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Cancer is a complex disease driven by somatic genomic alterations (SGAs) that perturb signaling 

pathways and consequently cellular function. Identifying combinatorial patterns of pathway 

perturbations would provide insights into common disease mechanisms shared among tumors, 

which is important for guiding treatment and predicting outcome. However, identifying 

perturbed pathways is challenging, because different tumors can have the same perturbed 

pathways that are perturbed by different SGAs.  

We started off by designing a novel semantic representation that captures the functional 

similarity of distinct SGAs perturbing a common pathway in different tumors. This 

representation was used alongside the nested hierarchical Dirichlet process topic model in order 

to identify combinatorial patterns in altered signaling pathways. We found that the topic model 

was able to capture the functional relationships between topics. It was also able to identify cancer 

subtypes composed of tumors from different tissues of origin that exhibit different survival rates. 

These results led us to investigate the performance of the methodology on pan-cancer 

data, as well as in conjunction with cancer driver data. The results revealed that the framework 

was still able to identify clinically relevant features in pan-cancer. However, the addition of 

driver data decreased the noise in the data and improved the separation of tumors in the 

clustering results. This provided support for including the use of driver data in our methodology. 
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Vicky Chen, PhD 

University of Pittsburgh, 2016
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In order to have gene representations independent of literature, we developed a biological 

representation that could identify functionally related genes. Its performance when used 

alongside topic modeling was tested. We found that the topic association patterns separated 

tumors by their tissue of origin. But, analyzing some of the cancer types on an individual basis 

still led to significant differences in survival. 

Our studies show the potential for using alternative representations in conjunction with 

topic modeling to investigate complex genomic diseases. With further research and refinement of 

this methodology, it has the potential to capture the relationship between pathways involved in 

cancer. This would contribute to a better understanding of cancer disease mechanisms and 

treatment. 
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1.0 INTRODUCTION 

1.1 CANCER 

Cancer is one of the leading causes of death worldwide, responsible for 8.2 million deaths in 

2012 [1]. It is a disease where abnormal cells have uncontrolled cell growth and division, and is 

able to invade other tissues [2]. There are many different exogenous and endogenous factors 

related to cancer, which may lead to genetic alterations or otherwise impact cellular functions. 

Factors that induce altered cellular functions include viruses [3-5] and chronic inflammation [6-

8]. However, the disease is more often the result of genetic alterations that lead to altered cellular 

function [9, 10]. These may be constitutional or somatic genetic alterations (SGAs). 

Constitutional alterations, which are also referred to as germline alterations, are genetically 

inherited; thus each constitutional alteration is present in every cell. On the other hand, SGAs 

occur after conception and thus each SGA is not present in every cell. While constitutional 

genetic alterations may result in a predisposition towards developing cancer [11-15], inherited 

cancer makes up only a small proportion of the total cancer cases [16]. Most cancers are the 

result of SGAs that are accumulated over time [9]. 

Understanding how SGAs contribute to the development of cancer would shed light on 

the mechanisms that underlie the disease and guide treatment. Currently, cancers are first 

classified by the organ of origin and then further classified into subtypes or grades according to 
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their clinical and/or molecular characteristics [17]. For example, cancers are first classified as 

lung cancer, breast cancer, etc, where breast cancers can be further classified as LumA, LumB, 

Basal and Her2 subtypes according to their molecular characteristics through gene expression 

[18, 19]. Classification according to anatomical location is a natural option from a taxonomic 

perspective, and molecular classification of tumors based on gene expression provides valuable 

clinical information in terms of prognosis. However, current classifications do not reflect the 

underlying disease mechanisms. In other words, current classification of cancers is mainly based 

on the observed phenotype rather the driving causes of the disease. As such, the current 

classifications have limited utility in terms of guiding precision medicine targeting the cause of 

the disease. Here we hypothesize that, by finding the combinatorial patterns of pathway 

perturbations among cancers from different tissue of origin, we may classify cancers according 

to the disease mechanisms. This, in turn, will lead to a better understanding of cancer and better 

therapy. 

1.1.1 Biological Processes of Cancer 

Decades of cancer research revealed that a number of biological processes are involved in the 

development of cancer. Hanahan and Weinberg have summarized these as six different 

hallmarks of cancer (sustained proliferative signaling, evading growth suppressors, tissue 

invasion and metastasis, enabling replicative immortality, sustained angiogenesis, and resisting 

cell death), and more recently added two emerging hallmarks (deregulated metabolism and 

avoiding immune destruction) and two enabling characteristics (tumor-promoting inflammation 

and genome instability and mutation) [7, 10]. The theory is that normal cellular functions need to 

be altered in order to attain these hallmarks and for normal cells to develop into malignant and 



 3 

metastatic tissue. These changes in cellular function are, in turn, the result of altered functions of 

cellular signaling pathways regulating these processes. Alterations of signaling pathways that 

lead to cancer are often the result of SGAs affecting signaling proteins. For example, mutations 

in the RB1 pathway lead to aberrant activation of cell proliferation pathways [20-22], and SGAs 

resulting in aberrant activation of mTOR pathways enable cancer cells to adapt to changed 

nutrition or hypoxic environments [23, 24]. It is believed that different combinations and degrees 

of perturbation of signaling pathways underlying the hallmark processes lead to the 

heterogeneous phenotypes associated with individual tumors.   

Projects such as The Cancer Genome Atlas (TCGA) and the International Cancer 

Genome Consortium have made a large volume of cancer genomic data available. One goal of 

analyzing SGA data is to reveal the pathways perturbed by SGA events and therefore shed light 

on the disease mechanisms of cancers. Analyses of this data have lead researchers to notice that 

the prevalence of distinct SGA varies across different types of cancer, both within and across 

different tissue types [25-34]. For example, it is noted that TP53 mutations are highly prevalent 

in ovarian cancer but relatively infrequent in kidney cancers [25, 31, 35]. Most current TCGA 

publications mainly concentrate on investigating the prevalence of mutations and often report the 

results as a ranked list of most frequently mutated genes.  However, such a list does not reflect 

the combinatorial patterns of SGAs, such as where a set of SGAs commonly co-occurs in a 

subset of tumors, as an indication that these tumors share a common disease mechanism.  It is 

noted that specific combination of SGAs, thereby the combination of perturbed signaling 

pathways, determines the aggressiveness of cancer and its responsiveness to therapy [18, 36]. 

Different combinations of perturbed pathways can occur in cancers from the same organ of 

origin, which is what results in the heterogeneity of cancer [9, 18]. However, to the best of our 
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knowledge, few studies try to develop and apply statistical methods specifically aimed to identify 

combinatorial patterns of SGAs or pathways as a means for discovering distinct disease 

mechanisms underlying heterogeneity of cancers [37, 38]. This is the main task to be addressed 

in this dissertation.   

There are two challenges in detecting patterns in signaling pathway perturbations based 

on genomic alteration data from TCGA or the International Cancer Genome Consortium (ICGC). 

The first of these lies in the fact not all mutations that occur are “driver” mutations that lead to 

the development of cancer. Rather, a cancer cell may have multiple “passenger” mutations that 

do not contribute to cancer development [9, 39, 40]. Thus, it is necessary to be able to distinguish 

between driver and passenger mutations. The second challenge lies in the fact that signaling 

pathways are composed of multiple proteins. It is often the case that perturbing any one of the 

proteins along a pathway would have the same impact on the entire pathway. For example, Ras, 

Raf, MEK and MAPK are all part of the MAPK signaling pathway, and mutating any one of 

these genes would lead to altered cell proliferation [41-44]. As discussed before, this 

phenomenon leads to the apparent high degree of heterogeneity of SGAs, i.e., very few tumors 

share a common set of SGAs even if a common set of pathways are perturbed among them [9, 

18, 45]. This is what makes it difficult to determine that the same signaling pathway is affected 

in different tumors, since different SGAs may be observed. When it is already difficult to 

determine that an individual signaling pathway is perturbed, it becomes even more challenging to 

learn combinations of pathway perturbations directly based on genomic alteration data. In this 

dissertation, we will investigate methods to overcome these challenges and detect patterns in 

pathway perturbations in cancer based on SGAs. 
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1.1.2 Identifying Driver Genes 

As cancer genomic sequencing data became increasingly available, it is now widely appreciated 

that most of the mutations in a cancer sample are passenger mutations and only a few of them are 

driver mutations [7, 35, 46]. It is important to identify driver genes in order to reduce the amount 

of noise when trying to classify cancers. Since identifying driver genes is vital to understanding 

cancer development, many researchers have focused on this problem. Multiple approaches have 

been implemented in order to distinguish between driver mutations and passenger mutations and 

evaluate the resulting identifications. The current driver identification approaches falls under 

three large categories, with each concentrating on one of the following characteristics: frequency 

of gene alteration (recurrence), mutual exclusivity of mutations within a pathway, and functional 

impact of mutations. 

1.1.2.1 Frequency-based approaches for identifying driver genes 

The frequency-based approaches aim to identify the mutations that are observed in a 

population of tumors with a prevalence above random chance determined according to a 

background mutation frequency [35, 39, 47-50]. The assumption is that the mutations that 

increase the chances of cancer developing would occur at a higher prevalence than random 

mutations due to “positive selection”. Thus the mutations that occur at a higher frequency are 

more likely to be driver mutations that result in oncogenic advantages in cancer cells [7, 9, 10]. 

Most of these methods identify driver genes based on somatic mutations [35, 39, 47-50]. 

Although researchers also investigated the landscape of copy number alterations to identify 

cancer driver genes [51], there is no established criterion to determine if a copy number 

alteration of a gene or chromosome region is a driving event.  
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In order to accurately predict which genes are mutated at a higher than expected 

frequency, a background mutation frequency needs to be established. Based on the idea that 

silent mutations do not undergo selective pressure, Greenman et al. implemented one of the most 

basic methods of calculating background mutation frequency by using the rate of silent 

mutations [39]. This method has been used to evaluate mutated genes in both breast cancer and 

across the entire human cancer genome [52, 53]. However, having a one-fit-all background 

mutation rate can result in both false positive and false negative calls for driver mutations. 

Researchers noticed that mutation rate can be highly heterogeneous across the human genome, 

dependent on genome location, sequence patterns (e.g., nucleotide repeats), and transcription 

activity of the region [48, 54]. In order to compensate for the fact that the mutation rate of genes 

isn’t consistent in individual patients or in individual genes, Lawrence et al. introduced an 

adjustment to this calculation by taking into account the patient-specific mutation frequency and 

mutation spectrum, and gene-specific background mutation rates [47, 48]. They implemented 

this method and made it available in the MutSigCV tool [48]. Since it is also possible for 

mutation rates to vary based on the type of mutation, another method of calculating background 

mutation frequency is to separate the mutations into different mutational mechanism categories 

[35, 49, 50]. This is relevant in situations where a certain type of mutation mechanism is more 

common. For example, smoking increases the prevalence of the mutation mechanism G:C-to-

T:A transversions. This means there would be more passenger genes with this type of mutation. 

Thus, a gene with this type of mutation would have to recur at a higher rate in order to be of 

interest when compared to a gene with a different mutation mechanism. The background rate 

was calculated for each mutation mechanism category by dividing the number of mutations in a 

category by the total number of bases where such a mutation can occur [35, 49, 50]. 
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While frequency-based approaches can detect genes that have high mutation frequencies 

as drivers with relatively good accuracy, they are not suited to differentiate between driver and 

passenger mutations that have relatively low frequency. For example, Lawrence et al. examined 

mutation rates and performed saturation analysis using pan-cancer data from TCGA, and they 

concluded that current methods cannot reliably detect drivers if the mutation rate is below 20% 

[47], however over 90% of genes mutated in TCGA samples have a mutation rate below this 

threshold. Even though methods have been developed to better detect the genes that are mutated 

at intermediate frequencies [47], being able to use recurrence to detect driver genes that occur at 

low frequencies remains difficult. 

Cancers can also be driven by somatic copy number alterations (amplification or 

deletion) of certain genes. The best known examples are the copy number alteration of MYC 

[55], ERBB2 (Her2) [56] and PTEN [57]. Her2 amplification is prevalent in breast cancers and is 

associated with specific molecular characteristics, such that a molecular subtype of breast cancer 

is labeled as Her2-positive [19, 58]. While many genes affected by somatic copy number 

variations are classified as drivers through biological experiments, setting a guideline by which 

to detect drivers in copy number variations has been difficult. In order to take steps toward 

detecting drivers, Zack et al. established a way to estimate the background frequency of copy 

number alterations [51]. They did so by calculating the frequency that copy number alteration 

events of similar length and amplitude occur across the entire TCGA dataset, while correcting 

for the length and chromosomal location of the copy number alteration [51]. However, they were 

still unable to set a threshold by which to determine which genes are drivers. 
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1.1.2.2 Finding driver genes on a pathway based on their mutual exclusivity pattern 

Mutation patterns in tumors have been used to identify driver genes or pathways based on 

the characteristic that SGAs affecting members of a common pathway are less likely to co-occur 

in the same tumor, a phenomenon referred to as mutual exclusivity. The explanation for this 

phenomenon is that when a tumor only needs one driver gene to be altered in a driver pathway, 

altering a second driver is unnecessary [45]. Thus, driver genes with the same functional impact 

would tend to, but does not have to, be mutually exclusive. Both somatic gene mutations [45, 49, 

59, 60] and copy number alterations [25, 45, 51, 59] have been used to detect mutual exclusivity. 

One method of determining mutual exclusivity is to calculate the correlation or anticorrelation of 

genes when compared with a background co-occurrence rate [49, 51]. Like the background 

mutation rate, the background co-occurrence rate can be calculated in different ways. Zack et al. 

calculated the background co-occurrence rate for copy number alterations by permuting the copy 

number profiles of chromosomes across samples [51]. When calculating the rate for gene 

mutations, Dees et al. permuted the observed gene mutations, while keeping both the distribution 

of the number of gene mutations per sample and the number of mutations in each gene constant 

[49]. 

Mutual exclusivity can also be identified independent of a background co-occurrence 

rate. Ciriello et al. used gene interaction networks to identify gene subsets that are fully 

connected [60]. These subsets are then assessed for highly recurrent and mutually exclusive 

genes, by comparing to randomly generated networks [60]. The Dendrix algorithm was 

developed to determine mutual exclusivity by identifying genes that have a maximal coverage of 

the tumors while minimizing the overlap of the genes [59]. This has also been extended to 

simultaneously identify multiple driver pathways [45]. 
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Mutual exclusivity is not based on the frequency of alterations, but rather based on the 

assumption that the mutual exclusivity of genes is the result of them being part of the same 

driver pathways. As a result, methods based on mutual exclusivity are capable of detecting driver 

genes that have a lower rate of occurrence. However, there are many other situations that could 

result in genes being mutually exclusive besides being part of the same driver pathway. Since the 

algorithms are unable to differentiate between mutually exclusive drivers and other situations 

that result in mutual exclusivity, this would impact the accuracy of the driver genes predicted by 

these methods [61].  

1.1.2.3 Identifying driver genes using the impact of mutations on individual gene function  

Driver mutations have also been identified by detecting genes hosting mutation events 

that likely affect their function. For example, a gene that is affected by mutations that tend to 

cause loss or gain of function, e.g., truncation mutations or relatively large insertions or 

deletions, or mutations in the evolutionally conserved regions. The theory behind searching for 

driver genes based on the functional impact of their mutation is that driver genes would have 

more mutations with greater functional impact, because drivers need to be altered in order for 

cancer to develop. Many different methods of assessing the functional impact of a mutation have 

been developed. For example, Reva et al. used evolutionary information to predict functional 

impact, with the idea that residues that are evolutionarily conserved are more likely to be 

functional than those that are not conserved [62]. This allows predictions to be made as long as 

protein family sequences are available to generate sequence homologs [62].  

Mutation locations can also be used to assess functional impact. Gain of function genetic 

alterations often cluster together in specific protein regions [63], which can be utilized to detect 

driver genes that undergo gain of function alterations. These genes can be identified by searching 
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for genes with a bias towards having clusters of protein-affecting mutations, when compared to a 

baseline clustering rate. Tamborero et al. used silent mutations as a measure of baseline 

clustering [63], in lieu of using a homogeneous mutation probability [49]. Another location-

based method is to determine the rate of mutation at functional residues. Reimand et al. 

evaluated mutation rates at phosphorylation-sites in order to predict signaling-specific cancer 

driver genes [64]. In this case, the background mutation rates used were non-synonymous 

mutations that were not phosphorylation-related [64].  

These types of functional impact measures can be used to identify the genes that have a 

tendency to accumulate mutations with high functional impact [50]. As such, they are aimed at 

detecting a different set of driver genes than the previous two approaches. The benefit of 

functional impact measures is that they limit the noise incorporated from mutations that do not 

impact function. However, the accuracy of these driver identification methods is limited by the 

accuracy of the functional impact predictions. 

1.1.2.4 Lack of gold standard driver genes 

Despite all the driver identification methods available, the lack of a gold standard of 

knowledge has made the evaluation of these methods limited. The data available that most 

closely approaches a gold standard are cancer driver databases [46, 65]. As such, some driver 

identification methods have been run on these cancer driver databases to determine if they are 

capable of detecting known drivers [62, 63]. These cancer driver databases can also be used as an 

evaluation metric when running the algorithms on cancer datasets. Generally the algorithms are 

run on cancer datasets to identify both known and new cancer genes, with the new genes being 

considered potential novel drivers [35, 39, 45, 47-51, 62-64, 66]. Using the databases to calculate 

a positive predictive proxy measure makes it possible to approximate the positive predictive 
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value of the returned driver gene lists, and compare the results of different methods [50]. 

Another evaluation method that doesn’t require cancer datasets or databases is the use of 

simulated data [45]. Generating artificial data allows researchers to know what the correct 

prediction results should be. However, simulated data are generated to fit the designed algorithm, 

and can be difficult to apply and compare to other algorithms.  

1.1.3 Cancer Subtyping 

Cancers can differ based on many different features, such as the tissue of origin or its disease 

mechanisms. The process of cancer subtyping is to separate cancers based on these features. 

Because these features can have an effect on a cancer’s response to treatment, the resulting 

cancer subtypes respond differently to different treatments. This is why cancer subtyping is an 

important step in the diagnostic process, and plays a role in cancer treatment. Therefore, the goal 

of improving cancer subtyping methods is to improve cancer treatment through precision 

medicine, which will be expanded upon in section 1.1.4. 

Current medical guidelines focus on classifying cancer based on observable features, 

which include the primary site, histology, cell differentiation, and the extent of the disease [17]. 

The primary site, or the location where the cancer is first developed, is used to separate the 

cancer into broad categories, such as breast cancer or lung cancer. This is also used to track 

where a metastasized secondary cancer originated from. Histological features are used to further 

subtype primary cancer. For example, lung cancer can be further separated into small cell lung 

cancer, adenocarcinoma, squamous-cell carcinoma, and large-cell carcinoma. Cell differentiation 

is used to grade the tumor and determine its aggressiveness. Tumors that bear a closer 

resemblance to normal tissue would be less aggressive and have a lower grade than those that are 
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poorly differentiated. The extent of the disease can then be used to stage the disease, with tumors 

that have spread further receiving a higher stage.  

In last two decades, molecular features of some cancers have been discovered, allowing 

them to be subtyped further. For example, receptor expression and gene expression can be used 

to further separate breast cancer into basal, HER-2, and luminal A and B tumors [19, 67, 68]. 

The limitation of these current methods is that there are many different genetic alterations that 

can result in these different disease presentations. As a result, the same treatment has different 

degrees of effectiveness in patients with the same cancer subtype. It is important to identify the 

genetic changes that result in these different features, in order to learn what causes the varying 

degrees of treatment response. Contemporary molecular subclassification does not directly 

provide insights into the cellular or disease mechanisms underlying the subtypes or guide 

treatment.   

There has been recent research focusing on separating cancers into different classes based 

on their disease mechanisms, which can be shared across different tissues of origin. The most 

frequently used data types are somatic mutations [35, 37, 38, 69] and copy number alterations 

[38, 69], however other types of expression data are also used [38, 69]. Different clustering 

methods have been applied to these input data in order to separate the tumors into classes. 

Unsupervised hierarchical clustering was directly applied to significantly mutated genes to 

separate the tumors into separate classes based on their mutation patterns [35]. Similarly, 

Hoadley et al. also clustered the tumors based on significantly mutated genes [38]. However, 

they took this process a step further by also clustering by copy number alteration as well as 4 

other data types, which resulted in a total of 6 different clustering results [38]. They then 

separated the tumors into classes by clustering based on 5 clustering results, after excluding 
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somatic mutations from their analysis [38]. This cluster-of-cluster analysis is an effective way to 

combine the input from multiple data types. However, if some of the data types contain 

overlapping information, their combined signal may overpower the signal provided by other data 

types. Thus, care needs to be exercised when selecting and processing the data types used for 

input. Ciriello et al. used somatic mutation, copy number alteration, methylation, and gene 

expression data in order to generate recurrent functional events, which are functional alterations 

that occur at a high frequency [69]. These functional events should contain information about the 

functions altered in a cancer sample. Generating a network where samples and functional events 

are nodes, and samples are connected to events using edges allowed them to represent the 

alterations in each sample. This also makes it possible to use graph clustering to group samples 

with similar alterations into classes [69]. All of the previously listed methods used the altered 

genes directly, and so were unable to represent the fact that different genes can impact the same 

pathway. This restriction makes it difficult to learn the disease mechanisms that lead to the 

development of cancer. 

In order to help identify the disease mechanisms of cancer, signaling pathway 

information should be incorporated. Hofree et al. noticed that mutation data are highly 

heterogeneous among tumors, making it difficult to find mutation patterns [37]. To address this 

problem, they mapped mutations to gene interaction networks as a means to map mutations to 

function space. Then tumors with similar regions in the gene interaction network perturbed can 

be identified, thus stratifying the tumors [37]. While this is a method to represent the functions a 

gene is involved in, it is limited by the accuracy and scope of the gene interaction networks 

available. However, an increased incorporation of pathway perturbation information into cancer 
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subtyping should result in more specific diagnoses and more precise treatment than is currently 

available. 

1.1.4 The need for disease-mechanism-based classification of cancers  

Research that leads to a better understanding of cancer and its disease mechanisms would have 

significant impact in different areas of cancer treatment. Two prominent areas would be in 

precision medicine and drug development. Current methods of cancer classification are based on 

phenotype [17]. While some of the contemporary cancer classifications contain information for 

prognosis, they usually do not provide information about the underlying disease mechanisms. 

This is because the gene expression profile of a tumor reflects a convoluted outcome of all 

cellular signal pathways that actively regulate expression in tumor cells. Therefore, it is difficult 

to map a profile to the activation states of individual pathways.  However, if we can identify the 

SGAs that underlie a specific gene expression profile, the results will shed light on the disease 

mechanisms of a tumor.   

The idea behind precision medicine is to tailor treatment to an individual patient using 

patient-specific information, including their genomic data. The critical task is to understand how 

perturbations of signaling pathways, particularly combinations of pathway aberrations, 

contribute to the development of different subtypes of cancers. Such an understanding will 

further guide the development of distinct treatment strategies for tumors with different disease 

mechanisms. A better understanding of what treatment methods work for different cancer 

patients would allow an individual to be given treatments that have the best chances for success 

[70, 71]. This would decrease the amount of time spent ruling out ineffective treatments and 

limit the drugs and potential side effects that a patient is exposed to. Another approach to using 
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this understanding to improve cancer treatment is through drug development. An aim in cancer 

treatment is to identify drugs that can target cancer cells while limiting the impact on normal 

tissues. Cancer drivers and disease mechanisms that are identified are potential targets for drug 

development. Alternatively, this information can be used for drug repurposing, if an existing 

drug is already known to affect these drug targets. 

The overarching goal of this study is to investigate the distinct disease mechanisms of 

cancers by mining the combinatorial patterns of pathway aberrations, which in turn can be 

inferred by mining the combinatorial patterns of SGAs perturbing the pathways. However, this 

task is challenging because a pathway can be perturbed by distinct SGAs that affect different 

member proteins of the pathway, which leads to the well-known phenomenon that few tumors 

share common SGAs even though a common set of pathways are perturbed. The key task that 

needs addressing is to identify the common pathways that are affected by distinct SGAs in 

different tumors.  By starting with the SGAs in tumors, it is necessary to determine the pathways 

that they lie on, and thus the functions they are involved in. Since gene names themselves do not 

convey the function of a gene, thereby being insufficient for inferring the functional similarity of 

distinct genes, an alternative representation of genes is needed to assess the functional similarity 

of genes with distinct names. For example, in a representation we call semantic embedding, a 

gene can be represented by a set of words from literature that describe the function of the gene.  

If a significant number of words are shared in the two word sets describing two distinct genes, 

the functions of the two genes are likely to be similar. Different sets of words are used to 

describe different gene functions, and each of these word sets is associated with a topic. Once 

tumors are composed of these representations, we would need to detect the patterns in their 
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altered pathways through the patterns in the words. Such a task can be accomplished through the 

application of topic modeling. 

1.2 TOPIC MODELING 

In text mining, a common method of capturing the statistical structure of a corpus of texts is to 

capture the tendency of certain words to co-occur when a semantic topic is discussed.  By 

capturing such structures, one can represent a text as a mixture of words from such topics, which 

serve as a more concise and abstract representation of documents in the corpus than individual 

words. The goal of identifying representative features, like topics, for samples has been 

approached in many different ways. Two of the methods that involve matrix factorization are 

singular value decomposition (SVD) [72] and nonnegative matrix factorization (NMF) [73], 

which are similar to principal component analysis. When given a corpus represented as a 

document-by-word matrix, these methods factorize the matrix into a word-by-feature matrix and 

a feature-by-document matrix. The word-by-feature matrix identifies what words are associated 

with a given feature, while the feature-by-document matrix identifies what features are 

associated with a given document. Both SVD and NMF are methods to perform latent semantic 

indexing that also results in dimensionality reduction. One of the limitations of SVD is that it 

requires the discovered features to be orthogonal. This means that the features must be 

independent of each other. NMF does not have this restriction, allowing dependencies to exist 

between features. NMF also limits the matrixes from having negative values, which SVD 

permits. By allowing feature matrices to only have non-negative values means that the resulting 

semantic features have greater interpretability. However, both of these methods are not 
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probabilistic, and so they can’t capture the probability that a feature is associated with a 

document in the corpus.  

1.2.1 Probabilistic Topic Models 

Topic models were originally developed for use in text mining, and are capable of learning the 

major topics associated with a document based on its words. In this setting, a topic is represented 

as a probabilistic distribution over a space of words, which capture the tendency of words to co-

occur when discussing a specific semantic topic.  The idea is that a document, such as an article 

or a paper, is about more than one topic. When a topic is discussed, words related to that topic 

would occur more frequently. For example, there is a corpus of documents related to cancer. One 

of the topics in the corpus is related to cell death and has words such as “cell”, “death”, and 

“apoptosis” associated with it. When a document in this corpus has the topic “cell death” then 

these associated words would occur more frequently. The distributions of these topics also vary 

by document, and so two documents with different distributions of the same topics would also 

have different distributions of words. Thus, by examining a corpus of documents, it would be 

possible to use the words to learn what the topics in the corpus are, and what distribution of 

topics each document contains. Continuing from the example above, another topic in the corpus 

is related to cancer treatment. One document in the corpus can be focused on research of a 

pathway that results in cell death, and also covers it potential application in cancer treatment. A 

second document can be focused on different treatments of cancer, and also mentions the 

resulting death of cancer cells. As such, even though both documents have the same topic 

associations, they have different distributions of the two topics, which is reflected by the 

different distributions of associated words. 
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One of the earlier topic models is probabilistic latent semantic indexing (PLSI) [74]. It is 

a generative model that represents the probability of topic and word co-occurrences as mixtures 

of conditionally independent multinomial distributions. In this representation, the words in a 

document are assumed to be generated independently, which means that the ordering of the 

words does not matter. As such, each document is treated as a bag-of-words. Another assumption 

made is that the words in a document are conditionally independent given the associated topics. 

PLSI allows a mixture of topics to be assigned to a single document, where the topics are 

characterized as distributions of words, and is able to assign topic labels to previously unseen 

documents after the model is already learned. However, this model does not make assumptions 

about how to assign topic weights to documents, and so only learns topic distributions for the 

documents in the training set. This makes it difficult to generalize the model to new documents 

added to a corpus. 

The most commonly used topic model is latent Dirichlet allocation (LDA), which is also 

the basis for many other topic models [75]. LDA is a Bayesian model of a collection of 

documents that is an extension of PLSI. Therefore, it is based on the same concepts as PLSI, and 

represents topics and documents in the same manner. In addition to the assumptions made in 

PLSI, LDA assumes that the topic distribution has a Dirichlet prior. For each document in a 

corpus, LDA sets the prior for the words to be a Poisson distribution, and the topic mixture 

weights to be a Dirichlet distribution. In other words, LDA is able to regenerate a document in 

the corpus through the following process (taken from [75]):  
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In this notation, 𝑁 is the number of words (𝑤) in the document; 𝑧 is a topic; and 𝛩, 𝛼, and 𝛽 are 

model parameters. The addition of this Dirichlet prior allows LDA to generate topic probabilities 

for new documents. This means that LDA is a generative model that overcomes the difficulty of 

generalization to new documents. Yet, like PLSI, the topics learned by LDA have a flat structure 

to them, which means that the presence of a topic in a document is independent of the other 

topics that may exist in the document (Figure 1-1A). However, this independence isn’t true in the 

altered signaling pathways of cancer. Thus, a model that is capable of capturing the relationship 

between topics is necessary.  

While unable to identify topic relationships, one type of model that has been used to 

capture the relationship between documents is the relational topic model. A relational topic 

model takes as input documents and their associated document network, where a document is 

linked through citations or other means. Topics and topic assignments are then learned and used 

to generate a network structure, with the aim of recreating both the documents and the document 

network. By requiring the topics to be used to recreate the document network, the learned topics 

would be able to explain the original network structure. In comparison, models that do not 

require this coupling between the topic and the network may result in two subsets of topics, one 

that is used to explain the networks and the other used to explain the words. As a result, the 

1. Choose 𝑁 ~ Poisson(𝜆) 

2. Choose 𝛩 ~ Dirichlet(𝛼) 

3. For each of the 𝑁 words 𝑤𝑛: 

a. Choose a topic 𝑧𝑛 ~ Multinomial(𝛩) 

b. Choose a word 𝑤𝑛 from 𝑝(𝑤𝑛|𝑧𝑛, 𝛽), a multinomial probability 

conditioned on the topic 𝑧𝑛. 
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topics would not be useful for predicting the relationship between edges and words. However, 

relational topic models are still unable to capture relationships between topics.  

In reality, the topics that occur in a document are not independent as assumed in LDA. 

Instead, they have hierarchical relationships where topics that are more general and appear more 

frequently in a corpus are higher in the hierarchy, and topics that are more specific and appear 

less frequently are deeper in the hierarchy (Figure 1-1B). For example, with the document 

focused on a pathway that results in cell death, the topics related to this document can include the 

most general topic of biology, followed by increasingly more specific topics of cellular 

processes, cell death, and apoptosis. In this corpus there would be more documents that contain 

the general topic of biology than the more specific topics. Extensions of LDA have been 

developed that are capable of learning these hierarchical relationships between topics [76-79]. 

These models generate a structured prior on topics contained in a corpus of documents, which 

results in topics that have a hierarchical structure. This structure matches our interests because, 

as mentioned earlier, different alterations have different degrees of specificity. Therefore, the 

alterations that occur in many different cancer types would be like the topic “biology” from the 

example earlier, while the alterations limited to specific cancer types would be like the topic 

“apoptosis”. The nested hierarchical Dirichlet process (nHDP) allows a document to access the 

entire tree and be labeled with topics that lie along different branches of the tree [77]. This gives 

the model greater flexibility, and does not force documents to be associated with unrelated 

topics. We hypothesize that establishing a framework that uses the nHDP would allow us to 

identify altered pathways in tumors and generate new knowledge. 
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A 

 
 
B 

 

Figure 1-1. Example topic structures for the latent Dirichlet allocation and nested hierarchical 

Dirichlet process. Examples of two possible topic structures that can be learned through topic modeling using A) 

latent Dirichlet allocation or B) nested hierarchical Dirichlet process. Circles represent topics and lines represent 

relationships between topics. Topics higher in the hierarchical tree are more general, and become more specific as 

they go deeper into the tree. 

 

 

To summarize, while PLSI makes it possible to generate probabilistic mixtures of topics 

for documents, its limited assumptions makes the model unable to generalize to documents that it 

is not trained on. LDA overcomes this by adding an assumption about the topic distribution for a 

document. Both of these models generate topics that are independent of each other, which may 

not be true in all datasets. Hierarchical topic models overcome this limitation, and nHDP has an 

increased flexibility in the generated topic tree structure over other hierarchical models.  
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1.2.2 Application to Biomedicine 

Due to its capabilities, topic modeling has been applied to some areas of biomedical research. 

Since these algorithms were first developed with textual data in mind, it has been used to process 

biomedical text. This can include processing biomedical literature for different purposes, such as 

identifying the important concepts in the document themselves [80] or their associated genes 

[81]. Analysis of gene expression data is another area where topic models are more frequently 

used. The goal can be to simply classify or cluster samples based on changes in gene expression 

under different conditions [82-84]. Lee et al. used toxicogenomic gene expression data to try to 

find common functional features affected by different drugs or tested using different conditions 

[83]. Similarly, this has also been used to analyze high content screening data generated from 

different drugs [85]. In these situations, where actual words and documents do not exist, 

adaptations are used. Oftentimes each sample is treated as a document, each gene or endpoint as 

a word, and the measurement associated with the gene or endpoint as the word count [82-85]. 

Other less common applications also exist, such as applying topic models to study the functional 

core in taxonomy [86]. In most cases, LDA was the topic model used to analyze the data [80-83, 

85, 86]. However, the hierarchical Dirichlet process model has been applied to gene expression 

clustering, because the structure of the model better captures the hierarchical structure of 

biological functions [84]. 

In a prior instance, a relational topic model was applied with the goal of identifying 

genomic features that can explain the phenotypic similarities of different cancer tumors. 

Working with Glioblastoma Multiforme tumors, Cho and Przytycka used gene expression data as 

a representation of disease phenotype to create a phenotype similarity network [87]. Mutations, 

gene copy number variations, and microRNA dysregulation were used as genomic features, 
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where a “word” variable was created for each gene and each variation observed for the gene. 

These word variables were then used to generate the tumor documents. The topics and network 

generated were used to identify the genomic features that could explain the phenotypic 

similarities [87]. However, the model used is unable to capture hierarchical structure of 

functions. Given the nature of the representation of genes, which does not capture their function, 

it is difficult to identify genes with similar functions that can be shared across different subtypes. 

1.3 FUNCTIONAL SIMILARITY OF GENES 

The goal of using an alternative representation of genes is to be able to assess their functional 

coherence or similarity. This is due to the fact that gene names themselves do not provide much 

information. Thus, additional information about gene function is necessary in order to be able to 

identify similar genes. As such, a computational algorithm would not be able to find functional 

similarities between two different genes if we directly used gene names as words. For example, 

if we just had the words PI3K and AKT, they seem independent. However, once we represent the 

fact that they are both part of a signaling pathway involved in apoptosis their functional 

similarity is apparent. Through this idea of using additional information, different measures of 

functional coherence have been developed. Two of the larger types of methods are by using gene 

annotations or by using associated literature. 



 24 

1.3.1 Using gene annotations to identify functionally similar genes 

Databases containing controlled vocabularies of terms, such as the Gene Ontology (GO) [88], 

were created in order to have a unified language when annotating genes. This means that gene 

annotations related to gene function can be a resource for determining functional coherence. The 

most frequently used method is to determine if a specific annotation term is enriched in a list of 

genes. Thus algorithms often are based on statistical tests of over-representation such as the 

hypergeometric distribution [89] or Fisher’s exact test [90]. Gene annotations can also be used to 

generate annotation profiles, which can then be used to measure the similarity between genes. 

For example, a kappa statistic co-occurrence score can be measured between genes based on 

their annotations [91]. These score distributions could be used to group similar genes [91]. 

These annotation-based methods can also be developed further by including methods 

such as multiple hypothesis correction [89], or incorporating GO structure into the analysis [90]. 

The GO has a hierarchical structure where parent nodes encompass all the information held 

within children nodes. Since genes are only annotated with the most specific term applicable, 

ignoring this structure would make it more difficult to accurately measure the functional 

similarity of genes. One method of incorporating the GO structure is to adjust the weight of the 

gene annotations used when calculating enrichment scores [90]. However, even with these 

improvements, annotation based methods are often restricted to analysis of gene lists. They are 

also limited by the amount, and accuracy, of gene annotations and annotation terms available.  
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1.3.2 Using literature to identify functionally similar genes 

Methods that directly use the literature associated with genes are able to bypass the need for gene 

annotations. This requires the genes to be represented in a way that captures the information 

contained in the literature. The most frequently used method to do this is through a bag-of-

words, vector space representation [81, 92-96]. Such a representation ignores the order that terms 

appear in a document, and just captures its presence in a document. These vector space 

representations can then be used to identify the important semantic features of genes. Methods 

using associated literature would also be limited by the amount of literature available. However, 

they do avoid the complications involved with the extra annotation step. 

1.3.2.1 Representing genes in the vector space  

The main variations in vector space representations lies in what method is used to track, 

or index, the importance of a term in a document. The simplest indexing method is binary, which 

assigns a 1 if the term occurs in a document and a 0 if it does not [93]. Term frequency can be 

directly used as an indexing measure to capture importance based on the number of times a term 

occurs in a document [93]. However, if a term appears in many documents in a corpus, then its 

presence in an individual document would not convey as much information. As such, most 

methods use term frequency-inverse document frequency (tf-idf) [92, 93, 96], which normalizes 

term frequency based on the number of documents the term appears in. Example vectors using 

these three indexing methods can be seen in Table 1-1. Other indexing methods that correct 

values based on document distributions are also available [95], as well as those that are based on 

if a document refers to other documents [93]. 
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Table 1-1. Example vectors using three different indexing methods 

Binary 
 

Term Frequency  tf-idf 

activ 1  activ 79351.05  activ 255.15 

apoptosi 1  apoptosi 41463.75  apoptosi 307.14 
associ 1  associ 69460.42  associ 200.17 

cancer 1  cancer 104378.64  cancer 407.73 

cell 1  cell 150998.09  cell 371.00 
codon 1  codon 10760.11  codon 283.16 
dna 1  dna 37610.01  dna 287.10 

express 1  express 92302.17  express 225.13 
mdm2 1  mdm2 8741.60  mdm2 364.23 
mutat 1  mutat 90268.99  mutat 423.80 

neurogenet 0  neurogenet 0  neurogenet 0 
p53 1  p53 310367.08  p53 3979.07 

protein 1  protein 54966.58  protein 116.70 
regul 1  regul 56595.32  regul 158.98 
tp53 1  tp53 33462.43  tp53 984.19 

tumor 1  tumor 63526.75  tumor 319.23 
vasodil 0  vasodil 0  vasodil 0 

 

1.3.2.2 Identifying semantic features associated with genes 

Different methods have been used to identify the important semantic features associated 

with a specific gene out of the entire vocabulary space, which is generally at least a few thousand 

terms. Methods that have been used to identify these features include latent semantic indexing 

[95], non-negative matrix factorization [92, 96], and latent Dirichlet allocation [81]. All of these 

methods result in a gene-to-feature adjacency matrix. These adjacency matrices can then be used 

in a number of ways, such as clustering genes based on their feature similarities to identify 

related gene sets [92, 95, 96], or to rank genes based on given queries [95]. The matrices have 

also been used to create bipartite graphs, and the functional coherence of genes was then 

measured based on graph connectivity [81]. The generated features have to be further analyzed 
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in order to determine what they represent, and identify the meanings of the featured shared 

between gene sets.  

1.3.3 Evaluation 

The evaluation methods of functional coherence algorithms have mainly focused on three 

different aspects: the accuracy of the algorithms, the quality of the generated gene clusters, and 

the stability of the algorithms. Measuring the accuracy of an algorithm involves determining if it 

is capable of correctly determining the functional coherence of genes. Since clustering is often 

used to identify clusters of functionally coherent genes, some methods have evaluated the 

coherence of the generated clusters. The stability of the algorithms is measured to determine 

their performance under different situations. 

1.3.3.1 Algorithm Accuracy 

Two different evaluation methods have been used to determine the accuracy of 

algorithms: evaluation through the use of datasets or expert evaluation. In order to correctly 

measure accuracy, the true functions of the genes in a dataset are necessary. Therefore, yeast 

datasets are frequently used, since they are well-studied and the gene functions are better 

understood. The results generated using yeast datasets are qualitatively analyzed to determine if 

they are reasonable and the gene clusters correspond with established functions [89, 91-93]. In 

order to ensure that the results obtained are based on the data, they can be compared with random 

datasets generated by shuffling the data matrix [92]. Datasets can also be generated in order to 

have a gold standard for evaluation. This can be done by selecting genes with known functions 

[95] or just artificially generating data [90]. Knowing the genes’ function makes it possible to 
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calculate the precision and recall for an algorithm that can rank functionally related genes based 

on a query [95]. When evaluating if an algorithm can correctly identify functionally enriched 

terms, artificially enriching the terms makes it possible to evaluate and compare the performance 

of different algorithms [90]. Some authors have run datasets without well-established gene 

functions, which can be used for qualitative evaluations of the algorithms [81, 91, 92]. Expert 

evaluation is a potential method for qualitative evaluation. Chagoyen et al. used it to determine if 

the semantic features generated were coherent to a specific function [92]. However, individuals 

may differ in opinion, and multiple experts would be needed to be able to get a more accurate 

measure. 

1.3.3.2 Clustering Performance 

In order to evaluate the performance of clustering to create cohesive gene clusters, a 

couple of different metrics are available. Two of the more traditional measures are the Rand 

index [97] and the silhouette score [98]. The Rand index is used to measure the similarity of two 

data clusters, and so it can be used to compare a generated cluster with a set of genes treated as 

the ground truth [93]. In order to correct for random partitions, an adjusted Rand index was 

developed which uses a hypergeometric distribution as a model for randomness [99]. If there is 

no gold standard for comparison, the silhouette score can be used. This score measures how well 

each data point lies within its cluster, and so it can also be used to determine appropriate cluster 

sizes for a dataset. One other method that has been used is to treat the clusters as class labels, and 

to calculate a misclassification score for the resulting clusters [93]. Similar to the Rand index, a 

gold standard is needed in order to accurately calculate the misclassification scores. 
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1.3.3.3 Algorithm Stability 

Measuring the stability of an algorithm means determining how sensitive it is to the data 

and other factors. Highly sensitive algorithms are less reliable because they would give very 

different results under slightly different conditions. When an algorithm contains stochastic or 

adjustable components, such as initializations, repeated executions while randomizing the 

components can be performed. This evaluation method can be used to determine if the results of 

the algorithm are produced by chance [96]. However, this does not reveal how sensitive an 

algorithm is to the input data. One method of determining this is to add noise to the data, and 

evaluating if the algorithm is still able to perform under these conditions [92]. Another method of 

reducing the signal-to-noise ratio is to reduce the amount of signal available, such as by 

decreasing the threshold for differentially expressed genes and evaluating the stability of the 

results with the smaller gene sets of interest [90]. Only a combination of tests would be able to 

determine the stability of algorithms given different input and variables. A gold standard for data 

used for these tests would be needed in order to properly evaluate the results, which is difficult 

given the limitations of current biological knowledge. 

1.4 RESEARCH OVERVIEW 

It is important to identify the disease mechanisms related to cancer in order to have a 

better understanding of its development. Being able to understand the combinations of perturbed 

pathways in cancer may also lead to better treatment of the disease. Thus the identification and 

incorporation of driver genes to identifying the perturbed pathways is important. Since topic 

modeling can be used to identify common themes across different documents, it can potentially 
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be used to identify perturbed pathways shared across different tumors. To do this, it is necessary 

to use a representation of genes in order to be able to identify genes that are functionally similar 

and part of the signaling pathway.  

The aim of the research is to identify patterns in the signaling pathways perturbed in 

cancer. We used two types of alternative representations of genes, semantic and biological, to 

capture the perturbed pathways in individual tumors. Driver genes were predicted for each 

cancer tumor using somatic genomic alteration and gene expression data. Topic modeling was 

then used to identify the pathway perturbations that occur and are shared in different tumors. The 

methodology to do this was developed and applied to cancer data, and shows the potential to 

identify features using topics that can be used to separate patients into classes with different 

survival outcomes. 
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2.0 REVEALING COMMON DISEASE MECHANISMS SHARED BY CANCERS OF 

DIFFERENT TISSUES OF ORIGIN THROUGH SEMANTIC REPRESENTATION OF 

GENOMIC ALTERATIONS AND TOPIC MODELING 

2.1 INTRODUCTION 

Cancer is a complex disease involving multiple hallmark processes [7, 10], and aberrations in 

these processes are caused by somatic genomic alterations (SGAs) that perturb pathways 

regulating these processes. Different combinations of pathways lead to heterogeneous oncogenic 

behaviors of cancer cells, which impact patient outcomes and response to treatment. 

Identification of combinatorial patterns of pathway perturbations can reveal common disease 

mechanisms shared by a tumor subtype and such information can guide targeted therapy. 

Transcriptomic data have been widely used to reveal different cancer subtypes among 

tumors of the same tissue of origin, and such studies have identified many clinically relevant 

subtypes, which have significant prognostic value [25-28, 67, 100-103]. However, 

transcriptomics-based subtyping does not provide insight into the disease mechanisms 

underlying each subtype, that is, transcriptomics-based subtyping does not reveal the causative 

pathways underlying the development of subtypes.  As such, such subtyping does not provide 

guidance for targeted therapy. Another limitation of transcriptomics-based subtyping is that 

tissue-specific gene expression prevents discovery of transcriptomic patterns across cancer types. 
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Recent pan-cancer studies found that tumors are invariably clustered according to tissue of 

origins when using features that are related to transcriptomics [35, 38]. Therefore, studying 

common disease mechanism of cancers should be addressed from new perspectives. 

In order to gain a better insight into cancer disease mechanisms, an alternative approach 

is to study SGAs that perturb signaling pathways with the goal of identifying which perturbed 

pathways underlie each of the subtypes. It can be hypothesized that each cancer subtype is likely 

driven by a specific combination of perturbed pathways, and identification of such common 

disease mechanisms would provide guidance for targeted therapy.   

However, the direct use of SGA data to identify these signaling pathways is challenging. 

This is because pathways are composed of multiple genes, and in different tumors the same 

pathway can be perturbed by distinct SGAs affecting different members of the pathway. As such, 

two tumors sharing common pathway perturbations may exhibit totally different sets of SGAs, 

making it difficult to detect similarities between tumors. Thus individual tumors may present 

itself with different genomic alterations, while undergoing the same pathway perturbations [45]. 

This effect is amplified by the fact that multiple pathways need to be perturbed for cancer to 

develop. All of this results in highly heterogeneous mutation patterns in tumors with common 

pathway perturbations. 
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Figure 2-1. Conceptual overview of research. A) Somatic mutation, copy number alteration, and gene 

expression data for each tumor was collected. B) GeneRIF and gene summaries associated with genes were 

collected. C) The semantic data associated with each gene was processed to create a word vector representation 

(note the differences in the word frequency profile for different genes). D) A document representation for each 

tumor was created by combining the word vectors of each SGA associated with the tumor. E) The document 

representations were used as input for a hierarchical topic model, which identified topics associated with each 

tumor. F) The tumors were represented in topic space, and clustering analysis was applied to group tumors with 
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similar topic allocations. G) These clusters were then used to perform survival analysis on tumors of the same 

cancer type. 

 

 

In order to tackle this problem, we have developed a novel semantic representation of 

tumors that captures the similarity of functions of distinct genes. This representation would help 

us identify functionally related genes whose alterations result in similar changes in signaling 

pathways. We also chose to use topic modeling to identify patterns in these altered signaling 

pathways based on the semantic representations. The tumors were clustered based on these 

patterns, and a survival analysis was performed on the results. The conceptual overview of our 

research is shown in Figure 2-1. 

2.2 METHODS 

2.2.1 Data Processing 

2.2.1.1 Cancer Genomic Data 

Cancer somatic mutation data was downloaded (July, 2013) from The Cancer Genome 

Atlas (TCGA) and copy number variation and gene expression data was downloaded from The 

UCSC Cancer Genomics Browser [104, 105]. Data from five different cancer types was used: 

breast invasive carcinoma (BRCA), head and neck squamous cell carcinoma (HNSC), lung 

adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and ovarian serous 
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cystadenocarcinoma (OV), where the LUAD and LUSC data was combined into one large lung 

cancer (LUNG) dataset for processing. 

2.2.1.1.1 Somatic Mutations 

PolyPhen-2 was used to determine which somatic mutations for each cancer sample had a 

potential effect on protein function, where each cancer sample was a different cancer tumor 

[106]. We considered a mutation event that was labeled either “possibly damaging” or “probably 

damaging” to be a functional mutation. Since the tool can only analyze single nucleotide 

polymorphisms, it was used to analyze all the missense mutations. The frame shift, nonsense, 

splice site, and multiple nucleotide mutations were considered functional mutations, because of 

their tendency to have a larger impact on protein function. This analysis was used to determine 

the functionally mutated genes for each cancer sample for each cancer type.  

2.2.1.1.2 Copy Number Variation 

We only considered the genes whose copy number variations resulted in an altered gene 

expression. In order to determine if the expression of a sample was altered, we first calculated 

the mean and variance of the samples with no copy number variation. These values were then 

used to calculate the probability of a gene to be differentially expressed using a one-tailed test on 

a normal distribution. If the probability fell below the threshold, then we considered the 

expression to be altered and kept the sample for further analysis. In this analysis, we only 

considered the instances where the gene was marked as +/-2 in copy number, and a probability 

threshold of 0.01 was used. For each cancer type, we utilized the gene expression data that 

contained the most samples. 
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2.2.1.1.3 Combined Data 

The somatic mutation and copy number variation data were combined in order to get a 

more comprehensive view of the genes that are altered in each tumor. Thus a combined sample 

to SGA matrix was created. This matrix contains, for each cancer sample, each gene that was 

either functionally mutated or had a copy number variation that resulted in an altered gene 

expression. In order to reduce the sizes of the datasets and decrease the chances of including 

passenger mutations, a frequency threshold was set and any SGA that occurred less frequently 

than that threshold was eliminated. The cancer types were combined and a threshold of 20 was 

used. This threshold was selected because we had a total of 2,396 samples and this value is close 

to 0.01% of the total samples. 

2.2.2 Representation of Genes and Tumors 

2.2.2.1 Semantic Representation of Genes 

Semantic data was obtained from three different sources, which could be used as 

independent data sources: PubMed articles, GeneRIFs, and gene summaries. PubMed articles 

were downloaded from PubMed on April 10, 2013. The rest of the data was downloaded from 

NCBI Gene: gene to article associations was downloaded on April 9, 2013, and both GeneRIFs 

and gene summaries were downloaded on September 16, 2013. This text was preprocessed by 

removing stop words, tokenization, and Porter stemming [107].  

2.2.2.1.1 Tf-Idf Calculation 

We calculated the term frequency-inverse document frequency (tf-idf) of each word to 

determine which words contained information pertinent to a gene. To do so, we tried two 
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different methods of generating the corpus used when calculating tf-idf score: 1) treating the 

gene list for each cancer type as a separate corpus whose tf-idf scores were generated separately, 

and 2) treating the entire list of genes as one large corpus. For each corpus generated, each gene 

represented a document. The term frequency (tf) and document frequency (df) were calculated 

for each word in each gene, with the term frequency being the number of times the word is 

associated with the sample, and the document frequency being the number of samples the word 

is associated with. Using these values, we then calculated the tf-idf for a specific word with: 

tfidf(𝑤, 𝑑, 𝐷) = tf(𝑤, 𝑑) ∗ log10
|𝐷|

df(𝑤, 𝐷)
 

where w represents the word, d is the cancer sample (or document), and D is the entire corpus. 

Thus |𝐷| represents the total number of tumors. The cumulative tf-idf for each word was 

calculated by summing the tf-idf score across all documents. 

2.2.2.2 Semantic Representation of Tumors 

2.2.2.2.1 Word Vector Creation 

Word vectors containing relevant words and their term frequencies are needed for the 

topic modelling process. The calculated tf-idf and cumulative tf-idf scores were used to limit the 

vocabulary size across the entire dataset as well as for each gene. Only the 20,000 words with the 

highest cumulative tf-idf scores were included in the vocabulary. A word vector was then created 

for each gene by going through its list of 200 words with the highest tf-idf scores and including 

only the ones that occur in the vocabulary. We also tested the idea of altering some of the word 

vectors created by altering the tf-idf score for each gene’s gene name and aliases. These scores 
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were altered by setting the tf-idf score for each gene’s gene name and aliases equal to the highest 

tf-idf score associated with that gene.  

In order to obtain the word vector associated with a cancer sample, we utilized only the 

genes altered in that sample. For each sample, we combined the word vectors for all of the genes 

altered in the cancer sample. The values for each word in a sample word vector were set by 

summing the tf-idf scores for the word across all genes with word vectors containing the word. 

2.2.3 Topic Modeling 

2.2.3.1 Nested Hierarchical Dirichlet Process 

The nested hierarchical Dirichlet process (nHDP) is a hierarchical topic model [108], 

which uses Bayesian nonparametric prior to model the covariance of topics in a training corpus. 

nHDP represents the relations among topics using a tree, in which a node represents a topic and a 

path in a tree indicates that the topics on the path have a high tendency to co-occur in documents. 

When modeling the topics present in a text document, nHDP allows each document to access the 

entire tree [108] (considering all possible topics) and places a high probability on multiple paths. 

The nHDP algorithm was run on the word vectors created using the cancer data, with each tumor 

treated as a separate document. The returned results contain a topic matrix containing the words 

associated with each topic, and a document-topic distribution matrix containing the number of 

words from each tumor (document) that are associated with each topic. We used the parameter 

value 𝛽0 = 0.01, and we define the maximal level of the tree to be 3 and initialized the tree with 

the parameters 10, 5, and 3. The nHDP algorithm was run 10 times to generate 10 different topic 

models for each dataset. 
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2.2.3.1.1 Topic Model Selection 

The model that had the highest cumulative document likelihood was selected as the best-

fitting topic model. To calculate the cumulative document likelihood for a specific model, we 

used its outputs to obtain two matrices: 1) the matrix containing the number of words from each 

document associated with each topic and 2) the matrix containing the probability of each word 

occurring in each topic. We first calculated the probability of each topic (t) being associated with 

each document (d) by dividing the number of words in d that is associated with t by the total 

number of words in d. The likelihood for d is calculated by first calculating the word probability 

for each word (w) by summing the probability of w given t times the probability of t given d. The 

document log likelihood is then calculated by summing up the log of the probability of each 

word. 

 

The pseudocode used to calculate cumulative document log likelihood can be found 

below: 

 

Input:  

Matrix containing number of words from each document associated with each topic 

Matrix containing probability of each word occurring in each topic 

 

Initialize:  

cumulativeDocProb - a variable to store the cumulative document log likelihood 

 

cumulativeDocProb = 0 

foreach document (d) 

docProb = 0 

Calculate probability of each topic being associated with d  

foreach word (w) in d 
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wordProb = 0 

foreach topic (t) 

wordProb = wordProb + p(w|t) * p(t|d) 

docProb = docProb + log(wordProb) 

cumulativeDocProb = cumulativeDocProb + docProb 

 

2.2.4 Analysis 

2.2.4.1 Calculating Topic to Gene Associations 

Since the topics in our setting reflect the functions that are repeatedly perturbed by SGAs 

among all tumors, it would be interesting to know which SGAs are associated with each 

functional theme. However, the nHDP model only captures the association of words with topics. 

Further calculations were needed to determine the SGAs associated with each topic. Utilizing the 

topic to document association and topic to word association matrices generated by the topic 

model, we calculated the topic to gene associations for each topic (t). The topic to document 

association matrix contains the number of words from each document that is associated with 

each topic; this was used to calculate the probability of each topic being associated a document 

by dividing the number of words associated with a topic by the total number of words in the 

document. The strength of association to each gene for topic t was then calculated by cycling 

through each document (d). We then further cycled through each word (w) associated with each 

gene (g) that is in d. The strength of association of g was then calculated by summing the count 

for w times the probability of t given d and the probability of w given t. 

The pseudocode used to calculate topic to gene associations can be found below: 

 

 



 41 

 

 

Input:  

Matrix containing probability of each word occurring in each topic  

Word vector representation of each gene 

Matrix containing number of words from each document associated with each topic 

 

Initialize:  

topicGeneMatrix - an empty topic by gene matrix 

 

foreach topic (t) 

foreach document (d) 

Calculate probability of t being associated with d 

foreach gene (g) in d 

foreach word (w) in g’s word vector 

topicGeneMatrix[t][g] = topicGeneMatrix[t][g] + w count in g * p(t|d) * 

p(w|t) 

 

2.2.4.2 Clustering Tumors 

In order to determine if the topics obtained through the nHDP learned additional 

relationship information from the data, we performed consensus clustering to cluster the tumors 

using either the altered genes or the word count per topic association as features. We used 

partitioning around medoids (PAM) as the clustering method. The algorithm was run for cluster 

sizes 4-6 using 10 repetitions when clustering based on the altered genes; it was run for cluster 

sizes 4-10 using 20 repetitions when clustering based on the word count per topic association. 

Consensus clustering was performed using the clusterCons package version 1.0 in R [109]. 
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2.2.4.3 Visualization of Tumor Clusters 

In addition to consensus clustering, we also chose to visualize the tumors (documents) in 

order to see how clearly our topic model was able to separate the different samples. The t-

Distributed Stochastic Neighbor Embedding (t-SNE) technique of dimensionality reduction was 

used to plot the points in a two-dimensional space [110]. This allowed us to directly use the word 

counts per topic for each tumors as input for plotting, after first removing the topics that do not 

have any associated samples. We used the Matlab implementation downloaded from 

http://homepage.tudelft.nl/19j49/t-SNE.html.  

2.2.4.4 Calculating Cluster to Topic Associations 

The proportion of samples (documents) in a cluster associated with each topic was 

calculated to see how topic associations vary between different clusters. In order to determine 

which documents are associated with each topic, the proportion of words from each document 

associated with each topic was calculated. Any topic that was associated with at least 0.01 of the 

words in a document was considered to be associated with the document. This threshold was 

used to remove associations that are the result of noise. We then obtained the proportion of 

documents in each cluster that are associated with each topic. 

The pseudocode used to calculate the cluster-to-topic association can be found below: 

 

 
Initialize: 

topicClusterMatrix - an empty topic by cluster matrix 

 

foreach cluster (c) 

Get all documents in cluster 

foreach topic (t) 

http://homepage.tudelft.nl/19j49/t-SNE.html
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Counter number of times t is associated with documents in c 

foreach cluster (c) 

Divide counts by the number of documents associated with c 

 

2.2.4.5 Survival Analysis 

In order to determine if there was a biological impact in subtyping the tumors based on 

clustering, we chose to perform a survival analysis. Kaplan-Meier survival analysis was done on 

the tumors with the same cancer type. These samples were separated into subsets based on the 

clustering results obtained previously. Survival data for the tumors were obtained on May 2, 

2016 from the clinical data available on TCGA [25]. The analysis was performed twice for each 

cancer type: once using all tumors, and once after excluding all clusters that contained less than 

25 samples. We used the survival package version 2.38.3 in R to conduct the analysis [111, 112]. 

2.3 RESULTS 

2.3.1 Cancer Data 

The combined somatic mutation and copy number variation data resulted in datasets of the 

following sizes (Table 2-1): BRCA with 779 samples and 15,517 genes; HNSC with 324 

samples and 14,548 genes; LUAD with 398 samples and 11,851 genes; LUSC with 331 samples 

and 10,874 genes; and OV with 562 samples and 10,235 genes. This resulted in a dataset with 

2,396 samples and 20,760 genes after combining all four cancer datasets, and 2,396 samples with 

2,733 unique genes after applying a threshold. 
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Table 2-1. Number of tumors and number of genes for each cancer type 

Cancer Type Number of Samples Number of Genes 

BRCA 779 15,517 

HNSC 324 14,548 

LUAD 398 11,851 

LUSC 331 10,874 

OV 562 10,235 

Combined 2,396 20,760 

Thresholded 2,396 2,733 
 

2.3.2 Semantic Data  

Word vectors were created using the different semantic data sources. Four different 

combinations of data were used to generate word vectors: 1) PubMed articles, 2) GeneRIFs, 3) 

gene summaries, and 4) GeneRifs and gene summaries combined. The vocabulary sizes of these 

resulting word vectors were: 357,577 word for PubMed articles; 54,755 words for GeneRIFs; 

7,933 words for gene summaries; and 57,035 words for GeneRifs and gene summaries 

combined. 

2.3.2.1 Construction of Gene Word Vectors  

We created a word vector for each gene using the different semantic data sources. Since 

the words used to represent a gene are related to the gene’s function, the word vectors highlight 

the similarities and differences between two genes. A subset of words with their tf-idf scores 

from the word vectors of three genes are given as examples in Table 2-2. Both TP53 and MDM2 

are known cancer genes. TP53 is a tumor suppressor that is involved in apoptosis and DNA 

repair, and MDM2 is a proto-oncogene that inhibits TP53. On the other hand, the TTN gene 
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encodes for a protein that is important in muscles. The shared words in the word vectors for 

TP53 and MDM2 reflects their similarity, especially when compared against the word vector for 

TTN. 

The number of words in a gene word vector provides information on if there is enough 

data to fully represent the altered gene. As such, the distribution of the length of the gene word 

vectors informs us about how well the genes are represented using the semantic data. The main 

factor that impacts the gene word vector length is the data source, because the variations applied 

to the word vectors are all based off of the tf-idf calculated from these datasets. The resulting 

distributions tell us that no single data source is able to fully represent all of the 2,726 altered 

genes (S Figure 1). This is especially true for the gene vectors generated using only gene 

summary data, as around one third of the word vectors do not even have any words. It is only 

after combining the GeneRIF and gene summary data that the number of genes without any 

words falls below 400 and a larger portion of genes are represented by a full 200 words. When 

using PubMed articles, the number of genes without any words associated is much smaller, but 

we also have fewer genes that are represented by a full 200 words. 

Another factor that needs to be considered about the representations is the quality of the 

information of the data sources used to create the word vectors. The GeneRIFs and gene 

summaries provide direct information regarding the gene and its function. While this means that 

such information is not provided for all genes, this does limit the amount of noise. On the other 

hand, Pubmed articles cover a greater number of genes. However, there is a lot more noise 

because most of the sentences do not provide information about the genes themselves. 
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Table 2-2. Subset of words from word vectors for three different genes created using GeneRIFs and gene summaries 

with altered tf-idf scores for gene names. 

TP53  MDM2  TTN 
Word Tf-Idf  Word Tf-Idf  Word Tf-Idf 
p53 4084  hdm2 629  ttn 88 
tp53 4084  mdm2 629  titin 88 
cell 1443  hdmx 629  domain 31 

cancer 890  p53 363  pevk 18 
express 887  cell 150  region 17 
mutat 788  cancer 136  protein 16 
activ 683  associ 117  muscl 15 
gene 615  regul 113  mutat 15 

associ 614  activ 97  structur 14 
protein 602  express 95  elast 12 
tumor 563  snp309 95  mechan 12 
regul 505  protein 90  heart 11 

carcinoma 465  risk 83  interact 11 
role 456  suggest 76  molecular 11 

apoptosi 418  result 74  express 10 
result 405  tumor 73  stiff 10 

function 397  polymorph 70  cardiomyopathi 10 
pathwai 387  ubiquitin 69  studi 10 

dna 384  interact 66  famili 10 
suggest 371  degrad 66  sarcomer 10 

 

2.3.2.2 Construction of Tumor Word Vectors 

Word vectors were created for each of the 2,396 samples in the dataset by combining the 

word vectors for the genes associated with each sample. The average length of the word vector 

for each tumor varies depending on the semantic data source used, and can be found in Table 

2-3. If we consider the average length of the word vectors as a measure of the amount of 

information they contain, then we can gauge the relative quality of the data sources. By 

comparing the numbers we can see that gene summaries on their own provide the least 

information, and GeneRIF and gene summaries combined provide the most. Based on this, and 
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the gene word vectors, we decided to focus on using either PubMed articles or the combination 

of GeneRIF and gene summaries as a data source. 

 

 

Table 2-3. Average length of cancer sample word vectors using different data sources 

Data Source Average Length 
PubMed 980.1703 
GeneRIF 1483.7859 

Gene Summary 508.7003 
GeneRIF and Gene Summary 1627.5776 

 

2.3.3 Topic Modeling Results 

The goal of using topic modeling is to capture recurrent semantic themes (defined by a set of 

commonly co-occurring words) that exist in text documents representing SGAs in a collection of 

tumors. Presence of such a theme in the corpus usually is due to the repeated occurrence of 

SGAs in tumors that share a common functional description (although different genes). The 

settings used to generate the topic models resulted in a hierarchical tree that contains a maximum 

of 210 topics. However, since the algorithm may not utilize all of the topics when learning the 

hierarchical structure, the actual number of topics used can vary across the models. Table 2-4 

lists the average number and standard deviation of topics used over 10 runs of the nHDP 

algorithm for the two data sources, and the two word vector generation methods described in 

section 2.2.2.2.1.  
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Table 2-4. Average number and standard deviation of topics used across different sources and word vector 

generation methods 

Data Source and Word Vectors Average Length Standard Deviation 
PubMed Tf-Idf 201.1 4.508 

PubMed Adjusted Tf-Idf 186.4 6.381 
GeneRIF and Gene Summary Tf-Idf 195.6 5.680 

GeneRIF and Gene Summary Adjusted Tf-Idf 202.4 4.222 
 

 

Each of the topics has different word associations, which can be used to gain a better 

understanding of the types of functions and genes that are associated with the topic. We 

inspected the words that constitute the topics and the SGAs associated with them, and an 

example topic is shown in Figure 2-2. It is clear this topic is related to BRCA1/2 genes and their 

relationship to cancer, particularly breast and ovarian cancers. The main function of BRCA1/2 is 

related to DNA repair, and we found words related to DNA repair in the topic but they did not 

rank high enough to be shown in the figure, which only shows the top 20 words. Interestingly, 

RAD51 gene, another DNA-repair gene that binds with BRCA2 [113] and is regulated by BRCA1 

[114], is ranked high, indicating that the nHDP model was able to capture the DNA-repair theme. 

Similarly, three genes that are strongly associated with this topic are BRCA1, BRCA2 and TP53; 

all are related to DNA repair, and they commonly occur in breast and ovarian cancers. 
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Figure 2-2. Example topic associations. The top 20 words and SGAs for topic #84 are shown. On the left 

are the words associated with the topic, and on the right are the SGAs that are associated with the topic. In the center 

are the word cloud representations of the words and genes, on the top and bottom respectively. 

 

2.3.4 Clustering Tumors 

Clustering tumors allowed us to compare between using genetic alterations directly and using the 

topic model. We found that clustering based on altered genes did not result in clean clusters for 

any of the cluster sizes (Figure 2-3A). In comparison, there was much clearer separation in the 

tumors for all of the different datasets used when clustering by topic associations. This indicates 

that there was too much noise and variability to be able to cluster samples using the genetic data 

directly. On the other hand, the clearer separation using the topic association indicates that the 

topic generated contains additional information learned about the relationship between genes. 

The clustering result using topics generated with GeneRif and gene summary data with altered tf-
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idf scores for gene names shown in Figure 2-3B. The results shown has 8 clusters, however one 

cluster only contains 2 samples.  

 

 

A 

 

B 

 

Figure 2-3. Clustering of tumors. A) Samples were clustered using genomic alteration data. B) Samples 

were clustered using topic associations generated using GeneRif and gene summary data with altered tf-idf scores 

for gene names. 

 

2.3.5 Visualizing Tumors 

Using t-SNE to visualize the tumors allowed us to see how well the topic representation was able 

to separate them. We visualized the tumors using the topics generated with GeneRif and gene 

summary data with altered tf-idf scores for gene names. When we labeled the tumors based on 
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the 8 clusters generated, there was a fairly clear separation of the different clusters (Figure 

2-4A). In comparison, labeling the tumors by cancer type shows that there is not a clear 

separation of cancer types (Figure 2-4B). This supports the theory that different tumors of the 

same cancer type may have different disease mechanisms that lead to the development of cancer, 

and these disease mechanisms may instead be shared by tumors of other cancer type.  

 

2.3.6 Topic to Cluster Associations 

A key motivation of employing nHDP, instead of other probabilistic topic models such as the 

LDA model, is that nHDP not only detects recurrent themes but also, importantly, the covariance 

structure of topics. In other words, if a topic represents a pathway perturbed by SGAs, nHDP can 

capture the combinatorial patterns of pathway perturbations. We examined and illustrated the 

example topic allocation trees (Figure 2-5). Apparently, the pattern of topics associations 

differed between clusters, and certain subtrees are strongly associated with one cluster but not 

the other. This implies that the combination of semantic (functional) themes, rather than the 

possession of unique functional themes, is what separates the different clusters.  While we found 

that many topics would show up in multiple clusters, there are other more specific topics that are 

exclusive to one cluster. This was expected, because the topics that are higher in the hierarchy 

are more general and could be shared across clusters. However, the topics deep in the hierarchy 

are more specific and so should appear in fewer clusters. 
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Figure 2-4. Visual representation of distance between tumors. Topic representations were used to 

calculate the t-sne distance between individual tumors. A) Tumors are labeled based on the clusters identified in 

section 0 and seen in Figure 2-3B. B) Tumors are labeled based on their cancer type. 

 

2.3.7 Survival Analysis 

Assuming that different clusters consist of tumors sharing common disease mechanisms, we 

performed survival analysis to determine if such subtyping reveals clinical differences. Using the 

8 clusters generated in section 2.3.4 to group the tumors, we performed survival analysis on each 

of the different cancer types. Of the five cancer types, BRCA, HNSC, and LUSC were all found 

to be significant (S Table 1). This was true both when all samples and clusters were used, and 

when only the clusters containing at least 25 samples were used. The resulting survival curves 

can be seen in Figure 2-6. These results indicate that semantic representation and clustering 

revealed cancer subtypes that have significantly different tumors with biologically different 

features, which were identified using their topic associations. 
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Figure 2-5. Graphical visualization of cluster-to-topic associations. The calculated degree of cluster-to-

topic associations for two of the clusters using the clustering results seen in Figure 2-3B. These visualizations show 

the structure of the topic tree, where each node represents a topic. The color scale denotes the proportion of tumors 

in a cluster associated with each topic, where white means that none of the tumors in the clusters are associated and 

black means that all of the tumors are associated with the topic. The visualization for the topics associated with 

clusters 4 and 5 are shown in A and B respectively. 
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C

 

 

Figure 2-6. Survival analysis of tumors. The survival analysis curves calculated using only the clusters 

that contain at least 25 samples. A, B, and C correspond to cancer types BRCA, HNSC, and LUSC respectively. 
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2.4 DISCUSSION 

In this study, we investigated the utility of semantic representation and topic modeling for 

identifying combinatorial patterns in signaling pathway perturbations in different tumors. Our 

results show that semantic representation of SGAs makes it possible to detect the functional 

similarity of different genes, which in turn enabled nHDP to detect recurrent combinatorial 

patterns of pathway perturbation. Interestingly, this approach enabled us to identify cancer 

subtypes (clusters) consisting of tumors with quite diverse tissues of origin, which exhibit 

significantly different clinical outcomes (survival). 

To our knowledge, this is a novel approach to studying common disease mechanisms 

using genomic alteration data. Our approach is the first to generate semantic representations to 

capture the functional information of tumors. We conjecture that the existence of topics in this 

new representation is due to recurrent SGAs that perturb genes involved in a common biological 

process or pathway. As such, one can further hypothesize that the presence of a topic in a tumor 

represents that a specific pathway is perturbed in the tumor. Following the same vein of thinking, 

one can hypothesize that tumors within a cluster identified in this study share a common disease 

mechanism, i.e., they share a particular combinatorial pattern of pathway perturbation. Further in 

depth analysis of topics and associated SGAs is needed to examine if such a hypothesis is 

supported by the results. If proved to be the case, our finding can potentially guide therapy 

targeting specific combination of pathways.  

This study also has its limitations. Semantic data is limited by the amount and breadth of 

research available, so genes that are not well research or functions that have not been discovered 

would not be properly represented. This was seen with some of the semantic datasets tested, 

where there may be too much noise or being represented by a limited number of words. Using 
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semantic data also means that the topics generated are composed of words, which makes it 

difficult to identify the underlying genes that led to these associations. While the fact that we 

were able to identify patterns shared across multiple cancer types is promising, the input data is 

limited to only five cancer types. 

2.5 CONCLUSION 

Our research is the first time semantic representations are applied in this way to represent cancer 

samples, as well as the first use of a hierarchical topic model in this aspect of biomedical 

research. Applying topic modeling to the semantic representations of tumors made it possible to 

identify combinatorial patterns of perturbed pathways in cancer tumors. This enabled the 

identification of cancer subtypes containing different tissues of origin that exhibit significantly 

different survival outcomes. If these subtypes are shown to share combinatorial patterns of 

pathway perturbations, then these methods can potentially be used to guide targeted therapy of 

cancer. 
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3.0 SEMANTIC MODELING OF DRIVER GENOMIC ALTERATIONS TO 

IDENTIFY PATHWAY PERTURBATION PATTERNS IN CANCER 

3.1 INTRODUCTION 

In the previous study, we found that it was possible to identify cancer subtypes that exhibit 

distinct clinical outcomes through the application of semantic representation and topic modeling 

to tumors of a limited number of cancer types. We wanted to determine if the methods were 

capable of identifying pathway perturbations shared across different cancer types for a larger 

pan-cancer dataset. This would simplify the process of identifying shared features and treatment 

methods across different cancer types. However, increasing the number of cancer types means 

that the number of somatic genomic alterations (SGAs) would also increase.  

We had tried to limit the mutated genes to potential drivers using Polyphen-2, by only 

keeping the genes that were predicted to have a functional impact. However, just because a 

mutation may impact the function of a gene, that does not mean the resulting functional change 

would drive the development of cancer. This tool also cannot be used to evaluate copy number 

alterations. It appeared that the topic modeling algorithm was able to further screen the SGAs by 

identifying those that had functions with a biological impact. However, the topic modeling 

algorithm isn’t designed to identify driver genes, and so it is only able to filter out the less 

common passenger alterations. Even though topic modeling should continue to filter out non-
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driver SGAs, adding additional cancer types increases the difficulty of identifying combinations 

of altered pathways in tumors. Therefore, it may be useful to limit the input to cancer drivers, 

which would allow the topic modeling algorithm to work with an input that contains less noise. 

To focus on these questions, we continued using both the semantic representations we 

developed previously and topic modeling. We expanded the dataset from 5 cancer types to a total 

of 17 different cancer types. In order to study the impact of using drivers as input in lieu of all 

SGAs, drivers were identified using a Bayesian network-based framework. The results were 

compared using cluster and survival analysis. The conceptual overview of our research for the 

driver dataset is shown in Figure 3-1, while the overview of our research for the SGA dataset is 

the same as that seen in Figure 2-1. 
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Figure 3-1. Conceptual overview of research for the driver dataset. A) Somatic mutation, copy number 

alteration, and gene expression data for each tumor was collected. B-C) The genomic alteration data was used as 

input for the tumor driver identification algorithm in order to identify the drivers associated with each tumor.  D) 

Generif and gene summaries associated with genes were collected. E) The semantic data associated with each gene 

was processed to create a word vector representation. F) A document representation for each tumor was created by 

combining the word vectors of each driver associated with the tumor. G) The document representations were used as 
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input for a hierarchical topic model, which identified topics associated with each tumor. H-I) The generated topic 

associations were used to cluster the tumors. 

3.2 METHODS 

3.2.1 Data Processing 

3.2.1.1 Cancer Genomic Data 

Cancer somatic mutation data was downloaded from The Cancer Genome Atlas (TCGA) 

[25]. Copy number variation GISTIC2 results and three different platforms (RNASeqV2, 

RNASeq, and Microarray) for gene expression data were downloaded from Broad GDAC 

Firehose [115]. Pan-cancer data covering 17 different cancer types was used: bladder urothelial 

carcinoma (BLCA), breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), 

esophageal carcinoma (ESCA), glioblastoma multiforme (GBM), head and neck squamous cell 

carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell 

carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung 

squamous cell (LUSC), ovarian serous cystadenocarcinoma (OV), prostate adenocarcinoma 

(PRAD), rectum adenocarcinoma (READ), stomach adenocarcinoma (STAD), thyroid 

carcinoma (THCA), and uterine corpus endometrial carcinoma (UCEC). 

3.2.1.1.1 Somatic Mutations 

The somatic mutation data downloaded was classified into 11 different types, with three 

general categories: insertions, deletions, and mutations. We considered all non-synonymous and 
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non-silent mutations to be functional mutations (S Table 2). As such, the only type of mutation 

that was treated as non-functional was silent mutations. Based on the functional call of each 

gene, a binary vector representation for each cancer sample was generated. Each cancer sample 

was represented by multiple genes, where a 1 represents that a functional mutation has occurred, 

and a 0 represents that a functional mutation has not occurred. 

3.2.1.1.2 Copy Number Variation 

GISTIC2 thresholds the copy number variation data for each gene in a cancer sample to 

one of five levels: -2, -1, 0, 1, or 2. These levels represent homozygous deletion, single copy 

deletion, diploid normal copy, low copy number amplification, and high copy number 

amplification respectively. Since we wanted to consider genes that are more likely to have a 

functional impact, we only treated the genes with homozygous deletions (-2) or high copy 

number amplifications (2) as copy number alterations. 

These genes were further filtered to eliminate the genes that were not consistently deleted 

or amplified across different tumors in a specific cancer type. The reasoning behind this is that if 

a gene perturbation has a functional impact on cancer development, then this gene should be 

consistently altered. For example, deletion of a tumor suppressor gene would promote cancer 

development, therefore we would expect to see that the gene has consistently undergone 

deletions in tumors instead of amplifications. As such, we discarded genes that were not 

consistently deleted or amplified. We calculated the ratio of number of tumors amplified to 

number of tumors deleted, and discarded any gene that had a value greater than 1:3 or smaller 

than 3:1. A binary vector representation for each cancer sample was generated. Each cancer 

sample was represented by multiple genes, where a 1 represents that a copy number alteration 

has occurred, and a 0 represents that a copy number alteration has not occurred. 
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3.2.1.1.3 Gene Expression Data 

There is gene expression data for three different platforms available on TCGA: 

RNASeqV2, RNASeq, and Microarray. RNASeqV2 is the most frequently used platform for 

measuring gene expression of TCGA tumors, with a smaller portion of tumors being measured 

by the other two platforms. All of the gene expression datasets for each cancer type were 

downloaded. For each cancer type, we picked the platform that covered the largest number of 

tumors and also contained measurements for normal samples. Measurements for normal samples 

were needed for their use in determining which genes were differentially expressed. Prior to 

analysis, any gene expression value in RNASeqV2 or RNASeq data that was less than 20 were 

considered noise. In normal data, we set these values to 20 before calculation; in tumor data, we 

considered these genes to have normal expression and excluded them from further analysis. 

For each cancer sample, we were only interested in the genes that had an altered 

expression. In order to identify the differentially expressed genes (DEGs) for each sample, the 

expression level of genes in tumors were compared against normal cells of the corresponding 

tissue type. For the genes whose expression in normal cells followed a Gaussian distribution, we 

used their mean and variance to calculate the p-values for each gene in each cancer sample. If the 

p-value fell within a 0.05 threshold on either tail, then the gene was considered to be 

differentially expressed in the corresponding cancer sample. For the genes that did not follow a 

Gaussian distribution due to low variance (less than 0.1), we used fold change to determine 

differential expression. Fold change was calculated by dividing the gene expression of the tumor 

cell by the average expression of the normal cells. Any gene that was determined to have 

undergone a 3-fold change was considered differentially expressed. 
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We wanted to identify the DEGs that were driven by somatic mutations. Therefore, all 

genes that underwent amplification or deletion were not considered differentially expressed. This 

eliminated the chances that gene differential expression was the result of copy number 

alterations. A Pearson correlation analysis was performed to identify tissue specific DEGs that 

were correlated with cancer type or tissue of origin. Any DEG with a correlation value larger 

than 0.9 was removed. A binary matrix representation for all tumors was generated. Each cancer 

sample was represented by multiple genes, where a 1 means that the gene is differentially 

expressed, and a 0 represents that the gene is not differentially expressed. 

3.2.1.1.4 Combined Data 

The somatic mutation and copy number variation representation data were combined to 

form a binary somatic genomic alteration (SGA) matrix, where 1 represents a somatic mutation, 

copy number alteration, or both, and 0 represent that neither have occurred. In order to minimize 

redundant SGA information, SGAs with similar patterns were grouped together. We first merged 

neighboring genes to form a SGA unit when the co-occurrence of their SGAs over the union of 

tumors was larger than 0.9. We then grouped genes or SGA units into SGA groups if they shared 

the exact same SGA pattern. 

3.2.2 Cancer Driver Data 

We used driver data that was calculated and generated by other members in our lab. This 

algorithm to predict the causal relationship between SGAs and DEGs for individual tumors is a 

Bayesian network-based framework developed in our lab [116]. We assume that individual 

DEGs may be caused by individual SGAs, though it is possible that some are caused by non-
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SGA factors. Using initial stricter assumptions that SGAs on a common pathway are mutually 

exclusive and a DEG is the result of one altered pathway, then it can be assumed that a DEG is 

most likely caused by one SGA. The problem of identifying driver SGAs and their associated 

DEGs was represented as a tumor-specific model using a bipartite causal Bayesian network with 

two sets of variables 𝐴𝑠𝑒𝑡 and 𝐺𝑠𝑒𝑡, where causal edges can be added from variables in 𝐴𝑠𝑒𝑡 to 

𝐺𝑠𝑒𝑡 (Figure 3-2). 𝐴𝑠𝑒𝑡 is composed of all SGAs in the given tumor, as well as a “leak node” to 

represent non-SGA factors. 𝐺𝑠𝑒𝑡 is composed of all DEGs in the given tumor. The algorithm 

learns the structure of the Bayesian network for each tumor, based on the SGAs and DEGs for 

the tumor. The posterior probability for a structure M given the data D is: 

𝑃(𝑀′|𝐷) =
𝑃(𝐷, 𝑀′)

𝑃(𝐷) =
𝑃(𝐷, 𝑀′)

∑ 𝑃(𝐷, 𝑀)𝑀
=

𝑃(𝐷|𝑀′) ∗ 𝑃(𝑀′)
∑ 𝑃(𝐷|𝑀) ∗ 𝑃(𝑀)𝑀

 

where the sum is taken over all possible models. The term 𝑃(𝑀) denotes the prior probability 

that the Bayesian network has M as its structure. The term 𝑃(𝐷|𝑀) can be derived as follows: 

𝑃(𝐷|𝑀) = ∫ 𝑃(𝐷|𝑀, 𝜃) ∗ 𝑃(𝜃|𝑀)𝑑𝜃
𝜃

 

where 𝜃 represents the parameters associated with M. 

The driver identification algorithm was run using the generated SGA and DEG binary 

matrices as input. A binary matrix representation for all tumors was generated using the drivers 

identified by the algorithm. Each cancer sample was represented by driver genes, where a 1 

means that the gene is considered a driver for that sample, and a 0 means that the gene is not 

considered a driver.  
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Figure 3-2. Tumor-specific driver identification structure. A bipartite Bayesian network that represents 

a hypothesis about which SGAs are causing which DEGs. In this network, A1 represents a driver gene for G2, G3, 

and G4. A2 represents a passenger gene. 

 

3.2.3 Representation of Genes and Tumors 

3.2.3.1 Semantic Representation of Genes 

The data that was downloaded and used to generate the semantic representation of genes 

were the same as those described in section 2.2.2.1. The processing and calculations were also 

performed in the same way. 

3.2.3.2 Semantic Representation of Tumors 

Two different sets of semantic representations were generated for the tumors. The first set 

used all of the SGAs associated with each cancer tumor. The second set used only the identified 

driver genes associated with each cancer tumor. Here we expanded the driver SGA units or 

groups back to their component genes. This is because we only had semantic representations of 

individual genes, and would not be able to directly represent a set of genes. The tumor 

representations generated for these datasets were different, because of the differences in the total 

number of genes in the dataset. 

        

            

A0 A1 A2 A3 

G1 G3 G4 G5 G6 G2 
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Word vectors containing relevant words and their term frequencies were generated for the 

topic modelling process. Word document (gene) frequency and normalized tf-idf scores were 

used to limit the vocabulary size both across the entire dataset and for each gene. The normalized 

tf-idf score for a word was calculated by dividing the cumulative tf-idf score by the number of 

genes the word appears in. We first trimmed the words that occurred in less than a set threshold 

number of genes. The thresholds we used were 26 words for the SGA dataset, and 3 words for 

the driver dataset. We then further trimmed the vocabulary by removing the 1,500 words with 

the smallest normalized tf-idf scores. Trimming the vocabulary allowed us to remove words that 

were too common and too rare to provide useful information in the topic modeling process; it 

also limits the number of features in the modeling process.  

In order to create the word vector associated with a tumor, we utilized only the genes or 

drivers positively associated with that sample (has a value of 1). For each sample, we combined 

the word vectors for all of the positively associated genes in the tumor. During the process, if a 

gene word vector contained its own gene name or alias, then the tf-idf score was altered. We set 

this altered score to be equal to the smaller of the following two values: the highest tf-idf score 

associated with that gene, or 1.5 times the second highest tf-idf score. The values for each word 

in a tumor word vector were set by summing the tf-idf scores for the word across all the genes 

with word vectors containing the word.  

3.2.4 Topic Modeling 

Both the topic modeling algorithm and the topic model selection process were the same as those 

described in section 2.2.3. The algorithm was run on the two corpuses of tumor word vectors, 
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which resulted in a set of word-to-topic and document-to-topic distribution matrices for each 

corpus. 

3.2.5 Analysis 

3.2.5.1 Evaluating Semantic Representation of Genes 

We wanted to determine if genes with similar functions had word vector representations 

that were closer in similarity, in order to ensure that the semantic representation captures the 

functional similarity of genes. Cosine similarity was used to measure the similarity between gene 

word vectors. We used the genes on the KEGG pathway hsa05200 (pathways in cancer) to obtain 

our list of functionally related genes [117, 118]. An equal number of randomly selected genes 

was used as our list of functionally unrelated genes. The cosine similarity of each pair of genes 

for each list was calculated. The cosine similarity distribution for both lists were compared using 

the Wilcoxon rank sum test to determine if there was a significant difference between 

functionally related and unrelated genes. 

3.2.5.2 Calculating Topic to Gene Associations 

The method used to calculate the topic to gene associations was the same as in section 

2.2.4.1. Only the top 20 genes associated with a topic that have an association score of at least 

0.001 were used for further analysis. 

3.2.5.3 Topic Analysis 

In order to have a quantitatively comparable method of measuring the functional 

similarity of the genes associated with the generated topics, we chose to use the protein-protein 
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interaction (PPI) ratio. For a list of genes, this ratio measures the number of existing PPIs over 

the total number of possible interactions. The idea is that functionally similar genes would have a 

greater number of PPI when compared to randomly selected genes, and so would have a larger 

PPI ratio. This ratio was calculated using the following equation:  

𝑅𝑃𝑃𝐼 =
𝐼

𝑔(1 − 𝑔) , 

where I is the number of interactions in the gene set, and g is the total number of genes in the 

gene set. Human PPI data version 3.4.127 was downloaded from BioGrid [119]. 

The PPI ratio was calculated for the genes associated with each topic. For each gene list 

length, we generated random gene lists of equal length by randomly selecting from the list of all 

SGAs for the SGA dataset and the list of all drivers for the driver dataset. A total of 10,000 

random draws were obtained for each length, which was used to create a PPI ratio distribution 

for random genes. For each topic, we determined where the PPI ratio fell in the random 

distribution by counting the number of values that were smaller than the calculated topic PPI 

ratio. Dividing this count by the number of samples gave us the proportion of randomly 

generated PPI values that the topic PPI ratio was larger than. 

3.2.5.4 Clustering Tumors 

We performed consensus clustering on the tumors to determine if relationship 

information was learned from the data by using topic modeling. As such, clustering was 

performed while using as input the SGA dataset directly, the driver dataset directly, the word 

count per topic associations generated using the SGA dataset, and the word count per topic 

associations generated using the driver dataset. We used partitioning around medoids (PAM), k-

means, and merging the two for consensus as the clustering methods. The algorithm was run for 
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cluster sizes 10-25 when clustering directly based on SGAs or drivers, and cluster sizes 10-30 

when clustering based on the word count per topic associations. Consensus clustering was 

performed using the clusterCons package version 1.0 in R [109]. 

3.2.5.5 Cluster Evaluation 

We used the gene alterations associated with each cluster in order to evaluate if the 

samples share common combinations of pathways. These gene lists were used to calculate 

protein-protein interaction ratios. The reasoning is that genes sharing pathways would have a 

larger number of protein-protein interactions than unrelated genes. As such, if tumors share 

common combinations of pathways, then there should be more PPI between their genes than 

samples with combinations of pathways that are unrelated. For the clusters generated using either 

dataset, the SGA list for each cluster was obtained by compiling all of the SGAs associated with 

each cancer sample in a cluster. For the clusters generated using the driver dataset, the driver list 

for each cluster was obtained by compiling all of the drivers associated with each cancer sample 

in a cluster. The method of calculating the PPI ratio and comparing against the random 

distribution was the same as described in section 3.2.5.3. A total of 10,000 random draws was 

used to generate the random distribution for gene list length. 

3.2.5.6 Visualization of Tumor Clusters 

The topic representation of the tumors was visualized in a two-dimensional space using 

the same methods as those described in section 2.2.4.3. 
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3.2.5.7 Survival Analysis 

The biological impact of subtyping the tumors based on clustering was measured by 

performing survival analysis on each cancer subtype separately. Survival data for the tumors was 

obtained from the TCGA project clinical data using the National Cancer Institute’s Genomic 

Data Commons: http://gdc.nci.nih.gov/. The survival analysis was performed using the same 

method as those described in section 2.2.4.5. The only change made was to exclude any cluster 

that contained less than 20 samples when analyzing each individual cancer type.  

3.3 RESULTS 

3.3.1 Cancer Data 

For the 17 different cancer types downloaded, when we kept the tumors that had both somatic 

mutations and copy number alteration data available, we had a total of 5608 tumors. The 

breakdown of the number of samples in each cancer type is listed in S Table 3. This data resulted 

in a total of 38,004 SGAs. This final SGA to sample mapping was used as the somatic genomic 

alteration (SGA) dataset. 

When we restricted the samples by the copy number alteration data, we had a total 4468 

tumors. This also resulted in the removal of THCA data, because of the quality copy number 

alteration data. The breakdown of number of samples in each cancer type is listed in S Table 3. 

This data resulted in a total number of 26,203 SGAs. From this genomic data we obtained a final 

list of 721 identified drivers, with any SGA unit or group being treated as an individual driver. If 

we expand these SGA units or groups back to their component genes, we obtain a list of 733 

http://gdc.nci.nih.gov/
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genes. This final gene to sample mapping was used as the driver dataset. Given that two different 

cancer sample gene association datasets were used, the SGA dataset and the driver dataset, a 

different semantic representation was generated for each. 

3.3.2 Semantic Data 

The initial vocabulary size for the SGA dataset was 167,314 words. Of the 26,203 SGAs there 

were 8,724 that had less than 5 words associated. After trimming the vocabulary, we had a final 

size of 6,396 words. This also resulted in 859 new genes that had less than 5 words associated. 

However, we felt that this increase was acceptable because it accounted for less than 5% of the 

genes that previously had more than 5 word associations (4.91%). 

Similarly, the initial vocabulary size for the driver dataset was 31,869 words. Of the 733 

genes there were 146 that had less than 5 words associated. After trimming the vocabulary, we 

had a final size of 6,029 words. This resulted in 21 new genes that had less than 5 words 

associated. Once again, this accounted for less than 5% of the genes that previously had more 

than 5 word associations (3.78%). 

3.3.2.1 Semantic Representation Evaluation 

The vector representations of genes were used to calculate and compare the distribution of cosine 

similarities for random gene pairs when compared to the genes on the KEGG pathway named 

pathways in cancer [117, 118]. We found that there was a significant difference between the 

random and KEGG distributions both when we used the SGA dataset and when we used the 

driver dataset for calculation (Figure 3-3). The Wilcoxon rank sum p-value were 0 and 5.8e-124 

for the SGA and driver dataset respectively. Having the cosine similarity distribution for 
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functionally related gene pairs be greater than the random gene pairs supports the idea that the 

semantic representation captures functional information. We believe that the driver genes would 

result in a less significant difference because the driver genes have all been predicted to be 

relevant to the development of cancer. As such, randomly selecting driver gene pairs would be 

more likely to have functional relevance than when randomly selecting from all SGAs. A subset 

of the words, with their tf-idf scores, from an example driver gene pair with a high cosine 

similarity score is given in Table 3-1. Words that occur in both vectors are highlighted in red. 

Both PIK3CA and PTEN are involved in the same pathway, with PIK3CA being a known 

oncogene and PTEN being a known tumor suppressor. This highlights the ability of semantic 

vector representations to identify functionally related genes. 

 

 

A

 

B

 

Figure 3-3. Cosine similarity distributions of semantic representations of genes. The cosine similarity 

was calculated for pairs of genes on a KEGG pathway, and the same number of pairs of random genes. The resulting 

distribution for the KEGG genes can be seen in red, and random genes can be seen in blue. A) All SGAs in the 

pathway were compared with genes randomly selected from all SGAs. B) All drivers in the pathway were compared 

with genes randomly selected from all drivers. 
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Table 3-1. Subset of words from two word vectors with one of the highest cosine similarity scores 

PIK3CA  PTEN 
Word Tf-Idf  Word Tf-Idf 
pik3ca 416  pten 262 
pi3k 416  akt 175 

mutat 220  cancer 156 
akt 155  cell 153 

cancer 118  tumor 130 
pathwai 100  express 129 

pten 82  carcinoma 109 
activ 76  mutat 107 
kra 73  pi3k 98 
cell 65  pathwai 93 

signal 63  activ 81 
breast 59  endometri 78 

carcinoma 53  signal 75 
3-kinas 53  prostat 75 
tumor 52  breast 67 

oncogen 50  phosphatas 65 
braf 49  pik3ca 57 
akt1 45  associ 57 

patient 41  promot 54 
endometri 38  patient 51 

 

3.3.3 Topic Modeling Results 

The structure of the tree and the topics were inspected, and some example topics from the topic 

associations calculated using the driver dataset are shown in Figure 3-4. Figure 3-4A shows the 

full structure of the topic model tree, while Figure 3-4B is a look at one specific branch. The 

topics shown (Figure 3-4C-E) span one branch from the root to the leaf. This reveals that the 

words in topics closer to the root are more general, containing common words such as cancer, 

tumor, and cell. As we move further down the branch, the words get more specific. One other 

aspect to note is that GATA proteins are known to regulate mucin genes [120]. The fact that 
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these words appear in topics along the same branch indicates that the hierarchical structure is 

also capturing the functional relationship between topics. 

 

 

 

Figure 3-4. Topic model structure and topic associations. The hierarchical structure and example topics 

of a topic model generated using the semantic driver dataset as input is shown. A) The visualization shows the full 

hierarchical structure of the topic tree, where each node represents a topic.  B) One branch along the topic tree. C-E) 

Word clouds showing three example topics that are progressively deeper in the topic tree, and further away from the 

root. These words associated with the topics also are progressively more specific.  

 

3.3.3.1 Topic Analysis 

In order to confirm that the topics have grouped together functionally similar genes, their 

PPI ratios were calculated and compared to the PPI ratios of random gene lists. Functionally 

related genes would have a greater number of PPI than unrelated genes, so the PPI ratio of topic 

genes should be higher if they are functionally related. We found that 98% of the topics for the 

SGA dataset had a PPI ratio larger than at least 95% of those generated at random (S Table 4), 

and the driver dataset had 91% of the topics meet that threshold (S Table 5). This indicates that 
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the topic model is able to identify and capture functional information, and their topic association 

patterns can then be used to separate tumors. 

3.3.4 Clustering Tumors 

Clustering was used to compare the performance of the different datasets in capturing relevant 

information. The tumors were clustered using genomic alterations directly (S Figure 2), drivers 

directly (S Figure 3), and using the topic associations generated based on the SGA dataset and 

the driver dataset (Figure 3-5). We found that clustering based on the genomic alterations was 

unable to generate clean clusters at any of the cluster sizes that were searched. On the other hand, 

clustering directly based on drivers generated clean clusters at all of the cluster sizes that were 

searched. This indicates that a lot of noise was removed through driver identification. However, 

clustering directly using drivers is not capable of grouping together drivers with the same 

functional impact. As for the topic associations, the fact that both topic associations were able to 

generate cleaner clusters indicates that it decreases the amount of noise in the data and captures 

information about the relationship between genes. However, when comparing the driver topic 

association clusters with the driver clusters, it suggests that the semantic representation may be 

adding in some additional noise. The clustering results for the SGA dataset at k = 14 is shown in 

Figure 3-5A. The clustering results for the driver dataset at k = 16 is shown in Figure 3-5B. 

These two clustering results were used to generate 16 and 23 clusters, respectively. 

3.3.4.1 Cluster Evaluation 

With topics grouping together functionally similar genes, when we clustered the tumors 

based on their topic associations the resulting clusters should contain samples that have common 
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perturbed pathways. Tumors with common perturbed pathways would contain genes that have a 

greater number of PPI. As such, a cluster of genes with a PPI ratio greater than the PPI ratios for 

random genes would indicate that the tumors were more likely to share common perturbed 

pathways. We found that all of the clusters for the SGA dataset had PPI ratios that were larger 

than at least 95% of those generated at random (S Table 6). For the driver dataset, 95% of the 

clusters had a driver PPI ratio that was larger than at least 95% of those generated at random (S 

Table 7). However, when we used all associated SGAs instead of just drivers, we found only 

13% to be above the 0.95 threshold (S Table 8). This is likely because the tumor representations 

were based on drivers, and so the topics identified drivers that have similar functions. However, 

the SGAs associated with these tumors contained more noise and extraneous functions. This 

means that the driver representation would not account for these functions. On the other hand, 

the SGA dataset was calculated based on capturing the functional similarity of all genes, even if 

the genes are not associated with the development of cancer. 
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B 

 

Figure 3-5. Clustering of tumors. Samples were clustered using topic associations generated on the 

somatic genomic alteration (SGA) dataset and driver dataset. A) The clustering results for the SGA dataset at k = 14, 

which was cut to 16 clusters. B) The clustering results for the driver dataset at k = 16, which was cut to 23 clusters.  
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Figure 3-6. Visual representation of distance between tumors. Topic representations were used to 

calculate the t-sne distance tumors. A and B were generated using the topic associations for the SGA dataset. C and 

D were generated using the topic associations for the driver dataset. A, C) Tumors are labeled based on the clusters 

identified in section 3.2.5.4 and seen in Figure 3-5. B, D) Tumors are labeled based on their cancer type. 
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3.3.5 Visualization of Tumor Clusters 

In order to see how well the topic representations could separate the tumors, they were visualized 

in a 2D space using t-SNE. The tumors were labeled either based on the clusters generated 

(section 3.3.4) or by their cancer type and the results can be seen in Figure 3-6. The clusters are 

not well separated when using the topic associations generated by the SGA dataset (Figure 

3-6A). In comparison, there is a much cleaner separation between clusters when visualizing the 

tumors using the topic associations generated by the driver dataset (Figure 3-6C). This indicates 

that there may be too much noise in the SGA dataset for the topic model to handle. Limiting the 

dataset to the identified driver genes decreased the amount of noise, which would make it easier 

to capture the relevant information about genes. As such, we feel that further research should 

focus on using driver genes, rather than all SGAs, as input. Another observation we had was that 

both representations contained a mixture of cancer types across tumors, which can be seen in 

Figure 3-6B and D. This indicates that disease mechanisms can be shared across cancer types. 

3.3.6 Survival Analysis 

Survival analysis was performed on each of the different cancer types for both the SGA and the 

driver datasets, using 16 and 23 clusters respectively. We found that the majority of the tumors 

did not have a significant difference in survival rates. For the SGA dataset, only KIRC and 

LUSC were found to be significant (S Figure 4); for the driver dataset, only BRCA, LUSC, and 

UCEC were found to be significant (S Figure 5). Different combinations of biological features 

may have been identified using the clustering method, as indicated by a difference in survival 

rates for some cancer types. The fact that different cancer types had significantly different 
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survival rates for the two datasets suggests that different features were found. However, the way 

many of the clusters seem to mix in the t-SNE representation of the SGA dataset makes the 

results less compelling and difficult to interpret. A lack of difference in survival data for some 

cancer types was expected, due to either a lack of adequate survival data or no known difference 

in survival performance. However, the fact that so few cancer types had a significant difference 

still indicates that it may be difficult to detect these different features in a pan-cancer dataset.  

3.4 DISCUSSION 

In this study, we applied and analyzed the use of semantic representation and topic modeling on 

a pan-cancer dataset, and also compared the results obtained when using the SGA dataset and the 

driver dataset as input. Analysis of the results indicates that these methods are capable of 

grouping functionally related genes and finding functional relationships between topics. This 

then allows the clustered samples to be grouped with other samples that have similar functions 

altered. The results indicate that using driver genes leads to a better separation of samples, and a 

different set of survival results. 

Building upon our previous results in Chapter 2.0, we provided further results supporting 

the hypothesis that the semantic representations used detect the functional similarity of genes. 

We also took steps to validate and evaluate our topic and clustering results in a quantitative 

manner. Using t-SNE visualization allowed us to observe the clean separation of clusters using 

the driver dataset, in contrast with the full SGA dataset. This highlights the importance of using 

driver genes in research, even if functional similarity can be captured for all genes. Using driver 

genes decreases the dimensionality of the problem, since prior to driver identification tumors 
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could have as many as 500 or more alterations. A focus on driver genes also means that the 

genes and functions grouped by topics would be related to cancer development, which is not true 

when all SGAs are used. Applying the methods on a pan-cancer scale demonstrated its ability to 

perform on a large scale, which would make it useful for drawing interpretations about cancers 

that span different tissue types. 

Given that this study continues to use semantic data, it is once again limited by the 

amount and breadth of research available. This limitation means that it is difficult to accurately 

represent genes with newly discovered or poorly understood functions. As a result, the grouping 

of some genes to certain topics may not accurately reflect the biological truth. Interpretation of 

the results is also limited by the amount of insight that is gained from the generated topics. 

Without an understanding of what functions are captured by the topics associated with individual 

clusters or samples, it is difficult to draw conclusions about what functions are being altered. The 

quality of the results generated using the driver dataset are also dependent on the accuracy of the 

identified drivers.  

3.5 CONCLUSION 

Our research applied both semantic representation and hierarchical topic modeling to pan-cancer 

data. While semantic representations made it possible to identify functionally similar genes, their 

performance is dependent on available research and literature. Therefore, it may be useful to 

pursue other forms of representation that could capture gene function without this dependency. 

Our results show that driver data lead to an improved performance in cluster separation. Being 

able to better identify the similarities and differences between tumors is potentially useful for 
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understanding and treating cancer. As such, the application of driver data in identifying cancer 

disease mechanisms may be beneficial. 
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4.0 BIOLOGICAL REPRESENTATION OF DRIVER GENOMIC ALTERATIONS 

TO IDENTIFY PATHWAY PERTURBATION PATTERNS IN CANCER 

4.1 INTRODUCTION 

Our prior studies used semantic representations to capture the functional information of genes 

and their associated tumors. However, as mentioned previously, these representations are 

knowledge-driven and dependent on available literature. As such, genes would not be accurately 

represented without literature available covering the relevant functions. This makes it difficult to 

make new discoveries about the functional similarities of genes. Therefore, we wanted to 

develop a representation that is independent of literature and determine how well it performs on 

pan-cancer data. 

In order to tackle this problem and continue to capture the functional similarity of distinct 

genes, we developed a novel biological representation of genes that takes advantage of the driver 

identification algorithm developed in our lab. Gene expression is the compilation of the signaling 

state of cells. Therefore, an alteration that has an impact on gene function would result in a 

signature of differentially expressed genes (DEGs). This means that the functions of driver 

somatic genomic alterations (SGAs) could be represented by the DEGs they have a causal 

relationship with. Using a driver-based representation that is calculated directly from the tumors 

is a data-driven approach, and allows the representation to be more biologically relevant and 
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better fit the dataset than a knowledge-driven approach. It also avoids the bias that is inherent in 

a semantic representation, where the quality depends on the available literature and focus of 

research.  

 

 

 

Figure 4-1. Conceptual overview of research. A) Somatic mutation, copy number alteration, and gene 

expression data for each tumor was collected. B-C) The genomic alteration data was used as input for the tumor 

driver identification algorithm in order to identify the driver to gene association for each tumor. D) The driver to 

gene association information was used to generate tumor representations that were used as input for a hierarchical 

topic model, which identified topics associated with each tumor. E-F) The generated topic association were used to 

cluster the tumors. 
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In order to determine if biological representations can be used in conjunction with topic 

modeling to identify combinatorial patterns of pathway perturbations, we applied our novel 

biological representation to pan-cancer data in lieu of the previously used semantic 

representation. We continued using pan-cancer data, and obtained the relationships between 

SGAs and DEGs using the tumor-specific driver identification algorithm. The results were 

evaluated using cluster and survival analysis. The conceptual overview of our research is shown 

in Figure 4-1. 

4.2 METHODS 

4.2.1 Data Processing 

The somatic mutation data was downloaded from The Cancer Genome Atlas (TCGA) [25], while 

the copy number variation and gene expression data were downloaded from Broad GDAC 

Firehose [115]. Since all three data types were needed for analysis, only 16 cancer types were 

used: bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), colon 

adenocarcinoma (COAD), esophageal carcinoma (ESCA), glioblastoma multiforme (GBM), 

head and neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), 

kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung 

adenocarcinoma (LUAD), lung squamous cell (LUSC), ovarian serous cystadenocarcinoma 

(OV), prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), stomach 

adenocarcinoma (STAD), and uterine corpus endometrial carcinoma (UCEC). The 16 

downloaded cancer types resulted in a total of 4468 tumors, and 26,203 SGAs. The breakdown 
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of the samples per cancer type is listed in S Table 3. The methods used for data processing were 

the same as those listed in section 3.2.1. 

4.2.2 Cancer Driver Data 

The driver data containing the driver to gene association for these tumors were calculated in the 

same way as described in section 3.2.2. This resulted in a final list of 721 unique drivers and 

15,902 DEGs.  

4.2.3 Representation of Genes and Tumors 

4.2.3.1 Biological Representation of Genes 

The calculated driver data contained information regarding the relationship between 

somatic genomic alterations (SGAs) and differentially expressed genes (DEGs). This 

relationship was used to generate the biological representation of genes, where each driver SGA, 

SGA unit, or SGA group was represented by its associated DEGs. The SGA units and groups 

were not expanded back to their component genes in order to avoid over-representing these 

drivers since they would all be represented by the same DEGs. A binary vector of DEGs was 

created where a value of 0 meant that the DEG was not associated with the driver, and a value of 

1 meant that the DEG was associated with the driver. Since the driver and DEG associations 

differed depending on the tumor, the representations for the same driver could be different for 

different tumors. 
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4.2.3.2 Biological Representation of Tumors 

Vectors containing the relevant DEGs and their frequencies were needed for the topic 

modelling process. Since the cancer driver identification process already excluded the DEGs that 

were predicted to be irrelevant to cancer development, further limitation of the “vocabulary” size 

was not performed. This resulted in a final vocabulary size of 15,902 genes. For each tumor, the 

DEG vector representation was created by using count vectors and summing up the values of 

each of its drivers.  

4.2.4 Topic Modeling 

The topic modeling algorithm and the topic model selection process were the same as those 

described in section 2.2.3. The nHDP algorithm was run on the corpus of DEG vectors 

representing the tumors in order to generate the resulting word-to-topic and document-to-topic 

distribution matrices.  

4.2.5 Analysis 

4.2.5.1 Evaluating Biological Representation of Genes 

In order to ensure that the biological representation captures the functional similarity of 

genes, we wanted to determine that gene vector representations for drivers with similar functions 

were closer in similarity. Since the driver representation was different for each tumor, a 

comprehensive representation for each driver was generated. This representation was a count 

vector, where the value for each DEG was calculated by counting the number of times the DEG 

was associated with the driver across all tumors. However, the drivers that we have 
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representations of are all predicted to be cancer drivers, which means they are already likely to 

be functionally related. Therefore, for each driver we generated a corresponding random “driver” 

by keeping the counts and replacing the associated DEGs with the DEGs randomly selected from 

the entire “vocabulary”. This random selection represents the situation where the identified 

DEGs do not have any relationship with the driver, and therefore would not be functionally 

related. The subset of an example driver gene vector representation as well as its corresponding 

randomly generated vector can be seen in Table 4-1. 

 

 

Table 4-1. Example biological representation vector and corresponding randomly generated vector 

SSPO 
 

Random 
DEG Count  DEG Count 

PCOLCE2 131 
 

SNORD116.20 131 
GYG2 112 

 
ANKRD37 112 

SNHG12 100 
 

NEK10 100 
DCHS1 92 

 
AGTPBP1 92 

TPSB2 85 
 

LOC84856 85 
TTLL7 81 

 
CD34 81 

HIP1 78 
 

COL29A1 78 
PLD4 78 

 
REEP2 78 

COLEC12 78 
 

NTS 78 
ALDH1L2 77 

 
HSPA2 77 

ELMO1 75 
 

GPR4 75 
IPCEF1 71 

 
C7orf10 71 

MAP7D2 69 
 

FAM95B1 69 
KRT17 68 

 
GTF2IRD2B 68 

XKR9 67 
 

GPCPD1 67 
PYGM 66 

 
COL2A1 66 

EPM2A 65 
 

AMZ1 65 
AKAP12 64 

 
RASSF3 64 

PLIN4 64 
 

NCF1C 64 
SLCO2B1 62 

 
SYT9 62 
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  Cosine similarity was used to measure the similarity for both the comprehensive and the 

random DEG count vectors. The cosine similarity of each pair of genes within the two 

collections of DEG count vectors were calculated. The cosine similarity distribution for both 

collections were compared using the Wilcoxon rank sum test to determine if there was a 

significant difference between functionally related and randomly generated drivers. 

4.2.5.2 Calculating Topic to Driver Associations 

Since we used the input DEG count vectors as documents, the “words” that the topic 

model selected were actually genes. However, further calculations were necessary in order to 

determine the drivers associated with each topic. The topic to driver associations for each topic 

(t) were calculated using the generated word-to-topic and document-to-topic matrices. The word-

to-topic matrix was normalized by topic to get the probability of each word being associated with 

a topic. For each document (d) and each word (w) in the document, we identified the driver that 

was most strongly associated by extracting row w from the normalized word-to-topic matrix, and 

performing element-wise multiplication of it with row d of the document-to-topic matrix. The 

topic t with the largest value in this resulting vector was identified, and the driver associated with 

word w was assigned to this topic. If the driver was already associated with topic t, then the value 

assigned to the driver would be increased by 1. We chose to use an incremental value of 1 

because it helps to decrease the chance of topics becoming dominated by common drivers, and 

drowning out the signal of rarer drivers. Only the top 20 drivers associated with a topic were 

used for further analysis. 

The pseudocode used to calculate topic to driver associations can be found below: 
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Input: 

wordTopicMatrix - matrix containing probability of each word occurring in each topic 

documentTopicMatrix - matrix containing number of words from each document 

associated with each topic 

DEG vector representation of each SGA for each document 

 

Initialize: 

topicDriverMatrix - an empty topic by driver matrix 

 

foreach document (d) 

foreach word (w) 

Perform element-wise multiplication of row w in wordTopicMatrix with row d in 

documentTopicMatrix 

Find the topic (t) with the largest value in resulting vector 

Identify driver (s) associated with w for d 

topicDriverMatrix[t][s] = topicDriverMatrix[t][s] + 1 

 

4.2.5.3 Topic Analysis 

The method for performing topic analysis was the same as that described in section 

3.2.5.3. Prior to running the analysis, any SGA unit or SGA group was expanded, and the 

component genes were used. This is because SGA units and SGA groups cannot be directly used 

to identify protein-protein interactions. As a result, some of the gene lists had a length greater 

than 20.  

4.2.5.4 Clustering Tumors 

Consensus clustering was performed on the tumors to determine if the use of topic 

modeling allowed us to learn additional relationship information about the data. As such, 
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clustering was performed using the generated topic associations. We used partitioning around 

medoids, k-means, and merging the two for consensus as the clustering methods. The algorithm 

was run for cluster sizes 10-30. Consensus clustering was performed using the clusterCons 

package version 1.0 in R [109]. 

4.2.5.5 Cluster Evaluation 

We used the drivers associated with each cluster to evaluate if the samples share common 

combinations of pathways. The driver gene list for each cluster was obtained by taking the union 

of all of the drivers associated with each tumor in a cluster. A total of 10,000 random draws was 

used to generate the random distribution for each driver list length. The reasoning for this 

analysis was provided in section 3.2.5.5, and the method for calculating the PPI ratio and 

comparing against the random distribution was described in section 3.2.5.3. 

4.2.5.6 Visualization of Tumor Clusters 

The topic representations of the tumors were visualized in a two-dimensional space using 

the same methods as those described in section 2.2.4.3. 

4.2.5.7 Calculating Cluster to Topic Associations 

We visualized the proportions of samples in a cluster associated with each topic using the 

same method as section 2.2.4.4. 

4.2.5.8 Survival Analysis 

Kaplan-Meier survival analysis was performed on two different cancer subtypes as a 

measure of biological impact in subtyping the tumors based on clustering: GBM and OV. 
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Survival data for the tumors was obtained from the TCGA project clinical data using the 

National Cancer Institute’s Genomic Data Commons: http://gdc.nci.nih.gov/. Due to the fact that 

clustering the pan-cancer data resulted in clusters mainly being separated by cancer types, 

consensus clustering was performed on the tumors for these individual cancer types separately 

for cluster sizes 4-20. The tumors were separated into subsets based on these newly generated 

clustering results. We used the survival package version 2.38.3 in R to conduct the analysis [111, 

112]. 

4.3 RESULTS 

4.3.1 Biological Representation Evaluation 

The DEG vector representations of drivers and the randomly generated representations 

were used to calculate and compare the resulting cosine similarity distributions. We found that 

there was a significant difference between the random and driver distributions (Figure 4-2). The 

Wilcoxon rank sum p-value was 3.05e-269. This result supports the idea that the DEGs 

associated with a driver SGA have a relationship, and so a biological representation based on 

these DEGs would be able to capture functional information about the drivers. We also identified 

driver pairs that have high cosine similarity, and found that one of the top pairs was KEAP1 and 

NFE2L2 (Table 4-2). These two genes are on the same pathway and play a role in response to 

oxidative stress [121]. This further highlights the ability of biological gene representations to 

identify functionally related genes. 

 

http://gdc.nci.nih.gov/
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Figure 4-2. Cosine similarity distribution of biological representations of genes. Cosine similarity was 

calculated for each pair of driver SGAs and each pair of randomly generated DEG vectors. The resulting distribution 

for the SGAs can be seen in red, and random genes can be seen in blue. 

 

4.3.1.1 Topic Analysis 

To confirm that the topics generated based on biological representations could group 

together functionally similar drivers, the PPI ratios of topic driver SGAs were calculated and 

compared to the PPI ratios of randomly selected driver SGAs. We found that 80% of the topics 

had a PPI ratio larger than at least 95% of those generated at random (S Table 9). This indicates 

that the topic model is able to capture functional information when working with biological 

representations. However, the fact that this is a relatively lower percentage may mean that it is 

more difficult to identify the functional signal using this current representation. 
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Table 4-2. Subset of words from two word vectors with one of the highest cosine similarity scores 

KEAP1  NFE2L2 
Word Count  Word Count 

SLC7A11 121  SLC7A11 129 
AKR1C1 118  PANX2 115 

PGR 114  AKR1C1 104 
NQO1 109  LRP8 100 

CYP4F11 108  SLC12A8 96 
VGLL1 107  TRIM16L 93 
FREM1 107  WNT5A 92 

COL13A1 106  CABYR 91 
ADRB2 106  AKR1B15 87 

CHRNA5 103  AKR1C3 86 
CKMT1B 102  TXNRD1 85 
C6orf97 102  GCLM 78 
WISP2 99  VSIG10L 77 
CABYR 99  GCLC 74 
RBMS3 98  C1orf31 74 

KIAA1529 95  CBR3 73 
TRIM16L 94  ABCC1 73 
CBFA2T3 94  SRXN1 72 
SIGLEC1 89  OSGIN1 72 
AKR1C3 88  CBR1 71 

 

4.3.2 Clustering Tumors 

Consensus clustering was performed to see if the cancer samples could be separated along 

common disease mechanisms identified using biological representations. We found that 

clustering based on the topic associations (Figure 4-3) resulted in cleaner clusters than using 

SGAs directly (S Figure 2), but less so than those using drivers directly (S Figure 3). One 

interesting feature about the clusters generated using biological topic associations is that the 

resulting clusters are generally dominated by one cancer type. The fact that this is seen in 

clusters generated using topic associations, but not those generated directly from driver data 
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indicates that the DEGs associated with each tumor still contains some tissue type specific 

information. This information would get captured through biological representation, but would 

not be picked up when looking at the driver SGAs directly. 

 

 

 

Figure 4-3. Clustering of tumors. Samples were clustered using topic associations generated using 

biological representations of drivers. The clustering result at k = 15 is shown. 

 

4.3.2.1 Cluster Evaluation 

Since we found that topics group together functionally similar genes, clustering samples 

based on these topic associations should result in clusters with common perturbed pathways. We 

found that all of the clusters generated using topic associations had PPI ratios that were greater 

than at least 99% of those generated at random (S Table 10). This indicates that even if the topics 

identified using biological representations do not perform as well at capturing functional 
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information, it is still possible to find the overall combinatorial patterns of pathway perturbations 

when clustering tumors based on these topics. 

4.3.3 Visualization of Tumor Clusters 

Similar to what we saw with the clustering results, the t-SNE projection also revealed a clean 

separation between clusters (Figure 4-4). It even more clearly highlights how the different cancer 

types dominate each individual cluster. This indicates that though the topics used genes to 

capture distinct recurrent themes, these resulting themes were heavily influenced by the tissue of 

origin. This can be due to the fact that the biological representation uses DEGs to represent 

tumors, and some of the DEGs are still influenced by their tissue of origin despite attempts to 

filter out tissue-specific signals. The fact that these tumors were separated based on tissue and 

not just cancer type can be observed where cancers with similar origins, such as colon 

adenocarcinoma (COAD) and rectum adenocarcinoma (READ) or esophageal carcinoma 

(ESCA) and stomach adenocarcinoma (STAD) occur in the same cluster. This just means that 

the tissue-specific expression is the predominate signal identified using the biological 

representation, and it would take a closer look at individual tissue types to see if another 

functional signal can be found. 
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B

 

Figure 4-4. Visual representation of distance between tumors. Topic representations were used to 

calculate the t-sne distance between individual tumors. A) Tumors are labeled based on the clusters identified in 

section 0 and seen in Figure 4-3. B) Tumors are labeled based on their cancer type. 

 

4.3.4 Topic to Cluster Associations 

Since nHDP can detect the covariance structure of topics, we can use it to observe the 

combinatorial patterns of perturbations in different tumors. In Figure 4-5, we illustrated some of 

the example topic allocation trees. When examining these allocation trees, we found that the 

topic association patterns differed between clusters, and that some clusters are mainly composed 

of topics from just one subtree. Since the clusters were dominated by a specific tissue type, this 

implies that the topic model has identified the relationship between tissue-related genes. In these 

topic allocation trees, we see that the general topics that are strongly shared by the samples in a 

specific cluster, whereas the more specific topics deep in the hierarchy are only associated with a 

smaller portion of samples in the cluster. 
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Figure 4-5. Graphical visualization of cluster-to-topic associations. The calculated degree of cluster-to-

topic associations for two clusters using the clustering results seen in Figure 4-3 are shown here. These 

visualizations show the structure of the topic tree, where each node represents a topic. The color scale denotes the 

proportion of tumors in a cluster associated with each topic, where white means that none of the tumors in the 

clusters are associated and black means that all of the tumors are associated with the topic. A) The visualization for 

the topics associated with cluster 6. B) The visualization for the topics associated with cluster 9. 

 

4.3.5 Survival Analysis 

Even though clustering of pan-cancer data resulted in clusters dominated by individual cancer 

types, we still wanted to see if biological representations could be used to separate tumors by 

disease mechanisms that result in clinical differences. Since different cancer types have different 

survival rates and cannot be compared directly, we chose to look further into GBM and OV and 

clustered these samples separately before performing survival analysis on the results. We found 

that the two cancer types had a p-value of 0.0356 and 0.0826 respectively. These results indicate 
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that the topic associations may have captured some clinically relevant features. However, since 

clustering was performed on the topic associations generated using pan-cancer data, the topics 

may not be able to capture the information relevant to a specific cancer type as cleanly. This 

means that some clinically relevant features may end up not being captured by the generated 

topic model. 

 

 

A

 

B

 

Figure 4-6. Survival analysis of tumors. The survival analysis curves calculated using the clusters 

generated when clustering GBM and OV tumors separately. The curves correspond to A) GBM and B) OV. 

 

4.4 DISCUSSION 

We investigated the ability to use biological representations and topic modeling to identify 

combinatorial patterns in perturbed signaling pathways of different tumors. Our results show that 
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it is possible to detect the functional similarity of different drivers using a biological 

representation. This allowed nHDP to identify patterns in pathway perturbations across different 

cancer types. In contrast with the semantic representations, the tumors were generally clustered 

based on tissue of origin. As such, two of the cancer types were separately clustered and GBM 

was found to have significantly different survival rates.  

To our knowledge, this is the first time a biological representation has been used to 

represent genes or tumors. We also show its ability to differentiate between functionally similar 

and random genes. Despite the fact that a smaller portion of the generated topics were considered 

functionally coherent, the topic associations could still be used to find combinatorial patterns in 

the pathway perturbations of tumors. This is where we found a very contrasting difference from 

when we used semantic representations, clusters were generally dominated by a specific cancer 

type or tissue of origin. These results highlight a problem that would need to be tackled if 

biological representations will be used in pan-cancer analysis: the differential expression of 

genes is affected by both tissue of origin and cell type. Until this issue is handled, biological 

representations can only be effectively used on a smaller-scale analysis of cancer types. 

However, the fact that there was a significant different in survival for one of the two cancer types 

we evaluated indicates that the biological representation is still capable of detecting differences 

between tumors of the same cancer type. 

The biological representation that we developed was based on identified drivers and their 

causal relationships with DEGs. As such, the accuracy of the representation is dependent on the 

accuracy of the identification results. An inaccurate identification could result in either the wrong 

driver being represented by the DEGs, or a driver being represented by the wrong set of DEGs. 

The current method of representation also has done little to trim or limit the DEGs that are used. 
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As such, the current iteration may result in a situation where the tumors are represented by 

almost all of their DEGs. This may help explain why there is such a clear separation between the 

different cancer types. Also when we worked on analyzing individual cancer types, we used the 

topic associations generated using pan-cancer data. Since the topic model was capturing the 

features from a larger dataset, the topics generated may be too general and have a hard time 

capturing the finer differences between tumors of a specific cancer type.  

4.5 CONCLUSION 

In this study we developed a biological representation of genes and tumors that we paired with 

hierarchical topic modeling and applied to pan-cancer data. The biological representations were 

data-driven and able to identify functionally similar genes, with their accuracy dependent on the 

predicted causal relationships between SGAs and DEGs. This representation seems to be 

dominated by tissue-specific signals, which resulted in clusters that were dominated by a single 

tissue of origin.  However, analyzing two of the cancer types individually lead us to find that one 

of them still had significantly different survival rates. Therefore, a biological representation 

could still be used to identify clinically relevant features. 
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5.0 OVERALL DISCUSSION 

This dissertation focused on studying the utility of using alternative representations of genes and 

tumors in conjunction with hierarchical topic models for identifying combinatorial patterns of 

pathway perturbations in cancer. The effect of using driver data in the process was also studied. 

The results show that both semantic and biological representations are valid methods of 

capturing the functional similarity of genes, and the methodology we developed is worthy of 

further exploration with multiple examples of tumors in a cancer type being separated into 

groups with different survival outcomes. 

We initially started off with an evaluation of the feasibility of using semantic 

representations of tumors and topic modeling for cancer analysis. While vector representation of 

genes had previously been used, to our knowledge, this is the first time that they have been 

combined and used to represent tumors. This was also the first time hierarchical topic modeling 

was used for cancer research, and further the first use of the nested hierarchical Dirichlet process 

(nHDP) in the biomedical field. We found that these methods made it possible to separate tumors 

into clear clusters based on their topic association patterns. If these topics represent pathways 

perturbed by somatic genomic alterations (SGAs), then nHDP makes it possible to detect 

patterns of pathway perturbations. The fact that the majority of the cancer types have 

significantly different clinical outcomes indicates that clinically relevant features are being 

captured by this methodology.  
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In order to further explore the abilities of this methodology, we applied it to pan-cancer 

data. At this time our lab had developed an algorithm for identifying cancer drivers, which is a 

major aspect of cancer research. We were interested in seeing what type of impact the inclusion 

of driver data would have, and so we compared the results obtained when including and 

excluding this data. We found that while the genes associated with the topics and clusters were 

generally functionally similar, this change in input data resulted in a different set of features 

being captured by the topics. This was highlighted by the fact that the two representations had 

different cancer types with significantly different survival results, and that the clusters had a 

much cleaner separation when using the driver data. The cleaner separation also indicates that 

driver data is useful for filtering out noise. Therefore, our results support the use of driver data in 

our methods. 

With the known limitations of semantic representations, we wanted to explore a more 

data-driven approach. This led to the development of a biological representation using the causal 

relationship between driver SGAs and differentially expressed genes (DEGs). To our knowledge, 

this is the first time a biological representation has been used to capture the functional 

information of genes or tumors. Our evaluation showed that this representation is capable of 

differentiating between functionally related and random genes. Application of topic modeling 

allowed us to identify topic association patterns that aligned with tissue of origin. When the topic 

associations was able to separate patients into groups with significantly different survival rates, it 

showed that, like semantic representations, biological representations could also be used to 

capture clinically relevant features. 

There are a number of limitations inherent to the studies, one of which is that the results 

are all dependent upon the quality and accuracy of the representations. As such, we tried to 
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ensure that the representations used were capable of capturing the functional similarity of genes. 

It still stands to reason that any improvements to the representation would only be beneficial to 

the overall results. The accuracy of the results is also dependent on the sample size available as 

input, as driver predictions and the generated topics only improve when sample sizes increase. 

Therefore, this methodology would not be appropriate for small sample sizes. Another limitation 

is the difficulty inherent in interpreting and comparing the biological relevance of topics 

generated through topic modeling. While gene enrichment tools can be used to evaluate gene 

lists associated with a topic, these lists are only readily available when using our biological 

representation. All other situations would require an extra extrapolation step to identify the genes 

associated with a topic. Even if a gene list is readily available, it is difficult to quantitatively 

compare gene enrichment results. This problem also directly ties in with another limitation. 

Without an accurate understanding of what the topics are representing, it is difficult to interpret 

the biological implications of the topic associations generated. 

Despite these limitations, the methodologies developed here show promise and are worth 

further investigation. While mainly limited to text data, topic modeling has been applied to 

biomedical data with an increasing frequency. Its ability to identify topics and associations 

directly from the data is useful when dealing with large datasets containing many features 

(words). If it turns out that the hierarchical tree generated using nHDP can capture the pathways 

involved in cancer and their relationships, then there is the potential for its use to help guide 

cancer treatment. This would allow treatments to be designed based on a patient’s perturbed 

signaling pathways obtained using their genomic data. 
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6.0 FUTURE WORK 

The work in this dissertation is an initial exploration into the applicability of alternative 

representations and topic modeling to the analysis of cancer genomic data. Following this work, 

there are two major directions that can be focused on in future work. One focus would be on 

improving or exploring different aspects related to the methodology that we have used. The 

second focus would be to apply this framework to other datasets. 

6.1 METHOD REFINEMENT 

One of the areas that requires additional work is developing a metric or method that can be used 

to analyze and evaluate the generated topics. While we have a method of measuring the 

coherency of the topics, this does not allow us to compare the functions associated with the 

topics. As such, without such a measure it is difficult to compare between the information 

captured using two different models.  

If such a measure was established, then this would allow for the exploration and 

evaluation of other aspects of the framework. It would be possible to evaluate the stability of the 

model, and determine how much the functions captured in a topic changes depending on the 

input data. For example, this would allow us to determine how the use of driver data changes the 

functions captured. Another aspect that could be explored would be how the use of different 
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topic models impact the functions captured. This would give us a better idea of how the 

hierarchical nature of the nested hierarchical Dirichlet process captures the relationship between 

functions in a way that flat topic models are unable to. 

Another aspect that could be refined would be the gene and tumor representations. After 

the first study, we made changes to the semantic representations used. However, there are still 

other potential knowledge sources that can be explored, and variations of the vector 

representations that can be used. On the other hand, we have not had a chance to explore the 

biological representation more fully. As such, it is possible that the representation could be 

improved through further adjustments. For example, setting a threshold that limits the number of 

differentially expressed genes used in the representation. This could potentially limit the tissue-

specific genes included, and also has the additional benefit of decreasing the vocabulary size. 

6.2 ADDITIONAL APPLICATIONS 

The other aspect that could be explored is applying these methods to other datasets. One area that 

can be explored is analyzing a subset of the cancer types. Since we were interested in seeing if 

there were functions shared across different cancer types, we mainly focused on pan-cancer data. 

However, it may also be of value to explore study cancer on a smaller scale, such as a specific 

cancer type, tissue of origin, or cell type. This is especially true for the current biological 

representation, which separates the tumors by cancer type. Studying a subset of cancer types 

would result in a more refined and detailed look at the subset being studied, which may make it 

possible to pick up the subtler differences between tumors in different subtypes. 
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APPENDIX A 

SUPPLEMENTAL MATERIALS 

A.1 SUPPLEMENTAL TABLES 

S Table 1. Survival analysis results of all five cancer types using semantic representation 

Cancer Type All Samples (P-Value) Minimum 25 Samples (P-Value) 
BRCA 0.00398 0.00093 
HNSC 0.0126 0.00701 
LUAD 0.456 N/A 
LUSC 0.038 0.0355 

OV 0.211 0.256 
 

 

 

S Table 2. Somatic mutation classifications and associated functional implications 

Mutation Classification Functional Implication 
Frame_Shift_Del Yes 
Frame_Shift_Ins Yes 
In_Frame_Del Yes 
In_Frame_Ins Yes 

Missense_Mutation Depends 
Nonsense_Mutation Yes 
Nonstop_Mutation Yes 

RNA Depends 
Silent No 

Splice_Site Yes 
Translation_Start_Site Yes 
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S Table 3. Number of tumors used for each cancer type in pan-cancer data 

Cancer Type Abbreviation 
Number of 
Samples in 

SGA Dataset 

Number of 
Samples in 

Driver Dataset 
Bladder urothelial carcinoma BLCA 234 200 

Breast invasive carcinoma BRCA 972 851 

Colon adenocarcinoma COAD 182 182 

Esophageal carcinoma ESCA 209 149 

Glioblastoma multiforme GBM 234 201 

Head and neck squamous cell carcinoma HNSC 491 459 

Kidney renal clear cell carcinoma KIRC 446 426 

Kidney renal papillary cell carcinoma KIRP 169 168 

Liver hepatocellular carcinoma LIHC 194 147 

Lung adenocarcinoma LUAD 465 383 

Lung squamous cell carcinoma LUSC 178 136 

Ovarian serous cystadenocarcinoma OV 449 322 

Prostate adenocarcinoma PRAD 419 398 

Rectum adenocarcinoma READ 81 77 

Stomach adenocarcinoma STAD 227 176 

Thyroid carcinoma THCA 399 N/A 

Uterine corpus endometrial carcinoma UCEC 239 193 

Pan-cancer PANCAN 5608 4468 
 

 

 

 

S Table 4. Proportion of topics meeting the PPI ratio threshold for semantic somatic genomic alteration dataset  

Threshold Count Percentage 
0.9 201 98.05% 
0.95 201 98.05% 
0.99 193 94.15% 
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S Table 5. Proportion of topics meeting the PPI ratio threshold for semantic driver dataset 

Threshold Count Percentage 
0.9 177 90.77% 
0.95 177 90.77% 
0.99 173 88.72% 

 

 

 

S Table 6. Proportion of PPI ratios smaller than cluster gene list for semantic somatic genomic alteration dataset  

Cluster Proportion Smaller # of Genes 
1 1 25304 
2 1 31693 
3 1 23513 
4 1 26550 
5 1 23829 
6 1 25107 
7 1 23664 
8 1 14552 
9 1 16547 

10 1 3783 
11 1 23382 
12 1 19067 
13 1 14068 
14 1 20806 
15 1 10853 
16 1 9755 
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S Table 7. Proportion of PPI ratios smaller than cluster driver list for semantic driver dataset 

Cluster Proportion Smaller # of Drivers 
1 0.9995 12 
2 0.9995 1937 
3 0.9977 1651 
4 1 126 
5 0.9867 371 
6 0.9994 1196 
7 0 13 

8 0.9948 1395 
9 1 974 

10 0.9961 1954 
11 0.9993 1330 
12 0.9705 329 
13 0.9999 1555 
14 0.9937 1307 
15 0.9979 484 
16 1 1071 
17 1 958 
18 1 1163 
19 0.9987 1027 
20 1 1122 
21 1 1132 
22 1 838 
23 0.9871 1102 
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S Table 8. Proportion of PPI ratios smaller than cluster gene list for semantic driver dataset 

Cluster Proportion Smaller # of Genes 
1 0.9864 540 
2 0.9951 15954 
3 0.492 15255 
4 0.0001 5849 
5 0 8428 
6 0 12623 
7 0.136 499 

8 0 12603 
9 0 11878 

10 0.0072 14644 
11 0.9977 15160 
12 0 8296 
13 0.0629 13769 
14 0.1309 14507 
15 0.2354 10988 
16 0.1929 13575 
17 0.0002 8451 
18 0 12793 
19 0.01 12315 
20 0.7802 13634 
21 0 12554 
22 0 11338 
23 0.0003 11843 

 

 

S Table 9. Proportion of topics meeting the PPI ratio threshold for biological driver dataset 

Threshold Count Percentage 

0.9 144 83.24% 

0.95 139 80.35% 

0.99 122 70.52% 
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S Table 10. Proportion of PPI ratios smaller than cluster driver list for biological driver dataset 

Cluster Proportion Smaller # of Drivers 

1 1 2005 

2 1 1387 

3 0.9998 1416 

4 1 1589 

5 0.9983 1481 

6 0.9954 1243 

7 0.9999 1279 

8 1 1425 

9 1 1207 

10 1 1176 

11 0.9997 1450 

12 0.9998 1144 

13 1 1297 

14 1 879 

15 0.9951 927 
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A.2 SUPPLEMENTAL FIGURES 

A 

 

B 

 

C 

 

D 

 

S Figure 1. Word vector length distributions. Distribution of the length of the gene word vectors 

generated using different semantic datasets. A) Pubmed articles, B) GeneRIFs, C) gene summaries, D) GeneRIFs 

and gene summaries 
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S Figure 2. Clustering of tumors using genomic alterations. Samples were clustered using genomic 

alteration data at k = 10. 

 

 

 

S Figure 3. Clustering of tumors using drivers. Samples were clustered using driver data at k = 10. 
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A

 

B

 

S Figure 4. Survival analysis of tumors for semantic SGA dataset. The survival analysis curves 

calculated using only the clusters that contain at least 20 samples. Figures A and B correspond to cancer types KIRC 

and LUSC respectively. 
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A

 

B

 

C

 

 

S Figure 5. Survival analysis of tumors for semantic driver dataset. The survival analysis curves 

calculated using only the clusters that contain at least 20 samples. Figures A, B, and C correspond to cancer types 

BRCA, LUSC, and UCEC respectively. 
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