, subjects performed the Functional Gait Assessment (FGA) test to assess their 

postural control during 10 walking tasks (Wrisley, Marchetti, Kuharsky, & Whitney, 2004). The 

FGA is a 10-item physical test with a score ranging from 0-30, where 0 indicates worse postural 

control whereas 30 indicates best postural control. The FGA has excellent test-retest reliability 

(ICC = 0.83) assessed in patients with vestibular disorders (Wrisley et al., 2004).  

Third, all subjects’ gait speed was measured over 6 meters (Steffen, Hacker, & 

Mollinger, 2002). Subjects were instructed to walk at their comfortable speed for 10 meters; their 

speed during the middle 6 meters was measured to avoid the effect of acceleration and 

deceleration. Data was collected over three trials and the average of the three trials was 

calculated. 

Fourth, patients with vestibular disorders completed the Dizziness Handicap Inventory 

(DHI) to measure the impact of dizziness on their daily life in three domains: functional, 

emotional, and physical (Jacobson & Newman, 1990). The DHI has 25 questions with a score 

ranging from 0-100, where 0 indicates no perceived handicap due to dizziness whereas 100 

means the greatest perceived handicap due to dizziness. The DHI has excellent test-retest 

reliability (r = 0.97, p < 0.0001) assessed in patients with vestibular dysfunction (Jacobson & 

Newman, 1990). 

Finally, patients with vestibular disorders assessed their perceived level of dizziness on a 

visual analog scale (Hall & Herdman, 2006; Toupet, Ferrary, & Grayeli, 2011). Visual analog 

scale of dizziness is a 10-cm vertical line with the lower end labeled as no dizziness at all 
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whereas the upper end labeled with the following phrase “as bad as can be” (Figure 3-1). 

Subjects will be asked to indicate their dizziness level by drawing a mark along the vertical line. 

The distance from the lower end of the vertical line to the mark will be measured and counted as 

the nearest millimeter (Hall & Herdman, 2006; Toupet et al., 2011). 

 

Figure 3-1: Visual Analog Scale of dizziness 

3.7.2 Experimental visits 

Subjects with vestibular disorders were asked to come for only one experimental visit to perform 

2 sets of 16 static standing exercises, whereas, healthy subjects performed the experiment (2 sets 

of 24 static standing exercises) over two separate visits one week apart. However, patients were 

offered to perform part of the experiment during their first visit after the screening process 
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section if they had time and were not tired, and perform the remaining of the exercises on a 

different visit. All patients were able to complete all exercises during their first visit. During the 

experiment, participants stood without shoes in order to avoid the confounding effect of wearing 

different shoes. During conditions of the foam surface, subjects stood on a foam pad (AIREX 

Balance Pad S34-55) that had a height of 6 cm, length of 51 cm, width of 40 cm (density 55 

kg/m^3, compression resistance 20 kPa at 25% compression) and the room’s temperature was a 

median value of 72 Fahrenheit degrees with an interquartile range of 3 degrees during all visits to 

avoid differences in the foam properties (see Appendix C). During the various base of support 

stances, subjects were asked to distribute their body weight equally on each foot, and to stand 

during the feet apart condition with their heel centers 0.17 m apart, with an angle of 14 degrees 

between the long axes of the feet (McIlroy & Maki, 1997). For the semi-tandem stance position, 

subjects stood with the front foot touching the medial side of the other foot by a half of a foot 

length (Lee et al., 2012; Nejc, Jernej, Loefler, & Kern, 2010), with dominant foot in the back. 

The dominant foot was determined by asking the subjects about the foot that they would use to 

kick a ball (Alonso, Brech, Bourquin, & Greve, 2011; Gabbard & Hart, 1996). During the eyes 

closed conditions, subjects wore opaque goggles. During yaw and pitch conditions, subjects were 

instructed to move their head at a frequency of 1 Hz by moving their head to the beat of a 

metronome (Hall & Herdman, 2006) within a range of 45 degrees in the yaw direction (Jung et 

al., 2009) and 30 degrees in pitch direction. To ensure that subjects moved their head for 45 

degrees in yaw and 30 degrees in pitch directions, they practiced the head movement in these 

directions with a laser light attached to the head before they started the experiment. However, the 

laser light was not used during the experiment. Exercises were performed in a random order that 

was software-generated. Subjects were instructed to stand as stable as possible with arms at their 
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side (Gill-Body et al., 1994; Gill et al., 2001) during all trials for 35 seconds (Allum et al., 2011; 

Le Clair & Riach, 1996; Muehlbauer et al., 2012; Rine et al., 2013). Data collection was stopped 

if a subject lost their balance according to the following failure criteria: stepped out of position, 

changed their feet or arms from the starting position, and/or touched something for support. 

Subjects were asked to repeat failed trials once in each set if they lost their balance before 

completing a 25 seconds trial. Subjects were guarded by a physical therapist during all exercises 

to prevent falling and wore a safety harness which was attached to an anchor point in the ceiling 

that do not let subject reach the ground in case of a fall incidence. There was a seated rest break 

for 1 minute after every 3 exercises to avoid fatigue.  

In addition, subjects rated their perceived difficulty of each exercise they performed 

using two different scales. The first scale was a modified rating of perceived difficulty scale 

based on ratings of perceived exertion scales for aerobic and resistance exercises (Scale A) 

(Robertson et al., 2004; Robertson et al., 2003) that ranges from 0 to 10, where 0 indicates that 

the exercise is extremely easy and 10 indicates that the exercise is extremely hard (Figure 3-2). 

The second scale was developed for this study and was anchored with colors and statements 

(Scale B) (Espy, Reinthal, Kuchta, Casey, & Wiland, 2015) (Figure 3-3). Scale B had 5 levels 

ranging from A to E, where A was anchored with the following statement; “I feel completely 

steady” and E labeled as “I lost my balance”. In the statistical analysis, letters from scale B were 

transformed to numbers as follows; A = 1, B = 2, C = 3, D = 4, and E = 5. 

Before starting the experiment, both scales were explained to subjects. They were told 

that they needed to choose, after each exercise, a number from the 1st scale and a letter from the 

2nd scale that indicated the difficulty of maintaining their balance during that exercise. During the 
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experiment, the scales were placed on the side wall so that subjects could look at them after each 

exercise. 

 

Figure 3-2: Scale A; Rating of perceived difficulty scale, based on OMNI rating of perceived exertion scale 

(Robertson et al., 2004; Robertson et al., 2003) 

 

 

Figure 3-3: Scale B; Rating of perceived difficulty scale, adapted from a poster from Cleveland State 

University (Espy et al., 2015) 

Please choose from 0 to 10 corresponding to your perceived difficulty of each exercise: 

 

 

Please choose from A to E corresponding to your perceived difficulty of each exercise: 

I feel completely steady A 

I feel a little unsteady or off-balance B 

I feel somewhat unsteady or like I may lose my balance C 

I feel very unsteady or like I definitely will lose my balance D 

I lost my balance E 
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 OUTCOME MEASURES 

3.8.1 Demographic data 

Demographic data including age, gender, medical diagnosis, weight, and height was summarized 

by descriptive statistics. Additionally, the average scores of the Functional Gait Assessment, 

Activities-specific Balance Confidence Scale (ABC) questionnaire, gait speed, Dizziness 

Handicap Inventory (DHI), and self-report of dizziness on visual analog scale for all groups were 

recorded.  

3.8.2 Postural sway measures 

Sway measures were recorded during all trials for 35 seconds each and the first five seconds of 

data collection were removed in order to avoid the effect of the subject's initial establishment of 

balance (O'Sullivan, Blake, Cunningham, Boyle, & Finucane, 2009; Rine et al., 2013). Summary 

measures of trunk sway were calculated from the 30 seconds time series. The data was low-pass 

filtered using a second order Butterworth filter with a cut-off frequency of 3 Hz (Dozza et al., 

2005; Dozza, Horak, et al., 2007). During the analysis, each trial was plotted individually and 

inspected visually using MATLAB software to make sure that there were no extraneous 

movements. 

Based on a review of the different postural measurements that were used in biofeedback 

technology studies for quantifying postural sway, I decided to include the following 

measurements in this study:  
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The Root Mean Square (RMS) of the trunk angular displacement and velocity in the pitch 

and yaw directions, and linear acceleration in the AP and ML directions were calculated and 

used in the analysis to test the hypotheses. The RMS was calculated as follows:  

RMS =
√∑ (𝑎2𝑖)

𝑛

𝑖=0

𝑛

2

 ,  

where n is an individual data sample, and N is the total number of samples. The mean 

value was subtracted before calculating the RMS. Even though the COP data from the pilot study 

was not normally distributed, I included the RMS to have a measure that is compatible with other 

studies as it is commonly reported (Chiari et al., 2005; Dozza et al., 2005; Dozza, Horak, et al., 

2007; Sienko et al., 2008; Wall, Weinberg, Schmidt, & Krebs, 2001). 

Additionally, the 90% range of the trunk angular displacement and velocity in the pitch 

and yaw directions, and linear acceleration in the AP and ML directions as well as the 

interquartile range (75th percentile – 25th percentile) of the trunk angular displacement and 

velocity in the pitch and yaw directions, and linear acceleration in the AP and ML directions 

were calculated. The 90% range of angular displacement is the difference between the 95th 

percentile value and the 5th percentile value. The interquartile range is the difference between the 

upper quartile (the 75th percentile value) and the lower quartile (the 25th percentile value).  

 STATISTICAL ANALYSIS 

Aim 1: To examine the test-retest reliability of the subjects’ performance of standing 

balance exercises, within and between two visits occurring one week apart.  
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Participants’ demographic characteristics were compared between groups using a one-

way ANOVA test for dependent variables that were continuous and normally distributed and 

post hoc comparisons were conducted to evaluate pairwise differences among the groups. The 

Sidak approach was used to control for a Type 1 error. The Kruskal-Wallis test was used with 

dependent variables that were continuous but not normally distributed and Dunn's procedure 

(Olive Jean Dunn, 1964) was used for pairwise comparisons with a Bonferroni correction for 

multiple comparisons. 

To explore the test-retest reliability of the healthy subjects’ performance during the static 

stance balance exercises, absolute and relative measures of reliability were computed. For 

relative reliability, the intra-class correlation coefficient (ICC) was used for variables with 

continuous characteristics (RMS of the trunk angular displacement, and velocity, linear 

acceleration, and the converted scores of scale B). Model (3) and form (1) of the ICC was used 

which indicates that each exercise was assessed by each subject, as the subjects were the only 

subjects of interest, and reliability was calculated from a single measurement. Furthermore, a 

weighted Kappa (linear weight) was used with the ordinal data (rating values of perceived 

difficulty) to assess the test-retest agreement. Test-retest reliability was assessed within the 2 

trials of each visit, between the first sessions of both visits, between the second sessions of both 

visits, and between the averages of both sessions from each visit. Intra-class correlation 

coefficient (ICC) reliability scores range from 0 to 1.0 where excellent reliability ranges from 

0.75 to 1.0, fair to good reliability ranges from 0.4 to 0.74 and poor reliability ranges from 0 to 

0.4 (Fleiss, 1999). Weighted Kappa scores range from 0 to 1 where excellent agreement ranges 

from 0.81 to 1, substantial agreement ranges from 0.61 to 0.80, moderate agreement ranges from 

0.41 to 0.60, fair agreement ranges 0.21 to 0.40, and poor agreement ranges from 0.01 to 0.20 
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(Viera & Garrett, 2005). To assess the absolute reliability, the standard error of measurement 

(SEM), Bland and Altman plots, and minimal detectable change (MDC) were assessed. 

The Standard Error of Measurement (SEM) was calculated as follow: SEM = 𝑆𝐷 ∗ √1−𝑟, 

where r equals to the reliability coefficient, The Minimal Detectable Change (MDC) was 

calculated as follow: MDC = 1.96 * √2 * SEM. 

The scores of Scale B were converted from ordinal to continuous scores using Item Response 

Theory (IRT). The continuous converted scores are the estimated probability of reporting an 

exercise as a difficult exercise, which is a function of how difficult the exercise is and how well 

that exercise discriminates someone with a high rating level of the difficulty performing a 

balance task from someone with low level of difficulty. 

Aim 2: To validate two scales of rating of perceived difficulty of balance exercises by 

comparing the scales with quantitative sway measures. 

Hypothesis 1: On a within subject basis, rating of perceived difficulty will increase as trunk tilt 

and center of pressure displacement increase. 

To assess the concurrent validity of the rating of perceived difficulty scales, the 

relationship between rating of perceived difficulty and postural variables were assessed using the 

multiple regression method (Bland & Altman, 1995). For either relationship, the rating of 

perceived difficulty was the outcome variable and the subjects and postural measures were the 

predictor variables. From the regression analysis of variance table, the amount of variation in 

rating of perceived difficulty due to variation in postural measure magnitude, while controlling 

for the intersubject variability, was computed by the following formula: Correlation = sqrt 

(SSpostural measure / SSpostural measure + SSresidual), where SS is the sum of squares. The direction of the 

correlation is given by the sign of the slope of the regression coefficient between the rating of 
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perceived difficulty and postural measure. Correlation coefficients were calculated for rating of 

perceived difficulty and all of the postural variables listed previously, in order to examine if the 

rating of perceived difficulty is more highly related to some postural variables than others. 

Aim 3: To examine the perceptual difficulty and postural measures of static standing 

balance exercises in healthy adults from 18 to 85 y/o 

Hypothesis 1:  

During the performance of balance exercises, trunk tilt sway measures and rating of perceived 

difficulty will increase from the youngest to the oldest age group. 

Hypothesis 2:  

Trunk tilt sway measures and rating of perceived difficulty will increase as static stance balance 

exercises change from: level surface to foam surface, eyes open to eyes closed, head still to yaw 

or pitch movement, and feet apart to semi-tandem stance. 

Hypothesis 3:  

The increase in magnitude of trunk tilt sway measures will be greater as age increases and as 

static stance balance exercises change from: level surface to foam surface, eyes open to eyes 

closed, head still to yaw or pitch movement, and feet apart to semi-tandem stance. 

Participants’ demographic characteristics were compared between groups using one-way 

ANOVA test for dependent variables that were continuous and normally distributed and post hoc 

comparisons were conducted to evaluate pairwise differences among the groups and the Sidak 

approach was used to control for Type 1 error. The Kruskal-Wallis test was used with dependent 

variables that were continuous but not normally distributed and Dunn's procedure (Olive Jean 

Dunn, 1964) was used for pairwise comparisons with a Bonferroni correction for multiple 

comparisons. 
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Postural Sway: 

A Linear Mixed Model (LMM) was used to test the three hypotheses of the study. A linear 

mixed model was used to explore the main effects of five independent variables; age group and 

four exercise conditions (types of stance, visual input, surface, and head movements) as well as 

to explore two-way interaction effects between age groups and surface types, visual inputs, 

stance types, and head movements on quantitative postural measures (RMS of trunk angular 

displacement and velocity in the pitch and roll directions, and trunk linear acceleration in the AP 

and ML acceleration). LMM contains fixed effects and random effects. In this study, fixed 

effects are age groups, surface types, visual inputs, stance conditions, and head movements, 

whereas the random effect is subjects. Due to the presence of missing data in this study, the 

decision was made to use a LMM as it allows us to evaluate the effects with the presence of 

having missing data. Additionally, LMM allows inclusion of a random effect, subjects, and 

assumes that each subject has his/her own intercept value.  

The autoregressive order 1 (AR1) covariance structure was used, which assumes 

homogeneous variance and unequal covariance between observations on the same subject. 

Several different covariance structures were evaluated and AR1 had the best model fits and best 

reflected the unadjusted means.  

The average value of all 4 trials of the dependent variables (2 trials per visit and 2 visits) 

were used because it was determined that there was no difference between trials or visits. A 

Sidak correction for multiple comparisons was used for post-hoc analysis of significant main 

effects related to age and head movement. Normality was tested using the Shapiro–Wilk test. 

The significance level was α = 0.05. 

Rating of Perceived Difficulty: 
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For rating of perceived difficulty data, which was ordinal, the Kruskal-Wallis test was used for 

comparison of more than two independent samples (age groups) and Dunn's procedure was used 

for pairwise comparisons with a Bonferroni correction for multiple comparisons. The Friedman 

test was used for comparison of more than two dependent samples (head movement conditions) 

followed by Wilcoxon signed-rank tests for pairwise comparisons with a Bonferroni correction 

for multiple comparisons. Wilcoxon signed-rank test was used for comparison of two dependent 

samples (surface conditions, visual inputs, stance conditions). The mean value of all 4 trials (2 

trials per visit and 2 visits) of the rating of perceived difficulty from Scales A & B was used. 

Static Standing Balance Exercises Sequence: 

A hierarchical cluster analysis (HCA) was used to categorize the exercises into five clusters 

(very easy, easy, moderate, hard, and very hard) to help physical therapists to establish a 

scientific basis for exercise progression. The HCA was conducted using the pitch and roll tilt 

velocity measures because they were determined to have the greatest reliability, and both ratings 

of perceived difficulty scales. 

Aim 4: To examine the effect of vestibular disorders on the magnitude of trunk tilt and 

center of pressure displacement during performance of different types of static standing 

balance exercises. 

Hypothesis 1:  

Individuals with vestibular disorders will have greater trunk tilt, center of pressure displacement, 

and rating of perceived difficulty during the performance of standing balance exercises compared 

with healthy age-matched controls.  

Hypothesis 2:  
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Individuals with vestibular disorders will have an increase in postural sway and rating of 

perceived difficulty as static standing balance exercises change from level surface to foam 

surface, eyes open to eyes closed, head still to yaw movement, and feet apart to semi-tandem 

stance. 

Hypothesis 3:  

The increase in magnitude of trunk tilt, center of pressure displacement, and rating of perceived 

difficulty as static stance balance exercises change from: level surface to foam surface, eyes open 

to eyes closed, head still to yaw movement, and feet apart to semi-tandem stance, will be greater 

in individuals with vestibular disorders compared with healthy age-matched controls. 

Participants’ demographic characteristics were compared between groups using 

independent samples t-test for dependent variables that were continuous and normally 

distributed. The Mann-Whitney U test was used to compare differences between the two 

independent groups when dependent variables were continuous but not normally distributed.  

Postural Sway: 

A Linear Mixed Model (LMM) was used to test the three hypotheses of the study. The LMM 

contains fixed effects and random effects. In this study, fixed effects are groups, surface types, 

visual inputs, stance conditions, and head movements, whit a random effect for subjects. Due to 

the presence of missing data in this study, the decision was made to use LMM as it allows us to 

evaluate the effects with the presence of having missing data. Additionally, the LMM allows 

inclusion of a random effect, subjects, and assumes that each subject has his/her own intercept 

value. The LMM was used to explore main effects of the fixed effects and two-way interaction 

effects between groups and stances, visual inputs, surfaces, and head movements on quantitative 
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postural measures (RMS of trunk tilt in pitch displacement, roll displacement, pitch velocity, roll 

velocity, AP acceleration, and ML acceleration). 

The autoregressive order 1 (AR1) covariance structure was used, which assumes 

homogeneous variance and unequal covariance between observations on the same subject. 

Several different covariance structures were evaluated and AR1 had the best model fits and best 

reflected the unadjusted means.  

The average value of the 2 trials of the dependent variables was used because it was 

determined that there was no difference between trails. Due to the high incompletion rate of 

exercise 23 especially for people with vestibular data, it was eliminated from the linear mixed 

model analysis. Normality was tested using the Shapiro–Wilk test. The significance level was α 

= 0.05. 

Ratings of Perceived Difficulty: 

For rating of perceived difficulty data, which was ordinal, the Mann-Whitney U test was used to 

compare differences in ratings of perceived difficulty between the two groups, and the Wilcoxon 

signed-rank test was used for comparison of two dependent samples (surface conditions, visual 

inputs, stance conditions, and head movements). The mean value of the 2 trials of the ratings of 

perceived difficulty from Scales A & B was used. 
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4.0  VALIDITY AND RELIBILITY OF POSTURAL SWAY MEASURES AND 

RATINGS OF PERCEIVED DIFFICULTY OF STATIC STANDING BALANCE 

EXERCISES 

 INTRODUCTION 

Standing balance is the ability to keep the center of mass of the body over its base of support 

with minimal postural sway (Horak, 1987; Shumway-Cook, Anson, & Haller, 1988; D. A. 

Winter, 1995). Maintaining balance requires integration of afferent sensory inputs from the 

visual, vestibular, and proprioception systems. The brain processes the afferent inputs and 

produces the appropriate motor response to keep the body balanced. Age-related decline (Baloh 

et al., 1994; Baloh et al., 1998; Gill et al., 2001; Rogind et al., 2003; Sheldon, 1963; Sullivan et 

al., 2009) or a deficit in the function of peripheral balance sensory systems (Kerber et al., 2006; 

Lichtenstein et al., 1988; Lord et al., 1991a, 1991b), central balance-related structures and related 

cognitive function (Baloh et al., 2003; Sullivan et al., 2009; Tell et al., 1998), and/or lower limb 

muscles (Aniansson et al., 1986; Larsson et al., 1979) can result in postural instability and 

therefore increase the risk of falling and injury (Fernie et al., 1982; Hilliard et al., 2008; Maki et 

al., 1994; Nanhoe-Mahabier et al., 2012; Stalenhoef et al., 2002).  

Balance training has been found to be useful for all age groups in improving mobility and 

functionality (Franco, Pereira, & Ferreira, 2014; Gillespie et al., 2012; Horak et al., 1992; Howe, 
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Rochester, Neil, Skelton, & Ballinger, 2011). Customized balance exercises and vestibular 

rehabilitation therapy (VRT) are considered to be effective options to improve balance by 

facilitating the central nervous system’s ability to compensate for balance deficits (Gillespie et 

al., 2012; Hillier & McDonnell, 2011; Horak et al., 1992; Howe et al., 2011; Shepard & Telian, 

1995). These treatments have elicited beneficial results in improving balance in older adults and 

people with vestibular disorders, eliminating the symptoms of vestibular disorders, and reducing 

falls (Gillespie et al., 2012; Hillier & McDonnell, 2011; Horak et al., 1992; Howe et al., 2011). 

Similarly, a number of studies that have investigated ways to prevent falls have found that 

balance training is an important key in reducing falls in the elderly (Barnett, Smith, Lord, 

Williams, & Baumand, 2003; Franco et al., 2014; Gillespie et al., 2012; Nitz & Choy, 2004). 

Balance and vestibular rehabilitation therapy is comprised of different categories of 

exercises such as static standing, weight shifting, anticipatory postural adjustments, gait, and 

eye-head coordination (Alsalaheen et al., 2013; Klatt et al., 2015). During balance and vestibular 

rehabilitation, physical therapists progress the challenge of balance exercises by reducing 

sensory input (e. g. standing on foam or closing eyes), changing the base of support (e. g. 

standing in semi-tandem stance), and perturbing the balance system (e. g. moving the head in 

yaw or pitch directions). The progression of exercises’ challenge usually is done based on 

experience rather than rubrics based on evidence (Klatt et al., 2015).  

The evidence in determining the appropriate progression of balance exercises is very 

limited according to the American College of Sports Medicine (ACSM) (Pescatello & American 

College of Sports Medicine., 2014). The American College of Sports Medicine recommended a 

progression pattern by altering different conditions such as reducing the base of support by 

changing from feet apart to feet together, to semi-tandem, to tandem, to standing on one foot; by 
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changing the visual input from eyes open to eyes closed; or by changing the surface compliance 

from firm surface to foam surface (Pescatello & American College of Sports Medicine., 2014). 

However, it is not certain how modifying these factors is equated to balance exercise intensity. 

For aerobic and resistance exercises, there are very well defined rules for how to 

determine the initial prescription for exercise intensity as well as how to increase the intensity 

level based on the fitness level of the trainee. According to the American College of Sports and 

Medicine (ACSM), the intensity of aerobic exercise is the percentage of the heart rate reserve, 

where 40-60% of the heart rate reserve is considered a moderate intensity which may be 

progressed to a vigorous intensity (60-85%) during endurance training and general aerobic 

exercises. The prescribed intensity may vary depending on the fitness level and goals of the 

trainee, and whether the trainee has any chronic diseases (Pescatello & American College of 

Sports Medicine., 2014). Similarly, the intensity of resistance training is defined as a percentage 

of one repetition maximum (1RM), which is the maximum weight that can be lifted once through 

the full range of motion. The ACSM recommends different intensity ranges depending on the 

type of exercise, whether it is muscular strength, endurance, or enlargement, and also the 

intensity depends on the level of the trainee (beginner: a non-trained person and has no 

experience exercising; intermediate: a person who has experience practicing for 6 months; or 

advanced: a person who exercised and has experience for years (American College of Sports, 

2009)). For instance, to increase muscular strength, it is recommended that the intensity is 

between 60-70% of 1RM for novice and intermediate and between 80-100% for advanced 

trainees. For muscular endurance, the ACSM recommends that the intensity of the resistance 

exercises is lower than 70% of 1RM, whereas, it is suggested for novice and intermediate 
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trainees to lift weights between 70-85% of 1RM and 70-100% for advanced trainees in order to 

increase muscle mass (Pescatello & American College of Sports Medicine., 2014).  

Furthermore, the rating of perceived exertion for aerobic and resistance exercises was 

developed to assist in determining how trainees perceive the intensity of activity in cases where 

the heart rate reserve or the maximum weight that can be lifted are not possible to be measured 

due to medical conditions, using a medication that affects the heart rate in response to physical 

effort, or lack of medical equipment to measure the event of interest (Robertson et al., 2004; 

Robertson et al., 2003; Utter et al., 2004).  During training programs, ratings of perceived 

exertion scales help to monitor the intensity of the activity and provide healthcare providers with 

feedback of how hard their clients’ feel like they are exercising as well as if their clients are 

ready to progress to the next level of intensity.  

During the performance of balance exercises, measuring or visually observing the amount 

of sway is a common way of assessing the difficulty of exercises. However, many clinics don’t 

have the capability to measure sway or interpret the sway results. Therefore, in this study, we 

aimed to validate ratings of perceived difficulty scales for static standing balance exercises to 

help to determine the intensity of balance exercises and progress them in cases when measuring 

sway is not an option. This study is part of a larger study that aimed to guide the progression of 

static standing balance exercises using elicited quantitative measures of balance and an 

individual’s perception of difficulty of the different balance exercises in static standing. 

The purpose of this study was to examine the test-retest reliability of subjects’ 

performance during standing balance exercises, within and between two visits occurring one 

week apart. The second aim of the study was to validate two scales of rating of perceived 

difficulty of balance exercises by comparing the scales with quantitative sway measures.  
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 METHODS 

4.2.1 Participants 

Sixty-two healthy subjects who were independently participating in daily activities and were 

between the ages of 18 and 85 years old (31 females and 31 males, mean age 28 ± 8 years) 

participated in this study. Study participants were distributed into four groups: young (18-44 

years old), middle-aged (45-59 years old), old (60-74 years old), and very old (75-85 years old). 

Age divisions were developed based on age-related changes in the postural sway found in several 

studies (Abrahamova & Hlavacka, 2008; Baloh et al., 1998; Era et al., 2006; Gill et al., 2001; 

Liaw et al., 2009; Rosenhall & Rubin, 1975; Sheldon, 1963).  

Subjects were excluded if they were unable to stand for 3 minutes without rest; had distal 

sensory loss (unable to complete the Romberg test for 30 seconds and unable to feel a pressure of 

a 4.31 g monofilament applied on the dorsum of the foot and the medial side of the foot below 

the medial malleolus with eyes closed); had visual acuity worse than 20/40, had a diagnosis of 

benign paroxysmal positional vertigo (BPPV) (positive Dix–Hallpike test or positive Roll test); 

had a history of neurological or orthopedic disorders; used an assistive device for ambulation; 

were pregnant; had excessive weight (BMI > 35); had cognitive impairment (≤ 25 points on the 

Montreal Cognitive Assessment); had a history of falling 2 times or more within the last 12 

months doing activities of daily living; or had a peripheral vestibular disorder (positive head 

thrust test). 

This study was approved by the Institutional Review Board in University of Pittsburgh. 

All subjects signed the written research consent form prior to participating in the study.  
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4.2.2 Instrumentation  

During the performance of the exercises in static standing, subjects stood on a force platform 

(NeuroTest, NeuroCom, Inc., Clackamas, OR) that measured ground reaction forces at a 

sampling rate of 100 Hz. An inertial measurement unit (IMU, Xsense Technologies B.V., 

Enschede, The Netherlands) was mounted on each subject's lower back at the level of iliac crest 

(L4) to measure trunk angular displacement and velocity from vertical and linear acceleration in 

AP and ML directions at a sampling rate of 100 Hz. The IMU uses a combination of 

accelerometers, gyroscopes, and a magnetometer. 

4.2.3 Experimental procedure  

The study is a cross-sectional study to determine test-retest reliability of the subjects’ 

performance of static standing balance exercises, within and between two visits occurring one 

week apart and to establish concurrent validity of two scales of rating of perceived difficulty of 

balance exercises by comparing the scales with quantitative postural sway measures. 

All potential research participants had a screening visit. The eligible subjects were asked 

to come back for two testing visits one week apart.  

4.2.3.1 Screening visit 

Consented subjects underwent screening tests to rule out conditions known to adversely affect 

balance. Screening tests included; Romberg stance (Horak, 1987), lower extremities pressure 

threshold using monofilaments (Holewski et al., 1988), visual acuity test (Brien Holden, 2008; 

Muhammad et al., 2015; World-Health-Organization, 2003), the Montreal Cognitive Assessment 
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- Version 3 (Nasreddine et al., 2005), the Dix–Hallpike Test (Dix & Hallpike, 1952), the supine 

roll test (Lempert & Tiel-Wilck, 1996), and the head impulse test (Halmagyi & Curthoys, 1988). 

Eligible subjects who met the study criteria completed the Activities-specific Balance 

Confidence Scale (ABC) questionnaire (Powell & Myers, 1995), the Functional Gait Assessment 

(FGA) (Wrisley et al., 2004), and their gait speed (Steffen et al., 2002) was recorded prior to the 

experiment in order to better describe the participants. A more detailed description of the 

screening tests is in Chapter 3. 

4.2.3.2 Experimental visits 

Participants were tested during two experimental visits, one week apart. During each 

experimental visit, participants performed two sets of 24 randomized static standing balance 

exercises, which were a full-factorial design of the following different conditions: vision (eyes 

open and eyes closed); surface (firm and foam); base of support (feet apart and semi-tandem); 

head movements (head still, yaw, and pitch) as shown in Table 4-1.  
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Table 4-1: Balance and vestibular exercises 

Exercise number Surface conditions Visual input Base of support Head movement 
1 Firm Eyes open Feet apart Head still 

2 Firm Eyes open Feet apart Yaw 

3 Firm Eyes open Feet apart Pitch 

4 Firm Eyes open Semi-tandem Head still 

5 Firm Eyes open Semi-tandem Yaw 

6 Firm Eyes open Semi-tandem Pitch 

7 Firm Eyes closed Feet apart Head still 

8 Firm Eyes closed Feet apart Yaw 

9 Firm Eyes closed Feet apart Pitch 

10 Firm Eyes closed Semi-tandem Head still 

11 Firm Eyes closed Semi-tandem Yaw 

12 Firm Eyes closed Semi-tandem Pitch 

13 Foam Eyes open Feet apart Head still 

14 Foam Eyes open Feet apart Yaw 

15 Foam Eyes open Feet apart Pitch 

16 Foam Eyes open Semi-tandem Head still 

17 Foam Eyes open Semi-tandem Yaw 

18 Foam Eyes open Semi-tandem Pitch 

19 Foam Eyes closed Feet apart Head still 

20 Foam Eyes closed Feet apart Yaw 

21 Foam Eyes closed Feet apart Pitch 

22 Foam Eyes closed Semi-tandem Head still 

23 Foam Eyes closed Semi-tandem Yaw 

24 Foam Eyes closed Semi-tandem Pitch 

 

Participants stood without shoes in order to avoid the confounding effect of wearing 

different shoes. During conditions of the foam surface, subjects stood on a foam pad (AIREX 

Balance Pad S34-55) that had a height of 6 cm, length of 51 cm, width of 40 cm (density 55 

kg/m^3, compression resistance 20 kPa at 25% compression) and the room’s temperature was a 

median value of 72 Fahrenheit degrees with an interquartile range of 3 degrees during all visits to 

avoid differences in the foam properties (see Appendix C). During the various base of support 

stances, subjects were asked to distribute their body weight equally on each foot, and to stand 

during the feet apart condition with their heel centers 0.17 m apart, with an angle of 14 degrees 
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between the long axes of the feet (McIlroy & Maki, 1997). For the semi-tandem stance position, 

subjects stood with the front foot touching the medial side of the other foot by a half of a foot 

length (Lee et al., 2012; Nejc et al., 2010), with the dominant foot in the back. The dominant foot 

was determined by asking the subjects about the foot that they would use to kick a ball (Gabbard 

& Hart, 1996). During the eyes closed conditions, subjects wore opaque goggles. During yaw 

and pitch conditions, subjects were instructed to move their head at a frequency of 1 Hz by 

moving their head to the beat of a metronome (Hall & Herdman, 2006) within a range of 45 

degrees in the yaw direction (Jung et al., 2009) and 30 degrees in pitch direction. To ensure that 

subjects moved their head for 45 degrees in yaw and 30 degrees in pitch directions, they 

practiced the head movement in these directions with a laser light attached to the head before 

they started the experiment. However, the laser light was not used during the experiment. 

Exercises were performed in a random order that was software-generated. Subjects were 

instructed to stand as stable as possible with arms at their side (Gill-Body et al., 1994; Gill et al., 

2001) during all trials for 35 seconds (Allum et al., 2011; Le Clair & Riach, 1996; Muehlbauer et 

al., 2012; Rine et al., 2013). Data collection was stopped if a subject lost their balance according 

to the following failure criteria: stepped out of position, changing their feet or arms from the 

starting position, and/or touching something for support. Subjects were asked to repeat failed 

trials once in each set if they lost their balance before completing a 25 seconds trial. Subjects 

were guarded by a physical therapist during all exercises to prevent falling and wore a safety 

harness which was attached to an anchor point in the ceiling that do not let subject reach the 

ground in case of a fall incidence but would allow them to move freely. There was a seated rest 

break for 1 minute after every 3 exercises to avoid fatigue.  
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In addition, subjects rated their perceived difficulty of each exercise they performed 

using two different scales. The first scale was a modified rating of perceived difficulty scale 

based on ratings of perceived exertion scales for aerobic and resistance exercises (Scale A) 

(Robertson et al., 2004; Robertson et al., 2003) that ranges from 0 to 10, where 0 indicates that 

the exercise is extremely easy and 10 indicates that the exercise is extremely hard (Figure 4-1). 

The second scale was developed for this study and was anchored with colors and statements 

(Scale B) (Espy et al., 2015) (Figure 4-2). Scale B had 5 levels ranging from A to E, where A 

was anchored with the following statement; “I feel completely steady” and E labeled as “I lost 

my balance”. In the statistical analysis, letters from scale B were transformed to numbers as 

follows; A = 1, B = 2, C = 3, D = 4, and E = 5. 

Before starting the experiment, both scales were explained to subjects. They were told 

that they needed to choose, after each exercise, a number from the 1st scale and a letter from the 

2nd scale that indicated the difficulty of maintaining their balance during that exercise. During the 

experiment, the scales were placed on the side wall so that subjects could view at them after each 

exercise.

 

Figure 4-1: Scale A; Rating of perceived difficulty scale, based on OMNI rating of perceived exertion scale 

(Robertson et al., 2004; Robertson et al., 2003) 

 

Please choose from 0 to 10 corresponding to your perceived difficulty of each exercise: 
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Figure 4-2: Scale B; Rating of perceived difficulty scale, adapted from a poster from Cleveland State 

University (Espy et al., 2015) 

 

4.2.4 Outcome measures 

Demographic data: 

Demographic data including age, gender, weight, and height was summarized by descriptive 

statistics. Additionally, the average scores of the Functional Gait Assessment, Activities-specific 

Balance Confidence Scale (ABC) questionnaire, and gait speed for all groups were recorded. 

Sway measures: 

Sway measures were recorded during all trials for 35 seconds and the first five seconds of data 

collection were removed in order to avoid the effect of the subject's initial establishment of 

balance (O'Sullivan et al., 2009; Rine et al., 2013). Summary measures of trunk sway were 

calculated from the 30 seconds time series. The data was low-pass filtered using a second order 

Butterworth filter with a cut-off frequency of 3 Hz (Dozza et al., 2005; Dozza, Horak, et al., 

 

Please choose from A to E corresponding to your perceived difficulty of each exercise: 

I feel completely steady A 

I feel a little unsteady or off-balance B 

I feel somewhat unsteady or like I may lose my balance C 

I feel very unsteady or like I definitely will lose my balance D 

I lost my balance E 
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2007). During the analysis, each trial was plotted individually and inspected visually using 

MATLAB software to make sure that there were no extraneous movements.  

The Root Mean Square (RMS) of the trunk angular displacement and velocity in the pitch 

and yaw directions, and linear acceleration in the AP and ML directions were calculated and 

used in the analysis to test the hypotheses. The RMS was calculated as follows:  

RMS =
√∑ (𝑎2𝑖)

𝑛

𝑖=0

𝑛

2

  

where a is instantaneous sway value with mean value subtracted, and n is an individual 

data sample, and N is the total number of samples. The mean value was subtracted before 

calculating the RMS. 

Additionally, the 90% range of the trunk angular displacement and velocity in the pitch 

and yaw directions, and linear acceleration in the AP and ML directions as well as the 

interquartile range (75th percentile – 25th percentile) of the trunk angular displacement and 

velocity in the pitch and yaw directions, and linear acceleration in the AP and ML directions 

were calculated. The 90% range of angular displacement is the difference between the 95th 

percentile value and the 5th percentile value. The interquartile range is the difference between the 

upper quartile (the 75th percentile value) and the lower quartile (the 25th percentile value). The 

previous two measures were collected to set ranges of normal limits of sway for different age 

groups. Additionally, these values could be used for augmented sensory feedback devices to set 

the threshold when a feedback can be provided.  
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4.2.5 Statistical Analyses 

Participants’ demographic characteristics were compared between groups using a one-way 

ANOVA test for dependent variables that were continuous and normally distributed and post hoc 

comparisons were conducted to evaluate pairwise differences among the groups. The Sidak 

approach was used to control for a Type 1 error (Sidak, 1967). The Kruskal-Wallis test was used 

with dependent variables that were continuous but not normally distributed and Dunn's 

procedure (Olive Jean Dunn, 1964) was used for pairwise comparisons with a Bonferroni 

correction for multiple comparisons. 

To explore the test-retest reliability of the healthy subjects’ performance during the static 

stance balance exercises, absolute and relative measures of reliability were computed. For 

relative reliability, the intra-class correlation coefficient (ICC) was used for variables with 

continuous characteristics (RMS of the trunk angular displacement, and velocity, linear 

acceleration, and the converted scores of scale B). Model (3) and form (1) of the ICC was used 

which indicates that each exercise was assessed by each subject, as the subjects were the only 

subjects of interest, and reliability was calculated from a single measurement. Furthermore, a 

weighted Kappa (linear weight) was used with the ordinal data (rating values of perceived 

difficulty) to assess the test-retest agreement. Test-retest reliability was assessed within the two 

trials of each visit, between the first sessions of both visits, between the second sessions of both 

visits, and between the averages of both sessions from each visit. Intra-class correlation 

coefficient (ICC) reliability scores range from 0 to 1.0 where excellent reliability ranges from 

0.75 to 1.0, fair to good reliability ranges from 0.4 to 0.74 and poor reliability ranges from 0 to 

0.4 (Fleiss, 1999). Weighted Kappa scores range from 0 to 1 where excellent agreement ranges 

from 0.81 to 1, substantial agreement ranges from 0.61 to 0.80, moderate agreement ranges from 
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0.41 to 0.60, fair agreement ranges 0.21 to 0.40, and poor agreement ranges from 0.01 to 0.20 

(Viera & Garrett, 2005). To assess the absolute reliability, the standard error of measurement 

(SEM), Bland and Altman plots, and minimal detectable change (MDC) were assessed. 

The Standard Error of Measurement (SEM) was calculated as follow: SEM = 𝑆𝐷 ∗ √1−𝑟, 

where r equals to the reliability coefficient. The Minimal Detectable Change (MDC) was 

calculated as follow: MDC = 1.96 * √2 * SEM. 

The scores of Scale B were converted from ordinal to continuous scores using Item 

Response Theory (IRT) (Hays, Morales, & Reise, 2000). The continuous converted scores are 

the estimated probability of reporting an exercise as a difficult exercise, which is a function of 

how difficult the exercise is and how well that exercise discriminates someone with a high rating 

level of the difficulty performing a balance task from someone with low level of difficulty. 

To assess the concurrent validity of the rating of perceived difficulty scales, the 

relationship between rating of perceived difficulty and postural variables were assessed using the 

multiple regression method (Bland & Altman, 1995). For either relationship, the rating of 

perceived difficulty was the outcome variable and the subjects and postural measures were the 

predictor variables. From the regression analysis of variance table, the amount of variation in 

rating of perceived difficulty due to variation in postural measure magnitude, while controlling 

for the intersubject variability, was computed by the following formula: Correlation = sqrt 

(SSpostural measure / SSpostural measure + SSresidual), where SS is the sum of squares. The direction of the 

correlation is given by the sign of the slope of the regression coefficient between the rating of 

perceived difficulty and postural measure. Correlation coefficients were calculated for rating of 

perceived difficulty and all of the postural variables listed previously, in order to examine if the 

rating of perceived difficulty is more highly related to some postural variables than others.  
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 RESULTS 

4.3.1 Descriptive statistics 

Of 72 people who underwent onsite screening, 62 participants completed the study and were 

assigned into four groups as shown in Table 4-2. The 10 subjects who did not complete the study 

had a mean age of 64 ± 14 years. Eight subjects were excluded because they did not pass the 

inclusion criteria (4 did not pass the cognitive test; 3 did not pass the monofilament test; 1 did 

not pass the roll test), 1 subject was excluded due to a behavioral issue, and 1 subject did not 

come back for follow up visits. The remaining 62 participants had a mean age of 55 ± 20 years. 

The mean values of gait speed for all age groups were within the normal range (Abellan et al., 

2009; Hornyak, VanSwearingen, & Brach, 2012; Lusardi, Marjorie, & Schulman, 2003), and 

within high levels of physical functioning based on their scores of the Functional Gait 

Assessment (FGA) (Walker et al., 2007; Wrisley & Kumar, 2010) and Activities-specific 

Balance Confidence (ABC) Scale (Huang & Wang, 2009; Myers, Fletcher, Myers, & Sherk, 

1998; Powell & Myers, 1995). 
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Table 4-2: Participants’ Demographic Characteristics 

  

A one-way ANOVA was conducted to test the differences between the four age groups 

(Young, Middle aged, Old, Very old) on gait speed. There was a significant difference between 

groups on gait speed [F (3, 58) = 5.26, p = 0.003]. Post hoc comparisons were conducted to 

evaluate pairwise differences among the four groups and indicated that the mean score of the 

young group (M = 1.38, SD = 0.2 m/s) and the middle-aged group (M = 1.39, SD = 0.21 m/s) 

were significantly different from the very old group (M = 1.16, SD = 0.12 m/s). 

A Kruskal-Wallis test was conducted to evaluate differences among the four age groups 

(Young, Middle aged, Old, and Very old) on the Body Mass Index (BMI), the Activities-specific 

Balance Confidence Scale (ABC), and the Functional Gait Assessment (FGA). There was a 

significant difference between groups on all of the above variables. Subsequently, pairwise 

comparisons were performed using Dunn's procedure (Olive Jean Dunn, 1964) with a Bonferroni 

 

All 

participants 

(18-85) 

Young  

(18-44) 

Middle aged 

(45-59) 

Old  

(60-74) 

Very old  

(75-85) 

Total (n=62) Total (n=17) Total (n=15) Total (n=15) Total (n=15) 

Age, y, M ± SD 55 ± 20 28 ± 8 53 ± 4 67 ± 4 79 ± 3 

Gender, female, n (%) 31 (50) 9 (53) 8 (53) 7 (47) 7 (47) 

Body Mass Index, kg/m2, 

Median (Range) 

26.3 

(15.5-35.8) 

21.8 

(18.1-33.5) 

27.5 

(18.1-32.1) 

29.9 

(15.5-34.8) 

27.8 

(19.9-35.8) 

Monofilament, Median 

(Range) 

4.08 

(2.83-4.31) 

3.84 

(2.83-4.08) 

4.08 

(2.83-4.31) 

4.08 

(3.61-4.17) 

4.17 

(3.61-4.31) 

Montreal Cognitive 

Assessment, Median 

(Range) 

29 (26-30) 29 (26-30) 28 (26-30) 29 (26-30) 28 (26-30) 

The Activities-specific 

Balance Confidence (ABC) 

Scale, Median (Range) 

97 (81-100) 99 (89-100) 94 (83-100) 98 (81-100) 91 (88-99) 

Gait Speed, m/s, M ± SD 1.30 ± 0.20 1.38 ± 0.20 1.39 ± 0.21 1.26 ± 0.19 1.16 ± 0.12 

Functional Gait Assessment, 

Median (Range) 
28 (11) 29 (27-30) 29 (23-30) 28 (19-30) 24 (19-29) 
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correction for multiple comparisons. The pairwise comparisons showed significant differences 

between the young group and the old group, and the very old group on their BMI, the young 

group and the very old group on the ABC, and between the very old group and all the other 

groups (young, middle aged, and old) on the FGA. 

Reviewing the rate of successfully completed exercises in each age group revealed that 

most subjects in the young group were able to complete all exercises with the exception of No. 

23 (foam surface, eyes closed, semi-tandem stance, and yaw head movement) with an 

incompletion rate of 14.7%. The majority of the middle-aged group could complete all exercises 

except No. 23 (foam surface, eyes closed, semi-tandem stance, and yaw head movement), and 

No. 24 (foam surface, eyes closed, semi-tandem stance, and pitch head movement) with an 

incompletion rate of 66.7%, and 65% respectively. Subjects in the old group had more difficulty 

completing the exercises (No. 17 (foam surface, eyes open, semi-tandem stance, and yaw head 

movement), No. 18 (foam surface, eyes open, semi-tandem stance, and pitch head movement), 

No. 23, and No. 24) with higher rates (13.3 – 73.3%) of incompletion. The number of exercises 

that subjects aged 75 through 85 years could not perform increased compared with other groups: 

(No. 11 (firm surface, eyes closed, semi-tandem stance, and yaw head movement), No. 12 (firm 

surface, eyes closed, semi-tandem stance, and pitch head movement), No. 17, No. 18, No. 21 

(foam surface, eyes closed, feet apart stance, and pitch head movement), No. 22 (foam surface, 

eyes closed, semi-tandem stance, and head still), No. 23, and No. 24) with incompletion rates 

ranging between 11.7% - 96.7% (see Table 4-3).  

  



 77 

Table 4-3: Incompletion rates of balance and vestibular exercises 

Exercise number 
Incompletion rate (%) 

Group 1 Group 2 Group 3 Group 4 

1 
    

2 
    

3 
    

4 
   

1.7 

5 
   

3.3 

6 
  

1.7 
 

7 
    

8 
 

1.7 
  

9 
    

10 
   

5.0 

11 
 

5.0 6.7 31.7 

12 
   

20.0 

13 
   

1.7 

14 
    

15 
   

6.7 

16 
   

1.7 

17 
 

6.7 13.3 46.7 

18 
 

10.0 21.7 51.7 

19 
    

20 
  

5.0 8.3 

21 
  

3.3 11.7 

22 
 

3.3 6.7 35.0 

23 14.7 66.7 73.3 96.7 

24 7.4 65.0 63.3 85.0 

4.3.2 Test-retest reliability 

An intra-class correlation coefficient (ICC) was used to explore the test-retest reliability of 

healthy subjects’ performance of 24 static stance balance exercises within and between two visits 

occurring one week apart.  

The test-retest reliability was calculated for the RMS of trunk angular displacement, 

velocity, and linear acceleration in the anteroposterior and mediolateral directions for each 
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exercise separately. The average scores of the ICC coefficients of the RMS of trunk angular 

velocity were higher than the average scores of the coefficients of RMS of trunk tilt 

displacement in both pitch and roll and linear acceleration in the AP and ML directions. 

Additionally, the sway measures in the roll direction were more reliable in more exercises 

compared to sway measures in the pitch direction. (see Tables 4-4, 4-5, 4-6, 4-7 and 4-8, and 

Figures 4-3, 4-4, 4-5, 4-5, 4-6, 4-7, 4-8, 4-9, and 4-10).  

Table 4-4: The average intraclass correlation coefficients (ICC 3,1) of the RMS of trunk tilt displacement, 

velocity, and acceleration across the 24 exercises, standard deviation (SD), and the number of exercises 

with poor reliability 

 

Within 1st visit 
(session 1 & 2) 

Within 2nd visit 
(session 1 & 2) 

Between visits 
(Trial 1 Vs. 3) 

Between visits 
(Trial 2 Vs. 4) 

ICC 
(SD) 

# of 
exercises 
with poor 
reliability 

ICC 
(SD) 

# of 
exercises 
with poor 
reliability 

ICC 
(SD) 

# of 
exercises 
with poor 
reliability 

ICC 
(SD) 

# of 
exercises 
with poor 
reliability 

RMS of pitch 
displacement 

0.38 
(0.16) 

11 
0.50 

(0.14) 
5 

0.39 
(0.14) 

9 
0.40 

(0.15) 
11 

RMS of roll 
displacement 

0.51 
(0.17) 

4 
0.56 

(0.19) 
4 

0.44 
(0.16) 

8 
0.48 

(0.17) 
7 

RMS of pitch 
velocity 

0.58 
(0.15) 

3 
0.60 

(0.15) 
1 

0.47 
(0.14) 

6 
0.55 

(0.19) 
4 

RMS of roll 
velocity 

0.64 
(0.12) 

1 
0.63 

(0.19) 
3 

0.47 
(0.14) 

8 
0.55 

(0.17) 
4 

RMS of AP 
acceleration 

0.46 
(0.17) 

7 
0.53 

(0.13) 
4 

0.40 
(0.15) 

9 
0.40 

(0.16) 
12 

RMS of ML 
acceleration 

0.57 
(0.12) 

2 
0.59 

(0.16) 
2 

0.49 
(0.12) 

6 
0.53 

(0.16) 
5 

RMS: root mean square; AP: anteroposterior; ML: mediolateral; ICC: Intraclass coefficients. 
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Figure 4-3: Intraclass correlation coefficients, model (3, 1) of sway measures within the 1st visit 

 

 

Figure 4-4: Intraclass correlation coefficients, model (3, 1) of sway measures within the 1st visit 
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Figure 4-5: Intraclass correlation coefficients, model (3, 1) of sway measures within the 2nd visit 

 

 

Figure 4-6: Intraclass correlation coefficients, model (3, 1) of sway measures within the 2nd visit 
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Figure 4-7: Intraclass correlation coefficients, model (3, 1) of sway measures between visits (1st session in 1st 

visit and 1st session in 2nd visit) 

 

Figure 4-8: Intraclass correlation coefficients, model (3, 1) of sway measures between visits (1st session in 1st 

visit and 1st session in 2nd visit) 
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Figure 4-9: Intraclass correlation coefficients, model (3, 1) of sway measures between visits (2nd session in 1st 

visit and 2nd session in 2nd visit) 

 

Figure 4-10: Intraclass correlation coefficients, model (3, 1) of sway measures between visits (2nd session in 

1st visit and 2nd session in 2nd visit) 
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The RMS of trunk angular velocity in the pitch and roll directions was the most reliable 

measure. For this reason, the test-retest reliability, the standard error of measurement (SEM), the 

minimal detectable change (MDC), and Bland & Altman plots of the trunk angular velocity were 

explored in detail.  

The ICC was good to excellent within the 1st visit (ICC range 0.45-0.87, p < 0.001) and 

within the 2nd visit (ICC range 0.41-0.84, p < 0.001) for velocity in the pitch direction for all 

exercises except three (exercises No. 20 (foam surface, eyes closed, feet apart stance, and yaw 

head movement), No. 23 (foam surface, eyes closed, semi-tandem stance, and yaw head 

movement), and No. 24 (foam surface, eyes closed, semi-tandem stance, and pitch head 

movement)) within the 1st visit and only exercise No. 7 (firm surface, eyes closed, feet apart 

stance, and head still) within the 2nd visit. Similarly, the ICC was good to excellent within the 1st 

visit (ICC range 0.47-0.81, p ≤ 0.002) and within the 2nd visit (ICC range 0.59-0.85, p < 0.001) 

for the velocity of roll direction for all exercises except two exercises (exercises No. 10 (firm 

surface, eyes closed, semi-tandem stance, and head still), and No. 24) within the 1st visit and 

three exercises (exercises No. 7, No. 12 (firm surface, eyes closed, semi-tandem stance, and pitch 

head movement), and No. 19 (foam surface, eyes closed, feet apart stance, and head still)) within 

the 2nd visit. Conversely, when examining the reliability between visits, the ICC was poor to 

good between visits (1st session of 1st visit with 1st session of 2nd visit) (ICC ranges 0.01-0.72, p 

≤ 0.04) in the velocity of pitch direction. The exercises that had a poor reliability were numbers 

No. 3, No. 6, No. 15, No. 21, No. 22, and No. 24. Similarly, the ICC was poor to good between 

visits (1st session of 1st visit with 1st session of 2nd visit) (ICC ranges 0.23-0.71, p ≤ 0.03) in the 

velocity of roll directions.  
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The exercises that had a poor reliability were numbers No. 4, No. 6, No. 7, No. 8, No. 10, 

No. 19, No. 21, and No. 23. However, in testing the reliability between visits (2nd session of 1st 

visit with 2nd session of 2nd visit) the ICC of the RMS pitch velocity was good to excellent except 

in four exercises (No. 4 (firm surface, eyes open, semi-tandem, head still), No. 22 (foam surface, 

eyes closed, semi-tandem, and head still), No. 7, and No. 16 (foam surface, eyes open, semi-

tandem, and head still)). The ICC of the RMS roll velocity was good to excellent except in four 

exercises (No. 7, No. 16, No. 17, and No. 22).  

Table 4-5: Intraclass correlation coefficients, model (3, 1), SEM, and MDC for trunk tilt velocity within the 1st 

visit (session 1 and session 2) 

Exercises 
ICC of RMS of 
pitch velocity 

SD SEM MDC 
ICC of RMS of 
roll velocity 

SD SEM MDC 

1 0.71 0.16 0.09 0.24 0.79 0.07 0.03 0.09 

2 0.62 0.23 0.14 0.39 0.80 0.49 0.22 0.61 

3 0.59 0.94 0.60 1.67 0.80 0.20 0.09 0.25 

4 0.67 0.23 0.13 0.37 0.70 0.27 0.15 0.41 

5 0.63 0.41 0.25 0.69 0.67 0.58 0.33 0.92 

6 0.47 1.15 0.84 2.32 0.53 0.41 0.28 0.78 

7 0.56 0.20 0.13 0.37 0.81 0.08 0.03 0.10 

8 0.64 0.37 0.22 0.62 0.53 0.74 0.51 1.41 

9 0.63 1.21 0.74 2.04 0.68 0.20 0.11 0.31 

10 0.59 0.44 0.28 0.78 0.35 0.28 0.23 0.63 

11 0.45 0.42 0.31 0.86 0.55 0.57 0.38 1.06 

12 0.51 1.30 0.91 2.52 0.59 0.54 0.35 0.96 

13 0.73 0.24 0.12 0.35 0.63 0.13 0.08 0.22 

14 0.61 0.47 0.29 0.81 0.63 0.55 0.33 0.93 

15 0.48 1.07 0.77 2.14 0.67 0.27 0.16 0.43 

16 0.75 0.43 0.22 0.60 0.70 0.42 0.23 0.64 

17 0.57 0.74 0.49 1.35 0.61 1.03 0.64 1.78 

18 0.67 1.41 0.81 2.25 0.66 0.78 0.45 1.26 

19 0.87 0.47 0.17 0.47 0.66 0.18 0.10 0.29 

20 0.32 0.74 0.61 1.69 0.78 0.66 0.31 0.86 

21 0.51 1.04 0.73 2.02 0.51 0.28 0.20 0.54 

22 0.70 1.13 0.62 1.72 0.47 0.73 0.53 1.47 

23 0.18 0.73 0.66 1.83 0.71 1.72 0.93 2.57 

24 0.37 1.38 1.10 3.04 0.43 1.47 1.11 3.08 

SEM: Standard Error of Measurement; MDC: Minimum Detectable Change. 
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Table 4-6: Intraclass correlation coefficients, model (3, 1), SEM, and MDC for trunk tilt velocity within the 

2nd visit (session 1 and session 2) 

Exercises 
ICC of RMS of 
pitch velocity 

SD SEM MDC 
ICC of RMS of 
roll velocity 

SD SEM MDC 

1 0.73 0.21 0.11 0.30 0.65 0.08 0.05 0.13 

2 0.68 0.25 0.14 0.39 0.78 0.44 0.21 0.57 

3 0.44 1.06 0.79 2.20 0.55 0.16 0.11 0.30 

4 0.48 0.39 0.28 0.78 0.77 0.16 0.08 0.21 

5 0.65 0.53 0.31 0.87 0.73 0.51 0.27 0.73 

6 0.58 1.03 0.67 1.85 0.63 0.36 0.22 0.61 

7 0.12 0.54 0.51 1.40 0.06 0.17 0.16 0.46 

8 0.64 0.34 0.20 0.57 0.77 0.64 0.31 0.85 

9 0.83 1.28 0.53 1.46 0.62 0.19 0.12 0.32 

10 0.67 0.33 0.19 0.53 0.57 0.17 0.11 0.31 

11 0.57 0.68 0.45 1.24 0.65 0.65 0.38 1.07 

12 0.78 1.16 0.54 1.51 0.30 0.38 0.32 0.88 

13 0.58 0.26 0.17 0.47 0.61 0.14 0.09 0.24 

14 0.58 0.44 0.29 0.79 0.83 0.51 0.21 0.58 

15 0.63 1.05 0.64 1.77 0.66 0.19 0.11 0.31 

16 0.41 0.60 0.46 1.28 0.58 0.58 0.38 1.04 

17 0.65 0.79 0.47 1.30 0.76 1.06 0.52 1.44 

18 0.59 0.86 0.55 1.53 0.60 0.69 0.44 1.21 

19 0.41 0.50 0.38 1.06 0.21 0.24 0.21 0.59 

20 0.69 0.53 0.30 0.82 0.79 0.59 0.27 0.75 

21 0.69 1.32 0.73 2.04 0.70 0.26 0.14 0.39 

22 0.83 1.35 0.56 1.54 0.85 1.18 0.46 1.27 

23 0.68 1.22 0.69 1.91 0.77 1.77 0.85 2.35 

24 0.55 1.00 0.67 1.86 0.60 1.70 1.08 2.98 

SEM: Standard Error of Measurement; MDC: Minimum Detectable Change. 
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Table 4-7: Intraclass correlation coefficients, model (3, 1), SEM, and MDC for trunk tilt velocity between 

visits (1st session of 1st visit and 1st session of 2nd visit) 

Exercises 
ICC of RMS of 
pitch velocity 

SD SEM MDC 
ICC of RMS of 
roll velocity 

SD SEM MDC 

1 0.58 0.18 0.12 0.32 0.52 0.08 0.06 0.15 

2 0.62 0.27 0.17 0.46 0.63 0.44 0.27 0.74 

3 0.38 0.90 0.71 1.96 0.41 0.16 0.12 0.34 

4 0.54 0.26 0.18 0.49 0.31 0.22 0.18 0.51 

5 0.48 0.44 0.32 0.88 0.71 0.56 0.30 0.84 

6 0.35 1.09 0.88 2.44 0.31 0.37 0.31 0.85 

7 0.41 0.25 0.19 0.53 0.19 0.08 0.07 0.20 

8 0.58 0.41 0.27 0.74 0.34 0.73 0.59 1.64 

9 0.47 1.17 0.85 2.36 0.51 0.19 0.13 0.37 

10 0.72 0.43 0.23 0.63 0.39 0.27 0.21 0.58 

11 0.62 0.54 0.33 0.92 0.50 0.55 0.39 1.08 

12 0.55 1.28 0.86 2.38 0.51 0.52 0.36 1.01 

13 0.52 0.23 0.16 0.44 0.57 0.13 0.09 0.24 

14 0.55 0.47 0.32 0.87 0.65 0.57 0.34 0.93 

15 0.26 0.90 0.77 2.15 0.47 0.24 0.17 0.48 

16 0.41 0.52 0.40 1.11 0.50 0.58 0.41 1.14 

17 0.42 0.75 0.57 1.58 0.59 1.11 0.71 1.97 

18 0.51 1.13 0.79 2.19 0.69 0.69 0.38 1.06 

19 0.51 0.43 0.30 0.83 0.24 0.24 0.21 0.58 

20 0.46 0.61 0.45 1.24 0.42 0.63 0.48 1.33 

21 0.38 1.15 0.91 2.51 0.38 0.27 0.21 0.59 

22 0.39 0.87 0.68 1.88 0.36 0.87 0.70 1.93 

23 0.45 0.63 0.47 1.30 0.58 1.34 0.87 2.41 

24 0.01 0.91 0.91 2.51 0.55 1.43 0.96 2.66 

SEM: Standard Error of Measurement; MDC: Minimum Detectable Change. 
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Table 4-8: Intraclass correlation coefficients, model (3, 1), SEM, and MDC for trunk tilt velocity between 

visits (2nd session of 1st visit and 2nd session of 2nd visit) 

Exercises 
ICC of RMS of 
pitch velocity 

SD SEM MDC 
ICC of RMS of 
roll velocity 

SD SEM MDC 

1 0.62 0.18 0.11 0.31 0.64 0.07 0.04 0.12 

2 0.68 0.22 0.12 0.34 0.65 0.46 0.27 0.75 

3 0.49 1.06 0.76 2.10 0.78 0.19 0.09 0.25 

4 0.29 0.34 0.29 0.79 0.63 0.17 0.10 0.29 

5 0.61 0.44 0.27 0.76 0.64 0.54 0.32 0.90 

6 0.60 1.05 0.66 1.84 0.59 0.37 0.24 0.66 

7 0.10 0.51 0.48 1.34 0.10 0.16 0.15 0.42 

8 0.75 0.30 0.15 0.42 0.57 0.55 0.36 1.00 

9 0.68 1.19 0.67 1.87 0.69 0.19 0.11 0.29 

10 0.53 0.35 0.24 0.67 0.40 0.19 0.15 0.41 

11 0.56 0.65 0.43 1.20 0.57 0.64 0.42 1.16 

12 0.62 1.12 0.69 1.91 0.42 0.44 0.34 0.93 

13 0.66 0.27 0.16 0.44 0.58 0.14 0.09 0.25 

14 0.72 0.44 0.23 0.65 0.70 0.47 0.26 0.71 

15 0.52 1.08 0.75 2.07 0.60 0.22 0.14 0.39 

16 0.06 0.43 0.42 1.16 0.17 0.37 0.34 0.93 

17 0.51 0.67 0.47 1.30 0.36 0.85 0.68 1.88 

18 0.48 0.88 0.63 1.76 0.65 0.63 0.37 1.03 

19 0.76 0.56 0.27 0.76 0.64 0.19 0.11 0.32 

20 0.67 0.54 0.31 0.86 0.56 0.58 0.38 1.07 

21 0.63 1.11 0.68 1.87 0.58 0.25 0.16 0.45 

22 0.31 1.22 1.01 2.81 0.34 0.84 0.68 1.89 

23 0.79 1.03 0.47 1.31 0.79 1.79 0.82 2.27 

24 0.62 1.28 0.79 2.19 0.42 1.78 1.36 3.76 

SEM: Standard Error of Measurement; MDC: Minimum Detectable Change. 

The intra-class correlation coefficient (ICC) was calculated to explore the between-day 

test-retest reliability of the average sway measures from two consecutive trials (averaging the 

sessions in the 1st visit and the two sessions in the 2nd visit). The scores of the ICC coefficients of 

all variables (RMS of trunk tilt displacement, velocity, and acceleration) increased substantially 

after averaging sway measures from two consecutive trials (within visit trials) compared to 
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single trials (see Table 4-9). Mann-Whitney Tests were conducted to evaluate the differences 

between the ICC coefficients of all variables (RMS of trunk tilt displacement, velocity, and 

acceleration) after averaging sway measures from two consecutive trials and from single trials. 

The results of the test indicated a significant increase in the ICC coefficients of all variables 

(RMS of trunk tilt displacement, velocity, and acceleration) after averaging sway measures from 

two consecutive trials compared with between-day reliability of single trials. 

Table 4-9: The intraclass correlation coefficients, model (3,1), of the RMS of trunk tilt displacement, velocity, 

and acceleration obtained by averaging 2 trials 

Exercise 
RMS of pitch 
displacement 

RMS of roll 
displacement 

RMS of pitch 
velocity 

RMS of roll 
velocity 

RMS of AP 
acceleration 

RMS of ML 
acceleration 

1 0.78 0.90 0.73 0.90 0.79 0.90 
2 0.75 0.90 0.86 0.87 0.80 0.92 
3 0.80 0.89 0.82 0.80 0.82 0.87 
4 0.62 0.78 0.78 0.80 0.70 0.79 
5 0.71 0.90 0.83 0.92 0.73 0.92 
6 0.75 0.96 0.87 0.95 0.79 0.95 
7 0.54 0.71 0.74 0.76 0.53 0.80 
8 0.86 0.84 0.85 0.89 0.87 0.87 
9 0.53 0.70 0.81 0.69 0.64 0.77 

10 0.63 0.80 0.79 0.75 0.71 0.85 
11 0.66 0.71 0.76 0.68 0.74 0.84 
12 0.70 0.88 0.87 0.93 0.75 0.90 
13 0.32 0.56 0.52 0.43 0.42 0.66 
14 0.84 0.90 0.85 0.92 0.81 0.90 
15 0.66 0.74 0.87 0.80 0.73 0.83 
16 0.68 0.90 0.76 0.88 0.75 0.92 
17 0.72 0.91 0.72 0.89 0.74 0.91 
18 0.80 0.87 0.91 0.87 0.83 0.87 
19 0.62 0.91 0.84 0.91 0.71 0.92 
20 0.72 0.91 0.76 0.89 0.77 0.89 
21 0.67 0.87 0.86 0.76 0.74 0.88 
22 0.66 0.88 0.84 0.89 0.74 0.93 
23 0.70 0.82 0.82 0.93 0.75 0.87 
24 0.71 0.81 0.85 0.81 0.77 0.85 

Average 
score 

0.68 0.84 0.80 0.83 0.73 0.87 

RMS: Root Mean Square; AP: anteroposterior; ML: mediolateral. 
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Table 4-10: Intraclass correlation coefficients, model (3,1), SEM, and MDC for trunk tilt velocity obtained by 

averaging 2 trials 

Exercises RMS of pitch velocity SD SEM MDC RMS of roll velocity SD SEM MDC 

1 0.73 1.15 0.60 1.66 0.90 0.78 0.25 0.68 

2 0.86 1.05 0.39 1.09 0.87 0.65 0.23 0.65 

3 0.82 1.06 0.45 1.25 0.80 0.86 0.38 1.07 

4 0.78 0.73 0.34 0.95 0.80 0.64 0.29 0.79 

5 0.83 1.06 0.44 1.21 0.92 0.73 0.21 0.57 

6 0.87 1.05 0.38 1.05 0.95 1.19 0.27 0.74 

7 0.74 1.15 0.59 1.63 0.76 0.72 0.35 0.98 

8 0.85 0.96 0.37 1.03 0.89 0.50 0.17 0.46 

9 0.81 0.78 0.34 0.94 0.69 0.55 0.31 0.85 

10 0.79 0.92 0.42 1.17 0.75 0.73 0.37 1.01 

11 0.76 1.09 0.53 1.48 0.68 0.75 0.42 1.18 

12 0.87 1.07 0.39 1.07 0.93 0.88 0.23 0.65 

13 0.52 1.19 0.82 2.29 0.43 0.75 0.57 1.57 

14 0.85 1.05 0.41 1.13 0.92 0.54 0.15 0.42 

15 0.87 0.97 0.35 0.97 0.80 0.68 0.30 0.84 

16 0.76 0.89 0.44 1.21 0.88 0.83 0.29 0.80 

17 0.72 1.16 0.61 1.70 0.89 0.81 0.27 0.74 

18 0.91 0.99 0.30 0.82 0.87 0.67 0.24 0.67 

19 0.84 0.89 0.36 0.99 0.91 0.70 0.21 0.58 

20 0.76 1.25 0.61 1.70 0.89 1.14 0.38 1.05 

21 0.86 1.06 0.40 1.10 0.76 0.75 0.37 1.02 

22 0.84 0.86 0.34 0.95 0.89 0.72 0.24 0.66 

23 0.82 1.03 0.44 1.21 0.93 0.74 0.20 0.54 

24 0.85 1.10 0.43 1.18 0.81 0.81 0.35 0.98 

SEM: Standard Error of Measurement; MDC: Minimum Detectable Change. 
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Bland-Altman plots were examined to see if there was a relationship between the amount 

of difference and the average of the trunk tilt velocity in the pitch and roll directions from trial 1 

and 2 within the 1st visit. For most exercises, there was an obvious relationship between the 

difference and the average of the two times of the measurement, where the difference between 

the two trials tended to increase with the increase in the mean scores of the two trials (e.g. 

exercises No. 7, No. 14, and No. 20) (Figures 4-12, 4-14, and 4-15). For some exercises, the 

difference scores were distributed evenly across the mean scores (e.g. exercises No. 1 and No. 8) 

(Figures 4-11 and 4-13), whereas there were not enough subjects who could complete exercise 

No. 23 making comparison impossible (Figure 4-16).    
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Figure 4-11: Bland-Altman plot representing comparisons between velocity of trunk tilt in the pitch direction 

in trial 1 and 2 within the 1st visit for exercise 1. Solid line indicates the mean difference. Dotted lines indicate 

the limits of agreement (+ 2 SD).  
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Figure 4-12: Bland-Altman plot representing comparisons between velocity of trunk tilt in the pitch direction 

in trial 1 and 2 within the 1st visit for exercise 7. Solid line indicates the mean difference. Dotted lines indicate 

the limits of agreement (+ 2 SD). 
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Figure 4-13: Bland-Altman plot representing comparisons between velocity of trunk tilt in the pitch direction 

in trial 1 and 2 within the 1st visit for exercise 18. Solid line indicates the mean difference. Dotted lines 

indicate the limits of agreement (+ 2 SD). 
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Figure 4-14: Bland-Altman plot representing comparisons between velocity of trunk tilt in the pitch direction 

in trial 1 and 2 within the 1st visit for exercise 14. Solid line indicates the mean difference. Dotted lines 

indicate the limits of agreement (+ 2 SD). 
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Figure 4-15: Bland-Altman plot representing comparisons between velocity of trunk tilt in the pitch direction 

in trial 1 and 2 within the 1st visit for exercise 20. Solid line indicates the mean difference. Dotted lines 

indicate the limits of agreement (+ 2 SD). 

 

Figure 4-16: Bland-Altman plot representing comparisons between velocity of trunk tilt in the pitch direction 

in trial 1 and 2 within the 1st visit for exercise 23. Solid line indicates the mean difference. Dotted lines 

indicate the limits of agreement (+ 2 SD). 
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Weighted kappa (linear weights) was used to explore the agreement of healthy subjects’ 

rating of perceived difficulty of 24 static stance balance exercises within and between two visits 

occurring one week apart. Weighted kappa scores for scale A were fair to substantial (0.32 – 

0.68, p < .001) for the rating of perceived difficulty of all exercises performed over two times 

within the 1st visit and within the 2nd visit (Table 4-11).  Weighted kappa scores for scale A was 

fair to moderate (0.34 – 0.60, p < .001) for the rating of perceived difficulty of all exercises 

compared between visits (1st session of 1st visit with 1st session of 2nd visit and 2nd session of 1st 

visit with 2nd session of 2nd visit) except exercise # 23 which had poor agreement (see Table 4-

11).  
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Table 4-11: Weighted kappa (linear weights) coefficients for Scale A 

Exercise 
Within visits Between visits 

Scale A T1&T2 Scale A T3&T4 Scale A T1&T3 Scale A T2&T4 

1 0.60 0.58 0.43 0.60 

2 0.57 0.56 0.40 0.57 

3 0.50 0.56 0.46 0.47 

4 0.43 0.55 0.47 0.44 

5 0.48 0.62 0.41 0.50 

6 0.52 0.54 0.48 0.45 

7 0.56 0.68 0.54 0.44 

8 0.48 0.60 0.42 0.46 

9 0.54 0.58 0.37 0.57 

10 0.34 0.56 0.40 0.48 

11 0.45 0.43 0.49 0.44 

12 0.51 0.56 0.39 0.51 

13 0.43 0.53 0.35 0.47 

14 0.45 0.53 0.37 0.37 

15 0.32 0.48 0.34 0.42 

16 0.39 0.57 0.36 0.50 

17 0.47 0.56 0.50 0.49 

18 0.57 0.41 0.35 0.52 

19 0.44 0.55 0.39 0.57 

20 0.49 0.53 0.36 0.56 

21 0.47 0.50 0.42 0.38 

22 0.43 0.59 0.45 0.49 

23 0.37 0.49 0.42 0.18 

24 0.39 0.58 0.48 0.57 

Average 0.47 0.55 0.42 0.48 

T1: trial 1; T2: trial 2; T3: trial 3; T4: trial 4. 

Weighted kappa scores for scale B were fair to substantial (0.21 – 0.74, p < .05) for the 

rating of perceived difficulty of all exercises performed over two times within the 1st visit and the 

2nd visit except exercise No. 1 (firm surface, eyes open, feet apart, and head still). Similarly, 

weighted kappa scores for scale B were fair to substantial (0.28 – 0.69, p < .05) for the rating of 

perceived difficulty of all exercises compared between visits (1st session of 1st visit with 1st 

session of 2nd visit and 2nd session of 1st visit with 2nd session of 2nd visit) except exercises No. 1 

and 3 (firm surface, eyes open, feet apart, and pitch head movement) (see Table 4-12). 
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Table 4-12: Weighted kappa (linear weights) coefficients for Scale B 

Exercise 
Within visits Between visits 

Scale B T1&T2 Scale B T3&T4 Scale B T1&T3 Scale B T2&T4 

1 -0.03 0.38 -0.04 0.48 

2 0.64 0.46 0.28 0.64 

3 0.21 0.52 0.14 0.46 

4 0.43 0.47 0.51 0.44 

5 0.65 0.55 0.44 0.44 

6 0.55 0.47 0.61 0.42 

7 0.42 0.47 0.54 0.55 

8 0.33 0.74 0.65 0.46 

9 0.31 0.48 0.40 0.54 

10 0.35 0.44 0.36 0.50 

11 0.38 0.32 0.49 0.57 

12 0.42 0.55 0.38 0.42 

13 0.49 0.59 0.39 0.61 

14 0.56 0.50 0.34 0.44 

15 0.38 0.51 0.42 0.36 

16 0.39 0.49 0.40 0.53 

17 0.39 0.58 0.46 0.31 

18 0.38 0.39 0.49 0.35 

19 0.34 0.60 0.26 0.69 

20 0.37 0.55 0.46 0.42 

21 0.45 0.52 0.43 0.47 

22 0.38 0.58 0.46 0.41 

23 0.42 0.38 0.43 0.33 

24 0.28 0.36 0.44 0.30 

Average 0.40 0.50 0.41 0.46 

T1: trial 1; T2: trial 2; T3: trial 3; T4: trial 4. 

On average, Scale A had higher agreement scores compared to Scale B, while the highest 

average score of agreement was within visits compared to between visits. On the other hand, 

forty-one subjects out of 62 (66.1%) reported that they liked scale B more than Scale A, where 

many of the participants pointed out that the statements in scale B described how they felt. 
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The intra-class correlation coefficient (ICC model (3, 1)) was computed to explore the 

test-retest reliability of the IRT-converted scores of scale B. The reliability of subjects’ rating of 

all exercises reached excellent reliability within and between visits (see Table 4-13).   

Table 4-13: The intraclass correlation coefficients (ICC) of the converted scores of Scale B 

Exercise 

Within visits Between visits 

Scale B T1&T2 Scale B T3&T4 Scale B T1&T3 Scale B T2&T4 

ICC of IRT scores ICC of IRT scores ICC of IRT scores ICC of IRT scores 

1 0.957 0.982 0.941 0.966 

2 0.963 0.958 0.946 0.941 

3 0.966 0.980 0.941 0.960 

4 0.969 0.950 0.953 0.935 

5 0.960 0.982 0.942 0.961 

6 0.968 0.960 0.948 0.940 

7 0.968 0.982 0.943 0.957 

8 0.966 0.970 0.957 0.955 

9 0.971 0.985 0.960 0.969 

10 0.959 0.964 0.939 0.953 

11 0.964 0.983 0.949 0.961 

12 0.960 0.980 0.938 0.970 

13 0.957 0.984 0.935 0.966 

14 0.965 0.948 0.944 0.937 

15 0.964 0.986 0.938 0.964 

16 0.963 0.965 0.950 0.951 

17 0.957 0.983 0.934 0.958 

18 0.968 0.953 0.944 0.939 

19 0.969 0.981 0.950 0.960 

20 0.967 0.976 0.959 0.965 

21 0.963 0.982 0.949 0.962 

22 0.959 0.978 0.938 0.969 

23 0.965 0.979 0.951 0.966 

24 0.955 0.972 0.940 0.959 

T1: trial 1; T2: trial 2; T3: trial 3; T4: trial 4. 
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4.3.3 Concurrent validity 

Multiple regression analysis was used to assess the association between the scores of the rating 

of perceived difficulty scales and the postural sway measures during the performance of the 

balance exercises (Bland & Altman, 1995). Overall, for all age groups, the correlation 

coefficients were relatively similar between scale A and B, and the correlations between the 

rating of perceived difficulty and RMS trunk linear acceleration were the highest followed by 

angular displacement, and then RMS trunk tilt velocity. Additionally, the correlations between 

the ratings of perceived difficulty and the sway measures in the roll direction were higher 

compared with the pitch direction.  

There were strong, positive correlations between the rating of perceived difficulty scales 

(A and B) and RMS trunk tilt acceleration in the ML direction in the young and middle aged 

groups (r = 0.75-0.77, p < .001), moderate, positive correlations in the old groups (r = 0.70-0.72, 

p < .001), and in the very old group (r = 0.64-0.66, p < .001). There were moderate, positive 

correlations between the rating of perceived difficulty scales (A and B) and RMS of trunk tilt 

acceleration in the AP direction for all age groups (Scale A r = 0.51-0.64, p < .001; Scale B r = 

0.54-0.62, p < .001).  

There were moderate, positive correlations between the rating of perceived difficulty 

scales (A and B) and RMS of trunk tilt displacement and velocity in the AP and ML directions in 

all age groups (r = 0.40-0.73, p < .001) except between the rating of perceived difficulty scale B 

and RMS of trunk tilt velocity in the AP direction in the young and old groups (Table 4-14 and 

4-15).  
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Table 4-14: Results of the regression analysis of Scale A and RMS of trunk tilt sway 

Groups 
RMS of pitch 

displacement 

RMS of roll 

displacement 

RMS of pitch 

velocity 

RMS of roll 

velocity 

RMS of AP 

acceleration 

RMS of ML 

acceleration 

Young 
(18-44) 

0.53 0.72 0.40 0.71 0.59 0.77 

Middle aged 
(45-59) 

0.62 0.73 0.48 0.68 0.64 0.77 

Old 
(60-74) 

0.55 0.69 0.40 0.59 0.56 0.70 

Very old 
(75-85) 

0.49 0.63 0.48 0.58 0.51 0.64 

All groups 
(18-85) 

0.54 0.69 0.43 0.64 0.57 0.72 

RMS: Root Mean Square; AP: anteroposterior; ML: mediolateral. 

Table 4-15: Results of the regression analysis of Scale B and RMS of trunk tilt sway 

Groups 
RMS of pitch 

displacement 

RMS of roll 

displacement 

RMS of pitch 

velocity 

RMS of roll 

velocity 

RMS of AP 

acceleration 

RMS of ML 

acceleration 

Young 
(18-44) 

0.53 0.71 0.37 0.69 0.56 0.75 

Middle aged 
(45-59) 

0.59 0.72 0.44 0.67 0.62 0.76 

Old 
(60-74) 

0.56 0.71 0.39 0.60 0.56 0.72 

Very old 
(75-85) 

0.53 0.67 0.51 0.60 0.54 0.66 

All groups 
(18-85) 

0.55 0.70 0.42 0.64 0.57 0.72 

RMS: Root Mean Square; AP: anteroposterior; ML: mediolateral. 

Additional multiple regression analyses were performed to assess the relationship 

between postural sway measures and scores of scale B, which were converted from ordinal 

values to continuous values using the IRT method. The correlation coefficients of converted 

scores of Scale B and the RMS of trunk tilt sway changed slightly within a small range (± 0.06) 

compared with the correlation coefficients of Scale B and RMS of trunk tilt sway (see Table 4-

16).   
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Table 4-16: Results of the regression analysis of converted scores of Scale B and RMS of trunk tilt sway 

Groups 
RMS of pitch 

displacement 

RMS of roll 

displacement 

RMS of pitch 

velocity 

RMS of roll 

velocity 

RMS of AP 

acceleration 

RMS of ML 

acceleration 

Young 
(18-44) 

0.53 0.69 0.36 0.63 0.57 0.74 

Middle aged 
(45-59) 

0.59 0.71 0.43 0.65 0.62 0.77 

Old 
(60-74) 

0.56 0.70 0.42 0.60 0.58 0.73 

Very old 
(75-85) 

0.51 0.70 0.50 0.61 0.54 0.71 

All groups 
(18-85) 

0.53 0.70 0.42 0.62 0.57 0.74 

RMS: Root Mean Square; AP: anteroposterior; ML: mediolateral. 

 DISCUSSION 

In this study, the test-retest reliability of the subjects’ performance during static standing balance 

exercises and their rating of perceived difficulty of standing balance exercises was examined, 

and the two scales of rating of perceived difficulty of balance exercises were validated by 

comparing the scales with quantitative sway measures. The results demonstrated that the 

subjects’ balance performance had at least good reliability with few exceptions. On average, 

Scale A had relatively higher agreement scores compared to Scale B. In addition, the two scales 

(Scale A and B) of ratings of perceived difficulty of balance exercises are valid and showed 

relatively similar validity scores. However, 66% of the subjects reported that they liked scale B 

more than Scale A. 

Test-retest reliability (postural sway): 

The mean scores of the ICC coefficients of RMS of trunk tilt velocity were higher than the 

average scores of the coefficients of RMS of trunk tilt acceleration and displacement. 
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Consistently, several studies have examined the reliability of sway measures during different 

postural control tasks in different age populations and found that the mean velocity is the most 

reliable measure of postural sway (Benvenuti et al., 1999; Doyle, Hsiao-Wecksler, Ragan, & 

Rosengren, 2007; Hertel, Olmsted-Kramer, & Challis, 2006; Lafond, Corriveau, Hebert, & 

Prince, 2004; Rafal, Janusz, Wieslaw, & Robert, 2011; Swanenburg, de Bruin, Favero, 

Uebelhart, & Mulder, 2008). Rafal et al. assessed the reliability of 27 elderly subjects’ 

performance during static standing on a force plate and found that the mean velocity  of  center 

of pressure (COP) provided the highest reliability within and between visits, compared with the 

range in the anterior-posterior and medio-lateral directions, and 95th  percentile confidence 

ellipse area (Rafal, Janusz, Wieslaw, & Robert, 2011). Similarly, a systematic review that 

included thirty-two studies revealed that among all other COP measures, the velocity measure 

was generally a good reliable measure (Ruhe, Fejer, & Walker, 2010). In the inverted pendulum 

model of postural control, the COP is related to the body tilt displacement of the center of mass 

(COM) in the following way. The displacement of the COP, which reflects the torque output of 

the ankle effectors, causes the inverted pendulum to move, which is represented by the body tilt 

and translation of the COM.(D. A. Winter, 1995) The COP displacement typically leads the 

COM translation, and mathematically, the difference between the COP and COM displacement 

is proportional to the acceleration of the COM. A possible biomechanical explanation for tilt 

velocity being the most reliable measure might be that body tilt displacement is more prone to 

drift (for example going from a forward lean to a backward lean) and thus have more variation 

from trial to trial despite a person having stable posture. On the other hand, the body tilt velocity 

should have no drift over time, and thus the RMS value would be more consistent.  
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Despite the report of good reliability of COP measurements, there are a limited number 

of studies that have assessed the reliability of postural sway measures using an accelerometer-

based sensor. One study by Whitney et al. assessed the reliability of COP measures using a force 

plate and normalized path length of the accelerometer and found that the reliability of the 

accelerometer was either similar or better than the COP measures (Whitney et al., 2011).  

The results of the intra-class correlation coefficient (ICC) of the sway measures (trunk 

angular displacement and velocity, and linear acceleration) within and between visits showed 

that the sway measures in the roll direction were more reliable in more exercises compared to 

sway measures in the pitch direction. The limited base of support in mediolateral direction 

especially during semi-tandem stance exercises compared to the anteroposterior direction may 

have produced greater variability in the amount of sway which may explain the higher reliability 

of sway measures in the ML direction. Others have noted that sway measures in the mediolateral 

direction were more reliable compared to sway measures in the anteroposterior direction (Goldie, 

Bach, & Evans, 1989; Heebner, Akins, Lephart, & Sell, 2015; Moe-Nilssen, 1998; Rafal et al., 

2011; Swanenburg et al., 2008). These studies have reached the same conclusion that the 

mediolateral direction is more reliable despite different instrumentation and populations utilized. 

Swanenburg et al. recruited 37 older adults, of whom 11 had a history of falling, to investigate 

the reliability of their balance performance during static standing using a force platform and 

found that the ICC values were higher in the mediolateral direction compared to the ICC values 

in the anteroposterior direction (Swanenburg et al., 2008). Others have reached the same 

conclusion when they studied 10 healthy young adults to calculate the reliability of their postural 

stability using an accelerometer during static and dynamic exercises (Heebner et al., 2015). 

Additionally, sway measures in the mediolateral direction were the only measures able to show a 
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significant difference between static exercises, while sway measures in all directions showed 

differences between static and dynamic exercises (Heebner et al., 2015). Based on these findings, 

we recommend the inclusion of sway measures in the mediolateral direction, especially the 

velocity measure when conducting studies that compare between groups or assess the reliability 

of performance during standing balance exercises.  

Overall, this study determined that test-retest reliability coefficients of sway measures 

within visits (intra-sessions) appear to have higher reliability values compared to between visits 

(inter-sessions), which is consistent with previous studies (Benvenuti et al., 1999; D. Lin, Seol, 

Nussbaum, & Madigan, 2008; Rafal et al., 2011). This conclusion was also supported by the 

results of the ratings of perceived difficulty agreement testing, in which the scores of agreement 

where higher within visits compared to between visits. Although a number of studies have 

agreed upon that test-retest reliability coefficients of sway measures within visits have higher 

reliability values compared to between visits, they did not attribute this disparity in reliability 

values between intra and inter-sessions to an apparent reason. Several studies proposed that this 

difference in test-retest reliability coefficients may be attributed to a change in postural control 

over time (D. Lin et al., 2008; Tjernstrom, Fransson, Hafstrom, & Magnusson, 2002), whereas 

Fisher attributed the disparity in reliability scores to biological reasons such as stress of daily life 

that cannot be controlled (Fisher, 2010).  

Averaging two consecutive trials within visits increased the ICC coefficients substantially 

for all variables compared to the ICC coefficients obtained from a single trial. The inherent 

variability in maintaining equilibrium may explain the lower reliability coefficients calculated 

from a single trial compared to averaging two trials for all exercises. Additionally, averaging 

sway measures from two trials or more leads to a better estimate of the true value which may 
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explain the improvement of the ICC coefficients after averaging. Studies have been designed to 

determine the appropriate number of trials to be averaged in order to obtain reliable measures 

and concluded that averaging sway measures from at least two trials can improve the reliability 

coefficients, especially the velocity measure (Corriveau, Hebert, Prince, & Raiche, 2000; 

Hufschmidt, Dichgans, Mauritz, & Hufschmidt, 1980; Lafond et al., 2004; Ruhe et al., 2010). 

Lafond et al. recommended averaging two trials to obtain a reliable measure (ICC > 0.90) of the 

COP mean velocity and averaging 4 trials was needed to obtain a reliable measure of the COP 

range and displacement (Lafond et al., 2004). Additionally, Lafond et al. assessed the reliability 

of sway measures of different time lengths (30, 60, and 120 seconds) and found that the ICC 

values increased with longer test durations. In light of our study’s results, it is recommended to 

average sway measures from two trials in order to obtain reliable results especially for the 

velocity measure, while other measures may need averaging from more than two trials to get 

reliable results. Additionally, we recommend using trials of a longer time as permitted by the 

patients’ health status to obtain higher reliability scores according to results of other studies 

(Lafond et al., 2004). 

Test-retest reliability (ratings of perceived difficulty): 

The weighted kappa individual scores for Scale A were fair to substantial within visits and fair to 

moderate between visits whereas the scores for Scale B were fair to substantial within and 

between visits with some exceptions. However, the overall average scores of agreement were 

higher for Scale A. Scale B is considered a short scale with five levels compared to Scale A 

which has 11 levels. Shorter scales tend to have a prevalence effect compared to longer scales, 

which associates inversely with the magnitude of kappa coefficients (Sim & Wright, 2005). The 

prevalence effect is present when there is a huge difference in the proportion of the agreement 
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between the different levels of the classification (Sim & Wright, 2005). For instance, in a 

situation where raters choose between 2 classifying cases like positive or negative or even more 

cases like hard, medium, and easy, a prevalence effect exists when the agreements on one 

classification is extremely higher than other classifications. With an increase in the prevalence 

effect, the chance agreement will increase, but the kappa coefficient will decrease accordingly. 

However, prevalence effects were evident in some of the exercise intra-rater ratings in Scale B, 

which may explain why Scale B had lower agreement scores on average compared to Scale A.  

Concurrent validity: 

The correlation coefficients between ratings of perceived difficulty scales (A and B) and the 

sway measures ranged between moderate to strong in measures calculated in the ML direction 

and were moderate in the AP direction with a few exceptions in the correlation coefficients of 

Scale B and pitch angular velocity. These moderate to strong correlation coefficients 

demonstrate a concurrent validity of the two rating scales which confirms our hypothesis in this 

study.  

The level of correlations between the sway measures and the rating of perceived 

difficulty was different between the AP and ML directions indicating higher correlation scores 

for the ML direction. This difference suggests that subjects may have based their rating of 

perceived difficulty on their perception of sway in the medial-lateral direction. Maki et al. found 

that poor control of lateral stability is correlated with future falls (Maki et al., 1994). The limited 

base of support in the mediolateral direction compared to the anteroposterior direction may have 

produced a greater amount of sway, which may explain the strong relationship between the sway 

measures and the rating of perceived difficulty in the ML direction.  
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The results of this study demonstrated that the intra-rater agreement testing of the rating 

of perceived difficulty scales (Scales A and B) had at least fair to substantial agreement with few 

exceptions, and possessed concurrent validity with sway measures. The rating scales are easy to 

use and interpret in clinical settings compared to technology-based techniques to assess postural 

sway. In regards to Farlie et al.’s systematic review that included thirty-two studies of balance 

interventions that did not find a single valid instrument to measure intensity of balance exercises 

(Farlie et al., 2013), we believe that clinicians can use the ratings of perceived difficulty scales as 

a proxy measure of the intensity of the balance exercise and progress the patient to the next level 

of intensity in cases where measuring sway is not possible.  

The static standing balance exercises that were studied are commonly prescribed in the 

clinic, and encompass a wide variety of conditions that are used in vestibular rehabilitation. 

However, some exercises had poor sway reliability. After reviewing the average value of sway 

measures and rating of perceived difficulty scores for these exercises as well as the missing 

values of the balance and vestibular exercises, it became clear that some of the exercises with 

low reliability coefficients were relatively easy exercises, resulting in limited variability which 

may explain the poor reliability. Other exercises with low reliability were very difficult exercises 

in which subjects, especially older subjects, couldn’t maintain their balance throughout these 

exercises, resulting in a greater proportion of missing data for those exercises. Furthermore, only 

subjects with good balance, which we expect to have less variability in sway, were able to 

maintain their balance throughout those exercises. In addition, a few exercises (1, 3, and 23) had 

poor kappa scores in Scale B. Upon reviewing the proportions of agreement on the different 

classifications (1-5) of Scale B for those exercises, a prevalence effect was evident in which 

there was a large difference in the proportion of the agreement between the different 
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classifications of Scale B for exercises 1, 3, and 23, which may explain why those exercises had 

low agreement scores (Sim & Wright, 2005).  

 LIMITATIONS 

The experimental visits in this study lasted for one hour and forty-five minutes on average, 

which may have caused fatigue, especially for older adults who required more time for breaks. 

During data collection of the ratings of perceived difficulty, ratings weren’t completely 

independent. Participants rated the difficulty of the same exercises twice during the first visit, 

and twice during the second visit. Non-independent ratings may inflate the kappa coefficients in 

which recalling ratings on the first occasion may have influenced the rating given later (Sim & 

Wright, 2005). However, due to the large number of exercises included in our study and the fact 

that the trials were randomized, it would have been difficult for participants to recall previous 

ratings. Randomizing the testing conditions during the experiment of sessions and visits was 

attempted to eliminate the order effect due to practice or fatigue. 

 CONCLUSION 

The results demonstrated that the subjects’ performance and their rating of perceived difficulty 

of standing balance exercises are reliable. The RMS of trunk tilt velocity in the roll direction was 

the most reliable measure on average. The reliability scores of the sway measures increased after 

averaging two trials, which indicates clearly the importance of averaging 2 trials.  
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The ratings of perceived difficulty scales had moderate to strong correlations with 

quantitative postural measures, demonstrating concurrent validity. Accordingly, either of the two 

scales (Scale A and B) of ratings of perceived difficulty of balance exercises can be used in 

clinic to establish a scientific basis for exercise progression. 

The strong relationship between the scales and quantitative postural measures in the ML 

direction suggests that subjects may have based their rating of perceived difficulty on their sway 

in the medial-lateral direction. 
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5.0  PERCEPTUAL AND SWAY MEASURES OF BALANCE IN HEALTHY 

SUBJECTS 

 INTRODUCTION 

Falling can be a life threatening issue especially for older adults as it might result in death or 

injuries such as a hip fracture (B. H. Alexander, Rivara, & Wolf, 1992; Cnters for Disease & 

Prevention, 2016; WHO, 2007). Another adverse consequence for those who have fallen is 

developing a fear of falling which may result in a reduction in participation in daily life activities 

and being non-active members in their community (Tinetti et al., 1994).  

An association has been found between an increase in postural sway and increased risk of 

falls. Several studies have reported that an increase in postural sway is a risk factor of falling 

among older adults (Berg, Maki, Williams, Holliday, & Wood-Dauphinee, 1992; C. J. Chang, 

Chang, Y. S., & Yang, S. W., 2013). Furthermore, Maki et al. did a prospective study for one 

year to assess the ability of different clinical and laboratory balance tests to predict risk of future 

falling. Among the laboratory balance tests, they found that lateral sway optimally distinguished 

between fallers and non-fallers (Maki et al., 1994). 

One of the factors that increases postural sway is getting older (Baloh et al., 1994; Baloh 

et al., 1998; Gill et al., 2001; Rogind et al., 2003; Sheldon, 1963; Sullivan et al., 2009). 

Worsening of postural sway in older adults can be a result of poor peripheral sensory systems, 
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vision, (Lichtenstein et al., 1988; Lord et al., 1991b) somatosensation, (Lord et al., 1991b) 

vestibular function, (Kerber et al., 2006) brain structural changes and related cognitive function 

reduction, (Baloh et al., 2003; Sullivan et al., 2009; Tell et al., 1998) lower limb muscle 

weakness and absence of protective reflexes (Aniansson et al., 1986; Larsson et al., 1979). 

A number of investigators attempting to prevent falls found that balance training is an 

important factor in reducing falls in the elderly (Barnett et al., 2003; Howe et al., 2011) as well 

as improving mobility and functionality for all age groups (Caraffa, Cerulli, Projetti, Aisa, & 

Rizzo, 1996; Emery, Rose, McAllister, & Meeuwisse, 2007). Customized balance exercises and 

vestibular rehabilitation therapy (VRT) are considered to be effective options to improve balance 

by facilitating the central nervous system’s ability to compensate for balance deficits (Hillier & 

McDonnell, 2011; Horak et al., 1992; Shepard & Telian, 1995). These treatments have elicited 

beneficial results in improving balance in older adults and people with vestibular disorders, 

eliminating the symptoms of vestibular disorders, and reducing falls (Hillier & McDonnell, 

2011; Horak et al., 1992). 

Balance and vestibular rehabilitation therapy is comprised of different categories of 

exercises such as static standing, weight shifting, anticipatory postural adjustments, gait, and 

eye-head coordination (Alsalaheen et al., 2013; Klatt et al., 2015). Exercises in these categories 

can be performed in different ways by combining various modifying factors, such as the use of 

visual feedback, different sizes of the base of support, and head movements (Alsalaheen et al., 

2013; Klatt et al., 2015). Some of these exercises and conditions are considered to be more 

difficult than others, in terms of causing a loss of balance or increasing sway. However, the 

evidence for determining the appropriate progression of balance exercise intensity is very limited 

according to the American College of Sports Medicine (ACSM) (Pescatello & American College 
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of Sports Medicine., 2014). In addition, Farlie et al (2013) performed a systematic review of 

balance intervention studies and found that there was no description of the intensity of balance 

exercises (Farlie et al., 2013). Typically, a physical therapist will intuitively progress the 

challenge of balance exercises based on their clinical experience by decreasing proprioception 

information (e. g. standing on foam), visual information (e. g. closing eyes), or changing the base 

of support (e. g. standing in semi-tandem stance) (Herdman & Clendaniel, 2014) (Herdman & 

Clendaniel, 2014).  

Several groups have attempted to develop a way to grade the intensity of balance 

exercises. Muehlbauer et al. assessed the relative difficulty of 12 balance exercises in order to 

progression sequence. Young subjects stood in 4 different bases of support (feet apart, semi 

tandem, tandem, and single leg) on either a firm surface with eyes open, foam surface with eyes 

open, or firm surface with eyes closed. COP displacement was used to assess intensity, and 

increased gradually from exercises done on a firm surface with eyes open, to foam surface with 

eyes open, to firm surface with eyes closed. In addition, COP displacement increased as the base 

of support changed from feet apart, to semi tandem, to tandem and finally to single leg stance. 

They reported a sequence of 12 exercises, starting from the exercise that produced the least COP 

displacement to the exercise that produced the most COP displacement (Muehlbauer, Roth, 

Bopp, & Granacher, 2012). Others have explored the verbal and nonverbal responses during 

exercises of different levels of difficulty so that they could develop an instrument that measured 

the intensity of balance difficulty (Farlie et al., 2016). As the difficulty of the exercises 

increased, the time delay before commencing the exercise increased as well as the number of 

comments that subjects made before, during, and after exercises increased accordingly with the 

increased difficulty of the exercise. Additionally, they visually observed the physical responses 
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and found that postural sway and postural reactions such as stepping and reaching increased as 

the exercise difficulty increased. Furthermore, at the end of each exercise, they asked their 

subjects to describe their perception of how difficult they found the exercise. The subjects’ 

perception seemed to correlate positively with exercise intensity (Farlie et al., 2016).  

For aerobic and resistance exercises, there are very well defined rules for how to 

determine the initial prescription for exercise intensity as well as how to progress the intensity 

level. According to the American College of Sports and Medicine (ACSM) guidelines, the initial 

intensity prescription of aerobic exercise is 40-60% of the heart rate reserve, which is considered 

a moderate intensity and may be progressed to a vigorous intensity (60-85%) during endurance 

training and general aerobic exercises (Pescatello & American College of Sports Medicine., 

2014). The prescribed intensity may vary depending on the fitness level and goals of the trainee, 

and whether the trainee has chronic diseases (Pescatello & American College of Sports 

Medicine., 2014). Similarly, the intensity of resistance training is defined as a percentage of one 

repetition maximum (1 RM), which is the maximum weight that can be lifted one time 

throughout the full range of motion. The ACSM recommends different intensity ranges 

depending on the type of exercise, whether it is muscular strength, endurance, or hypertrophy, 

and also the intensity depends on the level of the trainee (beginners, intermediate, or advanced). 

To increase muscular strength, the intensity should be between 60-70% of 1 RM for a novice or 

intermediate level and between 80-100% for advanced trainees. For muscular endurance, the 

ACSM recommends that the intensity of the resistance exercises to be lower than 70% of 1 RM, 

whereas, it is suggested for a novice and intermediate trainee to left weights of an intensity 

between 70-85% of 1 RM and 70-100% for advanced trainees in order to increase muscle mass 

(Pescatello & American College of Sports Medicine., 2014). 
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Furthermore, the rating of perceived exertion for aerobic and resistance exercises was 

developed to assist in determining how trainees perceive the intensity of activity in cases where 

the heart rate reserve or the maximum weight that can be lifted cannot be measured, due to 

medical conditions (e.g. heart failure), using a medication that affects the heart rate in response 

to physical effort, or lack of medical equipment to measure the event of interest (Robertson et al., 

2004; Robertson et al., 2003; Utter et al., 2004). During training programs, rating of perceived 

exertion scales help to monitor the intensity of the activity and provide healthcare providers with 

feedback of how hard their clients’ feel like they are exercising as well as if their clients are 

ready to progress to the next level of intensity.   

During balance exercises, measuring or visually observing the amount of sway is a 

common method of assessing the difficulty of exercises. However, many clinics don’t have the 

capability to record sway or interpret its results. In addition, visual observation is an imprecise 

tool, and evidence of inter-rater reliability has not established. Therefore, the use of rating 

perceived difficulty scales, which were validated in a different study (Chapter 4), may be 

beneficial for determining the intensity of balance exercises and may assist with creating the 

exercises progression.  

In this study, we measured the trunk tilt induced during common static standing balance 

exercises, and asked subjects to rate their perceived difficulty of each exercise in order to 

establish a standard way of assessing level of difficulty of the exercises (i.e. intensity). Trunk tilt 

and ratings of perceived difficulty measurements may facilitate better treatment progression 

algorithms used in practice and research. The purpose of this study was to determine the relative 

difficulty of a wide variety of static standing exercises commonly performed in balance and 

vestibular rehabilitation, and validate common rubrics for treatment progression by recording 
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postural sway measures (trunk tilt) and perceived difficulty. In addition, the effect of age on 

postural and perceptual measures of balance will also be examined.  

5.1.1 Specific aim 

Specific aim of this study: To examine the perceptual difficulty and postural measures of 

static standing balance exercises in healthy adults from 18 to 85 y/o. 

Hypothesis 1:  

During the performance of balance exercises, trunk tilt sway measures and ratings of perceived 

difficulty will increase (get worse) from the youngest to the oldest age group. 

Hypothesis 2:  

Trunk tilt sway measures and rating of perceived difficulty will increase as static stance balance 

exercises change from: level surface to foam surface, eyes open to eyes closed, head still to yaw 

or pitch movement, and feet apart to semi-tandem stance. 

Hypothesis 3:  

The increase in magnitude of trunk tilt sway measures will be greater as age increases as static 

stance balance exercises change from: level surface to foam surface, eyes open to eyes closed, 

head still to yaw or pitch movement, and feet apart to semi-tandem stance. 



 117 

 METHODS 

5.2.1 Participants 

Sixty-two healthy subjects who were independently participating in daily activities, and were 

between the ages of 18 and 85 years old (31 females and 31 males, mean age 55 ± 20 years) 

participated in this study. Study participants were distributed into four groups as follow: young 

(18-44 years old; n = 17), middle aged (45-59 years old; n = 15), old (60-74 years old; n = 15), 

and very old (75-85 years old; n = 15). Age divisions were developed based on age-related 

changes in the postural sway found in several studies (Abrahamova & Hlavacka, 2008; Baloh et 

al., 1998; Era et al., 2006; Gill et al., 2001; Liaw et al., 2009; Rosenhall & Rubin, 1975; Sheldon, 

1963).  

Subjects were excluded if they were unable to stand for 3 minutes without rest; had distal 

sensory loss (unable to complete the Romberg test for 30 seconds and unable to feel a pressure of 

4.31 g monofilament applied on two different parts of each foot with eyes closed); had visual 

acuity worse than 20/40; had a diagnosis of benign paroxysmal positional vertigo (BPPV) 

(positive Dix–Hallpike test or positive Roll test); had neurological or orthopedic disorders; used 

an assistive device for ambulation; were pregnant; had excessive weight (BMI > 35, had 

cognitive impairment ≤ 25 points on the Montreal Cognitive Assessment; had a history of falling 

2 times or more within the last 12 months doing activities of daily living; or had a peripheral 

vestibular disorder (positive head thrust test)). 

This study was approved by the Institutional Review Board at the University of 

Pittsburgh. All subjects signed the written research consent form prior to participating in the 

study. 
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5.2.2 Instrumentation  

During the performance of the exercises in static standing, subjects stood on a force platform 

(NeuroTest, NeuroCom, Inc., Clackamas, OR) that measured ground reaction forces at a 

sampling rate of 100 Hz. An inertial measurement unit (IMU, Xsense Technologies B.V., 

Enschede, The Netherlands) was mounted on each subject's lower back at the level of the iliac 

crest (L4) to measure trunk angular displacement and velocity from vertical, and linear 

acceleration in AP and ML directions at a sampling rate of 100 Hz. The IMU uses a combination 

of accelerometers, gyroscopes, and a magnetometer. 

5.2.3 Experimental procedure 

The study is an experimental study using a within-subjects and between-groups design to 

determine the effect of age and different exercise conditions on balance. All potential research 

participants had a screening visit. The eligible subjects were asked to come back for 2 test visits, 

one week apart. The independent variables are the age groups (4 levels) and the exercise 

conditions (i.e. surface - 2 levels; visual input - 2 levels; base of support - 2 levels; and head 

movement - 3 levels). The different levels of exercise conditions are shown in Table 5-1. 

Table 5-1: Chosen conditions of static standing exercises 

Exercise category Surface Visual input Base of support 
Head 

movement 

Static standing 
Level surface 

Foam surface 

Eyes open 

Eyes closed 

Feet apart 

Semi-tandem 

Head still 

Yaw 

Pitch 
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5.2.3.1 Screening visit 

Consented subjects underwent screening tests to rule out conditions known to adversely affect 

balance. Screening tests included: Romberg stance (Horak, 1987), lower extremity pressure 

threshold using monofilaments (Holewski et al., 1988), visual acuity (Brien Holden, 2008; 

Muhammad et al., 2015; World-Health-Organization, 2003), the Montreal Cognitive Assessment 

- Version 3 (Nasreddine et al., 2005), the Dix–Hallpike Test (Dix & Hallpike, 1952), the supine 

roll test (Lempert & Tiel-Wilck, 1996), and the Head Impulse Test (Halmagyi & Curthoys, 

1988).  

Eligible subjects who met the study criteria completed the Activities-specific Balance 

Confidence Scale (ABC) questionnaire (Powell & Myers, 1995), the Functional Gait Assessment 

(FGA) (Wrisley et al., 2004), and gait speed (Steffen et al., 2002) was measured prior to the 

experiment in order to better describe the participants. More detail description of the screening 

tests is in Chapter 3.  

5.2.3.2 Experimental visits 

Participants were tested during two experimental visits, one week apart. During each 

experimental visit, participants performed two sets of 24 randomized static standing balance 

exercises, which were a full-factorial design of the following different conditions: vision (eyes 

open and eyes closed); surface (firm and foam); base of support (feet apart and semi-tandem); 

and head movements (head still, yaw, and pitch) as shown in Table 5-2.  
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Table 5-2: Static standing balance exercises 

Exercise number Surface conditions Visual input Base of support Head movement 
1 Firm Eyes open Feet apart Head still 

2 Firm Eyes open Feet apart Yaw 

3 Firm Eyes open Feet apart Pitch 

4 Firm Eyes open Semi-tandem Head still 

5 Firm Eyes open Semi-tandem Yaw 

6 Firm Eyes open Semi-tandem Pitch 

7 Firm Eyes closed Feet apart Head still 

8 Firm Eyes closed Feet apart Yaw 

9 Firm Eyes closed Feet apart Pitch 

10 Firm Eyes closed Semi-tandem Head still 

11 Firm Eyes closed Semi-tandem Yaw 

12 Firm Eyes closed Semi-tandem Pitch 

13 Foam Eyes open Feet apart Head still 

14 Foam Eyes open Feet apart Yaw 

15 Foam Eyes open Feet apart Pitch 

16 Foam Eyes open Semi-tandem Head still 

17 Foam Eyes open Semi-tandem Yaw 

18 Foam Eyes open Semi-tandem Pitch 

19 Foam Eyes closed Feet apart Head still 

20 Foam Eyes closed Feet apart Yaw 

21 Foam Eyes closed Feet apart Pitch 

22 Foam Eyes closed Semi-tandem Head still 

23 Foam Eyes closed Semi-tandem Yaw 

24 Foam Eyes closed Semi-tandem Pitch 

 

Participants stood without shoes in order to avoid the confounding effect of wearing 

different shoes. During conditions of foam surface, subjects stood on a foam pad (AIREX 

Balance Pad S34-55) that had a height of 6 cm, length of 51 cm, width of 40 cm (density 55 

kg/m^3, compression resistance 20 kPa at 25% compression) and the room’s temperature was 

maintained at a median value of 72 Fahrenheit degrees with an interquartile range of 3 degrees 

during all visits to avoid the change of foam properties (see Appendix C). During the different 

base of support stances, subjects were asked to distribute their body weight equally on each foot, 

and to stand during the feet apart condition with the heel centers 0.17 m apart, with an angle of 
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14 degrees between the long axes of the feet (McIlroy & Maki, 1997). For the semi-tandem 

stance conditions, subjects stood with the front foot touching the medial side of the other foot by 

a half of foot length (Lee et al., 2012; Nejc et al., 2010), with the dominant foot in the back. 

During the eyes closed conditions, subjects wore opaque goggles. During yaw and pitch 

conditions, subjects were instructed to move their head at a frequency of 1 Hz by following the 

beat of a metronome (Hall & Herdman, 2006) within a range of 45 degrees in the yaw direction 

(Jung et al., 2009) and 30 degrees in pitch direction. Subjects practiced the head movement in 

these directions with a laser light attached to the head before they started the experiment. 

However, the laser light wasn’t used during the experiment.  

Exercises were performed in random order that was software-generated. Subjects were 

instructed to stand as steady as possible with their arms at their side (Gill-Body et al., 1994; Gill 

et al., 2001) during all trials for 35 seconds each (Allum et al., 2011; Le Clair & Riach, 1996; 

Muehlbauer et al., 2012; Rine et al., 2013). Data collection was stopped if a subject lost balance 

according to the following failure criteria: stepped out of position, changed their feet or arms 

starting position, and/or touched something for support. Subjects were asked to repeat failed 

trials only once in each set if they lost their balance before completing 25 seconds of the 35s 

trials. Subjects were guarded by a physical therapist during all exercises to prevent falling and 

wore a safety harness which was attached to an anchor point in the ceiling that does not let 

subject reach the ground in case of a fall incidence. There was a seated rest break for 1 minute 

after every 3 exercises to avoid fatigue.  

In addition, subjects rated the perceived difficulty of each exercise they performed using 

two different scales. The first scale was a modified rating of perceived difficulty scale based on 

rating of perceived exertion scales for aerobic and resistance exercises (Scale A) (Robertson et 
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al., 2004; Robertson et al., 2003) that ranges from 0 to 10, where 0 indicates that the exercise is 

extremely easy whereas 10 indicates that the exercise is extremely hard (Figure 5-1). The second 

scale was developed for this study and was anchored with colors and statements (Scale B) (Espy 

et al., 2015) (Figure 5-2). Scale B had 5 levels ranging from A to E, where A was anchored with 

the following statement; “I feel completely steady” and E was labeled as “I lost my balance”. In 

the statistical analysis, letters from scale B were transformed to numbers as follows; A = 1, B = 

2, C = 3, D = 4, and E = 5. 

Before starting the experiment, both scales were presented and explained to subjects that 

they needed to choose, after each exercise, a number from the 1st scale and a letter from the 2nd 

scale that indicated the difficulty of maintaining their balance during that exercise. During the 

experiment, the scales were placed on the side wall so that subjects could look at them after each 

exercise whenever needed. 

 

Figure 5-1: Scale A; Rating of perceived difficulty scale, based on OMNI rating of perceived exertion scale 

(Robertson et al., 2004; Robertson et al., 2003) 

 

Please choose from 0 to 10 corresponding to your perceived difficulty of each exercise: 
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Figure 5-2: Scale B; Rating of perceived difficulty scale, adapted from a poster from Cleveland State 

University (Espy et al., 2015) 

5.2.4 Outcome measures 

Demographic data: 

Demographic data including age, gender, weight, and height were summarized by descriptive 

statistics. Additionally, the average scores of the Functional Gait Assessment, Activities-specific 

Balance Confidence Scale (ABC) questionnaire, and gait speed for all groups were recorded. 

Sway measures:   

Sway measures were recorded during all trials for 35 seconds with the first five seconds of data 

collection removed in order to avoid the effect of the subject's initial establishment of balance 

(O'Sullivan et al., 2009; Rine et al., 2013). Summary measures of trunk sway were calculated 

from the 30 seconds time series. The data was low-pass filtered using a second order Butterworth 

filter with a cut-off frequency of 3 Hz (Dozza et al., 2005; Dozza, Horak, et al., 2007). During 

the analysis, each trial was plotted individually and inspected visually using MATLAB software 

to assure that there were no extraneous movements.  

 

Please choose from A to E corresponding to your perceived difficulty of each exercise: 

I feel completely steady A 

I feel a little unsteady or off-balance B 

I feel somewhat unsteady or like I may lose my balance C 

I feel very unsteady or like I definitely will lose my balance D 

I lost my balance E 
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The Root Mean Square (RMS) of the trunk angular displacement and velocity in the pitch 

and yaw directions, and linear acceleration in the AP and ML directions were calculated and 

used in the analysis to test the hypotheses. The RMS was calculated as follows:  

RMS =
√∑ (𝑎2𝑖)

𝑛

𝑖=0

𝑛

2

  

where a is instantaneous sway value with mean value subtracted, and n is an individual 

data sample, and N is the total number of samples. The mean value was subtracted before 

calculating the RMS. 

Additionally, the 90% range of the trunk angular displacement and velocity in the pitch 

and yaw directions, and linear acceleration in the AP and ML directions as well as the 

interquartile range (75th percentile – 25th percentile) of the trunk angular displacement and 

velocity in the pitch and yaw directions, and linear acceleration in the AP and ML directions 

were calculated. The 90% range of angular displacement is the difference between the 95th 

percentile value and the 5th percentile value. The interquartile range is the difference between the 

upper quartile (the 75th percentile value) and the lower quartile (the 25th percentile value). The 

previous two measures were collected to set ranges of normal limits of sway for different age 

groups so they can be used as a reference normative data when comparing patients’ data. 

Additionally, these values could be used for augmented sensory feedback devices to set the 

threshold when feedback can be provided. 

Due to technical problems with the force platform that we encountered during data 

collection causing a loss of high percentage of data (27% in middle-aged group’s data, 20% in 

old group’s data, and 13% in very old group’s data), the COP data were excluded from the final 

analysis to test the hypotheses.  
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5.2.5 Statistical Analyses 

Participants’ demographic characteristics were compared between groups using one-way 

ANOVA test for dependent variables that were continuous and normally distributed and post hoc 

comparisons were conducted to evaluate pairwise differences among the groups with the Sidak 

approach used to control for Type 1 error (Sidak, 1967). The Kruskal-Wallis test was used with 

dependent variables that were continuous but not normally distributed and Dunn's procedure 

(Olive Jean Dunn, 1964) was used for pairwise comparisons with a Bonferroni correction for 

multiple comparisons. 

Postural Sway: 

A Linear Mixed Model (LMM) was used to test the three hypotheses of the study. A 

linear mixed model was used to explore the main effects of five independent variables; age group 

and the four exercise conditions (types of stance, visual input, surface, and head movements) as 

well as to explore two-way interaction effects between age groups and surface types, visual 

inputs, stance types, and head movements on quantitative postural measures (RMS of trunk 

angular displacement and velocity in the pitch and roll directions, and trunk linear acceleration in 

the AP and ML acceleration). The linear mixed model contains fixed effects and random effects. 

In this study, fixed effects are age group, surface type, visual input, stance condition, and head 

movement, whereas the random effect is the subject. Due to the presence of missing data in this 

study, the decision was made to use a LMM as it allows us to evaluate the effects with the 

presence of having missing data. Additionally, a LMM allows inclusion of a random effect, 

subjects, and assumes that each subject has his/her own intercept value.  

The autoregressive order 1 (AR1) covariance structure was used, which assumes 

homogeneous variance and unequal covariance between observations on the same subject 
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(Littell, Pendergast, & Natarajan, 2000). Several different covariance structures were evaluated 

and the AR1 had the best model fit and best reflected the unadjusted means.  

The average value of all 4 trials of the dependent variables (2 trials per visit and 2 visits) 

were used because it was determined that there was no difference between trials or visits. A 

Sidak correction for multiple comparisons was used for post-hoc analysis of significant main 

effects related to age and head movement. Normality was tested using the Shapiro–Wilk test. 

The significance level was α = 0.05. 

Rating of Perceived Difficulty: 

For rating of perceived difficulty data, which was ordinal, the Kruskal-Wallis test was 

used for comparison of more than two independent samples (age groups) and Dunn's procedure 

was used for pairwise comparisons with a Bonferroni correction for multiple comparisons. The 

Friedman test was used for comparison of more than two dependent samples (head movement 

conditions) followed by Wilcoxon signed-rank tests for pairwise comparisons with a Bonferroni 

correction for multiple comparisons (O. J.  Dunn, 1961). The Wilcoxon signed-rank test was 

used for comparison of two dependent samples (surface conditions, visual inputs, stance 

conditions). The mean value of all 4 trials (2 trials per visit and 2 visits) of the rating of 

perceived difficulty from Scales A & B was used. 

Static Standing Balance Exercises Sequence: 

A hierarchical cluster analysis (HCA) was used to categorize the exercises into five clusters 

(very easy, easy, moderate, hard, and very hard) to help physical therapists to establish a 

scientific basis for exercise progression. The HCA was conducted using the pitch and roll tilt 

velocity measures because they were determined to have the greatest reliability, and both ratings 

of perceived difficulty scales.  
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 RESULTS 

5.3.1 Descriptive statistics: 

Of 72 people who underwent onsite screening, 62 participants completed the study and were 

assigned into four groups as shown in Table 5-3. The 10 subjects who dropped out had a mean 

age of 64 ± 14 years. Eight subjects were excluded because they did not pass the inclusion 

criteria (4 did not pass the cognitive test; 3 did not pass the monofilament test; 1 did not pass the 

roll test), 1 subject was excluded due to a behavioral issue, and 1 subject did not come back for 

follow up visits. The eligible 62 participants had a mean age of 55 ± 20 years. The mean values 

of gait speed for all age groups were within the normal range (Abellan et al., 2009; Hornyak et 

al., 2012; Lusardi et al., 2003), and within higher levels of physical functioning based on their 

scores on the Functional Gait Assessment (FGA) (Walker et al., 2007; Wrisley & Kumar, 2010) 

and the Activities-specific Balance Confidence (ABC) Scale (Huang & Wang, 2009; Myers et 

al., 1998; Powell & Myers, 1995).  

  



 128 

Table 5-3: Participants’ Demographic Characteristics 

 

A One-Way ANOVA was conducted to test the differences between the four age groups 

(Young, Middle aged, Old, Very old) on gait speed. There was a significant difference between 

groups on gait speed [F (3, 58) = 5.26, p = 0.003]. Post hoc comparisons indicated that the mean 

score of the young group (M = 1.38, SD = 0.2 m/s) and the middle-aged group (M = 1.39, SD = 

0.21 m/s) were significantly different from the very old group (M = 1.16, SD = 0.12 m/s). 

A Kruskal-Wallis test was conducted to evaluate differences among the four age groups 

(Young, Middle aged, Old, and Very old) on the Body Mass Index (BMI), Activities-specific 

Balance Confidence Scale (ABC) questionnaire, Functional Gait Assessment (FGA) and there 

was a significant difference between some of the groups on all these variables. The pairwise 

comparisons showed significant differences between the young group and the old group and the 

 

All participants 

(18-85) 

Young  

(18-44) 

Middle aged 

(45-59) 

Old  

(60-74) 

Very old  

(75-85) 

Total (n=62) Total (n=17) Total (n=15) Total (n=15) Total (n=15) 

Age, y, M ± SD 55 ± 20 28 ± 8 53 ± 4 67 ± 4 79 ± 3 

Gender, female, n (%) 31 (50) 9 (53) 8 (53) 7 (47) 7 (47) 

Body Mass Index, kg/m2, 

Median (Range) 

26.3 

(15.5-35.8) 

21.8 

(18.1-33.5) 

27.5 

(18.1-32.1) 

29.9 

(15.5-34.8) 

27.8 

(19.9-35.8) 

Monofilament, Median 

(Range) 

4.08 

(2.83-4.31) 

3.84 

(2.83-4.08) 

4.08 

(2.83-4.31) 

4.08 

(3.61-4.17) 

4.17 

(3.61-4.31) 

Montreal Cognitive 

Assessment, Median 

(Range) 

29 (26-30) 29 (26-30) 28 (26-30) 29 (26-30) 28 (26-30) 

The Activities-specific 

Balance Confidence (ABC) 

Scale, Median (Range) 

97 (81-100) 99 (89-100) 94 (83-100) 98 (81-100) 91 (88-99) 

Gait Speed, m/s, M ± SD 1.30 ± 0.20 1.38 ± 0.20 1.39 ± 0.21 1.26 ± 0.19 1.16 ± 0.12 

Functional Gait Assessment, 

Median (Range) 
28 (19-30) 29 (27-30) 29 (23-30) 28 (19-30) 24 (19-29) 
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very old group on BMI, the young group and the very old group on the ABC, and between the 

very old group and all the other groups (young, middle-aged, and old) on the FGA. 

Reviewing the rate of successfully completed exercises in each age group revealed that 

most subjects in the young group were able to complete all exercises with the exception of No. 

23 (foam surface, eyes closed, semi-tandem stance, and yaw head movement) with an 

incompletion rate of 14.7% (Table 5-4). The majority of the middle-aged group could complete 

all exercises except No. 23, and No. 24 (foam surface, eyes closed, semi-tandem stance, and 

pitch head movement) with incompletion rates of 66.7%, and 65% respectively. Subjects in the 

old group had more difficulty completing more exercises [17 (foam surface, eyes open, semi-

tandem stance, and yaw head movement), 18, 23, and 24] with higher incompletion rates (13.3 – 

73.3%). The number of exercises that subjects aged 75 through 85 years could not perform 

increased compared with other groups: [11 (firm surface, eyes closed, semi-tandem stance, and 

yaw head movement), 12 (firm surface, eyes closed, semi-tandem stance, and pitch head 

movement), 17, 18, 21 (foam surface, eyes closed, feet apart stance, and pitch head movement), 

22 (foam surface, eyes closed, semi-tandem stance, and head still), 23, and 24] with 

incompletion rate ranges between 11.7% - 96.7% (see Table 5-4). Due to the high incompletion 

rate of exercises 23 and 24, they were eliminated from the linear mixed model analysis.  
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Table 5-4: Incompletion rates of balance and vestibular exercises 

Exercise number 
Incompletion rate (%) 

Group 1 Group 2 Group 3 Group 4 

1 
    

2 
    

3 
    

4 
   

1.7 

5 
   

3.3 

6 
  

1.7 
 

7 
    

8 
 

1.7 
  

9 
    

10 
   

5.0 

11 
 

5.0 6.7 31.7 

12 
   

20.0 

13 
   

1.7 

14 
    

15 
   

6.7 

16 
   

1.7 

17 
 

6.7 13.3 46.7 

18 
 

10.0 21.7 51.7 

19 
    

20 
  

5.0 8.3 

21 
  

3.3 11.7 

22 
 

3.3 6.7 35.0 

23 14.7 66.7 73.3 96.7 

24 7.4 65.0 63.3 85.0 

5.3.2 Postural Sway 

The normality of postural sway measures scores was assessed by the Shapiro-Wilk's test (p > 

.05) and the assumption of normality was not rejected. Despite the presence of some outliers, as 

assessed by inspection of the boxplot, the outliers were examined individually and kept in the 

analysis because they seemed to represent actual values of human sway. The mean (SD) of the 

dependent variables for each of the fixed effects appears in Table 5-5. 
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All main effects of age groups, surface conditions, visual inputs, stance conditions, and 

head movements were statistically significant at the 0.05 significance level on all quantitative 

postural measures (see Table 5-6). 

Table 5-5: Mean (SD) scores of the dependent variables in each level of the independent variables 

Variables Level 

RMS of pitch 
displacement 

(degree) 

RMS of roll 
displacement 

(degree) 

RMS of pitch 
velocity 

(deg/sec) 

RMS of  
roll velocity 
(deg/sec) 

RMS of AP 
acceleration 

(m/sec2) 

RMS of ML 
acceleration 

(m/sec2) 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Age 
groups 

1 0.62 0.24 0.36 0.21 1.41 1.02 0.80 0.54 0.12 0.05 0.08 0.04 

2 0.63 0.29 0.38 0.30 1.44 1.01 0.85 0.70 0.12 0.06 0.09 0.06 

3 0.72 0.39 0.41 0.32 1.58 1.19 0.95 0.78 0.14 0.07 0.10 0.07 

4 0.87 0.49 0.48 0.34 1.76 1.11 1.07 0.83 0.17 0.08 0.12 0.07 

Surface 
Firm 0.56 0.24 0.31 0.21 1.35 1.02 0.71 0.55 0.11 0.05 0.08 0.05 

Foam 0.89 0.42 0.52 0.34 1.78 1.13 1.15 0.83 0.17 0.08 0.12 0.07 

Vision 
EO 0.68 0.34 0.43 0.32 1.48 1.03 0.95 0.77 0.13 0.06 0.10 0.07 

EC 0.84 0.41 0.48 0.27 1.85 1.15 1.10 0.66 0.17 0.08 0.12 0.06 

Stance 
FA 0.66 0.35 0.25 0.14 1.43 1.09 0.63 0.48 0.13 0.07 0.06 0.04 

ST 0.77 0.40 0.60 0.32 1.68 1.08 1.26 0.82 0.15 0.07 0.14 0.07 

Head 

HS 0.60 0.34 0.37 0.28 0.88 0.62 0.62 0.59 0.11 0.06 0.08 0.06 

Yaw 0.70 0.37 0.44 0.32 1.31 0.68 1.28 0.79 0.13 0.07 0.12 0.07 

Pitch 0.83 0.37 0.41 0.30 2.55 1.12 0.88 0.62 0.17 0.07 0.09 0.06 

EO: eyes open; EC: eyes closed; FA: feet apart; ST: semi-tandem; HS: head still. 

 
Table 5-6: Main effects of age group and exercise conditions 

 

RMS of pitch 
displacement 

RMS of roll 
displacement 

RMS of pitch 
velocity 

RMS of roll 
velocity 

RMS of AP 
acceleration 

RMS of ML 
acceleration 

Source F Sig. F Sig. F Sig. F Sig. F Sig. F Sig. 

Age group 9.96 < 0.01 7.46 < 0.01 3.64 0.02 5.36 < 0.01 13.15 < 0.01 19.35 < 0.01 

Surface 619.90 < 0.01 529.44 < 0.01 386.15 < 0.01 458.41 < 0.01 780.22 < 0.01 750.12 < 0.01 

Vision 111.36 < 0.01 16.85 < 0.01 134.17 < 0.01 33.33 < 0.01 192.46 < 0.01 66.51 < 0.01 

Stance 208.74 < 0.01 1912.35 < 0.01 196.95 < 0.01 996.81 < 0.01 229.78 < 0.01 2365.86 < 0.01 

Head 238.86 < 0.01 134.44 < 0.01 979.43 < 0.01 464.32 < 0.01 510.75 < 0.01 531.38 < 0.01 

 

The main effect of age was statistically significant on all quantitative postural measures 

(Figure 5-3). Post hoc analyses using the Sidak post hoc criterion for significance indicated that 
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the very old group had higher sway than the young group on all quantitative postural measures; 

the very old group had higher sway than the middle-aged group on five quantitative postural 

measures (RMS of trunk angular displacement in the pitch and roll directions, velocity in roll 

direction, and trunk linear acceleration in the AP and ML acceleration); the very old group had 

higher sway than the old group on RMS of trunk linear ML acceleration; and the old group had 

higher sway than the young group on RMS of trunk linear ML acceleration (see Figure 5-3). 

 

Figure 5-3: Mean scores of RMS trunk displacement, velocity, acceleration in pitch and roll directions in 

young, middle-aged, old, and very old groups. Error bars represent population standard deviation. * p < 0.05 

difference between pairs.  
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(Figure 5-4). The main effect of visual inputs on all quantitative postural measures was 

statistically significant where standing with eyes closed produced higher sway than standing with 

eyes open (Figure 5-5). The main effect of stance conditions on all quantitative postural 

measures was statistically significant indicating that standing in semi-tandem stance generated 

greater sway than standing with feet apart (Figure 5-6). 

The main effect of head movements on all quantitative postural measures was statistically 

significant. Post hoc analyses using the Sidak approach for significance indicated that all 

quantitative postural measures were significantly lower during head still condition compared to 

yaw and pitch conditions; the yaw head movement was significantly greater than pitch 

movement on all sway measures in the ML direction, and the pitch head movement was 

significantly greater than yaw movement on all sway measures in the AP direction (Figure 5-7).  
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Figure 5-4: Mean scores of RMS trunk displacement, velocity, acceleration in pitch and roll directions during 

firm and foam conditions. Error bars represent population standard deviation. * p < 0.05 difference between 

pairs. 
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Figure 5-5: Mean scores of RMS trunk displacement, velocity, acceleration in pitch and roll directions during 

eyes open and eyes closed conditions. Error bars represent population standard deviation. * p < 0.05 

difference between pairs. 
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Figure 5-6: Mean scores of RMS trunk displacement, velocity, acceleration in pitch and roll directions during 

feet apart and semi tandem stance conditions. Error bars represent population standard deviation. * p < 0.05 

difference between pairs. 
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Figure 5-7: Mean scores of RMS trunk displacement, velocity, acceleration in pitch and roll directions during 

head still, yaw, and pitch movements. Error bars represent population standard deviation. * p < 0.05 

difference between pairs. 
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Table 5-7: Interaction effects between age groups and exercise conditions in sway measures 

 

RMS of pitch 
displacement 

RMS of roll 
displacement 

RMS of pitch 
velocity 

RMS of roll 
velocity 

RMS of AP 
acceleration 

RMS of ML 
acceleration 

Source F Sig. F Sig. F Sig. F Sig. F Sig. F Sig. 

Group * 
Surface 

20.26 < 0.01 8.35 < 0.01 15.74 < 0.01 5.65 < 0.01 20.52 < 0.01 10.99 < 0.01 

Group * 
Vision 

2.57 0.05 0.83 0.48 2.16 0.09 0.54 0.65 2.11 0.10 1.32 0.27 

Group * 
Stance 

15.66 < 0.01 13.80 < 0.01 15.05 < 0.01 18.62 < 0.01 10.07 < 0.01 18.17 < 0.01 

Group * 
Head 

4.77 < 0.01 2.32 0.03 6.33 < 0.01 2.93 0.01 6.39 < 0.01 12.29 < 0.01 

 

There was a significant interaction between age group and surface type in all sway 

parameters. The RMS pitch velocity will be used to illustrate these interactions. There was not a 

significant difference between groups while standing on the firm surface. While on the foam 

surface, sway increased significantly in all groups (p < 0.05), and increased by a larger amount 

as age increased, such that the very old group differed from the young and middle-age groups 

(Figure 5-8). Similarly, there was not a difference between groups standing with feet apart, but 

semi-tandem stance increased RMS pitch velocity in all groups (p < 0.05), and to a greater extent 

in the older groups, resulting in significant difference between the very old and the young and 

middle-age groups (Figure 5-9). In the same way, moving the head in the yaw or pitch direction 

increased sway among age groups, compared to keeping head still. The amount of the increase 

varied between the groups. The pitch velocity showed significant differences between young and 

very old during exercises with head still, and between the very old and all other groups during 

exercises with yaw head movement. However, during exercises with pitch movement, no 

significant differences between age groups were found (Figure 5-10). 
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Figure 5-8: Interaction effect between surface type and age group in the RMS of pitch velocity (mean, SD). * 

p < 0.05 difference between pairs. 

 

Figure 5-9: Interaction effect between stance condition and age group in the RMS of pitch velocity (mean, 

SD). * p < 0.05 difference between pairs. 
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Figure 5-10: Interaction effect between head movements and age group in the RMS of pitch velocity (mean, 

SD). * p < 0.05 difference between pairs. 
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compared with firm, eyes closed versus eyes open, and semi-tandem stance related to feet apart 

(see Figures 5-12, 5-13, 5-14). 

The Friedman test was used for comparison among the three head movements (head still, 

yaw, pitch) on the rating of perceived difficulty Scales A and B, and revealed that mean scores of 

Scales A and B were significantly different between the different types of head movement 

(H=93.34, p < 0.001) (H=93.98, p < 0.001) respectively. The post hoc analysis revealed 

statistically significant differences on Scales A and B between the head still and yaw head 

movements, and head still and pitch head movements, but not between the yaw and pitch head 

movements (see Figure 5-15). 

Table 5-8: Mean scores of the dependent variables (Scales A and B) in each level of the independent variables 

Independent variables Level 
Scale A 
(0-10) 

Scale B 
(1-5) 

Mean SD Mean SD 

Age group 

Young 2.43 0.86 1.61 0.26 

Middle-aged 3.31 1.05 2.02 0.32 

Old 3.80 0.97 2.25 0.31 

Very old 4.98 1.25 2.63 0.51 

Surface 
Firm  2.32 1.32 1.58 0.46 

Foam 4.87 1.54 2.64 0.62 

Vision 
Eyes open  2.96 1.35 1.84 0.50 

Eyes closed 4.22 1.45 2.37 0.56 

Stance 
Feet apart  2.05 1.20 1.48 0.39 

Semi-tandem 5.13 1.73 2.74 0.69 

Head 

Head still 2.68 1.34 1.75 0.46 

Yaw 4.07 1.45 2.31 0.55 

Pitch 4.02 1.45 2.27 0.58 
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Figure 5-11: Differences among the age groups (Young, Middle-aged, Old, Very old) on mean change of 

rating of perceived difficulty Scale A and B. Error bars represent population standard deviation. * p < 0.05 

difference between pairs. 
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Figure 5-12: Differences between the two types of surface (firm and foam surfaces) on mean of rating of 

perceived difficulty Scale A and B. Error bars represent population standard deviation. * p < 0.05 difference 

between pairs. 
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Figure 5-13: Differences between the two types of visual input (eyes open and eyes closed) on mean of rating 

of perceived difficulty Scale A and B. Error bars represent population standard deviation. * p < 0.05 

difference between pairs. 
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Figure 5-14: Differences between the two types of stance (feet apart and semi-tandem) on mean of rating of 

perceived difficulty Scale A and B. Error bars represent population standard deviation. * p < 0.05 difference 

between pairs. 
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Figure 5-15: Differences among the three head movements (head still, yaw, pitch) on mean of rating of 

perceived difficulty Scale A and B. Error bars represent population standard deviation. * p < 0.05 difference 

between pairs. 
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perceived difficulty scales orders were weighted more toward foam surface, semi-tandem stance, 

and any type of head movement. 

Table 5-9: Exercise sequences based on average of trunk angular velocity measures in pitch and roll 

directions 

Exe
rcise n

u
m

b
er 

Su
rface 

V
isu

al in
p

u
t 

Stan
ce 

H
ead

 
m

o
vem

en
t 

R
M

S p
itch

 

velo
city 

 

Exe
rcise N

u
m

b
er 

Su
rface 

V
isu

al in
p

u
t 

Stan
ce 

H
ead

 m
o

vem
en

t 

R
M

S ro
ll 

velo
city 

1 Firm EO FA Head still 0.45  1 Firm EO FA Head still 0.17 

7 Firm EC FA Head still 0.52  7 Firm EC FA Head still 0.19 

13 Foam EO FA Head still 0.67  13 Foam EO FA Head still 0.37 

4 Firm EO ST Head still 0.70  3 Firm EO FA Pitch 0.37 

2 Firm EO FA Yaw 0.71  9 Firm EC FA Pitch 0.45 

10 Firm EC ST Head still 0.86  4 Firm EO ST Head still 0.46 

8 Firm EC FA Yaw 0.90  19 Foam EC FA Head still 0.46 

19 Foam EC FA Head still 0.92  10 Firm EC ST Head still 0.58 

16 Foam EO ST Head still 1.13  15 Foam EO FA Pitch 0.66 

5 Firm EO ST Yaw 1.15  2 Firm EO FA Yaw 0.74 

14 Foam EO FA Yaw 1.20  21 Foam EC FA Pitch 0.82 

11 Firm EC ST Yaw 1.51  6 Firm EO ST Pitch 0.88 

20 Foam EC FA Yaw 1.74  14 Foam EO FA Yaw 0.99 

22 Foam EC ST Head still 1.79  8 Firm EC FA Yaw 1.06 

17 Foam EO ST Yaw 1.98  5 Firm EO ST Yaw 1.10 

3 Firm EO FA Pitch 2.03  12 Firm EC ST Pitch 1.10 

6 Firm EO ST Pitch 2.18  16 Foam EO ST Head still 1.11 

15 Foam EO FA Pitch 2.48  20 Foam EC FA Yaw 1.31 

9 Firm EC FA Pitch 2.50  11 Firm EC ST Yaw 1.49 

23 Foam EC ST Yaw 2.62  22 Foam EC ST Head still 1.68 

12 Firm EC ST Pitch 2.67  18 Foam EO ST Pitch 1.97 

18 Foam EO ST Pitch 2.93  17 Foam EO ST Yaw 2.37 

21 Foam EC FA Pitch 3.08  24 Foam EC ST Pitch 2.98 

24 Foam EC ST Pitch 3.68  23 Foam EC ST Yaw 3.53 

EO: eyes open; EC: eyes closed; FA: feet apart; ST: semi-tandem; RMS: Root Mean Square.  
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Table 5-10: Exercise sequences based on rating of perceived difficulty Scales A and B 

Exe
rcise n

u
m

b
e

r 

Su
rface 

V
isu

al in
p

u
t 

Stan
ce 

H
ead

 
m

o
vem

en
t 

Scale A
 

 

Exe
rcise N

u
m

b
er 

Su
rface 

V
isu

al in
p

u
t 

Stan
ce 

H
ead

 m
o

vem
en

t 

Scale B
 

1 Firm EO FA Head still 0.44  1 Firm EO FA Head still 1.04 

7 Firm EC FA Head still 0.82  7 Firm EC FA Head still 1.08 

2 Firm EO FA Yaw 1.04  2 Firm EO FA Yaw 1.08 

3 Firm EO FA Pitch 1.05  3 Firm EO FA Pitch 1.12 

8 Firm EC FA Yaw 1.39  8 Firm EC FA Yaw 1.16 

9 Firm EC FA Pitch 1.56  9 Firm EC FA Pitch 1.19 

13 Foam EO FA Head still 1.80  13 Foam EO FA Head still 1.40 

4 Firm EO ST Head still 2.30  4 Firm EO ST Head still 1.58 

19 Foam EC FA Head still 2.62  14 Foam EO FA Yaw 1.67 

14 Foam EO FA Yaw 2.66  19 Foam EC FA Head still 1.72 

15 Foam EO FA Pitch 2.95  15 Foam EO FA Pitch 1.78 

10 Firm EC ST Head still 3.11  10 Firm EC ST Head still 1.85 

6 Firm EO ST Pitch 3.22  6 Firm EO ST Pitch 1.89 

5 Firm EO ST Yaw 3.42  5 Firm EO ST Yaw 1.94 

20 Foam EC FA Yaw 3.96  20 Foam EC FA Yaw 2.17 

16 Foam EO ST Head still 4.12  16 Foam EO ST Head still 2.21 

21 Foam EC FA Pitch 4.32  21 Foam EC FA Pitch 2.36 

12 Firm EC ST Pitch 4.50  12 Firm EC ST Pitch 2.37 

11 Firm EC ST Yaw 4.92  11 Firm EC ST Yaw 2.68 

18 Foam EO ST Pitch 6.17  22 Foam EC ST Head still 3.10 

22 Foam EC ST Head still 6.27  18 Foam EO ST Pitch 3.13 

17 Foam EO ST Yaw 6.38  17 Foam EO ST Yaw 3.29 

24 Foam EC ST Pitch 8.38  24 Foam EC ST Pitch 4.30 

23 Foam EC ST Yaw 8.74  23 Foam EC ST Yaw 4.50 

EO: eyes open; EC: eyes closed; FA: feet apart; ST: semi-tandem. 

A hierarchical cluster analysis (HCA) was performed to categorize the exercises across 

all age groups into five clusters based on RMS tilt velocity or rating of perceived difficulty to 

help physical therapists to establish a scientific basis for exercise progression. For the sway 

measures, exercises 23 and 24 were excluded from the cluster analysis for the postural sway 
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measures because of the high percentage of missing data due to their difficulty and were 

categorized into the highest category. All other exercises (1-22) were classified into the other 

four clusters (see Table 5-11).  

Table 5-11: Exercise clusters based on rating scores and trunk angular velocity measures in pitch and roll 

directions 

Exercise 
number 

Surface 
Visual 
input 

Base of 
support 

Head 
movement 

Scale A 
(cluster) 

Scale B 
(cluster) 

RMS 
pitch 

velocity 
(cluster) 

RMS roll 
velocity 
(cluster) 

1 Firm EO FA Head still 0.44 (1) 1.04 (1) 0.45 (1) 0.17 (1) 

7 Firm EC FA Head still 0.82 (1) 1.08 (1) 0.52 (1) 0.19 (1) 

2 Firm EO FA Yaw 1.04 (1) 1.08 (1) 0.71 (1) 0.74 (2) 

3 Firm EO FA Pitch 1.05 (1) 1.12 (1) 2.03 (3) 0.37 (1) 

8 Firm EC FA Yaw 1.39 (1) 1.16 (1) 0.90 (2) 1.06 (3) 

9 Firm EC FA Pitch 1.56 (1) 1.19 (1) 2.50 (4) 0.45 (1) 

13 Foam EO FA Head still 1.80 (1) 1.40 (2) 0.67 (1) 0.37 (1) 

4 Firm EO ST Head still 2.30 (2) 1.58 (2) 0.70 (1) 0.46 (1) 

19 Foam EC FA Head still 2.62 (2) 1.72 (2) 0.93 (2) 0.46 (1) 

14 Foam EO FA Yaw 2.66 (2) 1.67 (2) 1.20 (2) 0.99 (3) 

15 Foam EO FA Pitch 2.95 (2) 1.78 (2) 2.48 (4) 0.66 (2) 

10 Firm EC ST Head still 3.11 (2) 1.85 (2) 0.86 (2) 0.58 (2) 

6 Firm EO ST Pitch 3.22 (2) 1.89 (2) 2.18 (3) 0.88 (2) 

5 Firm EO ST Yaw 3.42 (2) 1.94 (2) 1.15 (2) 1.10 (3) 

20 Foam EC FA Yaw 3.96 (3) 2.17 (3) 1.74 (3) 1.31 (3) 

16 Foam EO ST Head still 4.12 (3) 2.21 (3) 1.13 (2) 1.11 (3) 

21 Foam EC FA Pitch 4.32 (3) 2.36 (3) 3.08 (4) 0.82 (2) 

12 Firm EC ST Pitch 4.50 (3) 2.37 (3) 2.67 (4) 1.11 (3) 

11 Firm EC ST Yaw 4.92 (3) 2.68 (3) 1.51 (3) 1.49 (3) 

18 Foam EO ST Pitch 6.17 (4) 3.13 (4) 2.93 (4) 1.97 (4) 

22 Foam EO ST Head still 6.27 (4) 3.10 (4) 1.79 (3) 1.68 (4) 

17 Foam EC ST Yaw 6.38 (4) 3.29 (4) 1.98 (3) 2.37 (4) 

24 Foam EC ST Pitch 8.38 (5) 4.30 (5) 3.68 (5) 2.98 (5) 

23 Foam EC ST Yaw 8.74 (5) 4.50 (5) 2.62 (5) 3.53 (5) 

 
Cluster 1 

 
Cluster 2 

 
Cluster 3 

 
Cluster 4 

 
Cluster 5 

EO: eyes open; EC: eyes closed; FA: feet apart; ST: semi-tandem; RMS: Root Mean Square. 
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The clusters for the rating of perceived difficulty scales were similar. For RMS pitch 

velocity, exercises with head pitch movements were concentrated into cluster 4. Meanwhile the 

RMS roll velocity cluster reflected the rating of perceived difficulty scales, although some yaw 

head movement exercises were placed into more difficult clusters. 

A hierarchical cluster analysis was performed to categorize the exercises for each age 

group into five categories based on rating of perceived difficulty scores and postural sway 

measures (RMS of trunk tilt velocity in pitch and roll directions). Exercises number 23 and 24 

were excluded from the cluster analysis for the middle-aged, old, very old groups for the postural 

sway measures section because of the high percentage of missing data due to their difficulty and 

were categorized into the most difficult category. All other exercises (1-22) were divided into the 

other four clusters (see table 5-12). 
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Table 5-12: Exercises categories for age groups based on trunk angular velocity measures 

 RMS pitch velocity  RMS roll velocity 

Exercise 
number 

Young 
Middle-

aged 
Old Very old 

Exercise 
number Young 

Middle-
aged 

Old 
Very 
old 

1 0.50 (1) 0.34 (1) 0.45 (1) 0.52 (1) 7 0.21 (1) 0.14 (1) 0.15 (1) 0.24 (1) 

7 0.50 (1) 0.42 (1) 0.46 (1) 0.71 (1) 1 0.21 (1) 0.14 (1) 0.16 (1) 0.19 (1) 

13 0.62 (1) 0.53 (1) 0.65 (1) 0.87 (1) 13 0.35 (1) 0.30 (1) 0.33 (1) 0.48 (1) 

4 0.66 (1) 0.58 (1) 0.64 (1) 0.94 (1) 19 0.40 (1) 0.45 (1) 0.40 (1) 0.59 (1) 

2 0.68 (1) 0.61 (1) 0.72 (1) 0.83 (1) 4 0.42 (1) 0.37 (1) 0.42 (1) 0.64 (1) 

10 0.74 (1) 0.76 (2) 0.77 (1) 1.18 (1) 3 0.44 (1) 0.34 (1) 0.35 (1) 0.35 (1) 

19 0.78 (1) 0.87 (2) 0.85 (1) 1.23 (1) 10 0.51 (1) 0.50 (1) 0.55 (1) 0.79 (1) 

8 0.82 (1) 0.76 (2) 0.87 (1) 1.16 (1) 9 0.54 (1) 0.43 (1) 0.39 (1) 0.42 (1) 

16 0.90 (1) 0.93 (2) 1.18 (2) 1.56 (2) 15 0.62 (1) 0.57 (1) 0.65 (1) 0.81 (1) 

5 0.99 (1) 0.97 (2) 1.09 (2) 1.58 (2) 6 0.72 (2) 0.78 (2) 0.90 (2) 1.13 (2) 

14 1.01 (1) 1.06 (2) 1.18 (2) 1.59 (2) 21 0.74 (2) 0.78 (2) 0.80 (2) 0.97 (2) 

11 1.20 (2) 1.51 (3) 1.52 (2) 1.93 (2) 2 0.78 (2) 0.63 (1) 0.83 (2) 0.73 (1) 

22 1.22 (2) 1.63 (3) 2.03 (3) 2.50 (3) 16 0.89 (2) 0.91 (2) 1.14 (2) 1.53 (2) 

20 1.30 (2) 1.74 (3) 1.64 (2) 2.34 (3) 12 0.91 (2) 1.03 (2) 1.17 (2) 1.36 (2) 

17 1.48 (2) 1.84 (3) 2.00 (3) 2.85 14 0.94 (2) 0.83 (2) 1.03 (2) 1.18 (2) 

6 2.06 (3) 2.10 (3) 2.20 (3) 2.37 (3) 5 0.95 (2) 0.92 (2) 1.12 (2) 1.43 (2) 

3 2.26 (3) 1.97 (3) 2.16 (3) 1.71 (2) 20 1.09 (3) 1.21 (3) 1.49 (3) 1.46 (2) 

18 2.43 (3) 2.90 (4) 3.32 (4) 3.24 (4) 8 1.10 (3) 0.88 (2) 1.19 (2) 1.06 (2) 

12 2.55 (3) 2.48 (4) 2.89 (3) 2.80 (4) 11 1.14 (3) 1.45 (3) 1.51 (3) 1.96 (3) 

15 2.68 (4) 2.25 (3) 2.56 (3) 2.42 (3) 22 1.28 (3) 1.68 (3) 1.87 (4) 1.99 (3) 

21 2.84 (4) 2.87 (4) 3.30 (4) 3.33 (4) 18 1.60 (4) 2.08 (4) 2.12 (4) 2.19 (3) 

9 2.91 (4) 2.54 (4) 2.44 (3) 2.04 (2) 17 1.84 (4) 2.28 (4) 2.46 (4) 3.12 (4) 

23 2.49 (5) 2.63 (5) 2.96 (5) 1.74 (5) 24 2.92 (5) 3.38 (5) 3.02 (5) 1.90 (5) 

24 3.22 (5) 3.69 (5) 4.46 (5) 3.38 (5) 23 3.69 (5) 3.26 (5) 3.63 (5) 2.62 (5) 

 
Cluster 1 

 
Cluster 2 

 
Cluster 3 

 
Cluster 4 

 
Cluster 5 

RMS: Root Mean Square.  

 For RMS pitch velocity, more exercises were in cluster 1 for the young group and for the 

middle-aged group, there were less exercises were in cluster 1. Overall, the order of the exercise 

difficulty was not the same between groups. With respect to RMS roll velocity, the clusters of 

exercise difficulty were relatively similar between groups.  
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Table 5-13: Exercises categories for age groups based on rating of perceived difficulty scales 

Exercise 
number 

Rating of perceived difficulty (Scale A) Rating of perceived difficulty (Scale B) 

Young 
Middle-

aged 
Old Very old Young 

Middle-
aged 

Old Very old 

1 0.12 (1) 0.17 (1) 0.60 (1) 0.90 (1) 1.01 (1) 1.00 (1) 1.03 (1) 1.10 (1) 

7 0.47 (1) 0.57 (1) 0.75 (1) 1.53 (1) 1.01 (1) 1.00 (1) 1.03 (1) 1.30 (1) 

2 0.74 (1) 0.77 (1) 1.00 (1) 1.72 (1) 1.01 (1) 1.02 (1) 1.07 (1) 1.25 (1) 

3 0.81 (1) 0.72 (1) 1.20 (1) 1.52 (1) 1.03 (1) 1.07 (1) 1.10 (1) 1.29 (1) 

8 1.15 (1) 1.08 (1) 1.23 (1) 2.14 (1) 1.09 (1) 1.03 (1) 1.08 (1) 1.44 (1) 

9 1.25 (1) 1.27 (1) 1.35 (1) 2.42 (1) 1.10 (1) 1.08 (1) 1.05 (1) 1.52 (1) 

13 1.03 (1) 1.20 (1) 1.98 (2) 3.11 (1) 1.10 (1) 1.23 (2) 1.55 (2) 1.74 (1) 

4 1.21 (1) 1.77 (2) 2.40 (2) 3.98 (2) 1.19 (2) 1.37 (2) 1.78 (2) 2.03 (2) 

19 1.60 (2) 2.32 (2) 2.60 (2) 4.08 (2) 1.25 (2) 1.65 (2) 1.85 (2) 2.18 (2) 

14 1.62 (2) 2.12 (2) 2.90 (2) 4.13 (2) 1.19 (2) 1.50 (2) 1.97 (2) 2.10 (2) 

10 1.81 (2) 2.72 (2) 3.33 (2) 4.75 (2) 1.32 (2) 1.65 (2) 2.02 (2) 2.49 (2) 

15 1.93 (2) 2.38 (2) 3.18 (2) 4.46 (2) 1.26 (2) 1.62 (2) 2.00 (2) 2.33 (2) 

6 1.68 (2) 2.52 (2) 3.82 (2) 5.09 (2) 1.21 (2) 1.63 (2) 2.17 (3) 2.63 (3) 

5 1.99 (2) 2.68 (2) 3.60 (2) 5.62 (3) 1.35 (2) 1.70 (2) 2.00 (2) 2.78 (3) 

20 2.57 (3) 3.80 (3) 3.78 (2) 5.87 (3) 1.49 (3) 2.12 (3) 2.29 (3) 2.88 (3) 

16 2.46 (3) 3.87 (3) 4.50 (3) 5.89 (3) 1.51 (3) 2.18 (3) 2.50 (3) 2.72 (3) 

21 2.88 (3) 4.00 (3) 4.62 (3) 5.98 (3) 1.69 (3) 2.30 (3) 2.47 (3) 3.06 (3) 

12 2.90 (3) 4.08 (3) 4.58 (3) 6.66 (4) 1.63 (3) 2.15 (3) 2.55 (3) 3.23 (3) 

11 3.01 (3) 4.64 (3) 5.09 (3) 7.19 (4) 1.76 (3) 2.57 (3) 2.83 (3) 3.68 (4) 

18 4.06 (4) 6.27 (4) 7.04 (4) 7.60 (4) 2.19 (4) 3.05 (4) 3.53 (4) 3.88 (4) 

22 4.21 (4) 6.43 (4) 6.97 (4) 7.74 (4) 2.21 (4) 3.12 (4) 3.45 (4) 3.74 (4) 

17 4.25 (4) 6.27 (4) 7.04 (4) 8.25 (4) 2.28 (4) 3.23 (4) 3.63 (4) 4.15 (4) 

24 6.88 (5) 8.68 (5) 8.67 (5) 9.49 (5) 3.67 (5) 4.44 (5) 4.48 (5) 4.71 (5) 

23 7.61 (5) 9.01 (5) 9.00 (5) 9.51 (5) 3.95 (5) 4.65 (5) 4.59 (5) 4.88 (5) 

 
Cluster 1 

 
Cluster 2 

 
Cluster 3 

 
Cluster 4 

 
Cluster 5 

 

 The clusters for the rating of perceived difficulty scales for age groups were relatively 

similar between groups in both scales A and B.  
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 DISCUSSION 

The present study was designed to determine the effect of age and exercise conditions (surface 

type, visual input, stance type, and head movement) on quantitative postural measures and 

ratings of perceived difficulty. The results of this study showed age-related postural sway 

changes which were evident by increases in the quantitative postural measures as age increased, 

consistent with other research (Abrahamova & Hlavacka, 2008; Baloh et al., 1998; Era et al., 

2006; Gill et al., 2001; Liaw et al., 2009; Rosenhall & Rubin, 1975; Sheldon, 1963). While all 

sway measures were significantly different between the youngest group (18-44 y/o) and the very 

old group (75-85 y/o), differences between consecutive pairs of age groups were found less 

frequently. In particular, the lack of significant differences among the youngest three groups is in 

contrast with findings of previous research, (Abrahamova & Hlavacka, 2008; Era et al., 2006; 

Gill et al., 2001; Liaw et al., 2009) which found differences among younger adult groups. One 

possible explanation for these results may be due to the amount and type of chosen balance tests 

included in this study.  

Many more exercises, of varying difficulties, could have resulted in increased variance, 

making it more difficult to find between group differences. In this study, the sway data were 

combined and analyzed for 24 balance tests, whereas in most of other studies, age groups were 

compared for individual tests (Abrahamova & Hlavacka, 2008; Era et al., 2006; Gill et al., 2001; 

Liaw et al., 2009). The results reported by Era et al. showed a significant difference between 

young and middle-aged groups when comparing the amount of sway during standing on firm 

surface with eyes open and feet apart, standing on firm surface with eyes closed and feet apart, 

and standing on firm surface with eyes open and semi-tandem stance. Similarly, Abrahamova et 

al. found a significant difference between young and middle-aged groups on the amount of sway 
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when subjects stood on firm and foam surfaces with eyes open. In this study we analyzed a 

subsample of similar exercises included in this study (1, 4, 7, and 13), and we found only one 

significant difference between the young and middle-aged groups when they performed exercise 

No. 1 (standing on firm surface with eyes open, feet apart, and head still) in the angular velocity 

in pitch direction.  

 The results of rating of perceived difficulty agree with the findings of sway measures, in 

which the rating of perceived difficulty increased as age increased from the youngest to the 

oldest age group. Furthermore, the observed mean scores of the ratings of perceived difficulty of 

Scale A and B were significantly different between more groups, compared to the sway 

parameters, which indicates that different age groups perceived the difficulty of balance 

exercises differently although the sway measures were not significantly different between some 

of the groups. The discrepancy between sway parameters and rating of perceived difficulty scales 

in demonstrating differences among the different age groups may indicate that subjects are 

considering other factors besides their sway output to rate their difficulty. These factors may 

include strain, discomfort and/or fatigue, and negative emotional factors that are experienced 

during performance of balance exercises (Borg, 1982; Noble & Robertson, 1996). 

The results confirmed the hypothesis that the main experimental conditions (surface type, 

visual input, stance condition, and head movement) would increase sway measures and rating of 

perceived difficulty. The present findings are consistent with other research which found an 

increase in body sway with alteration of sensory information through decreasing proprioception 

information by standing on foam (Abrahamova & Hlavacka, 2008; Cohen et al., 1996; Gill et al., 

2001), lack of visual information by closing eyes (Abrahamova & Hlavacka, 2008; Cohen et al., 
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1996; Era et al., 2006; Gill et al., 2001; Hytonen, Pyykko, Aalto, & Starck, 1993), and narrowing 

the base of the support by standing in semi-tandem stance (Era et al., 2006).  

Although yaw and pitch head movements were different in all sway measures, yaw head 

movement produced higher sway values in the measures of the mediolateral direction compared 

with the anteroposterior direction. In contrast, pitch head movements generated higher sway 

values in the pitch and anteroposterior direction compared with roll plane and mediolateral 

direction. However, participants across all age groups didn’t perceive the difficulty of these two 

conditions differently. This discrepancy between the findings of the quantitative postural 

measures and rating of perceived difficulty may be due to the fact that we compared how the 

subjects globally perceived the difficulty of exercises, while the sway measures were collected in 

single planes separately. It is possible that the combined resultant of the sway measures in the 

AP and ML directions may not have produced a difference between the trials with different head 

movements. 

In addition, the main experimental factors (surface type, visual input, stance condition, 

and head movement) increased the rating of perceived difficulty and is consistent with the results 

of the sway measures analysis. Ratings of Scale A and B were significantly higher when 

decreasing proprioception information by standing on foam, lack of visual information by 

closing eyes, narrowing base of support by standing in semi-tandem stance, and altering 

vestibular function through head movements.  

There was an interaction between age and exercise condition on quantitative postural 

measures, except for the interaction between age and visual inputs. The very old group had 

greater increases in sway compared with the other groups as the conditions become more 

difficult with standing on foam, narrowing base of support, and moving the head. This age effect 



 156 

should be accounted for when designing and progressing exercise programs. These results show 

the importance of assessing these conditions (foam, semi-tandem, and yaw and pitch head 

movements) in studies aiming to explore the effect of age on balance or in balance training 

programs aiming to increase the challenge level of the exercises. In contrast, closing eyes didn’t 

seem to distinguish between groups compared to eyes open.  

Trunk angular velocity parameters and ratings of perceived difficulty of 24 static standing 

balance exercises were analyzed to establish a scientific basis for exercise progression that can 

be used in balance rehabilitation programs. One of the sequences was developed based on the 

ratings of perceived difficulty Scales A and B, which were overall similar to each other. On the 

contrary, the sequences based on tilt velocities were different. A few exercises, like exercise No. 

1, 7, and 13 resulted in less sway velocity in both pitch and roll directions and were ranked at the 

same levels in the two sequences, whereas, other exercises resulted in less sway velocity in the 

yaw direction but high sway velocity in the pitch direction. For instance, exercise 16 produced 

less sway velocity in the pitch direction compared with the yaw direction; as a result, it was 

ranked in a lower cluster of difficulty in the sequence based on pitch velocity whereas it was 

ranked in a higher cluster of difficulty in the sequence based on roll velocity. 

In comparison of sequences developed based on sway measures and ratings of perceived 

difficulty, all six exercises that were ranked higher on the sequence based on the trunk angular 

velocity in the pitch direction compared to the rating of perceived difficulty were exercises with 

pitch head movement. Conversely, all four exercises that were ranked higher on the sequence 

based on the trunk angular velocity in the roll direction compared to the rating of perceived 

difficulty were all exercises with yaw head movement. As has been noted, head movements 

especially in the pitch direction may cause an amount of sway that may not be perceived 
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necessarily as difficult. Active pitch head movement results in a high amount of sway in the 

pitch direction which may overestimate the difficulty exercises with pitch head movement. The 

amount of sway that was produced by some exercises with semi-tandem stance may have under-

represented their ratings of perceived difficulty. For this reason, it may be appropriate to consider 

measuring sway in the ML direction in order to quantify the difficulty of exercises with semi-

tandem stance. Additionally, these findings illustrate the importance of asking subjects about 

how they perceive the difficulty of any task they perform.  

Using the rating of perceived difficulty to distribute the 24 exercises into the five 

categories for each group revealed relatively similar distributions except that six exercises were 

categorized in different levels for different age groups, and only were off by one cluster level. In 

contrast, the use of trunk angular velocity parameters in the pitch and roll directions revealed 

relatively different distributions of the exercises for the different age groups, with 15 exercises 

categorized into different levels of difficulty based on trunk angular velocity in the pitch 

direction and were off by 2 levels in some cases. Only 5 exercises were categorized in different 

levels of difficulty based on trunk angular velocity in the roll direction and were off only by 1 

level. A higher disparity exists in rating the difficulty of exercises based on sway parameters 

between age groups especially in the pitch direction compared with the ratings based on the 

perceived difficulty; this higher disparity may be because subjects in different age groups may 

have used different corrective strategies such as a hip strategy, especially with older subjects 

during the most challenging tasks (Cohen et al., 1996; Liaw et al., 2009). 

The findings of the exercise progression sequences are consistent with the American 

College of Sports Medicine (ACSM) recommendations of appropriate progression of balance 

exercises, in which reducing the base of support changing from feet apart to semi-tandem stance, 
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changing the visual input from eyes open to eyes closed, or changing the surface compliance 

from firm surface to foam surface is more challenging and decrease postural stability (Pescatello 

& American College of Sports Medicine., 2014). Additionally, the findings of this study seem to 

be consistent to a large extent with Klatt et al.’s work which developed a conceptual framework 

of progression for different balance exercise categories including static standing balance 

exercises (Klatt et al., 2015). In Klatt’s work, it was suggested that limiting base of support by 

standing in semi-tandem stance was less challenging than closing eyes while holding other 

exercise conditions constant, which contradicts with our findings, according to the sway velocity 

measures as well as ratings of perceived difficulty. Alternatively, our subjects perceived standing 

in semi-tandem stance with eyes open to be more challenging than eyes closed with feet apart. 

Additionally, Klatt et al. reported that exercises with head movements regardless of the vision 

condition to be more difficult than standing in semi-tandem with head still, which is consistent 

with how our subjects perceived these exercises. However, we found that exercises with head 

movements regardless of the vision condition produced less sway velocity compared with 

standing in semi-tandem with head still. Similarly, the findings of our study relatively match 

Muehlbauer et al.’s work where they assessed the relative difficulty of 12 balance exercises in 

order to develop a progression sequence, starting from the exercise that produced the least COP 

displacement to the exercise that produced the most COP displacement (Muehlbauer et al., 

2012). The results of our study are also consistent with the results of Farlie’s study where they 

found that the visually observed sway increased with increasing the difficulty of the exercise, 

and they also found that subjects’ perceived description of the exercise difficulty matched very 

well the intensity levels of the exercises (Farlie et al., 2016). 
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Clinicians can take advantage of the proposed sequences of exercise progression to select 

an appropriate exercise for their clients based on their age and health status as well as they can 

diversify among the proposed exercises in each level of the five exercise categories that were 

divided based on their difficulty. Clinicians can use the developed rating of perceived difficulty 

scales to estimate the intensity of each exercise in situations when sway cannot be measured. The 

sway measures collected could be used to set ranges of normal limits of sway for different age 

groups, and can be used as reference normative data when comparing patients’ data to others. 

Finally, these values could be used for augmented sensory feedback devices to set the threshold 

limits when a feedback can be provided. 

 LIMITATIONS 

Each study visit required one hour and forty-five minutes and even longer for older adults which 

may have caused fatigue. However, randomizing the testing conditions during the experiment 

sessions and visits for each subject and providing rest breaks every three exercises hopefully 

eliminated fatigue.  

Although subjects practiced the head movement in yaw and pitch directions with a laser 

light attached to the head before they started the experiment, the laser light wasn’t used during 

the experiment and subjects may not have had a good control over the range of head movement 

during exercises with yaw and pitch head movements. Due to this limitation, subjects may have 

decreased their range or the speed of head movement in order to maintain their balance.   



 160 

 CONCLUSION 

Postural sway measures and ratings of perceived difficulty were able to demonstrate age, surface, 

vision, stance, head movement effects. Quantitative sway measures and ratings of perceived 

difficulty can be used to prescribe intensity of balance exercises and guide progression during 

rehabilitation. 
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6.0  PERCEPTUAL AND SWAY MEASURES OF BALANCE IN INDIVIDUALS 

WITH VESTIBULAR DISORDERS 

 INTRODUCTION 

Balance is defined as the ability to maintain the upright position during static stance or dynamic 

activities such as walking or running. Body balance while performing various activities depends 

on the sensory information received from the eyes, sensory receptors in joints and muscles, and 

vestibular apparatus (Day et al., 2002; Dozza et al., 2005; Horak, 2006; Kerber et al., 2006; 

Lichtenstein et al., 1988; Lord et al., 1991a; Lord & Ward, 1994; Ring et al., 1989; Rowell, 

Shepherd, & American Physiological Society (1887- ), 1996). Balance disorders due to aging or 

disease and injury within the central nervous system or peripheral balance organs may lead 

eventually to falling (N. B. Alexander, 1994). Falling is one of the leading causes of serious 

injuries or even death among older people (Tinetti et al., 1995; Tinetti & Williams, 1998) Falls 

cost the medical care system in the USA about 30 billion dollars in 2010 (Stevens et al., 2006b). 

Approximately 65% of older people who fall have balance disorders (Tinetti et al., 1988) 

and among those with balance problems, approximately 50% have vestibular disorders (Overstall 

et al., 1977). Unilateral vestibular hypofunction is defined as a reduction of more than 25% of 

the caloric response in one ear compared to the other during caloric testing (Jongkees et al., 

1962). Two-thirds to three-quarters of older adults who have had fall-related hip or wrist 
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fractures were found to have asymmetrical vestibular function (Kristinsdottir et al., 2000; 

Kristinsdottir et al., 2001).  

The vestibular system is one of the peripheral sensory systems that plays an important 

role in maintaining balance. The vestibular system in particular helps to coordinate eye 

movements during head movement and to control balance during upright stance and walking by 

facilitating contraction of the appropriate lower limb muscles in order to prevent falling. 

Identification of the risk factors of falling has directed the clinical interventions to reduce 

the number of future falls (Hilliard et al., 2008). An increase in postural sway has been reported 

to be one of the predictors of falling among older adults (Berg et al., 1992). Increased postural 

sway has been reported in many studies to be associated with deteriorated vestibular function 

(Kerber et al., 2006; Lord & Ward, 1994; Serrador et al., 2009). Vestibular hypofunction may 

lead ultimately to increased body sway and risk of falling (Stevens et al., 2006b). People with 

per. People with peripheral vestibular dysfunction may restrict their activities and reduce their 

participation in daily life activities (Giray et al., 2009).  

Since the early 1940s, vestibular rehabilitation programs have been utilized to enhance 

vestibular compensation of impaired function caused by central and/or peripheral vestibular 

disorders (Cawthorne, 1946). Vestibular rehabilitation is now widely accepted. Vestibular 

rehabilitation is comprised of group of exercises techniques designed to stimulate central nervous 

system compensation through adaptation, habituation, and compensation approaches in order to 

reduce symptoms and improve balance function. Vestibular rehabilitation resolves symptoms by 

enabling the central nervous system to adapt to the asymmetries in peripheral vestibular 

responses (Brodovsky & Vnenchak, 2013; Horak et al., 1992). Habituation exercises have been 

found to be helpful in retraining the CNS to recognize correct signals coming from the intact 
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vestibular signals as well as other sensory modalities and ignore the false signals from the 

disabled labyrinth through repeating movements that provoke symptoms (Brodovsky & 

Vnenchak, 2013). Compensation exercises are developed to employs alternative modalities (e.g. 

visual and/or somatosensory) to substitute the loss of vestibular function (Halmagyi, Weber, & 

Curthoys, 2010; B. I. Han et al., 2011; Herdman, 1998). A recent Cochrane review that included 

27 high-quality randomized studies suggested there was moderate to strong evidence that 

vestibular rehabilitation is safe and effective in treating unilateral peripheral vestibular symptoms 

(Hillier & McDonnell, 2011). According to the vestibular rehabilitation practice guideline for 

peripheral vestibular hypofunction, there is strong evidence that vestibular rehabilitation is 

beneficial for people with unilateral and bilateral vestibular hypofunction (Hall et al., 2016).  

Standing balance exercises are prescribed for people with vestibular disorders who have 

difficulty controlling posture. Different exercises can be created by modifying the size of the 

base of support, altering the visual inputs, changing surface compliance, or performing exercises 

in different postural positions such as sitting or standing. A randomized control trial by Vereeck 

et al. incorporated gaze stability and balance exercises for patients after acoustic neuroma 

resection (young and older) and general instructions for the control group (young and older). 

Older adults in the experimental group had improvements in most of the balance tests such as 

standing balance, Timed Up and Go test, tandem gait, and the Dynamic Gait Index (DGI) 

compared to the older adults in the control group. In contrast, no significant difference was found 

between the younger adult groups (Vereeck et al., 2008). Similarly, Herdman et al. used 

vestibular adaptation exercises with patients after acoustic neuroma resection and found 

improvements in peak-to-peak AP sway. The exercises included in this study were turning head 

right and left or up and down while standing or sitting (Herdman et al., 1995). 
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A number of studies have developed exercise progression patterns which contributed to 

decreasing symptoms and increasing function for persons with vestibular disorders. In persons 

with bilateral vestibular hypofunction, investigators developed a progression of eye and head 

movement exercises (Herdman et al., 2007). They increased the number of repetitions of the 

exercises during the day and the duration of exercise overtime. Then, they placed the visual 

target in more complex visual backgrounds. The treatment group had greater improvements with 

dynamic visual acuity and decreased symptoms compared to a placebo exercise group (Herdman 

et al., 2007). 

In a case report study, Gill-Body et al. documented a vestibular rehabilitation program for 

two older adults with unilateral and bilateral vestibular hypofunction. The program included 

balance exercises that were distributed over a period of 8 weeks into three phases with various 

levels of difficulty from easier to harder. The first phase included static standing on a firm 

surface with eyes open and closed and feet together with arms outstretched and a book on head, 

walking with narrowed base of support and eyes open, marching in place slowly with eyes open, 

and active head movement in yaw, pitch, and roll planes. In the second phase, exercises were 

progressed to standing in semi-tandem stance with eyes open and closed and arms close to the 

body with the book on their head, standing on a foam surface with eyes open and book on head, 

walking with a normal and narrow base of support with eyes open and a book on head, and 

active head movement in yaw, pitch, and roll planes. In the final phase, exercises were 

progressed to standing on a foam surface with eyes closed and with and without a book on head, 

walking with a narrowed base of support with eyes closed and with and without a book on head, 

walking with a normal base of support with fast head movements, marching in place slowly with 
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eyes open and closed and with and without a book on head, and active head movements in yaw, 

pitch, and roll planes (Gill-Body et al., 1994). 

Alsalaheen et al. did a retrospective study of 104 patients who had been diagnosed with 

concussion and received vestibular rehabilitation exercises (Alsalaheen et al., 2013). Their aim 

was to describe the exercises provided by the physical therapist and how they were progressed to 

make the exercises more challenging. Exercises were classified into five types as follows: eye-

head coordination, sitting balance, standing static balance, standing dynamic balance, and 

ambulation. These exercises were progressed by modifying conditions within each exercise 

category to make them more challenging. For example, the performance of the VORx1 exercise 

was progressed by having subjects perform the exercises in sitting, then standing with feet apart, 

and then standing with feet together, and then standing with feet semi-tandem. The exercise 

progression conditions included changes in posture position, surface type, base of support, trunk 

position, arm position, head movement direction, direction of whole body movement, visual 

input, and a cognitive dual task.  

Klatt et al. developed a conceptual framework of progression for different balance 

exercise categories including static standing balance exercises where they ranked exercises in 

each category based on the hypothesized difficulty (Klatt et al., 2015). In Klatt’s work, decisions 

were made based on systematized literature review, and focus group discussions that included 

physical therapists and postural control experts (Klatt et al., 2015). 

Despite the evidence for the benefit of vestibular rehabilitation in improving gaze 

stability and postural control in people with vestibular disorders (Hillier & McDonnell, 2011; 

Horak et al., 1992), there are no evidence-based guidelines for initial prescription or progression 

of the intensity of balance exercises (Farlie et al., 2013; Klatt et al., 2015; Pescatello & American 
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College of Sports Medicine., 2014). This study was performed as part of a larger study to 

develop evidence for recording balance exercise intensity across a wide variety of exercises, 

which was conducted in participants without vestibular disorders. The specific purpose of this 

study was to compare postural sway responses and ratings of perceived difficulty in people with 

vestibular disorders and with healthy age-matched controls across similar exercises.  

6.1.1 Specific aim 

Specific aim of the study: To examine the effect of vestibular disorders on the magnitude of 

trunk tilt and ratings of perceived difficulty during performance of different types of static 

standing balance exercises. 

Hypothesis 1:  

Individuals with vestibular disorders will have greater trunk tilt and rating of perceived difficulty 

during the performance of standing balance exercises compared with healthy age-matched 

controls.  

Hypothesis 2:  

Individuals with vestibular disorders will have an increase in trunk tilt and rating of perceived 

difficulty as static standing balance exercises change from level surface to foam surface, eyes 

open to eyes closed, head still to yaw movement, and feet apart to semi-tandem stance. 

Hypothesis 3:  

The increase in magnitude of trunk tilt and rating of perceived difficulty as static stance balance 

exercises change from: level surface to foam surface, eyes open to eyes closed, head still to yaw 

movement, and feet apart to semi-tandem stance, will be greater in individuals with vestibular 

disorders compared with healthy age-matched controls. 
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 METHODS 

6.2.1 Participants 

Participants with vestibular disorders were recruited from the Balance Disorders Clinic of the 

University of Pittsburgh Medical Center. A confirmed diagnosis of peripheral or central 

vestibular disorder was made by a neurotologist based on caloric testing, rotational chair testing, 

vestibular evoked myogenic potentials and history. Patients were gender and age (±3 years of 

age) matched with healthy subjects in a ratio of 1:2. The matched healthy subjects’ data were 

used from the parent study.  

Healthy subjects and patients were between the ages of 18 and 85 years old and 

participating in daily activities independently. Subjects were excluded if they were unable to 

stand for 3 minutes without rest; had distal sensory loss (unable to complete the Romberg test for 

30 seconds and unable to feel a pressure of 4.31 g monofilament applied on two different parts of 

each foot with eyes closed); had visual acuity worse than 20/40, had a diagnosis of benign 

paroxysmal positional vertigo (BPPV) (positive Dix–Hallpike test or positive Roll test); had a 

history of neurological or orthopedic disorders; used an assistive device for ambulation; were 

pregnant; had excessive weight (BMI > 35); or had cognitive impairment (≤ 25 points on the 

Montreal Cognitive Assessment). Additionally, healthy subjects were excluded if they had a 

history of falling 2 times or more within the last 12 months doing activities of daily living; or had 

a peripheral vestibular disorder (positive head impulse test). 

This study was approved by the Institutional Review Board in University of Pittsburgh. 

All subjects signed the informed consent prior to participating in the study. 
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6.2.2 Instrumentation  

During the performance of the exercises in static standing, subjects stood on a force platform 

(NeuroTest, NeuroCom, Inc., Clackamas, OR) that measured ground reaction forces at a 

sampling rate of 100 Hz. An inertial measurement unit (IMU, Xsense Technologies B.V., 

Enschede, The Netherlands) was mounted on each subject's lower back at the level of iliac crest 

(L4) to record trunk angular displacement and velocity from vertical and linear acceleration in 

AP and ML directions at a sampling rate of 100 Hz. The IMU uses a combination of 

accelerometers, gyroscopes, and a magnetometer. 

6.2.3 Experimental procedure 

The study is an experimental study using a within-subjects and between groups research design 

to determine the effect of having vestibular disorder and different exercise conditions on balance. 

All potential research participants came in for a screening visit. The eligible subjects who met 

the study criteria were asked to return for a testing visit. The independent variables were the 

groups (2 levels) and the exercise conditions (i.e. surface - 2 levels; visual input - 2 levels; base 

of support - 2 levels; and head movement - 2 levels). The different levels of exercise conditions 

are shown in Table 6-1.  
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Table 6-1: Chosen conditions of static standing exercises 

Exercise 

category 
Surface Visual input Base of support 

Head 

movement 

Static standing 
Level surface 

Foam surface 

Eyes open 

Eyes closed 

Feet apart 

Semi-tandem  

Head still 

Yaw 

6.2.3.1 Screening visit 

Consented subjects underwent screening tests to rule out conditions known to adversely affect 

balance. Screening tests included: Romberg stance (Horak, 1987), lower extremities pressure 

threshold using monofilaments (Holewski, Stess, Graf, & Grunfeld, 1988), visual acuity (Brien 

Holden, 2008; Muhammad, Alhassan, & Umar, 2015; World-Health-Organization, 2003), the 

Montreal Cognitive Assessment - Version 3 (Nasreddine et al., 2005), the Dix–Hallpike Test 

(Dix & Hallpike, 1952), the supine roll test (Lempert & Tiel-Wilck, 1996), and the head impulse 

test (Halmagyi & Curthoys, 1988).  

Eligible subjects who met the study criteria completed the Activities-specific Balance 

Confidence Scale (ABC) questionnaire (Powell & Myers, 1995), Functional Gait Assessment 

(FGA) (Wrisley, Marchetti, Kuharsky, & Whitney, 2004), and gait speed (Steffen, Hacker, & 

Mollinger, 2002) was recorded prior to the experiment in order to better describe the participants. 

A more detailed description of the screening tests is in Chapter 3. Moreover, people with 

vestibular disorders completed the Dizziness Handicap Inventory (DHI) (Jacobson & Newman, 

1990) and the self-report of dizziness on visual analog scale (Hall & Herdman, 2006; Toupet et 

al., 2011). 
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6.2.3.2 Experimental visit 

During the experimental visit, subjects with vestibular disorders and matched healthy subjects 

were asked to perform two sets of 16 randomized static standing exercises, which were a full-

factorial design of the following different conditions: vision (eyes open and eyes closed); surface 

(firm and foam); base of support (feet apart and semi-tandem); head movements (head still and 

yaw) as shown in Table 6-2.  

Table 6-2: Balance and vestibular exercises 

Exercise number Surface Visual input Base of support Head movement 
1 Firm Eyes open Feet apart Head still 

2 Firm Eyes open Feet apart Yaw 

4 Firm Eyes open Semi-tandem Head still 

5 Firm Eyes open Semi-tandem Yaw 

7 Firm Eyes closed Feet apart Head still 

8 Firm Eyes closed Feet apart Yaw 

10 Firm Eyes closed Semi-tandem Head still 

11 Firm Eyes closed Semi-tandem Yaw 

13 Foam Eyes open Feet apart Head still 

14 Foam Eyes open Feet apart Yaw 

16 Foam Eyes open Semi-tandem Head still 

17 Foam Eyes open Semi-tandem Yaw 

19 Foam Eyes closed Feet apart Head still 

20 Foam Eyes closed Feet apart Yaw 

22 Foam Eyes closed Semi-tandem Head still 

23 Foam Eyes closed Semi-tandem Yaw 

 

Participants stood without shoes in order to avoid the confounding effect of wearing 

different shoes. During conditions of the foam surface, subjects stood on a foam pad (AIREX 

Balance Pad S34-55) that had a height of 6 cm, length of 51 cm, width of 40 cm (density 55 

kg/m^3, compression resistance 20 kPa at 25% compression) and the room’s temperature was a 

median value of 72 Fahrenheit degrees with an interquartile range of 3 degrees during all visits to 

avoid differences in the foam properties (see Appendix C). During the various base of support 
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stances, subjects were asked to distribute their body weight equally on each foot, and to stand 

during the feet apart condition with their heel centers 0.17 m apart, with an angle of 14 degrees 

between the long axes of the feet (McIlroy & Maki, 1997). For the semi-tandem stance position, 

subjects stood with the front foot touching the medial side of the other foot by a half of a foot 

length (Lee et al., 2012; Nejc et al., 2010), with the dominant foot in the back. The dominant foot 

was determined by asking the subjects about the foot that they would use to kick a ball (Gabbard 

& Hart, 1996). During the eyes closed conditions, subjects wore opaque goggles. During yaw 

head movements, subjects were instructed to move their head at a frequency of 1 Hz by moving 

their head to the beat of a metronome (Hall & Herdman, 2006) within a range of 45 degrees in 

the yaw direction (Jung et al., 2009). To ensure that subjects moved their head for 45 degrees in 

yaw, they practiced the head movement in this direction with a laser light attached to the head 

before they started the experiment. However, the laser light was not used during the experiment.  

Exercises were performed in a random order that was software-generated. Subjects were 

instructed to stand as stable as possible with arms at their side (Gill-Body et al., 1994; Gill et al., 

2001) during all trials for 35 seconds (Allum et al., 2011; Le Clair & Riach, 1996; Muehlbauer et 

al., 2012; Rine et al., 2013).  

Data collection was stopped if a subject lost their balance according to the following 

failure criteria: stepped out of position, changed their feet or arms starting position, and/or 

touched something for support. Subjects were asked to repeat failed trials once in each set if they 

lost their balance before completing a 25 seconds trial. Subjects were guarded by a physical 

therapist during all exercises to prevent falling and wore a safety harness which was attached to 

an anchor point in the ceiling that do not let subject reach the ground in case of a fall incidence. 

There was a seated rest break for 1 minute after every 3 exercises to avoid fatigue.  
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In addition, subjects rated their perceived difficulty of each exercise they performed 

using two different scales. The first scale was a modified rating of perceived difficulty scale 

based on ratings of perceived exertion scales for aerobic and resistance exercises (Scale A) 

(Robertson et al., 2004; Robertson et al., 2003) that ranges from 0 to 10, where 0 indicates that 

the exercise is extremely easy whereas 10 indicates that the exercise is extremely hard (Figure 6-

1). The second scale was developed for this study and was anchored with colors and statements 

(Scale B) (Espy et al., 2015) (Figure 6-2). Scale B had 5 levels ranging from A to E, where A 

was anchored with the following statement; “I feel completely steady” and E labeled as “I lost 

my balance”. In the statistical analysis, letters from scale B were transformed to numbers as 

follows; A = 1, B = 2, C = 3, D = 4, and E = 5. 

Before starting the experiment, both scales were explained to subjects. They were told 

that they needed to choose, after each exercise, a number from the 1st scale and a letter from the 

2nd scale that indicated the difficulty of maintaining their balance during that exercise. During the 

experiment, the scales were placed on the sidewall so that subjects could look at them after each 

exercise. 

 

Figure 6-1: Scale A; Rating of perceived difficulty scale, based on OMNI rating of perceived exertion scale 

(Robertson et al., 2004; Robertson et al., 2003) 

 

Please choose from 0 to 10 corresponding to your perceived difficulty of each exercise: 
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Figure 6-2: Scale B; Rating of perceived difficulty scale, adapted from (Espy et al., 2015) 

6.2.4 Outcome measures 

Demographic data: 

Demographic data including age, gender, medical diagnosis, weight, and height was summarized 

by descriptive statistics. Additionally, the average scores of the Functional Gait Assessment, 

Activities-specific Balance Confidence Scale (ABC), gait speed, Dizziness Handicap Inventory 

(DHI), and self-report of dizziness on visual analog scale for all groups were recorded. In 

addition, medical diagnoses were reported for people with vestibular disorders.  

Sway measures:   

Sway measures were recorded during all trials for 35 seconds and the first five seconds of data 

collection were removed in order to avoid the effect of the subject's initial establishment of 

balance (O'Sullivan et al., 2009; Rine et al., 2013). Summary measures of trunk sway were 

calculated from the 30 second time series. The data was low-pass filtered using a second order 

Butterworth filter with a cut-off frequency of 3 Hz (Dozza et al., 2005; Dozza, Horak, et al., 

 

Please choose from A to E corresponding to your perceived difficulty of each exercise: 

I feel completely steady A 

I feel a little unsteady or off-balance B 

I feel somewhat unsteady or like I may lose my balance C 

I feel very unsteady or like I definitely will lose my balance D 

I lost my balance E 
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2007). During the analysis, each trial was plotted individually and inspected visually using 

MATLAB software to make sure that there were no extraneous movements.  

The Root Mean Square (RMS) of the trunk angular displacement and velocity in the pitch 

and yaw directions, and linear acceleration in the AP and ML directions were calculated and 

used in the analysis to test the hypotheses. The RMS was calculated as follows:  

RMS =
√∑ (𝑎2𝑖)

𝑛

𝑖=0

𝑛

2

  

where a is instantaneous sway value with mean value subtracted, and n is an individual 

data sample, and N is the total number of samples. The mean value was subtracted before 

calculating the RMS. 

6.2.5 Statistical Analyses 

Participants’ demographic characteristics were compared between groups using independent 

samples t-test for dependent variables that were continuous and normally distributed. The Mann-

Whitney U test was used to compare differences between the two independent groups when 

dependent variables were continuous but not normally distributed.  

Postural Sway: 

A Linear Mixed Model (LMM) was used to test the three hypotheses of the study. The LMM 

contains fixed effects and random effects. In this study, fixed effects are groups, surface types, 

visual inputs, stance conditions, and head movements, with a random effect for subjects. Due to 

the presence of missing data in this study, the decision was made to use LMM as it allows us to 

evaluate the effects with the presence of having missing data. Additionally, LMM allows 

inclusion of a random effect, subjects, and assumes that each subject has his/her own intercept 
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value. The LMM was used to explore main effects of the fixed effects and two-way interaction 

effects between groups and stances, visual inputs, surfaces, and head movements on quantitative 

postural measures (RMS of trunk tilt in pitch displacement, roll displacement, pitch velocity, roll 

velocity, AP acceleration, and ML acceleration). 

The autoregressive order 1 (AR1) covariance structure was used, which assumes 

homogeneous variance and unequal covariance between observations on the same subject (Littell 

et al., 2000). Several different covariance structures were evaluated and AR1 had the best model 

fits and best reflected the unadjusted means.  

An independent t-test was used to compare between people with vestibular disorders and 

controls on the amount of postural sway for each individual exercise.  

The average value of the 2 trials of the dependent variables was used because it was 

determined that there was no difference between trials. Due to the high incompletion rate of 

exercise 23, especially for people with vestibular disorders, it was eliminated from the linear 

mixed model analysis. Normality was tested using the Shapiro–Wilk test. The significance level 

was α = 0.05. 

Ratings of Perceived Difficulty: 

For rating of perceived difficulty data that was ordinal, the Mann-Whitney U test was used to 

compare differences in ratings of perceived difficulty between the two groups, and Wilcoxon 

signed-rank test was used for comparison of two dependent samples (surface conditions, visual 

inputs, stance conditions, and head movements). The mean value of the 2 trials of the ratings of 

perceived difficulty from Scales A & B was used.  
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A Mann Whitney U test was used to compare between people with vestibular disorders 

and controls on the rating of perceived difficulty scores of Scales A and B for each individual 

exercise. 

 RESULTS 

6.3.1 Descriptive statistics: 

Eight participants with vestibular disorders met all the eligibility criteria. The eligible 

participants had a mean age of 56 ± 16 years (four females). The participants with vestibular 

disorders had normal gait speed (Table 6-3) (Abellan et al., 2009; Hornyak et al., 2012; Lusardi 

et al., 2003). Five participants were within normal limits of physical functioning and three were 

below normal based on their scores of the Functional Gait Assessment (FGA) (Walker et al., 

2007; Wrisley & Kumar, 2010). In regards to participants’ scores on Activities-specific Balance 

Confidence (ABC) Scale, five participants were within a high level of physical functioning and 

three had a moderate level of functionality (Huang & Wang, 2009; Myers et al., 1998; Powell & 

Myers, 1995). Five participants with vestibular disorders were mildly affected by dizziness (0-30 

DHI) and two were affected moderately by their dizziness (31-60 DHI) (Whitney, Wrisley, 

Brown, & Furman, 2004). Four participants with vestibular disorders indicated mild perceived 

level of dizziness on a visual analog scale before starting the experiment (Table 6-3).  
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Table 6-3: Demographic characteristics of participants with vestibular disorders 

Subject 
ID # 

Subject 
gender 

Age 
(years) 

ABC 
Gait Speed 

(m/s) 
FGA DHI 

Dizziness 
VAS 

1 Female 74 97 0.91 26 0 0.00 

2 Female 69 59 1.42 24 50 3.13 

3 Male 35 94 1.30 26 20 0.60 

4 Male 40 98 1.54 30 28 0.00 

5 Male 36 96 1.29 30 42 1.93 

6 Female 60 69 1.31 22 24 0.00 

7 Male 66 92 1.72 29 8 1.08 

8 Female 67 74 0.95 22 14 0.00 
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Table 6-4: Medical diagnoses and vestibular testing 

Subject 
No. 

Diagnosis Vestibular testing 

1 
Sequelae of a left 

peripheral vestibulopathy, 
likely vestibular neuritis 

 Abnormal VEMP (bilateral) 

 Abnormal Caloric test: severely reduced on left side 
(52%) 

2 Ménière's disease 

 Abnormal VEMP (right) 

 Abnormal static positional test: nystagmus intensity of 
13 supine deg/sec, 11 head Rt deg/sec, 5 head Lt 
deg/sec, and 21 Rt lateral deg/sec 

 Abnormal rotational chair: mild left directional 
preponderance 

3 
Left peripheral 
vestibulopathy 

 Abnormal static positional test: nystagmus intensity of 6 
deg/sec in supine position  

 Abnormal Caloric test: 100% RVR on left side  

 Abnormal rotational chair: mild right directional 
preponderance 

4 
Left peripheral 
vestibulopathy 

 Abnormal VEMP (left) 

 Abnormal rotational chair: mild right directional 
preponderance 

5 
Left peripheral 
vestibulopathy 

 Abnormal Caloric test: 100% RVR on left side  

 Abnormal rotational chair: mild left directional 
preponderance 

6 
Right peripheral 
vestibulopathy 

 Abnormal VEMP (right) 

 Abnormal Caloric test: 100% RVR on right side 

 Abnormal rotational chair: mild right directional 
preponderance 

7 

Dizziness of uncertain 
etiology with an ongoing 
vestibular ocular reflex 

asymmetry 

 Abnormal static positional test: nystagmus intensity of 6 
deg/sec in Rt lateral position 

 Abnormal rotational chair: mild right directional 
preponderance 

8 
Right peripheral 
vestibulopathy 

 Abnormal VEMP (right) 

 Abnormal static positional test: nystagmus intensity of 8 
deg/sec in head Lt position 

 Abnormal Caloric test: severely reduced on right side 
(75%) 

 Abnormal rotational chair: mild left directional 
preponderance 

VEMP: vestibular-evoked myogenic potentials; Rt: right; Lt: left; deg: degree; sec: second; 

RVR: reduction of vestibular response. 
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The participants with vestibular disorders were gender and age matched with healthy 

subjects in a ratio of 1:2. The matched healthy subjects were recruited from a larger study and 

had a mean age of 56 ± 16 years (see Table 6-5).  

Table 6-5: People with vestibular disorders and controls’ demographic characteristics 

An independent-samples t-test was conducted to compare the age difference between 

people with vestibular disorders and controls. There was no significant age difference between 

people with vestibular disorders and controls (t(22) = 0.009, p = 0.99). Additionally, an 

independent-samples t-test was conducted to compare gait speed between people with vestibular 

disorders and controls. There was no significant difference in gait speed for people with 

vestibular disorders and control groups (t(22) = 0.53, p = 0.59).  

 

Patients 

(35-74) 

Controls 

(35-76) 

Total (n=8) Total (n=16) 

Age, y, Mean ± SD 56 ± 16 56 ± 16 

Gender, female, n (%) 4 (50) 8 (50) 

Body Mass Index, kg/m2, Median (Range) 24.78 (19-30) 26.50 (15-35) 

Monofilament, Median (Range) 4.08 (3.61-4.17) 3.84 (3.22-4.17) 

Montreal Cognitive Assessment, Median (Range) 28.50 (26-30) 29 (26-30) 

The Activities-specific Balance Confidence (ABC) Scale, Median (Range) 93 (59-98) 95 (81-100) 

Gait Speed, m/s, Mean ± SD 1.31 ± 0.27 1.35 ± 0.18 

Functional Gait Assessment (FGA), Median (Range) 26 (22-30) 28 (19-30) 

Dizziness Handicap Inventory (DHI), Median (Range) 22 (0-50) N/A 

Dizziness Visual Analog Scale, Mean ± SD 0.84 (1.16) N/A 
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A Mann-Whitney U test was conducted to evaluate difference between people with 

vestibular disorders and controls on the Body Mass Index (BMI), the Activities-specific Balance 

Confidence (ABC) Scale, and Functional Gait Assessment (FGA). The ABC, BMI and FGA 

were not statistically different between the groups.  

6.3.2 Postural sway 

The normality of postural sway measures scores was assessed by Shapiro-Wilk's test (p > .05) 

and the assumption of normality was not rejected. Despite the presence of some outliers, as 

assessed by inspection of a boxplot, the outliers were examined individually and kept in the 

analysis because they seemed to represent actual values of human sway. The mean (SD) of the 

dependent variables for each of the fixed effects appears in Table 6-6. 

Table 6-6: Mean (SD) scores of the dependent variables in each level of the independent variables 

 
Level 

RMS of pitch 
displacement 

(degree) 

RMS of roll 
displacement 

(degree) 

RMS of pitch 
velocity 

(deg/sec) 

RMS of 
roll velocity 

(deg/sec) 

RMS of AP 
acceleration 

(m/sec2) 

RMS of ML 
acceleration 

(m/sec2) 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Groups 
P 0.62 0.38 0.39 0.31 1.03 0.73 0.92 0.80 0.12 0.07 0.09 0.06 

C 0.60 0.31 0.36 0.26 0.93 0.57 0.88 0.76 0.11 0.06 0.09 0.06 

Surface 
Firm 0.47 0.22 0.29 0.21 0.77 0.47 0.72 0.61 0.09 0.04 0.07 0.05 

Foam 0.76 0.38 0.46 0.32 1.19 0.70 1.09 0.88 0.15 0.07 0.11 0.07 

Vision 
EO 0.56 0.27 0.36 0.27 0.90 0.59 0.85 0.76 0.11 0.05 0.09 0.06 

EC 0.66 0.39 0.38 0.29 1.04 0.65 0.94 0.78 0.13 0.07 0.10 0.06 

Stance 
FA 0.55 0.29 0.22 0.12 0.79 0.48 0.67 0.59 0.11 0.06 0.06 0.04 

ST 0.67 0.37 0.54 0.30 1.17 0.71 1.15 0.87 0.13 0.06 0.12 0.06 

Head 
HS 0.57 0.35 0.34 0.28 0.77 0.60 0.57 0.63 0.10 0.06 0.07 0.06 

Yaw 0.66 0.32 0.40 0.27 1.19 0.57 1.27 0.75 0.13 0.06 0.11 0.06 

P: patients; C: controls; RMS: Root Mean Square; Deg: degree; EO: eyes open; EC: eyes closed; 

FA: feet apart; ST: semi-tandem; HS: head still. 
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Results of the linear mixed model showed that the main effect of group was not 

statistically different on all quantitative postural measures. The main effects of surface condition, 

visual input, stance condition, and head movement were statistically significant at the 0.05 

significance level on all quantitative postural measures such that standing on foam, eyes closed, 

semi-tandem stance, or yaw head movement produced higher sway than standing on firm 

surface, eyes open, feet apart, or head still respectively (Figures 6-3, 6-4, 6-5, and 6-6).  

 

 

Figure 6-3: Mean scores of RMS trunk displacement, velocity, acceleration in pitch and roll directions during 

firm and foam conditions. Error bars represent population standard deviation. * p < 0.05 difference between 

pairs. 
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Figure 6-4: Mean scores of RMS trunk displacement, velocity, acceleration in pitch and roll directions during 

eyes open and eyes closed conditions. Error bars represent population standard deviation. * p < 0.05 

difference between pairs. 
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Figure 6-5: Mean scores of RMS trunk displacement, velocity, acceleration in pitch and roll directions during 

feet apart and semi tandem stance conditions. Error bars represent population standard deviation. * p < 0.05 

difference between pairs. 
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Figure 6-6: Mean scores of RMS trunk displacement, velocity, acceleration in pitch and roll directions during 

head still and yaw movements. Error bars represent population standard deviation. * p < 0.05 difference 

between pairs. 
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of trunk angular velocity in the pitch and roll directions, and trunk linear acceleration in the ML 

direction). Conversely, there was no significant interaction between group and surface type or 

visual input in all sway measures. The RMS pitch velocity will be used to illustrate these 

interactions.  

There was a significant interaction between group and stance type in which the difference 

between feet apart and semi-tandem increased more in the people with vestibular disorders group 

compared with controls (Figure 6-7). Similarly, people with vestibular disorders had greater 

sway during head still but there was not a difference between groups during moving head in the 

yaw direction (Figure 6-8). 

 

Figure 6-7: Interaction effect between stance condition and groups in the RMS of pitch velocity (mean, SD). * 

p < 0.05 difference between pairs. 
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Figure 6-8: Interaction effect between head movements and groups in the RMS of pitch velocity (mean, SD). * 

p < 0.05 difference between pairs. 
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The results of Wilcoxon signed-rank test showed a significant difference between the 

type of surface (Z = -4.29, p <0.001) (Z = -4.29, p <0.001), type of visual input (Z = -4.24, p 

<0.001) (Z = -4.15, p <0.001), type of stance (Z = -4.29, p <0.001) (Z = -4.29, p <0.001), and 

head movement (Z = -4.29, p <0.001) (Z = -4.29, p <0.001) on the rating of perceived difficulty 

Scales A and B respectively, with increased ratings on foam compared with firm, eyes closed 

versus eyes open, semi-tandem stance related to feet apart, and head still compared with yaw 

head movement (Figures 6-10, 6-11, 6-12, and 6-13). 

Table 6-7: Mean scores and standard deviations of Scales A and B in each level of the independent variables 

Independent variables Level 
Scale A 
(0-10) 

Scale B 
(1-5) 

Mean SD Mean SD 

Group 
People with vestibular disorders 3.80 1.10 2.20 0.45 

Controls 2.86 0.98 1.93 0.41 

Surface 
Firm 1.98 1.00 1.54 0.34 

Foam 4.36 1.28 2.49 0.56 

Vision 
Eyes open 2.68 1.01 1.83 0.43 

Eyes closed 3.67 1.24 2.21 0.47 

Stance 
Feet apart 1.65 0.98 1.45 0.39 

Semi-tandem 4.70 1.40 2.59 0.52 

Head 
Head still 2.36 0.87 1.72 0.36 

Yaw 3.98 1.41 2.32 0.54 
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Figure 6-9: Differences among the groups (people with vestibular disorders and controls) on mean of rating 

of perceived difficulty Scale A and B. Error bars represent population standard deviation. * p < 0.05 

difference between pairs. 
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Figure 6-10: Differences between the two types of surface (firm and foam surfaces) on mean of rating of 

perceived difficulty Scale A and B. Error bars represent population standard deviation. * p < 0.05 difference 

between pairs. 
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Figure 6-11: Differences between the two types of visual input (eyes open and eyes closed) on mean of rating 

of perceived difficulty Scale A and B. Error bars represent population standard deviation. * p < 0.05 

difference between pairs. 

 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Scale A Scale B

R
at

in
gs

 o
f 

P
er

ce
iv

ed
 D

if
fi

cu
lt

y
Visual inputs

Eyes open Eyes closed

*

*



 191 

 

Figure 6-12: Differences between the two types of stance (feet apart and semi-tandem) on mean of rating of 

perceived difficulty Scale A and B. Error bars represent population standard deviation. * p < 0.05 difference 

between pairs. 
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Figure 6-13: Differences among the head movements (head still and yaw) on mean of rating of perceived 

difficulty Scale A and B. Error bars represent population standard deviation. * p < 0.05 difference between 

pairs. 
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 DISCUSSION 

The purpose of this study was to determine the effect of vestibular disorders on postural and 

perceptual measures of balance. The participants in this study had peripheral vestibular disorders. 

On average, they demonstrated a good level of function, similar to what has been reported by 

other studies about general populations of community-dwelling adults’ gait speed (Abellan van 

Kan et al., 2009; Bohannon, 1997; Michelle M. Lusardi, 2003; Victoria Hornyak, 2012), 

Functional Gait Assessment (FGA) (Walker et al., 2007; Wrisley & Kumar, 2010), and 

Activities-specific Balance Confidence (ABC) scale (Huang & Wang, 2009; Myers et al., 1998). 

Compared to healthy controls who were included in this study and were age and gender matched, 

people with vestibular disorders were not different in gait speed, FGA, and ABC. Compared with 

other vestibular disorders populations, people with vestibular disorders in this study had similar 

average gait speed to what has been reported by Hall and Herdman (Hall & Herdman, 2006), 

higher median FGA scores compared with what Wrisley et al. reported in their study (Wrisley et 

al., 2004), and a better median ABC score than what was reported in Marchetti et al.’s study of 

95 people with signs and symptoms of vestibular dysfunction (Marchetti, Whitney, Redfern, & 

Furman, 2011). 

Although vestibular disorders have been reported to contribute to increasing postural 

instability (Baloh et al., 1998; Fujimoto et al., 2014), the results of this study did not show a 

difference between people with vestibular disorders and healthy matched subjects on any of the 

postural sway measures. The findings of our study seem to be consistent with Baloh et al.’s work 

when using similar exercise conditions (standing on firm surface with eyes closed or on foam 

surface with eyes open or closed) (Baloh et al., 1998). However, in a comparison of the postural 

sway between 70 patients with peripheral and central vestibular disorders or reported dizziness 
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and imbalance for an unknown reason, and 70 control subjects, all over the age of 75, sway 

velocity was significantly higher in patients than controls while standing on a platform that was 

tilting (Baloh et al., 1998). Another study compared 58 patients with vestibular neuritis between 

23 – 83 yrs. and 66 healthy matched subjects and found an increase in postural sway in patients 

during standing on foam with eyes closed (Fujimoto et al., 2014).  

The contradictory results between our study and other studies might be because the 

people with vestibular disorders in this study were very functional compared with similar 

populations recruited in other studies. Various studies have shown that people with vestibular 

disorders during the acute stage exhibit postural instability but eventually recover normal 

postural control as an indication of central compensation (Black, Shupert, Peterka, & Nashner, 

1989; Parietti-Winkler, Gauchard, Simon, & Perrin, 2010). Another reason for this conflict could 

be due to the use of different exercise conditions, including many exercises of varying 

difficulties, which could have resulted in increased variance, making it more difficult to find 

between group differences. Additional analysis was done in this study to compare between 

people with vestibular disorders and controls on the amount of postural sway for each individual 

exercise. The results did not show any difference between the groups in any of the postural sway 

measures. Moreover, other studies that reported a difference between patients and healthy 

matched subjects may have included participants with different vestibular disorders. Various 

vestibular disorder diagnoses may affect postural control differently (Baloh et al., 1998; Hong et 

al., 2013). Hong et al. found that people who have vestibular neuritis have more sway during 

conditions 5 (standing with eyes closed on sway-referenced platform surface) and 6 (standing 

with eyes open on sway-referenced platform surface and with a sway-referenced visual 

background) of the SOT compared with individuals who have Meniere’s disease or migrainous 
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vertigo. Whereas in condition 2 (standing with eyes closed on fixed platform), people with 

migrainous vertigo swayed significantly more than those who had vestibular neuritis (Hong et 

al., 2013). Individuals with vestibular disorders such as bilateral vestibular loss and cerebellar 

atrophy tend to have higher sway velocity during static or dynamic standing with eyes closed 

compared with individuals with unilateral vestibular loss, central disorders, or those having 

dizziness and imbalance of unknown cause (Baloh et al., 1998). Furthermore, the small sample 

size of people with vestibular disorders may have decreased the power of finding a statistically 

significant difference between patients and healthy matched subjects. 

On the contrary, the rating of perceived difficulty scores from Scale A were different 

between people with vestibular disorders and control subjects, although the sway measures and 

the rating of perceived difficulty of Scale B were not significantly different between the groups. 

The discrepancy between the sway parameters and the ratings of perceived difficulty in Scale A 

demonstrating differences between the groups may indicate that individuals with vestibular 

disorders are considering other factors besides their sway to rate perceived difficulty. These 

factors may include strain, discomfort and/or fatigue, and negative emotional factors that are 

experienced during performance of balance exercises (Borg, 1982; Noble & Robertson, 1996). 

Scale A has more variability in regards to the rating levels (11 levels) compared with Scale B (5 

levels) which may explain why Scale A differentiated between people with vestibular disorders 

and controls. The capability of Scale A to find a difference between patients and healthy subjects 

is considered an advantage for Scale A over Scale B and sway parameters that were used in this 

study. It suggests the importance of using Scale A in studies aiming to explore the effect of 

vestibular disorders on postural control or in balance training programs aiming to assess the 

challenge level of balance exercises. 
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In additional analysis that looked at differences between people with vestibular disorders 

and controls on the rating of perceived difficulty scores of Scales A and B for each individual 

exercise, we found differences between the groups for exercises 5, 8, 10, and 11 for Scale A, and 

exercises 8 and 11 for Scale B.  It was noted that all the exercises that have been able to create a 

difference in the ratings of perceived difficulty between the groups were during standing on firm 

surface and three of the four exercises were either with eyes closed, semi-tandem, or/and head 

movement from side to side.  

The results confirmed the hypothesis that the exercise conditions (surface type, visual 

input, stance condition, and head movement) would increase sway measures and rating of 

perceived difficulty. The present findings are consistent with other research which found an 

increase in body sway with alteration of sensory information through decreasing proprioceptive 

information by standing on foam (Abrahamova & Hlavacka, 2008; Cohen et al., 1996; Gill et al., 

2001), lack of visual information by closing eyes (Abrahamova & Hlavacka, 2008; Cohen et al., 

1996; Era et al., 2006; Gill et al., 2001; Hytonen et al., 1993), and narrowing the base of support 

by standing in semi-tandem stance (Era et al., 2006). In addition, the ratings of Scale A and B 

were higher when decreasing proprioception information by standing on foam, lack of visual 

information by closing eyes, narrowing base of support by standing in semi-tandem stance, and 

altering vestibular function through head movements, which is consistent with the results of the 

sway measures analysis. 

With regards to the interaction between groups and exercise conditions, there was no 

interaction effect between surface or visual conditions and group levels. By contrast, there was a 

interaction effect between group levels and stance conditions and head movements on 

quantitative postural measures. The vestibular disorders group had greater increases in sway 
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compared with the healthy group as the condition become more difficult with narrowing the base 

of support. A study that included older adult controls and subjects who reported imbalance 

showed increased postural sway in both groups during conditions with eyes closed, standing on 

foam, or a tilting platform (Baloh et al., 1998). Similar to our current findings, when the 

challenge of the postural task increased (by tilting the platform sinusoidally), the RMS sway 

velocity increased by a greater amount in the older adults with dizziness and imbalance 

compared with older controls. (Baloh et al., 1998).  Thus the principle of vestibular rehabilitation 

to increase the difficulty of balance exercises appears to be well-founded, given that these 

impairments in balance appear with the more difficult exercises.   

The other significant interaction that was observed was the head movement by group 

interaction. In this case, healthy subjects had greater increases in sway velocity compared with 

people with vestibular disorders when changing from head still to moving head side-to-side. The 

larger change in sway in the control group resulted because the controls had a lower sway 

velocity magnitude in the head still conditions compared with the vestibular group, while both 

groups had nearly the same amount of sway in the yaw movement conditions. These results are 

somewhat surprising given the head still conditions were relatively easy, where we would not 

expect a difference between groups. Alternatively, we would have expected more of a difference 

between groups in the head yaw condition, given the compromised status of the vestibular 

system in the vestibular group. However, this finding may reflect how well the individuals with 

vestibular disorders had compensated.   
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 LIMITATIONS 

The study visit required one hour and forty-five minutes and even longer for older adults, which 

may have caused fatigue. However, randomizing the testing conditions for each subject and 

providing rest breaks every three exercises may have eliminated the fatigue effect.  

 Although subjects practiced the head movement in the yaw direction with a laser light 

attached to the head before they started the experiment, the laser light was not used during the 

experiment and subjects may not have had a good control over the range of head movement 

during exercises with yaw head movement. Due to this limitation, subjects may have decreased 

the range or the speed of head movement in order to maintain their balance. 

The small sample size of people with vestibular disorders may have decreased the power 

of finding a statistically significant difference between patients and healthy matched subjects. 

However, given the effect size of 0.15 obtained from these results, it would have taken 245 

subjects in the vestibular group in order to detect a difference.  

 CONCLUSION 

Postural sway measures and ratings of perceived difficulty were able to demonstrate surface, 

vision, stance, head movement effects. However, individuals with vestibular disorders did not 

produce more sway compared with controls, but they did have higher ratings of perceived 

difficulty with Scale A, which may consider advantageous over Scale B, and sway parameters. 
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7.0  GENERAL DISCUSSION 

This primary motivation of this study was to address the lack of valid measures to quantify the 

intensity of balance exercise difficulty (Farlie et al., 2013; Pescatello & American College of 

Sports Medicine., 2014). This research is intended for physical therapists and other clinicians 

who provide balance interventions, in order to help them to accurately prescribe balance and 

vestibular exercises to their clients. In this study, we intended to establish the reliability and 

validity of two new developed rating of perceived difficulty scales in order to use them to 

quantify the difficulty of balance exercises in cases where postural sway measurement is not 

possible. In addition, we investigated the effect of age, vestibular disorders, and exercise 

conditions on postural and perceptual measurements.  

The first aim of this study was to examine the test-retest reliability of subjects’ 

performance during standing balance exercises. The reason for undertaking this aim was that, 

although test-retest reliability of postural sway measures of subjects’ performance during the 

static standing balance exercises had been investigated in previous studies (Benvenuti et al., 

1999; Doyle et al., 2007; Goldie et al., 1989; Heebner et al., 2015; Hertel et al., 2006; Lafond et 

al., 2004; Moe-Nilssen, 1998; Rafal et al., 2011; Ruhe et al., 2010; Swanenburg et al., 2008), it 

had been limited to a fewer number of exercises. Additionally, to our knowledge, the reliability 

of ratings of perceived difficulty of static standing balance exercises has never been investigated. 

As a result, we examined the test-retest reliability of postural sway measures of subjects’ 
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performance and perceptual ratings of the difficulty of static standing balance exercises by 

measuring sway performance using an IMU and perceptual ratings using two rating of perceived 

difficulty scales, during 24 different balance exercises that were conducted two times each on 

two visits occurring one week apart. We found that all of the quantitative sway measures that we 

examined demonstrated acceptable reliability, while sway velocity measures were the most 

reliable. Furthermore, after averaging two trials from each visit, the reliability coefficients 

increased significantly for all sway measures to be moderate to excellent, which indicates clearly 

the importance of averaging two trials in order to obtain reliable measures. Rating of perceived 

difficulty Scales A and B demonstrated fair to substantial agreement with few exceptions. 

Therefore, the results suggest that sway measures and ratings of perceived difficulty have 

sufficient reliability to be used as measures of balance exercise intensity. 

Currently, there are no established methods for quantifying the intensity of balance 

exercises (Farlie et al., 2016; Farlie et al., 2013; Pescatello & American College of Sports 

Medicine., 2014), which presents a barrier for being able to prescribe the initial intensity and 

progress the intensity of balance exercises. In many settings such as balance rehabilitation 

clinics, advanced tools such as force platforms or accelerometers are not in common use to 

quantify balance intensity and performance. Therefore, it would be useful to employ another 

measure to serve this purpose. In other rehabilitation settings, ratings of perceived exertion are 

commonly used to monitor relative intensity of aerobic or resistance exercises (Pescatello & 

American College of Sports Medicine., 2014; Robertson et al., 2004; Robertson et al., 2003; 

Utter et al., 2004). Therefore, we wanted to see if a similar rating method could be developed for 

balance exercise.  The second aim of the study was to validate two scales of ratings of perceived 

difficulty of balance exercises by comparing the rating scales with quantitative sway measures, 
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using a linear regression based analysis. We compared the scores from the rating scales that we 

developed in this study with quantitative sway measures because sway measures were commonly 

used in the balance literature to describe the postural stability. The ratings of perceived difficulty 

scales had moderate to strong correlations with quantitative postural measures, demonstrating 

concurrent validity. Based on the findings of the reliability and validity studies, either of the two 

scales (Scale A and B) of rating of perceived difficulty of balance exercises can be used in clinic 

to establish a scientific basis for quantifying balance exercise difficulty. However, other factors 

may make the decision to use one or the other scales a better choice, as discussed below. 

The purposes of the third and fourth aims were to determine the relative difficulty of a 

wide variety of static standing exercises commonly performed in balance and vestibular 

rehabilitation, and validate common rubrics for treatment progression by recording postural sway 

measures (trunk tilt) and perceived difficulty. In addition, we desired to determine the effect of 

age on postural and perceptual measures over a wide spectrum of ages from 18 to 85 years old, 

as well as to understand the effect of having vestibular disorders on postural sway measures and 

the perceived difficulty. For the third aim, participants performed 24 randomized static standing 

balance exercises, which were a full-factorial design of the following different conditions: vision 

(eyes open and eyes closed); surface (firm and foam); base of support (feet apart and semi-

tandem); and head movements (head still, yaw, and pitch). For the fourth aim, subjects with 

vestibular disorders and matched healthy subjects were asked to perform two sets of 16 

randomized static standing exercises, which were a full-factorial design of the following 

different conditions: vision (eyes open and eyes closed); surface (firm and foam); base of support 

(feet apart and semi-tandem); head movements (head still and yaw). During the performance of 

each exercise, sway was measured and participants rated the perceived difficulty of each 
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exercise. Postural sway measures and ratings of perceived difficulty were able to demonstrate 

age, surface, vision, stance, and head movement effects. However, only the rating of perceived 

difficulty Scale A was able to show a difference between people with vestibular disorders and 

control subjects, which is considered an advantage for Scale A over Scale B and sway 

parameters. The lack of finding a difference between people with vestibular disorders and 

healthy matched subjects on any of the postural sway measures may be attributed to the good 

functional level compared with similar populations recruited in other studies that may indicate 

that they had good central compensation after their vestibular injury. Additionally, the small 

sample size of people with vestibular disorders may have decreased the power of finding a 

statistically significant difference between patients and healthy matched subjects. 

At the end of this study, clinicians can use the rating of perceived difficulty scales to 

estimate the intensity of each exercise in situations when sway cannot be measured. During 

training programs, rating of perceived difficulty scales can help to monitor the intensity of the 

exercises and provide clinicians with feedback of how challenging the exercises are to their 

clients, as well as feedback about if their clients are ready to progress to the next level of 

intensity. Additionally, ratings of perceived difficulty can be used for home-based balance 

exercise training so that the client can monitor if the home exercises are meeting the prescribed 

intensity targets. The sway measures collected could be used to set ranges of normal limits of 

sway for different age groups, and can be used as reference of normative data when comparing 

patients’ data to others. Finally, the 90% range and IQR values could be used for augmented 

sensory feedback devices to set the threshold limits of when feedback should be activated. 

The findings of this study may be generalized to other type of balance exercise categories 

such as dynamic balance exercises, as they share most of the measurements and exercise 
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conditions with static standing balance exercises. However, it is probably more difficult to 

generalize the findings of this study to other exercise categories, such as walking exercises, 

because the measurements that are used to quantify balance during walking are different from 

static standing balance exercises. In addition, the strategies used to maintain balance during 

walking are different than during static standing.  

 LIMITATIONS 

Each study visit required one hour and forty-five minutes and even longer for older adults which 

may have caused fatigue (Helbostad et al., 2010; Nardone, Tarantola, Giordano, & Schieppati, 

1997). However, randomizing the testing conditions during the experiment sessions and visits for 

each subject and the rest breaks every three exercises could eliminate the fatigue effect.  

 During data collection of the ratings of perceived difficulty, ratings may not have been 

completely independent. The participants rated the difficulty of the same exercises twice during 

the first visit, and twice during the second visit. As a result, participants may have recalled their 

first rating when making their second rating. This dependency in ratings recall may inflate the 

kappa coefficients. However, due to the large number of exercises included in our study, and the 

randomization of the trials, it would have been difficult for participants to recall previous ratings.  

Although subjects practiced the head movement in yaw and pitch directions with a laser 

light attached to the head before they started the experiment, the laser light wasn’t used during 

the experiment and subjects may not have had a good control over the range of head movement 

during exercises with yaw and pitch head movements. Due to this limitation, subjects may have 

decreased the range or the speed of head movement in order to maintain their balance.  
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The results of this study did not show a difference between people with vestibular 

disorders and controls subjects on any of the postural sway measures. The lack of a difference 

between patients and controls might be due to the small sample size of people with vestibular 

disorders, which may have decreased the power of finding a statistically significant difference 

between patients and healthy matched subjects. Another reason may explain the lack of a 

difference between the groups is that people with vestibular disorders in this study were believed 

to have good compensation after their injury based on their ABC and FGA scores, which were 

within normal levels. Future studies may include a larger sample size of people with vestibular 

disorders and may include variety of diagnoses of vestibular disorders to see whether different 

vestibular diagnoses affect postural sway measures and ratings of perceived difficulty differently. 

Due to undetected problems with the force platform that consisted of failure of multiple 

load cells, a loss of a high percentage of data (27% in middle-aged group, 20% in older adult 

group, and 13% in very old group), the COP data were excluded from the final statistical analysis 

to test the hypotheses. As a result, we were not able to compare between measures from the force 

plate and IMU. 
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8.0  FUTURE WORK  

Future studies may investigate which balance strategies or components (e.g. muscle activity, 

ankle/hip strategies, or reaching functional stability limits) used to maintain balance, are driving 

the rating of perceived difficulty. In addition, personality traits and functionality status such as 

overall body strength, gait speed, Functional Gait Assessment (FGA) may be examined to see 

their effects on postural and perceived measurements of performance of balance exercises. 

In this study, we established the reliability and validity of the rating of perceived 

difficulty scales A and B in static standing balance exercises for healthy adults. Future studies 

may investigate the responsiveness of these scales in a clinical setting. Furthermore, 

psychometric properties may be investigated in different age or diagnosis populations as well as 

different types of balance exercises such as dynamic standing and walking exercises.  
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9.0  CONCLUSION 

The purpose of this study was to establish the reliability and validity of two developed rating of 

perceived difficulty scales in order to use them to quantify the difficulty of balance exercises in 

cases where postural sway measurement is not possible. In addition, we investigated the effect of 

age, vestibular disorders, and exercise conditions on postural and perceptual measurements.   

The results demonstrated that the subjects’ performance and their rating of perceived 

difficulty of standing balance exercises are reliable. The RMS of trunk tilt velocity in the roll 

direction was the most reliable measure on average. The reliability scores of the sway measures 

increased after averaging two trials, which indicates clearly the importance of averaging 2 trials 

in order to obtain reliable measures. The ratings of perceived difficulty scales had moderate to 

strong correlations with quantitative postural measures, demonstrating concurrent validity. 

For the third aim, postural sway measures and ratings of perceived difficulty were able to 

demonstrate age, surface, vision, stance, head movement effects. Quantitative sway measures 

and ratings of perceived difficulty can be used to prescribe intensity of balance exercises and 

guide progression during rehabilitation. In this study, we developed a sequence of 24 static 

standing balance exercises from the exercise that produced the least amount of sway and rating 

to the exercise that generated the highest sway and rating of perceived difficulty, which can be 

used in balance rehabilitation programs.  
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For the fourth aim, postural sway measures and ratings of perceived difficulty were able 

to demonstrate surface, vision, stance, head movement effects. However, Individuals with 

vestibular disorders did not produce more sway compared with controls, but they did have higher 

ratings of perceived difficulty Scale A, which is considered an advantage for Scale A over Scale 

B, and sway parameters. 
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APPENDIX A 

Intraclass correlation coefficients, model (3, 1) of sway measures within and between visits 

Intraclass correlation coefficients, model (3, 1) of sway measures within the 1st visit 

Exercise 
RMS of pitch 

displacement 

RMS of roll 

displacement 

RMS of pitch 

velocity 

RMS of roll 

velocity 

RMS of AP 

acceleration 

RMS of ML 

acceleration 

1 0.17 0.27 0.71 0.79 0.28 0.44 

2 0.29 0.67 0.62 0.80 0.32 0.71 

3 0.42 0.11 0.59 0.80 0.56 0.40 

4 0.42 0.67 0.67 0.70 0.60 0.73 

5 0.51 0.69 0.63 0.67 0.58 0.71 

6 0.44 0.50 0.47 0.53 0.64 0.59 

7 0.38 0.47 0.56 0.81 0.45 0.71 

8 0.44 0.67 0.64 0.53 0.56 0.59 

9 0.36 0.49 0.63 0.68 0.48 0.58 

10 0.21 0.17 0.59 0.35 0.26 0.37 

11 0.33 0.43 0.45 0.55 0.34 0.49 

12 0.37 0.49 0.51 0.59 0.49 0.49 

13 0.42 0.45 0.73 0.63 0.53 0.57 

14 0.56 0.73 0.61 0.63 0.63 0.69 

15 0.54 0.56 0.48 0.67 0.57 0.58 

16 0.38 0.70 0.75 0.70 0.48 0.73 

17 0.52 0.63 0.57 0.61 0.52 0.54 

18 0.61 0.65 0.67 0.66 0.62 0.58 

19 0.49 0.63 0.87 0.66 0.60 0.62 

20 0.19 0.44 0.32 0.78 0.23 0.63 

21 0.41 0.45 0.51 0.51 0.42 0.45 

22 0.66 0.43 0.70 0.47 0.67 0.53 

23 0.12 0.66 0.18 0.71 0.34 0.68 

24 -0.04 0.32 0.37 0.43 -0.05 0.28 

Average 

score 
0.38 0.51 0.58 0.64 0.46 0.57 
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Intraclass correlation coefficients, model (3, 1) of sway measures within the 2nd visit 

Exercise 
RMS of pitch 

displacement 

RMS of roll 

displacement 

RMS of pitch 

velocity 

RMS of roll 

velocity 

RMS of AP 

acceleration 

RMS of ML 

acceleration 

1 0.52 0.43 0.73 0.65 0.58 0.47 

2 0.42 0.71 0.68 0.78 0.46 0.72 

3 0.35 0.49 0.44 0.55 0.42 0.59 

4 0.41 0.31 0.48 0.77 0.40 0.54 

5 0.66 0.72 0.65 0.73 0.68 0.74 

6 0.69 0.75 0.58 0.63 0.69 0.70 

7 0.24 0.31 0.12 0.06 0.24 0.27 

8 0.53 0.77 0.64 0.77 0.62 0.71 

9 0.67 0.50 0.83 0.62 0.68 0.48 

10 0.41 0.46 0.67 0.57 0.45 0.56 

11 0.37 0.45 0.57 0.65 0.38 0.53 

12 0.44 0.22 0.78 0.30 0.47 0.41 

13 0.31 0.58 0.58 0.61 0.37 0.62 

14 0.49 0.63 0.58 0.83 0.50 0.75 

15 0.63 0.66 0.63 0.66 0.62 0.66 

16 0.32 0.63 0.41 0.58 0.39 0.60 

17 0.53 0.58 0.65 0.76 0.52 0.61 

18 0.57 0.41 0.59 0.60 0.60 0.45 

19 0.50 0.15 0.41 0.21 0.51 0.22 

20 0.43 0.71 0.69 0.79 0.53 0.78 

21 0.80 0.78 0.69 0.70 0.81 0.76 

22 0.71 0.81 0.83 0.85 0.72 0.81 

23 0.52 0.84 0.68 0.77 0.46 0.80 

24 0.54 0.46 0.55 0.60 0.53 0.52 

Average 

score 
0.50 0.56 0.60 0.63 0.53 0.59 
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Intraclass correlation coefficients, model (3, 1) of sway measures between visits (1st session in 1st 

visit and 1st session in 2nd visit) 

Exercise 
RMS of pitch 

displacement 

RMS of roll 

displacement 

RMS of pitch 

velocity 

RMS of roll 

velocity 

RMS of AP 

acceleration 

RMS of ML 

acceleration 

1 0.47 0.43 0.58 0.52 0.53 0.50 

2 0.07 0.59 0.62 0.63 0.24 0.60 

3 0.39 0.28 0.38 0.41 0.32 0.47 

4 0.33 0.25 0.54 0.31 0.37 0.38 

5 0.34 0.81 0.48 0.71 0.37 0.71 

6 0.42 0.14 0.35 0.31 0.41 0.37 

7 0.45 0.21 0.41 0.19 0.51 0.18 

8 0.44 0.54 0.58 0.34 0.56 0.50 

9 0.43 0.46 0.47 0.51 0.41 0.47 

10 0.08 0.19 0.72 0.39 0.15 0.38 

11 0.44 0.48 0.62 0.50 0.45 0.56 

12 0.37 0.33 0.55 0.51 0.44 0.45 

13 0.38 0.48 0.52 0.57 0.43 0.61 

14 0.53 0.61 0.55 0.65 0.59 0.66 

15 0.43 0.49 0.26 0.47 0.45 0.53 

16 0.47 0.50 0.41 0.50 0.50 0.54 

17 0.44 0.58 0.42 0.59 0.41 0.56 

18 0.41 0.51 0.51 0.69 0.37 0.51 

19 0.61 0.34 0.51 0.24 0.66 0.36 

20 0.46 0.56 0.46 0.42 0.42 0.64 

21 0.59 0.57 0.38 0.38 0.51 0.55 

22 0.37 0.43 0.39 0.36 0.39 0.44 

23 0.44 0.61 0.45 0.58 0.20 0.55 

24 0.07 0.24 0.01 0.55 -0.04 0.31 

Average 

score 
0.39 0.44 0.47 0.47 0.40 0.49 
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Intraclass correlation coefficients, model (3, 1) of sway measures between visits (2nd session in 

1st visit and 2nd session in 2nd visit) 

Exercise 
RMS of pitch 

displacement 

RMS of roll 

displacement 

RMS of pitch 

velocity 

RMS of roll 

velocity 

RMS of AP 

acceleration 

RMS of ML 

acceleration 

1 0.42 0.45 0.62 0.64 0.45 0.54 

2 0.44 0.60 0.68 0.65 0.34 0.58 

3 0.21 0.26 0.49 0.78 0.07 0.45 

4 0.20 0.52 0.29 0.63 0.17 0.68 

5 0.54 0.67 0.61 0.64 0.53 0.67 

6 0.58 0.48 0.60 0.59 0.48 0.61 

7 0.19 0.11 0.10 0.10 0.19 0.11 

8 0.58 0.57 0.75 0.57 0.62 0.64 

9 0.46 0.39 0.68 0.69 0.46 0.60 

10 0.28 0.14 0.53 0.40 0.32 0.33 

11 0.19 0.43 0.56 0.57 0.21 0.46 

12 0.33 0.30 0.62 0.42 0.36 0.41 

13 0.35 0.55 0.66 0.58 0.31 0.59 

14 0.63 0.69 0.72 0.70 0.63 0.71 

15 0.63 0.63 0.52 0.60 0.61 0.65 

16 0.30 0.36 0.06 0.17 0.38 0.35 

17 0.31 0.43 0.51 0.36 0.31 0.38 

18 0.55 0.59 0.48 0.65 0.54 0.55 

19 0.43 0.53 0.76 0.64 0.49 0.60 

20 0.43 0.63 0.67 0.56 0.46 0.66 

21 0.55 0.60 0.63 0.58 0.58 0.65 

22 0.36 0.41 0.31 0.34 0.37 0.46 

23 0.51 0.76 0.79 0.79 0.53 0.80 

24 0.12 0.35 0.62 0.42 0.15 0.29 

Average 

score 
0.40 0.48 0.55 0.55 0.40 0.53 
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APPENDIX B 

Bland and Altman plot frequencies 

Difference in pitch velocity (deg/sec) within Visit 1, Trial 1 and Trial 2 

Exercise Median Range 
2.5th 

percentile 
25th 

percentile 
75th 

percentile 
97.5th 

percentile 

Interval 
of 50% of 
difference 

Interval 
of 95% of 
difference 

1 0.00 0.67 -0.26 -0.05 0.11 0.41 0.17 0.67 

2 0.00 1.09 -0.33 -0.12 0.15 0.72 0.27 1.05 

3 0.36 4.56 -1.96 -0.14 0.82 2.19 0.96 4.15 

4 0.01 1.29 -0.40 -0.13 0.12 0.57 0.24 0.96 

5 -0.03 2.55 -1.21 -0.19 0.18 0.91 0.37 2.13 

6 0.16 10.24 -2.13 -0.23 0.65 5.20 0.88 7.33 

7 0.00 1.59 -0.78 -0.07 0.06 0.46 0.12 1.25 

8 0.04 1.74 -0.43 -0.11 0.28 1.16 0.39 1.59 

9 0.36 7.90 -2.79 -0.27 0.87 3.37 1.14 6.16 

10 -0.01 3.69 -1.04 -0.14 0.14 1.68 0.29 2.72 

11 0.05 2.95 -1.53 -0.18 0.35 1.12 0.53 2.65 

12 0.10 11.30 -1.88 -0.36 0.70 5.82 1.06 7.69 

13 -0.03 1.21 -0.48 -0.12 0.06 0.50 0.17 0.98 

14 0.11 2.25 -0.53 -0.07 0.22 1.60 0.29 2.14 

15 0.21 8.17 -2.40 -0.19 0.66 5.34 0.85 7.74 

16 -0.05 2.10 -1.14 -0.19 0.09 0.50 0.29 1.65 

17 0.12 3.45 -0.79 -0.24 0.46 2.56 0.70 3.35 

18 0.27 7.99 -2.63 -0.41 0.71 4.72 1.12 7.35 

19 0.00 1.66 -0.39 -0.13 0.18 0.85 0.31 1.24 

20 0.08 9.13 -3.95 -0.20 0.39 2.39 0.60 6.34 

21 0.29 7.19 -2.75 -0.23 0.72 3.52 0.95 6.27 

22 0.02 7.67 -3.90 -0.19 0.36 2.24 0.55 6.14 

23 0.20 4.79 -3.39 -0.41 0.99 1.40 1.40 4.79 

24 -0.07 8.94 -2.17 -0.88 0.65 6.70 1.53 8.87 
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Difference in pitch velocity (deg/sec) within Visit 2, Trial 3 and Trial 4 

Exercise Median Range 
2.5th 
percentile 

25th 
percentile 

75th 
percentile 

97.5th 
percentile 

Interval 
of 50% of 
difference 

Interval 
of 95% of 
difference 

1 0.03 1.18 -0.59 -0.07 0.10 0.36 0.17 0.95 

2 0.04 1.28 -0.50 -0.09 0.19 0.61 0.27 1.11 

3 0.07 10.48 -5.17 -0.19 0.26 2.12 0.45 7.29 

4 0.01 3.80 -1.84 -0.11 0.10 0.58 0.22 2.42 

5 0.00 3.20 -1.19 -0.20 0.20 1.56 0.41 2.75 

6 -0.05 7.12 -3.08 -0.41 0.22 2.85 0.63 5.93 

7 0.00 9.12 -3.64 -0.10 0.05 1.25 0.15 4.89 

8 0.05 1.55 -0.51 -0.10 0.23 0.91 0.33 1.42 

9 0.09 4.60 -1.53 -0.22 0.50 2.78 0.72 4.31 

10 -0.02 1.71 -0.58 -0.16 0.10 0.91 0.26 1.49 

11 0.06 4.29 -1.95 -0.29 0.36 1.83 0.65 3.78 

12 0.04 4.04 -1.72 -0.35 0.62 2.11 0.96 3.83 

13 0.00 1.48 -0.71 -0.16 0.11 0.67 0.28 1.38 

14 0.01 3.13 -1.15 -0.28 0.16 1.44 0.44 2.59 

15 0.03 7.10 -3.36 -0.51 0.53 1.95 1.04 5.31 

16 0.08 7.13 -1.80 -0.07 0.23 2.87 0.30 4.67 

17 -0.03 3.13 -1.92 -0.49 0.20 1.10 0.69 3.02 

18 0.08 4.42 -2.58 -0.28 0.46 1.71 0.74 4.29 

19 0.01 5.70 -2.36 -0.14 0.17 1.53 0.31 3.89 

20 0.08 2.22 -0.75 -0.16 0.32 1.31 0.48 2.06 

21 0.10 8.64 -2.32 -0.32 0.46 4.18 0.78 6.51 

22 -0.09 6.34 -2.56 -0.35 0.24 2.85 0.59 5.40 

23 0.07 5.56 -1.11 -0.12 0.50 4.40 0.61 5.51 

24 0.00 5.79 -3.65 -0.78 0.64 2.10 1.43 5.75 
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Difference in pitch velocity (deg/sec) between visits, Trial 1 and Trial 3 

Exercise Median Range 
2.5th 

percentile 
25th 

percentile 
75th 

percentile 
97.5th 

percentile 

Interval 
of 50% of 
difference 

Interval 
of 95% of 
difference 

1 -0.01 1.23 -0.67 -0.12 0.05 0.40 0.17 1.07 

2 0.03 1.40 -0.67 -0.16 0.14 0.51 0.29 1.18 

3 0.35 6.47 -2.68 -0.34 0.85 3.27 1.20 5.96 

4 -0.06 1.98 -0.77 -0.20 0.08 0.67 0.27 1.44 

5 0.00 3.60 -1.60 -0.22 0.24 1.25 0.45 2.85 

6 0.20 9.98 -2.55 -0.50 0.75 5.09 1.25 7.65 

7 0.02 2.63 -1.34 -0.10 0.08 0.33 0.18 1.67 

8 0.08 2.55 -0.84 -0.17 0.34 1.06 0.50 1.90 

9 0.20 8.01 -3.82 -0.59 0.93 3.49 1.52 7.30 

10 0.01 2.60 -0.60 -0.13 0.14 1.35 0.28 1.94 

11 -0.05 2.46 -1.36 -0.40 0.35 0.96 0.74 2.32 

12 0.30 10.24 -1.78 -0.17 0.82 5.48 0.99 7.26 

13 -0.06 1.60 -0.74 -0.22 0.07 0.61 0.29 1.34 

14 0.10 3.42 -0.87 -0.04 0.26 1.77 0.30 2.65 

15 0.21 7.78 -2.20 -0.39 0.84 4.74 1.23 6.94 

16 -0.11 3.58 -2.78 -0.41 0.11 0.56 0.52 3.34 

17 0.07 5.02 -1.51 -0.27 0.71 3.27 0.98 4.79 

18 0.04 8.54 -4.11 -0.38 0.53 4.03 0.90 8.14 

19 0.01 4.63 -1.39 -0.15 0.19 1.41 0.34 2.80 

20 0.14 4.86 -1.17 -0.18 0.52 2.45 0.70 3.62 

21 0.24 10.00 -4.45 -0.59 1.19 3.28 1.78 7.73 

22 -0.12 8.55 -4.54 -0.32 0.25 2.60 0.57 7.13 

23 -0.13 2.91 -1.17 -0.34 0.58 1.70 0.92 2.87 

24 -0.20 9.09 -1.81 -0.76 0.25 7.20 1.01 9.01 
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Difference in pitch velocity (deg/sec) between visits, Trial 2 and Trial 4 

Exercise Median Range 
2.5th 

percentile 
25th 

percentile 
75th 

percentile 
97.5th 

percentile 

Interval 
of 50% of 
difference 

Interval 
of 95% of 
difference 

1 -0.02 1.04 -0.62 -0.10 0.03 0.27 0.13 0.89 

2 0.00 0.89 -0.41 -0.16 0.14 0.42 0.29 0.83 

3 -0.04 8.36 -4.50 -0.70 0.40 2.12 1.10 6.62 

4 -0.03 3.81 -2.04 -0.18 0.10 0.33 0.28 2.37 

5 0.06 3.19 -1.29 -0.14 0.22 1.17 0.36 2.46 

6 0.03 5.82 -3.07 -0.50 0.39 2.13 0.89 5.20 

7 -0.02 7.88 -3.58 -0.11 0.08 0.73 0.19 4.31 

8 0.03 1.15 -0.38 -0.10 0.16 0.66 0.26 1.04 

9 0.15 6.20 -3.02 -0.37 0.64 2.51 1.02 5.53 

10 -0.04 2.97 -0.70 -0.20 0.17 1.32 0.37 2.01 

11 0.01 3.23 -2.11 -0.37 0.40 1.07 0.77 3.17 

12 0.02 5.84 -1.73 -0.34 0.83 3.27 1.18 5.00 

13 -0.02 1.37 -0.84 -0.16 0.06 0.38 0.22 1.22 

14 0.02 1.89 -0.97 -0.12 0.23 0.55 0.35 1.52 

15 0.02 10.31 -4.29 -0.44 0.49 2.46 0.93 6.76 

16 -0.01 7.29 -2.77 -0.29 0.13 1.98 0.42 4.75 

17 0.03 3.98 -2.50 -0.55 0.30 1.30 0.85 3.81 

18 -0.14 5.77 -2.57 -0.58 0.30 3.11 0.88 5.68 

19 0.01 2.93 -1.54 -0.14 0.14 0.50 0.28 2.04 

20 0.21 2.69 -0.92 0.01 0.45 1.46 0.43 2.38 

21 -0.05 5.89 -2.52 -0.64 0.51 3.19 1.15 5.71 

22 -0.13 16.54 -7.04 -0.58 0.18 5.07 0.76 12.11 

23 0.36 2.46 -0.75 -0.33 0.46 1.70 0.79 2.45 

24 -0.10 6.02 -3.69 -0.83 0.35 2.30 1.19 5.99 
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Difference in roll velocity (deg/sec) within Visit 1, Trial 1 and Trial 2 

Exercise Median Range 
2.5th 

percentile 
25th 

percentile 
75th 

percentile 
97.5th 

percentile 

Interval 
of 50% of 
difference 

Interval 
of 95% of 
difference 

1 0.00 0.33 -0.14 -0.02 0.02 0.16 0.04 0.30 

2 0.02 1.82 -0.88 -0.12 0.32 0.66 0.44 1.54 

3 0.01 0.77 -0.24 -0.05 0.10 0.38 0.15 0.62 

4 -0.03 1.81 -0.31 -0.08 0.03 0.86 0.11 1.17 

5 -0.03 3.63 -1.58 -0.21 0.19 1.32 0.41 2.90 

6 0.06 4.09 -1.30 -0.08 0.18 1.43 0.26 2.72 

7 0.00 0.34 -0.09 -0.02 0.02 0.17 0.04 0.26 

8 0.06 5.20 -1.12 -0.16 0.39 3.32 0.55 4.44 

9 0.02 1.05 -0.47 -0.07 0.14 0.36 0.21 0.83 

10 -0.04 3.36 -0.61 -0.13 0.05 1.54 0.17 2.15 

11 -0.17 3.13 -1.71 -0.31 0.31 1.24 0.61 2.95 

12 -0.03 3.48 -1.56 -0.23 0.19 1.59 0.42 3.15 

13 -0.01 0.83 -0.45 -0.06 0.05 0.32 0.10 0.77 

14 0.06 3.96 -0.64 -0.08 0.24 2.04 0.32 2.68 

15 0.05 1.28 -0.46 -0.06 0.18 0.68 0.24 1.14 

16 -0.05 1.92 -1.01 -0.19 0.15 0.72 0.33 1.73 

17 0.27 4.39 -1.22 -0.21 1.16 3.00 1.37 4.21 

18 0.02 3.62 -1.34 -0.30 0.40 2.13 0.71 3.47 

19 -0.01 1.16 -0.56 -0.08 0.05 0.41 0.13 0.97 

20 0.02 3.21 -1.38 -0.18 0.19 1.41 0.36 2.79 

21 0.06 2.25 -0.40 -0.11 0.15 1.27 0.26 1.68 

22 0.10 6.87 -3.10 -0.25 0.44 2.62 0.70 5.71 

23 0.51 5.14 -2.50 -0.54 1.13 2.60 1.67 5.10 

24 -0.09 8.39 -3.79 -0.86 0.98 4.60 1.85 8.39 
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Difference in roll velocity (deg/sec) within Visit 2, Trial 3 and Trial4 

Exercise Median Range 
2.5th 

percentile 
25th 

percentile 
75th 

percentile 
97.5th 

percentile 

Interval 
of 50% of 
difference 

Interval 
of 95% of 
difference 

1 -0.01 0.60 -0.14 -0.02 0.02 0.28 0.04 0.42 

2 0.01 2.38 -1.13 -0.08 0.09 0.60 0.17 1.73 

3 0.00 1.49 -0.65 -0.06 0.04 0.25 0.10 0.90 

4 0.01 0.72 -0.27 -0.05 0.09 0.33 0.14 0.60 

5 -0.02 2.94 -0.89 -0.15 0.14 1.23 0.29 2.12 

6 -0.03 1.96 -0.64 -0.15 0.08 1.07 0.24 1.72 

7 0.00 2.97 -1.21 -0.02 0.03 0.37 0.05 1.58 

8 0.02 2.76 -1.05 -0.19 0.20 1.59 0.39 2.64 

9 0.02 1.28 -0.25 -0.04 0.11 0.69 0.15 0.94 

10 -0.02 1.15 -0.55 -0.10 0.07 0.36 0.17 0.91 

11 -0.03 3.64 -1.66 -0.16 0.26 1.74 0.42 3.39 

12 -0.03 4.06 -0.89 -0.23 0.19 2.13 0.42 3.02 

13 0.00 0.96 -0.42 -0.07 0.06 0.34 0.13 0.76 

14 -0.02 1.70 -0.86 -0.15 0.11 0.74 0.26 1.60 

15 0.01 1.17 -0.46 -0.06 0.10 0.46 0.16 0.92 

16 0.02 3.32 -0.69 -0.06 0.35 2.17 0.42 2.86 

17 -0.16 4.32 -2.40 -0.48 0.40 1.60 0.88 4.01 

18 0.01 4.38 -1.28 -0.32 0.28 2.65 0.59 3.93 

19 0.02 3.58 -0.59 -0.05 0.06 1.45 0.12 2.05 

20 -0.05 2.43 -0.88 -0.20 0.23 1.33 0.43 2.21 

21 0.06 1.11 -0.40 -0.10 0.17 0.56 0.26 0.96 

22 -0.02 3.49 -1.31 -0.33 0.34 1.94 0.67 3.25 

23 -0.04 6.31 -1.52 -0.36 0.63 4.70 1.00 6.22 

24 0.09 10.25 -7.78 -0.30 0.60 2.40 0.90 10.18 
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Difference in roll velocity (deg/sec) within visits, Trial 1 and Trial 3 

Exercise Median Range 
2.5th 

percentile 
25th 

percentile 
75th 

percentile 
97.5th 

percentile 

Interval 
of 50% of 
difference 

Interval 
of 95% of 
difference 

1 0.00 0.75 -0.25 -0.04 0.02 0.25 0.06 0.50 

2 0.07 2.25 -0.93 -0.07 0.30 1.03 0.36 1.96 

3 0.04 1.63 -0.26 -0.03 0.11 0.73 0.15 0.99 

4 0.00 2.72 -0.49 -0.12 0.05 1.18 0.17 1.67 

5 0.06 3.07 -1.03 -0.16 0.34 1.42 0.51 2.44 

6 0.11 4.55 -1.24 -0.07 0.21 1.72 0.29 2.96 

7 0.01 1.15 -0.38 -0.03 0.03 0.39 0.05 0.77 

8 0.15 7.34 -1.54 -0.19 0.49 3.83 0.68 5.38 

9 0.02 1.16 -0.70 -0.08 0.22 0.34 0.31 1.04 

10 0.01 2.80 -0.38 -0.07 0.09 1.45 0.16 1.83 

11 -0.07 3.58 -1.67 -0.39 0.30 1.63 0.69 3.31 

12 0.06 4.35 -1.94 -0.11 0.40 1.55 0.51 3.49 

13 0.00 0.82 -0.38 -0.08 0.05 0.35 0.12 0.73 

14 0.03 3.11 -0.76 -0.16 0.30 1.83 0.46 2.59 

15 0.10 1.24 -0.27 -0.02 0.23 0.95 0.25 1.22 

16 -0.12 3.54 -2.54 -0.44 0.15 0.81 0.58 3.36 

17 0.32 6.35 -1.42 -0.18 0.81 4.35 0.99 5.77 

18 0.05 3.14 -1.14 -0.37 0.50 1.85 0.87 2.99 

19 0.01 3.17 -1.46 -0.05 0.05 0.45 0.10 1.91 

20 0.17 4.77 -1.48 -0.19 0.70 2.32 0.89 3.80 

21 0.04 2.31 -0.44 -0.11 0.25 1.37 0.36 1.81 

22 0.03 8.74 -4.88 -0.20 0.26 2.30 0.46 7.18 

23 0.39 5.90 -2.60 -0.18 1.37 3.30 1.54 5.90 

24 0.16 6.18 -2.94 -1.28 1.01 3.20 2.29 6.14 
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Difference in roll velocity (deg/sec) within visits, Trial 2 and Trial 4 

Exercise Median Range 
2.5th 

percentile 
25th 

percentile 
75th 

percentile 
97.5th 

percentile 

Interval 
of 50% of 
difference 

Interval 
of 95% of 
difference 

1 0.00 0.47 -0.26 -0.02 0.02 0.14 0.04 0.40 

2 0.04 2.73 -0.88 -0.20 0.18 1.33 0.37 2.21 

3 0.01 0.73 -0.29 -0.04 0.09 0.34 0.13 0.63 

4 0.01 0.98 -0.38 -0.04 0.06 0.50 0.11 0.89 

5 0.11 3.86 -1.15 -0.09 0.25 1.65 0.34 2.80 

6 0.04 2.94 -0.98 -0.15 0.16 1.15 0.31 2.13 

7 0.00 2.38 -1.15 -0.02 0.02 0.09 0.05 1.25 

8 0.10 2.99 -1.35 -0.12 0.33 1.38 0.45 2.72 

9 0.05 0.76 -0.33 -0.04 0.15 0.39 0.19 0.72 

10 0.00 2.02 -0.58 -0.07 0.11 0.78 0.18 1.36 

11 0.08 3.93 -1.83 -0.20 0.43 1.79 0.63 3.62 

12 0.07 3.46 -0.88 -0.10 0.34 2.19 0.44 3.06 

13 -0.01 0.80 -0.39 -0.08 0.06 0.36 0.14 0.75 

14 -0.03 2.54 -1.10 -0.25 0.16 1.01 0.41 2.11 

15 0.08 1.26 -0.30 0.01 0.16 0.76 0.15 1.06 

16 -0.03 5.26 -1.68 -0.27 0.16 1.82 0.43 3.50 

17 0.01 7.75 -5.15 -0.51 0.51 1.45 1.03 6.60 

18 -0.05 2.54 -1.20 -0.49 0.45 1.29 0.94 2.50 

19 0.01 1.34 -0.56 -0.02 0.10 0.63 0.12 1.18 

20 0.13 3.11 -1.00 -0.07 0.35 1.98 0.42 2.98 

21 0.04 1.58 -0.39 -0.08 0.20 0.89 0.28 1.28 

22 -0.15 9.97 -4.59 -0.47 0.19 3.11 0.66 7.70 

23 0.10 4.58 -2.13 -0.61 1.11 2.40 1.72 4.53 

24 0.24 11.19 -9.42 -0.52 0.68 1.70 1.20 11.12 
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APPENDIX C 

THE TESTING LAB’S TEMPERATURE VALUES IN FAHRENHEIT 
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